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INTRODUCTION 

1. The necessity of the dissertation 

Functionally graded material (FGM) is an advanced composite 

possessing many superior properties such as very high stiffness and 

strength along with excellent temperature resistance. Therefreo, this 

composite is widely applied in many structural components. 

Nevertheless, in the manufacturing process, pores can exist within the 

FGM and have influences on the properties of the FGM. Accordingly, 

the effects of porosity on the static and dynamic responses in general 

and stability of FGM structures in particular are problems of great 

importance. Cylindrical, toroidal and spherical shells are extensively 

used in engineering and aerospace structures. However, the combined 

influences of porosity, elasticity of tangential edge constraints and 

transverse shear deformation on the linear and nonlinear instabilities 

of these shells have been not investigated. 

Due to extremely high stiffness and strength along with very 

large aspect ratio, carbon nanotubes (CNTs) are ideal fillers into 

isotropic matrix to form carbon nanotube reinforced composite 

(CNTRC). Most of preceding works on the CNTRC structures only 

focused on single-layered form of CNTRC. There are very little 

investigations on the behavior of sandwich structures made of 

CNTRC. By virtue of the generation of new materials like CNTRC, 

the development of new sandwich models made of CNTRC is 

necessitated in order to optimize the performance of CNT-based 

structures. Flat and curved sandwich panels made of CNTRC have 

many superior characteristics and widely applied in micro and macro 

structures. Thus, the stability problem of CNTRC sandwich panels 
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must be considered. From above reasons and motivations, the 

dissertation aims to investigate Stability of FGM shells with porosities 

and FG-CNTRC sandwich panels with elastically restrained edges.  

2. The aims of the dissertation 

1) Linear buckling analysis of FGM cylindrical and toroidal 

shells with porosities and tangentially restrained edges. 2) Analysis of 

combined influences of porosities and elasticity of in-plane boundary 

conditions on the buckling and postbuckling behaviors of FGM 

circular plates, cylindrical and spherical shells subjected to 

mechanical, thermal and thermomechanical loads. 3) Nonlinear 

stability analysis of flat and curved sandwich panels made of FG-

CNTRC including the elasticity of tangential constraints of edges. 

3. Methodology 

The dissertation uses the theoretical methodology based on 

analytical and semi-analytical approaches. Governing equations are 

established based on the classical shell theory (CST), first-order shear 

deformation theory (FSDT) and higher-order shear deformation 

theory (HSDT), then are solved using Galerkin method and iteration. 

4. The main content of the dissertation 

The dissertation includes 5 chapters. Chapter 1 reviews the 

previous publications. Chapter 2 studies linear stability of FGM 

cylindrical and toroidal shells with porosities. Nonlinear stability of 

FGM cylindrical shells with porosities is presented in chapter 3 using 

FSDT. Chapter 4 analyzes nonlinear stabilities of porous FGM 

spherical shells and circular plates. Finally, buckling and postbuckling 

of FG-CNTRC sandwich panels are investigated in chapter 5. 
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CHAPTER 1. REVIEW 

In the first part of this chapter, the dissertation has reviewed the 

functionally graded material (FGM), and superior properties of carbon 

nanotubes (CNTs) and functionally graded carbon nanotube 

reinforced composite (FG-CNTRC). In the next part of chapter 1, the 

preceding works on the stability problem of FGM shells and single-

layered and sandwich FG-CNTRC structures have been reviewed. 

Specifically, the dissertation reviewed previous studies on the linear 

and nonlinear instabilities of FGM cylindrical and toroidal shells 

without porosities; on the stability of FGM shallow spherical shells 

and circular plates without porosities; on the behavior of FGM 

structures with porosities; on the stability of single-layered and 

sandwich FG-CNTRC structures. From the review, it is remarked that: 

- There are little publications on the stability of FGM structures 

with porosities. Especially, there are no investigations on the linear 

and nonlinear stabilities of porous FGM cylindrical and toroidal shells. 

- Nonlinear stability of FGM spherical shells and circular plates 

with porosities and restrained edges have been not investigated. 

- Among previous studies on FG-CNTRC sandwich structures, 

only sandwich model with homogeneous core and FG-CNTRC face 

sheets was considered. Another sandwich model composed of FG-

CNTRC core and homogeneous face sheets have been not considered. 

