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Introduction

Due to the rise of Big Data phenomenon and interdisciplinary research, network science

emerged and has drawn enormous interest from both academia and industry. Dividing

a network into smaller groups of similar nodes - a task called community detection

- is one direction that has yielded valuable insights about complex network data. In

this master’s thesis, we study two topics in the field of community detection: a quality

function called modularity, and clustering properties of the random walk eigenvectors

of a graph.

This thesis contains four chapters and one appendix. The main content is in Chap-

ter 2 and Chapter 3.

� Chapter 1 briefly discusses some notable features of network science and commu-

nity structure in order to situate the main topics of the thesis.

� Chapter 2 is a detailed exposition of modularity - a popular clustering quality

function. Section 2.1 defines modularity and gives the standard interpretation

based on a random graph model. Section 2.2 presents basic properties of modu-

larity, including modularity of some special graphs (cycles, complete multipartite

graphs, ...). Section 2.3 explains several shortcomings of modularity when used in

the practical context of community detection.

� Chapter 3 studies the spectral properties of the random walk matrix and a cluster-

ing algorithm based on those properties. Section 3.1 introduces the random walk

matrix and its spectrum. Section 3.2 explains why the top eigenvectors of that ma-

trix inherit the clustering structure of the graph and illustrates the phenomenon

visually. Section 3.3 presents the Walktrap algorithm and performs experiments

on some random graphs to investigate the effect of step size and linkage method

in the algorithm.

� Chapter 4 summarizes the main content of the thesis and introduces some further

directions.

� Appendix A provides a simple Python implementation of the Walktrap algorithm



7

introduced in Chapter 3.

This is an expository thesis. Our main contribution lies in collecting and organizing

several results scattered in the literature; we try to provide more detail in theoretical

explanations and proofs, and illustrate various ideas using our own experiments imple-

mented in the Python programming language (more detail can be found in Chapter 4).

We hope this document could be a useful starting point for people studying the two

main topics mentioned above.
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Notations and conventions

In this thesis, ‘graph’ and ‘network’ are used interchangeably.

Unless stated otherwise, we work with simple undirected graphs, i.e. undirected

graphs with no parallel edges and no self-loops. For a graph G, let V (G) and E(G) be

the vertex set and edge set of G; sometimes we simply use V and E if the underlying

graph G is clear from context. For a vertex subset P ⊆ V (G), let E(P ) be the set of

edges lying inside P and let e(P ) := |E(P )|. We also define the volume of P to be the

sum of the degrees of the vertices inside P :

vol(P ) :=
∑
v∈P

deg(v).

In case there are many graphs under consideration, we put G in the subscripts, like

eG(P ), volG(P ), ...

A partition P = {P1, . . . , Pk} of a set V is a collection of disjoint non-empty subsets

whose union is V , that is Pi ∩ Pj = ∅ for all i ̸= j and ⊔k
i=1Pi = V .

All vectors are column vectors. The transpose of matrix M is denoted by M⊤, and

similarly the transpose of vector x is x⊤ (which is a row vector). We use 1 to denote

a vector with all entries equal to 1, whose dimension should be clear from context.

In many places we use subscripts to index vectors, so round brackets are used for

vector entries: xi(u) is the u-th entry of vector xi.
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Chapter 1

NETWORKS AND

COMMUNITIES

This short chapter introduces some notable features of network science and community

structure in order to set the background for the main topics of the thesis.

1.1 On network science

Network science has grown to an enormous discipline, and it is certainly outside of this

chapter’s scope to even attempt a small survey. Instead, we only explain a few features

that can be confusing for beginners. There are currently several good textbooks on

network science; among them, we mention [1] with a broad coverage, and [2] with a

unique focus on modeling, interpretation, and data quality.

One attempt at defining network science can be found in the editorial [3]: network

science is the study of network models. A network model is a network representation

of something, comprising two main components: abstraction from real phenomena to

network concepts, and representation of those concepts by network data. What distin-

guishes network data from traditional tabular data is that there is some dependency

(or relationship) built in, most easily visualized as links (or edges) in a graph. Whether

a relationship should be represented by a network, and then how it can be represented,

depend a lot on the problem being studied; see Chapters 5 and 11 of [2] for more

detailed introduction.

There are several reasons, both commercial and scientific, for the increased interest

in network science in recent decades. A popular reason, which is also the one most

easily capturing the public imagination, is the rise of the Internet and big social media
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networks, whose links are given concrete names like ‘tag’, ‘friend’, ‘follower’, ... Another

big spur to the study of networks is how they can be used to tackle complexity in

various scientific disciplines. This approach introduced a new paradigm in science,

called topological explanations by philosophers [4], complementing existing kinds of

explanations like mechanistic, causal, probabilistic, ... See the surveys [5, 6] for more

details on how networks can be used to model complexity.

One notable feature of network science is how scattered the literature is (as can be

shown by a brief look at the bibliography of this thesis). Outside from a few recent

network-specific journals, network science articles appear in journals and conferences

of physics, computer science, mathematics, statistics, as well as sociology. Inevitably,

there are different cultures and methods. The traditional divide is between social scien-

tists coming from social network analysis, and natural scientists coming from physics.

Social scientists study small, carefully curated networks in very specific contexts. They

have very rich notions of links and care about the motivation of actors in the networks.

In contrast, physicists are inspired by statistical physics and complexity, hence they

search for ‘universal laws’ in large collections of large networks, abstracted from those

networks’ context. This divide is discussed in [7, 8] [2, Chapter 2]. A slightly dif-

ferent but related contrast is between those searching for universality independent of

particular objects, and statisticians who focus on testable properties in real data. The

division leads to the controversy of power-law degree distribution, carefully recounted

in [9]. Finally, there are also computer scientists and mathematicians, each with their

own approaches [10]. All of this make network science a ‘trading zone’ [9], where

cross-fertilization of ideas as well as cultural clashes happen.

1.2 Community structure

Given a network, it is natural to find groups of similar nodes, and we say those groups

form a community structure. That description is certainly vague, because we do not

(and probably should not) have precise conditions for when nodes form a community.

The task of discerning those groups in a network is called community detection or graph

clustering ; those two terms are used interchangeably in this thesis.

Graph clustering is closely related to tabular data clustering. Indeed, one popular

way of clustering tabular data is spectral clustering : we create a graph where nodes

represent data points, connect two nodes if they are ‘close’ enough, then use spectral

properties of the graph to cluster data (see the surveys mentioned in Section 3.2 of
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this thesis). Conversely, graph embedding is a method of handling very large graphs

by embedding vertices in low dimensional euclidean spaces before applying standard

techniques of tabular data (see [11] for a recent survey of this big field).

Defining communities

There is no single, unified concept of a community; see [12, III.B] and [13, II] for many

definitions. Some define communities using numerical characteristics like edge density

or a quality function. Other take a procedural approach and define communities as

results of community detection algorithms; in other words, the algorithms become

implicit models of communities. There are also the issues of whether communities can

be overlapped, and difference between global (discovering all communities) and local

(finding communities in a small region only) methods.

For the purposes of Chapter 2 and Chapter 3 in this thesis, a community is a group

of vertices which has higher internal density than external density, and a community

structure is a partition of the vertex set (in particular, we do not consider overlap-

ping communities). Figure 1.1 shows a graph with two clear groups together with

its adjacency matrix, generated using the stochastic block model. Graph drawing is

computationally intensive and not particularly useful if the edge density is high, so we

mostly use adjacency matrices to represent graphs.

Network Adjacency matrix Idealized adjacency matrix

Figure 1.1: A graph with two communities and its representation by adjacency matrix

It may seem reasonable to define community using metadata on nodes as ‘ground

truth’. For example, we expect that the links (connections) in a social networks reveal

some underlying social groups based on preferences, occupations, ... However, this kind

of definition needs to be approached with care, probably requiring extensive domain

knowledge. There are many different kinds of possible metadata, with no necessary

relationship to the edges of the network. Data quality is also an issue, especially

for networks mined from large databases [14]. Node metadata is best considered as
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additional data to be modeled together with the network [15, 16], or incorporated into

the clustering algorithm [17]. See [18] for a more general survey considering information

on both edges and nodes.

On a related note, clustering algorithms usually optimize (or at least favor higher

values of) some objective functions, like quality metrics or likelihood functions. How-

ever, several empirical studies on real networks with metadata [19, 20] show that ground

truth communities almost never give the best values for those objective functions. This

means that our designed objectives can lead to overfit, or (more optimistically) the al-

gorithms have found some hidden structure not revealed by given node data.

The goals

Following [21], we broadly identify three main reasons for finding community structures

in a network:

� to find a coarse-level description of the network;

� to understand how dynamic and stochastic processes evolve on the network; and

� to reveal functional properties.

The goals can also be divided into two main groups: whether we analyze the network for

descriptive purposes or inferential purposes [22]. For example, if we want to divide the

network into small parts for efficient information processing, we can take a descriptive

approach and analyze the network as is, using precise objective functions to quantify

the results. On the other hand, sociologists trying to understand how social groups are

formed need to take an inferential approach, accounting for uncertainty using statistical

methods.

Choosing the most suitable approach (or approaches) requires evaluating many fac-

tors: computational resource, data quality, domain-specific goals ... Some surveys

mentioned below can help in the process.

Community detection algorithms

There are currently many community detection methods available, as well as countless

variants and improvements. We mention a few works that collect and compare a large

number of methods.

Many surveys group methods according to their intrinsic theoretical/conceptual

foundation. For example, Rosvall et al. [23] group community detection methods

under four perspectives:
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� the cut-based perspective, which aims to minimize the number of edges between

nodes;

� the clustering perspective, which finds dense, coherent groups of nodes;

� the stochastic equivalence perspective, which infers groups using statistical models

(like stochastic block models); and

� the dynamical perspective, which relies on how modular structure impacts evolu-

tion of processes on networks.

Various other classifications are available, see [24, 12, 13, 25].

On the other hand, some studies compare community detection algorithms by run-

ning them on a large number of networks and analyzing the results. Dao et al. [26]

classify methods into five main groups: edge removal based, modularity optimization,

dynamic process based, statistical inference based, and a final group of miscellaneous

methods not belonging to the other four. Those methods are run on more than 100

networks from various domains, then compared based on running time, number of

communities found and community sizes, quality of communities, and similarity be-

tween the partitions produced. Detailed results are given, which have implications for

choosing a suitable method in practice. Other empirical studies, with many different

approaches, include [27, 28, 20].

Exploring community structure

We survey some papers that study community structure in real networks. Some authors

use communities defined by node metadata, while others use clustering returned by

algorithms.

Leskovec et al. [29] study the structure of networks using network community profile

plots, which are plots of best conductance with respect to the number of nodes in

one side of a cut. Since computing minimum conductance is intractable, the authors

use several approximating algorithms. They found that in very large networks, the

profile plots have u-shape, with the best cuts falling around 100 - 150 nodes; this

differs from small networks and random networks. More detailed examination shows

a common core-periphery structure (see [30] for further discussion of this particular

structure). Jeub et al. [31] provide a more complete picture by identifying graphs

with downward profile (low-dimensional structure) and flat profile (expanders). The

authors of latter work also introduce conductance ratio profile, which measures quality

by the ratio between global conductance and internal conductance. Figure 1.2 shows

idealized representations of some basic structures found in real networks. They can be
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nested or combined to produce complicated topologies.

