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INTRODUCTION 

1.  The rationale for the thesis 

In the past decades, the problem of nonlinear behavior analysis 

of dynamical systems is of interest of researchers from over the 

world. In the field of space technology, satellite thermal analysis is 

one of the most complex but important tasks because it involves the 

operation of satellite equipment in orbit. To explore the thermal 

behavior of a satellite, one can use numerical computation tools 

packed in a specialized software. The numerical computation-based 

approach, however, needs a lot of resources of computer. When 

changing system parameters, the calculation process of thermal 

responses may require a new iteration corresponding to the 

parameter data under consideration. This leads to an “expensive” 

cost of computation time. Another approach based on analytical 

methods can take advantage of the convenience and computation 

time, because it can quickly estimate thermal responses of a certain 

satellite component with a desired accuracy. Until now, there are 

very little effective analytical tools to solve the problem of satellite 

thermal analysis because of the presence of quartic nonlinear terms 

related to heat radiation. For the above reasons, I have chosen a 

subject for my thesis, entitled “Investigation of temperature 

responses of small satellites in Low Earth Orbit subjected to thermal 

loadings from space environment” by proposing an efficient 

analytical tool, namely, a dual criterion equivalent linearization 

method which is developed recently for nonlinear dynamical 

systems. 
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2.  The objective of the thesis 

- Establishing thermal models of single-node, two-node and 

many-node associated with different thermal loading models acting 

on a small satellite in Low Earth Orbit. 

- Finding analytical solutions of equations of thermal balance 

for small satellites by the dual criterion equivalent linearization 

method. 

- Exploring quantitative and qualitative behaviors of satellite 

temperature in the considered thermal models. 

3.  The scope of the thesis 

The thesis is focused to investigate characteristics of thermal 

responses of small satellites in Low Earth Orbit; the investigation 

scope includes single-node, two-node, six-node and eight-node 

models. 

3.    The research methods in the thesis 

The thesis uses analytical methods associated with numerical 

methods: 

- The method of equivalent linearization; Grande’s 

approximation methods; 

- The 4
th
 order Runge-Kutta method for solving differential 

equations of thermal balance. 

- The Newton-Raphson method for solving nonlinear algebraic 

systems obtained from linearization processes of thermal balance 

equations. 

4.  The outline of the thesis 

The thesis is divided into the following parts: Introduction; 

Chapters 1, 2, 3 and 4; Conclusion; List of research works of author 

related to thesis contents; and References. 
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CHAPTER 1. AN OVERVIEW OF SATELLITE THERMAL 

ANALYSIS PROBLEMS 

- Chapter 1 presents an overview of the thermal analysis 

problem for small satellites in Low Earth Orbit. 

- In Low Earth Orbit, a satellite is experienced three main 

thermal loadings from space environment, namely, solar irradiation, 

Earth's albedo and infrared radiation. In the thesis, these loadings are 

formulated in the form of analytical expressions, and they can be 

easily processed in both analytical and numerical analysis. 

- The author presents the thermal modeling process for small 

satellites based upon the lumped parameter method to obtain 

nonlinear differential equations of thermal balance of nodes. The 

author has introduced physical expressions of thermal nodes in 

detail, for example heat capacity, conductive coupling coefficient, 

radiative coupling coefficient. For satellites in Low Earth Orbit, the 

main mechanisms of heat transfer are thermal radiation and 

conduction through material medium of spacecraft (here, convection 

is considered negligible). 

CHAPTER 2. ANAYSIS OF THERMAL RESPONSE 

 OF SMALL SATELLITES USING SINGLE-NODE MODEL 

2.1. Problem 

Thermal analysis is one of the important tasks in the process of 

thermal design for satellites because it involves the temperature limit 

and stable operation of satellite equipment. For small satellites, the 

satellite can be divided into several nodes in the thermal model. In 

this chapter, a single-node model is considered. The meaning of 

single-node model is as follows: (i) this is a simple model that allows 

estimating temperature values of a satellite, a certain component or 
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device; (ii) the model supports to reduce the “cost” of computation in 

the pre-design phase of the satellite, especially, temperature 

estimation with assumed heat inputs in thermodynamic laboratories. 

For single-node model, a satellite is considered as a single body 

that can exchange radiation heat in the space environment. 

