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Introduction

The present thesis is motivated by the following classical result of Schinzel and

Postnikova in 1968, see the main theorem in [1].

Theorem 0.0.1. Let a and b be relatively prime nonzero integers of a number field K

for which
a

b
is not a root of unity. Then there exists a constant n(a, b) such that for

all n > n(a, b), the number an − bn has a primitive divisor.

Here, a primitive divisor of an − bn is a prime ideal p such that n is the smallest

integer in the set of positive integers h satisfying p|ah−bh. In other words, n is the order

of the reduction modulo p of the non-torsion point
a

b
∈ Gm(K). The proof is based

on some estimates of the orders of an − bn modulo prime ideals and an approximation

theorem of Gel’fond. This theorem gives us some information about the reduction of

non-torsion rational points on the multiplicative group Gm over K. Passing to elliptic

curves, S. Hahn and J. Cheon also obtained a similar result (see [2])

Theorem 0.0.2. Let P ∈ E(K) be a point of infinite order on an elliptic curve E over

a number field K. Then there exists an integer N such that for every n > N , there

exists a prime p of good reduction of E so that the order of P modulo p is equal to

n. Moreover, for all P , except finitely many points, there exists such a prime p for all

positive integer n.

As usual, when working with rational points on elliptic curves, one needs height

function machinery. Using height functions, the idea of the elliptic curve proof is similar

to the classical case. In this thesis, we prove a global function field version for above

theorems for one-dimensional tori and elliptic curves. In the case of the one-dimensional

tori over global function fields, we first give proof of the case of multiplicative groups,

and, using reductions, we deduce the one-dimensional torus case. In the case of elliptic

curves over number fields, height functions work well; however, we need some auxiliary

results when passing to the function field cases. Therefore, we need to treat carefully

calculations involving the characteristic of the base field. Precisely, we need some

estimates for height functions over function fields of H. Zimmer in [3] and Roth’s

theorem in positive characteristics which is proven in [4] by J.V.Armitage. In addition,

A. Perucca in her thesis [5] has proven the following theorem

Theorem 0.0.3. Let G be a product of a torus and an abelian variety over a number

field K, and L a finite extension of K. Let P ∈ G(L) be such that GP is connected,
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and m is some fixed non-zero integer. Then there exists a set of primes p of K whose

Dirichlet density is positive satisfying the following: any prime q of L over p satisfies

the order of P modulo q is prime to m.

Here, GP is the Zariski closure of ZP , the group generated by P , in GL := G×K L.

When L = K and G is a product of an elliptic curve and Gm, we note that Theorems

0.0.1 and 0.0.2 give us infinitely many places p satisfying the order of P modulo p

is prime to m, but this theorem tells us more, the Dirichlet density of such places is

positive. At the end of the thesis, we recall the Kummer theory after Ribet and apply it

to give proof of this result due to A. Perucca. Finally, we propose some open questions.
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Chapter 1

Algebraic Groups and Reductions

The main references for this chapter are [5], [6], [7], [8], and [9]. This chapter contains

five following sections

1. Global Fields.

2. Algebraic Groups.

3. Integral Models of Algebraic Groups.

4. Reduction of Algebraic Groups.

5. Formal Groups.

1.1 Global Fields

Because we will work with global fields most of the time, I start the thesis with some

properties of global fields.

Definition 1.1.1. By global field we mean a number field (i.e., a finite extension of

the field of rational numbers Q), or a global function field (i.e., a finite extension of

the field Fq(t) for a variable t and a finite field Fq).

We denote F the base field Q or Fq(t). For a field K, denote by Ks its separable

extension and Γ := Gal(Ks/K) its absolute Galois group.

Example 1.1. F4(t) and Q(
√
2) are global fields.

• MQ = {primes p} ∪ | · | where | · | is the usual absolute value.

• MFq(t) is the set of irreducible monic polynomials and
1

t
. In addition, those places

induce normalized absolute values as follows:

(a) |x|p := p− ordp(x) for x ∈ Q× and prime number p, and

(b) |x|f := q− ordf (x). deg f for x ∈ Fq(t)
× and f ∈MFq(t).
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These two kinds of global fields share a lot of common behaviours. A global field

K admits a set of non-trivial non-equivalent normalized places (absolute values) MK .

We let OK to be the ring of integers in K, i.e., the integral closure of Z or Fq[t] in

K. Now, for S a set of finitely many places in K (we always assume that S contains all

Archimedean places), we denote OK,S := OS := {x ∈ K : v(x) ⩾ 0,∀x ̸∈ S} the ring

of S−integer, O×
K,S := O×

S = {x ∈ K : v(x) = 0,∀x ̸∈ S} the group of S−units,

and OK,v := Ov := {x ∈ K× : v(x) ⩾ 0} the valuation ring correspond to non-

Archimedean place v . We denote pv the maximal ideal in Ov, and ordv(x) := ordpv(x).

For a place v of K over p of Q (or f of Fq(t)), we denote Kv the completion of K at

v and Nv := [Kv : Qp] (or [Kv : Fq(t)f ]). The number Nv is called the local degree

at v.

To simplify, we work with normalized absolute values, i.e., we have (see [10] Propo-

sition 2.1)

• |x|v = |x|Nv if v is Archimedean,

• |x|v = (1/Nv)ordv x for every non-Archimedean place v of a number field, where

Nv := #Ov/pv, and

• |x|v = (1/q)ordv x.deg v for every place v of a global function field. Here, the degree

of v, deg(v) is defined to be the degree [Ov/pv : Fq] when K is a global function

field.

We note that those normalized absolute values satisfy

• (P) The product formula: for any x ∈ K \ {0}∏
v∈MK

|x|v = 1;

• (F) The finiteness property: for any x ∈ K \ {0}, for all but finitely many v,

|x|v = 1.

For v ∈MK a non-Archimedean place, its associated valuation v(.) on K× is defined

to be − log |.|v in the number field case, and − logq |.|v = ordv(.). deg v in the global

function field case.

Definition 1.1.2. We denote Div(K) the divisor group that is the free abelian group

generated by places of K. It means that a divisor is a formal sum

D =
∑
v

nv.v with nv ∈ Z, and almost nv = 0.
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Such D is called a prime divisor if D is of the form D = v for some v ∈ MK . D is

principal if it is of the form

(x) =
∑
v

ordv(x).v for some x ∈ K×.

Similarly, for the set S as above, the group of S−divisors, DivS(K), is the subgroup

of Div(K) generated by primes not in S. A divisor is called S−principal if it is of the

form

(x)S :=
∑
v ̸∈S

ordv(x).v for some x ∈ K×.

We denote Prin(K) (resp. PrinS(K)) the group of principal divisors (resp. S−principal

divisors). The quotients Cl(K) := Div(K)/Prin(K), and ClS(K) := DivS(K)/PrinS(K)

are called the class group, and S−class group respectively.

For L a Galois extension of K, and p a prime ideal in OK , we let q be a prime ideal

of L above p, then we define the decomposition group

D(q|p) := {σ ∈ Gal(L/K) : σ(q) = q}

and the inertia group

I(q|p) := {σ ∈ D(q|p) : σ(x) ≡ x mod q,∀x ∈ OL}.

Definition 1.1.3. The prime p is unramified over L if I(q|p) = 1 for some q|p (and

hence for all q).

The following important theorem will be used later.

