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Introduction

It is widely accepted that there are two different perspectives to study differential equa-

tions in general. The first and more widespread one is more analytic by directly solving

the equations and studying some properties of their solutions such as their convergence or

asymtotics. The second one, which studies properties and structure of the equations them-

selves, focuses on linear differential equations with polynomial coefficients. This direction,

which has been studied for several decades by various mathematicians (Fuchs, Levelt,

Turrittin, Katz, Deligne, . . . ), can be divided into several equivalent viewpoints: algebraic

differential equations, differential modules (or D-modules), modules with connection,. . . .

Moreover, algebraic differential equations can be interpreted as local systems in complex

geometry, locally constant sheaves in topology, lisse sheaves and Qℓ-local systems in étale

cohomology,. . . .

This dissertation’s background focuses on the p-adic analogue of algebraic differential

equations. Although p-adic differential equations were studied from the view point of p-

adic analysis by Dwork, Robba, . . . in 1960s-1980s, a breakthrough occured when they were

formalized as crystals. This notion was firstly suggested by Grothendieck [1] and Berthelot

[2] to construct a p-adic Weil cohomology theory, called the crystalline cohomology. Two

decades later, Berthelot [3],[4] introduced the notion of overconvergent isocrystals for

linking to solvable p-adic differential equations. In recent times, modern approaches have

been applied in the literature of p-adic differential equations have been studied from several

perspectives, for instance Tannakian formalism by André, p-adic analysis by Christol-

Mebkhout, Berkovich’s analytic spaces by Baldassarri-Pulita-Poineau,. . . . However, this

thesis is faithful to the notions of p-adic geometry suggested by Berthelot.

The research topic of this dissertation is Deligne-Katz correspondence of differential

modules in different settings. Specifically, Katz [5] established an interesting equivalence

between the category of modules with regular connection at 0 over the affine line minus

the origin and the category of modules with connection over the formal neighborhood

of ∞. As a restriction of Katz correspondence, Deligne [6] established an equivalence

between the category of modules with regular connection at both 0 and ∞ over the affine

line minus the origin and the category of modules with regular connection at 0 over the

4
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formal neighborhood of 0. The main target of this thesis is to study the p-adic analogue

of Deligne-Katz correspondence in the paper [7] of Matsuda and give some directions to

extend this result.

This thesis is divided into three chapters.

1. Chapter 1 is an introduction of the theory of differential modules and modules with

connection. We consider two important results including Turrittin-Levelt-Jordan

decomposition and Deligne-Katz correspondence for differential modules in charac-

teristic zero. Main references of this chapter is the book [8] and Katz’s paper [5].

2. Chapter 2 is an overview of rigid geometry, which provides important notions and

results for the next chapter. Although rigid geometry has been developed over several

decades by perspectives of Tate curves, Raynaud’s generic fiber, Berkovich’s analytic

spaces and Huber’s adic spaces, this thesis only focuses on the first two viewpoints.

The main reference of this chapter is the book [9].

3. In Chapter 3, we introduce the concept of overconvergent isocrystals and study the

p-adic analogue of Deligne-Katz correspondence constructed by Matsuda. At the

end of this chapter, we suggest some ideas to extend this result. The main reference

of this chapter is Matsuda’s paper [7].

For the reader’s convenience, we suggest some additional references: [10] for basic notions

and results in algebraic geometry, [11] for Galois descent, [12] for local fields, [13] and [14]

for étale morphisms and étale fundamental groups, [15] for overconvergent isocrystals.



Chapter 1

Theory of differential modules

1.1 Kähler differentials

Let A → B be a homomorphism of commutative rings. For any B-module M , the A-

module EndA(M) of A-linear endomorphisms of M is a B-bimodule. Specifically, for any

f ∈ EndR(M), elements b, b′ of B, m of M ,

(i) the left B-module structure is given by (bf)(m) = bf(m), and

(ii) the right B-module structure is given by (fb′)(m) = f(b′m).

Hence EndA(M) is endowed with a natural Lie algebra structure

[f, g] = f ◦ g − g ◦ f.

Definition 1.1.1. An A-derivation of B with values in a B-module M is defined as an

A-linear map d : B →M satisfying the following conditions:

(i) da = 0 for any element a of A,

(ii) d(b+ b′) = ds+ ds′ for elements b, b′ of B,

(iii) d(bb′) = bdb′ + b′db for b.b′ of B.

We denote by DerB/A ⊆ EndA(B) the left B-submodule and A-Lie subalgebra of

A-derivation of B; similarly, DerA(B,M) ⊆ HomA(B,M) the left B-submodule of A-

derivations of B with values in M .

Definition 1.1.2. The module of differentials (or module of Kähler differentials),

denoted by ΩB/A, is a B-module equipped with an A-derivation d : B → ΩB/A satisfying

the universal property: for any B-moduleM and an A-derivation d′ : B →M , there exists

uniquely a homomorphism of B-modules f : ΩB/A →M making the diagram commutes:

B ΩB/A

M

d

d′
f

6
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In other words, the derivation d induces a canonical and functorial identification

HomB(ΩB/A,M) ∼= DerA(B,M).

The existence of the module of differentials is clearly seen by its following direct construc-

tion: let F be the free B-module generated by symbols {db, b ∈ B} and E be the quotient

module of F by the submodule generated by the following elements:

(i) da for any element a of A,

(ii) d(b+ b′)− db− db′ for elements b, b′ of B,

(iii) d(bb′)− bdb′ − b′db for elements b, b′ of B.

The following result is also a well-known and useful construction of module of differentials:

Proposition 1.1.3. [16, Proposition 6.1.3] With the above notions, B is an A-algebra and

we consider the diagonal homomorphism

f : B ⊗A B → B, b⊗ b′ 7→ bb′

for elements b, b′ of B. We denote the ideal I = Ker f of B ⊗ B, then I/I2 is also a

B-module. Moreover, I/I2 becomes a module of differentials of B/A by equipping the

derivation

d : B → I/I2, b 7→ db = 1⊗ b− b⊗ 1 mod I2.

Example 1.1.4. Let B be the polynomial ring B[x1, . . . xn]. Then ΩB/A is the free B-

module of rank n with a basis {dx1 . . . dxn}.

1.2 Differential rings and differential modules

Let K be a field of characteristic zero.

Definition 1.2.1. A differential ring (F, ∂) over K is defined as a commutative K-

algebra F equipped with a K-derivation ∂ ∈ DerF/K . A morphism of differential rings

f : (F, ∂) → (F ′, ∂′) is defined as a K-algebra homomorphism which commutes with the

derivations, that is ∂′f = f∂.

Example 1.2.2. The following examples are the most useful, which are often rings of

one-variable functions, which are equipped with the derivations ∂t =
∂
∂t or ϑt = t ∂∂t .
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(i) the field of rational functions K(t),

(ii) the ring K[[t]] of formal power series or its fraction field K((t)),

(iii) for K = C, the ring C{t} of convergent power series or its fraction field of mero-

morphic power series,

(iv) for K = Qp or another p-adic field, the ring K{t} of convergent power series or its
fraction field K({t}).

Definition 1.2.3. A differential module (M,∇∂) over (F, ∂) is defined as a projective

F -module M of finite rank, endowed with a K-linear endomorphism ∇∂ which satisfies

the Leibniz rule:

∇∂(fm) = ∂(f)m+ f∇∂(m),

for elements f of F ,m of M . A morphism (M,∇∂) → (M ′,∇′
∂) of differential modules

over (F, ∂) is a F -linear morphism M →M ′ making the following diagram commutative:

M M ′

M M ′

∇∂ ∇′
∂

The kernel of ∇∂ is a K-subspace of M , denoted by M∇∂ and called the module of

horizontal elements.

Remark 1.2.4. The rank of a differential module is the rank r of the underlying module,

which is uniquely determined if the base differential ring has no zero-divisor.

For a differential extension (F ′, ∂′) over (F, ∂) of differential rings over K and a dif-

ferential module (M,∇∂) over (F, ∂), we can construct an extension of scalars (MF ′ ,∇∂′)

over (F ′, ∂) of (M,∇∂) by setting MF ′ =M ⊗F F ′. Its derivation is uniquely determined

by Leibniz rule:

∇∂′(m⊗ f ′) := m⊗ ∂′f ′ +∇∂(m)⊗ f ′

for elements f ′ of F ′, m of M .

Remark 1.2.5. In the classical setting of differential equations, we consider a linear differ-

ential equation of order r

∂rx+ ar−1∂
r−1x+ · · ·+ a1∂x+ a0x = 0
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with elements ai of F . It is clearly seen that the set of solutions forms a K-vector space of

dimension not greater than r after extending the differential ring F to some F ′. Indeed,

the elements x1, x2, . . . , xn ∈ F ′ are linearly independent if and only if its wronskian

determinant is nonzero. If the dimension of solution space is exactly n, a basis of solutions

is called the fundamental system of solutions.

The above differential equation can be converted into a system of linear differential

equations of order one

∂x = Gx,

where

x =


x

∂x
...

∂r−1x

 and G =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−a0 −a1 −a2 · · · −ar−1


.

For some P invertible matrix of rank n with coefficients in F , x is a solution of this

differential system if and only if Px is a solution of an ”equivalent” system:

∂x = GPx,

where GP = (∂P )P−1 + PGP−1.

Definition 1.2.6. A differential module is called trivial if it is isomorphic to the direct

sum of finitely many copies of (F, ∂).

Example 1.2.7. Differential modules over the differential ring (K[[t]], ∂t), (C{t}, ∂t) or

(Qp{t}, ∂t) are trivial. We will check that any differential module (M,∇∂t) over (K[[t]], ∂t)

are trivial. By contradiction, if M has some torsion elements, i.e. there exists f ∈ K[[t]],

m ∈ M such that fm = 0. Let {m1, . . . ,mr} be a generating set of M whose images in

M/tM are linearly independent over K. Representing m linearly in terms of this set, we

obtain a relation

f1m1 + . . .+ frmr = 0.

Because m1, . . . ,mr are linearly independent modulo tM , f1, . . . , fr are elements of tM .

This allows us to denote:

n := min{ordt(f1), . . . , ordt(fr)}
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such that n ⩾ 1. Using Leibniz rule we obtain

r∑
i=1

∂t(fi)mi +

r∑
i=1

fi∇∂t(mi) = 0.

Let G be the matrix of size r with coefficients in K[[t]] satisfying

∇∂t((m1, . . . ,mr)) = G(m1, . . . ,mr),

we obtain a relation:
r∑
i=1

gimi = 0

such that

min {ordt(g1), . . . , ordt(gr)} = n− 1.

By repeating this step, we obtain a relation with n = 0, contradicting to the assumption

that m1, . . . ,mr are linearly independent modulo tM .

Example 1.2.8. In contrast to the previous example, differential modules over (K((t)), ∂t),

(C({t}), ∂t) or (Qp({t}), ∂t) are non-trivial, which will be discussed in next sections.

1.3 Modules with connections on algebraic varieties

This section is an introduction of differential modules and modules of differentials in terms

of the geometric context of schemes.

Differential invariants

Let f : X → S be a morphism of schemes and ∆ : X → X ×S X be the corresponding

diagonal morphism, which is an immersion. The product X ×S X is equipped with two

projections:

X
∆−→ X ×S X

p1
−−⇒
p2

X,

which endow OX×SX = OX ⊗OS
OX with two OX -module structures, given by

p∗1 = x⊗ 1, p∗2 = 1⊗ x

for some section x of OX . The OX -structure induced by p∗1 is called the left structure, the

OX -structure induced by p∗2 is called the right structure.
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As usual, we denote by I the ideal sheaf of the diagonal ∆ in X ×S X. The sheaf of

principal parts of order n on X/S is defined as the sheaf of rings

PnX/S := ∆−1(OX×SX/In+1)

on X. For simplicity, PnX/S is regarded as an OX -module via the left structure and hence it

is coherent as an OX -module. The nth jet map of X/S is defined as the right OX -linear
map

jnX/S : OX → PnX/S ,

induced by p∗2. The sheaves PnX/S for n = 0, 1, . . . form an inverse system via natural

morphisms

PnX/S → P
m
X/S , n ⩾ m.

Similarly as the affine case in Definition 1.1.2, the sheaf of relative differentials on

X/S is defined by the kernel

Ω1
X/S := I/I2

of the projection pX/S : P1
X/S → P

0
X/S = OX . The left and right OX -structures coincide

on Ω1
X/S . Moreover, we have pX/S ◦ (p∗2− p∗1) = pX/S ◦ (j1X/S − p

∗
1) = 0, so that j1X/S − p

∗
1 :

OX → P1
X/S factors through an OS-linear map

dX/S : OX → Ω1
X/S ,

which is a derivation of OX with values in Ω1
X/S .

By taking exterior products, we can construct for n ∈ N the OX-module of relative

differential n-forms ΩnX/S =
∧n

Ω1
X/S .

The relative tangent sheaf TX/S is defined as the dual OX -module of Ω1
X/S . Equiv-

alently, it is the sheaf of OS-linear derivations of OX , that is TX/S = (Ω1
X/S)

∨ = DerX/S .
We define the sheaf of differential operators of order ⩽ n of X/S, denoting

Diff n
X/S , by the subsheaf of EndOS

(OX) whose sections locally factor through the OX -
linear morphism h̄ : PnX/S → OX as

OX OX

PnX/S

h

jnX/S
h̄
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Consequently, we obtain the isomorphism

HomOX
(PnX/S ,OX)

∼−→ Diff n
X/S , h̄ 7→ h̄ ◦ jnX/S

where the right structure of PnX/S induces on its OX -dual the right OX -module structure.

More generally, we can define the sheaf of differential operators of order ⩽ n from

an OX -module F to another OX -module G, denoting Diff n
X/S(F ,G), as the OX -module

HomOX
(PnX/S ⊗OX

F ,G). Any differential operator can be identified with a f−1OS-linear
morphism by composition with the canonical map jnX/S .

Remark 1.3.1.

(i) If we assume that f : X → S is smooth, we can choose local étale coordinates

of X, denoted by {x1, . . . , xn}. Then as in Example 1.1.4, Ω1
X/S is free generated

by dx1, . . . , dxn; DerX/S is free generated by duals ∂
∂x1

, . . . , ∂
∂xn

and Diff n
X/S is

constructed inductively from ∂
∂x1

, . . . , ∂
∂xn

.

(ii) Some examples of differential operators:

(a) A differential operator of negative order is the zero morphism.

(b) A differential operator of order 0 is a morphism D : F → G of sheaves of

OX -modules.

(c) For F = OX , a differential operator D : OX → G of order ⩽ 1 can be written

as v + d, where v : OX → G is a homomorphism of OX -modules; d : OX → G
is an S-derivation.

Connections

We consider the case that f : X → S is a smooth morphism, then Ω1
X/S is a locally free

sheaf of OX -modules.

Definition 1.3.2. For an OX -moduleM, a connection onM relative to S is defined

by one of the equivalent conditions:

(i) A left OX -linear map:

∇ : DerX/S → End(M)

∂ 7→ ∇∂
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such that for every open subset U of X, ∂ ∈ DerX/S(U), (M(U),∇∂) is a differential
module over the differential ring (OX(U), ∂) satisfying the Leibniz’s rule:

∇∂(ax) = ∂(a)x+ a∇∂(x)

for a and x are sections of OX(U) andM(U), respectively.

(ii) (Koszul’s definition) An OS-linear map:

∇ :M→ Ω1
X/S ⊗OX

M

satisfying the Leibniz’s rule

∇(ax) = dX/S(a)⊗ x+ a∇(x)

for a and x are sections of OX(U) andM(U) on some open subset U of X, respec-

tively.

((iii) (Atiyah’s definition) An OX -linear section

Θ :M→ P1
X/S ⊗OX

M

of the projection p : P1
X/S ⊗OX

M→M.

(iv) (Grothendieck’s definition) An isomorphism of P1
X/S-modules

ε :M⊗OS
P1
X/S → P

1
X/S ⊗OS

M

which modulo the kernel Ω1
X/S of P1

X/S → OX , reduces to the identity endomorphism

ofM.

In this thesis, we only use the equivalence between (i) and (ii), therefore we check it

here. For the equivalence of them with other two definitions, see the discussion after [8,

Definition 4.2.1].

On the one hand, to prove (i)⇒(ii), we have to check via local étale coordinates.

Specifically, we pick étale coordinates (x1, . . . , xn) on U/S for some Zariski open subset

U of X. By Example 1.1.4, Ω1
U/S is free generated by dx1, . . . , dxn and DerX/S(U) is free

on the dual basis ∂1, . . . , ∂n with ∂i = ∂/∂xi. For such a map ∇∂ , we can define

∇ :M→ Ω1
X/S ⊗OX

M

m 7→
n∑
i=1

dxi ⊗∇∂i(m)
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for any section m ofM|U . This definition is clearly compatible with glueing open subsets

of X, hence ∇ is defined globally. Since ∇∂ satisfies Leibniz property, it also holds for ∇.
On the other hand, the implication (ii)⇒(i) is obvious when for each derivation ∂ on

X/S, we take ∇∂ by contraction:

∇∂ = (∂ ⊗OX
idM) ◦ ∇.

Since ∇ satisfies Leibniz property, it also holds for ∇∂ .

Remark 1.3.3. The trivial connection on OX is given by the canonical derivation dX/S :

OX → Ω1
X/S .

A connection ∇ can be extended to a homomorphism of sheaves of modules

∇n : ΩnX/S ⊗M→ Ωn+1
X/S
⊗M

by setting

∇n(ω ⊗m) = (−1)nω ∧∇(m) + dω ⊗m

where ω and m are sections of ΩnX/S(U) andM(U) respectively for some open subset U

of X, and where ω ∧∇(m) denotes the image of ω ×∇(m) under the canonical map

ΩnX/S ⊗OX

(
Ω1
X/S ⊗OX

M
)
→ Ωn+1

X/S
⊗OX

M

which sends ω ⊗ τ ⊗m to (ω ∧ τ)⊗m.

In general, although the fact that∇n+1◦∇n = 0 is not satisfied, the following morphism

is OX -linear:
K = ∇1 ◦ ∇ :M→ Ω2

X/S ⊗OX
M.

We can easily verify that

(∇n+1 ◦ ∇n)(ω ⊗m) = ω ⊗K(m)

where ω and m are sections of ΩnX/S(U) andM(U) for some open subset U of X.

The morphism K is called the curvature of ∇. In terms of local étale coordi-

nates {x1, . . . xn}, K can be expressed as follows. Let ∂/∂xi ∈ DerX/S maps to ϑi ∈
Diff 1

X/S(M,M) by ∇. Then the map K :M→ Ω2
X/S ⊗M is given by

K =
∑
i<j

dxi ∧ dxj ⊗ [ϑi, ϑj ].

In particular K = 0 if and only if the ϑi’s mutually commute.
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Definition 1.3.4. A connection whose curvature is zero is called integrable or flat.

Remark 1.3.5. For an integrable connection, we can construct the relative de Rham com-

plex of (M,∇):
M→ Ω1

X/S ⊗OX
M→ Ω2

X/S ⊗OX
M→ · · ·

1.4 Regular singularities

Let C{{t}} be the differential field of formal Laurent series whose 0 is the only isolated

singularity, then the field C({t}) of meromorphic functions at 0 is actually a differential

subfield of C{{t}}. In this section we focus on the following system of linear differential

equations:

∂tx = G(t)x (1.4.1)

where G(t) ∈ Matr(C{{t}}) and x is a column vector of size r. Without losing the general-

ization, we can assume that 0 is also the isolated singularity of G(t) in some neighborhood

of 0.

Let z0 be a point in the punctured unit disk and Oz0 the ring of germs of holomorphic

functions at z0. By Cauchy’s theorem, as stated in Theorem 6.1.3,[8], the system admits a

fundamental solution matrix at z0, denoted by X ∈ GLr(Oz0). With initial condition

X(z0) = Ir, this matrix is uniquely determined.