Community structure Core-periphery structure Homegeneous structure Bipartite structure

Figure 1.2: Some common network structures, represented by idealized adjacency ma-

trices

Lancichinetti et al. [21] study networks from five domains (communication, inter-

net, information, biological, and social). The authors use several algorithms to find

communities, then calculate various statistics on the found groups: scaled link density,

average shortest path length, maximum internal degree, and fraction of internal degree.

Those statistics show similarity between networks from the same domain and indicate

typical domain structures: star-like hubs, tree-like structures, homogeneous groups.

Dao et al. [19] also study various statistics of communities produced by several

algorithms, but they compare the distribution of those statistics with that of metadata

communities. There are some correlation, but still notable differences between two

kinds of communities.

Dao et al. [32] use ground truth communities in several large networks. The authors

use two statistics: the mean and standard deviation of the out degree fraction, and

based on those identify six types of communities. The networks studied possess different

composition of those types, so we have a simple method to identify structural differences

between networks.

Dao et al. [33] use a similar approach to two previous works, but study a compre-

hensive set of statistics on communities discovered by several algorithms. The authors

identify transitivity and hub dominance as the key measures characterizing four kinds

of community topology: string-based, grid-based, star-based, and clique-based. The

community profiles of various real networks as well as random graphs are described in

detail.

Overall, these studies showcase the rich structures of networks, with many kinds of

building blocks interacting with each other.
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1.3 The topics of this thesis

This thesis is an exposition of two main topics: modularity as a clustering quality

function, and spectral clustering properties of the random walk matrix.

Modularity was first introduced in [34] to select the number of communities in a

dendrogram. Since then, it has become one of the most popular and well-studied

quality functions. Chapter 2 introduces its basic properties and several shortcomings.

The random walk matrix is one of the basic matrices associated to a graph. If the

graph has reasonably clear community structure, the top eigenvectors of that matrix

can help us identify the groups. Chapter 3 explains clustering properties of the random

walk matrix and introduces Walktrap - a clustering algorithm based on those properties.

Due to limited computational resources, all the experiments are carried out on small

random graphs generated from stochastic block models. However, those small networks

already suffice to illustrate some main points of our experiments.
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Chapter 2

MODULARITY

This chapter is a detailed exposition of modularity - a popular clustering quality func-

tion. Section 2.1 defines modularity and gives the standard interpretation based on the

configuration model. Section 2.2 presents basic properties of modularity, including mod-

ularity of some special graphs (cycles, complete multipartite graphs, ...). Section 2.3

explains several shortcomings of modularity when used in community detection.

Note that unless specified otherwise, we only consider simple undirected graphs, i.e.

undirected graphs with no parallel edges and no self-loops.

2.1 Definition of modularity

Modularity, first introduced in [34], is now one of the most popular quality functions in

community detection. Its original use is to choose between partitions of a graph: a par-

tition with better modularity is considered to have better community structure. Since

then, modularity has acquired a life of its own and some algorithms try to optimize it

directly, giving modularity an additional role of being an objective function.

Definition

Following some authors, we separate two components in the modularity formula, which

makes later theoretical discussion more convenient.

Definition 2.1. Let G be a graph with m ≥ 1 edges and P a vertex partition of G.

Corresponding to the partition P, we define the edge contribution

qEP (G) :=
1

m

∑
P∈P

e(P ),
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the degree tax

qDP (G) :=
1

4m2

∑
P∈P

vol(P )2,

and the modularity

qP(G) := qEP (G)− qDP (G). (2.1)

The modularity q∗(G) of G is the maximum modularity over all partitions:

q∗(G) := max
P

qP(G).

By convention, we define the modularity of a graph with no edges to be 0.

The edge contribution is also called the coverage.

Interpretation

We can rewrite the modularity formula in a more illuminating way. Let G be a graph

with n vertices and m ≥ 1 edges, and let P be a vertex partition of G. For a vertex

u we define σP(u) to be the unique set P ∈ P such that u ∈ P ; we can consider σP

to be the labeling defined by P . Let A be the adjacency matrix of G: A is an n × n

matrix, Auv = 1 if uv ∈ E(G) and 0 otherwise. Then

qP(G) =
1

2m

∑
P∈P

(
2e(P )− vol(P )2

2m

)

=
∑
P∈P

[
e(P )

m
−
(
vol(P )

2m

)2
]

(2.2)

=
1

2m

∑
P∈P

∑
u,v∈P

(
Auv −

deg(u) deg(v)

2m

)
=

1

2m

∑
u,v∈V (G)

(
Auv −

deg(u) deg(v)

2m

)
· 1σP(u)=σP(v). (2.3)

Consider a random graph obtained from G by rewiring edges randomly such that all

vertex degrees are preserved. We can visualize the process as following: cut off each

edge in half to form two ‘stubs’, then join the 2m stubs randomly to form new edges.

For any two vertices u and v, each ‘stub’ at u will be joined to v with probability
deg(v)
2m−1 (a ‘stub’ cannot be joined to itself), so by linearity of expectation, the expected

number of new edges joining u and v is

deg(u) deg(v)

2m− 1
.
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If m is large, 2m ≈ 2m − 1, so (2.2) and (2.3) shows that modularity is large when

the partition sets have more inside edges, i.e. are denser, than a random model. This

model is considered to have no community structure because any two vertices can

be connected regardless of their neighborhoods. Therefore a high modularity can be

considered to be indicative of community structure.

To be more precise, let P = {P1, . . . , Pk} be a partition of G with maximum mod-

ularity. If we merge, say, P1 and P2, the change in modularity (new value minus old

value) is
e(P1, P2)

m
− vol(P1)vol(P2)

2m2
.

Since P has maximum modularity, this change is non-positive, i.e.

e(P1, P2)

m
≤ vol(P1)vol(P2)

2m2
. (2.4)

The LHS is the (global) edge density between P1 and P2, and the RHS is the (ap-

proximate) expected density in the configuration model. So we see that edge density

between parts of P is lower than expected.

On the other hand, (2.4) also holds with P2 replaced by P3, . . . , Pk. Summing up

all those inequalities, we obtain

e(P1, P1)

m
≤ vol(P1)vol(P1)

2m2
,

where P1 := V \ P1. This implies

vol(P1)− 2e(P1)

2m
≤ vol(P1)

2m

(
1− vol(P1)

2m

)
,

and so
e(P1)

m
≥
(
vol(P1)

2m

)2

.

Therefore the density of edges inside each community is greater than the expected

density from the configuration model. Interestingly, we also have that each term in

(2.2) is nonnegative.

Note that the configuration model above allows self-loops and parallel edges, and

to obtain a formula resembling modularity we need an approximation. Therefore the

model should only be considered as an heuristic to motivate the definition of modularity.

We mathematically define modularity as in Definition 2.1, and work directly with that

definition only.
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Some simple bounds

To find out the range of modularity, formula (2.1) is more useful. The edge contribution

is easy to bound:

0 ≤ qEP (G) ≤ 1.

The lower bound is achieved when there are no edges inside members of P , and the

upper bound is achieved when there are no edges in-between members of P . Generally

speaking, merging members of P will increase the number of inside edges (and decrease

the number of in-between edges), so edge contribution rewards partitions with few

communities.

To bound the degree tax, let P = {P1, . . . , Pk}. We have

qDP (G) =
1

4m2

k∑
i=1

vol(Pi)
2 ≤ 1

4m2

(
k∑

i=1

vol(Pi)

)2

= 1,

and by a simple application of the Cauchy-Schwarz inequality,

qDP (G) =
1

4m2

k∑
i=1

vol(Pi)
2 ≥ 1

4m2k

(
k∑

i=1

vol(Pi)

)2

=
1

k
. (2.5)

The upper bound is achieved when there is only a single set Pi with positive volumes,

and the lower bound is achieved when all sets Pi’s have the same volumes. In general,

to lower the degree tax, we need many communities of approximately the same volume.

Combining the above bounds, we see that

−1 ≤ qP(G) < 1

for all partition P . The lower bound can actually be improved to −1/2, see Propo-

sition 2.5 below. Modularity is maximized when we can balance between maximizing

edge contribution, which requires few communities, and minimizing degree tax, which

requires many communities.

Maximum modularity can be bounded by

0 ≤ q∗(G) < 1.

The upper bound follows from the upper bounds for all partitions. To obtain the

lower bound, notice that the trivial partition where all vertices belong to the same

community gives us modularity 0.
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Modularity for weighted graphs

Occasionally we need to use modularity for weighted graphs with self-loops. A weighted

graph (with self-loops) G is a set of vertices V together with a symmetric weight

function w : V 2 → [0,∞). There is no need for an edge set, since non-existent links

are just edges with weight 0. The number of vertices is n := |V |, and the total edge

weight is m :=
∑

u,v∈V w(u, v). A technical issue is how self-loops contribute to vertex

degrees. In the configuration model, each split edge creates two stubs, so self-loops

should contribute twice to degree:

deg(u) = 2w(u, u) +
∑
v ̸=u

w(u, v).

For a subset P , volume is the sum of all degrees:

vol(P ) :=
∑
v∈P

deg(v),

and e(P ) is the total edge weight inside P (we only count distinct edges):

e(P ) :=
∑
u∈P

w(u, u) +
∑

(u,v)∈(P2)

w(u, v).

Modularity is then defined exactly as before:

qP(G) :=
∑
P∈P

[
e(P )

m
−
(
vol(P )

2m

)2
]
.

This generalization is not just a theoretical exercise, but also practically useful. A par-

tition P = {P1, . . . , Pk} of a (non-weighted) graph G can be considered as a summary

of G by a weighted graph with k vertices v1, . . . , vk, where edge weight w(vi, vj) is the

number of edges between Pi and Pj , and self-loop weight w(vi, vi) is the number of

edges inside Pi. This weighted summary can be used to keep track of modularity in a

merging algorithm (see Appendix A for a concrete application).

2.2 Basic properties

This section is theoretical, consisting only of theorems and proofs. Unless stated oth-

erwise, the proof comes from or is based on ideas in the same source as the statement.

We begin with some intuitive (and desirable) behaviors of modularity. To avoid

repetition, instead of writing the full phrase ‘partition with maximum modularity’, we

sometimes say ‘maximum modular partition’, or just ‘optimal partition’.



21

Lemma 2.2 ([35, Lemma 3.4]). Let G be a graph. Then there is a vertex partition P
of maximum modularity such that for each member P ∈ P, the restriction of G to P

is a connected graph.

Proof. Assume that P ∈ P can be split into A and B such that there are no edges

between A and B. Let P ′ = P\{P}∪{A,B}. The edge contribution remains the same

because there are no edges between A and B, but the degree tax decreases because

vol(P )2 = (vol(A) + vol(B))2 ≥ vol(A)2 + vol(B)2,

where the inequality is strict if vol(A) · vol(B) > 0. So qP ′ ≥ qP . We can continue this

process to obtain a refinement of P containing no disconnected members.

Isolated vertices have no impact on modularity.

Lemma 2.3 ([35, Corollary 3.2]). Let G be a graph with m ≥ 1 edges and v an isolated

vertex (i.e. deg(v) = 0). Let P = {P1, . . . , Pk} be a partition of V (G) \ {v}. For each

i = 1, . . . , k define

Pi = {P1, . . . , Pi ∪ {v}, . . . , Pk},

and define

P0 = {{v}, P1, . . . , Pk}.