According to the second law of thermodynamics, we obtain an 

equation of energy balance for the satellite with a single-node model 

as follows: 

   4 ,sc s s a a eCT A T Q f t Q f t Q        (2.1) 

where C  is the heat capacity,  T T t  is nodal temperature, the 

notation 
scA  denotes the surface area of the node in the model,   is 

the emissivity, 8 -4 -25.67 10 WK m    is the Stefan–Boltzmann 

constant; the quantity    s s a a eQ f t Q f t Q    represents a sum of 

external thermal loads, includes solar irradiation  s sQ f t , Earth's 

albedo  a aQ f t  and Earth's infrared radiation 
eQ . 

2.2. External thermal loadings 

- Solar irradiation: When the satellite is illuminated, the solar 

irradiation thermal loading  s sQ f t  differs from zero. Against, this 

loading will vanish as the satellite is in the fraction of orbit in 

eclipse, it means:  

   sol s s s sp s sQ Q f t G A f t    , (2.2) 

where sG  is the mean solar irradiation and spA  is the satellite surface 

projected in the Sun’s direction;  sf vt  represents the day-to-night 

variations of the solar irradiation, this function  sf vt  has a square 

wave shape,   1sf t   for 0 t    and  1 / 2 2 2t      , 

  0sf t   for  1 / 2 2t      , in an orbital period. 

/il orbP P   is the ratio of the illumination period ilP  (s) to the 

orbital period orbP  (s).  
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- Earth's albedo radiation: When the Sun illuminates the Earth, a 

part of solar energy is absorbed by the Earth's surface, the remaining 

part is reflected into space. The reflection will affect directly on the 

satellite, known as the Earth's albedo radiation. The albedo loading 

acting on the satellite is expressed as follows: 

   alb a a e s sc se s aQ Q f t a G A F f t    , (2.3) 

in which 
ea  is albedo factor; 

scA  represents the surface area of the 

node; seF  is the view factor from the whole satellite to the Earth; 

 af t  denotes the day-to-night variations of the albedo thermal 

loads,    cosaf t t   for 0 / 2t    and 3 / 2 2t    , 

  0af t   for / 2 3 / 2t    . 

- Infrared radiation: The Earth’s infrared radiation eQ  can be 

evaluated as 

4 ,e sc se eQ A F T   (2.4) 

where  eT  is the Earth’s equivalent black-body temperature. 

We introduce the following dimensionless quantities: 

  1 2 3, , , ,s a et T t Q C Q C Q C               (2.5) 

where 

 
1 3

2 ,orb scP C A      . (2.6) 

Using (2.5), the equation of thermal balance (2.1) is transformed 

in the following dimensionless form 

   4

1 2 3s a

d
f f

d


     


     . (2.7) 

In this chapter, the author proposes a new approach to find 

approximate periodic solutions of Eq. (2.7) using the dual criterion of 

equivalent linearization method studied recently for random 

nonlinear vibrations. The main idea of this approach is based on the 
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replacement of origin nonlinear system under external loadings that 

can be deterministic or random functions by a linear one under the 

same excitation for which the coefficients of linearization can be 

found from proposed dual criterion for satellite thermal analysis. 

2.3. The dual criterion of equivalent linearization 

We consider the first order differential equation of the form 

   ,
d

f
d


  


   (2.8) 

where  f   is a nonlinear function of the argument   and     is 

an external loading that can be deterministic or random functions. 

The original Eq. (2.8) is linearized to become a linear equation of the 

following form 

 ,
d

a b
d


  


    (2.9) 

where two equivalent linearization coefficients ,a b  are found from 

a specified criterion. 

In the linearization process of the thesis, the dual criterion has 

obtained from two steps of replacement as follows: 

- The first step: the nonlinear function  f   representing the 

thermal radiation term is replaced by a linear one a b  ,  in which 

,a b  are the linearization coefficients. 

- The second step: The linear function a b   is replaced by 

another nonlinear one of the form  f   that can be considered as a 

function belonging to the same class of the original function  f  , 

with the scaling factor  , in which the linearization coefficients ,a b  

and   are found from the following compact criterion,  

       
2 2

, ,
1 min,

a b
J f a b a b f


               (2.10) 
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where the parameter   takes two values, 0 or 1/2. It is seen from Eq. 