By analytic continuation along a loop around 0:

T : Oz0 → Oz0 ,

we have TXz0 = Xz0C, where C ∈ GLr(C) depends on the chosen loop. This construction

defines naturally a group anti-homomorphism from the fundamental group of the punc-

tured disk to the group of invertible complex matrices of size r, called the monodromy

representation.

Let A be a matrix in Matr(C), tA the matrix

tA = exp (A ln t) :=

∞∑
n=0

(A ln t)n

n!
,

for some fixed branch of ln t at z0. Then

T (tA) = exp (A ln t+ 2πiA) = tA exp (2πiA).
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If A satisfies exp (2πiA) = C then

T (Xz0t
−A) = Xz0CC

−1t−A = Xz0t
−A,

hence the following solution matrix is analytic in the punctured unit disk:

Z := Xz0t
−A

The result that we have just proven is called the complex monodromy theorem.

Definition 1.4.1. Instead of considering the system (1.4.1) over C{{t}}, we assume that

it is determined over the differential subfield C({t}) (the field of germs of meromorphic

functions at 0). In this situation, we can naturally divide into two cases:

(i) 0 is called a regular singularity if Z has at most a pole at 0, i.e. has coefficients

in C({t}), or

(ii) 0 is called an irregular singularity if Z has an essential singularity at 0.

It is remarkable that these notions are dependent only on theC({t})-differential module

associated to the system 1.4.1.

Turning to the formal setting, i.e. dealing with C((x))-differential modules, the notion

of regularity also makes sense. We will state this notion and some results in Fuchs-

Frobenius theory.

By the construction of cyclic vectors, which is omitted in this text, the system (1.4.1)

is equivalent to a scalar equation Lx = 0, where

L = ∂rt + ar−1∂
r−1
t + · · ·+ a1∂t + a0

is a linear differential operator of order r, where for any i, ai is a holomorphic function in

some punctured disk and has at most a pole at 0.

Definition 1.4.2. L is said to satisfy the Fuchs condition at 0, or 0 is a regular

singularity for L if

ord0(ai) ⩾ i− r for i = 0, . . . , r − 1.

Theorem 1.4.3 (Frobenius-Fuchs, [8, Theorem 6.3.5]). For the field F = C({t}) of germs

of meromorphic functions on C at t = 0, the differential system (1.4.1) with coefficients in

F is regular at 0 if and only if the differential operator obtained from (1.4.1), by application

of cyclic vectors, satisfies the Fuchs condition at 0.
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Frobenius-Fuchs theory in the base field C was formalized to an arbitrary characteristic

zero field by Fuchs as follows. For a field K of characteristic 0 and an algebraic closure K

of K, we consider the differential field F = K((t)) of formal Laurent series endowed with

usual derivations

∂ = ∂t =
d

dt
or ϑt = t

d

dt
.

We consider a matrix A in Matr(K) and its associated differential system:

ϑtx = Ax (1.4.2)

The solution matrix tA in the complex case can be formalized as follows:

(i) if A = ∆ = diag(∆1, . . . ,∆µ) is diagonal, then t
∆ = diag(t∆1 , . . . , t∆µ);

(ii) if A = N is nilpotent, then tN = exp(N ln t) =
∑∞

k=0
Nk

k! (ln t)
k;

(iii) if A = P (∆ + N)P−1 give the Jordan canonical form (with P ∈ GLr(K)), then

tA = Pt∆tNP−1.

Instead of dealing with system of constant coefficients (1.4.2), it is necessary to consider

the general differential system

ϑtx = Gx with G ∈ Matr(K((t))). (1.4.3)

We recall that, for a change of variables

x 7→ Px

with P ∈ GLr(K((t))), the system (1.4.3) is converted into

ϑtx = GPx with GP = (ϑtP )P
−1 + PGP−1. (1.4.4)

Definition 1.4.4. [8, Proposition 7.4.1] The differential system (1.4.3)

ϑtx = Gx, or equivalently, ∂tx = t−1Gx

is regular, or 0 is a regular singularity, if one of the following equivalent conditions

holds:

(i) the system, after extending K to a finite Galois extension K ′, admits a solution

matrix of the form X = ZtA with A ∈ Matr(K
′), Z ∈ GLr(K

′((t)));
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(ii) we can choose a matrix P in GLr(K((t))) such that GP ∈ Matr(K[[t]]);

(iii) there exists a matrix P ∈ GLr(K
′((t))) such that after extending K to a finite Galois

extension K ′, GP ∈ Matr(K
′) has the Jordan canonical form

GP =


α1 +N1 0 · · · 0

0 α2 +N2 · · · 0
...

...
. . .

...

0 0 · · · αr +Nr


where αi − αj ̸∈ Z if i ̸= j and Ni is a standard upper-triangular nilpotent matrix

with ϵi ∈ {0, 1} for all i as follows.

Ni =



0 ϵ1 · · · 0

0
. . . . . .

...
...

. . . . . .

0 ϵn1

0 · · · 0


.

Instead of giving the detailed proof, we make some discussions in this important result.

The condition that any two eigenvalues of G(0) (equivalently, GP ) have a non-integer

difference is called non-resonance by [8, Definition 7.1.4]. In the case that the system

(1.4.3) has G ∈ GLr(K[[t]]), non-resonance can be obtained via a shearing transformation

[8, Lemma 7.2.4], i.e. there exists P ∈ GLr(K
′((t))) such that GP is non-resonant with

K ′ an extension of K. Moreover, after counted with multiplicity, the classes in K/Z of

eigenvalues of GP (0) are called the exponents of the differential system (1.4.3), by [8,

Proposition-Definition 7.6.1]. This notion is well-defined due to their independence of the

choice of P . In an analogue of Fuchs-Frobenius theory, we also have the regularity criterion

in the formal setting:

Theorem 1.4.5. [8, Proposition 7.5.1] The following conditions are equivalent:

(i) the system (1.4.3) is regular;

(ii) we have ord0(ai) ⩾ i − r, i = 0, . . . , r − 1 for any differential equation Lx = 0

equivalent to (1.4.3), where

L = ∂rt + ar−1∂
r−1
t + · · ·+ a1∂t + a0, ai ∈ K((t)).
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(iii) we have bi ∈ K[[t]], i = 0, . . . , r − 1 for any differential equation Γx = 0 equivalent

to (1.4.3), where

Γ = ϑrt + br−1ϑ
r−1
t + · · ·+ b1ϑt + b0, bi ∈ K((t)).

1.5 Turrittin-Levelt-Jordan decomposition

In this section we introduce Turrittin-Levelt-Jordan decomposition, which is the main

tool to study both regular and irregular differential modules. This is a generalization of

classical Jordan decomposition to the case of differential modules.

Jordan theory

Recall that we still consider a field K of characteristic 0 and ϑt = t ddt a derivation on

K((t)). For (M,∇ϑt
) a differential module over (K((t)), ϑt), ϕ ∈ K((t)) and ν ∈ N ∪ {0}

we set

K
(ν)
ϕ = K

(ν)
ϕ (M) = KerM (∇ϑt

− ϕ)ν ,

and

M
(ν)
ϕ = Im

(
K((t))⊗K K

(ν)
ϕ (M)→M

)
.

Those K
(ν)
ϕ are K-vector subspaces of M which are equipped with a nilpotent endomor-

phism ∇ϑt
− ϕ and those M

(ν)
ϕ are differential submodules of M . We obtain natural

inclusions

(0) = K
(0)
ϕ ⊆ K

(1)
ϕ ⊆ · · ·

and

(0) =M
(0)
ϕ ⊆M

(1)
ϕ ⊆ · · · .

Moreover, if K
(ν)
ϕ = K

(ν+1)
ϕ for some ν, then K

(ν)
ϕ = K

(ν+n)
ϕ for every n ⩾ 0.

Lemma 1.5.1. [8, Corollary 8.1.6] For integers λ, ν ⩾ 0 and ϕ ∈ K((t)) we have

(M/M
(λ)
ϕ )

(ν)
ψ =M

(λ+ν)
ϕ /M

(λ)
ϕ .

Proposition 1.5.2. [8, Proposition 8.1.9] For a differential module (M,∇ϑt
) over a dif-

ferential field (K((t)), ϑt) and elements ϕ, ψ ∈ K((t)), if KerK((t))(ϑt−ϕ+ψ) = (0), then

M
(λ)
ϕ ∩M (ν)

ψ = (0) for any λ, ν. Otherwise, M
(ν)
ϕ =M

(ψ)
ϕ for any ν.

Proof. Firstly we consider the case KerK((t))(ϑt − ϕ+ ψ) = (0).
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Claim 1. M
(1)
ϕ ∩M

(1)
ψ = (0). Let m1, . . . ,mk (resp. n1, . . . , nℓ) be linearly independent

elements in K
(1)
ϕ (resp. K

(1)
ψ ) and k is minimal in the sense that there is a relation

mk =

k−1∑
i=1

aimi

for ai ∈ K((t)). Let m be an element in the intersection M
(1)
ϕ ∩M

(1)
ψ . Then

m =

k∑
i=1

aimi =

ℓ∑
j=1

bjnj

and

∇ϑt
(m) =

k∑
i=1

(ϑtai)mi + ϕm =

ℓ∑
j=1

(ϑtbj)nj + ψm.

Combining these two equalities we get

k−1∑
i=1

((ϑtak + ϕak)ai − ak(ϑtai + ϕai))mi =

ℓ∑
j=1

((ϑtak + ϕak)bj − ak(ϑtbj + ψbj))nj

By the minimality of k, all coefficients of the mi’s and nj ’s of this equation must vanish.

In particular,

(ϑtak + ϕak)bj − ak(ϑtbj + ψbj) = 0∀j,

if bj ̸= 0, this implies

ϑt(ak/bj) = (ψ − ϕ)ak/bj ,

hence ak = 0 by the hypothesis of Ker(ϑt−ϕ+ψ). We conclude that for all j, bj = 0 and

m = 0; Claim 1 has been proven.

Claim 2. M
(λ)
ϕ ∩M (1)

ψ = (0).

This statement can be checked by induction on λ. Let N = M/M
(1)
ϕ and π : M → N

the natural projection. By Lemma 1.5.1, π(M
(λ+1)
ϕ /M

(1)
ϕ ) ∼= N

(λ)
ϕ ; and by Claim 1,

π(M
(1)
ψ ) ∼= N

(1)
ψ . By the induction assumption,

N
(1)
ϕ ∩N

(1)
ψ = (0),

equivalently,

M
(λ+1)
ϕ ∩ (M

(1)
ϕ +M

(1)
ψ ) =M

(1)
ϕ .

We obtain

M
(λ+1)
ϕ ∩M (1)

ψ =M
(1)
ϕ ∩M

(1)
ψ = (0).
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Claim 3. M
(λ)
ϕ ∩M (ν)

ψ = (0).

This statement can also be checked by induction on ν. Let N =M/M
(1)
ψ and π :M →

N the natural projection. With a similar argument, π(M
(ν+1)
ψ /M

(1)
ψ ) ∼= N

(ν)
ψ by Lemma

1.5.1, and π(M
(λ)
ϕ ) ∼= N

(λ)
ψ by Claim 2. By the induction assumption, N

(λ)
ϕ ∩N (ν)

ψ = (0),

hence

M
(ν+1)
ψ ∩ (M

(λ)
ϕ +M

(1)
ψ ) =M

(1)
ψ

and

M
(λ)
ϕ ∩M (ν+1)

ψ = (0).

Now we consider the case KerK((t))(ϑt − ϕ + ψ) ̸= (0). For ϑtf = (tf ′t/f)f =: cf for

f ∈ K((t))×, then for every ϕ ∈ K((x)) and every ν,

K
(ν)
ϕ+c = fK

(ν)
ϕ .

Therefore if KerK((t))(ϑt − ϕ+ ψ) = (0) for some ϕ, ψ ∈ K((t)), then for every ν,

M
(ν)
ϕ =M

(ν)
ψ ,

which we have to show.

The above result allow us to classify the modules M
(ν)
ϕ for ϕ ∈ K((x)), ν = 0, 1, . . . by

the following definition:

Definition 1.5.3. Let ϑt logK((t))× be the additive subgroup of K((t)) consisting of

elements of the forms f−1ϑtf for f ∈ K((t))×, which are called logarithmic derivatives.

Remark 1.5.4. As in the proof of Proposition 1.5.2, an element c ofK((t)) is in ϑt logK((t))×

if and only if there exists f ∈ K((t))× such that ϑtf = cf , that is, if and only if

Ker(ϑt − c) ̸= (0). Specifically, we have

ϑt logK((t))× ∼= Z+ tK[[t]]

and the quotient

K((t))/ϑt logK((t))× ∼= K
[
t−1
]
/Z ∼= K/Z⊕ t−1K

[
t−1
]
.
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Definition 1.5.5. A differential module (M,∇ϑt
) of rank r over the differential field

(K((t)), ϑt) is called admitting a Jordan decomposition if there exists elements ϕ1, . . . , ϕr

of K((t)) such that

M =

n⊕
i=1

M
(r)
ϕ1
,

where the ϕi are pairwise distinct modulo ϑt logK((t))×. There classes ϕi inK((t))ϑt logK((t))×

are called the characters of M .

For regular differential modules

Recall that we fixed a field K of characteristic 0 and the derivation ϑt = t ddt of the field

of formal Laurent series K((t)).

Definition 1.5.6. A differential module M over K((t)) is called regular if it contains a

free K[[t]]-module M̃ satisfying

M = M̃ ⊗K[[t]] K((t))

and ∇ϑt
(M̃) ⊂ M̃ (stability under ∇ϑt

). This M̃ is called a K[[t]]-lattice.

The notions in Section 1.3 of modules with connection and Section 1.4 of regular

differential systems may be interpreted in the language of differential modules as follows.

Theorem 1.5.7. For a differential module M of rank r over K((t)), the following condi-

tions are equivalent:

(i) M is regular;

(ii) the monic differential operator Γ ∈ K((t))⟨ϑt⟩ attached to some (resp. any) cyclic

vector of M has coefficients in K[[t]];

(iii) the corresponding module with connection (M,∇) admits a logarithmic model,

i.e. a free K[[t]]-module M̃ equipped with a logarithmic connection:

∇log : M̃ → M̃ ⊗K[[t]] Ω
log
K[[t]]/K

with Ωlog
K[[t]]/K

:= K[[t]]dt/t.

Proof. The equivalence of (i) and (ii) follows from the Fuchs criterion (Proposition 1.4.5).

We can prove (i)⇔(iii) by a similar argument as Definition 1.3.2.
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Theorem 1.5.8 (Jordan decomposition for regular differential modules,[8, The-

orem 8.3.4]). For a regular differential module M of rank r over K((t)), there exists a

finite extension K ′ = K[α1, . . . , αn] of K such that MK′((t)) =M ⊗K K ′ admits a Jordan

decomposition with respect to ϑt:

MK′((t)) =

n⊕
i=1

M r
αi

where

M
(r)
αi := KerK′((t))(∇ϑt

− αi)r ⊗K′ K ′((t))

and the αi ∈ K ′ are pairwise distinct modulo Z. The decomposition is independent of the

choice of the αi’s modulo Z and is canonical.

Proof. The theorem follows from equivalent statements of regular differential systems in

Definition 1.4.4 and Definition 1.5.6. Uniqueness holds since m = ϑt(t
m)/tm for any

integer m and

K/Z ⊆ K((t))/ϑt logK((t))×,

therefore the only logarithmic derivatives which belong toK (and alsoK ′) are the integers,

For canonicity, it is clearly seen that by Definition 1.5.5, the characters ϕi change to uϕi

with the same multiplicities after replacing ϑt by uϑt for any u ∈ K((t))×.

For irregular differential modules

Recall that we fixed a field K of characteristic 0 and the derivation ϑt = t ddt of the field

of formal Laurent series F = K((t)).

Any finite extension ofK((t)) has the form F ′ = K ′((x1/N )), which is a complete valued

field of ramification index N , with t1/N an Nth root of t and K ′/K a finite extension. This

extension K ′((t1/N ))/K((t)) is Galois if and only if K ′/K is a Galois extension containing

the Nth roots of unity.

For such F ′ = K ′((t1/N )) an extension of F = K((t)) and the derivation ϑt, we have

ϑt logF
′× =

1

N
Z⊕ t1/NK ′[[t1/N ]].

It is remarkable that ϑt logF
′× ∩ K ′[[t−1/N ]] = 1

NZ and ϑt logF
′× + K ′[t−1/N ] = F ′,

therefore we obtain

F ′/ϑt logF
′× ∼= K ′[t−1/N ]/

1

N
Z ∼=

(
K ′/

1

N
Z
)
⊕ t−1/NK ′[t−1/N ].
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Theorem 1.5.9 (Turrittin-Jordan-Levelt decomposition, [8, Theorem 16.1.2]). For

(M,∇ϑt
) a differential module over F = K((t)) of rank r, there exists a finite exten-

sion F ′ = F (ϕ1, . . . , ϕn) of F over which (MF ′ ,∇ϑt
) admits a Jordan decomposition of

differential modules over F ′:

MF ′ =

n⊕
i=1

M
(r)
ϕi

with characters ϕi ∈ K ′[t−1/N ]/ 1
NZ, where

M
(r)
ϕi

:= KerMF ′ (∇ϑt
− ϕi)r ⊗K′ F ′.

Grouping together the direct summands M
(r)
ϕ for which the characters ϕi’s only differ by

constant terms, we obtain the Turrittin-Levelt decomposition of differential modules over

F ′:

MF ′ =
⊕
j

Lψj
⊗F ′ Uj

where Lψj
is a differential module of rank one, ψj ∈ t−1/NK ′[t−1/N ] and Uj is unipotent,

i.e. a successive extension of the trivial differential module (F ′,∇ϑx
) by itself.

Sketch of the proof. The proof proceeds by induction on pairs (r, ρ), where r ∈ N is the

rank of M over F = K((t)) and ρ = ρ(M) ∈ 1
r!N is the irregularity (or the Poincaré rank)

of M , see [8, Section 15] for details. The set of (r, ρ) are lexicographically ordered, i.e.

(r, ρ) < (r′ρ′) if r < r′ or r = r′ and ρ < ρ′.

The induction starts at (r, 0) (it is the regular case, Theorem 1.5.8) and (1, ρ) for any

ρ ∈ N (it is the rank-one case).

Let m = (m, . . . , ϑr−1
t m) be a cyclic basis and

ϑtm = m


0 · · · 0 a0

1 · · · 0 a1
...

. . .
...

...

0 · · · 1 ar−1

 .

By [8, Corollary 15.3.6],

ρ = max

{
0, max
j=0,...,r−1

(
−
ordt(aj)

r − j

)}
is a rational number with denominator bounded by r. Then ρ = l/e, e ⩽ r is an irreducible

fraction. The argument in the proof of [8, Theorem 15.2.2] allows us to consider the



25

base change (MK((t1/e)), δ := tρϑt) whose the basis n = mΞ, Ξ is the diagonal matrix

with entries 1, tρ, . . . , t(r−1)ρ. The matrix of δ = tρϑt = tρ+1 d
dt = e−1(t1/e)eρ+1 d

dt1/e
=

e−1(t1/e)eρϑt1/e in this new basis is

B−ρ =


0 · · · 0 trρa0

1 · · · 0 t(r−1)ρa1
...

. . .
...

...

0 · · · 1 tρar−1

+


0 0 · · · 0

0 ρtρ · · · 0
...

...
. . .

...

0 0 · · · (r − 1)ρtρ

 ∈Mρ(K[[t1/e]]).

If ρ = 0, we are in the regular case, which is the beginning point of the induction.

If ρ > 0, we may apply the splitting lemma [8, Proposition 16.2.1]. Roughly speaking,

for M :=MK[[t1/e]] ⊗K[[t1/e]] K and ∇δ the induced k-linear action of δ on M , if

M =
⊕

M j

is the decomposition into k-spaces such that the sets of eigenvalues of ∇δ are pairwise

disjoint, it can be lifted to an unique decomposition of MK[[t1/e]] into ∇δ-stable K[[t1/e]]-

submodules.