Then for each i = 0, 1, . . . , k,

qPj
(G) = qP(G \ {v}).

Proof. Easily seen from the modularity formula, because v contributes nothing to edge

counts or degree sum of each subset.

There are no dangling vertices in a maximum modular partition.

Lemma 2.4 ([36, Lemma 1.6.5]). Let G be a graph and P an optimal vertex partition

of G. Then P = {u} for some P ∈ P implies deg(u) = 0, i.e. u is an isolated vertex.

Proof. Assume that deg(u) = d > 0 and that P = {{u}, P1, . . . , Pk} is an optimal

partition of G. For each i = 1, . . . , k, define a new partition Pi = {P1, . . . , Pi ∪
{u}, . . . , Pk}. After some easy calculation we obtain

qPi
− qP =

1

m
· e(u, Pi)−

1

2m2
· deg(u)vol(Pi).

Since P is an optimal partition, qPi
≤ qP and therefore 2m · e(u, Pi) ≤ deg(u)vol(Pi)

for each i. Summing over i = 1, . . . , k we obtain

2md ≤ d(2m− d) < 2md,

a contradiction.
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Next are some general bounds on modularity.

Proposition 2.5 ([35, Lemma 3.1]). Let G = (V,E) be a graph with m ≥ 1 edges and

let P be a partition of G. Then

−1

2
≤ qP(G) < 1.

Proof. The upper bound is obvious. To prove the lower bound, we use a new represen-

tation of modularity. Let P = {P1, . . . , Pk}. For each i = 1, . . . , k, set

ei = EG(Pi), ēi = EG(Pi, V \ Pi).

Then we can rewrite the modularity formula as

qP(G) =

k∑
i=1

[
ei
m

−
(
ei
m

+
ēi
2m

)2]
.

Note that 0 ≤ e ≤ m− ēi. The function

f(x) = x−
(
x+

ēi
2m

)2
, 0 ≤ x ≤ 1− ēi

m
,

is a concave quadratic function with maximum at the point x0 =
m−ēi
2m , so

f(x) ≥ f(0) = f
(
1− ēi

m

)
= −

(
ēi
2m

)2
.

If there are no edges between parts of P (i.e. ēi = 0 for all i), then

qP(G) =

k∑
i=1

[
ei
m

−
(
ei
m

)2]
≥ 0,

since 0 ≤ ei/m ≤ 1. Now assume that there are some edges between parts of P ;

in particular, k ≥ 2. We delete all edges within parts of P to obtain a new graph

G0 = (V,E0) with m0 edges, 1 ≤ m0 ≤ m. The edges between partition members are

kept intact. We then have

qP(G) ≥ −
k∑

i=1

(
ēi
2m

)2
≥ −

k∑
i=1

(
ēi

2m0

)2

= qP(G0).

It suffices to find a lower bound for qP(G0). The algebra is simple but there are quite a

lot of indices, so for convenience we introduce a visual picture of all the variables. Let

Kk be the complete graph on vertices [k] := {1, . . . , k}; this graph is used for keeping

track of variables only. For (i, j) ∈ E(Kk) let xij := eG0
(Pi, Pj). We immediately have

m0 =
∑

e∈E(Kk)

xe,



23

and

volG0
(Pi) =

∑
e∈E(Kk)

i∈e

xe.

Thus,

k∑
i=1

volG0
(Pi)

2 =

k∑
i=1

 ∑
e∈E(Kk)

i∈e

xe


2

= 2 ·
∑

e∈E(Kk)

x2e + 2 ·
∑

e,f∈E(Kk)
e adjacent to f

xexf ,

and

4m2
0 = 4 ·

∑
e∈E(Kk)

x2e + 8 ·
∑

e,f∈E(Kk)
e̸=f

xexf

≥ 4 ·
∑

e∈E(Kk)

x2e + 8 ·
∑

e,f∈E(Kk)
e adjacent to f

xexf

≥ 2 ·
k∑

i=1

volG0
(Pi)

2.

Therefore −qP(G0) ≤ 1
2 and we are done. Tracing back the proof, we see that the

equality holds only in the case of bipartite graphs with the natural partition.

For the next result, we need the concept of a detachment of a graph. Let G be a

graph with vertex set V (G) = {v1, . . . , vn}. We say a graph H is a detachment of G if

H admits a vertex partition I = {I1, . . . , In} such that each Ii is an independent set

and

eH(Ii, Ij) =

1 if vivj ∈ E(G),

0 otherwise.

Lemma 2.6 ([36, Lemma 1.4.1]). Let H be a detachment of G. Then q∗(H) ≥ q∗(G).

Proof. Let G be a graph with m edges and vertex set V (G) = {v1, . . . , vn}. Let I be

a vertex partition of H compatible with G (from the definition of detachment).

Let P = {P1, . . . , Pk} be an optimal partition of G. For each i = 1, . . . , k, define a

corresponding vertex subset of H:

P ′
i =

⋃
j:vj∈Pi

Ij .
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This gives us a partition P ′ = {P ′
1, . . . , Pk, } of H. Note that G and H have the same

number of edges, and it is easy to check that for each i we have eG(Pi) = eH(P ′
i ) and

volG(Pi) = volH(P ′
i ). Thus q

∗(H) ≥ qP ′(H) = qP(G) = q∗(G).

Proposition 2.7 ([36, Corollary 1.4.2]). Let G be a graph with m ≥ 1 edges. Then

q∗(G) ≤ 1− 1/m.

Proof. If G has a vertex v with degree d > 1, we replace v by an independent set I of

d new vertices, and connect each new vertex to one and only one neighbor of v. The

new graph G′ is a detachment of G, so by Lemma 2.6 q∗(G′) ≥ q∗(G). We continue

this operation until we arrive at a graph H in which no vertex has degree greater than

1, i.e. H has m disjoint edges and some isolated vertices, and q∗(H) ≥ q∗(G). Since

isolated vertices do not affect modularity, we discard all of them, and consider H to

be a graph of 2m vertices and m disjoint edges. By Lemma 2.2, each member of the

optimal partition is either an edge or a single vertex. Since H has no isolated vertices,

Lemma 2.4 implies that each partition member must be an edge. So the only optimal

partition is to put each edge of H in a single subset, which gives us the modularity

1− 1/m.

A natural follow-up question is: what is the maximum modularity of connected

graphs with m edges?

Proposition 2.8 ([37, Proposition 10]). Let G be a graph with m ≥ 1 edges. If G is

connected then

q∗(G) ≤ 1− 2√
m

+
1

m
,

and if G is 2-edge-connected then

q∗(G) ≤ 1− 2√
m
.

Proof. Let P = {P1, . . . , Pk} be a partition of G. Since G is connected, there are at

least k − 1 edges in-between members of P , so

qEP (G) ≤ 1− k − 1

m
.

Combining with the degree tax lower bound (2.5), we obtain

qP(G) ≤ 1− k − 1

m
− 1

k
= 1 +

1

m
−
(

k

m
+

1

k

)
≤ 1 +

1

m
− 2√

m
.

If G is 2-edge-connected instead, then there are at least k in-between edges, and

qP(G) ≤ 1− k

m
− 1

k
≤ 1− 2√

m
.
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The upper bounds above can be tight, as in the cycle graph. We state and prove an

asymptotic version only; precise results can be found in the cited reference.

Proposition 2.9 ([35, Theorem 6.7]). Let Cn be the cycle on n vertices. Then

q∗(Cn) = 1− 2√
n
+ o(1).

Proof. Let P = {P1, . . . , Pk} be a partition of Cn. By Lemma 2.2, we should choose

each Pi to be a connected segment of vertices. Set xi = |Pi|, then vol(Pi) = 2xi. The

modularity of the partition is

qP(Cn) = 1− k

n
− 1

n2

k∑
i=1

x2i .

Pick k =
√
n and xi = n/k =

√
n (ignoring integer rounding), we have qP(Cn) =

1− 2/
√
n.

This result already hints at some issues of modularity as a quality function for

community structure. All vertices on the cycle are absolutely equivalent, so there is no

natural grouping, yet the modularity is still very high.

Now we calculate the modularity of some other familiar graphs.

Proposition 2.10 ([35, Corollary 6.2]). Let Kn be the complete graphs on n vertices.

Then q∗(Kn) = 0.

Proof. Let P = {P1, . . . , Pk} be a partition of Kn. Set xi = |Pi|, then vol(Pi) =

(n− 1)xi. We have

qP(Kn) =
1

m

k∑
i=1

(
xi
2

)
− 1

4m2
· (n− 1)2 ·

k∑
i=1

x2i

=
1

n(n− 1)

k∑
i=1

xi(xi − 1)− 1

n2

k∑
i=1

x2i

=
1

n2(n− 1)

k∑
i=1

x2i −
1

n− 1

≤ 1

n2(n− 1)

(
k∑

i=1

xi

)2

− 1

n− 1

=
1

n− 1
− 1

n− 1
= 0.

Equality holds only when all vertices belong to the same group.
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Proposition 2.11. Let G consist of disconnected complete cliques. Then the cliques

form an optimal partition of G.

Proof. By Lemma 2.3 we can ignore isolated vertices. Lemma 2.2 implies that each

partition subset lies completely inside a clique. We repeat the argument in the proof

of Proposition 2.10. Let P1, . . . , Pk be the partition members inside a clique of size a,

and let xi = |Pi|. Note that m ≥
(
a
2

)
. The contribution to modularity from the Pi’s is

1

m

k∑
i=1

(
xi
2

)
− (a− 1)2

4m2

k∑
i=1

x2i

=

(
1

2m
− (a− 1)2

4m2

) k∑
i=1

x2i −
a

2m
,

which is maximized only when k = 1, i.e. the whole clique is a partition member.

The following result will later be generalized to multipartite graphs. However, the

proof in the bipartite case is much simpler and already contains the key idea.

Theorem 2.12 ([36, Theorem 1.3.5]). Let G be a complete bipartite graph on vertex

sets U, V . Then q∗(G) = 0.

Proof. Let P = {P1, . . . , Pk} be any vertex partition. For each 1 ≤ i ≤ k, set Ui =

Pi ∩ U , Vi = Pi ∩ V , ui = |Ui|, and vi = |Vi|. G has |U ||V | edges, each edge in U has

degree |V | and each edge in V has degree |U |. We have the edge contribution:

qEP (G) =
1

|U ||V |

k∑
i=1

uivi,

and the degree tax:

qDP (G) =
1

4|U |2|V |2

k∑
i=1

(ui|V |+ vi|U |)2 .

Therefore the modularity is

qP(G) =
1

4|U |2|V |2

k∑
i=1

(
4|U ||V |uivi − (ui|V |+ vi|U |)2

)
=

1

4|U |2|V |2

k∑
i=1

(
−(ui|V | − vi|U |)2

)
≤ 0.

We also see that the partition P has modularity 0 if and only if ui

|U | = vi
|V | for all

i, i.e. each partite set contributes the same proportion of vertices to each partition

member.
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Theorem 2.13. Let G be a complete multipartite graph. Then q∗(G) = 0.

Proof. In this proof, we will use superscripts to index multipartite sets and subscripts

to index partition members. A mix of both should have obvious meaning.