(2.10) that when 0  , we obtain the conventional mean-square 

error criterion of equivalent linearization. When 1 2  , we obtain 

the dual criterion proposed in work by Anh et al. in 2012. The 

criterion (2.10) contains both conventional and dual criteria of 

equivalent linearization in a compact form. 

The criterion (2.10) leads to the following system for 

determining unknowns ,a b  and   

0, 0, 0.
J J J

a b 

  
  

  
 (2.11) 

Equation (2.11) gives the result of linearization coefficient 

,a b , 

2

2 22 2

( ) ( )( ) ( )1 1
,

1 1

f ff f
a b

        

    

 
 

    
   

                                                                                                     (2.12) 

and, the return coefficient   

   2

2 22 22 2

( ) ( )( ) ( )( ) ( )1

1 ( ) ( )

f ff ff f

f f

         


     

 
  
    
 

                                                                                                     (2.13) 

where it is denoted, 

 

 

2 2

222 2

( ) ( ) ( )
.

( )( )

f f f

ff

    

  


  


 (2.14) 

In the framework of the thermal balance equation (2.7), the 

function  f   is taken to be   4f   . In next subsection, we will 

find approximate responses of Eq. (2.7) using the generalized results 

(2.12-2.14). 
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2.4. An approximate solution for the thermal balance equation 

It is seen that, due to the periodicity of two input functions 

   ,s af f   determined from Eqs. (2.2) and (2.3), they can be 

expressed as Fourier expansions 

 
2

2 2
sin cos sin cos ,s

k

f k k
k

     
 





    (2.15) 

 
 

 
2

1

1 1 2
cos cos 2 .

2 4 1
a

k

f k k
k

   
 





   


  (2.16) 

The terms of two series tend to zero as the index k  increases. 

Thus, for simplicity, in the later calculation, only the first harmonic 

terms of each series will be retained. Hence, Eq. (2.7) can be 

rewritten as 

4 cos ,
d

P H
d


 


     (2.17) 

where it is denoted 

1 2 3

1
P   


   , 1 2

2 1
sin .

2
H   


   (2.18) 

The solution of Eqs. (2.9), with   cosP H    , is expressed 

as 

  cos sin ,R A B       (2.19) 

where , ,R A B  are determined by substituting Eqs. (2.19) (with 

  cosP H    ) into Eq. (2.9) and equating coefficients of 

corresponding harmonic terms 

2 2

1
, , .

1 1

P b a
R A H B H

a a a


  

 
 (2.20) 

Substituting expression   4f    into Eqs. (2.12-2.14), after 

some calculations involving the average response, we obtain the 

nonlinear algebraic system for the linearization coefficients a  and b  

as follows: 
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 

2 42 4

2 2
2

1 3 1 3
4 , 3 ,

1 1 81 1

P b P b H P b H
a b

a a aa a

 

 

                              

                                                                                                     (2.21) 

where 

       

       

2 3 4
8 6 2 2 4 2 2 2 2 2 2 2

2 3 4
8 6 2 2 4 2 2 2 2 2 2 2

87 27 9
14

4 4 64 .
105 35 35

14
4 4 128

R R A B R A B R A B A B

R R A B R A B R A B A B

       

 

       

                                                                                                     (2.22) 

Because system (2.21) is a nonlinear algebraic equations system 

for linearization coefficients ,a b in the closed form, this system can 

be solved by the Newton–Raphson iteration method. Then using 

(2.20), we obtain the approximate solution (2.19) of the system (2.7). 

It is noted again that the conventional and dual linearization 

coefficients are obtained from Eq. (2.21) by setting 0   and 1/2, 

respectively. 

Solution obtained from Grande's approach in steady-state 

regime is 

   3

6
4 cos sin .

1 16
s

H
    


 


 (2.23) 

The temperature fluctuation amplitudes 
G  of    received 

from Grande's approach (2.23) and 
DC  derived from the solution 

(2.21) of the compact dual criterion (2.10) are, respectively, 

           
6

,
1 16

G

H






        

2
.

1
DC

H

a
 


              (2.24-2.25) 

In the next section, we compare results of thermal response 

    obtained by the dual linearization, conventional linearization, 

and Grande’s approach with the numerical solution of the Runge–

Kutta method. 