If B−ρ(0) has at least two distinct eigenvalues in K, this reduces to the case of rank

< r, and the induction assumption applies.

If B−ρ(0) has only one eigenvalue ζ ∈ K, this eigenvalue cannot be 0, since we can

use [8, 15.2.2] in the case ρ > 0. Tensoring M with the rank-one K((t))/K-differential

module L−ζt−ρ (with generator ℓ = exp( ζρt
−ρ) and action ϑtℓ = −ζt−ρℓ), we can prove

that ρ(M ⊗ L) < ρ and the induction assumption applies. □

Remark 1.5.10. From the Jordan decomposition in Theorem 1.5.9 of a differential module

M , we can group the summands M
(µ)
ϕi

whose ϕi’s have the same t1/N -adic valuation to

obtain a so-called slope decomposition as in [8, Proposition-Definition 17.1.3]. Although

we do not discuss this decomposition in this thesis, it is convenient to study the structure

of irregular differential modules.

1.6 Deligne-Katz correspondence in characteristic zero

In this section, we fix a field k of characteristic zero, the field k((t)) of formal Laurent

series over k. and denote by Gm,k the multiplicative group over k with coordinate t:

Gm,k = Spec k[t, t−1],
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which can be geometrically interpreted as the affine line over k minus the origin, or the

projective line over k minus two points 0 and ∞.

Fixing the derivation ϑt = t ddt , we denote by MC(k[t, t−1]/k) and MC(k((t))/k)) cat-

egories of differential modules over k[t, t−1] (resp. over k((t))), or categories of modules

with integrable connection on Gm,k (resp. on Spec k((t))).

By the k-linear embedding

k[t, t−1] ↪→ k((t)), t 7→ t

we view k((t)) as the completion at 0 of the function field of Gm,k. Hence we obtain a

natural inverse image functor

MC(k[t, t−1]/k)→ MC(k((t))/k)

M 7→M ⊗k[t,t−1] k((t)).

As an analogue of Definition 1.5.6 and the geometric interpretation of Gm,k:

Definition 1.6.1.

(i) A differential module (M,∇ϑt
) over k[t, t−1] is called regular singular at 0 if M

admits a k[t]-lattice M0, i.e. a k[t]-module M0 stable under ∇ϑt
and satisfying

M =M0 ⊗k[t] k[t, t−1] .

(ii) A differential module (M,∇ϑt
) over k[t, t−1] is called regular singular at ∞ if M

admits a k[t]-lattice M∞, i.e. a k[t−1]-module M∞ stable under ∇ϑt
and satisfying

M =M∞ ⊗k[t−1] k[t, t
−1] .

Example 1.6.2. LetM be a differential module over k[t, t−1] of rank one which is regular

singular at 0. By a similar argument as in Example 1.2.7, M is free of rank one. Since M

is regular singular at 0, ∇ϑt
(k[t]) ⊂ k[t] and we can write

∇ϑt
(1) =

n∑
i=0

ait
i ∈ k[t].

By Leibniz rule, we obtain

∇ϑt
(f) = ϑt(f) + f∇ϑt

(1) =

(
t
d

dt
+

n∑
i=0

ait
i

)
(f).
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Consequently, M has the explicit form

M =

(
k[t, t−1],∇ϑt

= t
d

dt
+

n∑
i=0

ait
i

)

for some polynomial
∑n

i=0 ait
i ∈ k[t]. By a similar argument as in Remark 1.5.4, there

exists an isomorphism between two such differential modules if and only if the difference

of their derivations belongs to ϑt log k[t, t
−1]×, where

k[t, t−1]× = {ctn, c ∈ k, n ∈ Z}

is the group of units of k[t, t−1] and thus

ϑt log k[t, t
−1]× = Z.

Therefore the group of isomorphism classes of such an M is the additive group k[t]/Z via

the map

M 7→
∑

ait
i mod Z.

Similarly, a differential module M ′ over k[t, t−1] of rank one which is regular singular at

∞ has the explicit form

M ′ =

(
k[t, t−1],∇ϑt

= t
d

dt
+

n∑
i=0

ait
−i

)

for some polynomial
∑n

i=0 ait
−i ∈ k[t−1] and the group of isomorphism classes of such M ′

is the additive group k[t−1]/Z via the map

M 7→
∑

ait
−i mod Z.

From the viewpoint of Remark 1.5.4, Theorem 1.5.8 and the discussion in Example

1.6.2, we obtain the following result:

Proposition 1.6.3. The inverse image functor

MCrs at ∞(k[t, t−1]/k)→ MC(k((t))/k)

between the category of differential modules over k[t, t−1] which are regular singular at

infinity and the category of differential modules over k((t)) induces an equivalence between

the full subcategories of rank-one objects.
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In the next step, we recover Katz correspondence in [5, 2.4] to extend this result to an

equivalence of larger categories, which is motivated by Turrittin-Levelt-Jordan decompo-

sition (Theorem 1.5.9).

Definition 1.6.4. A differential module in MC(k[t, t−1]/k) (resp. MC(k((t))/k)) is called

unipotent if it is isomorphic to a successive extension of the trivial object
(
k[t, t−1], t ddt

)
(resp.

(
k((t)), t ddt

)
) by itself, i.e. the matrix of the connection ∇ corresponding to some

derivation (in the sense of Definition 1.3.2) is upper-triangular.

Let NilpEndk be the category of pairs (V,N) consisting of a finite-dimensional k-vector

spaces V endowed with a k-linear nilpotent endomorphism N of V . The natural functors

NilpEndK → MCuni(k[t, t−1]/k)

(V,N) 7→
(
k[t, t−1]⊗k V,D = t

d

dt
⊗ id+ id⊗N

)
and

NilpEndK → MCuni(k((t))/k)

(V,N) 7→
(
k((t))⊗k V,D = t

d

dt
⊗ id− id⊗N

)
are both equivalences, whose quasi-inverse functors are given by

(M,∇ϑt
) 7→

(⋃
n⩾1

Ker(∇ϑt
)n,±∇ϑt

)
.

Therefore we obtain the following result.

Proposition 1.6.5. The inverse image functor

MCuni(k[t, t−1]/k)→ MCuni(k((t))/k)

of full subcategories of unipotent objects is an equivalence.

Definition 1.6.6.

(i) A differential module M over k[t, t−1] is called very special if it admits a decom-

position as follows:

M =
⊕
j

Lj ⊗ Uj

where Lj ’s are rank-one, regular singular at infinity and Uj ’s are unipotent.
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(ii) A differential module M over k((t)) is called very special if it is a successive ex-

tension of one-dimensional objects.

By Proposition 1.6.3 and Proposition 1.6.5 we obtain:

Proposition 1.6.7. The inverse image functor

MC(k[t, t−1]/k)→ MC(k((t))/k)

induces an equivalence between the full subcategories of very special objects.

Recall that any finite Galois extension of k((t)) has the form k′((t1/N )) for some positive

integer N and some finite Galois extension k′ of k in K which contains all Nth roots of

unity.

Definition 1.6.8. For such an integer N and an extension k′ of k as above,

(i) a differential module M over k[t, t−1] is called (N, k′)-special if its inverse image in

MC(k′[t1/N , t−1/N ]/k′), given by

M 7→M ⊗k[t,t−1] k
′[t1/N , t−1/N ]

is very special.

(ii) a differential module M over k((t)) is called (N, k′)-special if its inverse image in

MC(k′((t1/N ))/k′), given by

M 7→M ⊗k((t)) k′((t1/N ))

is a successive extension of one-dimensional objects.

For each (N, k′) as above, the semidirect product

G = µN (k
′)⋉Gal(k′/k)

acts on k′[t1/N , t−1/N ] and on k′((t1/N )) by

g ·
∑

ant
n/N =

∑
σ(an)ζ

ntn/N , g = (ζ, σ).

G also acts on k′[t−1/N ] by

g ·
∑

a−nt
−n/N =

∑
σ(a−n)ζ

−nt−n/N , g = (ζ, σ).

By combining Proposition 1.6.7 with Galois descent of MC(k′[t1/N , t−1/N ]/k′) (respectively

MC(k′((t1/N ))/k′) and MC(k′[t−1/N ]/k′)) with G-action, we obtain
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Proposition 1.6.9. For any (N, k′) as above, the inverse image functor

MC(k[t, t−1]/k)→ MC(k((t))/k)

induces an equivalence between the full subcategories of (N, k′)-special objects.

Definition 1.6.10. A differential module over k[t, t−1] (resp. over k((t))) is called special

if it is (N, k′)-special for some (N, k′) as above.

By Theorem 1.5.9 of Turrittin-Levelt-Jordan decomposition, every differential module

of MC(k((t))/k) is special. Taking the limit over (N, k′) we obtain

Theorem 1.6.11 (Katz correspondence). The inverse image functor

MC(k[t, t−1]/k)→ MC(k((t))/k)

restricted to the full subcategory MCsp(k[t, t−1]/k) of special objects in MC(k[t, t−1]/k),

induces an equivalence of categories:

MCsp(k[t, t−1]/k)
∼−→ MC(k((t))/k).

By a different approach compared to Katz’s, Deligne established the following corre-

spondence, which can be considered a subcorrespondence of Katz correspondence:

Theorem 1.6.12 (Deligne correspondence, [6, 15.35]). The inverse image functor

MCrs at 0,∞(k[t, t−1]/k)→ MCrs(k((t))/k)

between the category of differential modules over k[t, t−1] which are regular singular at zero

and at infinity and the category of regular differential modules over k((t)) is an equivalence.

Due to the fact that it is seemingly difficult to extend the approach to prove this result

to p-adic setting, we do not present it here. Another proof, which can be extended to

Deligne correspondence for formal regular-singular connections with parameters, is given

in [17].

We will consider some p-adic analogues of both correspondences of Deligne and Katz

in Chapter 3.



Chapter 2

An introduction to rigid geometry

2.1 Tate algebras and affinoid algebras

We start th́ıs section by reviewing some notions of non-archimedean geometry.

Definition 2.1.1. For a field K, a map | · | : K → [0,+∞) is called a non-archimedean

absolute value if for all x, y ∈ K the following conditions hold:

(i) |x| = 0 if and only if x = 0,

(ii) |xy| = |x||y|,

(iii) |x+ y| ⩽ max{|x|, |y|}.

An absolute value | · | is called trivial if for all x ∈ K, |x| ∈ {0, 1}. We say an absolute

value discrete if |K∗| is a discrete subset of [0,+∞).

Obviously we can check that for all x ∈ K, | − x| = |x| and |1| = 1.

Definition 2.1.2. For a field K, a map v : K → R ∪ {∞} is called a valuation on K if

for all x, y ∈ K, the following conditions satisfy:

(i) v(x) =∞ if and only if x = 0,

(ii) v(xy) = v(x) + v(y),

(iii) v(x+ y) ⩾ min{v(x), v(y)}.

Remark 2.1.3. There is a one-to-one correspondence between non-archimedean absolute

values and valuations by setting

v(x) = − log |x| for x ∈ K

and

|x| = e−v(x) for x ∈ K.

31
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On the other hand, we can equip a topology on K induced from the associated non-

archimedean metric of an absolute value, i.e. for x, y ∈ K, set

d(x, y) = |x− y|.

Similarly as in archimedean fields, we also consider the convergence of sequences and

infinite series of nonarchimedean counterparts. In particular, a nonarchimedean field K is

called complete if every Cauchy sequence converges to an element of K.

Proposition 2.1.4. [9, 2.1, Lemma 3] A series
∑∞

n=0 an of elements an ∈ K determines

a Cauchy sequence if and only if limn→∞ |an| = 0. In the case that K is complete, the

series converges if and only if limn→∞ |an| = 0.

Proof. Let ε > 0. By the condition limn→∞ |an| = 0, there exists an N ∈ N such that

|an| < ε for all n ⩾ N . Then for by nonarchimedean triangle inequality and for any

integers ℓ ⩾ k > N , we obtain ∣∣∣∣∣
ℓ∑

n=k

an

∣∣∣∣∣ ⩽ max
k⩽n⩽ℓ

|an| < ε,

which has to be shown.

By the non-archimedean triangle inequality stated in Definition 2.1.1,

d(y, z) ⩽ max{d(x, y), d(z, x)}, x, y, z ∈ K.

This obviously implies that any triangle in K is isoceles. Consequently, each point of a

disk in K can serve as its center; any two disks with non-empty intersection are concentric.

For a center x in K and a radius r ∈ (0,+∞) we can consider the open disk

D−(x, r) = {z ∈ K, d(z, x) < r},

the closed disk

D+(x, r) = {z ∈ K, d(z, x) ⩽ r}.

However, both D−(x, r) and D+(x, r) are open and closed.

The preceding discussions lead us to a conclusion of the topology of K:

Proposition 2.1.5. [9, 2.1, Proposition 4] The topology of K is totally disconnected, i.e.

any subset in K except singleton sets is disconnected.
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For a complete nonarchimedean field K, let K be an algebraic closure of K. The

absolute value ofK can be extended uniquely to the one ofK despite the non-completeness

of K.

For each integer d ⩾ 1, we consider the unit ball in K
d
:

Bd(K) = {(x1, . . . , xd) ∈ K
d
: |x1| ⩽ 1, . . . , |xd| ⩽ 1}.

As a consequence of Proposition 2.1.4, a formal power series

f =
∑
n∈Nd

anX
n =

∑
n∈Nd

an1...ndX
n1

1 . . . Xnd

d ∈ K[[X1, . . . , Xd]]

is convergent on the unit ball Bd(K) if and only if lim|n|→∞ |an| = 0.

Definition 2.1.6. The K-algebra Td = K {X1, . . . , Xd} of all formal power series con-

verging on Bd(K), i.e.

Td =

{∑
n∈Nd

anX
n ∈ K[[X1, . . . , Xd]], an ∈ K, lim

|n|→∞
|an| = 0

}
,

is called the Tate algebra of restricted, or strictly convergent power series. For

simplicity, T0 = K.

Proposition 2.1.7. Td is a normed K-algebra with the Gauss norm:

|f | = max
n∈Nd

|an|, f =
∑
n

anX
n.

Moreover, Td is Banach with respect to Gauss norm.

Proof. Instead of giving the complete proof, we only prove the hardest part, which is to

verify the multiplicativeness of this norm. Obviously we have |gh| ⩽ |g||h| for g, h ∈ Tn.
For its equality, we consider the valuation ring

R = {x ∈ K, |x| ⩽ 1},

its maximal ideal

m = {x ∈ K, |x| < 1}

and its residue field k = R/m. Let R {X1, . . . , Xd} be the R-algebra of all restricted power

series whose coefficients are in R (equivalently, the Gauss norm of those power series are

not greater than 1). It is clear that the canonical epimorphism

R→ k, x 7→ x̃
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induces an epimorphism

π : R {X1, . . . , Xd} → k [X1, . . . , Xd] ,
∑
n

anX
n 7→

∑
n

ãnX
n.

For any g ∈ R {X1, . . . , Xd} we call g̃ = π(g) the reduction of g. We consider some cases

of g and h as follows.

(i) If g or h is a constant element in Td, |gh| = |g||h| obviously holds.

(ii) If g, h ∈ Td satisfy |g| = |h| = 1, Then g, h and gh are elements of R {X1, . . . , Xd}
and

π(gh) = g̃h̃ ̸= 0,

since k [ξ1, . . . , ξn] is an integral domain. Due to the fact that the reduction f̃ = 0 if

and only if |f | < 1 for any f ∈ Td, we conclude |gh| = 1.

(iii) In the general case, there exists c, d ∈ K such that g = cg0, h = dh0 such that

|g| = |c|, |h| = |d| and |g0| = |h0| = 1. Then

|gh| = |cdg0h0| = |cd||g0h0| = |c||d| = |g||h|

which we have to prove.

With respect to the Gauss norm, the Tate algebra Tn is complete and hence a Banach

K-algebra, by [9, 2.2, Proposition 3].

For a broader understanding of Tate algebras, we state some important analytic and

algebraic properties of Td without proofs in [9, 2.2-3].

(i) (Maximum principle) Let f ∈ Td. then for all points x of the unit ball Bd(K),

|f(x)| ⩽ |f | and the equality holds.

(ii) Noether Normalization holds for Tate algebra. Specifically, for an ideal p ⊊ Td, we

can choose a K-algebra monomorphism Td0 → Td for some d0 ∈ N such that the

following composition morphism is finite:

Td0 → Td → Td/p.

e can be calculated uniquely as the Krull dimension of Td/p.
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(iii) Td is Noetherian, Jacobson and factorial.

(iv) The Krull dimension of Td is d.

Definition 2.1.8. A K-algebra A is called an affinoid K-algebra if there is a surjective

homomorphism of K-algebras β : Td → A for some d.

We can associate for each surjective homomorphism β : Td → A a residue norm | · |β on A

given by

|β(f)|β = inf
g∈Kerβ

|f − g|,

where | · | in the right-hand side is the Gauss norm. Indeed, the K-algebra norm | · |α
induces the quotient topology of Td on A. A is also a Banach K-algebra under | · |β (see

[9, 3.1, Proposition 5]). Moreover, by [9, 3.1, Proposition 20], all residue norms on A are

equivalent.

Example 2.1.9. For an affinoid K-algebra K with the topology given by any residue

norm. We consider for a tuple of variables Y = (Y1, . . . , Yn), the K-algebra of restricted

power series in Y with coefficients in A as follows.

A {Y } =

{∑
n∈Nd

anY
n ∈ A[[Y ]]; an ∈ A, lim

n∈Nd
|an| = 0

}
This definition is clearly independent of the choice of residue norm.

Claim. A{Y } is an affinoid K-algebra.

Indeed, for a tuple of variables X = (X1, . . . , Xe) let β : K {X} → A be an epimor-

phism and it induces a morphism of K-algebras

α̃ : Td+e = K {X, Y } → A {Y }∑
n∈Nd

(∑
m∈Ne

am,nX
m

)
Y n 7→

∑
n∈Nd

β

(∑
m∈Ne

am,nX
m

)
Y n

which is surjective. We can define the residue norm of A{Y } induced from the residue

norm of A by β: ∣∣∣∣∣∑
n∈Nd

anY
n

∣∣∣∣∣
β̃

= max
n∈Nd

|an|β .

Notice that this residue norm of A{Y } coincides with its Gauss norm. Thus A{Y } is an
affinoid K-algebra.
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2.2 Affinoid spaces

Definition 2.2.1. For an affinoid K-algebra A, we denote by SpA = (MaxA,A) the

affinoid K-space associated to A, where MaxA is the set of maximal ideals.

Definition 2.2.2. On each affinoid K-space SpA, we can define its Zariski topology

as follows: any Zariski closed subset of SpA has the form:

V (p) = {x ∈ SpA : f(x) = 0 ∀f ∈ p} = {x ∈ SpA; p ⊂ mx}

for some ideal p of A.

Similarly as in algebraic geometry, we consider the ideal

I(X) = {f ∈ A; f(x) = 0 ∀x ∈ X} =
⋂
x∈X

mx

for any subset X of SpA. From these definition, we can easily verify some relations

between V (·) and I(·):

(i) For a subset X of SpA, V (I(X)) = X, where X is the Zariski closure of X in SpA.

(ii) For an ideal p of an affinoid algebra A, I(V (p)) = rad p where rad p is the radical

of p.

(iii) V and I determine inverse bijections between the set of closed subsets of SpA and

the set of reduced ideals in A for any affinoid K-algebra A.

The first assertion is proved similarly as in algebraic geometry, which is based on inclusion

and exclusion properties of V (·) and I(·). The secone one is due to the Jacobsonness of

an affinoid algebra, i.e. the nilradical of any ideal is the intersection of all maximal ideals

containing it [9, 2.2, Proposition 16; 3.1, Proposition 3]. The third statement is a direct

consequence of two above statements.

For any morphism ϕ : B → A of affinoid K-algebras, we can construct the associated

map of affinoid K-spaces:

ϕ# : SpA→ SpB,m 7→ ϕ−1(m).

