
MINISTRY OF EDUCATION VIETNAM ACADEMY
AND TRAINING OF SCIENCE AND TECHNOLOGY

GRADUATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Nguyen Viet Anh

SEPARATION THEOREMS

AND RELATED PROBLEMS

MASTER THESIS IN MATHEMATICS

Hanoi, 2022



MINISTRY OF EDUCATION VIETNAM ACADEMY
AND TRAINING OF SCIENCE AND TECHNOLOGY

GRADUATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Nguyen Viet Anh

SEPARATION THEOREMS

AND RELATED PROBLEMS

Major: Applied Mathematics

Code: 8 46 01 12

MASTER THESIS IN MATHEMATICS

ADVISOR:
Dr. Le Xuan Thanh

Hanoi, 2022



i

Commitment

This thesis is done by my own study under the supervision of Dr. Le Xuan

Thanh. It has not been defensed in any council and has not been published on any

media. The results as well as the ideas of other authors are all specifically cited. I

take full responsibility for my commitment.

Hanoi, October 2022

Nguyen Viet Anh



ii

Acknowledgements

Firstly, I am extremely grateful for my advisor - Dr. Le Xuan Thanh - who

devotedly guided me to learn some interesting fields in Optimization and taught me

to enjoy the topic of my master thesis. He shared his research experience and career

opportunities to me, and help me to find a way for my research plan.

In the time I study here, I sincerely thank all of my lecturers for teaching and

helping me, and to the Institute of Mathematics, Hanoi for offering me facilitation

in a professional working environment.

I would like to say thanks for the help of Graduate University of Science and

Technology, Vietnam Academy of Science and Technology in the time of my master

program.

Especially, I really appreciate my family and my friends for their supporting in

my whole life.

Hanoi, October 2022

Nguyen Viet Anh



iii

Contents

Introduction 1

1 Preliminaries 2

1.1 Affine sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Convex sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Conic sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Projection on convex sets . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Convex and concave functions . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Algebraic interior and algebraic closure . . . . . . . . . . . . . . . . . 11

2 Separation between two convex sets 14

2.1 Separation concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 In Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 In general vector spaces . . . . . . . . . . . . . . . . . . . . . 18

2.2 Separation theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 In Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 In general vector spaces . . . . . . . . . . . . . . . . . . . . . 26

3 Some related problems 34

3.1 Homogeneous Farkas lemma . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Dual cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Convex barrier function . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Hahn-Banach theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Conclusions 47

Bibliography 48



1

Introduction

An important topic in the field of optimization theory is separation involving

convex sets. A number of separation theorems concerning different types of sepa-

ration between convex sets have been conducted in literature. Also a number of

important results in convex analysis, optimization theory, and functional analysis

base on these separation theorems. Namely, the homogeneous Farkas lemma, which

gives a condition that is necessary and sufficient for the feasibility of a particular

case of homogeneous linear systems, can be obtained from a separation theorem.

The theory of duality in convex programming and the construction of convex bar-

rier functions can also be obtained from the separation theorems. Additionally, a

cornerstone in functional analysis - the Hahn-Banach theorem - can be derived from

a separation theorem.

With the aim of understanding the importance of the separation theorems, we

use Chapter 6 in [1] as the main reference, and study some types of separation

between two convex sets, together with their applications in the related problems

mentioned above. In Chapter 1 we recall some preliminaries for the contents in the

sequel chapters. In Chapter 2 we recall some popular separation concepts includ-

ing general separation, strict separation, strong separation, and proper separation.

These concepts are considered in both settings of finite dimensional Euclidean vec-

tor spaces and general vector spaces without any equipped topology. It is worth

noting that, in this thesis, we only consider vector spaces over the field of real num-

bers. In Chapter 3 we present detail arguments to derive the homogeneous Farkas

lemma, the theorem on dual cone, the construction of a barrier convex function for

convex optimization problem, and the Hahn-Banach theorem from the separation

theorems.
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Chapter 1

Preliminaries

In this chapter, we recall some preliminaries in convex analysis, that will be used

in the sequel chapters. Throughout this chapter (except for the last section), E is

a vector space equipped with a norm ∥ · ∥ induced by an inner product ⟨·, ·⟩. In the

last section of this chapter, we will consider E as a general vector space without any

equipped topology.

1.1 Affine sets

Definition 1.1. (Affine set, see e.g. [2]). A subset A ⊂ E is called an affine set if

for every a,b ∈ A and λ ∈ R we have λa+ (1− λ)b ∈ A.

Given two distinct points a,b ∈ E, we define the line through these points as

the set of form {x ∈ E | x = λa + (1 − λ)b for some λ ∈ R}. It is not hard to see

that such a line is an affine set, and a subset A ⊂ E is affine if and only if the line

through any pair of distinct points in A is also contained in A.

Definition 1.2. (Hyperplane, see e.g. [1]). A hyperplane in E is a set of form

H(a, α) = {x ∈ E | ⟨a,x⟩ = α}

for some a ∈ E\{0} and α ∈ R.

It is also not hard to see that a hyperplane is an affine set.

Definition 1.3. (Affine hull, see e.g. [2]). Given a subset A ⊂ E. The affine hull

of A, denoted aff(A), is the smallest affine set in E containing A (in sense of set

inclusion).

The following proposition is a well-known result about the structure of the affine

hull.
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Proposition 1.4. (See e.g. [2]) For a given subset A ⊂ E, its affine hull aff(A)

coincides the set of all affine combinations of its points, i.e.,

aff(A) = {θ1x1 + . . .+ θkx
k | x1, . . . ,xk ∈ A, θ1 + . . .+ θk = 1}.

Definition 1.5. (Relative interior, see e.g. [3]). Given a subset A ⊂ E. The relative

interior of A, denoted relint(A), is the set

{x ∈ A | ∃ϵ > 0 : B(x, ϵ) ∩ aff(A) ⊂ A},

in which B(x, ϵ) = {y ∈ E | ∥y − x∥ < ϵ}.

Roughly speaking, the relative interior of a subset of Rn is the interior of that

set relative to its affine hull.

1.2 Convex sets

Definition 1.6. (Convex set, see e.g. [3]). A subset C ⊂ E is called a convex set if

for every a,b ∈ C and λ ∈ [0, 1] we have λa+ (1− λ)b ∈ C.

Given two distinct points a,b ∈ E, we define the line segment [a,b] between

these points as the set {x ∈ E | x = λa + (1 − λ)b for some λ ∈ [0, 1]}. It is not

hard to see that such a line segment is a convex set, and a subset C ⊂ E is convex if

and only if the line segment between any pair of distinct points in C is also contained

in C. It is also not hard to see that a hyperplane in E is a convex set.

Similar to the affine hull, we have the following concept.

Definition 1.7. (Convex hull, see e.g. [2]). Given a subset C ⊂ E. The convex

hull of C, denoted conv(C), is the smallest convex set in E containing C (in sense

of set inclusion).

The following proposition is a well-known result about structure of the convex

hull.

Proposition 1.8. (See e.g. [2]) For a given subset C ⊂ E, its convex hull conv(C)

coincides the set of all convex combinations of its points, i.e.,

conv(C) = {θ1x1 + . . .+ θkx
k | x1, . . . ,xk ∈ A, θ1, . . . , θk ≥ 0, θ1 + . . .+ θk = 1}.

The following proposition provides some useful properties of convex sets.

Proposition 1.9. (i) The closure C of any convex set C ⊂ E is also convex.

(ii) Let C1 and C2 be convex sets in E. Then C1∩C2, C1+C2, C1−C2 are also

convex.
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Proof. (i) Let λ ∈ [0, 1] and x,y ∈ C. There exist sequences {xn}, {yn} in C such

that xn → x and yn → y as n → ∞. Since C is convex, we have λxn+(1−λ)yn ∈ C

for all n ∈ N. Taking n → ∞ we have λx + (1 − λ)y ∈ C, which shows that C is

convex.

(ii) Let x1,x2 ∈ C1 ∩C2, and θ ∈ [0, 1]. Since x1,x2 ∈ C1, by convexity of C1 we

have θx1 + (1− θ)x2 ∈ C1. Similarly, since x1,x2 ∈ C2, by convexity of C2 we have

θx1 + (1− θ)x2 ∈ C2. Thus, θx
1 + (1− θ)x2 ∈ C1 ∩C2, which proves the convexity

of C1 ∩ C2.

Let λ ∈ [0, 1] and u,v ∈ C1 + C2. Since u,v ∈ C1 + C2, there exist u1,v1 ∈ C1

and u2,v2 ∈ C2 such that u = u1+u2,v = v1+v2. Since u1,v1 ∈ C1, by convexity

of C1 we have λu1 + (1 − λ)v1 ∈ C1. Similarly, since u2,v2 ∈ C2, by convexity of

C2 we have λu2 + (1− λ)v2 ∈ C2. Therefore we have

λu+ (1− λ)v = λ(u1 + u2) + (1− λ)(v1 + v2)

= (λu1 + (1− λ)v1) + (λu2 + (1− λ)v2) ∈ C1 + C2.

Thus C1 + C2 is convex. By similar arguments we obtain convexity of the set

C1 − C2.

Additionally, the following proposition gives some non-trivial properties of convex

sets in finite dimensional spaces.

Proposition 1.10. (i) Any nonempty convex set in Rn has nonempty relative in-

terior.

(ii) Let C1, C2 ⊂ Rn be nonempty convex sets. Then we have

relint(C1 − C2) = relint(C1)− relint(C2).

For the proof of Proposition 1.10(i), we refer to Proposition 1.9 in [2]. For the proof

of Proposition 1.10(ii), we refer to Corollary 2.87 in [4].

The following proposition gives an additional property of points in relative interior

of a convex set.

Proposition 1.11. Let C be a nonempty convex set in E, x ∈ relint(C), and y ∈ C.

Then there exists t > 0 for which x+ t(x− y) ∈ C.

Proof. For any t ∈ R, we have x+ t(x−y) = (1+ t)x− ty is an affine combination

of x and y (since the sum of coefficients in this combination is 1 + t − t = 1).

Furthermore, since x ∈ relint(C) ⊂ C and y ∈ C, this affine combination is in affine

hull of C, that is

x+ t(x− y) ∈ aff(C). (1.1)
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Since x ∈ relint(C), there exists r > 0 such that B(x, r)∩ aff(C) ⊂ C. By choosing

t such that 0 < t < r
∥x−y∥ we have

x+ t(x− y) ∈ B(x, r). (1.2)

For such choice of t we have both (1.1) and (1.2), and consequently

x+ t(x− y) ∈ B(x, r) ∩ aff(C) ⊂ C.

We will need the following result in the sequel.

Lemma 1.12. Let C be a nonempty convex set in E and x̄ ∈ C\relint(C). Then

there exists a sequence {xk | k ∈ N} ⊂ aff(C) with xk /∈ C and xk → x̄ as k → ∞.

Proof. Note that relint(C) is non-empty by Proposition 1.10(i), therefore we can

take x0 as a point in relint(C). We shall begin with showing that (1+ t)x̄− tx0 /∈ C

for all t > 0. Indeed, assume the contrary that (1 + t)x̄ − tx0 ∈ C for some t > 0.

This, together with the fact that x0 ∈ relint(C), ensures that the following affine

combination

x̄ =
t

t+ 1
x0 +

1

t+ 1

(
(t+ 1)x̄− tx0

)
is in relint(C). However, this contradicts the assumption x̄ /∈ relint(C).

Now, by choosing t = 1
k for k = 1, 2, . . ., we obtain xk :=

(
1 + 1

k

)
x̄ − 1

kx
0 /∈ C.

Each xk is an affine combination of x̄ ∈ C\relint(C) and x0 ∈ relint(C), hence it is

in aff(C). By letting k → ∞, we have

xk :=
(
1 +

1

k

)
x̄− 1

k
x0 → x̄.

1.3 Conic sets

Definition 1.13. (See e.g. [3]). (i) A subset K ⊂ E is called a cone if for every

a ∈ K and λ ≥ 0 we have λa ∈ K.

(ii) A conic combination of points x1, . . . ,xk ∈ E is a point of form

λ1x
1 + . . .+ λkx

k

with λ1, . . . , λk ≥ 0.

(iii) The conic hull of a given subset C ⊂ E, denoted cone(C) is the set of all

conic combinations of points in C.
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Similar to the case of affine hulls, we have the following well-known result about

conic hulls.

Proposition 1.14. (See e.g. [3]). The conic hull cone(C) of a subset C ⊂ E is the

smallest convex cone containing C (in sense of set inclusion).