2.5. Thermal analysis for small satellites with single-node model 

The results in Figures 2.1 and 2.2 exhibit that the graphs of 

temperature obtained from the method of equivalent linearization and 
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Grande’s approach are quite close to the one obtained from the 

Runge–Kutta method. Taking reference of the thermal response 

obtained by the Runge-Kutta method, the dual criterion of  

equivalent linearization gives smaller errors than other methods 

when the nonlinearity of the system increases, namely, when the heat 

capacity C  varies in the range [1.0, 3.0]  10
4 
( -1JK ). 

  

Figure 2.1. Dimensionless 

average temperature with  

various methods. 

Figure 2.2. Dimensionless 

temperature amplitude with 

various methods. 

Table 2.1. Dimensionless average temperature θ with various values 

of the heat capacity C  
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Table 2.1 reveals that, in the considered range of the heat 

capacity C, the maximal errors of the dual and conventional 

linearization criteria are about 0.1842% and 0.2307%, respectively, 

whereas the maximal error of the Grande’s approach is about 

1.4702%. 

2.6. Conclusions of Chapter 2 

This chapter is devoted to the use of the new method of 

equivalent linearization in finding approximate solutions of small 

satellite thermal problems in the Low Earth Orbit. A compact dual 

criterion of equivalent linearization is developed to contain both the 

convention and dual criteria for single-node model. A system of 

algebraic equations for linearization coefficients is obtained in the 

closed form and can be then solved by an iteration method. 

Numerical simulation results show the reliability of the linearization 

method. The graphs of temperature obtained from the method of 

equivalent linearization and Grande’s approach are quite close to the 

one obtained from the Runge–Kutta method. In addition, the dual 

criterion yields smaller errors than those when the nonlinearity of the 

system increases, namely, when the heat capacity C  varies in the 

range [1.0, 3.0] × 10
4
 -1JK ). 

The results of Chapter 2 are published in two papers [1] and [7] 

in the List of published works related to the author's thesis. 

CHAPTER 3. ANALYSIS OF THERMAL RESPONSE 

 OF SMALL SATELLITES USING TWO-NODE MODEL 

3.1. Problem 

For purpose of well-understanding on temperature behaviors of 

the satellite, many-node models may be proposed and studied in 

different satellite missions. 
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In this chapter, the author 

studies a two-node model for 

small spinning satellites. The 

satellite is modeled as an 

isothermal body with two nodes, 

namely, outer and inner nodes. 

The outer node, representing the 

shell, the solar panels and any 

external device located on the 

outer surface of the satellite, and  

 

Figure 3.1. Two-node system model 

the inner node which includes all equipment within it (for example, 

payload and electronic devices). The thermal interaction between 

two nodes can be modeled as a two-degree-of-freedom system in 

which the link between them can be considered as linear elastic link 

for conduction phenomena and nonlinear elastic link for radiation 

phenomena, as illustrated in Figure 3.1. 

Let 1C  and 2C  be the thermal capacities of the outer and the 

inner nodes, respectively, and 1T  and 2T  their temperatures. The 

equation of the energy balance for the two-node model takes the 

following form 

       

   

4 4 4

1 1 21 2 1 21 2 1 1

4 4

2 2 21 2 1 21 2 1 2

,

,

sc s s a a e

d

C T k T T r T T A T Q f t Q f t Q

C T k T T r T T Q

         

     

 (3.1) 

where  s sQ f t ,  a aQ f t , eQ  is the solar irradiation, albedo and 

Earth’s infrared radiation, respectively; and, 2dQ  is  the internal heat 

dissipation which is assumed to be undergone a constant heat 

dissipation level. 
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The equation of thermal balance (3.1) can be transformed in the 

following dimensionless form 

       

   

4 4 41
2 1 2 1 1 1 2 3

4 42
2 1 2 1 4

,

,

s a

d
c k r f f

d

d
k r

d


         




    



       

     

 (3.2) 

where  1 1   ,  2 2    are dimensionless temperature 

functions of the dimensionless time  ; and it is denoted 

 1 1 /T t  ,  2 2 /T t  ,  
1/3

2 / scC A      , t  , 

2 / orbP  , 
1 2c C C , 

21 2k k C , 3

21 2r r C  , 

 1 2/sQ C   ,  2 2/aQ C   ,  3 2/pQ C   ,

 4 2 2/dQ C   .                                                                

(3.3) 

 

The author will extend the dual criterion developed in Chapter 2 

for the two-node model (3.2), to find approximation of the satellite 

thermal system. 