Similarly as in algebraic geometry, we have an antiequivalence between the category of

affinoid K-spaces and the category of affinoid K-algebras.
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Canonical topology

Due to the coarseness of Zariski topology, we use a finer topology on affinoid K-spaces,

which is derived from the topology of K. Specifically, for some d ∈ N and in the case

that K is algebraically closed, SpTd can be identified with Bd(K); an arbitrary affinoid

K-space SpA can be considered as a closed subspace of this unit ball. In the case that

K ̸= K, SpTd can be viewed as the quotient space of Bd(K) by the action of Gal(K/K).

Notice that for an affinoid K-space A and a point x ∈ SpA, we denote for each f ∈ A
its image in A/mx by f(x).

Definition 2.2.3. With the notion X = SpA of an affinoid K-space, the canonical

topology is defined as topology generated by all open sets of the following type:

X(g, ε) = {x ∈ X; |g(x)| ⩽ ε} .

for g ∈ A and ε > 0. We also use the notations X(g) = X(g, 1), g ∈ A for basic open

subsets of X.

Proposition 2.2.4. [9, 3.3, Proposition 2] {X(g), g ∈ A} is a subbasis of the canonical

topology on X = SpA, i.e. a subset U of X is open if and only if it can be written as a

union of sets of type

X(g1, . . . , fr) := X(g1) ∩ . . . ∩X(gr)

for g1, . . . , gr ∈ A.

Proof. It is clear that {|g(x)|, x ∈ A} ⊂ |K| for any g ∈ A. Consequently for ε > 0 we

can write

X(g, ε) =
⋃

ε′∈|K∗|
ε′⩽ε

X(g, ε′).

For ε′ ∈ |K∗|, let N ∈ K be the norm of ε′ in the splitting field over K. This implies

ε′s = |N | for some positive integer s. We have

X(g, ε′) = X(gs, ε′s) = X(N−1gs)

and we are done.

Proposition 2.2.5. [9, 3.3, Proposition 4] The following sets are open:
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- {x ∈ SpA, g(x) ̸= 0},

- {x ∈ SpA, g(x)□ ε}, □ ∈ {⩽, <,=, >,⩾}, ε > 0.

Proof. Instead of giving a complete proof, we only prove {x ∈ SpA, g(x) = ε} is open; the
openness of other sets is proved similarly.

With the notion mx of the maximal ideal corresponding to x in A and g(x) the image

of g in A/mx. Furthermore, let P (X) ∈ K[X] be the minimal polynomial of g(x) over K

and let

P (X) =

s∏
i=1

(X − λi), λi ∈ K

be its factorization to linear terms with zeros λi ∈ K. We have

ε = |g(x)| = |λi|

for all i, if we pick any embedding A/mx ↪→ K.

Claim. For h := P (g) ∈ A, obviously h(x) = P (g(x)) = 0. If y ∈ X satisfies |h(y)| < εs,

then |g(y)| = ε.

Indeed, assume by contradiction that there exists an y ∈ X satisfying |h(y)| < εn such

that |g(y)| ≠ ε. Then picking an embedding A/my → K, we obtain for all i:

|g(y)− λi| = max (|g(y)| , |λi|) ⩾ |λi| = ε

and this implies

|h(y)| = |P (g(y))| =
s∏
i=1

|g(y)− λi| ⩾ εs,

contradicting the choice of y. Consequently,

|g(y)| = ε ∀y ∈ X(c−1h)

if c ∈ K∗ satisfies |c| < εs. In other words, x has an open neighborhood X(c−1h) ⊂
{x ∈ SpA, g(x) = ε}, as desired.

Remark 2.2.6. As a direct consequence of Proposition 2.2.5, any morphism σ : SpB →
SpA of affinoid spaces preserves the intersection of basic open sets X(g), f ∈ A. Specifi-

cally, for g1, . . . , gr ∈ A and X(g1, . . . , fr) = X(g1) ∩ . . . ∩X(gr) and we have

σ−1 ((SpA)(g1, . . . , fr)) = (SpB) (σ∗(g1), . . . , σ
∗(gr)) .

In particular, σ is continuous with respect to the canonical topology.
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Affinoid subdomains

Similarly as in algebraic geometry, we need the notion of affine open subschemes in rigid

geometry. Recall that we have the following result in algebraic geometry:

Proposition 2.2.7. For an affine scheme X = SpecA and an affine open subset U =

SpecAU ⊆ X, we have

Hom(AU , B) = {f : A→ B : Im(SpecB → SpecA) ⊆ U}

for every ring B. By Yoneda’s lemma, this statement is equivalent to the fact that the

algebra AU is uniquely determined by the open set U .

Proof. On the one hand, let g : AU → B is a ring homomorphism. U = SpecAU is an affine

open subset of X = SpecA, thus there is a canonical ring homomorphism i : A → AU .

We consider the composition homomorphism

g ◦ i : A→ AU → B,

the induced morphism of affine schemes

(g ◦ i)∗ : SpecB → SpecA

obviously has the image in U .

On the other hand, let f : A → B be a ring homomorphism such that the image of

induced morphism of affine schemes is a subset of U . U is an affine subscheme of X, hence

it is quasi-compact and satisfies the following decomposition

U =

r⋃
i=1

D(fi)

where f1, . . . , fr ∈ A and D(fi) are basic open subset of X. Because U = SpecAU , the

ideal generated by i(f1), . . . , i(fr) in AU is the whole AU . Denote f = (f(f1), . . . , f(fr))

an ideal of B. For any prime ideal q ⊂ B, since im(SpecB → SpecA) ⊆ U , there exists

some i such that fi ̸= f−1q, in other words, (f1, . . . , fr) ̸= f−1q. Hence f ⊈ q for every

prime ideal q ⊂ B. We conclude that f = B and the homomorphism f : A→ B factorizes

through i : A→ AU .

Definition 2.2.8. ForX = SpA an affinoidK-space, a subset U ofX is called an affinoid

subdomain if the following functor:
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hA,U : {affinoid K-algebras} → Sets

B 7→ {f : A→ B : im(f : SpB → SpA) ⊆ U}

is representable by an affinoid K-algebra AU .

Remark 2.2.9. By [9, 3.3, 12-19], the family of affinoid subdomains (in some affinoid space)

is transitive and closed under finite intersections. Otherwise, any affinoid subdomain is

open with respect to the canonical topology.

Example 2.2.10. For X = SpA an affinoid K-space, there are some special affinoid

subdomains of X, by constructing their associated affinoid algebras (cf. Definition 2.2.8).

(i) A Weierstrass domain is a subset of type

X(g1, . . . , gr) = {x ∈ X, |gi(x)| ⩽ 1}

for g1, . . . , gr ∈ A. We associate

U = X(g1, . . . , gr)⇝ AU = A {X1, . . . , Xr} /(Xi − gi).

(ii) A Laurent domain is a subset of type

X(g1, . . . , gr, h
−1
1 , . . . , h−1

s ) = {x ∈ X, |gi(x)| ⩽ 1, |hj(x)| ⩾ 1}

for g1, . . . , gr, h1, . . . , hs ∈ A. We associate

U = X(g1, . . . , gr, h
−1
1 , . . . , h−1

s )⇝ AU = A {X1, . . . , Xr, Y1, . . . , Ys} /(Xi−gi, hjYj−1).

(iii) A rational domain is a subset of type

X

(
g1
g0
, . . . ,

gr
g0

)
= {x ∈ X, |gi(x)| ⩽ |g0(x)|}

for g0, g1, . . . , gr ∈ A without common zeros. We associate

U = X

(
g1
g0
, . . . ,

gr
g0

)
⇝ AU = A {X1, . . . , Xr} /(gi − g0Xi).
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Sheaf-theoretic view

We construct the sheaf theory of affinoid space in a similar way as in algebraic geometry.

In this part, for X a fixed affinoid K-space, we denote by OX the contravariant functor

from the category of affinoid subdomains of X to the category of K-algebras. Specifically,

we associate for any affinoid subdomain U ⊂ X the corresponding affinoid K-algebra

OX(U). In particular, if X = SpA is an affinoid K-space, we define OX(U) = AU , where

AU is the K-algebra in Definition 2.2.8.

We associate for any inclusion of affinoid subdomains U ⊂ V of X a canonical mor-

phism between the corresponding affinoid K-algebras

ρVU : OX(V ) → OX(U)
f 7→ f |U

such that for U ⊂ V ⊂ W inclusion of affinoid subdomains of X the following conditions

hold:

(i) ρUU = idU .

(ii) ρWU = ρVU ◦ ρ
W
V .

Those maps ρVU are considered as restrictions of affinoid functions on V to affinoid functions

on U .

Definition 2.2.11. The presheaf OX is called the presheaf of affinoid functions on X.

Recall that OX is a sheaf if for all affinoid subdomains U and all covering of U by

affinoid subdomains Ui the following conditions hold:

(Id) (Identity) If for all i ∈ I, g ∈ OX(U) satisfies g|Ui
= 0 , then g = 0.

(G) (Gluing) If for all i, j ∈ I, {gi ∈ OX(Ui)} satisfy gi|Ui∩Uj
= gj |Ui∩Uj

, there exists

uniquely g ∈ OX(U) such that for all i ∈ I, g|Ui
= gi.

Condition (Id) holds by [9, 4.1, Corollary 4]. In contrast, condition (G) is generally not

satisfied as the canonical topology on X is totally disconnected; therefore OX is generally

not a sheaf.

Similarly as in algebraic geometry, sheaf conditions (Id) and (G) are equivalent to the

fact that the following sequence is exact:

OX(U)→
∏
i∈I

OX(Ui)⇒
∏
i,j∈I

OX(Ui ∩ Uj), (∗)
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where

g 7→ (g|Ui
)i∈I , (gi)i∈I 7→


(
gi|Ui∩Uj

)
i,j∈I(

gj |Ui∩Uj

)
i,j∈I

for every affinoid subdomain U and every covering of U by affinoid subdomains Ui. By [9,

3.3, Theorem 20] of Geritzen and Grauert, we can only consider all rational subdomains

instead of affinoid subdomains.

In fact, condition (G) holds with finite covers, which is called Tate’s Acyclicity:

Theorem 2.2.12 (Tate’s Acyclicity Theorem, [9, 4.3, Theorem 1]). For an affinoid K-

space X, the exactness of the sequence (∗) holds for all finite coverings of X by rational

subdomains.

2.3 Rigid spaces

As we have already indicated at the end of previous section, the presheaf of affinoid

functions will satisfy sheaf properties if we require some additional conditions for open

coverings. To obtain a generalized Tate’s Acylicity Theorem for arbitrary coverings, we

have to use a more ”general” topology. This topology also allows us to construct objects

that serve as schemes in algebraic geometry, i.e. they are glued from local affinoid charts.

Admissible topology

Definition 2.3.1. AGrothendieck topology T is defined as a pair (Cat T ,Cov T ), with
the first one a category and the second one a set of families of morphisms (Ui → U)i∈I in

Cat T , called coverings, such that T satisfies the following conditions:

(i) Any isomorphism U
∼−→ V in Cat T also belongs to Cov T .

(ii) If for i ∈ I, (Ui → U)i∈I , (Vij → Ui)j∈Ji ∈ Cov T , then the composition

(Vij → Ui → U)i∈I,j∈Ji ∈ Cov T .

(iii) If (Ui → U)i∈I ∈ Cov T and for every morphism V → U in Cat T , the fiber products
Ui ×U V exist in Cat T and (Ui ×U V → V )i∈I ∈ Cov T .
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Remark 2.3.2. In particular, we can naturally equip a Grothendieck topology on any

topological space X. Indeed, let Cat T be the category of open subsets of X whose

morphisms are all inclusions and Cov T all open covers of open subsets of X. Moreover,

there are several useful examples of Grothendieck topology in algebraic geometry such as

étale topology, fppf -topology and fpqc-topology.

Based on affinoid subdomains, we can canonically define a Grothendieck topology on an

affinoid space, called the weak Grothendieck topology, as follows. This Grothendieck

topology consists of the category of affinoid subdomains of X whose morphisms are inclu-

sions and the set of finite coverings of inclusions (Ui ↪→ U)i∈I in X. It is clear that the

presheaf OX of affinoid functions is also a sheaf by Tate’s Acyclicity Theorem (Theorem

2.2.12).

We can naturally add open sets and coverings to weak Grothendieck topology in order

that the presheaf OX satisfies the gluing condition (G) as follows.

Definition 2.3.3. The strong Grothendieck topology (or admissible topology) on

an affinoid K-space X is defined as follows.

(i) A subset U of X is called admissible open if we can choose a covering of U by

(infinite) affinoid subdomains Ui ⊂ X, i ∈ I such that for all ϕ : Z → X morphisms

of affinoid K-spaces such that ϕ(Z) ⊂ U , the covering {ϕ−1(Ui)}i∈I of Z admits a

finite subcovering of Z by affinoid subdomains.

(ii) A covering of some admissible open subset V of X by (infinite) admissible open sets

Vj , j ∈ J is called admissible if for each ϕ : Z → X morphism of affinoid K-spaces

such that ϕ(Z) ⊂ V , the covering {ϕ−1(Vj)}j∈J of Z admits a finite subcovering of

Z by affinoid subdomains.

Remark 2.3.4. We state without proofs some properties of admissible topology.

(i) The admissible topology is also a Grothendieck topology,

(ii) Morphisms of affinoid spaces are continuous with respect to admissible topology,

(iii) Any finite union of affinoid subdomains is admissible open,

(iv) The admissible topology on X is finer than the Zariski topology,
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(v) Any sheaf on some affinoid space with respect to the weak Grothendieck topology

can be extended uniquely to a sheaf with respect to the admissible one. This result

is useful particularly for the presheaf OX , which is a sheaf with respect to the weak

Grothendieck topology by Tate’s Acyclicity Theorem (Theorem 2.2.12). We call the

extended sheaf of OX by the sheaf of rigid analytic functions on X and also

denote it by OX .

We finish this part by proposing some examples of admissible open sets and admissible

coverings.

Example 2.3.5. Consider X = SpK {T} = ”{z ∈ K̂ : |z| ⩽ 1}” the one-dimensional

disk over K and we have OX(X) = K {T}. The ”unit circle”

C := {x ∈ X : |T (x)| = 1} = ”{t ∈ K̂ : |t| = 1}”

is a rational domain with

OX(V ) = K
{
T, T−1

}
=

{∑
ν∈Z

anT
n : |an| → 0 if |n| → ∞

}
.

Now we consider the ”open unit disk”

U := X \ C = {x ∈ X : |T (x)| < 1} = ”{t ∈ K̂ : |t| < 1}”.

Recall that T (x) is the image of T via the canonical projection K {T} → K {T}mx, with

mx the maximal ideal corresponding to x. We claim that U is admissible open in X. Let

ε ∈ |K×| with 0 < ε < 1 and

Un :=
{
x ∈ X : |T (x)| ⩽ ε1/n

}
= ”{t ∈ K̂ : |t| ⩽ ε1/n}”

for each n ∈ N. We obtain a cover U =
⋃
n∈N Un by rational subdomains of X. Let

ϕ : X ′ = SpA′ → X be a morphism of affinoid varieties such that im(ϕ) ⊆ U . By

Maximum Principle,

|ϕ∗(T )|sup := sup
y∈X ′

|ϕ∗(T )(y)| = max
y∈X ′

|ϕ∗(T )(y)| = max
y∈X ′

|T (ϕ(y))| < 1.

It follows that ϕ−1(Un) = X ′ for any sufficiently large n. Consequently, X = U ∪C is not

an admissible covering.
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Example 2.3.6. For an affinoid K-space X = SpA, f ∈ A and c > 0, the following sets

are admissible open subsets of X:

{f(x) ̸= 0}, {x ∈ X : |g(x)|□ c},□ ∈ {⩽, <,=, >,⩾}.

Consequently, finite intersections and unions of sets of these types are admissible.

Example 2.3.7. There exists a open subset U ⊂ Sp{T1, T2} with respect to canonical

topology but U is not admissible open. For detailed discussion, see [18, 2.2.12].

Rigid spaces

Definition 2.3.8. A rigid (analytic) K-space is a locally ringed K-space (X,OX)
(with respect to admissible topology) such that

(i) the admissible topology of X satisfies the complete conditions in [9, 5.1, Proposition

5], and

(ii) there exists an admissible covering (Ui)i∈I of X by affinoid K-spaces (Ui,OX |Ui
).

We call a morphism of locally ringed K-spaces with respect to the admissible topology by

a morphism of rigid K-spaces.

Remark 2.3.9. Similarly as schemes in algebraic geometry, global rigid K-spaces are con-

structed by gluing local pieces, see [9, 5.3, Proposition 5]. As an obvious corollary, the

fiber product of two rigid K-spaces exists.

Rigid analytification

In this part, we will construct the rigid analytification of any K-scheme Z of locally of

finite type. This functor is considered as the p-adic analogue of Serre’s GAGA functor in

the complex case.

We begin by consider the affine d-space Ad
K . For a fixed element c in K, |c| > 1 we

denote

T
(i)
d := K

{
c−iX1, . . . , c

−iXd

}
,

where SpT
(i)
d can be regarded as the d-dimensional ball of radius |c|i. We have canonical

inclusions

Td = T
(0)
d ←↩ T (1)

d ←↩ · · · ←↩ K[X1, . . . , Xd]
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and corresponding embeddings of affinoid subdomains

BdK = SpT
(0)
d ↪→ SpT

(1)
d ↪→ · · ·

Using [9, 5.3, Proposition 5] as stated in Remark 2.3.9, we can glue these balls with respect

to admissible covering to obtain their ”union”:

Ad,an
K :=

∞⋃
i=0

SpT
(i)
d

and it is defined as the rigid analytification of the affine d-space Ad
K . Moreover, this

construction is canonical:

Lemma 2.3.10. [9, 5.4, Lemma 1] The inclusions

Td = T
(0)
d ←↩ T (1)

d ←↩ · · · ←↩ K[X1, . . . , Xd]

canonically induce inclusions

MaxT
(0)
d ⊂ MaxT

(1)
d ⊂ . . . ⊂ MaxK[X1, . . . , Xd]

of maximal spectra such that MaxK[X1, . . . , Xd] is the union of subspectra MaxT
(i)
d .

Proof. As we have inclusions of affinoid subdomains SpT
(i)
d ↪→ SpT

(i+1)
d , the inclusions

between maximal spectra of the above affinoid K-algebras are clear.

For simplicity, we first rewrite the tuple of variables (X1, . . . , Xd) =: X.

Claim 1. Let m be a maximal ideal of K{X}. Then m0 := m∩K[X] is a maximal ideal

of K[X] such that m = m0K{X}.
Firstly, there is a commutative diagram whose horizontal homomorphisms are injective:

K[X] K{X}

K[X]/m0 K{X}/m

By Noether’s Normalization Theorem (Corollary 11, Section 2.2 and Proposition 3, Section

3.1, [9]),K{X}/m is an affinoidK-algebra of Krull dimension d0 ⩽ d; otherwise,K{X}/m
is a field, hence it is finite over K. By the injection in K{X}/m, K[X]/m0 is also finite
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over K and it follows that m0 is maximal in K[X]. To obtain m = m0K{X}, we consider
two injections

K[X]/m0 ↪→ K{X}/m0K{X}, K[X]/m0 ↪→ K{X}/m.

On the other hand, K[X] is dense in K{X} with respect to canonical topology of K. It

follows that both these injections are surjective, hence bijective, because K-vector spaces

of finite dimension are complete. We conclude that K{X}/m0K{X} ∼= K{X}/m, hence

m = m0K{X} and thus the canonical map

MaxT
(i)
d → MaxK[X]

is a well-defined injective homomorphism for i = 0 and thus for all i.

Claim 2. For any maximal ideal m0 of K[X], there exists N ∈ N such that m0T
(i)
d is

maximal in T
(i)
d for all i ⩾ N .