1.4 Projection on convex sets

Proposition 1.15. (See e.g. [1]). Let C ⊂ Rn be a nonempty closed convex set.

Let x ∈ Rn. Then there exists uniquely a vector x∗ ∈ C such that

∥x− x∗∥ = min
y∈C

∥x− y∥.

Proof. Existence. Firstly, we observe that the function f(y) = ∥x−y∥ is continuous
on Rn. Indeed, let y0 be an arbitrary vector in Rn and {yn | n ∈ N} a sequence in

Rn converging to y0, i.e., ∥yn − y0∥ → 0 as n → ∞. For any n ∈ N we have

∥yn−y0∥ = ∥(x−yn)−(x−y0)∥ ≥
∣∣∥x− yn∥ − ∥x− y0∥

∣∣ = ∣∣f(yn)− f(y0)
∣∣ ≥ 0.

It follows that f(yn) → f(y0) as n → ∞, i.e., f(y) is continuous at y0. Since y0 is

chosen arbitrarily in Rn, we obtain the continuity of f on Rn.

Now, fix y∗ ∈ C and define

Cy∗ = {y ∈ C | ∥x− y∥ ≤ ∥x− y∗∥}.

Since C is closed, so is Cy∗. Clearly, Cy∗ is bounded, so it is compact. Since

f is continuous, by Bolzano-Weierstrass theorem, f achieves its minimum on the

compact set Cy∗ at some x∗ ∈ Cy∗ ⊂ C, i.e.,

∥x− x∗∥ = min
y∈Cy∗

∥x− y∥.

Furthermore, for any y /∈ Cy∗, by definition of Cy∗ we have ∥x− y∥ > ∥x− y∗∥. It
means that

min
y∈C

∥x− y∥ = min
y∈Cy∗

∥x− y∥ = ∥x− x∗∥.

Uniqueness. Assume that x1 and x2 are minimizers of f over C. That means

x1,x2 ∈ C and

∥x− x1∥ = ∥x− x2∥ = min
y∈C

f(y) = min
y∈C

∥x− y∥ := m.

Let x̄ = 1
2(x

1 + x2). Since x1,x2 ∈ C and C is convex, we have x̄ ∈ C, thus

∥x− x̄∥ ≥ m. Note that

∥x1 − x2∥2 = ∥(x1 − x)− (x2 − x)∥2
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= ∥x1 − x∥2 + ∥x2 − x∥2 − 2⟨x1 − x,x2 − x⟩

and

∥x1 − x∥2 + ∥x2 − x∥2 + 2⟨x1 − x,x2 − x⟩ = ∥(x1 − x) + (x2 − x)∥2

= 4
∥∥∥1
2
(x1 + x2)− x

∥∥∥2
= 4∥x̄− x∥2,

it follows that

∥x1 − x2∥2 + 4∥x̄− x∥2 = 2∥x1 − x∥2 + 2∥x2 − x∥2,

and therefore we have

0 ≤ ∥x1 − x2∥2 = 2∥x1 − x∥2 + 2∥x2 − x∥2 − 4∥x̄− x∥2

≤ 2m2 + 2m2 − 4m2 = 0.

So we must have ∥x1 − x2∥ = 0, and consequently, x1 = x2.

Thanks to Proposition 1.15, we can define the projection of a vector x ∈ Rn

onto a nonempty closed convex set C ⊂ Rn to be argminy∈C∥x − y∥, denoted by

projC(x). The next proposition is a characterization of the projection onto closed

convex sets.

Proposition 1.16. (See e.g. [1]) Given a nonempty closed convex set C ⊂ Rn and

let x ∈ Rn. A vector z ∈ C is the projection projC(x) if and only if

⟨x− z,y − z⟩ ≤ 0 ∀y ∈ C. (1.3)

Proof. Sufficiency. Assume that z is the projection of x onto C. Since (1.3) holds

with y = z, we consider an arbitrary y ∈ C\{z}. Since x, z ∈ C and C is convex,

for any α ∈ (0, 1) we have

z+ α(y − z) = αy + (1− α)z ∈ C.

Recall z = projC(x) = argminy∈C∥x− y∥, we have

∥x− z∥2 ≤ ∥x− (z+ α(y − z))∥2

= ∥x− z∥2 + α2∥y − z∥2 − 2α⟨x− z,y − z⟩,

which implies

⟨x− z,y − z⟩ ≤ α

2
∥x− z∥2.
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This inequality holds for arbitrary α ∈ (0, 1), therefore by letting α → 0+ we obtain

(1.3).

Necessity. Let z ∈ C satisfying (1.3). For any y ∈ C such that y ̸= z, we have

∥z− y∥ > 0 and ⟨x− z,y − z⟩ ≤ 0, hence

∥x− y∥2 − ∥x− z∥2 = ∥(x− z) + (z− y)∥2 − ∥x− z∥2

= ∥z− y∥2 + 2⟨x− z, z− y⟩
= ∥z− y∥2 − 2⟨x− z,y − z⟩
> 0.

From ∥x− y∥2 > ∥x− z∥2 for any y ∈ C\{z}, we derive

z = argminy∈C∥x− y∥ = projC(x).

Another important property of projection mapping onto closed convex sets is

given in the following proposition.

Proposition 1.17. (See e.g. [1]). Let C be a closed convex set in Rn. Then projC
is nonexpansive in the following sense

∥projC(x1)− projC(x
2)∥ ≤ ∥x1 − x2∥ ∀x1,x2 ∈ Rn. (1.4)

Consequently, projC is a continuous mapping.

Proof. Let x1, x2 be arbitrary points in E. We first observe that the inequality

(1.4) holds when projC(x
1) = projC(x

2). Therefore, we consider the case in which

the projections of x1 and x2 are distinct.

In view of the inequality (1.3) with x = x1,y = projC(x
2), we obtain

⟨x1 − projC(x
1), projC(x

2)− projC(x
1)⟩ ≤ 0. (1.5)

We now apply the inequality (1.3) again with x = x2,y = projC(x
1), we obtain

⟨x2 − projC(x
2), projC(x

1)− projC(x
2)⟩ ≤ 0. (1.6)

Adding (1.5) and (1.6) gives

⟨x1 − x2 + projC(x
2)− projC(x

1), projC(x
2)− projC(x

1)⟩ ≤ 0.

Then we have

∥projC(x2)− projC(x
1)∥2 ≤ ⟨x2 − x1, projC(x

2)− projC(x
1)⟩
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≤ ∥x2 − x1∥∥projC(x2)− projC(x
1)∥.

Note that projC(x
1) ̸= projC(x

2), then by dividing both sides of above inequality by

∥projC(x2)−projC(x
1)∥, we obtain the inequality (1.4). It means that the projection

mapping projC is nonexpansive. The continuity of projC follows as a consequence

of its nonexpansiveness.

We close this section with a computational result on the distance from a point

to a hyperplane in a finite dimensional space Rn.

Lemma 1.18. Let H := H(a, α) = {u ∈ Rn | ⟨a,u⟩ = α} be a hyperplane in Rn.

Then for any x ∈ Rn we have

min{∥x− y∥ | y ∈ H} =
|⟨a,x⟩ − α|

∥a∥
.

Proof. We first note that, as a hyperplane, H is a closed convex set in Rn. Hence, by

Proposition 1.15, for fixed x ∈ Rn, min{∥x−y∥ | y ∈ H} is achieved. Furthermore,

as H = H(a, α) is a hyperplane, we must have a ̸= 0. For any y ∈ H, by Cauchy-

Schwartz inequality, we obtain

∥a∥.∥x− y∥ ≥ |⟨a,x− y⟩| = |⟨a,x⟩ − α|,

or equivalently

∥x− y∥ ≥ |⟨a,x⟩ − α|
∥a∥

.

We observe that

y∗ := x− |⟨a,x⟩ − α|
∥a∥2

a

satisfying ⟨a,y∗⟩ = α and ∥x− y∗∥ =
|⟨a,x⟩−α|

∥a∥ . It readily follows that

min{∥x− y∥ | y ∈ H} =
|⟨a,x⟩ − α|

∥a∥
.

1.5 Convex and concave functions

Definition 1.19. (See e.g. [3]). A function f : E → R∪{+∞} is said to be convex

on a convex set C ⊂ E if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀x,y ∈ C, λ ∈ [0, 1].

A function g : E → R ∪ {−∞} is said to be concave on a convex set C ⊂ E if −g

is convex on C.
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It is well-known that the pointwise infimum of a set of linear functions is concave.

This result is stated more precisely in the following proposition.

Proposition 1.20. (See e.g. [3]). Let C ⊂ Rn be a convex set. For each α in an

index set I ⊂ R, let fα : C → R be a linear function. Then

f : C → R
x 7→ inf

α∈I
fα(x)

is a concave function on C.

Proof. For any x,y ∈ C and λ ∈ [0, 1], we have

f(λx+ (1− λ)y) = inf
α∈I

fα(λx+ (1− λ)y)

= inf
α∈I

(λfα(x) + (1− λ)fα(y)) (since each fα is linear)

≥ inf
α∈I

(λfα(x)) + inf
α

((1− λ)fα(y))

= λ inf
α∈I

fα(x) + (1− λ) inf
α∈I

fα(y)

= λf(x) + (1− λ)f(y).

This proves the concavity of f .

We will also need the following result.

Proposition 1.21. Let g : E → R be a concave function on a convex set C ⊂ E.

Let f : R → R be a concave non-decreasing function on R. Then the composition

function h(x) := f(g(x)) is also a concave function on C.

Proof. Let x,y be arbitrary point in C and λ ∈ [0, 1]. Since C is convex, we have

λx+ (1− λ)y is also in C. By concavity of g on C, we have

g(λx+ (1− λ)y) ≥ λg(x) + (1− λ)g(y).

Since f is non-decreasing, it follows that

h(λx+ (1− λ)y) = f(g(λx+ (1− λ)y)) ≥ f(λg(x) + (1− λ)g(y)). (1.7)

By concavity of f we have

f(λg(x) + (1− λ)g(y)) ≥ λf(g(x)) + (1− λ)f(g(y)) = λh(x) + (1− λ)h(y). (1.8)

From (1.7) and (1.8) we obtain

h(λx+ (1− λ)y) ≥ λh(x) + (1− λ)h(y).
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This proves the concavity of h on C.

The following proposition gives us an important and non-trivial property of con-

vex and concave functions on finite dimensional spaces.

Proposition 1.22. Let C be a nonempty open convex set. If f : C ⊂ Rn → R is a

convex (or concave) function, then it is continuous on C.

The proof of Proposition 1.22 can be found in e.g. [2], Proposition 2.3.

1.6 Algebraic interior and algebraic closure

In this section, E is a general vector space without any equipped topology. We

first note that, as defined in the previous sections, the following concepts do not

depend on any topology equipped on the underlying vector space:

• affine sets and affine hull (Definition 1.1 and Definition 1.3),

• convex sets and convex hull (Definition 1.6 and Definition 1.7),

• cones and conic hull (Definition 1.13 and Definition 1.14),

• convex and concave functions (Definition 1.19).

These concepts are also valid in infinite dimensional vector spaces. However, the

concept of relative interior (as defined in Definition 1.5), as well as the concept of

projection onto convex sets (as defined in Section 1.4), depends on the equipped

norm of the underlying vector space.

Let us focus on the concept of relative interior. Figure 1.1 illustrates this concept

on an example in R2 with the usual Euclidean norm. Let x1,x2 be distinct points

in R2, and A the line segment between these points:

A = {x | x = θx1 + (1− θ)x2, θ ∈ [0, 1]}.

Then aff(A) is the line passing through x1 and x2. If we take x as a point inside the

line segment, then one can choose r > 0 small enough so that B(x, r)∩aff(A) ⊂ A (as

illustrated in Figure 1.1), and therefore such x is a relative interior of A. However,

if we take x to be either x1 or x2, then such r does not exists, so both x1 and x2

are not relative interior points of A.

x1

x2

A B(x2, r) ∩ aff(A) 6⊂ A

B(x, r) ∩ aff(A) ⊂ A

x

Figure 1.1: Relative interior of a line segment.
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With a closer look into this example, we see that B(x, r)∩ aff(A) is an open line

segment containing x in the middle. Therefore, intrinsically, in order to have x as a

relative interior of A, the condition B(x, r)∩aff(A) ⊂ A can be replaced by requiring

the following: “Every line ℓ ∈ aff(A) through x contains an open line segment in

A such that x is in the interior of the line segment”. The main advantage of this

new condition is that: it depends only on the algebraic structure of the underlying

vector space E, and is independent of any norm as well as any topology. In this

direction, we can generalize the concept of relative interior to the case in general

vector spaces. That gives rise to the following concepts.