- There are no studies examining the combined influences of 

porosity and edge constraints on the stability of shear deformable 

FGM closed shells, FGM spherical shells and circular plates. 

- There is a very limited number of preceding works considering 

the effects of three-parameter nonlinear foundations on the behavior 

of composite structures and particularly stability of FGM structures. 

The dissertation focuses to deal with the above problems. 
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CHAPTER 2. LINEAR BUCKLING OF FGM TOROIDAL 

SHELL SEGMENTS WITH POROSITIES USING HIGHER 

ORDER SHEAR DEFORMATION THEORY  

2.1. Material and structural models 

Structural model considered in this chapter is a toroidal shell 

segment (TSS) shown in Fig. 2.1. The TSS is surrounded by an elastic 

medium, exposed to a thermal environment 0T T T    and 

subjected to axial compression P , lateral pressure q  or combined 

action of mechanical loads P  and q . 

  

Figure 2.1. Geometry and coordinates of a toroidal shell segment. 

The dissertation accounts for elasticity of in-plane constraints 

of edges. Specifically, two edges are elastically modelled as Fig. 2.2. 

 
Figure 2.2. Model of tangentially elastic constraints of boundary edges. 

The TSS is made of FGM with porosities, in which pores are 

distributed within FGM according to even and uneven distributions, 

as illustrated in Fig. 2.3. 
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Figure 2.3. Illustrations of even and uneven types of porosity distribution. 

Due to the existence of pores, the effective properties effP  of 

FGM can be determined using a modified rule of mixture as. 

                         
2 2

eff m m c cP P V P V
    

      
   

 (2.1) 

in which 0 1  is porosity volume fraction and 0   for perfect 

FGM (i.e. without porosity). Effective modul of elasticity E  and 

coefficient of thermal expansion   of FGM with porosities are 
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 (2.2b) 

where 0   and 1   for even and uneven distributions, respectively. 

2.2. Governing equations and analytical solutions 

Governing equations including the equilibrium equation and 

strain compatibility equation are established within the framework of 

higher order shear deformation theory (HSDT) in terms of deflection 

function w , stress function f  and rotations x ,
y . Specifically, the 

equilibrium equation is derived as follows: 
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where 2 2 2 2 2/ /x y       is Laplace operator. Strain compatibility 

equation is written in the form 

                          
,,4

1 0
yyxx

ww
f E

R a

 
    

 
. (2.4) 

Fictitious force 0xN  at restrained edges and closed condition: 

2

0

0 0
2

R L

x

c u
N dxdy

RL x






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   , 
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0

R L
v
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



   (2.5a,b) 

To satisfy simply supported conditions of edges, approximate 

analytical solutions are assumed as the following  

           0 1( , ) sin sinm nw x y W W x y  

2 2

1 2 3 0 0

1 1
( , ) cos 2 cos 2 sin sin

2 2
m n m n y xf x y A x A y A x y hx N y          

           1 cos sinx m nB x y    , 
2 sin cosy m nB x y    (2.6) 

   Using (2.6) into equilibrium equation and applying Galerkin method 
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2.3. Specific problems 

2.3.1. TSS with restrained edges under lateral load and temperature. 

By determining 0xN  and 
0 y  from conditions (2.5a,b), 

substituting into (2.7) and eleminating 
0W  from the resulting 

equations, we obtain buckling lateral pressure q  of porous TSS as 

            11 12 11 22 21q g g g g g T     (2.8) 

2.3.2. TSS with movable edges under combined mechanical loads 

    TSS with movable edges under combined action of axial pressure 

P  at edges and lateral pressure q . Determining 
0 y  from (2.5b) and 

putting 0 y  and 
0xN P   into (2.7) and the eleminating 

0W  yields 
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                   22 32

12

a a T
P

a

 



 (2.9) 

where /q P   is load ratio. Critical loads crP , crq , crT  are the 

smallest values of buckling loads with respect to buckling mode ( ,m n ). 

2.4. Numerical results and discussion 

This section presents some numerical results for buckling 

analysis of FGM TSSs made of two material constituents are that 

silicon nitride ( 3 4Si N ) and stainless steel ( 304SUS ) properties of 

which are assumed to be temperature dependent. 