Let the partite sets of G be U (1), . . . , U (d), and let x(j) = |U (j)|. So G has

x :=

d∑
j=1

x(j)

vertices and

m :=
∑

1≤j1<j2≤d

x(j1)x(j2)

edges. Let P = {P1, . . . , Pk} be an arbitrary vertex partition ofG. For each i = 1, . . . , k

and j = 1, . . . , d, let x
(j)
i = |Pi ∩ U (j)|, and xi = |Pi|. For convenience, we collect the

variables in the following table:

x x(1) . . . x(d)

x1 x
(1)
1 . . . x

(d)
1

...
...

. . .
...

xk x
(1)
k . . . x

(d)
k

The edge contribution is

qEA =
1

m

k∑
i=1

∑
1≤j1<j2≤d

x
(j1)
i x

(j2)
i .

The degree tax is

qDP =
1

4m2

k∑
i=1

[
d∑

j=1

x
(j)
i (x− x(j))

]2

=
1

4m2

k∑
i=1

 d∑
j=1

[
x
(j)
i (x− x(j))

]2
+ 2

∑
1≤j1<j2≤d

x
(j1)
i x

(j2)
i (x− x(j1))(x− x(j2))

 .

So the modularity is

qP =
1

4m2

k∑
i=1

[
−

d∑
j=1

[
x
(j)
i (x− x(j))

]2
+2

∑
1≤j1<j2≤d

x
(j1)
i x

(j2)
i

(
2m− (x− x(j1))(x− x(j2))

) .
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For fixed i and j1 < j2, we have the inequality (a guess based on the equality in the

bipartite case):

2x
(j1)
i x

(j2)
i

(
2m− (x− x(j1))(x− x(j2))

)
= 2 ·

x
(j1)
i

x(j1)
·
x
(j2)
i

x(j2)
· x(j1)x(j2)

(
2m− (x− x(j1))(x− x(j2))

)
≤

[x(j1)i

x(j1)

]2
+

[
x
(j2)
i

x(j2)

]2 · x(j1)x(j2)
(
2m− (x− x(j1))(x− x(j2))

)
.

We sum this over 1 ≤ j1 < j2 ≤ d, then plug back into the square brackets in the

expression for qP . For each i and j, we collect the terms containing x
(j)
i :[

x
(j)
i

]2
4m2

·

−(x− x(j))2 +
∑

j1:j1 ̸=j

x(j1)

x(j)
·
(
2m− (x− x(j))(x− x(j1))

)
=

[
x
(j)
i

]2
4m2

· x− x(j)

x(j)
·

[
2m−

d∑
j1=1

x(j1)(x− x(j1))

]

=

[
x
(j)
i

]2
4m2

· x− x(j)

x(j)
· 0 = 0.

Therefore qP ≤ 0 and we are done. Equality holds if and only if

x
(j1)
i

x(j1)
=

x
(j2)
i

x(j2)
, for all 1 ≤ i ≤ k, 1 ≤ j1 < j2 ≤ d.

In other words, we obtain modularity 0 only when each partition member contains the

same proportion of vertices form each partite set.

For alternative proofs using matrix analysis, see [38, 39].

For a comprehensive list of modularity of many graph classes, see the table at the

end of [40].

Next are some results concerning the robustness of modularity. First of all, since

searching over all partitions of a set is prohibitively expensive, we would like to know

how good a limited search over partitions with few members can be.

Proposition 2.14 ([41, Lemma 1]). Let G be a graph with m ≥ 1 edges, and let t be

a positive integers. Then

max
P:|P|≤t

qP(G) ≥
(
1− 1

t

)
q∗(G).



29

Proof. We use the probabilistic method. Let P be an optimal partition of G. If |P| ≤ t

then we are done. Otherwise, we construct a new partition P ′ by randomly assign each

member in P to one of t labeled ‘buckets’, then merge all members in each bucket. By

construction, P ′ is a random partition and |P ′| ≤ t. For u, v ∈ G, set

Muv = 1uv∈E(G) −
deg(u) deg(v)

2m
.

Then ∑
u,v∈V (G)

Muv = 0,

and

qP(G) =
1

2m

∑
u,v∈V (G)

Muv1σP(u)=σP(v).

If σP(u) = σP(v), then σP ′(u) = σP ′(v). If σP(u) ̸= σP(v), then σP ′(u) = σP ′(v) with

probability 1/t. Therefore the expectation of the new modularity is

E qP ′(G) =
1

2m

 ∑
u,v∈V (G)

Muv1σP(u)=σP(v) +
1

t

∑
u,v∈V (G)

Muv1σP(u) ̸=σP(v)


=
(
1− 1

t

)
· 1

2m

∑
u,v∈V (G)

Muv1σP(u)=σP(v)

=
(
1− 1

t

)
q∗(G).

This implies that there is at least one partition P ′ satisfying the conclusion of the

lemma.

Network data are often noisy, with missing edges as well as redundant ones. The

next several results bound the change in modularity when we perturb the edge sets.

Proposition 2.15 ([40, Lemma 5.1]). Let G = (V,E) be a graph, let E0 be a non-empty

subset of E, let E′ = E \ E0 and G′ = (V,E′). Then

|q∗(G)− q∗(G′)| < 2|E0|
|E|

. (2.6)

Proof. We may assume that G′ has at least one edge. Let P = {P1, . . . , Pk} be any

partition of V , E1 the set of edges in E0 lying withins parts of P , and E2 the set of

edges in E0 lying between parts of P . Set

α = α(P) =
|E1|
|E|

, β = β(P) =
|E2|
|E|

.
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Note that α + β = |E0|/|E|. We will prove the following two strict inequalities:

qP(G
′)− qP(G) < 2α + 2β, (2.7)

q∗(G)− q∗(G′) < 2α + β. (2.8)

These two suffice to establish (2.6). Indeed, suppose first that q∗(G′) ≥ q∗(G). Taking

P to be an optimal partition for G′, (2.7) gives us

|q∗(G)− q∗(G′)| = qP(G
′)− q∗(G) ≤ qP(G

′)− qP(G) < 2α + 2β =
2|E0|
|E|

.

On the other hand, if q∗(G) > q∗(G′), then (2.8) obviously implies (2.6).

Now we focus on proving (2.7) and (2.8). We calculate the change in edge contri-

bution:

qEP (G) =
1

|E|
∑
P∈P

eG(C) =
1

|E|

(
|E1|+

∑
P∈P

eG′(P )

)
= α + (1− α− β)qEP (G

′).

So

qEP (G)− qEP (G
′) = α− (α + β)qEP (G

′). (2.9)

In particular, since edge contribution is at most 1, we have

qEP (G
′)− qEP (G) ≤ β. (2.10)

Now we bound the change in degree tax. For each i = 1, . . . , k, let

αi =
|E1 ∩ E(Ci)|

|E|
, βi =

|E2 ∩ E(Pi, V \ Pi)|
|E|

.

Note that
∑

i αi = α,
∑

i βi = 2β, and βi ≤ β. We have

volG(Pi)− volG′(Pi) = (2αi + βi)|E|.

So ∑
i

volG(Pi)
2 −
∑
i

volG′(Pi)
2

=
∑
i

(volG(Pi) + volG′(Pi)) · (volG(Pi)− volG′(Pi))

< 2|E|
∑
i

volG(Pi)(2αi + βi)

≤ 4|E|
(
max

i
volG(Pi)

)∑
i

αi + 2|E|β
∑
i

volG(Pi)

≤ 4|E|2(2α + β).
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Combining with |E′| < |E| we have

qDP (G)− qDP (G′) < 2α + β. (2.11)

Two inequalities (2.10) and (2.11) then give us (2.7).

Moving on to proving (2.8), we have

qDP (G) >
1

4|E|2
∑
P∈P

volG′(P )2 = (1− α− β)2qDP (G′) > (1− 2α− 2β)qDP (G′).

So

qDP (G′)− qDP (G) < 2(α + β)qDP (G′),

which together with (2.9) imply

qP(G)− qP(G
′) < α− (α + β)qP(G

′) + (α + β)qDP (G′). (2.12)

Fix P to be an optimal partition for G. If qP(G
′) ≥ 0 then

qP(G)− qP(G
′) < α+ (α + β)qDP (G′),

and

q∗(G)− q∗(G′) = qP(G)− q∗(G′)

≤ qP(G)− qP(G
′)

< α+ (α + β)qDP (G′)

≤ α + (α + β) = 2α + β.

On the other hand, if qP(G
′) < 0, then

q∗(G)− q∗(G′) ≤ q∗(G) = qP(G)

= qP(G)− qP(G
′) + qP(G

′)

< α+ (1− α− β)qP(G
′) + (α + β)qDP (G′) (using (2.12))

≤ α + (α + β)qDP (G′) (since α + β ≤ 1 and qP(G
′) < 0)

≤ 2α + β.

This concludes our proof.

There is a similar bound when two graphs have the same number of edges.

Proposition 2.16 ([40, Lemma 5.2]). Let G = (V,E) and G′ = (V,E′) be two distinct

graphs on the same vertex set V , each with m ≥ 1 edges. Then

|q∗(G)− q∗(G′)| < |E △ E′|
m

.
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Proof. Since |E| = |E′|, |E △ E′| is an even number. By the triangle inequality, it

suffices to consider the case |E △ E′| = 2. Let E △ E′ = {e, e′}, where e ∈ E \ E′

and e′ ∈ E′ \ E. Assume without loss of generality that q∗(G) ≤ q∗(G′). Let P be an

optimal partition for G′, it suffices to prove that

qP(G
′) < qP(G) +

2

m
. (2.13)

We consider two cases, according to whether e lie within or between parts of P . First,

assume that e lie within a part P ∈ P , which implies qEP (G
′) ≤ qEP (G). Setting

x = volG(P ), we have

qDP (G)− qDP (G′) ≤ x2 − (x− 2)2

4m2
=

x− 1

m2
<

x

m2
≤ 2

m
,

and (2.13) holds in this case. Now suppose e connects two parts P1 and P2. Then

qEP (G
′)− qEP (G) ≤ 1

m
.

Setting x1 = volG(P1) and x2 = volG(P2), we have (after considering several possible

positions of e′)

qDP (G)− qDP (G′) ≤
x21 − (x1 − 1)2 + x22 − (x2 − 1)2

4m2
=

x1 + x2 − 1

2m2
<

x1 + x2
2m2

≤ 1

m
.

Adding two inequalities above gives (2.13) and concludes our proof.

The following extends two results above.

Proposition 2.17 ([40, Lemma 5.3]). Let G = (V,E) and G = (V,E′) be two distinct

graphs on the same vertex set V with |E| ≥ |E′|, |E| > 0. Then

|q∗(G)− q∗(G′)| < 2|E \ E′|
|E|

.

Proof. Let E′′ = E∩E′, and let F be a subset of E \E′′ containing |E|−|E′| elements.

Let H be the graph (V,E′ ∪ F ), a graph on the same vertex set V with |E| edges. By
Proposition 2.15,

|q∗(H)− q∗(G′)| ≤ 2|F |
|E|

=
2(|E| − |E′|)

|E|
.

By Proposition 2.16,

|q∗(H)− q∗(G)| ≤ 2(|E′| − |E′′|)
|E|

.

It is easy to check that either H ̸= G or H ̸= G′, so at least one of the above inequality

is strict. Therefore

|q∗(G)− q∗(G′)| ≤ |q∗(H)− q∗(G′)|+ |q∗(H)− q∗(G)|

<
2(|E| − |E′|)

|E|
+

2(|E′| − |E′′|)
|E|

=
2(|E| − |E′′|)

|E|
=

2|E \ E′|
|E|

.
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Note that the above results only show the stability of the value of modularity, not

of the optimal partition.