Theorem 1.1.4. (Chebotarev’s density theorem) Let K be a global field, L a finite

Galois extension of K, and C a conjugacy class in Gal(L/K). Then the Dirichlet

density of the set of unramified (in L) primes p of K whose Artin symbol
(
L/K

p

)
= C

equals
|C|

[L : K]
.

Proof. We refer to [11] Theorem 6.3.1.

Number Fields

For number fields K, there are some well known finiteness theorems, see [12] Theorem

7.4, Corollary 11.7 and 11.8.

Theorem 1.1.5. 1. (Dirichlet unit theorem) The group O×
K is isomorphic to µ(K)×

Zr1+r2−1 where µ(K) is the group of roots of unity in K, r1 and 2r2 are the num-

ber of real places, and complex places of K, respectively. In particular, O×
K is

finitely generated.



7

2. (Dirichlet S−unit theorem) The group of S-units is finitely generated, with rank

equal to r + s, where r is the rank of the unit group and s = |S|.

3. The groups Cl(K) and ClS(K) are finite.

Global Function Fields

For more details on global function fields, we refer to books [13] and [6]. From now on,

we always assume that global function fields K are the fields whose constant fields are

Fq. One has the similar results for global function fields K over Fq.

First, we have the degree maps

deg : Div(K)→ Z,
∑
v

nv.v 7→
∑
v

nv. deg(v), and

degS : DivS(K)→ Z,
∑
v ̸∈S

nv.v 7→
∑
v ̸∈S

nv. deg(v).

Their kernels are denoted by Div0(K), and Div0S(K) respectively.

Proposition 1.1.6. Let x ∈ K×. Then (x) = 0, the zero divisor, if and only if x ∈ F×
q ,

the ring of constant functions. Furthermore, deg(x) = 0 for all x ∈ K× (equivalently,

K satisfies the product formula).

Proof. See [6] Proposition 5.1.

Thanks to this result, we let Cl0(K) := Div0(K)/Prin(K).

Theorem 1.1.7. (F.K. Schmidt) The image deg(Div(K)) is equal to Z. In other

words, the gcd(deg v : v ∈MK) = 1.

Proof. We refer to [13] Corollary 5.1.11.

Now we recall the proof of Dirichlet S−unit theorem for global function fields. Let

dZ be the image of DivS(K) via the degree map. Then we have

Proposition 1.1.8. The following sequences are exact:

• 0→ F×
q → O×

S → PrinS(K)→ 0;

• 0→ Div0S(K)/PrinS(K)→ Cl(K)→ ClS(K)→ Z/dZ→ 0.

Proof. The exactness of the first sequence is by definition. To address the second one,

we define a map τ : Div(K)→ DivS(K) as follows:

τ(D) =
∑
v ̸∈S

ordv(D)v.
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This map is surjective with kernel DivS(K), and τ(Prin(K)) = PrinS(K). Thus, τ in-

duces a homomorphism Cl(K)→ ClS(K) with kernel (DivS(K)+Prin(K))/Prin(K) ∼=
DivS(K)/PrinS(K). So we get an exact sequence

0→ Div0S(K)/PrinS(K)→ Cl0 → ClS .

We need to prove that the cokernel of the last map is Z/dZ. Since ClS(K) ∼=
Div(K)

Prin(K) + DivS(K)
, and Cl0(K) =

Div0(K)

Prin(K)
, this cokernel equals the cokernel of

the natural map
Div0(K)

Prin(K)
→ Div(K)

Prin(K) + DivS(K)
,

which is
Div(K)

Div0(K) + DivS(K)
. Via the degree map, it is isomorphic to Z/dZ.

Corollary 1.1.9. O×
S /F×

q is finitely generated of rank at most |S| − 1. In particular,

O×
S is finitely generated.

Proof. Since O×
S /F×

q
∼= PrinS(K), and the latter is a subgroup the free group DivS(K)

of rank |S| − 1, we obtain the desired result.

Even more, one can show that

Theorem 1.1.10. ClS(K) is finite and O×
S /F×

q is a free group of rank |S| − 1.

Proof. We refer to [6] Proposition 14.2.

We recall (cf. [14], Remark 2.5) that there is an equivalence of categories between

• The category of smooth curves over Fq:

– Objects: smooth projective geometrically integral curves over Fq,

– Maps: non-constant rational maps over Fq;

• The category of function fields whose constant field is Fq

– Objects: finitely generated field extensions K/Fq with tr. degFq
K = 1 and

K ∩ Fq = Fq,

– Maps: non-trivial homomorphisms over Fq.

Furthermore, one has

Proposition 1.1.11. Let C be a smooth projective geometrically integral curve over Fq.

There is a bijection between the closed points of C and the set of places of K := K(C).
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Proof. Since for every closed point p, OC,p is a discrete valuation ring, it induces a

place on K. Conversely, let v be a place on K, it then induce a discrete valuation

subring Ov on K. Since v(F×
q ) = 0, the diagram

Spec(K) C

Spec(Ov) SpecFq

ι

commutes. By the valuative criteria for properness, ι can lift to a morphism SpecOv →
C which map the unique closed point of Ov to some closed point x of C. It then induces

a local map (and hence an injective map) OC,x → Ov, and since every valuation ring

O of K/Fq is a maximal proper subring of K (cf. [13] Theorem 1.1.13), we have

OC,x = Ov.

Example 1.2. By direct computations, closed points of P1 over Fq are in bijection

with the set of irreducible monic polynomials with coefficients in Fq and the polynomial
1

t
, which is exactly MFq(t).

Example 1.3. Thanks to these correspondences, and thanks to the fact, that prime

divisors on a smooth projective geometrically integral curve over a field are just closed

points, notions relating to divisors of K = K(C) is also in an 1-1 correspondence to

those of C. In particular, those definitions of absolute values on K = K(C) correspond

to those on C defined in [10] Chapter 2, section 3.

1.2 Algebraic Groups

Now we turn the the geometric side of the thesis. First, we need some definitions.

Definition 1.2.1. A scheme G over a field K is called a group scheme if it is equipped

with K−morphisms m : G × G → G, i : G → G, and e : SpecK → G satisfying the

usual group axioms, i.e., the following diagrams commute

G×G×G G×G G G×G

G×G G G×G G

m×idG

idG×m m

m

(e,idG)

(idG,e)

m

m

G G×G

SpecK

G×G G

(i,idG)

(idG,i)

m

m

e
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Further, G is said to be commutative if the diagram below commutes (τ is the inter-

chaging map)

G×G G×G

G

τ

m m

The morphisms between K−group schemes can be defined in an evident way.

Definition 1.2.2. Let (G,mG, iG, eG) be a group scheme over a field K. We define

a K-subgroup H of G to be a closed subscheme such that there exist eH ,mH , iH

satisfying the following diagrams commute

SpecK H ×H H ×H H H

H G G×G G×G G G

eH

mG

mH

iG

iH

eG

In other words, for every K-algebra R, H(R) is a subgroup of G(R). Further, H is is

said to be normal in G if H(R) is normal in G(R) for each R.

Proposition 1.2.3. (Existence of kernel) Let f : G → G′ be morphism of group

schemes. Then, there exists a unique normal subgroup H ◁ G such that

H(R) = ker(G(R)→ G′(R))

functorially in R. This group scheme H is called the kernel of ϕ.