To verify the proposed approach, a comparative study is carried 

out for critical loads of perfect FGM cylindrical shells with movable 

edges under combined mechanical loads. Critical loads obtained by 

using Eq. (2.9) are shown in Table 2.3 in comparison with results 

reported in the work of Shen and Noda [30] using asymptotic solutions. 

It is evident that a good agreement is achieved in this comparison.  

Table 2.3. Comparision of critical loads ( ,cr crP q )(MPa) of  FGM cylindrical 

shells under combined mechanical load ( / 30R h  , 2 / 500L Rh  , 0T  K). 

N  source ( ,cr crP q ) (MPa) 

0.2 Ref. [30] (4110.57, 0) (3865.17, 2.577) (1248.38, 8.323) (0, 11.061) 

 Present (4510.5, 0) * (3865.17, 2.578) (1248.377, 8.323) (0, 11.061) 

1.0 Ref. [30]  (4735.33, 0) (4420.00, 2.947) (1427.56, 9.571) (0, 12.648) 

 Present (5192.4, 0) (4420.00, 2.949) (1427.56, 9.530) (0, 12.648) 

2.0 Ref. [30] (5018.19, 0) (4654.40, 3.103) (1503.25, 10.022) (0, 13.319) 

 Present (5499.1, 0) (4654.40, 3.105) (1503.25, 10.022) (0, 13.319) 

* Mode ( , ) (13,1)m n   with 0crq  and ( , ) (1,3)m n   with others. 

Effects of Gauss curvature /R a , porosity volume fraction   

and non-dimensional stiffness 1 2,K K  of foundation on critical loads 
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crq  of FGM TSS with evenly distributed porosities and immovable 

edges ( 1  ) under lateral pressure are shown in Fig. 2.4. Obviously, 

crq are significantly decreased and increased when    and /R a  is 

increased, respectively. Additionally, crq is larger as enhancing 1 2,K K . 

  
Figure 2.4. Effects /R a ,   

and 1 2,K K on critical lateral 

pressure crq  of FGM TSSs. 

Figure 2.5. Effects of 

temperature, edge restraint   

and porosity distribution on crq . 

Figure 2.5 indicates that critical pressure 
crq  is slightly and 

strongly reduced when edges are more severely restrained (higher  ) 

at reference and elevate temperatures, and 
crq  is lower for even type. 

  

Figure 2.6. Effects of /R a  and 

porosity distribution on the 

stability region of FGM TSS. 

Figure 2.7. Effect of porosity 

volume fraction on critical 

temperature crT  of FGM TSS. 
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Next, Fig. 2.6 examines effects of Gauss curvature /R a  and 

porosity distribution on the stability region of FGM TSSs under 

combined mechanical loads. Obviously, the stability region of 

cylindrical shell ( / 0R a  ) is larger and remarkably smaller than those 

of concave ( / 0R a  ) and convex ( / 0R a  ) TSSs, respectively, and 

is more narrow for even distribution. Finally, Fig. 2.7 indicates the 

effects of porosity volume fraction   on critical thermal loads crT  of 

FGM TSSs under uniform temperature rise. Evidently, unlike case of 

mechanical loads, porosities have beneficial influences on buckling 

resistance of TSS and critical temperature crT  is larger for higher  .  

2.5. Conclusions of chapter 2 

1. Porosities have beneficial and deteriorative influences on the 

stability of FGM shells under thermal and mechanical loads, 

respectively.  

2. Critical thermal loads are higher when pores are evenly 

distributed in the FGM. In contrast, critical mechanical loads are larger 

as pores are unevenly distributed in the FGM. 

3. Critical loads are considerably enhanced when shells are 

surrounded by an elastic medium. Winkler-type foundation more 

beneficially influences the FGM TSS under lateral pressure.  

4. Critical pressures of TSSs are slightly and significantly reduced 

when edges are restrained at reference and elevated temperatures. 

5. When the TSS is exposed to uniform temperature, critical 

temperature is strongly decreased as edges are more rigorously 

restrained and/or preexistent lateral pressure is enhanced.  

Main results of chapter 2 have been presented in 2 scientific 

papers published on international journals ranking ISI, that is, papers 

numbered 1 and 2 in the list of author’s scientific works relating to the 

content of the dissertation.  
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CHAPTER 3. NONLINEAR STABILITY OF FGM CIRCULAR 

CYLINDRICAL SHELLS WITH POROSITIES USING FSDT 

3.1. Material and structural models 

This chapter considers 

a geometrically perfect 

circular cylindrical shell 

(CCS) of length L , 

radius R  and thickness 

h , as shown in Fig. 3.1. 
 