2.3 Modularity in community detection

To be clear, modularity is perfectly fine as a mathematical concept. When we say

‘shortcomings’ or ‘issues’, we say that with regards to using modularity to under-

stand community structures in networks. Even though the concept of community is

ill-defined, there are some common, qualitative properties that most people agree it

should have. ‘Issues’ arise when the behaviors of modularity clash with those intuitive

qualities. Strictly speaking, that could also mean that modularity has unveiled some-

thing non-intuitive but still valuable. We sidestep those semantic discussions because

they require subject matter context for each particular network, and focus instead on

simple notions of community.

Optimizing modularity

Modularity was originally introduced in [34] to cut off the dendrogram in a divisive

clustering method. Gradually, several methods focus on optimizing modularity itself,

turning it into an objective function over the space of all partitions.

Finding a partition to optimize modularity, or even just to approximate it within a

constant factor, is an NP-hard problem [35, 42]. Therefore, most optimization methods

use heuristic or randomization. In [43], the authors provide evidence that modularity

of real world networks have many local maxima close to the global maximum, and the

structures at those maxima are quite different from each other. This means heuristic

methods often succeed at finding a good modularity, but the partitions they produce

are structurally fragile (i.e. unstable) and therefore hard to interpret.

The rugged landscape of modularity is generally considered to be an undesirable

property. This is discussed in detail in [22], where modularity is compared with statis-

tical (inferential) methods based on stochastic block models. The likelihood landscapes

of block models also have several local maxima, but the models obtained at those points

can be interpreted as competing hypotheses for the available data. On the other hand,

modularity, a purely descriptive function, cannot provide such interpretation. See [22,

Section 4B] for more detailed discussion.
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Resolution limit

The modularity formula has a global parameter m - the number of edges in G. Adding

more edges can change the optimal partition in some small corner that has no rela-

tionship with those edges at all. The most famous manifestation of this phenomenon

is the resolution limit of modularity (see [44], [43, Section 2] for further discussion).

Let P = {P1, P2, . . .} be a partition of G. The change in modularity (new value minus

old value) when we merge P1 and P2 into one community is

∆q =
e(P1, P2)

m
− vol(P1)vol(P2)

2m2
.

This change is positive when

e(P1, P2) >
vol(P1)vol(P2)

2m
. (2.14)

The quantities e(P1, P2), vol(P1), and vol(P2) depend only on the neighborhood struc-

ture surrounding P1 and P2, but m is a global quantity. If we add more edges in any

far-flung corner of G, at some point the condition (2.14) will be satisfied as long as

there are some edges joining P1 and P2. In an extreme case, if we embed G in some

other enormous graph, then even without connecting G to the new graph, the new

maximum modular partition will only split G into connected components. To stretch

it a bit more, any connected graph collapses into a single community in a large enough

context. This shows that modularity can underfit if there are communities at very

different scales.

One way to understand this behavior is to look at the configuration model that

motivates modularity. In that model, all vertices can connect with each other randomly,

so if our community structure has some kind of locality, the model is not suitable.

There are several ways to address the resolution limit. One simple method is to add

a resolution parameter γ to obtain a family of modularity function:

qP(G, γ) := qEP (G)− γqDP (G) =
∑
P∈P

[
e(P )

m
− γ

(
vol(P )

2m

)2
]
.

The parameter γ adjusts the relative influence of the edge contribution and the degree

tax. Recalling the discussion in Section 2.1, maximizing edge contribution tends to

produce a few large communities, while minimizing degree tax tends to produce many

small, balanced groups. Therefore, a large γ is like a magnifying glass, allowing us to

see smaller communities; of course a potential side-effect is that some large communities

may be broken up into smaller ones.
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Figure 2.1: Effect of the resolution parameter. Group 1 is connected to the rest with

density 0.05, while groups 2 and 3 are connected with density 0.20. The internal density

of all three groups is 0.50.

Figure 2.1 illustrates the effect of the resolution parameter. The graph has two

natural partitions, one consisting of three balanced groups, the other two unbalanced

groups. If we set the resolution at 1.0 (i.e. standard modularity), the finer partition

with 3 groups gives better value. On the other hand, setting resolution at 0.5 favors

the coarse partition with just 2 groups.

This leaves the question of which resolution to choose. A single parameter may

not be enough to detect communities at both ends of the scale (see [45]). We can

choose suitable resolution using stability: if a partition gives good modularity over a

long range of resolution, it is likely meaningful. The following result is a basis for this

claim.

Proposition 2.18 ([46, Theorem 1]). If the partition P is optimal for both q(γ1) and

q(γ2) (γ1 ≤ γ2), then it is also optimal for all q(γ) with γ1 ≤ γ ≤ γ2.

Proof. This follows easily from the fact that q(γ) is a convex combination of q(γ1) and

q(γ2). Since γ1 ≤ γ ≤ γ2, there is 0 ≤ a ≤ 1 such that γ = (1 − a)γ1 + aγ2. For any

partition Q,

qQ(γ) = (1− a)qQ(γ1) + aqQ(γ2)

≤ (1− a)qP(γ1) + aqP(γ2) = qP(γ).

See [46] for additional results.

Interpreting high modularity

Graphs with higher modularity should have clearer community structures, but we do

not know how high should modularity be for the structure to be meaningful. We have
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seen that cycles have modularity near 1, and there are many other graphs which are

very symmetric and still have high modularity (see [37] and the citations therein).

Since graphs with no community structure can still have modularity near 1, we need

principled methods to determine if the obtained modularity is indeed high and there-

fore indicative of the graph having community structure. One simple way to produce

a baseline value is by randomization, similar to statistical testing. We choose a ran-

dom graph model that preserves some aspects of the network at hand but randomizes

other, then produce a lot of random samples to obtain a good approximation to the

distribution of modularity in that model. The modularity of the given network can

then be placed in the distribution to produce a ‘p-value’.
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Figure 2.2: Significance of modularity on a graph with two balanced groups. The

internal density is 0.20, and the external density is 0.05. Each histograms is generated

from 200 samples.

Figure 2.2 shows a simple example. We produce a graph G with two balanced

groups; set n to be the number of vertices, m the number of edges, and p the edge

density (i.e. p = m/
(
n
2

)
). Consider two familiar random graph ensembles: Gn,p where

each edge appears with probability p, and Gn,m where m edges are placed randomly.

For each model we generate 200 samples. The maximum modularity of each graph is

approximated using 3 runs of the Louvain method ([47], as implemented in NetworkX

library). (We choose such a low number to ensure reasonable running time; more

accurate experiments requires the number of runs at least in the dozens.) In this

case the planted partition is likely the best one, and the histograms show that the

modularity is indeed very high, with p-value near zero.

However, as pointed out in [22, Section 4C], there are two very different interpreta-

tions of the p-value, with the first being much stronger than the second:

� it is the probability that the graph does not have community structure, or

� it is the probability that the graph is not generated by the model we are consid-

ering.
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Figure 2.3: Significance of modularity on a graph with two unbalanced groups. The

small group has size 20, while the big group has size 100. The internal density is 0.40,

and the external density is 0.05. Each histogram is generated from 200 samples.
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Figure 2.4: Significance of modularity on a cycle of size 100. Each histogram is gener-

ated from 200 samples.

Figure 2.3 shows a similar example, but this time the two groups have different

sizes. The modularity is still very high (i.e. statistically significant), but this time the

natural partition has lower modularity than the ensemble. In this case, the second,

and weaker, conclusion is the more suitable one: our graph is not generated by Gn,p or

Gn,m. The same experiment, performed on cycles, are shown in Figure 2.4.

The models Gn,p and Gn,m are too simple baseline models for most real networks. A

more realistic one, which is also the original motivation for modularity, is the configu-

ration model. However, there are several configuration models depending on whether

we allow self-loops and parallel edges and whether the stubs are labeled. Crucially, the

choice has to be made in the context of the data, involving subject matter knowledge.

See [48] for a detailed introduction to configuration models (modularity is discussed in

Section 5 of that paper).
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Chapter 3

RANDOM WALKS IN

COMMUNITY DETECTION

This chapter studies the spectral properties of the random walk matrix and a clustering

algorithm based on those properties. Section 3.1 introduces the random walk matrix and

its spectrum. Section 3.2 explains why the top eigenvectors of that matrix inherit the

clustering structure of the graph and illustrates the phenomenon visually. Section 3.3

presents the Walktrap algorithm and performs experiments to test the effect of step size

and linkage method.

In this chapter we only work with connected and non-bipartite graphs; the reasons

are given in Section 3.1 below.

3.1 Random walks and stochastic matrices

Let G be a connected simple graph (having no self-loops and no parallel edges) with

vertex set {1, 2, . . . , n}. A simple random walk onG starting from vertex v is a sequence

of random variables X0, X1, X2, . . ., where X0 = v, and Xi+1 is picked uniformly

randomly from the neighbors of Xi. More generally, X0 can be picked from the vertices

of G according to some distribution on the vertex set V . The sequence (Xi) forms a

Markov chain with transition probability from vertex u to vertex v:

puv := P{Xi+1 = v|Xi = u} =
1

deg(u)
,

and we have the transition probability matrix

P = D−1A,
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where A is the adjacency matrix of G, and D is the degree diagonal matrix (duu =

deg(u)). We call P the random walk matrix of G. The matrix P is a stochastic matrix,

i.e. a matrix with nonnegative entries and row sums equal to 1. For a positive integer

t, the matrix power P t contains the transition probabilities after performing t steps of

the random walk.

In this chapter, we take the more concrete perspective of matrix analysis.

Recall some properties of stochastic matrices from [49, Chapter 8]. The matrix P

has spectral radius 1, and 1 is also an eigenvalue of P with eigenvector 1. Since G is

connected, P is irreducible, and the top eigenvalue 1 is algebraically simple.

The basic phenomenon we try to understand is the convergence of the random walk

to a stationary distribution. More specifically, there are three main questions:

1. Does the random walk have a stationary distribution?

2. Does the random walk converge to a stationary distribution?

3. How fast does the random walk converge?

The first question is quite easy. Simple calculations show that the walk has a stationary

distribution π, where

π(u) =
deg(u)

2m
.

The row vector π⊤ is a left eigenvector of P with eigenvalue 1, so by the Perron-

Frobenius theorem ([49, Theorem 8.4.4]) it is the unique stationary distribution of the

walk.

For the second question, we need the concept ergodicity (also called primitivity in

the context of matrices, see [49, Section 8.5]). For each vertex u, we list all the walks

that start and end at u (those walks can visit u or any vertex multiple times), then let

period(u) be the greatest common divisor of the lengths of those walks. The random

walk on G is said to be ergodic if gcd{period(u) : u ∈ V } = 1. There are actually only

two cases to consider. Each vertex u has a loop-walk of length 2 (just take u − v − u

for some neighbor v of u), so the period of u is either 1 or 2. If the walk on G is not

ergodic, it means that each vertex has period 2, therefore G has no walks of odd length.

By a standard result in graph theory, that implies G is a bipartite graph.