Definition 1.23. (Relative algebraic interior and relative algebraic closure, see e.g.

[1]). Let A be a subset in a general vector space E.

(i) The relative algebraic interior of A, denoted rai(A), is defined by

{x ∈ A | ∀y ∈ aff(A) ∃r > 0 s.t. [x− r(y − x),x+ r(y − x)] ⊆ A}. (1.9)

In case aff(A) = E, we call the above set the algebraic interior of A, and denote

ai(A) instead of rai(A).

(ii) The relative algebraic closure of A, denoted rac(A), is defined by

{y ∈ aff(A) | ∃x ∈ A s.t. [x,y) ⊂ A}.

In case aff(A) = E, we call the above set the algebraic closure of A, and denote

ac(A) instead of rac(A).

Concerning the notations in Definition 1.23, for u,v ∈ E we define

[u,v] = [v,u] = {w ∈ E | ∃λ ∈ [0, 1] s.t. w = λu+ (1− λ)v},
(u,v) = (v,u) = {w ∈ E | ∃λ ∈ (0, 1) s.t. w = λu+ (1− λ)v},
[u,v) = (v,u] = {w ∈ E | ∃λ ∈ (0, 1] s.t. w = λu+ (1− λ)v}.

It is worth noting that the condition (1.9) can be equivalently replaced by

{x ∈ A | ∀y ∈ aff(A) ∃r > 0 s.t. [x,x+ r(y − x)) ⊆ A},

or

{x ∈ aff(A) | ∀y ∈ A ∃z ∈ A s.t. x ∈ (y, z)}.

The following proposition can be seen as a generalization of Proposition 1.9 (i).

Proposition 1.24. For any convex set C ⊂ E we have ai(C) and ac(C) are also

convex.
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Proof. See Lemma 5.2 in [1].

We will use the following useful result in the sequel chapters.

Proposition 1.25. Let C be a convex set in E and x ∈ ai(C), y ∈ ac(C). Then

[x,y) ⊂ ai(C).

Proof. See Lemma 5.5 in [1].

The following proposition can be seen as a generalization of Proposition 1.10 (ii).

Proposition 1.26. For any convex sets C,D ⊂ E with nonempty relative algebraic

interiors we have rai(C +D) = rai(C) + rai(D).

Proof. See Lemma 5.11 in [1].



Chapter 2

Separation between two convex
sets

This chapter is devoted to presenting some separation theorems related to two

convex sets. We will recall in Section 2.1 some separation concepts, then present the

theorems as well as their corollaries in Section 2.2. We first consider the separation

concepts and separation theorems in the setting finite dimensional Euclidean vector

spaces, and then in the setting of general vector spaces.

2.1 Separation concepts

In this section, we recall some concepts involving separation between two convex

sets. The finite dimensional versions of these concepts are presented in Subsection

2.1.1, while their generalizations in the setting of infinite dimensional spaces are

given in Subsection 2.1.2.

2.1.1 In Rn

For the sake of simplicity, we will consider them in the setting of Rn with the

usual inner product and its induced norm. However, it is worth noting that the

concepts in this subsection are valid for finite dimensional Euclidean vector spaces.

Definition 2.1. (Half-space in Rn, see e.g. [1]). Let H := H(a, ξ) be a hyperplane

in Rn. The two following closed sets

H̄+(a, ξ) = {x ∈ Rn : ⟨a,x⟩ ≥ ξ}, H̄−(a, ξ) = {x ∈ Rn : ⟨a,x⟩ ≤ ξ}

are called the closed half-spaces associated with H, while the two following open sets

H+(a, ξ) = {x ∈ Rn : ⟨a,x⟩ > ξ}, H−(a, ξ) = {x ∈ Rn : ⟨a,x⟩ < ξ}.

14
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are called the open half-spaces associated with H.

Definition 2.2. (Separation concepts in finite dimensional spaces, see e.g. [1]).

Given nonempty convex sets C,D ⊂ E, and let H = H(a, ξ) be a hyperplane in Rn.

(i) The sets C and D are said to be separated by the hyperplane H if C ⊆ H̄+(a, ξ)

and D ⊆ H̄−(a, ξ), i.e.,

⟨a,x⟩ ≥ ξ ≥ ⟨a,y⟩ ∀x ∈ C,y ∈ D.

In this case we say that H is a separating hyperplane for C and D.

(ii) The sets C and D are said to be strictly separated by the hyperplane H if

C ⊆ H+(a, ξ) and D ⊆ H−(a, ξ), i.e.,

⟨a,x⟩ > ξ > ⟨a,y⟩ ∀x ∈ C,y ∈ D.

In this case we say that H is a strictly separating hyperplane for C and D.

(iii) The sets C and D are said to be strongly separated by the hyperplane H if

there exist β > ξ > γ such that C ⊆ H̄+(a, β), D ⊆ H̄−(a, γ), i.e.,

⟨a,x⟩ ≥ γ > ξ > β ≥ ⟨a,y⟩ ∀x ∈ C,y ∈ D.

In this case we say that H is a strongly separating hyperplane for C and D.

(iv) The sets C and D are said to be properly separated by the hyperplane H if

the two following conditions hold:

• H separates C and D.

• C and D are not both included in H.

In this case we say that H is a proper separating hyperplane for C and D.

In Figure 2.1, the set C is a closed circle (including its boundary) and the set

D is a closed square (including its boundary) in R2. An edge of the square D is

included in the hyperplane H(a, ξ) and it is tangent to the circle C. In this case,

C and D are separated by the hyperplane H(a, ξ). We observe furthermore that in

this case C and D cannot be either strictly separated or strongly separated.
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C D

H(a, α)

H̄+(a, α) H̄−(a, α)

a

Figure 2.1: Separation of two sets by a hyperplane.

In Figure 2.2, the set C is an open circle (excluding its boundary) and the set D

is an open square (excluding its boundary) in R2. An edge of the boundary of the

square D is included in the hyperplane H(a, ξ) and it is tangent to the boundary of

the circle C. In this case, C and D are strictly separated by the hyperplane H(a, ξ).

We observe furthermore that in this case C and D are separated, but cannot be

strongly separated.

C D

H(a, α)

H+(a, α) H−(a, α)

a

Figure 2.2: Strict separation of two sets by a hyperplane.

In Figure 2.3, the set C is a closed circle (including its boundary), the set D is

a closed square (including its boundary) in R2, and they are disjoint. In this case,

H(a, ξ) strongly separates C and D, and these sets are both separated and strictly

separated.
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C D

H(a, α)

H̄+(a, β) H̄−(a, γ)

a

H(a, β) H(a, γ)

Figure 2.3: Strong separation of two sets by a hyperplane.

In Figure 2.4(i), the sets C and D are two line segments lying on the same

hyperplane H(a, ξ). Since this hyperplane is included in both half-spaces H̄+(a, ξ)

and H̄−(a, ξ), it follows that C ⊂ H̄+(a, ξ) andD ⊂ H̄−(a, ξ). It means thatH(a, ξ)

separates C and D. However, in this case C and D do not both lie in the hyperplane

H(a, ξ), so they are not properly separated by this hyperplane. Intuitively, we can

see that C and D can be still separated by a hyperplane which is orthogonal to

H(a, ξ). Therefore, when saying that two convex sets are properly separated, we

must emphasize the separating hyperplane in the proper separation.

(i) (ii)

H(a, α) H(a, α)

C

D

C

D

a

Figure 2.4: (i) Not proper separation. (ii) Proper separation.

In Figure 2.4(ii), the set C is a line segment lying on the hyperplane H(a, ξ),

while the set D is a closed square lying entirely in half-space H̄−(a, ξ). Since the
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hyperplane H(a, ξ) is included in the half-space H̄+(a, ξ), it follows that C is con-

tained in H̄+(a, ξ). Thus, H(a, ξ) is a separating hyperplane for C and D. It is

obvious that D is not contained in that hyperplane. Therefore, in this case, C and

D are properly separated by the hyperplane H(a, ξ).

2.1.2 In general vector spaces

Let E be a general vector space.

Definition 2.3. (See e.g. [1]). A subset H ⊂ E is called a hyperplane if it is of the

form

H = {x ∈ E | h(x) = ξ}

for some ξ ∈ R and some nontrivial linear functional h : E → R.

Roughly speaking, a hyperplane in E is the level set of a nontrivial linear func-

tional. We denote H := H(h, ξ) to indicate the linear functional h and the level ξ

defining the hyperplane.

Definition 2.4. (See e.g. [1]). Given a hyperplane H := H(h, ξ) in E. The two

following sets

H̄+(h, ξ) = {x ∈ E : h(x) ≥ ξ}, H̄−(h, ξ) = {x ∈ E : h(x) ≤ ξ}

are called the (algebraically) closed half-spaces associated with H, while the two fol-

lowing sets

H+(h, ξ) = {x ∈ E : h(x) > ξ}, H−(h, ξ) = {x ∈ E : h(x) < ξ}

are called the (algebraically) open half-spaces associated with H.

It is worth mentioning that the terms ‘closed’ and ‘open’ in the above definition

do not rely on any topology of the underlying space E. These terms are there to em-

phasize the similarity of the concepts to the ones in the setting of finite dimensional

spaces.

Definition 2.5. (See e.g. [1]). Given a hyperplane H = H(h, ξ) in E and two

nonempty convex sets C,D ⊂ E.

(i) The sets C and D are said to be separated by the hyperplane H if C ⊆ H̄+(h, ξ)

and D ⊆ H̄−(h, ξ), i.e.,

h(x) ≥ ξ ≥ h(y) ∀x ∈ C,y ∈ D.

In this case we say that H separates C and D.
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(ii) The sets C and D are said to be strictly separated by the hyperplane H if

C ⊆ H+(h, ξ) and D ⊆ H−(h, ξ), i.e.,

h(x) > ξ > h(y) ∀x ∈ C,y ∈ D.

In this case we say that H strictly separates C and D.

(iii) The sets C and D are said to be strongly separated by the hyperplane H if

there exist β > ξ > γ such that C ⊆ H̄+(h, β), D ⊆ H̄−(h, γ), i.e.,

h(x) ≥ γ > ξ > β ≥ h(y) ∀x ∈ C,y ∈ D.

In this case we say that H strongly separates C and D.

(iv) The sets C and D are said to be properly separated by the hyperplane H if

the two following conditions hold:

• H separates C and D.

• C and D are not both contained in H.

In this case we say that H properly separates C and D.

The following proposition gives us an important property of hyperplanes in gen-

eral vector spaces.

Proposition 2.6. Any hyperplane H ⊂ E is a proper maximal affine subset of E.

Proof. See Lemma 6.27 in [1].

2.2 Separation theorems

This section presents some results concerning the separation, strong separation,

proper separation between two convex sets. The results in the setting of finite

dimensional spaces are discussed in Subsection 2.2.1, while the ones in the setting

of infinite dimensional spaces are given in Subsection 2.2.2.

2.2.1 In Rn

Although the results in this subsection hold for finite dimensional Euclidean

vector spaces, for the sake of simplicity we will consider them in the setting of Rn

with the usual inner product and its induced norm.

It is worth noting the equivalence of the two following facts:

• Two given convex sets C,D ∈ Rn are separable from each other.
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• The point 0 can be separated from the convex set C −D.

Therefore, in the following, we first discuss about separation of a single point from a

closed convex set, and then draw the results concerning separation between convex

sets.

Theorem 2.7. (See e.g. [1]). If C ⊂ Rn is a nonempty convex set and x̄ /∈ relint(C),

then x̄ can be separated from C. That is, there exists a hyperplane H(a, ξ) containing

x̄ such that C ⊂ H̄+(a, ξ), or equivalently, ⟨a,x⟩ ≥ ⟨a, x̄⟩ = ξ for all x ∈ C.

Proof. Since C is convex, by Proposition 1.9(i), its closure C is also convex. Since

x̄ /∈ relint(C), either x̄ /∈ C or x̄ ∈ C\relint(C).

We first consider the former case in which x̄ /∈ C. Proposition 1.16 gives us the

inequality

⟨x̄− projC(x̄),x− projC(x̄)⟩ ≤ 0 ∀x ∈ C. (2.1)

Let a = projC(x̄)− x̄. Clearly, a ̸= 0 since x̄ /∈ C by our assumption. By rewriting

x− projC(x̄) = x− x̄− (projC(x̄)− x̄) = x− x̄− a,

from inequality (2.1) we derive ⟨a,x− x̄−a⟩ ≥ 0. Then ⟨a,x− x̄⟩ ≥ ⟨a, a⟩ = ∥a∥2 >
0, and we have

⟨a,x⟩ > ⟨a, x̄⟩ ∀x ∈ C.