Figure 3.1. Geometry of cylindrical shell. 

Two boundary edges 0,x L  of cylindrical shell are simply 

supported and tangentially restrained as illustrated in chapter 2. The 

shell is made of FGM with porosities the effective properties of which 

are expressed as section 2.1 in the chapter 2. 

3.2. Governing equations and analytical solution 

In the present chapter, the first order shear deformation theory 

(FSDT) is used to establish governing equations for the nonlinear 

stability problem of FGM cylindrical shells with porosities under 

mechanical and thermal loads. Specifically, nonlinear equilibrium 

equation and strain compatibility equation are written in terms of 

deflection w , stress function f , and rotations ,x y  . The nonlinear 

equilibrium equation basing on the FSDT has the form  

      2

, , , , , , , , ,2 / 0x x y y yy xx xy xy xx yy xxD f w f w f w f R q          (3.1) 

Strain compatibility equation is written in the form: 

       ,4 2

1 , , , 0
xx

xx yy xy

w
f E w w w

R

 
     

 
 (3.2) 

Approximate analytical solutions are assumed as Eq. (2.6). 
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By placing the solutions (2.6) into compatibility equation (3.2), 

coefficients 1 2 3, ,A A A  can be determined. Substituting solutions (2.6) 

into equilibrium equation (3.1) and applying Galerkin method give         

                   
0

0
y

h

q
R


    (3.3a) 

             
2 2 2

2

11 21 1 0 02 2 2
0x y

h R h

m n
g g W N

R L R


      (3.3b) 

where 11 21,g g  are quantities depending on material and geometry 

properties, /hR R h , /RL L R  and q  is external lateral pressure.  

3.3. Specific problems 

3.3.1. CCS with restrained edges under pressure and temperature 

From kinematic relations and expressions of resultant forces, 

,xu , , yv are expressed in terms of partial derivative of f , w , ,x y  . 

Afterwards, by putting ,xu , , yv  into relations (2.5a,b), we obtain a 

system of two algebraic equations from which fictitious force resultant 

0xN and circumferential stress 
0 y are determined as follows 

2

0 13 0 23 1 33xN g W g W g T     , 2

0 12 0 22 1 32y g W g W g T      (3.4) 

Substituting (3.4) into (3.3) and eleminating 
0W  from resulting 

equations lead to the following relation between load and deflection 

           2

11 24 1 34

14

1
q g g W g T

g
     (3.5) 

Non-dimensional maximum deflection is written in the form 

       2 3222
max 0 1 1 1

12 12 12

hg Rg
W W W W W T q

g g g
        (3.6) 

Expressions (3.5) and (3.6) are used to determine load-

deflection curves for postbuckling analysis of porous FGM CCS under 

lateral pressure in thermal environments. Buckling lateral pressure is 

obtained from Eq. (3.5) by setting 
1 0W   as the following 
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                  11 34

14

1
bq g g T

g
    (3.7) 

When CCS is only exposed to uniform temperature rise, relation 

between thermal load T and deflection and buckling load bT  can 

be obtained from (3.5) and (3.7) as 0q  , but omitted here for brevity. 

3.3.2. CCS with movable edges under combined mechanical loads 

By determining 0 y  from (2.5b), putting 0xN P   and 0 y  

into (3.3) and eleminating 
0W  from resulting equations, we obtain 

       
2 2

2

11 21 12 2 2 2

h R

h R

R L
P g g W

m n R L 
 


  (3.8) 

in which /q P   is load ratio. 

3.4. Numerical results and discussion 

This section presents numerical results for postbuckling 

analysis of FGM CCSs made of 3 4Si N  and 304SUS  with porosities. 

  
Figure 3.2. Effects of porosity 

volume fraction   on the 

postbuckling of CCS. 

Figure 3.3. Postbuckling of 

FGM CCS with various load 

ratios and porosity distributions. 

Figure 3.2 indicates that load capacity of CCS is strongly 

reduced when   is increased. Figure 3.3 demonstrates that increase in 
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preexistent external pressure makes load carrying capability of axially 

loaded CCSs is significantly lowered. 

  
Figure 3.4. Effects of   on 

postbuckling of CCS under q . 