Noether Normalization theorem for polynomial rings implies that K[X]/m0 is a finite

extension of K. We pick an N ∈ N such that

|Xj | ⩽ |c|N

for Xj is the residue class of Xj in K[X]/m0. Consequently, if i ⩾ N , the projection

K[X]→ K[X]/m0 factors through T
(i)
d = K{c−iX} via a unique K-homomorphism

T
(i)
d → K[X]/m0, Xj 7→ Xj , j = 1, . . . , d

The kernel m1 of this map is a maximal ideal in T
(i)
d satisfying m1 ∩K[X] = m0. Conse-

quently,

MaxK[X] =

∞⋃
i=0

MaxT
(i)
d ,

which we have to show.

Let SpecK[X]/p be an affine K-scheme of finite type with an ideal p ⊂ K[X] and

X = (X1, . . . , Xd), its rigid analytification can be constructed similarly by considering the

maps

T
(0)
d /pT (0)

d ← T
(1)
d /pT (1)

d ← T
(2)
d /pT (2)

d ← . . .← K[X]/p



48

and

MaxT
(0)
d /pT (0)

d ↪→ MaxT
(1)
d /pT (1)

d ↪→ MaxT
(2)
d /pT (2)

d ↪→ . . . ↪→ MaxK[X]/p

where the first maps

SpT
(i)
d /pT (i)

d ↪→ SpT
(i+1)
d /pT (i+1)

d

can be interpreted as inclusions of affinoid subdomains. By Lemma 2.3.10 that all maps

into MaxK[X]/p are injective and

MaxK[X]/p =

∞⋃
i=0

MaxT
(i)
d /pT (i)

d .

Also by [9, 5.3, Proposition 5] as in Remark 2.3.9, we can glue SpT
(i)
d /pT (i)

d together to

obtain a rigid K-space, called the rigid analytification of SpecK[X]/p.

For a general scheme, its rigid analytification is characterized as follows.

Definition 2.3.11. [9, 5.3, Definition-Proposition 3 and Proposition 4] Let (Z,OZ) be a

K-scheme of locally of finite type. There exists a rigid K-space (Zan,OZan), called the

rigid analytification of (Z,OZ), together with a morphism of locally ringed K-spaces

(an, an∗) : (Zan,OZan)→ (Z,OZ)

satisfying the following universal property:

For (Y,OY ) a rigid K-space and a morphism of locally ringed K-spaces (σ, σ∗) :

(Y,OY )→ (Z,OZ), there exists uniquely a morphism of rigidK-spaces (σ̄, σ̄∗) : (Y,OY )→
(Zan,OZan) makes the following diagram commute:

(Y,OY ) (Z,OZ)

(Zan,OZan)

(σ,σ∗)

(σ̄,σ̄∗) (an,an∗)

Example 2.3.12. The analytification A1,an
K of the affine line A1

K is constructed by gluing

affinoid spaces

SpT
(0)
1 ↪→ SpT

(1)
1 ↪→ · · ·

where SpT
(d)
1 = K{c−nX} can be refered as the disk with radius |c|d for some c ∈ K with

|c| > 1. We denote the annulus with radii |c|i and |c|i+1 by

A(i) := SpK{c−(i+1)X, ciX−1}.
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Then for any i, we obtain an admissible covering:

SpT
(i+1)
1 = SpT

(i)
1 ∪ A

(i).

As a result, the analytification A1,an
K admits an admissible cover by affinoid subdomains:

A1,an
K = SpT

(0)
1 ∪

⋃
i∈N

A(i).

Example 2.3.13. Denote by PdK = ProjK[X0, . . . , Xd] the projective d-space with vari-

ables X0, . . . , Xd and K is not necessarily algebraically closed. Denote

Ai = K

[
X0

Xi
, . . . ,

Xd

Xi

]
for the homogeneous localization by X0 of K[X0, . . . , Xd]. Then PdK is covered by Ui =

SpecAi ∼= Ad
K . Applying the construction of rigid analytifications of affine K-schemes of

finite type, we obtain an admissible cover of each Uan
i :

Uan
i =

⋃
j∈N

SpK

{
c−j

X0

Xi
, . . . , c−j

Xd

Xi

}
∼= Ad,an

K , i = 0, . . . , d,

for c ∈ K, |c| > 1. We claim that Pd,anK is covered by the unit balls

SpK

{
X0

Xi
, . . . ,

Xd

Xi

}
⊂ Uan

i , i = 0, . . . , d.

Indeed, let x be a closed point in PdK and κ(x) its residue field, which is a finite extension

of K. Obviously x can be refered as an κ(x)-point in PdK(κ(x)); thus x = (x0 : . . . : xd)

by homogeneous coordinates xi ∈ κ(x). Let i ∈ {0, . . . , d} such that

|xi| = max {|x0|, . . . , |xd|} ,

with the extended absolute value on κ(x) from the one of K. This implies

x ∈ SpK

{
X0

Xi
, . . . ,

Xd

Xi

}
and

Pd,anK =

d⋃
i=0

SpK

{
X0

Xi
, . . . ,

Xd

Xi

}
,

which is also an admissible cover of Pd,anK .
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2.4 Relation with formal geometry

In classical rigid geometry, we deal with a nonarchimedean field K. The idea of Raynaud

is to extend our structures (over K) in rigid geometry to those over its valuation ring R.

Firstly, we consider R-algebras R⟨X1, . . . , Xn⟩ of restricted power series whose coefficients

are in R and their quotients with respect to finitely generated ideals. Those R-algebras

can be viewed as R-models of affinoid K-algebras. Specifically, for such an R-model, its

generic fiber is indeed an affinoid K-algebra.

Although we can consider general adic rings as in [9, 7] in formal geometry, it is enough

to work with the valuation ring R of a field K with a complete non-Archimedean absolute

value | · |, with the ideal of definition I = (t) for some uniformizer t ∈ R, 0 < |t| < 1.

Formal schemes

Firstly we recall the construction of formal schemes. Similarly as in algebraic geometry,

we have to define affine formal schemes and the global ones are glued from local affine

charts.

Definition 2.4.1. For an I-adically complete and separated R-algebra A, with ideal of

definition IA, let X = Spf A be the set of all open prime ideals p ⊂ A, equivalently, each

p ∈ Spf A contains some InA. Then we can naturally identify X with the closed subset

SpecA/IA ⊂ SpecA. The topology on Spf A is induced from the Zariski topology of

SpecA. We can define OX be the sheaf of (topological) R-algebras based on basic open

subsets:

OX : D(g) 7→ A{g−1} = lim←−
n

(
(A/InA) [g−1]

)
The affine formal scheme of A is defined as the locally ringed space (X,OX).

Definition 2.4.2. We call a formal R-scheme for a locally (topologically) ringed space

(X,OX) such that X admits an open (formal) affine covering (Xi,OX|Xi
).

Example 2.4.3.

(i) For a scheme X and a quasi-coherent ideal sheaf I of OX , let Y be the closed

subscheme corresponding to I. Then

(X̂,O
X̂
) :=

(
Y, lim←−

n

(OX/In)
)
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is a locally ringed space, called the formal completion of X along Y . In the

affine case let X = SpecA and the ideal a ⊂ A associates for I. We obtain

(X̂,O
X̂
) = Spf(lim←−

n

A/an) = Spf Â

where Â is the a-adic completion of A.

(ii) In particular, we consider the case A = R[X] with a complete discrete valuation

ring R with residue field k and fraction field K, X = (X1, . . . , Xd), a = (t) for some

non-unit t ∈ R \ {0}. Therefore X ∼= Ad
R and there is a bijection between Y and the

special fiber Ad
k of X. The formal completion of X along Y is

X̂ = Spf R{X}.

The generic fiber of this space

BdK = SpK{X} = Sp(R{X} ⊗R K)

is exactly the affinoid unit ball and it admits a canonical open immersion into the

rigid analytification:

BdK ↪→ Ad,an
K .

Raynaud’s functor

In this part, we use a slightly modified setting of Example 2.4.3(ii), i.e. a complete (non-

archimedean) valuation ring R with residue field k and fraction field K. With the above

notation | · | for the absolute value, we denote the ideal of definition by I = (t) for some

uniformizer t ∈ R, 0 < |t| < 1.

Definition 2.4.4. An R-algebra A is called of topologically finite type if it is isomor-

phic to an R-algebra of type R {X1, . . . Xd} /a that is endowed with the I-adic topology

and where a is an ideal in R {X1, . . . , Xd}.

The condition being of topologically finite type can be checked on complete localiza-

tions, i.e. A{f−1} for some A and f ∈ A, which allows us to extend these notions to

formal R-schemes.
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Definition 2.4.5. A formal R-scheme X is called locally of topologically finite type

if there exists an open covering (Xi)i∈I of X by affine formal spectra Xi = Spf Ai of

R-algebras of topologically finite type.

For the ”generic fiber” functor from the category of formal R-schemes to the category

of rigid K-spaces, we first consider the affine case:

an : X = Spf A 7→ Xan = Sp(A⊗R K)

where we claim that A⊗R K is an affinoid K-algebra. Indeed, for an R-algebra of topo-

logically finite type A, it can be written as a quotient R{X1, . . . , Xd}/a. Localizing by

S = R \ {0}, we obtain

A⊗R K = S−1(R{X1, . . . , Xd})/(a),

We only have to check S−1(R{X1, . . . , Xd}) = K{X1, . . . , Xd}. Firstly we have obvious

inclusions

R{X1, . . . , Xd} ⊂ S−1 (R{X1, . . . , Xd}) ⊂ K{X1, . . . , Xd}.

It is clearly seen that, we can choose an element s ∈ S for each f ∈ K{X1, . . . , Xd} such
that s−1f ∈ R{X1, . . . , Xd} because the limit of coefficients of f tends to zero. As a result,

A⊗RK is an affinoid K-algebra and the rigid K-space Xan = Sp(A⊗RK) is well-defined.

On the other hand, a morphism of affine formal R-schemes ϕ : Spf A → Spf B corre-

sponds to the R-homomorphism ϕ∗ : B → A. Then the ”generic fiber”

ϕ∗,an : B ⊗R K → A⊗R K

naturally induces a morphism

ϕan : Sp(A⊗R K)→ Sp(B ⊗R K)

of affinoid K-spaces as the image of ϕ under the functor an.

Moreover, we can prove that this functor commutes with complete localization, hence

preserves basic open subsets. This implies that an preserves open immersions, which is

the key to extend the functor an to global formal R-schemes. For detailed discussion, see

the part before [9, 7.4, Proposition 3].

The above discussion is the proof of the following result.
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Proposition 2.4.6. [9, 7.4, Proposition 3] With the notions R,K as above, the ”generic

fiber” functor

A 7→ A⊗R K

induces a functor from the category of formal R-schemes that are locally of topologically

finite type, to the category of rigid K-spaces

X 7→ Xan.

In general, there is a classification of all formal schemes whose generic fiber can be

regarded as a rigid analytic space, called the Raynaud’s generic fiber, see [9, 8.4,

Theorem 3].



Chapter 3

Deligne-Katz correspondence for overconvergent

isocrystals

In this chapter, we will consider isocrystals, particularly overconvergent isocrystals, which

plays as a special class of p-adic differential modules. Roughly speaking, crystals (or more

properly isocrystals) are the p-adic analogues of locally constant sheaves in topology,

locally free sheaves in sheaf cohomology, lisse sheaves in étale cohomology or local systems

in de Rham cohomology.

In this chapter, we use the following notations.

• k be a perfect field of characteristic p > 0.

• K be a field of characteristic 0, complete with respect to a discrete valuation, with

residue field k.

• OK is the ring of integers of K.

• m is the maximal ideal of OK .

• φ : K → K is a continuous automorphism induced from the absolute Frobenius

endomorphism on k, which is usually called the Frobenius lift on K.

• Kn is the subfield of K consisting of the elements fixed by φn.

3.1 Convergent and overconvergent isocrystals

This notion of overconvergent isocrystals, defined by Berthelot [3], [4] is motivated by

the notion of crystals or isocrystals given by Grothendieck [1] or Berthelot [2] in the con-

struction of infinitesimal cohomology and crystalline cohomology and Monsky-Washnitzer

cohomology [19].

54
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On smooth affine schemes

Let X = SpecA be a smooth affine scheme of finite type over k. By [20, 4, Theorem 6],

there exists a smooth affine scheme X̃ of finite type over OK such that X̃ ×OK
k =

X. Instead of the coordinate ring of X̃ due to its dependence of the lift, we con-

sider its unique p-adic completion Â, called the complete lift of A. We can write

Â = OK{x1, . . . , xd}/(f1, . . . , fm), where OK{x1, . . . , xd} is the OK-algebra of restricted

power series. Specifically, the latter OK-algebra consists of power series converging in the

unit ball {|x1| ⩽ 1, . . . , |xd| ⩽ 1}, as analogous to Definition 2.1.6. This OK-algebra is

also considered as the p-adic completion of OK [x1, . . . , xd].
We will follow the construction of the module of Kähler differentials (Proposition 1.1.3)

and the module with connection (Definition 1.3.2).

Denote by ÂK the affinoid algebra Â⊗OK
K (cf. Definition 2.1.8). Let Î be the ideal

of the complete tensor product ÂK⊗̂KÔK which is the kernel of the multiplication map

a ⊗ b 7→ ab. Denote Ω̂1
AK/K

= Î/Î2, which is also a ÂK-module. In terms of finiteness

of A, if Â ∼= OK{x1, . . . , xd}/(f1, . . . , fm), Ω̂1
AK/K

is the quotient of the free ÂK-module

generated by dx1, . . . , dxd by the submodule generated by df1, . . . , dfm. Let Ω̂
i
AK/K

be the

i-th exterior power of Ω̂1
AK/K

.

Definition 3.1.1. A module with formal connection over X is a finite locally free

ÂK-module M endowed with an integrable connection

∇ :M →M ⊗
ÂK

Ω̂1
AK/K

.

As an analogue of Definition 1.3.4, an integrable connection means that ∇ is a K-linear

homomorphism satisfying the Leibniz rule

∇(am) = m⊗ da+ a∇m, a ∈ ÂK ,m ∈M

such that the homomorphisms

0→M →M ⊗ Ω̂1
AK/K

→M ⊗ Ω̂2
AK/K

→ · · ·

induced by ∇ forms a complex of K-vector spaces.

Definition 3.1.2. With local étale coordinates (x1, . . . , xd) on X as above, denote by

∇∂xi :M →M
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the corresponding derivation of ∂
∂xi

. Obviously ∇∂xi ’s mutually commute due to the

integrability of ∇. Then ∇ is called convergent if for m ∈ M,a1, . . . , ad ∈ Â with

|ai| < 1 and cn ∈ Â for each n-tuple n = (n1, . . . , nd) of nonnegative integers, the series∑
cna

n1

1 · · · a
nd

d

∇n1

∂x1
· · · ∇nd

∂xd
(M)

n1! · · ·nd!
converges to an element of M .

Definition 3.1.3. A convergent isocrystal over X is a module with formal connection

(M,∇) such that ∇ is convergent.

Remark 3.1.4.

(i) This definition depends on the choice of local coordinates. Although convergent

isocrystals can be defined regardless to this choice, it is unnecessary to refer it in

this thesis.

(ii) The complex

0→M →M ⊗ Ω̂1
AK/K

→M ⊗ Ω̂2
AK/K

→ · · ·

is the de Rham complex ofM and its cohomology is the convergent cohomology

of X with coefficients in M .

(iii) However, finite-dimensionality of convergent cohomology does not hold. For in-

stance, we consider (K{t}, d) the trivial isocrystal on A1, i.e. K{t} is a module

with trivial connection. Obviously the map d : K{t} → Ω̂1
K{t}/K is not surjective.

Indeed, for a sequence (ai) ⊂ k of which infinitely many are zero, the differential

form
∑

i aip
itp

i−1dt is not exact.

By the above remark, one of the reasons why convergent isocrystals is quite inconve-

nient is the infinite-dimensionality of cohomology modules. We consider a refined notion,

which plays a central role in this thesis, as follows.

Definition 3.1.5. A K-algebra A equipped with a nonarchimedean absolute value | · | is
called weakly complete (or of Monsky-Washnitzer type) if for any f1, . . . , fd ∈ A
with |fi| < 1 and any cn ∈ A for each d-tuple n = (n1, . . . , nd) of nonnegative integers

with |cn| ⩾ 1, the sum ∑
n

cnf
n1

1 · · · f
nd

d

converges under | · | to an element of A.
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Remark 3.1.6.

(i) A complete algebra is weakly complete, but the converse is generally not true.

(ii) We denote by OK [x1, . . . , xd]† the weakly complete lift of OK [x1, . . . , xd], for the

algebra of formal power series that there exists an η > 1 so that the series converges

for |x1|, . . . , |xd| ⩽ η. This algebra is weakly complete but not complete.

The weakly complete lift of an algebra of finite type can be defined in a similar way as

follows. Let X = SpecA be a smooth affine scheme of finite type over k. By [20, 4, Theo-

rem 6], there is a smooth affine scheme X̃ of finite type over OK with X̃×OK
k = X. Thus

the weakly complete lift A† of A exists and is also unique up to a noncanonical isomor-

phism. Specifically, if A = k[x1, . . . , xd]/(f1, . . . , fm), A
† = OK [x1, . . . , xd]†/(f1, . . . , fm).

We also follow the construction of the module of Kähler differentials (Proposition 1.1.3)

and the module with connection (Definition 1.3.2).

Denote A†
K by A† ⊗OK

K. Let I† be the ideal of weakly complete tensor product

A†
K ⊗

†
K A†

K , which is the kernel of the multiplication map a⊗ b 7→ ab and put Ω1,†
AK/K

=

I†/(I†)2.

Definition 3.1.7. An overconvergent isocrystal over X is a finite locally free A†
K-

module M equipped with an overconvergent integrable connection

∇ :M →M ⊗A†
K
Ω1,†
AK/K

,

where the overconvergence of ∇ is defined similarly as in Definition 3.1.2 unless using the

weakly completeness of ∇ on some étale coordinates.

Remark 3.1.8.

(i) Similarly as with convergent isocrystals, we can define de Rham cohomology of an

overconvergent isocrystalM , which is called the overconvergent cohomology, or more

commonly the rigid cohomology of X with coefficients in M .

(ii) The rigid cohomology of A1 with coefficients in the trivial isocrystal is finite dimen-

sional, specifically, H0
rig(A1,OA1) is one-dimensional and other cohomology modules

are zero-dimensional.
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On smooth curves

ForX/k a smooth scheme, let X/OK be a formally smooth formalOK-model ofX and Xan

the rigid analytic space corresponding to X (which is constructed in Proposition 2.4.6).

To define the notion of overconvergent isocrystal on a general scheme, we need to recall

some concepts of rigid geometry, which is too abstract in our setting of this thesis and has

not been discussed in Chapter 2.

Definition 3.1.9 (Section 1.1, [3]; Chapter 2, [15]). If Z ⊆ X is a locally closed subscheme,

then the tube ]Z[Xan is the set of points of Xan whose specialization lies in Z. Specifically,

the specialization morphism

sp : Xan → X

maps the points of the rigid analytic space Xan to the closed points of the formal scheme

X, Then the tube is defined as

]Z[Xan := sp−1(Z).

Suppose there is a formally smooth compactification X of X, i.e. a formally smooth

proper formal OK-scheme such that X ⊆ X (notice that this assumption holds in the case

that X is a smooth curve). Denote by X
an

the rigid analytic space corresponding to X

and X = X⊗ k be the corresponding smooth compactification of X.

Definition 3.1.10 ([3, 1.2.1], [15, 3]). A strict neighborhood of Xan in X
an

is an

admissible open subset V ⊆ X
an

such that {V,X
an
−Xan} is an admissible cover of X

an
.

Definition 3.1.11. An overconvergent isocrystal onX is an OX
an-moduleM endowed

with an overconvergent connection ∇ such that on some strict neighborhood V ,M|V is a

locally free module and

∇|V :M|V →M|V ⊗OV
Ω1
V

is an integrable connection onM|V .