3.2. Extension of dual equivalent linearization for two-node 

model  

For the equivalent linearization approach, to simplify the 

process of linearization, a preprocessing step in nonlinear terms of 

the original system is carried out to get an equivalent system in 

which each differential equation contains only one nonlinear term. 

On the basic of the dual criterion, as presented in Chapter 2 [see 

(2.10)], a closed form of linearization coefficients system is obtained 

and solved by a Newton–Raphson iteration procedure. 

After finding the linearization coefficients, we obtain the 

approximate thermal response of nodes [2]. 
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3.3. Thermal analysis for small satellites with two-node model 

In Fig. 2, temperature 

calculations are performed for 

the nonlinear system (3.2) using 

the Runge–Kutta algorithm 

corresponding to 5 orbital 

periods. Several characteristic 

points such as A, B, C and D of 

the satellite’s orbit are remarked. 

The letter A shows the sunrise 

point whereas the letter C is the  

 
Figure 3.2. Inner and outer nodes’ 

dimensionless temperatures as 

functions of dimensionless time 

sunset point in the orbit. Two letters B and D are intersection 

points of two outer and inner temperature curves in time. 

  

Figure 3.3. Dimensionless 

temperature evolution of  1   

by various methods 

Figure 3.4. Dimensionless 

temperature evolution of  2   

by various methods 

To evaluate the efficiency of the equivalent linearization 

method, we show the computation time (solution time) for various 

methods as shown in Figure 3.5. For reference solution time of the 

dual method, it is seen that the computation time of the RK algorithm 

is quite large in comparison with those of remaining methods. 
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Figure 3.5. Comparison of solution time of various methods via 

the number of orbital periods. 

Table 3.1. Outer node’s dimensionless average temperature with 

various values of thermal capacity 
2C  (

RK
 : Runge–Kutta method; 

G
 : Grande’s approach; 

CL
 : Conventional linearization; 

DC
 : 

Dual criterion method). 

 

Calculation data corresponding to the characteristics of thermal 

response are presented in Tables 3.1 and 3.2. For the outer node’s 

dimensionless average temperature, Table 3.1 exhibits that the 

relative errors of approximate methods in comparison with the RK 

algorithm are quite small. The equivalent linearization method 
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yields errors smaller than that of the Grande’s approach. It is also 

seen from Table 3.2 that the dual criterion gives smaller errors than 

remaining methods. 

Table 3.2. Outer node’s dimensionless temperature amplitude   

with various values of thermal capacity 
2C  

 

3.4. Conclusions of Chapter 3 

In this chapter, the author presents an extension of the dual 

criterion equivalent linearization method to find approximate 

solutions of a two-node thermal model of small satellites in Low 

Earth Orbit. Two important characteristics needed for the evaluation 

of temperature limits of satellite during its motion in orbit are 

average temperature and amplitude values. To get these quantities, a 

closed nonlinear system of equivalent linearization coefficients is 

established based on the proposed dual criterion, and then is solved 

by the Newton– Raphson iteration method. The main results obtained 

in the chapter can be summarized as follows: 

- The graphs of evolutions of nodes in time obtained from the 

approximate methods (i.e. the Grande’s approach, conventional and 
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dual criterion linearization methods) are quite close to that obtained 

from the Runge–Kutta algorithm. This is clarified from the analysis 

of solution errors of analytical methods in comparison with the 

Runge– Kutta numerical solution. 

- The efficiency of solution time of the proposed dual criterion 

method is recorded in the framework of two-node model in the 

problem of satellite thermal analysis. 

- In the considered range of the thermal capacity from 10000 to 

30000 -1JK , the errors obtained from the proposed dual criterion for 

the average temperature and amplitude values are smaller than those 

obtained from the Grande’s approach 

The results of Chapter 3 are published in three papers [2], [5] 

and [6] in the List of published works related to the author's thesis. 