Figure 3.5. Effects of   on 

postbuckling of CCS under T. 

Fig. 3.4 shows that pressure carrying of CCS is considerably 

decreased as edges are restrained at elevated temperature. Figure 3.5 

indicates beneficial influences of porosity on thermal stability of CCS. 

3.5. Conclusions of chapter 3. 

1. Porosities have negative and positive influences on the 

mechanical and thermal stabilities of FGM CCSs, respectively.  

2. Lateral pressure capacity of CCS is slightly and considerably 

reduced as edges are restrained at reference and elevated temperatures. 

3. Influence of porosity distribution depends on type of loading, 

porosity volume fraction and volume fraction index (N). 

4. Pre-existent temperature has detrimental effect on the 

mechanical stability of CCS. Nevertheless, negative influence of T is 

slightly lowered as porosity percentage in the FGM is increased. 

Main results of chapter 3 have been presented in 2 papers 

published on international scientific journals ranking ISI, that are 

papers numbered 3 and 4 in the list of author’s scientific works 

relating to the content of the dissertation.  



14 

 

CHAPTER 4. NONLINEAR STABILITY OF FGM 

SPHERICAL CAPS AND CIRCULAR PLATES WITH 

POROSITIES AND ELASTICALLY RESTRAINED EDGES 

4.1. Material and structural models 

This chapter 

considers  FGM 

spherical caps of 

curvature radius 

R , base radius 

a , thickness h

and rise H ,as 

shown in Fig 4.1 

 
Figure 4.1. Spherical cap under external pressure. 

Spherical cap (SC) is assumed to be very shallow ( H a ), rested on 

a three-parameter nonlinear elastic foundation and subjected to 

uniform external pressure q .Boundary edge is clamped and elastically 

restrained in the meridional direction. SC is made of porous FGM with 

poroperties as chapter 2 and under axisymmetric deformation.   

4.2. Governing equations and analytical solution 

In the present chapter the SC is assumed to be thin and 

geometrically imperfect. Nonliear equilibrium equation and strain 

compatibility equation in terms of deflection w  and stress function f  

are established within the framework of the classical shell theory 

(CST). Due to axisymmetric deformation assumption, basic equations 

only depend on meridional coordinate variable  . In the 

establishment of the governing equations, for the purpose of 

mathematical convenience and simplicity, meridional coordinate   is 

replaced by radius of meridional circle sinr R   (Fig. 4.1). 

Specifically, nonlinear equilibrium equation is written as 

c c

k1,k3 R

h k2
H

u



z

w

q

r
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   2 * * 3

1 2 3

1 1 1
0s s sD w f f w w f w w q k w k w k w

R r r

              

 (4.1) 

where, in this chapter, superscript comma indicates derivative with 

respect to variable r  (e.g. /f df dr  ), () () () /s r     is Laplace 

operator in the case of axisymmetric deformation, 
*w  is initial 

geometrical imperfection, q  is external pressure, while 1k , 2k  and 3k  

are stiffness paramters of Winkler elastic layer, Pasternak shear layer 

and nonlinear Winkler foundation. Compatibility equation is written: 
2 * 2 2 *

2

2 2 2

1

1 1 1
s s

dw d w dw d w dw d w
f w

E R r dr dr dr dr dr dr

 
       

 
 (4.2) 

Boundary condition and symmetry condition at apex are 

     w W , 0w   , rN   is finite at apex 0r   (4.3a) 

     0w  , 0w  ,  0r rN N       at edge  r a  (4.3b) 

where W  is amplitude of deflection (at apex) and 0rN is fictitious 

force at edge related to r  and tangential stiffness c  as follows 

         0r rN c   , 
1

2

a

r

a

du
dr

a dr


     (4.4) 

Approximate analytical solution of deflection is chosen as 

          
2

2 2

4

W
w a r

a
   ,  

2
* 2 2

4

h
w a r

a


   (4.5) 

Placing (4.5) into compatibility equation (4.2) and integrating 

the obtained equation, integration constants are determined using 

condition of finiteness of rN  at 0r   and 0( )r rN r a N  , we receive  

     5 2 3 7 2 5 4 31 1

4 8
3 4 6 2

6 6

E Edf
r a r W r a r a r W W h

dr a R a
        

                                   1 1
02

2
2 3

r

E r E r
W W h W N r

a R
     (4.6) 