Bipartite graphs, also called two-mode networks or affiliation networks, form a spe-

cial class of graphs. They usually contains nodes of two different types, like author-

paper or actor-movie, and community structure is therefore very different from that in

non-bipartite (or one-mode) networks (see [50] for an introduction). In this chapter,

we assume all graphs are connected and non-bipartite, therefore all random walks are

ergodic.
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Since P is ergodic, 1 is the only eigenvalue on the spectral circle. In particular,

all other eigenvalues have norm strictly less than 1. This shows that as t → ∞, P t

converges to the rank-one matrix 1π⊤ with speed O(|λ|t), where λ is the eigenvalue

with the second largest norm (see Theorem 8.5.1 and the decomposition in Theorem

1.4.7 in [49]).

Random walks on graphs have special properties that allow us to be more concrete

in describing the spectrum of P . The random walk matrix P is similar to a symmetric

matrix:

D
1
2PD− 1

2 = D− 1
2AD− 1

2 .

This shows that P actually has real spectrum. The matrix L = I−D− 1
2AD− 1

2 is called

the Laplacian of G, which has nonnegative spectrum. For our purpose it suffices to

work directly with P and A.

Proposition 3.1 ([51, Lemma 1]). The matrix P has n real eigenvalues satisfying:

1 = λ1 ≥ λ2 ≥ . . . ≥ λn > −1.

Moreover, there is an orthonormal family of real vectors (si)1≤i≤n such that for each i,

the vectors xi := D− 1
2 si and yi := D

1
2 si are respectively the right and left eigenvectors

of P corresponding with the eigenvalue λi. In particular,

Pxi = λixi, y⊤i P = λiy
⊤
i ,

and

y⊤i xj = s⊤i sj = δij ,

where δij = 1 if i = j and 0 otherwise.

Proof. The spectrum has been established by the previous discussion. For the sec-

ond part, take (si) to be an orthonormal set of eigenvectors of the symmetric matrix

D− 1
2AD− 1

2 . A simple change of basis gives us the desired conclusions.

Remark 3.2. Let Λ be the diagonal matrix with diagonal entries λ1, . . . , λn, and let X

and Y be square matrices containing (xi) and (yi) as columns, respectively. Orthog-

onality gives us Y ⊤X = I, and so XY ⊤ = I by uniqueness of matrix inversion. The

columns of X are right eigenvectors of P , therefore

PX = ΛX.
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Multiplying both side on the right with Y ⊤, we obtain a useful decomposition:

P = ΛXY ⊤ =

n∑
i=1

λixiy
⊤
i . (3.1)

From this decomposition, matrix powers of P are represented as

P t =

n∑
i=1

λtixiy
⊤
i . (3.2)

Remark 3.3. By the Perron-Frobenius theorem, x1 is a scalar multiple of 1 and y1 is a

scalar multiple of π. Note that

1 = s⊤1 s1 = x⊤1 Dx1 = y⊤1 D
−1y1.

Therefore by suitable scaling, we can choose x1 and y1 such that

x1(u) =
1√∑
v deg(v)

, y1(u) =
deg(u)√∑

v deg(v)
.

3.2 Spectral clustering

Spectral clustering is a traditional subject with huge literature; see [52, 53, 54] for

some comprehensive surveys. Here we only present the main idea and some numerical

illustrations.

Consider an ideal case, where the graph consists of two disjoint connected commu-

nities (the arguments easily generalize to the case of k groups). We can rearrange the

vertices so that the random walk matrix has, say, the following form:

P =



∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ 0 0

0 0 0 0 ∗ ∗
0 0 0 0 ∗ ∗


.

Then the top eigenvalue 1 has dimension 2, and all other eigenvalues have norm strictly

less than 1. We therefore have a gap between the top two eigenvalues and the rest.
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The eigenvectors corresponding to eigenvalue 1 are

1

1

1

1

0

0


,



0

0

0

0

1

1


.

If we combine those two column vectors into a matrix and use the rows to represent

the corresponding vertices, the two original communities are easily separated.

If we perturb the edge set a little, we also perturb the adjacency matrix A a little.

By eigenvalue perturbation theorems [49, Section 6.5], the spectrum of the symmetric

matrixD− 1
2AD− 1

2 , which is also the spectrum of P , remains close to that of the original

matrix. So we still have a gap between the top two eigenvalues and the rest. We also

expect that the top two eigenvectors remain close to the original form, so we can use

them to separate the two communities in the graph.

Note that the above argument is only an heuristic. Whether the eigengap remains

depends on the original gap as well as how large the perturbation is. Moreover, while

the spectrum is stable, the eigenvectors are not (see the last exercise in [49, Section

6.3]). The ‘correct’ argument uses stability of eigenspaces instead, see [52, Section 7].

To sum up, if the graph G has k well-separated communities, we expect the random

walk matrix P has the following properties:

� there is a noticeable gap between λk and λk+1, and

� the k − 1 eigenvectors x2, . . . , xk can separate the k groups apart.

We do not need x1 because it is just a constant vector. Now we can formulate the

generic spectral clustering algorithm (using the notations of Proposition 3.1).

Generic spectral clustering

Input: A graph G and the number of communities k.

Output: A clustering of G into k disjoint groups.

1. Calculate the random walk matrix P and the k−1 eigenvectors x2, . . . , xk−1

corresponding to the eigenvalues λ2, . . . , λk.

2. Embed each vertex of G into Rk−1 using the coordinates of the eigen-

vectors:

u 7→ [x2(u), . . . , xk(u)]
⊤.

3. Apply a clustering algorithm for data in euclidean space.
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There are many variants of the algorithm above: which kind of matrix to use,

how to normalize the eigenvectors, how to normalize the embedding, which clustering

algorithm to use, ...

It could be instructive to look at the spectrum of near-bipartite graphs, even though

they are not the focus of this thesis. A bipartite graph has eigenvalue−1, corresponding

to an eigenvector with all entries 1 on a partite set and all entries −1 on the other

partite set. Therefore a near-bipartite graph will have the bottom eigenvalue λn close

to −1, and we also expect that the bottom eigenvector can separate the two partite

sets. The bottom gap |λn + 1| can be used to quantify how close our graph is to a

bipartite graph, see [55].

Numerical illustrations

We illustrate spectral clustering on small random graphs generated by stochastic block

models, varying the group sizes, number of groups, and densities. Some notable results

are recorded in Figures 3.1 to 3.5, with detailed parameter settings in the captions. Cal-

culations are done using the random walk matrices, and all eigenvectors are normalized

to have l2-norm 1. Note that all indexing starts from zero.

Figure 3.1 (page 44) presents an ideal case with two groups of the same size and

density. As expected, there is a noticeable gap between the second and third eigenval-

ues, and the second eigenvector shows a clear clustering into two groups. The other

eigenvectors are not of much use. The same phenomena appear in Figure 3.2 (page

44), but this time we need both the second and third eigenvectors to separate groups

1 and 3.

Not all graphs have such clear spectral properties. Figure 3.3 (page 45) and Fig-

ure 3.4 (page 45) present two cases where the spectral gaps are harder to detect. They

also show that smaller and sparser groups have more diffuse coordinates.

Figure 3.5 (page 52) shows that for near bipartite graphs, we have to use the bottom

eigenvector instead.
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Figure 3.1: Spectral properties of a graph with two balanced groups. The internal

density of both groups is 0.40, and the external density is 0.05.
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Figure 3.2: Spectral properties of a graph with three balanced groups. The internal

density of all three groups is 0.50, and the external density is 0.05.
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Figure 3.3: Spectral properties of a graph with two unbalanced groups. The small

groups has size 20 and density 0.20, while the big group has size 100 and density 0.80.

The external density is 0.05.
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Figure 3.4: Spectral properties of a graph with three unbalanced groups of sizes 20,

100, and 100. All three groups have internal density 0.50, and external density 0.05.
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3.3 The Walktrap algorithm

The Walktrap algorithm, proposed in [51], is one of the popular community detection

algorithms. It has two basic components: the Walktrap metric, and an agglomerative

clustering method. As the name suggests, the main motivation for the algorithm is

that a random walker tends to spend more time in a community before moving to

a different one. More concretely, random walkers starting at similar nodes will have

similar ‘views’ of other vertices.

The Walktrap metric

Let t be a positive integer. Denote by P t the t-power of the random walk matrix P ,

P t
ij the (i, j)-entry of P t, and P t

u• row u of P t (considered as a column vector). Recall

that for a vector v, v(i) denotes the i-th component of v.

Definition 3.4 ([51, Definition 1]). For two vertices u and v and a positive integer t,

we define the t-step Walktrap metric between u and v to be

dtWT(u, v) :=

√√√√ n∑
k=1

(P t
uk − P t

vk)
2

deg(k)
= ∥D− 1

2P t
u• −D− 1

2P t
v•∥2.

If t is already clear from context, we simply write dWT(u, v), or even just d(u, v).

Proposition 3.5 ([51, Theorem 1]). Using the notations from Proposition 3.1 and

Remark 3.3, we have the following formula for the t-step Walktrap metric:

d(u, v)2 =

n∑
i=2

λ2ti (xi(u)− xi(v))
2. (3.3)

Proof. Using formula (3.2), we obtain the formula for rows of P t:

P t
u• =

n∑
i=1

λtixi(u)yi.

Since {D− 1
2yi} form an orthonormal set of vectors, we easily obtain

∥D− 1
2P t

u• −D− 1
2P t

v•∥22 =
n∑

i=1

λ2ti (xi(u)− xi(v))
2.

Recalling that x1 is a constant vector, we can drop the index 1 in the sum.

Remark 3.6. As noted in [51], this metric is the same as the diffusion distance, used in

a data dimension reduction method [56, 57].
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After fixing a step size t and computing the Walktrap matrix W = P tD− 1
2 , we have

an embedding of G into Rn, where each vertex is mapped to the corresponding row of

W .

Formula (3.3) shows that the Walktrap distance can be considered as a smoothed

version of spectral embedding, where eigenvectors with higher eigenvalues are prior-

itized. As demonstrated in Section 3.2, if our graph has clear community structure,

those eigenvectors show clear clustering property, and the Walktrap distance - with a

suitable step size - should inherit that.

Agglomerative clustering

An agglomerative clustering algorithm gradually collapses all data points into a single

group, producing a hierarchy of nested partitions (visually represented by a dendro-

gram). The most crucial detail is which two groups should be merged at each step,

and this is determined by the linkage method, which is the method to assign distance

to two distinct clusters. See [58, Chapter 4] for a more thorough introduction.

Agglomerative clustering

Input: n data points in an euclidean space, and a linkage method.

Output: A sequence of n nested partitions (i.e. a dendrogram).

1. Form n clusters, each containing a single data point.

2. As long as there are more than one clusters, merge two clusters with the

minimum distance. (The distance is determined by the linkage method).

There are four linkages that we will test. We briefly mention their definitions and

how to update the distances after each merge.

� Single linkage: the distance between two clusters is the minimum possible distance

between a pair of points.

d(A,B) = min
u∈A, v∈B

d(u, v).

Updating formula:

d(A ∪B,C) = min{d(A,B), d(A,C)}.

� Complete linkage: the distance between two clusters is the maximum possible

distance between a pair of points.

d(A,B) = max
u∈A, v∈B

d(u, v).
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Updating formula:

d(A ∪B,C) = max{d(A,B), d(A,C)}.

� Average linkage: The distance between two clusters is the average distance be-

tween pairs of points.

d(A,B) =
1

|A||B|
∑

u∈A, v∈B

d(u, v).