Proof. H is the fiber product SpecK ×H G

H G

SpecK G′
e′

ϕ

Definition 1.2.4. Let 1 → G′ i−→ G
s−→ G′′ be a sequence of morphisms of group

schemes. It is called exact if i is an isomorphism of G′ onto ker s. The sequence

1 → G′ i−→ G
s−→ G′′ → 1 is called exact if in addition, s is surjective and flat, i.e.,

faithfully flat.

In this thesis, we only focus on algebraic groups.

Definition 1.2.5. A group scheme over a field K is called an algebraic group if it

is of finite type over K.
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Proposition 1.2.6 (Existence of quotient algebraic groups, see [8] Theorem 5.2.5).

Let H be a subgroup of an algebraic group G over a field K.

1. Then there exists a faithfully flat quotient map q : G → Q onto a K−scheme

Q of finite type that is initial among K-morphisms G → G′ that are invariant

with respect to the right action of H on G. We call Q the quotient of G by H

and denote by G/H. The formation of this quotient commutes with base field

extension. Further, Q is smooth if G and H are smooth.

2. If in addition H is normal in G, then Q admits a unique K-group scheme struc-

ture such that q is a homomorphism, and ker q = H. If moreover G is affine then

Q is affine.

Proposition 1.2.7 (Homomorphism theorem, see [8] Theorem 5.2.9). Let f : G→ G′

homomorphism of algebraic groups. Then it factors uniquely through homomorphisms

G ↠ I ↪→ G′ with G ↠ I faithfully flat, and I −→ G′ a closed immersion. We then

call I the image of ϕ.

Corollary 1.2.8. With the above notation, we have that ker f = 0 if and only if f is a

closed immersion. In particular, if f is a monomorphism then it is a closed immersion

and we denote its image by f(G). If in addition, G and G′ are smooth, then f(G)

is smooth and the map G′/ ker f → f(G) is an isomorphism. Particularly, when f is

surjective, G and G′ are smooth, then f is a quotient map.

Proof. If ker f = 0, then f = i in the above proposition. Conversely, if f is a closed

immersion, then f : G(S)→ G′(S) is injective for every K−scheme, so ker f = 0.

Definition 1.2.9. Let G and H be two algebraic groups. A homomorphism f : G→ H

is called an isogeny if α is faithfullt flat and has finite kernel (i.e., kerϕ→ SpecK is

finite). Thanks to the generic flatness and the homogeneity of algebraic groups, it is

equivalent to that f is surjective and dimG = dimH. We then define the degree of ϕ

to be deg ϕ := #kerϕ := dimK Γ(kerϕ), where Γ is the global section functor.

Example 1.4. The following are algebraic groups.

(a) The additive group Ga = SpecK[T ] = A1
K .

(b) The multiplicative group Gm = SpecK[T, T−1] = A1
K \ {0} ⊂ A1

K .

(c) The general linear group GLn = SpecK[Tij : 1 ⩽ i, j ⩽ n][det(Tij)
−1] ⊂ An×n

K .
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(d) Similarly, we have the general sympletic group scheme GSp2n which is defined by

{g ∈ GLn :< gv, gw >= µ(g) < v,w > for some µ(g) ∈ K×,∀v, w ∈ V }

associated to a given non-degenerate skew-symmetric form <,>: V × V → K

over a field K.

(e) Elliptic curves over K are also algebraic groups, but they are projective while

the above examples are affine.

We note that the absolute Galois group Γ = Gal(Ks/K) acts continuously on

G(Ks) (here we need G to be of finite type) and the fixed points of this group under

Gal(Ks/K) is G(K). We denote G[n] := G(K̄)[n] := {x ∈ G(K̄) : n.x = 0} the

n−torsion group for every positive integer n.

Definition 1.2.10 (see [15]). Let G be an algebraic group over a field K. For any

prime l, the (l−adic) Tate module associating to G is

Tl(G) := lim←− G(Ks)[ln],

where G(Ks)[ln] := {x ∈ G(Ks) : ln.x = eG}, and the transitive maps are multipli-

cation by l. We denote Vl(G) := Tl ⊗Zl
Ql. We then have a natural Galois action on

Tl(G), and hence on Vl(G)

ρl : Gal(Ks/K)→ AutQl
(Vl(G)).

We denote by Gl the image of ρl. We will see later that in some circumstances, namely

when G is semi-abelian, G[n] = G(Ks)[n] when n is prime to char.K.

Example 1.5. We have Tl(Gm) = lim←−
m

µlm =: Zl(1) is a free Zl module of rank 1 where

Gal(Ks/K) acts via the cyclotomic character χl : Gal(Ks/K)→ Z×
l (here, char.K ∤ l).

Definition 1.2.11. For G an algebraic group over K, and a subgroup Σ ⊂ G(K) ,

we define its Zariski closure to be the smallest reduced closed subscheme Σzar of G

whose K−points contain Σ.

Remark. When G is a smooth algebraic K−group, Σzar is also smooth. Further,

its formation commutes with base field extensions, i.e., if L is a field extension of K,

then the closed subgroup (Σzar)L := Σzar ×K L ⊂ GL is also the Zariski closure of

Σ ⊂ G(L) = GL(L), see [7] Theorem 3.2.1.

Definition 1.2.12. We have two important types of algebraic groups.



13

• A linear algebraic group over K is a smooth algebraic group scheme with the

underlying affine scheme defined over K.

• An abelian variety over a field K is a smooth, connected, proper algebraic

group over K.

Then we have

Theorem 1.2.13 (Chevalley’s theorem, see [7] Theorem 2.5.1). If K is perfect, then

every smooth connected K-algebraic group fits into a unique short exact sequence of

algebraic groups over K

1 Gaff G A 1

where Gaff is a linear algebraic group and A is an abelian variety.

We then call Gaff and A the affine part and the abelian part of G respectively.

Furthermore, the decomposition behaves well under surjective homomorphisms.

Proposition 1.2.14. Let f : G → G′ be a surjective homomorphism (resp. isogeny)

between smooth connected K-groups where K is perfect, then Gaff → G′aff is surjective

(resp. an isogeny) and similarly for the induced map G/Gaff → G/Gaff between the

abelian parts.

So, to study algebraic groups amounts to study linear algebraic groups and abelian

varieties separately.

1.2.1 Linear Algebraic Groups

The main reference for the section is [9].

Definition 1.2.15. A K−linear algebraic group G is called unipotent if GK̄ admits a

composition series in which each successive quotient is isomorphic to a closed subgroup

of Ga,K̄ . G is called solvable if its nth derived subgroups is trivial for some n. Here,

G0 := G, G1 := [G0, G0] its commutator subgroup, etc.

Lemma 1.2.16. There are no non-trivial homomorphisms between a torus T and an

unipotent group U (in either direction).

Definition 1.2.17. A K-torus is a algebraic group T over K such that TKs ∼= Gn
m

for some n. We define the rank of T to be n. Then, T is a commutative, connected,

and affine K−group.
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By definition, T is splitted by some finite extension L/K, i.e., TL ∼= Gn
m. The

smallest such L is called the splitting field of T .

Remark. Thanks to Jordan decomposition, one can show that a torus is a connected

commutative group all of whose Ks−points are semisimple, and vice versa.

Not surprisingly, under some conditions, we can describe an algebraic group via its

torus part and unipotent part as follows.

Proposition 1.2.18. For a smooth connected commutative affine K-group G, we have

the following.

1. There is a unique maximal K-torus T in G containing all K-tori of G, and

U = G/T is unipotent.