Remark 3.1.12. Explicitly, in the case that X is a smooth affine curve, let X/OK be

a formally smooth OK-model and an embedding X ↪→ X with X formally smooth and

proper over OK ; Xan and X
an

their corresponding rigid analytic spaces (via Raynaud

generic fibers). For x ∈ X, we denote by t a local section of OX,x. Hence the completion

of X at x is the formal spectrum SpfOK [[t]].
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Then the tube ]x[Xan can be interpreted as the ”open unit disk” in X
an
, whose the ring

of global sections can be identified with K[[t]] of formal power series:

]x[Xan= {y ∈ X
an
, |t(y)| < 1}.

We recall that t(y) the image of t via the projection

K{t} → K{t}/my,

for my the maximal ideal corresponding to y.

An admissible open subspace V of X
an

containing Xan is a strict neighborhood of Xan

if and only if for every x ∈ X−X, V contains some annulus λ ⩽ |t| < 1 in the ”unit disk”

]x[Xan . In fact, it is enough to consider the family of open subsets:

Vλ := {y ∈ Xan, |t(y)| ⩾ λ}

for λ < 1.

For a locally free sheafM on some strict neighborhood V of Xan, a connection onM
is overconvergent if it satisfies the following properties:

(i) For any x ∈ X, the restriction (M,∇)|]x[ has a full set of horizontal sections, i.e.

the kernel of ∇ has a basis whose the number of elements equals to the rank ofM.

(ii) For x ∈ X−X, the restriction (M,∇)|]x[∩V satisfies the property: for any y ∈]x[∩V ,

(M,∇)|]x[∩V has a full set of horizontal sections converging in a disk of radius

r(y) < 1, and r(y)→ 1 as y goes to the boundary of ]x[.

It is remarkable that this description of overconvergent connection is equivalent to the

description stated in the previous subsection for smooth affine schemes, where it is defined

based on local coordinates.

Definition 3.1.13.

(i) ForM,N overconvergent isocrystals on X/K, a morphismM→N is a morphism,

which is compatible with connections, of locally free modules over some strict neigh-

borhood on which the restrictions ofM and N are locally free. We obtain a category

Isoc†(X/K) of overconvergent isocrystals.
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(ii) Let Xan
K be the rigid analytification of the K-scheme XK (cf. Definition 2.3.11).

We denote by MC†(XK/K) the full subcategory of MC(XK/K) of modules with

overconvergent connection, i.e. locally free sheaves of OXK
-modules with connection

satisfying conditions (i) and (ii) in Remark 3.1.12.

Remark 3.1.14.

(i) In fact, overconvergent isocrystals over X/K can be defined as a family of modules

with overconvergent connection on frames, i.e. tuples (X, Y, P ) where X ↪→ Y is the

open immersion of k-varieties, Y ↪→ P is a closed immersion of formal OK-schemes.

This thesis focuses on the Monsky-Washnitzer frame (X,X, P̂1
OK

) for X a smooth

curve over k. For details, see [15, Section 8.1]. As a result, the category Isoc†(X/K)

of overconvergent isocrystals depend only on X and K, not on the formal model X

and its compactification X.

(ii) The category MC†(XK/K) is well-defined because Xan
K is a subspace of X

an
and is a

strict neighborhood of Xan. We can check this explicitly, in particular, for our case

X = Gm,k ↪→ P1
k and a local section t of OX,0, we have strict inclusions:

Xan
K ⊊ Xan

K ⊊ X
an

K

with Xan
K ”=”{|t| = 1} the unit circle, the rigid analytification Xan

K ”=”
⋃
λ<1{λ ⩽

|t| ⩽ 1/λ} by Definition 2.3.11 and P1,an
K = SpK{t}∪SpK{1/t} by Example 2.3.13.

By the above notations, we obtain the following result:

Proposition 3.1.15. There is a canonical functor

MC†(XK/K)→ Isoc†(X/K)

given by M 7→M † the weakly completion.

In general, this functor is not fully faithful. For counterexamples, see [21, Examples

2.3-4].

Definition 3.1.16. With the above notions K, k, we recall φ : K → K a Frobenius lift

of the Frobenius F : k → k. For a smooth curve over k, we denote by φ : X → X the

absolute Frobenius morphism. Then there is a φ-linear functor:

φ∗ : Isoc†(X/K)→ Isoc†(X/K).
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An overconvergent F -isocrystal is defined as an overconvergent isocrystalM endowed

with an isomorphism

Φ : φ∗M ∼−→M.

The morphism Φ is called a Frobenius structure of M. Denote the category of over-

convergent F -isocrystals by F − Isoc†(X/K).

Example 3.1.17. In this thesis, we restrict to the case X = Gm,k the affine line over k

minus the origin and the smooth compactification

X = Spec k[t, t−1] ↪→ X = P1
k.

We also take a formally smooth model X = SpfOK⟨t, t−1⟩ and its compactification X =

P1
OK

. Let A† be the weak completion of A = OK [t, t−1] and ΩA† := Ω1,†
A† the differential

module of A† in the sense of Monsky-Washnitzer, which is discussed in the part before

Definition 3.1.7. In terms of strict neighborhoods of the tube ]X[Xan , we denote

A†
K := A† ⊗OK

K ∼= lim−→
V

Γ(V,OX
an)

ΩA†
K/K

:= ΩA† ⊗OK
K ∼= lim−→

V

Γ(V,Ω1
V ),

where V runs through the cofinal set of strict neighborhoods of Xan in X
an
.

We denote by MC(A†
K/K) (resp. MC†(A†

K/K)) the category of A†
K-module projective

of finite type (resp. the full subcategory of MC(A†
K/K) of objects with connection satisfy-

ing conditions (i) and (ii) in Remark 3.1.12). Moreover, we have the following equivalence

of categories, also by the construction of overconvergent isocrystals in Remark 3.1.12:

Isoc†(X/K)
∼−→ MC†(A†

K/K).

Recall that we have denoted by φ the Frobenius lift on K of the Frobenius endomorphism

on k. We also denote by φ the Frobenius lift on A†
K and MCFn(A

†
K/K) the category of

A†
K-modules projective of finite type M with an integrable connection ∇ and a φn-linear

endomorphism φn of M which commutes with ∇, i.e. the following diagram commutes:

M M ⊗A†
K
ΩA†

K/K

M M ⊗A†
K
ΩA†

K/K

∇

φn φn⊗d(φn)

∇
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and the linearization

Φn : (φn∗M,φn∗∇)→ (M,∇)

is an isomorphism. Notice that for the Frobenius endomorphism φ of A†
K and all n ∈ N,

we define

d(φn) : ΩA†
K/K

→ ΩA†
K/K

, fdt/t 7→ µφn(f)dt/t

with µ = ϑ(φn(t))/φn(t), ϑ = td/dt.

Moreover, by [4, Theorem 2.5.7], the connection of every object in MCFn(A
†
K/K) is

overconvergent. Consequently, we have the following equivalence of categories:

F − Isoc†(X/K)→ MCF1(A
†
K/K).

3.2 The Robba ring

Recall that we always consider a perfect field k of characteristic p > 0, a complete discrete

valuation field K of characteristic 0 whose the residue field is k and OK its ring of integers.

We choose the normalized valuation on K, denoted by | · |, such that |p| = p−1.

For an interval I ⊂ [0,∞], we denote by A(I) the K-algebra of formal Laurent series:

A(I) =

{∑
n∈Z

anρ
n; an ∈ K, ∀ρ ∈ I, lim

n→±∞
|an|tn = 0

}
.

In other words, A(I) is the set of analytic functions with coefficients in K, which are

convergent in the annulus {|x| ∈ I}. If I is a closed interval, the A(I) have obvious

topologies induced by the canonical topology of K. If I is open or half-open, A(I) is

endowed by the inductive limit topology inducing from the formula

A(I) =
⋂

J⊂I,J closed

A(J).

Definition 3.2.1. The Robba ring, denoted by RK,t is defined to be

RK,t := lim−→
λ<1

A([λ, 1))

and regarded it as topological K-algebra given the inverse limit topology. By definition of

A([λ, 1)), we observe that

RK,t =


∞∑

n=−∞
ant

n

an ∈ K
∀ρ ∈ (0, 1), |an|ρn → 0, n→∞
∃λ ∈ (0, 1), |an|λn → 0, n→ −∞
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We denote by K⟨t⟩† and OK⟨t⟩† subrings of RK,t by

K⟨t⟩† =


∞∑

n=−∞
ant

n

an ∈ K
∃C > 0,∀n > 0, |an| < C,

∃λ ∈ (0, 1), |an|λn → 0, n→ −∞

 ,

OK⟨t⟩† =


∞∑

n=−∞
ant

n

an ∈ OK
∃C > 0,∀n > 0, |an| < C,

∃λ ∈ (0, 1), |an|λn → 0, n→ −∞

 ,

The following result is necessary for not only this section:

Lemma 3.2.2. [22, Proposition 2.2] Let R be a discrete valuation ring over Zp whose the

valuation is nonarchimedean, induced by that of Zp and π its uniformizer. Assume that

R satifies the condition:
∑

n⩾0 an converges in R for any sequence (an)n⩾0 of elements in

R satisfying |an| ⩽ Cηn for some C > 0 and η ∈ (0, 1). Then (R, π) is a Henselian pair.

Proof. By [23, Chapter XI, §2, Proposition 1], we only need to verify that for a monic

polynomial f(X) ∈ R[X] whose f̄(X) factors as f̄(X) = Xd(X − 1)d, then f factors as

f = FG with monic polynomials G,H such that Ḡ = Xd, H̄ = (X − 1)d. Let

f = g +Xdh, g, h ∈ R[X], ḡ = 0, h̄ = (X − 1)d.

Then h is invertible in R[[X]]. Let F = −g/h =
∑

n⩾0 FnX
n. Since g ∈ IR[X], |Fn| < η

for some η < 1. We claim that there exists Q ∈ R[[X]] and r ∈ R[[X]] such that

Xd − (Xd − F )Q = r, deg(r) < d. (∗)

We can define Q(u) ∈ IuR[[X]] and r(u) ∈ IuR[X] inductively for n = 0, 1, 2, . . . by

Q(0) = 1, r(0) = 0, Q(u)F = XdQ(u+1) + r(u+1), deg(r(u)) < d,

and we write

Q(u) =
∑
n⩾0

Q
(u)
n Xn, r(u) =

∑
n⩾0

r
(u)
n Xn.

Then |Q(u)
n | < ηu and |r(u)n | < ηu. Let Q =

∑
u⩾0Q

(u) and r =
∑

u⩾0 r
(u). For the

assumptions of R, these series converge andQ and r satisfies the equation (∗). Furthermore

Q̄ = Q(0) = 1, so that Q is invertible in R[[X]]. Let G = Xd − r, H = h/Q, and we have

H ∈ R[X]. This completes the proof.
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By Lemma 3.2.2, K⟨t⟩† is a Henselian discrete valuation field with the ring of integers

OK⟨t⟩† (with respect to Gauss norm), which is also a Henselian discrete valuation ring.

Let E = k((t)) be the residue field of OK⟨t⟩† and F/E a finite Galois extension, i.e.

F ∼= k′((u)) for some finite Galois extension k′/k. Since K⟨t⟩† is Henselian, there exists

a finite étale extension OF of OK⟨t⟩† with residue field F . We denote the fraction field

of OF by F and by K ′/K an unramified extension of with residue field k′. Matsuda [22,

Proposition 3.4] and [7, Lemma 2.2] proved that

F ∼= K ′⟨u⟩† and F ⊗K⟨t⟩† RK,t ∼= RK′,u,

respectively. We use Matsuda’s notations F ⊗K⟨t⟩† RK,t by RK,t(F ) or RK(F ) for sim-

plicity.

Frobenius structure

With the above notion, φ is a Frobenius endomorphism of K. We also denote by φ

the Frobenius lift to OK⟨t⟩† of the Frobenius endomorphism x 7→ xp of the residue field

E = k((t)). By Lemma 2.5, [7], φ extends uniquely to the continuous endomorphism of

RK :

φ : RK → RK , φ

(∑
n∈Z

ant
n

)
=
∑
n∈Z

φ(an)φ(t)
n,

where φn(t)− tq ∈ πRK,t, for q = pn and π the uniformizer of K.

For a finite separable extension F of E = k((t)), there exists a finite extension OF of

OK⟨t⟩† with residue field F and F its fraction field, as discussed in the previous section.

The Henselian property ofOK⟨t⟩† allows us to extends uniquely a Frobenius endomorphism

ofK⟨t⟩† to that of F . Consequently, we also obtain the unique extension of φ toRK,t(F ) =
F ⊗K⟨t⟩† RK,t given by φ(f ⊗ g) = φ(f)⊗ φ(g). We can also regard this homomorphism

as the Frobenius endomorphism of RK′,u.

Let MC(RK/K) be the category of free RK-modules M of finite type with connection

∇ :M →M ⊗ ΩRK/K , where ΩRK/K is defined to be RKdt/t.
For the unique Frobenius endomorphism φ of RK and all n ∈ N, we define

d(φn) : ΩRK/K → ΩRK/K , fdt/t 7→ µφn(f)dt/t

with µ = ϑt(φ
n(t))/φn(t), ϑt = td/dt.
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Definition 3.2.3. A φn-structure φn on (M,∇) is a φn-linear map φn : M → M which

commutes with ∇, i.e. the following diagram commutes:

M M ⊗RK
ΩRK/K

M M ⊗RK
ΩRK/K

∇

φn φn⊗d(φn)

∇

and the linearization

Φn = id⊗φnφn : RK ⊗φn M →M

is an isomorphism of RK-modules.

Definition 3.2.4. A triple (M,∇, φn) is called a (φn,∇)-module over RK if (M,∇) is
an object in MC(RK/K) and φn is a φn-structure on it. A morphism

f : (M,∇, φn)→ (M ′,∇′, φ′
n)

is an RK-linear map which commutes with connections and φn-structures. We denote the

category of (φn,∇)-modules by MCFn(RK/K).

Remark 3.2.5.

(i) Back to the setting of Example 3.1.17, the Robba ring can be represented as

RK = lim−→
V

Γ(V ∩]0[Xan ,OX
an),

where V runs through the set of strict neighborhoods of Xan in X
an
. Here ]0[Xan

denotes the tube of the point 0 ∈ X −X, which is also considered as the open unit

disk at 0 in X
an

as stated in Remark 3.1.12. If we choose V runs through the strict

neighborhoods Vλ stated in Remark 3.1.12, we obtain Definition 3.2.1 of Robba ring.

(ii) In terms of the ring A(I) of analytic functions on the annulus defined by the interval

I ⊂ [0,∞], the algebra A†
K in Example 3.1.17 can be represented as

A†
K = lim−→

λ<1

A
([
λ,

1

λ

])
also by choosing the strict neighborhoods Vλ stated in Remark 3.1.12. Explicitly, we

have

A†
K =


∑
n∈Z

ant
n

an ∈ K
∃λ ∈ (0, 1), |an|

(
1
λ

)n → 0, n→∞
and |an|λn → 0, n→ −∞

 .
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3.3 Matsuda’s version of Katz correspondence for over-

convergent isocrystals

Fix a parameter t of Xan, we have a canonical injection A†
K ↪→ RK by the discussion in

Example 3.1.17, Definition 3.2.1 and Remark 3.2.5. We also fix a Frobenius φ of RK such

that φ(A†
K) ⊂ A†

K . Then we have canonical functors

MC(A†
K/K)→ MC(RK/K),

MCFn(A
†
K/K)→ MCFn(RK/K)

We denote (M,∇, φn) (or (M,∇)) the object of MCFn(R/K) (resp. MC(R/K)) by M if

no confusion occurs, for R denotes either RK or A†
K .

Unipotent objects

As in above section, R denotes either RK or A†
K . The purpose of this section is to study

unipotent objects over R.

Definition 3.3.1. A free R-module (M,∇) of finite rank with connection is called unipo-

tent if (M,∇) is a successive extension of the trivial object (R, d) by itself, i.e. the matrix

of the connection ∇ corresponding to some derivation (in the sense of Definition 1.3.2) is

upper-triangular.

Let MCuni(R/K) be the full subcategory of unipotent objects of MC(R/K) . The next

result is considered as an analogue of Proposition 1.6.5.

Theorem 3.3.2. [7, Theorem 4.1] We denote by (NilpEnd /K) the category of pairs (V,N)

consisting of a finite-dimensional K-vector space V endowed with a K-linear nilpotent

endomorphism N of V . Then the functor

NilpEnd /K → MCuni(R/K)

(V,N) 7→ (V ⊗K R,∇N ),

induces an equivalence of categories, where ∇N is given by

∇N : v ⊗ f 7→ Nv ⊗ dt

t
+ 1⊗ ϑt(f)

dt

t
,

with the derivation ϑt = td/dt.
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Let R0 := {
∑

n∈Z ant
n, a0 = 0}. Then ϑt : R0 → R0 is a bijection and similarly as in

Proposition 1.6.5, the inverse functor is given by

(M,∇) 7→

(⋃
n⩾1

Kerϑnt , ϑt

)
,

where ϑt in the right hand side denotes the endomorphism ∇(td/dt) of M (here M is

considered as a differential module by equivalence in Definition 1.3.2).

Corollary 3.3.3. [7, Corollary 4.2] There exists an equivalence of categories

MCuni(A†
K/K)→ MCuni(RK/K)

given by (M,∇) 7→ (M ⊗A†
K
RK ,∇⊗ 1).

Lemma 3.3.4. [7, Lemma 4.3] Any unipotent object (M,∇) admits a φ-structure on it.

Proof. By Theorem 3.3.2, it is enough to consider the case (V⊗R,∇N ) for an r-dimensional

vector space V over K and the matrix of N

N =


0 1 0

. . . . . .

0 1

0 0


for some basis v = (v1, . . . , vr) of V . Consider φ-linear morphism φ1 on (M,∇) determined

by φ1(v ⊗ 1) = (v ⊗ 1)A with

A =



f0 f1 f2 f3 · · ·

pf0 pf1 pf2
. . .

p2f0 p2f1
. . .

. . . . . .

0
. . .


(3.3.1)

For v = (v1, . . . , vr) we compute:

∇N (φ1(v ⊗ 1)) = ∇N ((v ⊗ 1)A)

=

(
vN ⊗ dt

t

)
A+

(
v ⊗ dt

t

)
ϑt(A)

=

(
v ⊗ dt

t

)
(ϑt(A) +NA)



68

and

(φ1 ⊗ dφ)(∇N (v ⊗ 1)) = (φ1 ⊗ dφ)
(
vN ⊗ dt

t

)
=

(
vA⊗ µdt

t

)
φ(N)

=

(
v ⊗ dt

t

)
µAφ(N),

for µ = ϑt(φ(t))/φ(t).

Since ∇N and φ1 commutes (Definition 3.2.3), we have ϑt(A) = −NA+ µAφ(N). By

[7, Lemma 2.7], µ =
∑

n∈Z cnt
n ∈ RK has c0 = p. Denote µ′ = µ− p, by computation on

matrices, we obtain

ϑt(f0) = 0, ϑt(fi) = µ′fi−1, i = 1, 2, . . . , r − 1. (3.3.2)

We only have to show the existence of such f0, f1, . . . in 3.3.1 satisfying 3.3.2. Recall the

subring R0 := {
∑

n∈Z cnt
n ∈ RK , c0 = 0} and ϑt : R0 → R0 is an automorphism. Let I

be the inverse homomorphism of ϑt. We claim that there exists inductively gi ∈ RK for

i = 1, 2, . . . , r − 1 by

g1 = µ′, gi = µ′I(gi−1), i = 2, . . .

and gi ∈ R0 such that for any n-tuple α0, . . . , αr−1 of elements of K, fi = α0I(gi) + . . .+

αi−1I(g1) + αi satisfy 3.3.2, and if α0 ̸= 0, φ1 is a φ-structure. For detailed computation,

see the last part of the proof of this result [7, Lemma 4.3].

Corollary 3.3.5. [7, Corollary 4.4] The category MCuni(A†
K/K) can be considered canon-

ically as a full subcategory of MC†(A†
K/K).