Let ξ = ⟨a, x̄⟩, then the theorem is proved in this case.

In the latter case x̄ ∈ C\relint(C), by Lemma 1.12 there exists a sequence {xk |
k ∈ N} of points not in C such that xk → x̄. By (2.1), we obtain

⟨xk − projC(x
k),x− projC(x

k)⟩ ≤ 0 ∀x ∈ C.

Note that xk /∈ C, projC(x
k) ∈ C, so xk ̸= projC(x

k). Hence we can define

ak :=
1

∥projC(xk)− xk∥
(
projC(x

k)− xk
)
̸= 0,

and get

⟨ak,x− projC(x
k)⟩ ≥ 0 ∀x ∈ C. (2.2)

Since ∥ak∥ = 1, the sequence {ak | k ∈ N} is bounded in Rn, so it has a convergent

subsequence {aki}, i.e., aki → a. Then ∥a∥ = 1, hence a ̸= 0. From the continuity

of projC and the fact that xk → x̄, we derive projC(x
k) → projC(x̄) = x̄. Observe

(2.6) and let ki → ∞, we obtain

⟨a,x⟩ ≥ ⟨a, x̄⟩ ∀x ∈ C.
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By letting ξ = ⟨a, x̄⟩, the theorem is proved.

The previous theorem implies the existence of a so-called support hyperplane to

a convex set, which is defined as follows.

Definition 2.8. (Support hyperplane, see e.g. [1]). A hyperplane H(a, ξ) is called

a support hyperplane of a convex set C ⊂ Rn at a point x ∈ C if x ∈ H(a, ξ) and

C ⊂ H̄+(a, ξ), i.e., ⟨a,y⟩ ≥ ⟨a,x⟩ = ξ for all y ∈ C.

Since H̄+(a, ξ) is closed, the condition C ⊂ H̄+(a, ξ) in the above definition is

equivalent to C ⊂ H̄+(a, ξ). With this definition, the above theorem can be restated

as follows.

Theorem 2.9. (Support hyperplane theorem, see e.g. [1]). For any point x ∈
C\relint(C) in which C ⊆ Rn is a nonempty convex set, there exists a support

hyperplane to C at x.

Now we discuss the results concerning separation between convex sets.

Theorem 2.10. (First separation theorem, see e.g. [1]). Any nonempty disjoint

convex sets C,D ⊂ Rn can be separated by a hyperplane H(a, ξ) in the sense that

⟨a,x⟩ ≥ ξ ≥ ⟨a,y⟩ ∀x ∈ C,y ∈ D.

Proof. Let A := C − D = {x − y | x ∈ C,y ∈ D}. By Proposition 1.9(ii), A

is convex. Since C and D are disjoint, we have 0 /∈ A, and hence 0 /∈ relint(A).

By Theorem 2.7, there exists a hyperplane H(a, 0) containing 0 such that ⟨a, s⟩ ≥
⟨a,0⟩ = 0 for all s ∈ A. In particular, ⟨a, s⟩ ≥ 0 for all s ∈ A ⊂ A. Since A = C−D,

it follows that ⟨a,x − y⟩ ≥ 0, or equivalently, ⟨a,x⟩ ≥ ⟨a,y⟩ for all x ∈ C,y ∈ D.

By choosing ξ such that

inf
x∈C

⟨a,x⟩ ≥ ξ ≥ sup
y∈D

⟨a,y⟩,

the hyperplane H(a, ξ) separates C and D.

Theorem 2.11. (Strong separation theorem, see e.g. [1]). Any nonempty disjoint

closed convex sets C,D ⊂ Rn can be strongly separated if one of the sets is compact.

Proof. Without loss of generality, let us assume that D is compact. By the defini-

tion of strong separation between two convex sets, we observe that the theorem is

equivalent to the existence of a hyperplane H(a, ξ) satisfying the condition

inf
x∈C

⟨a,x⟩ > ξ > max
y∈D

⟨a,y⟩. (2.3)
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Let A := C −D, then A is closed. Indeed, let {uk | k ∈ N} be a sequence of points

in A that converges to some u ∈ Rn. For every k ∈ N, we represent uk = xk − yk

where xk ∈ C,yk ∈ D. SinceD is compact, we can extract a convergent subsequence

{yki} of {yk}. Assume that yki → y ∈ D. Since xki − yki → u and yki → y, it

follows that xki → x := u + y. Note that C is closed, hence x ∈ C. Therefore

u = x− y ∈ C −D = A. This implies that A is a closed set.

Since C and D are disjoint, we have 0 /∈ A = A. By Proposition 1.9(ii), A is

convex. By similar arguments as in the first part of the proof of Theorem 2.7, we

must have a nonzero vector a satisfying

⟨a,u⟩ ≥ ⟨a, a⟩ = ∥a∥2 > 0 ∀u ∈ A = A,

or equivalently,

⟨a,x− y⟩ ≥ ∥a∥2 > 0 ∀x ∈ C,y ∈ D.

Hence we have

⟨a,x⟩ > ⟨a,x⟩ − 1

2
∥a∥2 ≥ ⟨a,y⟩+ 1

2
∥a∥2 > ⟨a,y⟩

for all x ∈ C and y ∈ D. Then, by choosing ξ = maxy∈D⟨a,y⟩+ 1
2∥a∥

2, we obtain

(2.3) and the theorem is proved.

As a remark, the compactness condition in Theorem 2.11 cannot be omitted. For

example, in R2 let us consider the two convex sets

C = {(x, y) | y ≤ 0}, D =
{
(x, y) | x > 0, y ≥ 1

x

}
.

Figure 2.5 illustrates the two sets in this counter-example. Neither C or D is com-

pact. We can observe that the only hyperplane separating C and D is the x-axis.

Since this axis coincides the boundary of C, these sets cannot be strongly separated.

An important corollary of Theorem 2.11 concerns representation of convex sets

as follows.

Corollary 2.12. (See e.g. [1]). Any nonempty closed convex set in Rn coincides

with the intersection of all closed half-spaces containing it.

Proof. Let C ⊆ Rn be a nonempty closed convex set and define D as

D =
⋂
(a,ξ)

{H̄+(a, ξ) | C ⊆ H̄+(a, ξ)}.

We need to show that C = D. Indeed, since C is contained in each half-space

forming D, it is also contained in the intersection of the half-spaces. Therefore

C ⊆ D. It remains to show that D ⊆ C.
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y

x

D

C

Figure 2.5: An example of two convex sets that cannot be strongly separated.

Since D is the intersection of closed sets, it is also closed. Moreover, it follows

from Proposition 1.9(ii) that D is convex, since it is the intersection of half-spaces

that are also convex. Assume the contrary that D is not a subset of C. Then

there exists a point x0 ∈ D\C. Applying Theorem 2.11 to the compact convex set

{x0} and the closed convex set C, there exists a hyperplane H := H(a, ξ) such that

x0 ∈ H−(a, ξ) and C ⊆ H+(a, ξ) ⊂ H̄+(a, ξ). By construction of D, the half-space

H̄+(a, ξ) is one of the closed half-spaces intersected to obtain D, so D ⊆ H̄+(a, ξ).

Since x0 ∈ D, we have x0 ∈ H̄+(a, ξ), but this contradicts x0 ∈ H−(a, ξ). This

contradiction proves the corollary.

We now come to the results concerning proper separation between convex sets.

The following lemma is useful in the proof of the results.

Lemma 2.13. (See e.g. [1]). Two nonempty convex sets C,D ∈ Rn can be properly

separated if and only if 0 is properly separated from K := C −D.

Proof. Sufficiency. Recall that the set K = C −D is convex thanks to Proposition

1.9(ii). Let H(a, ξ) be a hyperplane properly separating C and D such that C ⊆
H̄+(a, ξ), D ⊆ H̄−(a, ξ). Without loss of generality, assume that C does not lie on

H(a, ξ). Then we have

⟨a,x⟩ ≥ ξ ≥ ⟨a,y⟩ ∀x ∈ C,y ∈ D,

and ⟨a,x0⟩ > ξ for some x0 ∈ C. This means that

⟨a,x− y⟩ ≥ 0 ∀x ∈ C,y ∈ D,

or equivalently

⟨a, z⟩ ≥ 0 ∀z ∈ K = C −D,
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and furthermore we have ⟨a, z0⟩ > 0 for z0 = x0−y0 for some y0 ∈ D. This implies

that the hyperplane H(a, 0) properly separates the origin 0 and the convex set K.

Necessity. Suppose that there exists a hyperplane H(a, ξ) properly separating

the origin 0 with the convex set K = C − D, and that K ⊆ H̄+(a, ξ). Then

⟨a,x− y⟩ ≥ ξ ≥ 0 for all x ∈ C,y ∈ D. The proper separation means that

• either K is included in the hyperplane H(a, ξ) while the origin 0 is not,

• or K is not included in the hyperplane H(a, ξ) (but it is still contained in the

half-space H̄+(a, ξ)).

In the former case, since 0 /∈ H(a, ξ) we have ξ > 0, and since K ⊂ H(a, ξ) we

have ⟨a,x− y⟩ = ξ for all x ∈ C,y ∈ D. In this case we obtain for any x ∈ C and

any y ∈ D that

⟨a,x⟩ = ξ + ⟨a,y⟩ > ξ

2
+ ⟨a,y⟩ > ⟨a,y⟩,

so the hyperplane H(a, β) with β = ξ
2 + ⟨a,y⟩ properly separates C and D.

In the latter case, since K is not included in the hyperplane H(a, ξ), there exists

z0 ∈ K such that ⟨a, z0⟩ > ξ. Since z0 ∈ K = C − D, there exist x0 ∈ C and

y0 ∈ D such that z0 = x0 − y0. So we have

⟨a, z0⟩ = ⟨a,x0 − y0⟩ > ξ,

or equivalently,

⟨a,x0⟩ > ξ + ⟨a,y0⟩. (2.4)

From the fact that ⟨a,x− y⟩ ≥ ξ for all x ∈ C,y ∈ D, we have

⟨a,x⟩ ≥ ξ + ⟨a,y⟩ ∀x ∈ C,y ∈ D.

So we obtain

inf
x∈C

⟨a,x⟩ ≥ ξ + sup
y∈D

⟨a,y⟩.

This, together with (2.4), means that any hyperplane H(a, γ) with

inf
x∈C

⟨a,x⟩ ≥ γ ≥ ξ + sup
y∈D

⟨a,y⟩

properly separates C and D.

In relation with Lemma 2.13 we have the following result.

Lemma 2.14. (See e.g. [1]). Let C be a nonempty convex set in Rn. Then the

origin 0 and the set C can be properly separated if and only if 0 /∈ relint(C).
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Proof. Necessity. Since 0 /∈ relint(C), either 0 /∈ C or 0 ∈ C\relint(C). We first

consider the former case in which 0 /∈ C. By Proposition 1.9(i), since C is convex,

so is its clossure C. Proposition 1.16 gives us the inequality

⟨0− projC(0),x− projC(0)⟩ ≤ 0 ∀x ∈ C,

or equivalently

⟨a,x− a⟩ ≥ 0 ∀x ∈ C, (2.5)

in which a = projC(0). Clearly, a ̸= 0 since 0 /∈ C by our assumption. From the

inequality (2.5), we derive ⟨a,x⟩ ≥ ⟨a, a⟩ = ∥a∥2 > 0 for all x ∈ C. This implies

that the set C and {0} are properly separated.

We now consider the latter case in which 0 ∈ C\relint(C). By Lemma 1.12, there

exists a sequence {xk | k ∈ N} ⊂ aff(C) with xk /∈ C and xk → 0 as k → ∞. By

Proposition 1.16, we obtain

⟨xk − projC(x
k),x− projC(x

k)⟩ ≤ 0 ∀x ∈ C.