2. Such extension is split, i.e., G = T × U , if K is perfect.

3. The formations of T and U are functorial in G. Furthermore, every surjective

homomorphism (resp. isogeny) G → G′ between commutative affine K-groups

which are smooth and connected induces surjective homomorphisms (resp. isoge-

nies) T ′ → T and U ′ → U . Particularly, G′ is a torus if and only if G is a torus,

and similarly for unipotence.

Proof. See [9] Proposition 2.16.

Corollary 1.2.19. A connected algebraic subgroup and a quotient of a torus are tori.

Proof. For the subgroup, it must not contain any unipotent elements. This can also

be proved as follows. Since the Ks−points of this subgroup must also are semisimple,

the result follows from above remark. For the quotient, its unipotent part is a quotient

of the unipotent part of the torus which is trivial.

Definition 1.2.20. The character group and cocharacter group of an algebraic

group G is defined to be X(G) := HomK̄(GK̄ ,Gm), and X∨(G) := HomK̄(Gm, GK̄)

respectively.

Example 1.6. For T a torus of dimension m over K, and l a prime satisfying char.K ∤ l,
one has

X∨(T )⊗Z Zl(1) ∼= Tl(T )

as Gal(Ks/K)-modules. Indeed, each K̄−homomorphism Gm
ϕ−→ TK̄ induces a homo-

morphism

ϕ[ln] : µln → T [ln], ξln 7→ gln



15

where ξln is a fixed primitive root of unity for each n. Let n go to the infinity, we have

a Galois equivariant homomorphism

ϕl : Zl(1)→ T [ln].

We then have a map

X∨(T )⊗Z Zl(1)→ Tl(T ), ϕl ⊗ 1 7→ ϕl((ξln)) = (gln).

Because both sides are isomorphic (as groups) to Zm
l , it remains to show that this

map is injective. If ϕl((ξln)) = 1, then ϕ[l] = 1, i.e. Im(ϕ)[l] = 1. Since Im(ϕ) is a

connected subgroup of T (since Gm is connected), it is a torus. Therefore, Im(ϕ)[l] is

of dimension dim Im(ϕ), and hence, Im(ϕ) is trivial . It means that ϕ is trivial. We

note that for a smooth connected unipotent group, their character group, cocharacter

group, and Tate module are all trivial (since it does not have any non-trivial l−torsion

points).

Remark. Thanks to the Dirichlet’s unit theorem, see Theorem 1.1.5 and corollary

1.1.5, the group T (OK,S) is finitely generated for any torus T over a global field K.

Consequently, the number of torsion K-points of a torus is finite. We note that in

general, the number of torsion points of a linear algebraic group is not finite.

1.2.2 Abelian Varieties

The main reference for this section is [16]. First, we list here some important properties

of abelian varieties.

• Abelian varieties are commutative.

• They are also projective.

• Over C, they are 1-1 corresponding to polarizable complex tori (i.e., complex tori

admitting a Hermitian form).

First we have the following result due to A. Weil, see [16] Chapter 3.

Proposition 1.2.21. Let α : X 99K A be a rational map from a smooth variety X

over K to an abelian variety. Then α is a morphism.

Corollary 1.2.22. Every rational map A1 99K A or P1 99K A is constant.

We note that every morphism from a proper connected K-scheme to an affine

K-scheme of finite type is also a constant. For instance, there are no non-trivial K-

homomorphisms from an abelian variety A to a connected linear algebraic group G. In

addition, there are also no non-trivial K−homomorphisms from G to A.
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Lemma 1.2.23. A connected algebraic subgroup H and a connected quotient Q of an

abelian variety G are abelian varieties.

Proof. Because over K̄, the affine part Haff
K̄

is a subgroup of Gaff
K̄

, Qaff
K̄

is a quotient

of Gaff
K̄

, and Haff
K̄

is trivial, then the lemma follows.

We also note that for abelian varieties A, the multiplication-by-n map [n] : A→ A

is an isogeny. In fact one can show that

Proposition 1.2.24 (see [16] Theorem 7.2). Suppose A has dimension g, then

1. deg[n] = n2g, and

2. [n] is separable if and only if char.K ∤ n.

In particular, A(Ks)[n] = A(K̄)[n] ∼= (Z/nZ)2g when char.K ∤ n.

Remark. If f : A→ B is an isogeny of degree n between abelian varieties, then there

exists an isogeny f ′ : B → A with f ′ ◦ f = [n]A and f ◦ f ′ = [n]B. Indeed, since f is

an isogeny, we have an isomorphism

f : A/ ker f → B.

Now let h : B → A/ ker f be its inverse. Then the map [n] : A → A factors through

[n] : A/ ker f → A, since [n] kills ker f . Next we define f ′ : B → A as f ′ := [n] ◦ h :

B → A and it is straightfoward to check that f ′ ◦ f = [n]A and f ◦ f ′ = [n]B.

Next, we will construct the Weil pairing on abelian varieties. We first need to

construct dual abelian varieties. For an abelian variety A
f−→ SpecK, we introduced

the relative Picard functor, see [8] Remark 5.7.12,

PicA/K : (Sch/K)→ (Set), T 7→ Pic(AT )/f
∗
TPic(T ).

Here AT = A ×K T and fT : AT → T. Grothendieck proved that this functor is

representable (he actually did for a more general situation).

Theorem 1.2.25 (see [8] Remark 5.7.12).

1. PicA/K is represented by a locally of finite type scheme over K (hence a group

scheme).

2. The connected component Pic0A/K is projective and smooth. We define Â :=

Pic0A/K the dual abelian variety of A. In addition, the set Â(K) equals Pic0(A) :=

{L ∈ Pic(A) : T ∗
xL = L ∀x ∈ A(K̄)}, the group of translation invariant line bun-

dles.
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We note that for any line bundle L on A, we have

ϕL : A→ Pic0(A), x 7→ T ∗
xL ⊗ L−1.

When L is ample, this map is surjective with finite kernel, and hence an isogeny.

Since A always admits an ample line bundle (due to the projectivity of A), we have

dimA = dim Â.

Definition 1.2.26 ([16] section 11). With the above notation, a polarization of A is

an isogeny λ : A→ Â satisfying λK̄ = ϕL,K̄ for some ample line bundle L on A. If in

addition, λ is an isomorphism (i.e., deg λ = 1), then λ is said to be principal.

Now, for char.K ∤ m, we will construct a pairing

em : A(K̄)[m]× Â(K̄)[m]→ µm(K̄).

We follows the construction in [16]. First we assume K = K̄ for simplicity. Let

a ∈ A(K)[m] and L ∈ Â(K)[m] ⊂ Pic0(A), then L can be represented by the divisor

D on A. We denote ∼ the linear equivalent.

Then [m]∗D ∼ mD because for L ∈ Pic0(A), (α + β)∗(L) ∼ α∗(L)⊗ β∗(L) for all

regular morphisms α, β: X → A from some variety X → A. Therefore, [m]∗D ∼ 0,

i.e., there are f, g ∈ K(A) satisfying mD = div(f) and [m]∗D = div(g). We then have

div(f ◦ [m]) = div([m]∗(f)) = [m]∗(mD) = m([m]∗D) = div(gm)

because div commutes with pull back via separable morphism. Thus gm/(f ◦ [m]) is

also a rational function on A. Further, it does not contain ant zeros or poles, so it

must be constant and we denote it by c. Thus we have

g(x+ a)m = cf(mx+ma) = cf(mx) = g(x)m,

i.e., the values of the funtion g/(g ◦ Ta) are in µm(K). Since A is connected, it is an

constant function ∈ µm(K). So we define

em(a,L) := g/(g ◦ Ta).