Remark 3.3.6. Let (P,∇, ψn) be a (φn,∇)-module over RK and ψ′
n another φn-structure

on (P,∇). We have their linearizations:

Ψn := idRK
⊗φnψn,Ψ

′
n := idRK

⊗φnψ′
n.

Then Ψ′
n ◦ Ψ−1

n gives an automorphism of (P,∇). Consequently, we have a one-to-one

correspondence between the set of φn-structures on (P,∇) and the set of automorphism

of (P,∇) if it is equipped a φn-structure.

By [7, Lemma 4.6], we have dimHom∇(M,M) = r for any indecomposable unipotent

R-modules M of rank r with connection (here we still denote that R is either A†
K or RK).
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Consequently, as in the proof of Lemma 3.3.4, for each choice of (α0, . . . , αr−1) ∈ Kr, the

above matrices 3.3.1 give all the φn-linear morphisms on (M,∇).

Corollary 3.3.7. [7, Corollary 4.7] The following subfunctor is an equivalence of cate-

gories

MCFuni
n (A†

K/K)→ MCFuni
n (RK/K).

Proof. We fix (M,∇) an unipotent object in MC(RK/K). By Corollary 3.3.3, there exists

an A†
K-module with connection (M †,∇†) in MCuni(A†

K/K) whose inverse image is (M,∇).
We are reduced to check that every φn-structure φn on M extends to M †. By Remark

3.3.6, such φn-structures on M (resp. M †) correspond bijectively to automorphisms of M

(resp. M †). Also by Corollary 3.3.3, the following natural map is isomorphism:

Hom∇(M
†,M †)→ Hom∇(M,M),

our assertion is clear.

Special étale covers

For a field k of characteristic zero, we recall that there is an equivalence of categories

between the category of finite étale covers of A1
k \ {0} and the category of finite étale

covers of the formal neighborhood at 0 (for example, [6, 15.23]). Katz[24] extended this

equivalence for a general field k by introducing the notion of special étale covers.

Definition 3.3.8. For an arbitrary field k, let A0 = Spec k[t] the affine chart containing 0,

A∞ = Spec k[t−1] the affine chart containing ∞, Gm,k = Spec k[t, t−1] the multiplicative

group (or the affine line minus the origin). Let E → Gm,k be a finite étale cover. For

every natural number N invertible in k, we consider

[N] : Gm,k → Gm,k, t 7→ tN .

Then the finite étale cover U → Gm,k is called N-tame at 0 (resp. N-tame at ∞) if

the pullback [N]∗U of U by [N] extends to a finite étale cover ŨN of A0 (resp. of A∞).

Specifically, this extended cover is the normalization of A0 (the case for A∞ is similar) in

[N]∗E:

U [N]∗U ŨN

Gm,k Gm,k A0.
[N]
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The finite étale cover E → Gm,k is called tame at 0 (resp. tame at ∞) if it is N -tame

at 0 (resp. N -tame at ∞) for some invertible N in k.

Definition 3.3.9.

(i) For a connected scheme X and a geometric point x̄ of X, let U → X be a finite

étale cover of X. It is clearly seen that the étale fundamental group πét1 (X, x̄) acts

continuously on the finite set U(x̄), which is the fiber of x̄. The monodromy group

of U → X at x̄ is defined as the image of πét1 (X, x̄) in Aut(U(x̄).

(ii) For a field k of arbitrary characteristic, let X be a geometrically connected scheme

over k. The geometric monodromy group of E → X is defined as the image of

the étale fundamental group πét1 (X ⊗kK, x̄) in Aut(U(x̄)) for some separably closed

field extension K of k and any geometric point x̄ of X ⊗k K.

Remark 3.3.10.

(i) This definition is independent of the choice of x̄, since we always have canonical

bijections between fibers of geometric points on U , which induced the isomorphism

of their monodromy groups (or geometric monodromy groups).

(ii) The definition of geometric monodromy group is also independent of the choice of K.

Indeed, let ksep be the separable closure of k in K. With the notion Z → X ⊗k ksep

of a connected finite étale covering, then Z is a connected scheme over ksep. By [25,

4.5.21], Z remains to be connected after any field extension of this separable closure

ksep. Then if we denote by ȳ the image of x̄ in X ⊗k ksep, the natural map of étale

fundamental groups

πét1 (X ⊗k k′, x̄)→ πét1 (X ⊗k ksep, ȳ)

is surjective, which is the result we need.

(iii) For U a finite étale cover of X, there is a finite Galois extension k′ of k such that

the geometric monodromy group of U → X equals to the monodromy group of

U ⊗k k′ → X ⊗k k′. Indeed, let G be the geometric monodromy group of this

cover, then we can choose a finite étale connected G-torsor Z → X ⊗k ksep over

which U → X split completely. Then we can descend this G-torsor to a finite étale

connected G-torsor Z0 → X ⊗k k′ over a finite Galois extension k′ of k which still

splits U → X.
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Definition 3.3.11. For a field k of characteristic p, the finite étale cover U → Gm,k is

called special at 0 (resp. special at ∞) if it is tame at 0 (resp. tame at ∞) and its

geometric monodromy group has a unique p-Sylow subgroup.

Proposition 3.3.12. [24, Lemma 1.3.2] With the above notions that k is a field of charac-

teristic p and U → Gm,k is a finite étale covering, the following statements are equivalent:

(i) U → Gm,k is special at 0,

(ii) there exists an integer N ⩾ 1, gcd(N, p) = 1 such that the inverse image [N ]∗E

of E by the N th-power map [N ] : Gm,k → Gm,k extends to a finite étale covering

ŨN → A0 whose geometric monodromy group is a p-group:

U [N]∗U ŨN

Gm,k Gm,k A0.
[N]

(iii) There exists an integer N ⩾ 1, gcd(N, p) = 1 and a finite Galois extension k′/k

containing N distinct N th roots of unity, such that the inverse image [N ]∗(U ⊗k k′)
of U → Gm,k by the composition

Gm,k′
[N ]−−→ Gm,k′ → Gm,k

extends to a finite étale covering ŨN ⊗k k′ → A0 whose monodromy group is a

p-group.

Similarly, the equivalence of corresponding statements for special étale covers at ∞ of

Gm,k also holds.

Proof. First of all, the implication (ii)⇒(i) is obvious, and (i)⇒(ii) holds because over an

algebraically closed field L, for any integer N ⩾ 1 prime to p, the unique open normal

subgroup of πét1 (Gm.L, x̄) of index N is the one corresponding to the Nth power covering

[N ] : Gm,L → Gm.L.

The equivalence (ii)⇔(iii) follows from Remark 3.3.10(iii).

By this definition, Katz established the following equivalence

Theorem 3.3.13. [24, Theorem 1.4.1] For any field k, we denote by k((t)) (resp. k((t−1)))

the field of formal Laurent series over k in the variable t (resp. in the variable t−1).
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(i) Via the canonical injection k[t, t−1] ↪→ k((t)), there is an equivalence between the

category of special étale covers at ∞ of Gm,k and the category of finite étale covers

of Spec k((t)).

(ii) Via the canonical injection k[t, t−1] ↪→ k((t−1)), there is an equivalence between the

category of special étale covers at 0 of Gm,k and the category of finite étale covers of

Spec k((t−1)).

Étale objects

Global case

The purpose of this section is to study étale objects over the multiplicative group scheme.

Definition 3.3.14. An object (M,∇, φn) in MCFn(A
†
K/K) is called unit-root if there

exists a sub-A†-module L of M , free of finite rank such that

(i) M ∼= A†
K ⊗A† L,

(ii) φn(L) ⊂ L,

(iii) Φn : id⊗φn : A† ⊗φn L→ L is an isomorphism of A†-modules.

It is remarkable that, since we are using the injection from the formal neighborhood

of the point 0 to Gm,k, i.e.

Spec k((t)) ↪→ Gm,k, t 7→ t,

we will use the notion of special étale covers at ∞ in Definition 3.3.11.

Let U → X = Spec(A† ⊗OK
k) be a special finite étale cover at ∞. By Lemma 3.2.2,

(A†, (π)) is a Henselian pair and thus there exists a finite étale Galois extension B† of A†

such that U ∼= Spec(B† ⊗OK
k) uniquely up to isomorphism.

Recall from Section 3.2 that Kn is the subfield of K fixed by φn the nth-power of

Frobenius endomorphism of K. We denote by RepspKn
(πét1 (X, x̄)) the full subcategory of

the category of finite-dimensional continuous representations of πét1 (X, x̄) on which this

étale fundamental group acts through a finite quotient corresponding to some special

Galois cover of X.
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For an object V in RepspKn
(πét1 (X, x̄)), let B† be the finite étale Galois extension of

A† corresponding to a special étale cover U → X such that πét1 (X, x̄) acts on V through

Gal(B†/A†). Let B†
K = B† ⊗OK

K. We define

DA†
K ,n

(V ) = (V ⊗Kn
B†
K)

πét
1 (X,x̄),

where σ ∈ πét1 (X, x̄) acts on V ⊗Kn
B†
K by σ⊗σ. Because we take the stabilizer, DA†

K ,n
(V )

is independent of the choice of B†. We endow DA†
K ,n

(V ) with φn-structure φn = id⊗φn.
Here φn is the Frobenius endomorphism of A†

K extended uniquely to B†
K .

Lemma 3.3.15. [7, Lemma 5.1] M = DA†
K ,n

(V ) admits uniquely a connection ∇ which

commutes with φn. Moreover, (M,∇, φn) is a unit-root object in MCFn(A
†
K/K).

Proof. We first observe that M is a projective A†
K-module of finite type by Galois descent

and hence it is free by [26, Proposition 6.1]. We also have

M ⊗A†
K
B†
K
∼= V ⊗Kn

B†
K .

We can use the argument in [27, A.2.2.4] as follows to prove the existence, uniqueness

and commutativity with φn of ∇. Every connection on M can be extended uniquely to

a connection on M ⊗A†
K
(A†

K)
unr, and this extended connection commutes with φn if and

only if the commutativity also holds with the original connection on M . We also have

M ⊗A†
K
(A†

K)
unr ∼= V ⊗K (A†

K)
unr.

Let ∇ be such an above connection. We notice that for each v ∈ V , assume ∇(v⊗1) = ω,

then by commutativity with φ, we have φω = ω. Thus ω = 0 by similar argument as in

[27, A.2.2.4]. Consequently, using Leibniz’s rule,

∇(v ⊗ λ) = v ⊗ dλ,∀λ ∈ (A†
K)

unr,

which is our desired (and unique) connection.

To check that (M,∇, φn) is unit-root, as in Definition 3.3.14 we can choose L =

(V0 ⊗OKn
B†)π

ét
1 (X,x̄) for V0 the OKn

-lattice of V .

Definition 3.3.16.

(i) An object (M,∇, φn) in MCFn(A
†
K/K) is called special unit-root if it arises from

a representation of the Galois group of a special étale Galois cover of X in the above

way. We denote the full subcategory of MCFn(A
†
K/K) of special unit-root objects

by MCFspur
n (A†

K/K).
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(ii) An object (M,∇) in MC†(A†
K/K) is called special étale if it there exists a φn-

structure φn on (M,∇) for some n such that (M,∇, φn) is special unit-root. We

denote the full subcategory of MC†(A†
K/K) of special étale objects by MCse(A†

K/K).

Remark 3.3.17. By Lemma 3.3.15, we obtain a functor

DA†
K ,n

: RepspKn

(
πét1 (X, x̄)

)
→ MCFspur

n (A†
K/K).

Lemma 3.3.18. [7, Lemma 5.2] DA†
K ,n

is an equivalence of categories if Fpn ⊂ k.

The quasi-inverse functor of DA†
K ,n

is constructed as follows. For an object (M,∇, φn)
in MCFspur

n (A†
K/K), we denote by V the finite representation of πét1 (X, x̄) over Kn such

that M ∼= DA†
K ,n

(V ) in MCFn(A
†
K/K). Take a special étale cover U → X such that

πét1 (X, x̄) acts on V through Gal(U/X) and B† the finite étale extension of A† correspond-

ing to U → X. We can pick U such that W (Fpn) ⊂ B†, where W (Fpn) is the Witt ring

with residue field Fpn . Let B†
K = B† ⊗K. The quasi-inverse functor is defined as

VA†
K ,n

(M) = (M ⊗A†
K
B†
K)

φn=1 :=
{
x ∈M ⊗A†

K
B†
K ;φn(x) = x

}
Here φn acts on M ⊗ B†

K by φn ⊗ φn. In fact, VA†
K ,n

(M) is independent of the choice of

B†. By definition of the action of φn on VA†
K ,n

(M), we have

VA†
K ,n

(M) ∼= V ⊗Kn
(B†

K)
φn=1.

It is clearly seen that (B†
K)

φn=1 = {x ∈ B†
K , φ

n(x) = x} = Kn. Indeed, if x ∈ (B†
K)

φn=1,

then dx = dφn(x) = φn(dx). This implies dx = 0, as stated in the proof of Lemma

3.3.15, by a similar argument as in [27, A.2.2.4]. Thus x ∈ Kunr the maximal unramified

extension of K in B†
K . Since Fpn ⊂ k, we have Kunr

n = Kn.

Local case

In this section, we consider étale objects over the Robba ring RK . We recall that, for a

fixed parameter t of RK , its residue field is E = K((t)) the field of formal Laurent series

over K. It is also remarkable that, as in Section 3.2, we denoted by RK(F ) the unique

finite étale extension of RK for each finite separable extension F of E by [22, Proposition

3.4].

Definition 3.3.19.
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(i) An object (M,∇) in MC(RK/K) is called étale if there exists a finite separable

extension F of the residue field E of RK such that (M ⊗RK
RK(F ),∇⊗RK(F )) is

trivial in MC(RK(F )/KF ), where KF is the algebraic closure of K in RK(F ). We

denote by MCét(RK/K) the full subcategory of MC(RK/K) of étale objects.

(ii) An object (M,∇, φn) in MCFn(RK/K) is called unit-root if there exists a free

sub-OK⟨t⟩†-module L of M such that

(i) M ∼= L⊗OK⟨t⟩† RK ,

(ii) φn(L) ⊂ L,

(iii) 1⊗ φn : OK⟨t⟩† ⊗φn L→ L is an isomorphism of OK⟨t⟩†-modules.

We denote by MCFur
n (RK/K) the full subcategory of MCFn(RK/K) of unit-root

objects.

Lemma 3.3.20. [7, Lemma 5.3] If (M,∇) ∈ MC(RK/K) is an étale object, then there

exists a sufficiently large n such that (M,∇) has a unit-root φn-structure.

Proof. As (M,∇) is an étale object, there exists a finite Galois extension F of E trivializing

(M,∇) and G = Gal(F/E). Let V1 be the kernel of ∇⊗RK(F ) on M ⊗RK(F ). Since

(M ⊗ RK(F ),∇ ⊗ RK(F )) is a module with trivial connection, V1 is stable under the

action of G and it induces a representation:

ρ : G→ GL(V1).

By Brauer’s theorem [28, Theorem 24], if for some n, Kn contains some mth roots of unity

for sufficiently large m, there is an equivalence between the category of representations

of G over Kn and the category of representations of G over Kn. Consequently, there is

an equivalence between the category of representations of G over Kn and the category of

representations of G over K, since K also contains that mth root of unity. If we denote

by V the V1-lattice which is stable under the action of G, we obtain

M ∼= (V ⊗Kn
RK(F ))G,

as desired.

For the general case, let K ′ be an abelian extension of K such that K ′ contains some

mth roots of unity for sufficiently large m, thus M ⊗K ′ contains a unit-root φn-structure
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φn for some n. Consequently, φn commutes with the action of Gal(K ′/K) and M also

has a unit-root φn-structure by Galois descent.

Now we consider the case G = Gal(Esep/E). We denote by RepfinKn
(G) the category

of finite-dimensional continuous representations of G on which G acts through finite quo-

tients. Specifically, for an object V in RepfinKn
(G), take a finite Galois extension F of E

such that G acts on V through Gal(F/E). We define

DRK ,n(V ) = (V ⊗Kn
RK(F ))G.

Here σ ∈ G acts on V ⊗ RK(F ) by σ ⊗ σ. The φn-structure of DRK ,n(V ) is given by

φn = id⊗φn. Obviously DRK ,n is independent on the choice of F . Moreover, similarly as

in Lemma 3.3.15, there exists a unique connection ∇ on M = DRK ,n(V ) which commutes

with φn; (M,∇, φn) is unit-root in MCFn(RK/K). For details, [7, Lemma 5.4].

Definition 3.3.21. An object (M,∇, φn) in MCFur
n (RK/K) is called finite unit-root

if it is isomorphic to DRK ,n(V ) for some V in RepfinKn
(G). We denote the full subcategory

of MCFur
n (RK/K) by MCFfur

n (RK/K).

By Lemma 3.3.20, we can regard DRK ,n as a functor

DRK ,n : RepfinKn
(G)→ MCFfur

n (RK/K).

Moreover, similarly as in Lemma 3.3.18:

Lemma 3.3.22. [7, Lemma 5.7] If Fpn ⊂ k, DRK ,n is an equivalence of categories.

Specifically, if (M,∇, φn) be an object in MCFfur
n (RK/K); i.e. there exists an object

V in RepfinKn
(G) such thatM ∼= DRK ,n(V ). Let F/E be a finite Galois extension such that

G acts on V by Gal(F/E) and the residue field of F contains Fpn . We denote

VRK ,n(M) := (M ⊗RK
RK(F ))φn=1 := {x ∈M ⊗RK

RK(F ), φn(x) = x}.

Here φn acts on M ⊗RK
RK(F ) by φn ⊗ φn. We endow VRK ,n(M) with Galois action by

id⊗σ for σ ∈ G. It is clearly seen that VRK ,n(M) is independent of the choice of F .

Katz correspondence for étale objects

Proposition 3.3.23. [7, [Proposition 5.10] If Fpn ⊂ k, the inverse image functor

MCFspur
n (A†

K/K)→ MCFfur
n (RK/K)

is an equivalence of categories.
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This result is a corollary of Lemma 3.3.18, Lemma 3.3.22 and the following corollary

of Theorem 3.3.13:

Proposition 3.3.24. [24, Corollary 1.4.7] The induced map of fundamental groups

Gal(Esep/E)→ πét1 (X, x̄)

is an isomorphism; recall that E = k((t)) is the residue field of RK .

We want to establish Katz correspondence for étale objects, specifically the lower

inverse image functor in the following commutative diagram is an equivalence of categories:

MCFspur
n (A†

K/K) MCFfur
n (RK/K)

MCse(A†
K/K) MCet(RK/K)

ι′

forgetful forgetful

ι

However, the forgetful functors

MCFspur
n (A†

K/K)→ MCse(A†
K/K),

MCFfur
n (RK/K)→ MCet(RK/K)

are faithful but not full ifKn ⊂ K, since morphisms in MCFspur
n (A†

K/K) and MCFfur
n (RK/K)

cannot be ”extended” to K. However, this ”extension” exists via a finite unramified ex-

tension of K.

Lemma 3.3.25. [7, Lemma 5.11] Let M and N be objects in MCFspur
n (A†

K/K) (resp.

MCFfur
n (RK/K)). Then for some finite unramified extension K ′ of K we have

HomMCFspur
n (A†

K′/K′)(M
′, N ′)⊗K′

n
K ′ ∼= HomMCse(A†

K′/K′)(M
′, N ′)

(resp.HomMCFfur
n (RK′/K′)(M

′, N ′)⊗K′
n
K ′ ∼= HomMCse(A†

K′/K′)(M
′, N ′)).

Here M ′ =M ⊗K K ′ and N ′ = N ⊗K K ′.

This result implies the full faithfulness of Katz correspondence for étale objects. For

essential surjectivity, [7, Corollary 5.9] shows that, any object in MCet(RK/K) is isomor-

phic to the image under the forgetful functor of an object in MCFfur
n (RK/K) for some n.