Note that xk /∈ C, projC(x
k) ∈ C, so xk ̸= projC(x

k) and hence we have

ak :=
1

∥projC(xk)− xk∥
(
projC(x

k)− xk
)
̸= 0,

and furthermore we obtain

⟨ak,x− projC(x
k)⟩ ≥ 0 ∀x ∈ C. (2.6)

We observe that 0 ∈ C ⊂ aff(C), so aff(C) is a linear subspace of Rn. Moreover,

both xk and projC(x
k) are in aff(C), thus ak ∈ aff(C) for all k ∈ N. Since ∥ak∥ = 1,

the sequence {ak | k ∈ N} is bounded in aff(C) ⊂ Rn, so it has a convergent

subsequence {aki} ⊂ aff(C), i.e. aki converges to some a ∈ Rn. Since aff(C) is

a closed set, a ∈ aff(C). Moreover, note that ∥a∥ = 1, hence a ̸= 0. From the

continuity of projC (see Proposition 1.17) and the fact that xk → 0, we derive

projC(x
k) → projC(0) = 0. Keeping (2.6) in mind and let i → ∞ we obtain

⟨a,x⟩ ≥ ⟨a,0⟩ = 0 ∀x ∈ C.

Assume that ⟨a,x⟩ = 0 for all x ∈ C. Since a ∈ aff(C), by Proposition 1.4, a can

be represented as an affine combination of some vectors v1, . . . ,vm ∈ C, that is

a =

m∑
i=1

λiv
i
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in which λ1, . . . , λm ∈ R and λ1 + . . .+ λm = 1. By our assumption that ⟨a,x⟩ = 0

for all x ∈ C, taking x as v1, . . . ,vm we have ⟨a,vi⟩ = 0 for all i = 1, . . . ,m. Hence

we obtain

∥a∥2 = ⟨a, a⟩ =
m∑
i=1

λi⟨a,vi⟩ = 0,

which contradicts the fact that ∥a∥ = 1. Since the assumption is false, there exists

x0 ∈ C such that ⟨a,x0⟩ > 0. This shows the proper separation of the sets {0} and

C.

Sufficiency. Assume that {0} and C are properly separated. Then there exists

a ∈ Rn such that ⟨a,x⟩ ≥ 0 for all x ∈ C and ⟨a,x0⟩ > 0 for some x0 ∈ C. If on

the contrary 0 ∈ relint(C), by Proposition 1.11, there exists t > 0 such that

0+ t(0− x0) = −tx0 ∈ C.

Then ⟨a,−tx0⟩ ≥ 0, or equivalently ⟨a,x0⟩ ≤ 0, which is a contradiction. Hence

0 /∈ relint(C).

We come up with the following theorem on proper separation between convex

sets.

Theorem 2.15. (Proper separation theorem, see e.g. [1]). We can properly separate

two nonempty convex sets C,D ⊂ Rn if and only if their relative interiors are

disjoint.

Proof. Since relint(C) and relint(D) are disjoint, we have 0 /∈ relint(C)− relint(D).

By Proposition 1.10, we have relint(C) − relint(D) = relint(C − D). Thus 0 ̸∈
relint(C −D). Note that C and D are convex, so is C −D (cf. Proposition 1.9(ii)).

Hence, by Lemma 2.14, the origin 0 and the convex set C − D can be properly

separated. It then follows from Lemma 2.13 that C andD can be properly separated.

2.2.2 In general vector spaces

Throughout this subsection, E is a general vector space without any equipped

topology. We start with the following concept.

Definition 2.16. (See e.g. [1]). Two nonempty convex sets C,D ⊂ E are called

complementary convex sets if they are disjoint and C ∪D = E.

We say that complementary convex sets C,D ⊂ E separate two given nonempty

convex sets A,B ⊂ E if A is contained in one of the complementary convex sets

while B is included in the other, i.e., either A ⊂ C,B ⊂ D or A ⊂ D,B ⊂ C. In
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this case we also say that A and B are complementarily convex separated (by C and

D).

Since complementary convex sets are disjoint, if they separate two given nonempty

convex sets A,B ⊂ E, then A and B are also disjoint. The following lemma states

that the reverse direction also holds. This is a nontrivial result in order to come up

with the sequel theorems in this subsection.

Lemma 2.17. (See e.g. [1]). If two nonempty convex sets A,B ⊂ E are disjoint,

then they are complementarily convex separated.

Proof. Let G be the set of disjoint convex subsets (C,D) ⊂ E × E such that

A ⊂ C and B ⊂ D. We introduce a relation ⪯ on G by defining (C,D) ⪯ (C ′, D′)

if C ⊂ C ′ and D ⊂ D′. Since the set inclusion ⊂ is a partial relation on E, so is ⪯
on G. Furthermore, if F is a totally ordered subset of G, then by taking the union

of all sets in F we obtain an upper bound for elements in F . This property follows

from the similar one of the set inclusion relation. It is worth noting that, due to the

nested structure of elements in F , the upper bound is a pair of disjoint convex sets

in E. By the well-known Zorn’s lemma, we obtain a maximal element (C∗, D∗) ∈ G.
It means that

• C∗ and D∗ are convex and disjoint,

• C∗ ⊃ A, D∗ ⊃ B,

• if C and D are convex sets satisfying C ⊃ C∗ and D ⊃ D∗, then we have

C = C∗ and D = D∗.

It is left to prove that C∗ ∪D∗ = E. Indeed, assume the contrary that there exists

x ∈ E\(C∗ ∪D∗). By the maximality of (C∗, D∗), we have

conv(C∗ ∪ {x}) ∩D∗ ̸= ∅ and conv(D∗ ∪ {x}) ∩ C∗ ̸= ∅.

Therefore we can pick

y1 ∈ conv(C∗ ∪ {x}) ∩D∗ and y2 ∈ conv(D∗ ∪ {x}) ∩ C∗.

By that choice of y1, there exists x1 ∈ C∗ such that y1 ∈ (x,x1). Similarly, by the

choice of y2, there exists x2 ∈ D∗ such that y2 ∈ (x,x2). Let z be the intersection

of the line segments [x1,y2] and [x2,y1] (as illustrated in Figure 2.6). Note that

x1 ∈ C∗ and y2 ∈ C∗, by convexity of C∗ we have z ∈ C∗. Similarly, since z2 ∈ D∗

and y1 ∈ D∗, by convexity of D∗ we have z ∈ D∗. Therefore, z ∈ C∗ ∩ D∗, so

C∗ and D∗ are not disjoint. This contradicts the construction of these sets. This

contradiction means that C∗ ∪D∗ = E as desired.
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x

x2 x1

y2 y1

z

Figure 2.6: Illustration for the proof of Lemma 2.17.

The following lemma gives us a closer look at structure of complementary convex

sets. Note that it also holds in the setting of finite dimensional spaces, which has

obvious geometric intuition.

Lemma 2.18. (See e.g. [1]). Let C and D be complementary convex sets in E.

Let L := ac(C) ∩ ac(D). Then either L = E or L is a hyperplane in E. The

former case holds if and only if the algebraic interiors of C and D are both empty,

or equivalently, ac(C) = ac(D) = E. If the latter case holds, then the following also

holds:

(i) the algebraic interiors of C and D are both nonempty,

(ii) ai(C), ai(D) are the algebraically open half-spaces associated with L,

(iii) ac(C), ac(D) are the algebraically closed half-spaces associated with L.

Proof. By Proposition 1.24, since C and D are convex, so are ac(C) and ac(D).

Thus, as intersection of two convex sets, L is convex. Furthermore, L is nonempty.

Indeed, since both C and D are nonempty, we can choose x ∈ C and y ∈ D. Since

C and D are disjoint, there exists z ∈ (x,y) such that [x, z) ⊂ C and (z,y] ⊂ D.

By definition of algebraic closure, we have z ∈ ac(C) and z ∈ ac(D). Hence z ∈ L,

which implies L ̸= ∅.

We now show that

ac(C) = E\ai(D). (2.7)

Indeed, pick any x ∈ E\ai(D). Following the definition of algebraic interior, there

exists u ∈ E such that for all r > 0 we have [x,x + r(u − x)) ̸⊂ D. By letting

v = x + r(u − x), this is equivalent to say that for all v ∈ E with x ∈ (u,v)

we have [x,v) ⊂ E\D = C. Thus, x ∈ ac(C). Since x is chosen arbitrarily in

E\ai(D), we obtain E\ai(D) ⊂ ac(C). Conversely, pick any y ∈ ac(C). Then,

following the definition of algebraic closure, there exists z ∈ C such that [z,y) ⊂ C.

Hence y ̸∈ ai(D), since otherwise we would have [y, z) ⊂ D, which would lead to
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(y, z) ⊂ C ∩D, contradicting the fact that C and D are disjoint. So we obtain the

reverse inclusion ac(C) ⊂ E\ai(D), and therefore (2.7) holds.

Since the sets C and D have equal roles, by similar arguments we obtain

ac(D) = E\ai(C). (2.8)

It follows immediately from (2.7) and (2.8) that L = E if and only if both ai(C)

and ai(D) are empty, or equivalently, ac(C) = ac(D) = E.

Now we consider the case that L ⊊ E. In this case we need to show that L is a

hyperplane.

Firstly, we observe that L is an affine set. Indeed, let x,y are arbitrary points in

L, and z ∈ E such that y ∈ (x, z). Assume the contrary that z ̸∈ L = ac(C)∩ac(D).

If z ̸∈ ac(C), then by (2.7) we have z ∈ ai(D). However, in this case, since x ∈ ac(D),

it follows from Proposition 1.25 that y ∈ ai(D). In turn, by (2.7) this means that

y ̸∈ ac(C). This contradicts our setting that y ∈ L = ac(C) ∩ ac(D) ⊂ ac(C). This

contradiction proves that z ∈ L, which implies that L is affine.

Since we are considering the case that L ⊊ E, we can pick some p /∈ L. Since

a hyperplane in E is a maximal affine set in E (cf. Proposition 2.6), to show that

L is a hyperplane it suffices to prove E = aff(L ∪ {p}). Indeed, since p ̸∈ L =

ac(C) ∩ ac(D), we may assume without loss of generality that p ̸∈ ac(D). Hence,

by (2.8) we have p ∈ ai(C). Now, let us take r ∈ L and consider q = 2r − p. By

this choice, r ∈ (p,q). Observe that if q ∈ ac(C), then again by Proposition 1.25

we have r ∈ ai(C) = E\ac(D), contradicting r ∈ L ⊂ ac(D). Hence, we must have

q ∈ E\ac(C) = ai(D). Therefore, if we take an arbitrary point x ∈ C\L, then the

line segment [x,q] must intersect L, so x ∈ aff(L∪{p}). With the similar argument,

if we pick an arbitrary point y ∈ D\L, then y ∈ aff(L ∪ {p}). Altogether, we have

E = aff(L ∪ {p} as desired.

It follows from (2.7) and (2.8) that ai(C), ai(D), L are pairwise disjoint, and

their union is E. The arguments (i), (ii), (iii) follows immediately.

Now we come to the first separation theorem in the setting of general vector

spaces.

Theorem 2.19. (See e.g. [1]). Let C,D ⊂ E be nonempty convex sets such that

ai(C) ̸= ∅. Then C and D can be separated by a hyperplane H in E if and only

if ai(C) ∩D = ∅. In this case, ai(C) is contained in one of the algebraically open

half-spaces associated with H.

Proof. Necessity. Let C and D be separated by a hyperplane H in such a way that

C ⊆ H̄+ and D ⊆ H̄−. Since ai(C) ̸= ∅, we have aff(C) = E. Since a hyperplane

in E is also an affine set, it follows that C must not be contained in H. So we can
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pick a point y ∈ C ∩H+. Hence, if there were x ∈ ai(C) ∩H, then by definition of

algebraic interior we would have a point z ∈ C such that x ∈ (y, z). Keeping in mind

that y ∈ H+ and x ∈ H, this would imply furthermore that z ∈ C ∩H−. However,

this contradicts the fact that C ∩ H− = ∅ (since we assume C ⊆ H̄+, it follows

that C and H− are disjoint). This contradiction ensures that ai(C)∩H = ∅. This,

together with the fact that C ⊂ H̄+, implies ai(C) ⊆ H+, i.e., ai(C) is contained

in the open half-space H+ associated with H. Since H+ ∩ H̄− = ∅ and D ⊂ H̄−,

it follows that ai(C) ∩D = ∅.

Sufficiency. Assume that ai(C)∩D = ∅. Since C is convex, by Proposition 1.24

we have ai(C) is convex. Applying Lemma 2.17 for disjoint convex sets ai(C) and

D, there exists complementary convex sets C ′ and D′ such that ai(C) ⊆ C ′ and

D ⊆ D′. Let x ∈ ai(C). Then by definition of algebraic interior, for any y ∈ E

there is u ∈ C such that x ∈ (u,y). By Proposition 2.6, [x,u) ⊆ ai(C), so we can

assume that u ∈ ai(C). Since ai(C) ⊂ C ′, we have x,u ∈ C ′. Since C ′ is convex, it

follows that [x,u) ∈ C ′. Hence we obtain x ∈ ai(C ′). Since x is chosen arbitrarily

in ai(C), we come up with ai(C) ⊆ ai(C ′).