Using deflection solution (4.5) and stress function (4.6) into 

equilibrium equation (4.1) and applying Galerkin method lead to 
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 (4.7) 

Expression (4.7) is nonlinear relation between load and 

deflection of porous FGM spherical cap exposed to a thermal 

environment, rested on an elastic foundation and subjected to external 

pressure. Specialization of (4.7) for the case of 0q   and R   yield 

0 01
1 22

(1 ) 3
64 4

4 5
m m

E c W
T D E K E K

cG W



 

   
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 (4.8) 
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This is nonlinear relation between thermal load and deflection 

of porous FGM circular plate on elastic foundation under temperature. 

4.3. Numerical results 

After performing comparative studies to verify accuracy of the 

proposed approach, some major results are presented in the following. 

 
Fig 4.2. Effects of porosity 

percentage on postbuckling of 

FGM circular plate under T. 

 
Fig. 4.3. Effects of porosity 

percentage on postbuckling of 

FGM SC under external pressure. 
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Fig. 4.2 indicates positive influence of porosity on the stability 

of FGM circular plate under temperature. In contrast, Fig. 4.3 shows 

that porosity negatively influence stability of SC undergoing pressure. 

 
Figure 4.4. Effect of edge 

constraint on the postbuckling 

of porous SC under pressure. 

 
Figure 4.5. Effect of nonlinear 

foundation on stability of porus 

SC under external pressure. 

4.4. Conclusions of chapter 4. 

1. Porosities have positive and negative influences on stabilities 

of thermally loaded plates and pressure-loaded SC, respectively. 

2. Tangential edge constraint reduces critical load and 

postbuckling strength of thermally loaded circular plate. In contrast, 

edge constraint enhances both critical pressure and snapping jump of 

pressure-loaded FGM SCs. 

3. Pressure-loaded FGM SCs exhibit a bifurcation-quasi 

buckling response due to edge constraint and pre-existent temperature. 

4. Elastic foundation has positive influences on the nonlinear 

stability of pressure-loaded SCs. Snapping jumps can be alleviated or 

eliminated when SC is supported by nonlinear elastic foundation. 

Main results of chapter 4 have been presented in 1 scientific 

paper published on international journal ranking ISI, that is paper 

numbered 5 in the list of author’s scientific works relating to the 

content of the dissertation. 
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CHAPTER 5. NONLINEAR STABILITY OF FG-CNTRC 

SANDWICH PLATES AND PANELS WITH ELASTICALLY 

RESTRAINED EDGES 

5.1. Material and structural models 

Considered in this 

chapter are sandwich 

panels in the doubly 

curved,  cylindrical or 

flat geometries of total 

thickness h , plan-form 

dimensions ,a b  and 

curvature radii ,x yR R . 

 
Figure 5.1. Doubly curved panel 

Cylindrical panel is case as xR  , yR R  and flat panel (i.e. 

plate) is received as xR  , yR  . Two sandwich models studied: 

Sandwich model of type A consists of homogeneous core and 

two face sheets made of FG-CNTRC, as illustrated in Figure 5.2. 

 

 

Figure 5.2. FG distributions of CNTs in sandwich model of type A. 

Sandwich model of type B consists of FG-CNTRC core and two 

homogeneous face sheets, as sketched in Figure 5.3. 
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Figure 5.3. FG distributions of CNTs in sandwich model of type B. 

Effective elastic moduli and shear modulus of FG-CNTRC layer 

are determined using an extended rule of mixture as follows 

                      11 1 11

CNT m

CNT mE V E V E   (5.1a) 

                      2

22 22

CNT m

CNT m

V V

E E E


   (5.1b) 

                      3

12 12

CNT m

CNT m

V V

G G G


   (5.1c) 

5.2. Governing equations and analytical solution 

Nonlinear equilibrium equation and strain compatibility equation 

are derived based on the first order shear deformation theory (FSDT) 

are expressed in terms of deflection w , stress function f  and 

rotations 
x , y . Equilibrium equation is expressed in the form as 

    *

11 , 21 , 31 , 41 , 51 , , , ,x xxx x xyy y xxy y yyy xxyy yy xx xxa a a a a f f w w          (5.2) 
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Strain compatibility equation is written in the form 
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Analytical solution satisfying simply supported edges conditions 