Lemma 1.2.27. For integers m,n > 0 prime to char.K, and a ∈ A(K̄)[mn], L ∈
Â(K̄)[mn], we have

emn(a,L)n = em(na, nL).

Proof. As above, L corresponds to some divisor D, and there exists rational functions

f, g, h such that

m(nD) = mnD = div(f), [mn]∗D = div(g), [m]∗(nD) = div(h).
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Then there exist constant functions c and d satisfying gmn = c.(f ◦ [mn]), hm = d.(f ◦
[n]). So

g(x+ a)mn = c.f(mnx) = g(x)mn, h(x+ na)m = d.f(mx) = h(x)m.

Thus g(x)n/h(nx) is a µm(K)−valued function anh hence is constant. Therefore

emn(a,L)n =
[
g(0)/g(a)

]n
= h(0)/h(na) = em(na, nL).

From this we have a (Weil) pairing (also denote by el)

el : Tl(A)× Tl(Â)→ Zl(1), ((an)(Ln)) 7→ (eln(an,Ln)).

For a polarization λ : A→ Â (which always exists), we have an associated pairing

eλl : Tl(A)× Tl(A)→ Zl(1), (a,L) 7→ el(a, Tl(λ)L).

One can show that

Proposition 1.2.28. The pairings em, and el are Gal(K̄/K)−equivariant, and sym-

plectic, i.e., they are skew-symmetric and non-degenerate, for any m > 0 prime to

char.K and any primes l coprime to char.K. Similar properties also hold for eλl , ex-

cept the non-degenerate one.

Proposition 1.2.29. Let ϕ : A → B be an isogeny between abelian varieties over a

field K. Then for primes l > deg ϕ, we have an isomorphism of Gal(K̄/K)−modules

ϕ[l] : A[l] ∼= B[l].

Proof. The sequence

0→ ker(ϕ)→ A→ B → 0

induces an exact sequence

0→ ker(ϕ)(K̄)→ A(K̄)→ B(K̄)→ 0.

It is straightforward to check that by taking l−torsion points, we have an exact sequence

0→ ker(ϕ)[l]→ A[l]→ B[l].

By choosing l > #ker(ϕ)(K̄), we have ker(ϕ)[l] = 0, and hence, A[l] ↪→ B[l]. In

addition, these two groups have the same cardinality when l > char.K because A and

B have the same dimension. Thus the proposition follows.
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Corollary 1.2.30. For almost all primes l, the division field K(A[l]) contains µl, the

group of lth roots of unity in K̄. Here, and from now on, by "almost all" we mean

"for all but finitely many".

Proof. First we choose a polarization λ : A→ Â. because the pairing el : A[l]× Â[l]→
µl is Gal(K̄/K)−equivariant and non-degenerate, and for l large, A[l] ∼= Â[l] as Galois

modules, the pairing eλl : A[l] × A[l] → µl is also Gal(K̄/K)−equivariant and non-

degenerate. Therefore, since A[m] × A[m] is fixed by Gal(K̄/K(A[m])), µm is also

fixed by Gal(K̄/K(A[m])), i.e., µm ⊂ K(A[m]).

In fact, we have more, see [17].

Proposition 1.2.31. For every n > 0 prime to char.K, the division field K(A[n]),

i.e., the smallest field L over K such that A[n] ⊂ A(L), contains µn.

Proof. We can assume that n = lm for some prime l, and we denote L := K(A[lm]).

We take a K−polarization λ : A → Â of smallest possible degree. Then ker(λ) does

not contain A[l], otherwise the isogeny λ would factor via the multiplication-by-l map

(see [16] Remark 8.12 and the diagram below) and an isogeny β : A → Â of degree

deg(λ)/l, a contradiction.

A Â

A A/A[l] A/ ker(λ)

[l]

λ

β

We then observe that λ(A[lm]) ⊂ Â[lm] contains a point of order lm, say P . Otherwise,

λ(A[lm]) ⊂ Â[lm−1], and hence, A[l] = lm−1A[lm] is contained in ker(λ), a contradic-

tion. Furthermore, since A[lm] ⊂ A(L), λ(A[lm]) lies in Â(L). Now, we claim that

there is a point Q ∈ A[lm] such that ξ := elm(Q,P ) is a lm−primitive root of unity.

Otherwise,

elm(A[l
m], P ) ⊂ µlm−1 ,

and so the non-zero element lm−1P is orthogonal to A[lm], which is a contradiction.

Since P and Q are defined over L, ξ also lies in L, and so µlm ⊂ L = K(A[lm]).

Remark. We will see later that (Mordell-Weil theorem 2.2.1) that A(K) is finitely

generated for any abelian variety A over any global field K. As a consequence, the

number of its K-torsion points is finite.

1.2.3 Elliptic Curves

We follow [14].
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Definition 1.2.32. . An elliptic curve E over a field K is

1. an irreducible smooth projective curve over K of genus one with a marked point

O, or equivalently,

2. a plane projective curve defined by a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ K,

with non-zero discriminant. When K has the charateristics different from 2 and

3, changing variables gives us the simplified Weierstrass equation

y2 = 4x3 − g2x− g3, g2, g3 ∈ K.

Elliptic curves have rich structures. The group of (K̄-) homomorphisms from an elliptic

curve E1 to another E2 is denoted by Hom(E1, E2). For each elliptic curve E, we have

the endomorphism ring End(E), which contains Z.

Remark. 1. Elliptic curves are one-dimensional abelian varieties. Over C, the cat-

egory of elliptic curves are equivalent to the category of lattices in C, thanks

to the Weierstrass functions. One way to see this is that one-dimensional tori

always admit a Hermitian form, while higher-dimensional complex tori may not

in general. In addition, morphisms between elliptic curves over C correspond to

homotheties between lattices.

2. Because there is the canonical principal polarization given by L = O(O) on

elliptic curves, elliptic curves are canonically isomorphic to its dual. In general,

abelian varieties may not admit any principal polarization, but there is a way

called Zarhin’s trick to embed an abelian variety to a principally polarized one.

3. Because E1 and E2 are elliptic curves, non-trivial K̄−homomorphisms between

them are isogenies. However, this property is not true for general abelian varieties.

One can describes the endomorphism ring as follows.

Theorem 1.2.33 (see [14] Corollary 9.4). With the above notation, the ring End(E) is

either Z, an order in an imaginary quadratic extension of Q, or an order in a quater-

nion algebra over Q. Moreover, only the first two cases are possible when char(K) = 0.

Thanks to this result, we then have the following terminologies.
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Definition 1.2.34. If char.K = 0, then we say that an elliptic curve E/K has com-

plex multiplication if End(E) ̸= Z. If char.K > 0, E/K is said to be supersingular

if End(E) is an order in a rational quaternion algebra, otherwise E is said to be ordi-

nary.

In certain circumstances, Serre (see [18] Theorem 7) proved that Gl ⊂ GSp2 = GL2

can be as large as possible for almost l.

Theorem 1.2.35. Let E be an elliptic curve over a number field K without complex

multiplication, the image Gl of the representation ρl is open in GL2(Ql), i.e., the Lie

algebra gl is End(Vl(E)) for all primes l. In addition, ρl is surjective for all but finitely

many l′s.