Updating formula:

d(A ∪B,C) =
|A|

|A|+ |B|
· d(A,C) +

|B|
|A|+ |B|

· d(B,C).

� Ward linkage: The distance between two clusters is the increase of the within-class

sum of squared errors if we merge those two. The error of a point is the distance

from that point to the centroid of its cluster, where the centroid is defined as

mP :=
1

|P |
∑
u∈P

u.

The sum of squared errors of a partition P is

E(P) :=
∑
P∈P

∑
u∈P

∥u−mP∥2.

The new centroid when we merge two clusters is

mA∪B =
|A| ·mA + |B| ·mB

|A|+ |B|
.

A simple calculation gives the distance

d(A,B) =
|A||B|

|A|+ |B|
· ∥mA −mB∥2.

The updating formula is a bit complicated, so we derive it in detail. Let A, B, C

be three disjoint sets. The required formula should represent d(A ∪ B,C) using

d(A,C), d(B,C), and d(A,B). For convenience, set a = |A|, b = |B|, c = |C|.
The new distance is

d(A ∪B,C) =
(a+ b)c

a+ b+ c
· ∥mA∪B −mC∥2

=
(a+ b)c

a+ b+ c
·
∥∥∥∥amA + bmB

a+ b
−mC

∥∥∥∥2 .
which should be representable in the form

x · ∥mA −mC∥2 + y · ∥mB −mC∥2 + z · ∥mA −mB∥2,
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where x, y, z are some real numbers to be found. Expanding both formulas and

identifying the coefficients of each termm2
A, m

2
B, m

2
C , mA ·mB, mA ·mC , mB ·mC ,

we easily obtain

x =
ac

a+ b+ c
, y =

bc

a+ b+ c
, z = − abc

(a+ b)(a+ b+ c)
.

Therefore the updating formula for Ward linkage is

d(A ∪B,C) =
a+ c

a+ b+ c
· d(A,C) +

b+ c

a+ b+ c
· d(B,C)− c

a+ b+ c
· d(A,B).

Figure 3.6 (page 53) illustrates how Ward and single linkage create dendrograms on

the rows of the Walktrap matrix. In this simple case, cutting off the dendrograms at

two groups recovers exactly the original groups.

Choosing linkage and step size

We test four linkages above combined with three step sizes (2, 5, and 8) on stochastic

block models, varying the group sizes, number of groups, densities, and number of

nodes. Some results (together with detailed parameter setting) are recorded in Fig-

ures 3.7 to 3.14. We describe how the figures are produced.

� In each figure, only one parameter of the stochastic block model is varied, the rest

are fixed. All four linkages and three step sizes are tested.

� The planted groups in the block model are considered to be ‘ground truth’. For

each linkage and step size, we cut off the dendrogram using the known number

of groups. The quality of the clustering is measured by the adjusted Rand index

against the ground truth.

� For each fixed set of parameters, 20 random graphs are generated, then all twelve

methods are performed on those 20 graphs. The score for each method is then

averaged over those 20 samples.

The choice of adjusted Rand index for all experiments is mostly out of convenience. A

score of 1 means perfect agreement, while a score near 0 or negative means bad quality.

For the index’s properties and shortcomings, see e.g. [59].

We do not add self-loops to vertices, and do not impose connectivity constraints.

In other words, the rows of the Walktrap matrix are treated as normal data points in

euclidean space.

Discussion of results. We make the following observations based on the results.

� Ward linkage provides the best performance and should be used in all cases, while

single linkage is often the worst.
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� The step sizes between 2 and 5 are reasonable choices; sparser graphs benefit from

longer steps (i.e. 5) (see Figure 3.14 and the portions with lower densities in earlier

figures).

� All methods’ performances improve as densities or graph sizes increase, which

provide evidence for the (asymptotic) consistency of Walktrap.

The authors of [51] observe empirically that step sizes between 3 and 8 (inclusive)

give the best result and recommend choosing t = 4 or t = 5. For some theoretical

results related to step size in Walktrap, see [60].

Practical implementation

After calculating the distances and choosing the linkage, there are two more technical

details in the implementation of Walktrap.

� We need a way to cut off the dendrogram if the number of groups is not known

beforehand. Modularity is a popular way to do this, similar to its original use in

[34]. See Chapter 2 of this thesis for basic properties of modularity as well as its

limitations.

� The algorithm in [51] only merges adjacent communities at each step to ensure

connected communities and reduce computation. The authors also propose ad-

ditional heuristics to reduce the number of distances computed; see the original

paper for more information.

There is a ready implementation from the authors of the original paper1, conve-

niently packaged in the igraph library2. Performance of Walktrap has been analyzed

carefully in [26], so we do not perform any practical analysis in this thesis.

For completeness, a simple Python implementation is given in Appendix A, us-

ing popular open-source Python packages: NetworkX3 for graph manipulation, and

NumPy4 for matrix calculation. The groups to merge and the modularity at each step

are stored. The final partition can be produced by giving the number of communities,

or cutting off the dendrogram with modularity (with resolution as an optional parame-

ter). All methods are wrapped in a class. This is just a proof-of-concept program, not

a practical one. In particular, we calculate distance using vectors directly rather than

efficient updating formulas, and communities are merged by collapsing a new graph,

which is rather expensive. We also do not add self-loops to vertices. The program aims

1http://psl.pons.free.fr/index.php?item=prog&item2=walktrap&lang=en
2https://igraph.org
3https://networkx.org
4https://numpy.org

http://psl.pons.free.fr/index.php?item=prog&item2=walktrap&lang=en
https://igraph.org
https://networkx.org
https://numpy.org
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to illustrate two techniques: how to extract the minimum distance using a heap, and

how to keep track of modularity using a weighted graph. Hopefully copious comments

in the code are enough for readers to follow the steps.
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Figure 3.5: Spectral properties of a near-bipartite graph. The internal density of both

groups is 0.05, while the external density is 0.50.
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Figure 3.7: Testing Walktrap on graphs with two balanced groups. The external density

is fixed at 0.05, while the internal density of both groups varies from 0.15 to 0.40.
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Figure 3.8: Testing Walktrap on graphs with three balanced groups. The external

density is fixed at 0.05, while the internal density of all three groups varies from 0.15

to 0.40.
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Figure 3.9: Testing Walktrap on graphs with two unbalanced groups. The small group

has size 20, while the large group has size 100. The external density is fixed at 0.05,

while the internal density of both groups varies from 0.20 to 0.45.
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Figure 3.10: Testing Walktrap on graphs with two unbalanced groups with different

densities. The small group has size 20, while the big group has size 100. The external

density is fixed at 0.05, and the internal density of the big group is fixed at 0.4. The

internal density of the small group varies from 0.15 to 0.60.



58

Linkage
ward
complete
average
single

0.20 0.25 0.30 0.35 0.40 0.45 0.50
pin

0.2

0.4

0.6

0.8

1.0

Ad
ju

st
ed

 ra
nd

 sc
or

e

2 steps

0 20 40 60 80 10
0

12
0

0

20

40

60

80

100

120

Typical adjacency matrix

0.20 0.25 0.30 0.35 0.40 0.45 0.50
pin

0.2

0.4

0.6

0.8

1.0

Ad
ju

st
ed

 ra
nd

 sc
or

e

5 steps

0.20 0.25 0.30 0.35 0.40 0.45 0.50
pin

0.2

0.4

0.6

0.8

1.0

Ad
ju

st
ed

 ra
nd

 sc
or

e

8 steps

Figure 3.11: Testing Walktrap on graphs with three unbalanced groups. The two small

groups have the same size 20, while the big group has size 100. The external density

is fixed at 0.05, while the internal density of all three groups varies from 0.20 to 0.50.
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Figure 3.12: Testing Walktrap on graphs with three unbalanced groups with different

densities. The two small groups have size 20, while the big group has size 100. The

external density is fixed at 0.05, and the internal density of the two small groups is

fixed at 0.4. The internal density of the big group varies from 0.20 to 0.50.
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Figure 3.13: Testing Walktrap on near-bipartite graphs with two groups of the same

size 50. The internal density of both groups is fixed at 0.05, while the external density

varies from 0.15 to 0.40.
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Figure 3.14: Testing the consistency of Walktrap on graphs with two unbalanced

groups, as the number of nodes increases. The two groups have size (k, 2k), as k

varies from 50 to 140. The external density is fixed at 0.02, and the internal density

of both groups is fixed at 0.10.
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Chapter 4

CONCLUSION

This chapter summarizes the main content of the thesis and introduces some further

directions.

4.1 Summary of the thesis

This thesis is an exposition of two topics in network community detection: a popular

quality function called modularity, and the clustering properties of the random walk

matrix of a graph. Here we summarize the main content and contribution of this thesis.

� Chapter 2 is a detailed exposition of modularity, its basic properties, and its use

in practical tasks.

Section 2.1 presents the definition of modularity, derives some simple bounds, and

carefully explains the connection with the configuration random graph model.

Section 2.2 collects many theoretical properties of modularity. The results come

from many sources; we organize them and give detailed proofs with some addi-

tional detail and possible simplification. In particular, the proof of Theorem 2.13,

which is based on the proof of Theorem 2.12, is more elementary than current

available proofs (which use linear algebra).

Section 2.3 explains several shortcomings of modularity when used in commu-

nity detection. The resolution limit and difficulty in interpreting modularity are

illustrated by practical examples.

� In Chapter 3, we explore spectral clustering and the Walktrap algorithm for

graphs, mostly from the practical perspective.

Section 3.1 briefly recalls the basic properties of random walks on graphs and the

associated random walk matrices.

Section 3.2 introduces the clustering properties of the spectrum and eigenvectors
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of the random walk matrices. Those properties are then illustrated on various

graphs generated from the stochastic block models.

Section 3.3 introduces the Walktrap algorithm, with particular focus on the clus-

tering property of the Walktrap distance and its connection to spectral clustering.

We perform extensive experiments on small random graphs to the check the ef-

fects of two parameters: the random walk step size, and the linkage method in

the agglomerative clustering step.

The main theoretical content of the thesis lies in Section 2.2. In Sections 2.3, 3.2

and 3.3, we produce copious illustrations and experiments using the Python program-

ming language and several libraries (information can be found on page 50); moreover,

a complete implementation of the Walktrap algorithm is provided in Appendix A.

4.2 Some further directions

The linear algebraic perspective on modularity

There are connections between modularity and spectra of graphs. Let d be the n × 1

degree vector of the graph G, i.e. d(u) = deg(u), and A the adjacency matrix of G.

The modularity matrix of G is the n× n matrix

M := A− 1

2m
dd⊤.

Equation (2.3) then becomes

qP(G) =
1

2m

∑
u,v∈V (G)

Muv · 1σP(u)=σP(v).

The algebraic modularity of G is

µ(G) := max
x⊤1=0

x⊤Mx

x⊤x
.

The following is one of the key results for algebraic modularity.

Theorem 4.1 ([61, Theorem 5.4]). For any graph G,

q∗(G) ≤ n− 1

2m
· µ(G).

This is how the results of [38, 39] imply Theorem 2.13.

There are also connections between the number of positive eigenvalues of M and

the number of communities in G. For more details, see the survey [61].
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The axiomatic approach to quality functions

There are many variants of modularity, some specifically designed to avoid resolution

limit, but they all have some shortcomings. A principled approach to evaluating and

designing quality functions is the axiomatic approach: we formalize the desired proper-

ties of such functions, then systematically check them. A set of such axioms is proposed

in [62]. There are two key properties that modularity does not satisfies.