Since C ′ and D′ are complementary convex sets, by Lemma 2.18 the set H :=

ac(C ′)∩ac(D′) is a hyperplane separating C ′ and D′. Since ai(C) ⊆ C ′ and D ⊆ D′,

the hyperplane H also separates ai(C) and D. Without loss of generality, we assume

that ai(C) ⊆ H̄+ and D ⊆ H̄−.

We now show that C ⊆ H̄+. Indeed, since H− ∩ H̄+ = ∅ and H− ∪ H̄+ = E,

if we assume the contrary, then C ∩ H− ̸= ∅ and therefore we can pick some

x ∈ C ∩ H−. Pick y ∈ ac(C) ⊆ H̄+. By Proposition 1.25, (y,x) contains a point

z ∈ ai(C) ∩ H−. However, since ai(C) ⊆ H̄+, we have ai(C) ∩ H− = ∅, which

contradicts the existence of z.

We have shown that C ⊂ H̄+ and D ⊂ H̄−. This means that C ans D are

separated by H.

For the second separation theorem in the setting of general vector spaces, we

need the result stated in the following lemma. It is worth noting that this lemma

generalizes Lemma 2.13.

Lemma 2.20. (See e.g. [1]). Two nonempty convex sets C and D in E can be

properly separated if and only if the set {0} and the convex set K := C −D can be

properly separated.

Proof. Necessity. Let H := H(h, ξ) be a hyperplane properly separating C and D

such that C ⊆ H̄+, D ⊆ H̄−. Without loss of generality, assume that C does not
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lie on H. Then we have

h(x) ≥ ξ ≥ h(y) ∀x ∈ C,y ∈ D,

and h(x0) > ξ for some x0 ∈ C. This implies that the hyperplane H(h,0) properly

separates the sets {0} and K.

Sufficiency. Suppose that there exists a hyperplane H(h, ξ) properly separating

the sets {0} and K such that K ⊆ H̄+(h, ξ). Then h(x − y) ≥ ξ ≥ 0 for all

x ∈ C,y ∈ D. By the proper separation, either ξ > 0 or h(x0 − y0) > ξ for some

x0 ∈ C,y0 ∈ D.

In the former case (ξ > 0), we have

h(x) ≥ ξ + h(y) >
ξ

2
+ h(y) > h(y) ∀x ∈ C,y ∈ D.

Observe furthermore that

h(x) ≥ ξ

2
+ sup

y∈D
h(y) > h(y)∀x ∈ C,y ∈ D,

which implies that the hyperplane H(h, β) with β = ξ
2 + supy∈D h(y) properly

separates the sets C and D.

In the latter case, from the inequality

h(x) ≥ ξ + h(y) ≥ h(y) ∀x ∈ C,y ∈ D

and the fact that h(x0) > ξ + h(y0) ≥ h(y0) for some x0 ∈ C, y0 ∈ D, we derive

that any hyperplane H(h, β) with β ∈ R satisfying

inf
x∈C

h(x) ≥ β ≥ sup
y∈D

h(y)

properly separates C and D.

We come up with the following separation theorem which can be seen as a gen-

eralization of Theorem 2.15 (proper separation theorem in the setting of finite di-

mensional spaces) to the setting of general vector spaces.

Theorem 2.21. (Proper separation theorem in general vector spaces, see e.g. [1]).

Let C and D be nonempty convex sets in E such that both rai(C) and rai(D) are

nonempty. Then C and D can be properly separated if and only if rai(C)∩ rai(D) =

∅.

Proof. Let K := C−D. Since both C and D are convex, it follows from Proposition

1.9(ii) that K is also convex. By Proposition 1.26, we have rai(K) = rai(C −D) =
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rai(C) − rai(D). Then it is readily to see that rai(C) ∩ rai(D) = ∅ if and only if

0 /∈ rai(K). By using Lemma 2.20, it is left to prove that the sets {0} and K are

properly separated if and only if 0 /∈ rai(K).

Necessity. Let H be a hyperplane properly separating {0} from K in such a way

that 0 ∈ H̄− and K ⊆ H̄+. Since 0 ∈ H̄−, there are two following cases.

• If 0 /∈ H, then 0 must be in H−. Since rai(K) ⊆ K ⊆ H̄+ and note that H−

is disjoint with H̄+, it follows that 0 does not belong to rai(K).

• If 0 ∈ H, then there exists x ∈ K\H due to the proper separation between {0}
and K. If 0 ∈ rai(K), then there would be some y in K such that 0 ∈ (x,y).

Then y must be in H−. However, this contradicts with y ∈ K, since K ⊂ H̄+

and H̄+ ∩H− = ∅. Therefore, in this case 0 must not be in rai(K).

In both cases above, we have 0 /∈ rai(K) as desired.

Sufficiency. We are given that 0 /∈ rai(K). Let L be the affine hull of K. There

are two following cases.

• 0 is not in L. In this case, let

G = {F ⊂ E | F is affine, F ⊃ L, 0 ̸∈ F}.

Clearly, G is partially ordered by set inclusion. By the well-known Zorn’s

lemma, G contains a maximal element H. As a maximal element in G, we have
H ⊃ L, H does not contain 0, and H is affine. If H is not a hyperplane, then

it is not a maximal affine set in E. Since H does not contain 0, it follows that

H ′ := aff({0}∪H) ̸= E, and hence there exists x ̸∈ H ′. Take H̃ := aff({x}∪H).

Then H̃ is an affine set, H̃ ⊃ H, and H̃ does not contain 0. The existence

of H̃ contradicts the maximality of H in G. This contradiction means that H

must be a hyperplane. Since H is a hyperplane containing L but not 0, we

have proper separation between 0 and L. Since K ⊆ L, this implies the proper

separation between 0 and K.

• 0 is in L. In this case, we have L as a vector subspace of E. Note that

0 /∈ rai(K). By applying Theorem 2.19 to the sets {0} and K relative to L, we

obtain a hyperplane P in L separating 0 and K such that rai(K) ⊆ P+. Since

the translation of P to the one containing 0 also satisfies the same separation

properties, we can assume that 0 ∈ P . By the well-known Zorn’s lemma, there

exists H as a maximal linear subspace of E such that H ⊃ P and P = H ∩ L.

If H is not a hyperplane in E, then one can pick some x ̸∈ H and obtain

H ′ := span({x} ∪ H) ⊋ H. We observe that H ′ ∩ L = P . Indeed, for any
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y = ξx + h ∈ H ′ ∩ L with ξ ∈ R,h ∈ H, we have y ∈ H, then ξx ∈ H. Since

x ∈ E\H, we must have ξ = 0, then y ∈ H ∩ L = P . Hence H ′ ∩ L ⊆ P .

Obviously P ⊆ H ′ ∩ L, so we obtain H ∩ L = P , which contradicts to the

maximality of H. Therefore, H is a hyperplane, and as the previous case, it is

easy to see that H separates 0 and K.

In both cases above, we have the proper separation between 0 and K as desired.

We close this subsection with a result on proper separation between a convex set

and an affine set.

Theorem 2.22. (See e.g. [1]). Let C ⊂ E be a nonempty convex set and M ⊂ E

an affine set satisfying rai(C) ∩ M = ∅. Then there exists a hyperplane H ⊇ M

such that rai(C) ∩H = ∅.

Proof. Since M is an affine set, clearly rai(M) = M . It readily follows that rai(M)

and rai(C) are disjoint. By Theorem 2.21, there exists a hyperplaneH(h, ξ) properly

separating C and M . Then we have

h(x) ≥ ξ ≥ h(y) ∀x ∈ M,y ∈ C.

We claim that h(x) is constant on the affine set M . Indeed, assume the contrary

that there exists x∗,y∗ ∈ M such that h(x∗) ̸= h(y∗). Since M is affine, for any

t ∈ R we have tx∗ + (1 − t)y∗ = y∗ + t(x∗ − y∗) ∈ M . Since h is linear, we have

h(y∗+ t(x∗−y∗)) = h(y∗)+ t(h(x∗)−h(y∗)) ≥ ξ for all t ∈ R. By letting t → −∞,

we obtain a contradiction.

Let h(x) = β for some β ∈ R and for all x ∈ M . If β = ξ, which implies M ⊆ H,

we are done. Otherwise, from the fact that β > ξ ≥ h(y) for all y ∈ C, we derive

the hyperplane H(h, β) containing M and does not intersect the set rai(C).
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Chapter 3

Some related problems

In this chapter, we present some results related to the separation theorems men-

tioned in the previous chapter. Namely, in Section 3.1 we will show that the well-

known homogeneous Farkas lemma can be viewed as a consequence of the strong

separation theorem. In Section 3.2 we will present a particular case in duality theory

that bases also on the strong separation theorem. Section 3.3 presents the use of the

first separation theorem in constructing a barrier convex function for the feasible set

of a convex optimization problem. The connection between the well-known Hahn-

Banach theorem with proper separation of convex sets in general vector spaces is

presented in Section 3.4.

3.1 Homogeneous Farkas lemma

Homogeneous Farkas lemma is a result on the solvability of a finite system of

homogeneous linear inequalities. It is named after the Hungarian mathematician

Gyula Farkas who gave the first proof for the result. In the setting of Rn with the

usual inner product ⟨·, ·⟩, the lemma is stated as follows.

Lemma 3.1 (Homogeneous Farkas lemma). (See e.g. [5]). Let a, a1, . . . , am be

vectors in Rn\{0}. Then the following system of homogeneous linear inequalities in

x ∈ Rn

(F )

{
⟨a,x⟩ < 0

⟨ai,x⟩ ≥ 0 (i = 1, . . . ,m)

is infeasible if and only if there exist non-negative numbers λ1, . . . , λm such that

a =

m∑
i=1

λia
i. (3.1)
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Roughly speaking, the representation (3.1) means that a belongs to the conic

hull of vectors a1, . . . , am. With that point of view, the homogeneous Farkas lemma

has an obvious geometric illustration as follows. In Figure 3.1, we are given three

vectors a1, a2, a3 in R2, as well as a vector x ∈ R2 such that ⟨a1,x⟩ ≥ 0, ⟨a2,x⟩ ≥ 0,

⟨a3,x⟩ ≥ 0. On the left, we have a vector a in the conic hull of vectors a1, a2, a3.

In that case, we can easily see that ⟨a,x⟩ ≥ 0, and therefore the system (F ) in this

context is infeasible (since its first inequality is violated). On the right, we have a

vector a satisfying that ⟨a,x⟩ < 0. In that case, the system (F ) is feasible, and we

can easily see that a is not in the convex cone generated by vectors a1, a2, a3.

a1 a2

a3

x

a

O

a1 a2

a3

x

a

O

Figure 3.1: Illustration of homogeneous Farkas lemma.

Unlike the obvious illustration above, it is not trivial to prove the homogeneous

Farkas lemma. In this section we present a proof of the lemma using the theorem

on strong separation of convex sets. For the proof we need the following results.

Lemma 3.2. The conic hull of any set of linearly independent vectors in Rn is

closed.

Proof. Let V = cone(v1, . . . ,vℓ) in which v1, . . . ,vℓ are linearly independent vec-

tors in Rn. We need to prove that V is closed. Indeed, let {xk}k∈N be a sequence

of vectors in V converging to some vector x. What we need to show now is x ∈ V .

For each k ∈ N, since xk ∈ V , we can represent

xk = ξk1v
1 + . . .+ ξkℓ v

ℓ
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in which ξk1 , . . . , ξ
k
ℓ ≥ 0. Hence, xk lies in the subspace W = span(v1, . . . ,vℓ)

spanned by vectors v1, . . . ,vℓ. Since finite dimensional subspaces of Rn are closed,

x must also lie in W . Since v1, . . . ,vℓ are linearly independent, there exists unique

ξ1, . . . , ξℓ such that

x = ξ1v
1 + . . .+ ξℓv

ℓ.