1.2.4 Semi-Abelian Varieties

The main reference for this section is [9].

Definition 1.2.36. An algebraic group G over a field K is called a semi-abelian

variety if it fits into an exact sequence

1 T G A 1

where T is a torus, and A is an abelian variety over K.

Equivalently, Gaff is a torus because although K̄/K may not be Galois due to the

imperfectness of K, one can still descend the affine part to K as in [9] Theorem 3.1.

In addition, semi-abelian varieties are commutative, see [9] Theorem 3.1. Therefore,

thanks to the behaviour of Chevalley decomposition under isogeny, it follows that for

an isogeny G→ G′, G is semi-abelian if and only if G′ is.

Lemma 1.2.37 (see [9] Corollary 3.2). Let 1 → G′ → G → G′′ → 1 be an exact

sequence of smooth connected groups over K. Then G is semi-abelian if and only if G′

and G′′ are semi-abelian. In particular, connected subgroup of semi-abelian varieties

are semi-abelian.

Proof. Indeed, we may assume that K = K̄ thanks to [9] Theorem 3.1. If G is semi-

abelian, then G′aff , a smooth connected subgroup of Gaff , and G′′aff , a quotient

of Gaff , are tori. Conversely, we need to show thar a unipotent smooth connected

subgroup U in Gaff is trivial. Because its image in G′′aff is trivial, U must be a

subgroup of G′ and hence is trivial since G′aff is a torus.
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Corollary 1.2.38. A subgroup of a product of a torus and an abelian variety is also a

product of a (sub)torus and an (sub)abelian variety.

We note that if G = T ⋊A, we have G[l] = T [l]⋊A[l] and Tl(G) = Tl(T )⋊ Tl(A).

Therefore, we have

Corollary 1.2.39. Let H be a K-subgroup of a semi-abelian variety G over K. If H[l]

vanishes for l, then H is finite.

Proof. If H is connected. It follows from the assumption that H is semi-abelian.

Hence, 0 = Haff [l] is of order ldimHaff

, so Haff = 0, i.e. H is an abelian variety.

Then 0 = H[l] is of order l2 dimH , i.e. H = 0. For H non-connected, the result follows

from the finiteness of H/Ho.

We know that the groups of geometric points of tori and abelian varieties over K

are divisible when char.K = 0. Therefore, we have

Lemma 1.2.40. If char.K = 0, and G is a semi-abelian variety over K, then the

group G(K̄) is divisible.

Proof. Indeed, by definition we have an exact sequence

1→ T
f−→ G

g−→ A→ 1.

It yields an exact sequence

1→ T (K̄)
f−→ G(K̄)

g−→ A(K̄)→ 1.

Take R ∈ G(K̄), then there exists P ∈ T (K̄) such that nP = g(R). Let Q ∈ g−1(P ),

then nQ−R ∈ ker(g) = T (K̄). So there exists S ∈ T (K̄) such that nS = nQ−R and

then R = n(Q− S).

Similarly, when char.K = p > 0, the group G(K̄) is divisible by any n prime to p.

Remark. For every semi-abelian variety G = TA over a global field K, we have

G(K) ⊂ T (K)A(K). We have its group of torsion elements G(K)tors is finite, because

from the exact sequence

1→ T (K)
f−→ G(K)

g−→ A(K),

g(G(K)tors) ⊂ A(K)tors. In addition, if P,R ∈ G(K)tors has the same image in A(K),

then there is some Q ∈ T (K)tors such that f(Q) = P − R ∈ G(K)tors, then Q ∈
T (K)tors since f is injective. Thus G(K)tors ⊂ T (K)torsA(K)tors and it is also finite.
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1.3 Integral Models of Algebraic Groups

The main reference for this section is [5]. We are mostly interested in algebraic groups

over a global field K. In particular, we sometimes want to understand the (S−)integral

points and their reductions. To do this process, we need to lift the objects to integral

bases. First, we have a definition.

Definition 1.3.1. 1. Let X be a scheme over a global field K, and let R be an

integral domain whose fraction field equals K. Then an R-scheme X is a R-

model for X if its generic fiber is X, i.e. X ×SpecR SpecK ∼= X.

2. If X and X ′ are R−models of X and X ′ over K, and f : X → X ′ is a

K−morphism. Then F : X → X ′ is called a lift of f to R if FK = f .

For an algebraic scheme X over K, there may not exist a model over OK . However,

if we distract finitely many points in SpecOK , X will admits a model over the smaller

base. In fact, this is true for any finitely presented scheme over K, and roughly

speaking, this process called spreading out can be described as follows (see [8]). We

first note that X can be given by solutions of finitely many polynomials in finitely many

variables with coefficients in K. We then write each coefficient of those polynomials as

a fraction of elements in OK , and we let S be places dividing those denominators that

appear, then S is finite. Discarding those primes, we obtain an open subscheme U :=

SpecOK,S of OK (by localizing at those primes). By gluing affine pieces, we obtain

to a scheme X over U , this is what we want. We can also use Grothendieck’s general

theory to show the existence of integral models. Grothendieck shows the following (see

[19] Theorem 3.4).

Theorem 1.3.2. Let A be the direct limit lim−→ Ai over a directed system of rings Ai,

and X a finitely presented scheme over A. Then

1. There exists some i0 and a finitely presented scheme Xi0 over Ai0 such that

Xi0 ×Ai0
A ∼= X.

In addition, if Xi0 and Yi0 are finitely presented over Ai0 for some i0, then there

is a natural bijection

lim−→ HomAi
(Xi, Yi)→ HomA(X, Y )

where Xi := Xi0×Ai0
Ai, Yi := Yi0×Ai0

Ai, X := Xi0×Ai0
A, and X := Y ×Ai0

A.
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2. The map fi0 : Xi0 → Yi0 is P if and only if its base change f : X → Y over A

is P. Here P can be any of the following: closed immersion, separated, proper,

smooth, affine, flat, faithfully flat, open immersion, finite. This also means that

this property also holds for i ⩾ i0.

3. (The unicity of integral models) The formation of a lift Xi0 over Ai0 from X

over A is unique in the following sense: for any finitely presented Ai0-schemes

Xi0 and X ′
i0

whose base changes over A are identified with X, there exists some

i ⩾ i0 and an isomorphism hi : Xi
∼= X ′

i over Ai which is compatible with the

identification with X after base changing to A, and further if hi and h′i are two

such isomorphisms, then for some j ⩾ i the induced morphisms hj and h′j are

equal over Aj.

We note that K = lim
−→S
OK,S where S runs over the set of finitely many non-

Archimedean places of K. Therefore, as a direct consequence, we have

Theorem 1.3.3. (see [8] Theorem 3.2.1)

1. Let X be a finitely presented scheme over K. Then there exists an open subscheme

U of SpecOK such that X can be lifted to an U-scheme X .

2. Let X be a finitely presented OK,S−scheme for some S as above. If XK → K is

P, then there exists an open subscheme U ⊂ SpecOK,S such that XU → U is P.

3. Let X and X ′ are finitely presented schemes over OK,S, and f : XK → X ′
K . Then

f can be lifted to a U−morphism from XU → X ′
U for some open dense subscheme

U ⊂ OK,S.

4. For f : X → X ′ an morphism between finitely presented schemes over OK,S

satisfying fK : XK → X ′
K is P, there always exists an open subscheme U ⊂ OK,S

such that fU : XU → X ′
U is P.