� Modularity is not local. We do not present the definition here, but intuitively

it means that changes in a corner of a graph should not affect the clustering in

another corner. The resolution limit violates this property.

� Modularity is not monotonic. For a partition P , the modularity q(P) should in-

crease if we improve the community structure of P itself by deleting edges between

members and/or adding edges inside members, but that is not the case.

For example, let G be a graph with vertex set V = {1, 2, 3, 4} and edge set E =

{(1, 2), (3, 4)}. Consider the partition P = {{1}, {2}, {3, 4}}, with modularity

q(P) = 1/8. If we delete the edge (1, 2), modularity decreases to 0.

A different approach, specifically focusing on resolution limit, is presented in [63].
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[4] Daniel Kostić. Mechanistic and topological explanations: an introduction. Syn-

these, 195(1):1–10, 2018.
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Random Structures & Algorithms, 57(1):211–243, 2020.

[41] Thang N. Dinh and My T. Thai. Finding community structure with performance

guarantees in scale-free networks. In 2011 IEEE Third International Conference on

Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference

on Social Computing, pages 888–891. IEEE, 2011.

[42] Thang N. Dinh, Xiang Li, and My T. Thai. Network clustering via maximiz-

ing modularity: Approximation algorithms and theoretical limits. In 2015 IEEE

International Conference on Data Mining, pages 101–110. IEEE, 2015.

[43] Benjamin H. Good, Yves-Alexandre De Montjoye, and Aaron Clauset. Perfor-

mance of modularity maximization in practical contexts. Physical Review E,

81(4):046106, 2010.

[44] Santo Fortunato and Marc Barthelemy. Resolution limit in community detection.

Proceedings of the National Academy of Sciences, 104(1):36–41, 2007.



69

[45] Andrea Lancichinetti and Santo Fortunato. Limits of modularity maximization in

community detection. Physical Review E, 84(6):066122, 2011.

[46] Vincent A. Traag, Gautier Krings, and Paul Van Dooren. Significant scales in

community structure. Scientific Reports, 3(1):1–10, 2013.

[47] Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-

vre. Fast unfolding of communities in large networks. Journal of Statistical Me-

chanics: Theory and Experiment, 2008(10):P10008, 2008.

[48] Bailey K. Fosdick, Daniel B. Larremore, Joel Nishimura, and Johan Ugander.

Configuring random graph models with fixed degree sequences. Siam Review,

60(2):315–355, 2018.

[49] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University

Press, 2nd edition, 2012.

[50] Martin G. Everett and Stephen P. Borgatti. Partitioning multimode networks.

In Patrick Doreian, Vladimir Batagelj, and Anuška Ferligoj, editors, Advances in
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Appendix A

A Python implementation of

Walktrap

This is a simple Python implementation of Walktrap, designed to work on NetworkX

graphs. We use the concepts introduced in Section 2.1: edge contribution, degree tax,

and modularity of weighted graphs.

As mentioned in Section 3.3, we do not add self-loops to the graphs. The code below

can easily be modified to accommodate self-loops.

1 # -*- coding: utf-8 -*-

2 # file: walktrap.py

3

4 import copy

5 import heapq

6 import numpy as np

7 import networkx as nx

8

9 class Walktrap:

10 ’’’

11 A class implementing the Walktrap clustering method for networkx Graphs.

12

13 This implementation only works for undirected and unweighted graphs.

14 Loops and edge weights should have been discarded before.

15

16 It is assumed that the graph is connected and the nodes are labeled

17 using consecutive integers 0..(n-1).
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18

19 The best partition is determined using modularity. You can vary the

20 resolution parameter for modularity calculation; generally higher

21 resolutions give more communities.

22

23 Basic usage:

24 clustering = Walktrap(G)

25 clustering.fit(n steps=3)

26 print(clustering.best partition())

27 ’’’

28 def init (self, G):

29 ’’’

30 Initialize the Walktrap object.

31

32 Parameters

33 ----------

34 G : networkx Graph

35 It is assumed that the nodes of G are labeled using

36 consecutive integers 0..(n-1).

37 ’’’

38 self.G = G

39

40 def fit(self, n steps=3):

41 ’’’

42 Perform the Walktrap clustering.

43

44 Parameters

45 ----------

46 n steps : int, default=3

47 The number of random walk steps; operationally this is the power

48 to which we raise the transition matrix. Recommended choices are

49 between 3 to 8, inclusive. Generally , sparser graphs require

50 longer step sizes.

51

52 Returns
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53 ----------

54 self : Walktrap object

55 ’’’

56 # A ’symbolic’ graph, where vertices represent clusters, and edge

57 # weights represent the number of edges between clusters.

58 # This graph will gradually be collapsed.

59 H = copy.deepcopy(self.G)

60 for e in H.edges:

61 H.edges[e][’weight’] = 1

62

63 n = H.number of nodes()

64 m = H.number of edges()

65

66 # CREATE THE WALKTRAP MATRIX

67

68 A = nx.to numpy array(

69 H,

70 nodelist=list(range(n)),

71 weight=None,

72 dtype=np.float64

73 )

74 degrees = np.sum(A, axis=1)

75 P = A / degrees[:, np.newaxis] # the transition matrix

76 P = np.linalg.matrix power(P, n steps) # walking

77 W = P / np.sqrt(degrees) # final walktrap matrix

78

79 # AUXILIARY OBJECTS

80

81 # Storing the merging steps.

82 # At step i, clusters children[i,0] and children[i,1] are merged

83 # to form cluster n+i.

84 children = np.zeros((n-1, 2), dtype=np.int64)

85

86 # Quickly check when we encountered deleted vertices

87 deleted = np.zeros(2*n - 1, dtype=np.bool8)
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88

89 # Reuse the walktrap matrix to store new rows

90 # comm to row[u] is the row in W corresponding to cluster u

91 comm to row = np.zeros(2*n - 1, dtype=np.int64)

92 comm to row[:n] = range(n)

93

94 # sizes[u] is the number of vertices in cluster u

95 sizes = np.zeros(2*n - 1, dtype=np.int64)

96 sizes[:n] = 1

97

98 # vols[u] is the sum of degrees of vertices in cluster [u]

99 vols = np.zeros(2*n - 1, dtype=np.int64)

100 vols[:n] = [H.degree(v) for v in range(n)]

101

102 # internal ecount[u] is the number of edges inside cluster u

103 internal ecount = np.zeros(2*n - 1, dtype=np.int64)

104

105 # delta econ[i] is the change in edge contribution at step i

106 delta econ = np.zeros(n-1, dtype=np.float64)

107 # delta dtax[i] is the change in degree tax at step i

108 delta dtax = np.zeros(n-1, dtype=np.float64)

109

110 # A min heap for efficient extraction of the minimum change in sse.

111 delta sse heap = [

112 (

113 np.linalg.norm(

114 W[v1, :] - W[v2, :], ord=2

115 )**2 / 2,

116 v1,

117 v2

118 ) for v1, v2 in self.G.edges()

119 ]

120 heapq.heapify(delta sse heap)

121

122 # MERGING
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123

124 for i in range(n - 1):

125 u = n + i # the new node

126

127 # Get the two communities to merge

128 while True:

129 delta sse , v1, v2 = heapq.heappop(delta sse heap)

130 if (not deleted[v1]) and (not deleted[v2]):

131 break # found!

132

133 # Update the auxiliaries

134 children[i, :] = [v1, v2]

135 deleted[v1] = deleted[v2] = True

136 sizes[u] = sizes[v1] + sizes[v2]

137 vols[u] = vols[v1] + vols[v2]

138 internal ecount[u] = (

139 internal ecount[v1] + internal ecount[v2]

140 + H.edges[v1, v2][’weight’]

141 )

142

143 comm to row[u] = comm to row[v1]

144 W[comm to row[u], :] = (

145 sizes[v1] * W[comm to row[v1], :]

146 + sizes[v2] * W[comm to row[v2], :]

147 ) / sizes[u]

148

149 delta econ[i] = H.edges[v1, v2][’weight’] / m

150 delta dtax[i] = (vols[v1] * vols[v2]) / (2 * m**2)

151

152 # Adding to the cluster graph and the heap

153 v1 neighbors = set(H.neighbors(v1))

154 v2 neighbors = set(H.neighbors(v2))

155 u neighbors = (v1 neighbors | v2 neighbors) - set([v1, v2])
156 H.add node(u)

157 for v in u neighbors:
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158 H.add edge(u, v)

159 weight = 0

160 if v in v1 neighbors:

161 weight += H.edges[v, v1][’weight’]

162 if v in v2 neighbors:

163 weight += H.edges[v, v2][’weight’]

164 H.edges[u,v][’weight’] = weight

165 heapq.heappush(

166 delta sse heap ,

167 (

168 np.linalg.norm(

169 W[comm to row[u], :] - W[comm to row[v], :],

170 ord=2

171 )**2 * sizes[u] * sizes[v] / (sizes[u] + sizes[v]),

172 u,

173 v

174 )

175 )

176 # Clean up the cluster graph

177 H.remove nodes from([v1, v2])

178

179 # STORING USEFUL ATTRIBUTES

180

181 # Compute edge contribution and degree tax at each step

182 mod econ = np.zeros(n, dtype=np.float64)

183 mod econ[1:] = np.cumsum(delta econ)

184 mod dtax = np.zeros(n, dtype=np.float64)

185 mod dtax[1:] = np.cumsum(delta dtax)

186 mod dtax += np.sum([vols[v]**2 for v in range(n)]) / (4 * m**2)

187

188 # Storing

189 self.children = children

190 self.mod econ = mod econ

191 self.mod dtax = mod dtax

192



77

193 return self

194

195 def modularities(self, resolution=1.0):

196 ’’’

197 Return all the modularity at all merging steps

198

199 Parameters

200 ----------

201 resolution : float, default=1.0

202 The resolution (gamma) in the modularity formula

203

204 Returns

205 ----------

206 A numpy array of floats (n,), where index i store the modularity

207 at level i

208 ’’’

209 return self.mod econ - resolution*self.mod dtax

210

211 def partition(self, n groups):

212 ’’’

213 Compute the partition with the specified number of communities.

214

215 Parameters

216 ----------

217 n groups : integer, from 1, 2, ... , n

218 The number of communities to return.

219

220 Returns

221 ----------

222 A partition as a list of sets.

223 ’’’

224 n = self.G.number of nodes()

225 clusters = {v:{v} for v in range(n)}
226 for i in range(n - n groups):

227 v1, v2 = self.children[i]
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228 v1 cluster = clusters.pop(v1)

229 v2 cluster = clusters.pop(v2)

230 clusters[n + i] = v1 cluster | v2 cluster
231

232 return list(clusters.values())

233

234 def best partition(self, resolution=1.0):

235 ’’’

236 Return the partition with the best modularity.

237

238 Parameters

239 ----------

240 resolution : float, default=1.0

241 The resolution parameter in the modularity formula.

242

243 Returns

244 ----------

245 The partition with the best modularity , as a list of sets.

246 ’’’

247 return self.partition(

248 self.G.number of nodes() -

249 np.argmax(

250 self.mod econ - resolution*self.mod dtax

251 )

252 )
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