Now we prove that ξki → ξi for each i = 1, . . . , ℓ. In the following we will

show the proof in case i = 1, the other cases of i can be shown similarly. Let

F = span(v2, . . . ,vℓ) be the subspace spanned by vectors v2, . . . ,vℓ. Then F is a

finite dimensional subspace of Rn, hence it is closed. Since v1,v2, . . . ,vℓ are linearly

independent, we have v1 /∈ F . Let u = v1−projF (v
1). Clearly, u ̸= 0 since v1 /∈ F

while projF (v
1) ∈ F . It follows that

∥u∥ > 0. (3.2)

Since projF (v
1) ∈ F and F is a subspace of Rn, for any z ∈ F and λ ∈ R we have

projF (v
1) + λz ∈ F . Then, by definition of projF (v

1) we obtain

∥u∥2 = ∥v1 − projF (v
1)∥2

≤ ∥v1 − (projF (v
1) + λz)∥2

= ∥(v1 − projF (v
1))− λz∥2

= ∥u− λz∥2

= ⟨u− λz,u− λz⟩
= ∥u∥2 − 2λ⟨u, z⟩+ λ2∥z∥2,

or equivalently

2λ⟨u, z⟩ ≤ λ2∥z∥2.

By letting

λ =
1

∥z∥2 + 1
⟨u, z⟩,

we obtain

2|⟨u, z⟩|2 ≤ ∥z∥2

∥z∥2 + 1
|⟨u, z⟩|2

or equivalently
∥z∥2 + 2

∥z∥2 + 1
|⟨u, z⟩|2 ≤ 0,

which implies that

⟨u, z⟩ = 0 ∀z ∈ F. (3.3)
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As a consequence, we have

⟨v1,u⟩ = ⟨(v1 − projF (v
1)) + projF (v

1),u⟩
= ⟨u,u⟩+ ⟨projF (v1),u⟩
= ∥u∥2. (3.4)

The last equality follows from (3.3) and the fact that projF (v
1) ∈ F . By Cauchy-

Schwartz inequality, we see furthermore that

∥xk − x∥∥u∥ ≥ |⟨xk − x,u⟩|
= |⟨(ξk1 − ξ1)v

1 + (ξk2 − ξ2)v
2 + . . .+ (ξkℓ − ξℓ)v

ℓ,u⟩|
= |(ξk1 − ξ1)⟨v1,u⟩+ (ξk2 − ξ2)⟨v2,u⟩+ . . .+ (ξkℓ − ξℓ)⟨vℓ,u⟩|
= |ξk1 − ξ1||⟨v1,u⟩|. (3.5)

The last equality is because of (3.3) and the fact that a2, . . . , aℓ ∈ F . Combining

(3.5) with (3.4) we obtain

∥xk − x∥∥u∥ ≥ |ξk1 − ξ1|∥u∥2.

Keeping (3.2) in mind, it follows that

∥xk − x∥ ≥ |ξk1 − ξ1|∥u∥.

As xk → x by our assumption, letting k → ∞ we have ∥xk − x∥ → 0. Together

with (3.2), it follows from the above inequality that |ξk1 − ξ1| → 0 as k → ∞, or

equivalently, ξk1 → ξ1.

Now we have ξki → ξi for i = 1, . . . , ℓ. Since ξk1 , . . . , ξ
k
ℓ ≥ 0 for all k ∈ N, we have

ξi ≥ 0. Thus x = ξ1v
1 + . . .+ ξℓv

ℓ is a conic combination of v1, . . . ,vℓ, i.e., x ∈ V .

This proves the closedness of V .

Proposition 3.3. Let K := cone(a1, . . . , am). Then K is a closed convex cone.

Proof. Conic property of K. Let x ∈ K and θ ≥ 0. Since x ∈ K, it admits the

following representation

x = λ1a
1 + . . .+ λmam

for some λ1, . . . , λm ≥ 0. Then we have

θx = θλ1a
1 + . . .+ θλmam.

Since θ is also non-negative, the coefficients θλi (i = 1, . . . ,m) in the above repre-

sentation are non-negative. Therefore θx ∈ K by definition of K.
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Convexity of K. Let x,y ∈ K and θ ∈ [0, 1]. Since x,y ∈ K, they admits the

following representations

x = λ1a
1 + . . .+ λmam, y = µ1a

1 + . . .+ µmam

for some λ1, . . . , λm ≥ 0 and µ1, . . . , µm ≥ 0. Then we have

z = θx+ (1− θ)y

= θ(λ1a
1 + . . .+ λmam) + (1− θ)(µ1a

1 + . . .+ µmam)

= (θλ1 + (1− θ)µ1)a
1 + . . .+ (θλm + (1− θ)µm)am

Since θ ∈ [0, 1] and λi ≥ 0, µi ≥ 0 (i = 1, . . . ,m), we have θλi+ (1− θ)µi ≥ 0 for all

i = 1, . . . ,m. Therefore z ∈ K by definition of K, which confirms convexity of K.

Closedness of K. Let

I = {J ⊂ {1, . . . ,m} | aj (j ∈ J) are linearly independent},

and

C =
⋃
J∈I

cone
(
{aj | j ∈ J}

)
.

Roughly speaking, C is the union of conic hulls of linearly independent subsets

of {a1, . . . , am}. This is a finite union (i.e. |I| is finite) since the index set

{1, . . . ,m} is finite. For each J ∈ I we have {aj | j ∈ J} ⊂ {a1, . . . , am}, hence
cone

(
{aj | j ∈ J}

)
⊂ cone

(
{a1, . . . , am}

)
= K. Therefore C ⊆ K.

We now show that K ⊆ C. Indeed, let x be an arbitrary nonzero vector in K.

Then it can be represented as

x = ξ1a
1 + . . .+ ξmam (3.6)

where ξi ≥ 0 for i = 1, . . . ,m. Since x ̸= 0, we have (ξ1, . . . , ξm) ̸= (0, . . . , 0). The

terms with zero coefficients can be removed from the sum on the right hand side of

(3.6). By renumbering the indices, without loss of generality we can assume that x

admits a shorten representation

x = ξ1a
1 + . . .+ ξka

k (3.7)

with k ≤ m and ξi > 0 for i = 1, . . . , k. If a1, . . . , ak are linearly independent, then

x ∈ C by definition of C. Otherwise, there exists (β1, . . . , βk) ̸= (0, . . . , 0) such that

0 = β1a
1 + . . .+ βka

k. (3.8)
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By multiplying both sides of (3.8) with -1 if needed, we can assume furthermore

that there exists at least one positive coefficient in β1, . . . , βk. For any s ∈ R, from

(3.7) and (3.8) we have

x = x− s · 0 = (ξ1a
1 + . . .+ ξka

k)− s(β1a
1 + . . .+ βka

k)

= (ξ1 − sβ1)a
1 + . . .+ (ξk − sβk)a

k. (3.9)

Let us take

s := s∗ = min

{
ξi
βi

| i ∈ {1, . . . , k} with βi > 0

}
and let I∗ be the set of indices where the above minimum is attained. Since all

coefficients ξi (i = 1, . . . , k) are positive, it follows from the choice of s∗ that s∗ > 0.

Then the following holds.

• For any i ∈ {1, . . . , k} with βi < 0, since ξi > 0 and s∗ > 0, we have ξi−s∗βi >

0.

• For any i ∈ {1, . . . , k} with βi = 0, since ξi > 0, we have ξi − s∗βi = ξi > 0.

• For i ∈ {1, . . . , k} with βi > 0: if i ∈ I∗, then ξi − s∗βi = 0, otherwise

ξi − s∗βi > 0 (by definition of s∗ and I∗).

Therefore, by substituting s = s∗ in (3.9) and then removing the terms having zero

coefficients, we obtain a representation of x as a conic combination of a proper subset

of {a1, . . . , ak} with positive coefficients. Removing the vectors that are not in the

proper subset, and as long as the remaining vectors are still linearly dependent, we

can repeat the above procedure. This process stops when the remaining vectors are

linearly independent, and we obtain a representation of x as a conic combination of

some linearly independent vectors in {a1, . . . , am}. This means x ∈ C. Since x is

chosen arbitrarily in K, we come up with K ⊆ C.

We have proved that C ⊆ K andK ⊆ C, soK = C. Recall that, by construction,

C is the union of a finite number of sets, each of such sets is the conic hull of some

linearly independent vectors in {a1, . . . , am}. By Lemma 3.2, such conic hulls are

closed. Since the union of a finite number of closed sets is also closed, we obtain the

closedness of C. Since K = C, we also have the closedness of K.

We are now ready for the proof of the homogeneous Farkas lemma.

Proof of Lemma 3.1.

‘If ’ part. Assume that there exist λi ≥ 0 (i = 1, . . . ,m such that a =
∑m

i=1 λia
i.
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If the system of inequalities (F ) is feasible, then

0 > ⟨a,x⟩ =
m∑
i=1

λi⟨ai,x⟩ ≥ 0,

which is a contradiction. Therefore the system (F ) must be infeasible.

‘Only if ’ part. By Proposition 3.3 the set

K = cone(a1, . . . , am) =

{
m∑
i=1

λia
i | λ1, . . . , λm ≥ 0

}
is a closed convex cone. What we need to show is that there exists non-negative

numbers λ1, . . . , λm such that a = λ1a
1 + . . . + λmam, i.e., we need to show that

a ∈ K. Assume the contrary that a ̸∈ K. Since {a} is compact, by Theorem 2.11

(strong separation theorem), there exists a vector e ∈ Rn such that ⟨e, a⟩ > 0 and

that ⟨e,u⟩ ≤ 0 for all u ∈ K. Let x∗ = −e, we obtain

⟨a,x∗⟩ < 0,

⟨u,x∗⟩ ≥ 0 ∀u ∈ K.

Note that a1, . . . , am ∈ K, so respectively replacing u by these vectors we get

⟨a,x∗⟩ < 0,

⟨ai,x∗⟩ ≥ 0 (i = 1, . . . ,m).

This means that x∗ is a solution of (F ), which contradicts the infeasibility of this

system. The contradiction means that a must be in K.

3.2 Dual cone

In this section, we present a particular case in duality theory. For that we recall

the following concept.

Definition 3.4. (Dual cone, see e.g. [1]). Given a nonempty set K ⊆ Rn. The set

K∗ := {y ∈ Rn | ⟨x,y⟩ ≥ 0 ∀x ∈ K}

is called the dual cone of K.

The following proposition gives an important property of the concept of dual

cone.
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Proposition 3.5. If K ⊆ Rn is a nonempty set, then its dual cone K∗ is a closed

convex set.

Proof. Conic property of K∗. Let y ∈ K∗ and θ ≥ 0. Since y ∈ K∗, we have

⟨x,y⟩ ≥ 0 ∀x ∈ K.

Since θ ≥ 0, it follows that

⟨x, θy⟩ = θ⟨x,y⟩ ≥ 0 ∀x ∈ K.

This means θy ∈ K∗, hence K∗ is conic.

Convexity of K∗. Let y1,y2 ∈ K∗ and θ ∈ [0, 1]. Since y1,y2 ∈ K∗, for all

x ∈ K we have

⟨x,y1⟩ ≥ 0 and ⟨x,y2⟩ ≥ 0.

Since θ ∈ [0, 1], we have θ ≥ 0 and 1− θ ≥ 0. It follows that for all x ∈ K we have

θ⟨x,y1⟩ ≥ 0 and (1− θ)⟨x,y2⟩ ≥ 0.

Therefore we have

⟨x, θy1 + (1− θ)y2⟩ = θ⟨x,y1⟩+ (1− θ)⟨x,y2⟩ ≥ 0 ∀x ∈ K.

It means θy1 + (1− θ)y2 ∈ K∗, hence K∗ is convex.

Closedness of K∗. By the continuity of the function f(y) = ⟨x,y⟩, we observe

that for any sequence {yk | k ∈ N} ⊂ K∗ such that yk → ȳ we have ⟨x,yk⟩ → ⟨x, ȳ⟩
as k → ∞. Since ⟨x,y⟩ ≥ 0 for all x ∈ K, we have ⟨x, ȳ⟩ ≥ 0 for all x ∈ K. Hence

ȳ ∈ K∗, which implies K∗ is a closed set.

The main result in this section is as follows.

Theorem 3.6. (See e.g. [1]). If K ⊆ Rn is a closed convex cone, then K = K∗∗.

Proof. Firstly, we observe from definition of K∗ that if x ∈ K, then for any y ∈ K∗

we have ⟨x,y⟩ ≥ 0, hence x ∈ K∗∗. It means K ⊆ K∗∗. Now we prove the reserve

inclusion K∗∗ ⊆ K.

Suppose that the reserve inclusion does not hold. Then there exists x̄ ∈ K∗∗\K.