So this theorem says that one can spread out schemes and morphism between them

without losing any properties.

Corollary 1.3.4. By discarding finitely many points, the lift of the composition (resp.

fiber products) of two morphisms over K is the composition (resp. fiber products) of

their lifts.

Proof. This follows from the unicity of the lift.
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This is straightforward to check that spreading out "commutes" with exact se-

quences, fiber products, and extending the base after ruling out finitely many points.

Now, let G be an (commutative) algebraic group. We note that because schemes of

finite type over fields are finitely presented, so we can apply the spreading out principle

to G with the maps m, i, e. Then there exists an open dense subscheme U ⊂ OK such

that G and those morphisms can be lifted to U . Then by 1.3.4, these lifted morphisms

satisfy the usual commutative diagrams which means that the lifted scheme is also an

(commutative) algebraic group over U . Here algebraic groups over a scheme U are

scheme of finite types with multiplication and inverse map satisfying usual commuta-

tive diagram, in other words, each fiber is an algebraic group as in the absolute sense.

In addition, those properties above also hold in the algebraic group case.

Example 1.7. (a) (Models of linear algebraic groups) Because spreading out pre-

serves affiness property of morphisms, models for affine schemes (resp. linear

algebraic groups) of finite presentation over K are also affine schemes (resp. lin-

ear algebraic groups). In addition, for a linear algebraic group G, we consider

a embedding G −→ GLn(K). It induces a K−morphism of K−Hopf algebras

φ : K[GLn] → K[G]. We note that K[GLn] = K[x11, ..., xnn, det(xij)
−1] is

defined by polynomials over OK , then the OK-algebra

OK [x11, ..., xnn, det(xij)
−1]

defines an algebraic group GLn(OK), and φ(OK [x11, ..., xnn, det(xij)
−1]) is a Hopf

OK−algebra which is a model for G.

(b) G = Gm,K over K admits Gm,OK
as its OK-model.

Further, one needs the notion of abelian schemes, which is a relative version of

abelian varieties.

Definition 1.3.5 (Abelian scheme). Let U be a scheme (we are mostly interested in

the case U = OK,S for some set of finitely many non-Archimedean places S of K). A

g-dimensional abelian scheme over U is a group scheme A→ U of finite presentation,

proper, smooth, with all fibers geometrically connected and of dimension g.

Remark. From the spreading out principal, any abelian varieties over a global field

K can be always lifted to an abelian scheme over OK,S for some set of finitely many

non-Archimedean places S.

Abelian schemes also admit similar properties of abelian varieties. We note that

there may not exists an abelian scheme over an arbitrary base. For instance, over Z,
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Tate, and Fontaine have shown that there is no elliptic curve, and abelian variety over

Z. It is similar to the theorem of Minkowski which says that Q does not admit any

finite extension which is unramified everywhere. In arithmetic situation, if A is an

abelian scheme over OK , then its OK points are A(K) where A = AK = A×K OK .

1.4 Reduction of Algebraic Groups

First we discuss the reduction of algebraic groups G over a global field K. Any such

G can be lifted to an algebraic group G over OK,S for some set of finitely many non-

Archimedean places S. Then for p ̸∈ S, we denote Gp := G ×OK,S
k(p) its special fiber

at p, where k(p) denotes the residue field at p. We note that for all but finitely many

p, Gp is again an algebraic group over k(p), and hence, its set of k(p)−points is finite.

When G is an abelian variety, we have the notion of bad, good, and stable reduction.

Definition 1.4.1. For an abelian variety A over a global field K, and a place p of K,

we say that A has good reduction at p if A can be lifted to an abelian scheme A
over OK,p, otherwise we say that A has bad reduction at p.

Thanks to the spreading out principle (and its properties), we have

Proposition 1.4.2. Abelian varieties over global fields have good reduction at almost

all places.

Reduction of Points

Now, we want to define the reduction of the K−points of an algebraic group G over a

global field K. For a K−point R : SpecK → G, it can be lifted to R : U → G where U

is some open subscheme of OK and G is the model of G over U . For a point p ∈ U , by

tensoring with k(p) we obtain R mod p : Spec k(p)→ Gp. In other words, the notion

of reduction mod p depends on whether the point R can be lifted to a morphism over

Op. If it is the case, we can take the reduction mod p of R. In addition, if R and R′

are two K-points that can be extended to Op-points of some model G (by discarding

finitely many places, we can assume that their models are the same). Then we obtain

R×R′ : SpecOp → G×G′, composing with the multiplication map m : G ×G → G, we

obtain m(R,R′) : SpecOp → G which is exactly a lift of m(R,R′), the product of R

and R′ in G by the unicity of lifting. Similarly for the inverse of those points; therefore,

we have a group homomorphism from (the set of K−points of G that can be lifted to

Op) to (the set of k(p)−points of Gp = G × k(p)). Particularly, eG is mapped to eGp

for almost all p.
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Example 1.8. (a) When G is a linear algebraic group, there is a closed embedding

G ↪→ An and the point R ∈ G(K) is a point in An(K). Therefore, R = (a1, ..., an)

and we can take reduction mod p for any prime p not containing a1,..., an. The

unicity of integral model guarantees that this process does not depend on the

embedding.

(b) When G is an abelian variety, there is a closed embedding G ↪→ Pn and then the

point R ∈ G(K) is a point in Pn(K). Now to take reduction mod p, the point

K must be lifted to a Op-point of some abelian scheme A over Op ⊂ Pn(Op).

It is well-known (see Exercise III-43. [20]) that for a ring A, there is a bijection

between the set of (n + 1)-tuples of elements of A that generate A and the set

of A−points of Pn. Therefore, an Op−point R of Pn corresponds to a tuple

(a0, ..., an) where a0, ..., an ∈ Op generate Op, and then taking reduction gives us

a k(p)-point correspond to (a1 + mod p, ..., an + mod p). We note that one of

ai’s does not lie in mp, and hence this tuple correspond to a k(p)−point in Pn

lying in Ap.

(c) The two above examples show that the reduction can be described in concrete

terms when the variety can be described by equations, so integral models are very

useful to give a geometric framework for the notion of reduction. When G = E

is an elliptic curve, one can describe the reduction as follows. Because Op is a

DVR, we can find a minimal Weierstrass equation for E with respect to ordp,

i.e., the equation with coefficients in Op such that the ordp of discriminant ∆(E)

is the smallest non-negative integer:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Now we take reduction mod p for every coefficient, we then get the reduction Ep

of E mod p, for any p. When ordp(∆(E)) = 0, we obtain the reduction mod p of

E as we described above. In this case, E has good reduction at p. Now for a point

R ∈ E(K) ⊂ P2(K), we can write R = [a0 : a1 : a2] such that a0, a1, a2 ∈ Op

and one of a0, a1, a2 in O×
p . Taking reduction mod p at each coordinate of R, we

obtain a point R mod p in Ep.

Extending The Base Field

We want to understand how reduction behaves under a finite field extensions L over

a global field K. For G an algebraic group over K, we have G(K) ⊂ GL(L) where

GL = G ×K L. Now G admits an integral model G over SpecOK,S for some S. Let
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p ̸∈ S and q is a place lying above p in L. Consider the Op-model G ×OK,S
Op of G

and look at its set of Op-points, denote G(Op). Then GL also admits an Oq-model

(G×OK,S
Op)OpOq, and denote its set of Oq-points G(Oq). In addition, taking reduction

of those models gives us algebraic groups Gp over k(p) and Gq over k(q). Furthermore,

we have

Gq = Gp ×k(p) k(q).