CHAPTER 4. ANALYSIS OF THERMAL RESPONSE FOR 

SMALL SATELLITES IN LOW EARTH ORBIT USING 

MANY-NODE MODEL 

4.1. Thermal analysis for solar array 

In area of thermal control, 

the temperature specification for 

solar arrays of satellites is 

important because solar arrays 

supply main energy source for 

the operation of almost electrical 

devices and related equipment of 

satellites during motion in their  

 

Figure 4.1. A model of solar 

array of a small satellite 

orbits. The solar arrays are also composed of different materials. A 

solar array includes two surfaces: a front surface contains solar cells 

absorbed energy directly from solar rays; absorptivity coefficient of 
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the front surface is taken to be 
1 0.69   whereas emissivity 

coefficient is 
1 0.82  ; and a rear surface is coated by a material 

layer with absorptivity 
2 0.265  , and emissivity 

2 0.872  . In 

this section, to predict thermal responses of the solar array of the 

satellite, we use a model of two-node for front and rear surfaces. A 

model of the solar array is illustrated in Figure 4.1 (see [4]).                

We will calculate thermal responses of the solar array in two 

cases: 

The first case: The satellite always remains Earth-pointing 

attitude during motion (see Fig. 4.2 for the solar array only).  

The second case:  During the fraction of orbit while the satellite 

is illuminated, attitude of the satellite is controlled, so that the front 

surface (contains solar cells) always remains Sun-pointing attitude 

and is perpendicular to solar rays; during the eclipse period, rear 

surface remain Earth-pointing attitude (see Figure 4.3). 

 
 

Figure 4.2. Earth-pointing attitude 

of the satellite in the first case 

 (for the solar array only) 

Figure 4.3. Attitude of the 

satellite in the second case 

 (for the solar array only) 

We illustrate our calculations in the first case [calculation 

details for the second case can be seen in the full text of author’s 

thesis]. In this case, we obtain temperature responses of two nodes 

(front and rear surfaces) as functions of time (see Fig. 4.4). It is seen 
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that the obtained solutions appear almost periodic at the steady-state 

regime. 

 

Figure 4.4. Temperature evolution of front and rear surfaces as 

functions of time 

In this case, temperature values of the front surface are nearly 

close to those of the rear surface. This is because the solar array is a 

thin plate, the temperature difference between opposite flat surfaces 

is quite small. 

4.2. Thermal analysis for box-shape satellite 

We consider a box-shape satellite of size 

0.5 0.5 0.5L W H     (m
3
), thickness 0.02  (m) (Fig. 4.5), 

made from composite plate with the mass density 

158.90  ( -3kgm ); specific heat capacity 883.70pC   ( 1 1Jkg K  ); 

material conductivity 5.39   ( 1 1Wm K  ); emissivity and 

absorbsivity of the material 0.82  , 0.65  , respectively. 

The cover plates 1, 2, 3, 4, 5, 6 are numbered as shown in Fig. 

4.5. Numbers 1 to 6 indicate that the satellite structure is separated 

into six-node with thermal characteristics assigned to each node. 

The following sections, we will calculate the thermal response 

of nodes in two special trajectory cases when orbital angle 00   

[the orbital plane is parallel to solar rays] and 090   [orbital plane 
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is perpendicular to solar rays]. These two cases, namely, “Cold Case 

– CC” and “Hot Case – HC”, are commonly used for satellite 

thermal analysis. In next section, we will analyze the thermal 

response of satellite structures in above cases. 

 

 

 

 

Figure 4.5. A model of a 

small box-shape satellite 

Figure 4.6.  Earth-pointing attitude 

of the satellite in Cold Case 

4.2.1. The Cold Case (CC) 

In the CC, satellite's orbit is Sun-synchronous and orbital plane 

is parallel to solar rays. For simulation, we suppose that the satellite 

always remains Earth-pointing attitude during motion.   

Table 4.1. The order of nodes in the thermal calculation in six-

node model 

 

The order of nodes in thermal calculation is shown in Tab. 4.1. 

During motion, only four surfaces receive the thermal loadings from 

the space environment are +X, -X, +Z, -Z; also for other two sides 
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+Y and -Y, the applied thermal loadings are considered to equal 

zero. Temperature evolutions in time of six nodes of satellite are 

shown in Fig. 4.7. 

  

Figure 4.7. Temperature 

evolutions in time of six nodes of 

satellite in CC 

Figure 4.8. Temperature 

evolutions in time of six nodes of 

satellite in HC 

4.2.2. The Hot Case (HC) 

In this HC, surface +Y (node 1) always remains Earth-pointing 

attitude during motion. The thermal behavior of nodes is shown in 

Figure 4.8. Because thermal loadings are constant, after several 

periods of orbit, temperature values of nodes will tend to steady 

states and have constant values. 