Since x̄ /∈ K, by applying Theorem 2.11 (strong separation theorem) on the closed

convex set K and the compact set {x̄}, there exists a vector a ∈ Rn\{0} satisfying

⟨a, x̄⟩ < ⟨a, z⟩ ∀z ∈ K. (3.10)

Since K is a cone, 0 ∈ K. Taking z = 0 in (3.10) gives ⟨a, x̄⟩ < 0. On the other

hand, for every z ∈ K, by conic property of K we have tz ∈ K for all t > 0. From

(3.10), for all t > 0 we have

⟨a, x̄⟩ < ⟨a, tz⟩ = t⟨a, z⟩.
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Dividing both sides of above inequality by t, then letting t → +∞, we obtain

⟨a, z⟩ ≥ 0 ∀z ∈ K,

which implies a ∈ K∗. Note that x̄ ∈ K∗∗, then ⟨a, x̄⟩ ≥ 0, which contradicts the

fact that ⟨a, x̄⟩ < 0 proved above. Therefore, K∗∗ ⊆ K, hence K∗∗ = K.

3.3 Convex barrier function

For a constrained optimization problem, a barrier function is a continuous one

whose value on a point increases to +∞ as the point approaches the boundary of the

feasible region of the problem. The main motivation of the use of such function is to

replace constraints by a penalizing term in the objective function, hence transform

the constrained optimization problem under consideration to an unconstrained one.

More precisely, let us consider the following constrained optimization problem for

instance:

min f(x) s.t. x ∈ C ⊂ Rn (3.11)

in which f is a continuous function on Rn. With penalty method, this problem is

equivalently reformulated as the following unconstrained one:

min f(x) + p(x)

in which

p(x) =

{
0 if x ∈ C

+∞ if x ̸∈ C

is the penalizing term that replaces the constraint x ∈ C. In this form, we get

rid of the constraint but face up with discontinuity of the penalty function p(x).

For dealing with this issue, one can use a barrier function b(x) as a continuous

approximation of the penalty function and formulate a new optimization problem

min f(x) + µb(x) (3.12)

in which µ > 0 is a free parameter. This problem is just an approximation, not

equivalent to the original one. However, as µ → 0, (3.12) becomes an even-better

approximation to (3.11).

This section is devoted to the construction of such a barrier function which is not

only continuous but also convex. The correction of that construction bases mainly

on strong separation of convex sets.

From now, for convenience we denote ∂C = C\relint(C). The following proposi-

tion gives us an important example for a concave function.
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Proposition 3.7. Let C be a nonempty open convex set in Rn. Then the function

dC(x) := min{∥x− y∥ | y ∈ ∂C}

is a concave function on C that vanishes on ∂C.

Proof. The vanishment of dC(x) on ∂C is obvious from definition of dC(x), so it

is left to show that dC(x) is a concave function on C. Let x be an arbitrary point

in C. Let H+ be an open half-space containing C. Then H+ admits the following

representation

H+ = {u ∈ Rn | ⟨a,u⟩ > ξ}

for some a ∈ Rn\{0} and ξ ∈ R. It follows that

H̄− := Rn\H+ = {u ∈ Rn | ⟨a,u⟩ ≤ ξ}

is a closed half-space that does not contain any point of C. Furthermore, H+ and

H̄− have common boundary

∂H+ = ∂H̄− = {u ∈ Rn | ⟨a,u⟩ = ξ} =: H.

Let z be an arbitrary point in H. Since H ⊂ H̄−, we have z ∈ H̄−. Since H̄− does

not contain any point of C, we have z /∈ C. This, together with the fact that x ∈ C

by our choice, implies that the line segment

[x, z] := {λx+ (1− λ)z | λ ∈ [0, 1]}

intersects the boundary ∂C of C at some point yz. Since yz ∈ [x, z], we have

∥x− yz∥ ≤ ∥x− z∥. (3.13)

This holds for arbitrary choice of z in H, hence it also holds for

z = z∗ := argminv∈H∥x− v∥.

We come up with the following inequalities

dC(x) = min{∥x− y∥ | y ∈ ∂C}
≤ ∥x− yz∗∥ (since yz∗ ∈ ∂C)

≤ ∥x− z∗∥ (by (3.13))

= dH(x) (by definition of z∗)

= dH+(x) (since H = ∂H+).
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Since the inequality dC(x) ≤ dH+(x) holds for arbitrary open half-space H+ con-

taining C, we obtain

dC(x) ≤ inf
H+∈H

dH+(x), (3.14)

in which H is the set of all open half-space containing C.

Now, let yx be a point in ∂C that is closest to x, then dC(x) = ∥x− yx∥. Since
yx ∈ ∂C, thanks to Theorem 2.9 there exists a support hyperplane to C at yx.

Let us denote that support hyperplane by Hx. As a hyperplane, Hx admits the

following representation

Hx = {u ∈ Rn | ⟨b,u⟩ = β}

for some b ∈ Rn\{0} and β ∈ R. Since Hx is the support hyperplane to the open

convex set C at yx, the open half-space H+
x = {u ∈ Rn | ⟨b,u⟩ > β} contains C

(so H+
x ∈ H). Note that yx belongs to not only ∂C but also Hx = ∂H+

x , and that

dC(x) = ∥x− yx∥, we have

dC(x) = dH+
x
(x). (3.15)

Since H+
x ∈ H, it follows from (3.14) and (3.15) that

dC(x) = inf
H+∈H

dH+(x). (3.16)

Note that this equality holds for arbitrarily chosen point x ∈ C. Let us again

consider an arbitrary open half-space H+ = {u ∈ Rn | ⟨a,u⟩ > ξ} ∈ H, which

contains C by definition of H. On one hand, we have x ∈ H+ (since x ∈ C and

C ⊂ H+), and hence ⟨a,x⟩ > ξ. On the other hand, we have

dH+(x) =
|⟨a,x⟩ − ξ|

∥a∥
(by Lemma 1.18)

=
⟨a,x⟩ − ξ

∥a∥
(since ⟨a,u⟩ > ξ).

So the right hand side of (3.16) is the infimum of linear functions. Therefore, by

Proposition 1.20, dC(x) is a concave function on C.

We are now ready for the main result of this section.

Theorem 3.8. Let C be a nonempty open convex set in Rn. Then the function

b(x) := − ln dC(x) is a convex barrier function on C.

Proof. We need to show the followings.

(i) b(x) is continuous on C.

(ii) b(x) is convex on C.
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(iii) b(x) → +∞ as x → ∂C.

For the proof of (i), we first note from Proposition 3.7 that dC(x) is a concave

function on C. Hence, thanks to Proposition 1.22, dC(x) is continuous on C. Since

b(x) is the composition of the continuous functions − ln(·) on R+ and dC(x) on C,

it is continuous.

For the proof of (ii), we note that ln(·) is a concave non-decreasing function

on R+. By Proposition 1.21, the composition ln(dC(x)) of ln(·) with the concave

function dC(x) on C is also concave on C. As a consequence, b(x) = − ln(dC(x)) is

convex on C.

By definition of dC(x), we have dC(x) = 0 for x ∈ ∂C. Thanks to the continuity

of dC(x) on C, x → ∂C we have dC(x) → 0 and hence ln(dC(x)) → −∞. Therefore

b(x) = − ln(dC(x)) → +∞ as x → ∂C, i.e., b(x) is a barrier function on C. This

completes the proof of (iii).

3.4 Hahn-Banach theorem

In this section, we present a proof of Hahn-Banach theorem - a cornerstone result

in functional analysis - by using theorem on proper separation between a convex set

and an affine set in general vector spaces.

Firstly, let us recall the statement of Hahn-Banach theorem. For that, let E be a

general vector space (without any equipped topology). By functional on E we mean

a scalar-valued function defined on E, i.e., a function p : E → R. Such functional

p is said to be linear if

(i) p(u+ v) = p(u) + p(v) for all u,v ∈ E, and

(ii) p(λv) = λp(v) for all λ ∈ R,v ∈ E.

Such functional p is said to be sub-additive if p(u+v) ≤ p(u)+p(v) for all u,v ∈ E.

It is said to be positive homogeneous if p(λv) = λp(v) for all v ∈ E and for all

λ ≥ 0. We say that the functional p is sublinear if it is sub-additive and positive

homogeneous. It is not hard to see that a sublinear functional is convex.

Theorem 3.9. (Hahn-Banach theorem). Let E be a vector space, F a linear sub-

space of E, and p a sublinear functional on E. If f : F → R is a linear functional

satisfying f(v) ≤ p(v) for all v ∈ F , then there exists a linear functional g on E

such that g(v) = f(v) for all v ∈ F and g(v) ≤ p(v) for all v ∈ E.

Roughly speaking, the theorem states that a linear functional on a linear subspace

and majorized by the sublinear functional p can be extended to a linear functional

on the whole space which is still majorized by p.
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Proof. Let

A := {(x, ξ) ∈ E ×R | p(x) < ξ},
B := {(x, ξ) ∈ F ×R | f(x) = ξ}.

Since p is a sublinear functional on E, it is convex. Hence A is also convex. Since

f is a linear functional, B is a linear subspace of E × R. Hence B is an affine set.

Furthermore, we have

rai(A) = {(x, ξ) ∈ E ×R | p(x) < ξ}, (3.17)

which is also a convex set. We claim that rai(A) ∩ B = ∅. Indeed, assume the

contrary that there exists (y, ξ) ∈ rai(A) ∩ B ⊆ F ×R. It follows from (3.17) that

p(y) < ξ. However, since (y, ξ) ∈ B, we have f(y) = ξ, contradicting the fact that

p(y) < ξ we have shown. This contradiction ensures our claim.

By applying Theorem 2.22 to the convex set rai(A) and the affine set B in the

vector space E×R, we have a hyperplane H containing B and disjoint from rai(A).

Such hyperplane H admits the following form

H = {(x, ξ) ∈ E ×R | h(x) +mξ = 0}

which corresponds to a nonzero linear functional (h,m) on E ×R defined by

(h,m)(x, ξ) := h(x) +mξ.

Suppose without loss of generality that A ⊆ H̄−. Then it holds that

h(x) +mf(x) = 0 ∀x ∈ F (3.18)

and

h(x) +mξ < 0 ∀(x, ξ) ∈ E ×R : p(x) < ξ. (3.19)

If m > 0, we can fix x ∈ E and let ξ → +∞ to obtain a contradiction with (3.19).

If m = 0, then it follows from (3.19) that h(x) < 0 for all x ∈ E, while (3.18) gives

us h(x) = 0 for x ∈ F ⊂ E. This contradiction means that m must be nonzero, and

hence m < 0.

We may assume that m = −1 due to linearity of (h,m). Then we obtain from

(3.18) that h(x) = f(x) for all x ∈ F , while from (3.19) we have

h(x) < ξ ∀(x, ξ) ∈ E ×R : p(x) < ξ. (3.20)

Let g : E → R be define by g(x) := h(x). Obviously, g(x) is a linear functional and

g(x) = f(x) for all x ∈ F . To complete the proof, it is left to show that g(x) ≤ p(x)

for all x ∈ E. Indeed, assume the contrary that we can pick x0 ∈ E such that

g(x0) > p(x0), or equivalently h(x0) > p(x0). By letting x = x0, ξ = h(x0), we

derive h(x0) < h(x0), which is a contradiction.



47

Conclusions

In this thesis, we studied some types of separation between two convex sets in

real vector spaces, and presented their applications in some related problems in

convex analysis as well as functional analysis. Namely, in Chapter 1 we recalled

some related preliminaries concerning affine sets, convex sets, conic sets, projection

on convex sets, convex functions, and algebraic interior as well as algebraic closure

of convex sets. In Chapter 2, we first recalled the definition of general separation,

strict separation, strong separation, and proper separation between two convex sets.

These separation types are considered in the setting of finite dimensional Euclidean

vector spaces as well as in the setting of general vector spaces without any equipped

topology. In the former setting, we presented some theorems about conditions for the

general separation, strong separation, and proper separation involving two convex

sets. In the latter setting, we presented some theorems about conditions for general

separation and proper separation between two convex sets, and a particular case of

proper separation between a convex set and an affine set.

In Chapter 3 we have shown that a number of results in convex analysis and

functional analysis can be obtained from the separation theorems. Namely, we

gave detail arguments to derive the homogeneous Farkas lemma from the strong

separation theorem involving two convex sets in finite dimensional Euclidean vector

spaces. It can be also derived from the theorem that a closed convex cone in finite

dimensional Euclidean vector spaces is dual to its dual cone. We also presented

the use of the general separation theorem in constructing a barrier convex function

for the feasible set of a convex optimization problem. Also in this chapter we have

presented how to derive a well-known result in functional analysis - the Hahn-Banach

theorem - from the theorem on the proper separation of convex sets in general vector

spaces.
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