This is a corollary of Lemma 3.3.20 and [7, Theorem 5.8], which is a result of Tsuzuki [29,

Theorem 4.2.6]. Combining this with the commutativity of the above diagram and the

equivalence in 3.3.23, we obtain Katz correspondence for étale objects:
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Corollary 3.3.26. [7, Corollary 5.12] The inverse image functor

ι : MCse(A†
K/K)→ MCet(RK/K)

is an equivalence of categories.

Special objects

The notion of special objects and their Katz equivalence is the combination of results of

the last two subsections.

Definition 3.3.27.

(i) An object M in MC(A†
K/K) is called special if it admits a decomposition as

M =
⊕
i

Pi ⊗ Ui

where Pi is special étale and Ui is unipotent. An object (M,∇, φn) in MCFn(A
†
K/K)

is called special if (M,∇) is special as an object in MC(A†
K/K). The full sub-

category of MC(A†
K/K) (resp. MCFn(A

†
K/K)) of special objects is denoted by

MCsp(A†
K/K) (resp. MCFsp

n (A†
K/K)).

(ii) An object M in MC(RK/K) is called special if it admits a decomposition as

M =
⊕
j

Pj ⊗ Uj

where Pj is étale and Uj is unipotent. An object (M,∇, φn) in MCFn(RK/K) is

called special if (M,∇) is special as an object in MC(RK/K). The full subcategory

of MC(RK/K) of special objects is denoted by MCsp(RK/K).

Proposition 3.3.28. There exists an equivalence of categories

MCsp(A†
K/K)→ MCsp(RK/K).

Quasi-unipotent objects

Definition 3.3.29. An object (M,∇) in MC(RK/K) is called quasi-unipotent if via a

finite separable extension F of the residue field E = k((t)) of RK , (M ⊗RK
RK(F ),∇⊗
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RK(F )) is an unipotent object in MC(RK(F )/KF ) with KF the algebraic closure of K

in RK(F ). An object (M,∇, φn) in MCFn(RK/K) is called quasi-unipotent if (M,∇)
is quasi-unipotent as an object in MC(RK/K). The full subcategory of MC(RK/K)

(resp. MCFn(RK/K) of quasi-unipotent objects is denoted by MCqu(RK/K) (resp.

MCFqu
n (RK/K))).

It is clearly seen that any special object in MC(RK/K) is quasi-unipotent. Indeed,

by definition of étale objects in MC(RK/K) (Definition 3.3.19), for any special object in

MC(RK/K):

M =

ℓ⊕
i=1

Pi ⊗ Ui

with Pi étale and Ui unipotent, there exists some field extension F of the residue field

E = k((t)) such that Pi ⊗RK(F ) are trivial. Consequently, M ⊗RK(F ) is unipotent.
Following [7, 7], we will show that the converse is also true.

Proposition 3.3.30. [7, Proposition 7.4] Suppose (M,∇) is quasi-unipotent in MC(RK/K).

If M is irreducible (i.e. M has no proper subobjects), then M is étale.

Proof. Let (M,∇) be a quasi-unipotent RK-module over RK of rank n. The quasi-

unipotence of M allows us to choose a finite Galois extension F of E such that M ′ =

M ⊗ RK(F ) is unipotent. G is denoted for the Galois group Gal(F/E). Then we can

choose a basis f = (f1, . . . , fn) of M
′ such that

∇f = fN ⊗ dt

t

where for n1 > n2 > . . . > nr

N =


Nm1,n1 0

Nm2,n2

. . .

0 Nmr,nr


and for Imi the identity matrix, Nmi,ni is the following nilpotent matrix of rank mini

Nmi,ni =



0 Imi 0

0 Imi

. . . . . .

0 Imi

0 0
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For σ ∈ G, let σ(f) = fQσ with Qσ ∈Mn(RK(F )). For ϑt = t ddt We have

σ(∇(f)) = σ

(
fN ⊗ dt

t

)
= σ(fN)⊗ dt

t

= σ(f)N ⊗ dt

t

= fQσN ⊗
dt

t
.

and

∇(σ(f)) = ∇(fQσ)

= fNQσ ⊗
dt

t
+ fϑtQσ ⊗

dt

t
.

Since σ and ∇ commute, we have

ϑtQσ = QσN −NQσ.

By computation as in [7, Lemma 7.2, Corollary 7.3], if Qσ = (qij) ∈Mn(RK(F )), we have
qij = 0 for (i, j) such that m1 < i and 1 ⩽ j ⩽ m1. Let M

′ be the sub-RK(F )-module of

M generated by f1, . . . , fm1 , thenM
′
1 is stable under the action of G and the connection ∇

(since the first m1 columns of both N and Qσ are all zero). By Galois descent, there exists

∇-module M1 over RK such that M ′
1 = M1 ⊗RK

RK(F ). Therefore if M is irreducible,

M1 = 0 and n1 = 0. This implies N = 0 and M is étale.

In the next step, we recall the following notions in [7, 7], which is analogous to the

notions in [5, 2]. The strategy to prove this result follows on from the proof of classical

Katz correspondence (Section 2, [5]).

For an object (M,∇) in MC(RK/K), we denote its cohomology groups by

H0
∇(M) = Ker∇, H1

∇(M) = Coker∇.

For objects M,M ′ in MC(RK/K), we denote

Exti∇(M,M ′) = Hi
∇(Hom(M,M ′)).

Consequently, we can identify Ext0∇(M,M ′) with Hom∇(M,M ′) ∼= HomMC(RK/K)(M,M ′)

and Ext1∇(M,M ′) with the group of classes of extensions of M ′ by M in MC(RK/K).

An object (M,∇) in MC(RK/K) is called geometrically irreducible if for any finite

extension K ′ of K, M ⊗K K ′ is irreducible in MC(RK/K) .
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Lemma 3.3.31. [7, Lemma 7.7] For (M,∇) a quasi-unipotent object in MC(RK/K),

there exists a finite extension K ′/K such that M ⊗K K ′ is special.

Sketch of the proof. We only have to check that M ⊗K K ′ for some extension K ′/K

has the form P ⊗ U where P is geometrically irreducible étale and U is indecomposable

unipotent in MC(RK′/K ′). By the quasi-unipotence ofM , we can choose a finite separable

extension F of E = k((t)) such thatM⊗RK
RK(F ) is unipotent. We only have to consider

the case that every irreducible subobject of M is geometrically irreducible by replacing K

by an extension K ′, which is constructed from the extension RK(F ) and the existence of

irreducible decomposition of the regular representation of Gal(F/E), as in the proof of [7,

Lemma 7.7].

In the next step, we use induction on the rank of M . We denote M ′ =M/P for some

irreducible subobject P of M . The induction step is based on two following results.

Lemma 3.3.32. [7, Lemma 7.5] For (M,∇) and (M ′,∇′) quasi-unipotent geometrically

irreducible objects in MC(RK/K), we have

Exti∇(M,M ′) =

K, if M ∼= M ′,

0, otherwise.

Lemma 3.3.33. [7, Lemma 7.6] For geometrically irreducible objects P and P ′, indecom-

posable unipotent objects U and U ′ in MCqu(RK/K). We have

dimK Exti∇(P ⊗ U, P ′ ⊗ U ′) =

min(rankU, rankU ′), if P ′ ∼= P ,

0, otherwise.

for i = 0, 1. □

Theorem 3.3.34. [7, Theorem 7.8] Every quasi-unipotent object in MC(RK/K) is special.

Sketch of the proof. Let (M,∇) be a quasi-unipotent object in MC(RK/K). As in the

proof of Lemma 3.3.31, we can assume that M is indecomposable. The strategy here is to

use induction on the rank of M . By Proposition 3.3.30, any irreducible subobject Q of M

is étale. By the induction hypothesis and the argument in Lemma 3.3.31, if N = M/Q,

then N ∼= Q⊗U1 for some indecomposable unipotent object U1. Moreover, we can choose
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K ′/K a finite étale Galois extension such that

Q′ = Q⊗K ′
⊕
i∈I

P ′
i

with geometrically irreducible étale objects P ′
i in MC(RK′/K) also by Lemma 3.3.31. This

decomposition can be rewritten as

Q′ =
⊕
σ∈S

σ(P ′)

where S is a subset of Gal(K ′/K). Let M ′ = M ⊗K K ′ and U ′
1 = U1 ⊗K K ′. Treating

with indecomposability and ranks of these σ(P ′) as in the proof of [7, Theorem 7.8], we

can prove that

M ′ ∼=
⊕
σ∈S

σ(P ′)⊗ U ′ ∼= Q′ ⊗ U ′.

Using Galois descent, we have our decomposition for M . □

Now we can establish Katz correspondence for overconvergent isocrystals, as follows.

Theorem 3.3.35. [7, Theorem 7.15] The inverse image functor

MCsp(A†
K/K)→ MCqu(RK/K).

is an equivalence of categories.

Proof. The following result is necessary:

Lemma 3.3.36. [7, Proposition 7.11] For étale objects Q and Q′, unipotent objects U and

U ′ in MC(RK/K). Then we have

Hom∇(Q,Q
′)⊗ Hom∇(U,U

′) ∼= Hom∇(Q⊗ U,Q′ ⊗ U ′).

The similar argument holds for special étale objects and unipotent objects in MC(A†
K/K).

This lemma can be proven by choosing a suitable extension K ′ of K; thus we are

reduced to the case that Q and Q′ are geometrically irreducible. This result follows

directly from the calculation in the proof of Lemma 3.3.33.

Back to the main theorem, the following inverse image functor

MCsp(A†
K/K)→ MCsp(RK/K).

is an equivalence of categories by Corollary 3.3.3, Corollary 3.3.26 and the above lemma.

Then the assertion follows from Theorem 3.3.34.
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Remark 3.3.37. Although Matsuda [7] constructed such a p-adic analogue of Katz corre-

spondence, it is remarkable that this correspondence only deals with a small class of over-

convergent isocrystals compared to those in classical Katz correspondence. Specifically,

we recall that in the decomposition of Katz’s special objects [5, Section 2], he considered

rank one, regular-singular objects instead of étale objects in Matsuda’s version. In the

next section, we will consider some directions to extend this correspondence.

3.4 Further results

In this section, firstly we will prove that objects in both categories of Matsuda’s version

of Katz correspondence (Theorem 3.3.35) satisfy regular-singular conditions. Our results

are based on [7, Corollary 7.13].

We denote by Ã†
K := Ã† ⊗K the subalgebra of RK , where

Ã† :=

{ ∞∑
n=0

ant
n
∣∣∣an ∈ OK ,∀ρ < 1, |an|ρn → 0|an|ρn → 0, n→ +∞

}
.

Definition 3.4.1. An object (M,∇) in MC(RK/K) is called regular if there exists a

submodule of M̃ over Ã†
K such that

M ∼= M̃ ⊗
Ã†

K
RK

and the restriction of ∇ to M̃ is a logarithmic connection (cf. Theorem 1.5.7)

∇log
R : M̃ → M̃ ⊗ Ω

Ã†
K

with the differential module with logarithmic pole at t = 0:

Ω
Ã†

K
:= Ã†

K

dt

t

Proposition 3.4.2. If M is a quasi-unipotent module with connection over RK , M is

regular.

Proof. By Theorem 3.3.34, there is a decomposition

M =
⊕
i∈I

Qi ⊗ Ui
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with étale objects Qi and unipotent objects Ui. By Theorem 3.3.2, there exists a basis

e = (e1, . . . , eni) of Ui such that

∇e = eC ⊗ dt

t

with C ∈Mni(K), ni the rank of Ui. Thus we can easily choose sub-Ã†
K-modules Ũi of Ui

such that

∇(Ũi) ⊂ Ũi ⊗ Ω
Ã†

K
.

We can equip each Qi with a φn-structure φn,i for some positive integer n.

By the quasi-unipotence of M , there exists a finite Galois extension F of the residue

field E = k((t)) ofRK such that every (Qi,∇, φn,i)⊗RK(F ) is trivial. Using the discussion
of finite étale Galois extensions of the Robba ring after Lemma 3.2.2, there exists a finite

Galois extension B̃† of Ã† with the Galois group Gal(F/E). Let B̃†
K = B̃† ⊗OK

K. We

define the sub Ã†
K-module Q̃i of Qi by

Q̃i = (VRK ,n(Qi)⊗Kn
B̃†
K)

G,

with Kn the subfield of K fixed by the nth power of Frobenius endomorphism φ of K

and VRK ,n the functor defined in Lemma 3.3.22. It is remarkable that the condition that

Fpn ⊂ k in Lemma 3.3.22 can be satisfied by Galois descent.

Let Ω
B̃†

K
= Ω

Ã†
K
⊗
Ã† B̃

†
K . Obviously the derivation d : Ã†

K → Ω
Ã†

K
extends uniquely

to d : B̃†
K → Ω

B̃†
K
and hence Q̃i has a connection

∇ : Q̃i → Q̃i ⊗ Ω
Ã†

K

which is compatible with that of Qi. Then M̃ =
⊕

Q̃i ⊗ Ũi satisfies the condition.

Consider two subalgebras of A† = OK [t, t−1]†:

A†
0 := OK [t]

† and A†
∞ := OK [t−1]†.

Let A†
0,K := A†

0 ⊗K and A†
∞,K := A†

∞ ⊗K

Definition 3.4.3. An object (M,∇) in MC(A†
K/K) is called regular singular at 0 if there

exists a submodule of M0 over A†
0,K such that

M ∼= M0 ⊗A†
0,K

A†
K
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and the restriction of ∇ to M0 is a logarithmic connection (cf. Theorem 1.5.7)

∇log
0 :M0 →M0 ⊗ ΩA†

0,K

with the differential module with logarithmic pole at t = 0:

ΩA†
0,K

:= A†
0,K

dt

t
.

Similarly, an object (M,∇) in MC(A†
K/K) is called regular singular at ∞ if there exists

a submodule of M∞ over A†
∞,K such that

M ∼= M∞ ⊗A†
∞,K

A†
K

and the restriction of ∇ to M∞ is a logarithmic connection (cf. 1.5.7)

∇log
∞ :M∞ →M∞ ⊗ ΩA†

∞,K

with the differential module with logarithmic pole at t =∞:

ΩA†
∞,K

:= A†
∞,K

dt

t
.

With the similar argument as in the proof of Proposition 3.4.2 and [7, Corollary 7.13],

we obtain the following result:

Proposition 3.4.4. If M be a special module with connection over A†
K , M is regular-

singular at both 0 and ∞.

Proof. We will prove that M is regular-singular at 0. The other assertion at ∞ is proved

similarly.

By Definition 3.3.27(i), a special object (M,∇) of MC(A†
K/K) admits a decomposition

M =
⊕
i∈I

Qi ⊗ Ui

with special étale objects Qi and unipotent objects Ui. By Theorem 3.3.2, there is a basis

e = (e1, . . . , eni) of Ui such that

∇e = eC ⊗ dt

t

with C ∈ Mni(K), ni the rank of Ui. Thus we can easily choose a sub-A†
0,K-module Ũi,0

of Ui such that

∇(Ũi,0) ⊂ Ũi,0 ⊗ ΩA†
0,K
.
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By Galois descent, we can assume that Fpn ⊂ k. By Definition 3.3.16, each Qi is

equipped with a φn-structure φn,i for some positive integer n such that (Qi,∇, φn,i) is spe-
cial unit-root, i.e. there exists a finite-dimensional continuous representation of πét1 (X, x)

over Kn (the subfield of K fixed by the nth power of Frobenius endomorphism of K),

denoted by Vi, such that

Qi = (Vi ⊗Kn
B†
K)

πét
1 (X,x)

for B†
K = B† ⊗OK

K, a finite étale Galois extension B† of A† corresponding to a special

étale cover at 0, denoted by U → X = Spec k[t, t−1] (cf. Definition 3.3.11). Recall that

the étale fundamental group acts on V via the Galois group Gal(B†/A†).

By the equivalence (i)⇔(iii) in Proposition 3.3.12, there exists an integer N ⩾ 1 and

a finite Galois extension k′ of k such that k′ contains N distinct Nth roots of unity,

such that there exists a finite étale Galois extension B0 of A′
0 := k′[t1/N ] satisfying U =

Spec(B0 ⊗A′
0
k′[t1/N , t−1/N ]). Let OK′ be the ring of integers of an unramified finite

extension K ′ of K with residue field k′ and A′†
0 a weak completion of OK′ [t1/N ]. Since

(A′†
0 , π) is a Henselian pair (by Lemma 3.2.2), there exists a finite étale covering B†

0 of A′†
0

unique up to an isomorphism such that B†
0 ⊗OK

k ∼= B0. Since B†
0 is integrally closed in

B† = B†
0 ⊗A†

0
A† and B† is also finite Galois over A† with Galois group G = Gal(B†/A†),

B†
0 is also finite Galois over A†

0 with the same Galois group.

Let B†
0,K := B†

0 ⊗OK
K. Thus we can define

Qi,0 := (Vi ⊗Kn
B†
0,K)

G.

Let ΩB†
0,K

:= ΩA†
0,K
⊗A†

0
B†
0. It is clearly seen that d : A†

0,K → ΩA†
0,K

naturally extends to

d : B†
0,K → ΩB†

0,K
and hence Qi,0 has a connection

∇ : Qi,0 → Qi,0 ⊗ ΩA†
0,K

which is compatible with that of Qi. Then M0 =
⊕

Qi,0⊗Ui,0 satisfies the condition.

Combining Theorem 3.3.35, Proposition 3.4.2 and Proposition 3.4.4, it is possible to

extend Matsuda’s version of Katz correspondence, as follows.

Question 3.4.5 (p-adic Deligne correspondence). There is an equivalence between the

following subcategories of regular-singular objects in MC(A†
K/K) and MC(RK/K), re-

spectively:

MCrs at 0, ∞(A†
K/K)→ MCrs(RK/K).



87

In the next step, we state without proofs the following result, which is considered as

the p-adic analogue of Katz correspondence for rank-one objects (Proposition 1.6.3).

Theorem 3.4.6. [30, Theorem 3.3.2] The inverse image functor

MC(A†
K/K)→ MC(RK/K)

induces an equivalence between the full subcategory of MC(A†
K/K) consisting of rank-

one objects which are regular-singular at infinity and the full subcategory of MC(RK/K)
consisting of rank-one objects.

Remark 3.4.7.

(i) Garnier proved Theorem 3.4.6 in an analytic approach. Specifically, he used the

notions of ”radius of convergence” of differential modules at the ”points” ρ ∈ (0, 1)

i.e. the radius of convergence of solutions of associated p-adic differential equations

with respect to the semi-norms | · |ρ, ρ ∈ (0, 1). This approach was firstly used by

Robba and completely developed by Christol-Mebkhout. For an introduction of this

approach, see [31] or [32].

(ii) By the construction of Katz correspondence in characteristic zero (Section 1.6), this

result allows us to expect for the Katz correspondence of larger categories compared

to Matsuda’s version (Theorem 3.3.35). However, this requires a p-adic analogue

of Turrittin-Levelt-Jordan decomposition (Theorem 1.5.9) for differential modules

over the Robba ring, which seems to be extremely difficult without restricting to

differential modules with some additional structure. One of the difficulties is the

existence of irreducible differential modules over RK of rank ⩾ 2.

(iii) The well-known p-adic local monodromy theorem, which was conjectured by Crew

and proved independently in different approaches by André [33], Mebkhout [34] and

Kedlaya [35], is considered the biggest effort to construct a Katz correspondence for

isocrystals. Specifically, this theorem states that any differential module over RK
endowed with a Frobenius structure is quasi-unipotent.



Conclusion

In this thesis, we have presented the following:

1. The concepts of differential modules and modules with connection. We also introduce

Turrittin-Levelt-Jordan decomposition for differential modules in characteristic zero

and propose the construction of Deligne-Katz correspondence in characteristic zero.

2. An introduction to rigid geometry in terms of Tate’s viewpoint and Raynaud’s

generic fiber. Specifically, we have proposed the rigid analytification functor and

the relation of rigid geometry with formal geometry via Raynaud’s generic fiber.

3. The concepts of overconvergent isocrystals and Matsuda’s version of Deligne-Katz

correspondence for them. We have also suggested some directions to extend this

result to an equivalence between larger categories.
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