                      *, , sin sinm nw w W h x y     

2 2

1 2 3 0 0

1 1
cos 2 cos 2 sin sin

2 2
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                    1 cos sinx m nB x y    , 2 sin cosy m nB x y    (5.4) 

Applying Galerkin method yields the following relation 
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From general relation (5.5), nonlinear load–deflection relations 

for the following problems are formulated 1) Doubly curved panel 

with elastically restrained edges under external pressure in thermal 

environments, 2) Cylindrical panel with movable edges subjected to 

axial compression in thermal environments, 3) Rectangular plate with 

tangentially restrained edges under uniform temperature rise, and 4) 

Rectangular plate with movable edges 0,x a  and tangentially 

restrained edges 0,y b  undergoing the combined action of 

compression in movable edges and uniform temperature rise. 

5.3. Numerical results 

 

Figure 5.4. Critical thermal 

loads of sandwich plate type B. 

 

Figure 5.5. Postbuckling of 

sandwich cylindrical panel. 
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Fig. 5.4 indicates that there exists an optimal ratio of thicknesses 

of layers for which the critical thermal load of sandwich plate of type 

B is the highest. Fig. 5.5 demonstrates that FG-X distribution makes 

the compressive load capacity of cylindrical panels of type B strongest. 

 
Figure 5.6. The postbuckling 

behavior of sandwich plates of 

types A & B under compression. 

 
Figure 5.7. The postbuckling 

behavior of sandwich plates of 

types A & B under temperature. 

Comparisons shown in Figures 5.6 and 5.7 indicate that, with the 

same volume fraction of material constituents, sandwich model of type 

B with homogeneous face sheets and FG-CNTRC core bring to much 

stronger loading capacity than that of sandwich model of type A. 

5.4. Conclusions of chapter 5 

1. Postbuckling strength of curved sandwich panels under 

external pressure and sandwich plates undergoing thermal load are 

increased and decreased when edges are more restrained, respectively. 

2. When sandwich plate is exposed to a thermal environment, a 

small percentage of CNT in FG-CNTRC layer gives the best stablility. 

3. Sandwich model of type B with FG-CNTRC core and 

homogeneous face sheets has many advanced properties and potential 

applications in practical structures. 

Major results of chapter 5 have been presented in 4 scientific 

papers including 2 papers published on international journal ranking 

ISI and 2 papers published on Vietnam Journal of Mechanics, that are 

papers numbered 6,7,8 and 9 in the list of author’s scientific works 

relating to the content of the dissertation. 
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CONCLUSIONS  

The dissertation has obtained some new results as the following: 

1. The dissertation has analyzed the linear buckling of thick FGM 

toroidal shell segments (TSSs) with porosities subjected to mechanical, thermal 

and thermomechanical loads. Results indicate that porosities have detrimental 

and beneficial influences on the buckling resistance of TSS under mechanical 

and thermal loads, respectively. The study is relatively general and has included 

an extensive region of tangential edge constraints and closed shell geometry.  

2. The dissertation has suggested two-term form of deflection for the 

nonlinear stability analysis of FGM circular cylindrical shells with porosities 

and transverse shear deformation. The analysis suggests that for thick and 

moderately thick shells nonlinear axisymmetric term of deflection has marginal 

effect on the postbuckling behavior. Therefore, two-term deflection may be 

adequately accurate for the buckling and postbuckling analyses of shear 

deformable circular cylindrical shells.   

3. The dissertation has analyzed the combined influences of porosities, 

tangential constraints of edges and three-parameter nonlinear elastic 

foundations on the nonlinear stability of FGM spherical caps under external 

pressure and circular plate under uniform temperature rise. The results of the 

dissertation reveal that FGM spherical caps being relatively shallow, with 

partially movable edges and resting on elastic foundation with suitable 

stiffnesses are the most stable because snapping jumps can be alleviated. 

4. The dissertation has proposed a sandwich model with FG-CNTRC 

core and homogeneous face sheets. The results of dissertation find that, with 

the same volume percentage of material constituents, sandwich model 

constructed from thicker FG-CNTRC core along with stiff and thin 

homogeneous face sheets possesses many very advanced characteristics. This 

model may be standard sandwich structures due to high stiffness, be 

lightweight and good stability. The dissertation provides valuable suggestions 

for fabrication and application of sandwich structures made of FG-CNTRC.   
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