4.3. Thermal analysis for box-shape satellite with a solar array 

A box-shape satellite with a solar array can be modeled as a 

system with different lumped thermal nodes. We use an eight-node 

model to estimate temperatures at nodal elements i.e. six nodes for 

cover plates, and two nodes for front and rear surfaces of the solar 

array (as shown in Fig. 4.9). This model is a simplified one and will 

be a basis for exploring the more complex satellite model. 
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In the thesis, the author calculates thermal loadings and analyzes 

thermal response of nodes in three cases of orbital configuration: 

Cold-Case, Hot-Case 1 (i.e. Hot-Case for the satellite body), Hot-

Case 2 (i.e. Hot-Case for the solar array). The nodal order in thermal 

calculation layout is shown in Tab. 4.2. 

Table 4.2. The nodal  order in thermal calculation layout in 

eight-node model 

 

 
 

Figure 4.9. A model of a small 

satellite with a solar array 

Figure 4.10. Temperature 

evolutions in time of eight nodes 

of satellite in CC 

We here illustrate calculation results in the Cold-Case. 

Temperature values of nodes in time will be obtained as we solve the 

thermal balance equations of nodes (see Figure 4.10). It is seen that 

the predicted temperatures of the satellite obtained from our numeral 

analysis are within the allowable temperature limit of satellite. In this 

case, the effects of material properties such as absorbtivity and 

emissivity on the thermal responses of nodes are explored (see [3] in 

detail). 
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4.4. Conclusions of Chapter 4 

In this Chapter 4, the author has studied thermal models of 

satellite structure and obtained the following main results: 

- Models of thermal loadings from space environment are 

established in the framework of Low Earth Orbit. 

- Simplified models (i.e. two-node model for solar arrays, six-

node-model for the box-shape satellite and eight-node model for 

another box-shape satellite with a solar array) are constructed based 

on the geometrical dimensions and material properties of satellite. 

- The temperature evolutions in time of nodes are obtained using 

the Runge-Kutta algorithm to solve thermal balance equations. 

- The maximum and minimum temperature information of 

nodes shows that the predicted temperatures of the satellite obtained 

from our numeral analysis are within the allowable temperature limit 

range of satellite. 

The results of Chapter 4 are published in three papers [3], [4] 

and [8] in the List of published works related to the author's thesis. 

CONCLUSIONS  

This thesis presents new and important findings in thermal 

analysis of satellites based on single-node, two-node and many-node 

thermal models. For single-node and two-node models, the author 

has applied analytical methods including the equivalent linearization 

method and Grande’s linearization approach to find approximate 

responses of thermal models; and then investigated qualitative 

behaviors of the solution depending on the system parameters. For 

many-node models, the author has used a fourth-order Runge-Kutta 

method to compute solutions and examine the basic characteristics of 

nodal temperatures in thermal models with different trajectories and 
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has indicated the suitability of the predicted temperature in the 

allowable temperature limit range of satellite components. 

The new findings of the thesis 

The thesis has achieved the following new results: 

- It is the first time, in the area of satellite thermal analysis, the 

method of equivalent linearization using different criteria including 

mean-square and dual ones is applied to find approximate 

temperature responses of small satellites in Low Earth Orbit. 

- The author has developed analytical methods for single-node 

and two-node models based on the proposed dual criterion in the 

framework of nonlinear problem of the satellite thermal balance 

equations. 

- Numerical results of the thermal behavior analysis show that 

the dual criterion yields higher accuracy than those obtained from the 

Grande’s approach. 

- Simplified models of thermal loadings and satellite thermal 

structures are constructed and developed for small satellites in Low 

Earth Orbit. This result of thermal analysis plays a fundamental role 

for purpose of designing and calculating more complex satellite 

thermal models. 

Suggestions 

- Developing and extending the dual criterion equivalent 

linearization method to investigate thermal responses of satellites 

with different case of external loadings in which random factors are 

taken into account in thermal models. 

- Developing different satellite thermal models including 

geometrical configuration, material models, thermal loading models, 

towards the construction of a specialized software for satellite 

thermal analysis. 
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