Therefore we have a commutative diagram

GL(L) ⊃ G(Oq) Gq(k(q))

G(K) ⊃ G(Op) Gp(k(p))

red mod q

red mod p

We note that for almost all p, all the maps are group homomorphisms. Thanks to this

construction, we have

Lemma 1.4.3. With above notation, let P be a K−point of G. Then for almost all

primes p of K, we have the order of P modulo q is equal to the order of P modulo p.

Proof. See [5] Lemma 1.2.3.

Reduction of Morphisms

From the above discussion, we see that the map [n] (of multiplication by n) commutes

with taking reduction for almost all places p. In fact, it is true for any morphisms

(resp. homomorphisms).

Proposition 1.4.4. Let G and H be algebraic groups over a global field K, f : G→ H

over K and a morphism (resp. homomorphism). Then f induces a k(p)−morphism

(resp. homomorphism) fp : Gp → Hp for almost all p.

Proof. We lift f from K to some OK,S by spreading out principal and then taking

special fiber at p.

It is then straightforward to check that

Corollary 1.4.5. With the notation as above, let R ∈ G(K). Then for almost all p,

the order of ϕ(R) modulo p in Hp divides that of R modulo p in Gp. In particular,

when ϕ is an isomorphism, those orders are equal.
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Reductions of Torsion Points

Now we want to understand how reductions behave with torsion points. First we have

Proposition 1.4.6. Let G be an extension of an abelian variety by a linear algebraic

group over a global field K, and R ∈ G(K) a non-zero point. Then for almost all p, R

modulo p is non-zero. In particular, this holds for semi-abelian varieties.

Proof. First we see that it is true for linear algebraic groups because when a K-point

R = (a1, ..., an) can be embedded in An. Therefore the elements a1 − e1, ..., an − en,

where e = (e1, ..., en), lie in only finitely many prime ideals. When G is an abelian

vatiety, a K−point R (and e) can be lifted to aOK,S for some S and then it corresponds

to an (n + 1)−tuple [a0 : ... : an] (and [e0 : ... : en]) where a0, ..., an, e0, ..., en ∈ OK,S

and a0, ..., an (and e0, ..., en) generate OK,S , and the result follows again because each

of a1 − e1, ..., an − en lies in only finitely many prime ideals. Now for general G, by

assumption we have an exact sequence

1→ Gaff f−→ G
g−→ A→ 1.

Taking K-points induces an exact sequence

1→ Gaff (K)
f−→ G(K)

g−→ A(K).

Now we suppose that there are infinitely many p satisfying R modulo p is trivial,

then there are also infinitely many p satisfying g(R) modulo p is zero. Thus, g(R) is

zero, and hence, R is a K−point in the affine part Gaff , which gives us a contradiction.

Corollary 1.4.7. For G as above, let Q and R be distinct K−points of G. Then there

are only finitely many p satisfying Q modulo p equals R modulo p.

Proof. We can take reduction of Q, R, Q − R, and e mod p. The result follows from

the above proposition.

Corollary 1.4.8. For G as above, let Q ∈ G(K) be non-torsion. Then for any m > 0,

there are only finitely many p such that R modulo p has order m.

Proof. If mR mod p = 0 for infinitely many p, then mR = 0, which is a contradiction.

Corollary 1.4.9. Let G be a semi-abelian variety over a global field K, then for almost

all p, the map

G(K)tors
red−−→ Gp(k(p))
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is injective. As a consequence, the order of a torsion point is equal to the order of its

reduction mod p for almost all p.

Proof. For the first claim, recall that there are only finitely many torsion points in

G(K), and then by discarding finitely many p, we have P and R have different orders

when taking mod p for any distinct points P, R ∈ G(K)tors. For the second one,

let n be the order of R, then nR modulo p = 0 for almost all p. If there exist

0 < m < n satisfying the order of R mod p is m for infinitely many p, then mR = 0,

a contradiction. From this we obtain the claim.

Remark. In general, the map

G(K)
red−−→ Gp(k(p))

is not surjective. For example, consider an elliptic curve E over Q of rank 0, i.e., E(Q)

is finite. For instance, one can take E to be of the form E : y2 = x3 + px where p

is a prime such that p ≡ 7 or 11 mod 16 as in [14] Chapter X, Corollary 6.2.1. The

Hasse-Weil bound for elliptic curves give us the estimate

|Eq(Fq)− (q + 1)| ⩽ 2
√
q

for almost all primes q. In particular, |Eq(Fq)| tends to infinity when q goes to infinity.

Therefore, for sufficiently large q, the reduction map E(Q)→ Eq(Fq) is not surjective.

However, if we look at geometric points (not only rational points), the reduction maps

are bijective at almost every place as follows.

Proposition 1.4.10. With G/K as in Corollary 1.4.9 and any m > 0, the map

G[m]
red−−→ Gp[m]

is an isomorphism for almost all p.

Proof. See [21] Lemma 4.4.

1.5 Formal Groups

In this last section, we define the formal group associated to an algebraic group G over

a field K. First we recall the notion of formal groups over a complete valuation ring

R (i.e, a valuation ring which is complete with respect to the m-adic topology defined

by the unique maximal ideal m). The references for this section are [22] Chapter III

section 5, and [23] section C.2.
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Definition 1.5.1. A commutative R−algebra A is called profinite if A = lim←− A/I

over a family of ideals I such that A/I is a finitely generated R−module.

Example 1.9. The power series R[[X1, ..., Xn]] is a profinite R-algebra and it is not

finitely generated over R.

Definition 1.5.2. A formal (group) scheme is a representable functor on the cat-

egory of profinite R−algebras to the category of sets (groups).

So for a profinite R−algebra A, we have a formal scheme Spf(A), the formal spec-

trum of A. If it is a formal group, then the group operations give rise to a comultipli-

cation and an inversion

m∗ : A→ A⊗̂A, i : A→ A.

Definition 1.5.3. A formal group G over R is said to be smooth if its connected

component Go is the formal spectrum of a power series ring over R. If in addition

it is connected, it is called a formal Lie group. In other word, it is of the form

Spf(R[[X1, ..., Xn]]), and n is called the dimension of this group.

We note that

R[[X1, ..., Xn]]⊗̂RR[[Y1, ..., Ym]] ∼= R[[X1, ..., Xn, Y1, ..., Ym]].

Therefore, to give Spf(R[[X1, ..., Xn]]) the structure of formal group, it amounts to

giving n power series in 2n variables satisfying some conditions. Suppose that we have

F1, ..., Fn ∈ R[[X1, ..., Xn, Y1, ..., Yn]] and write F = (F1, ..., Fn), then the rules we

require are

1. F (X,F (Y, Z)) = F (F (X, Y ), Z),

2. F (X, 0) = F (0, X) = X,

3. There exists a unique i(X) = (i1(X), ..., in(X)) such that F (X, i(X)) = F (i(X), X) =

0.

4. F (X, Y ) = F (Y,X) if the group is commutative.

Here X = (X1, ..., Xn), similarly for Y and Z. In addition, the first two relations imply

F (X, Y ) = X + Y + (higher order terms).

Therefore for each formal Lie group G, there exists a unique function F as above which

gives rise to the group law on the coordinate ring of G, and vice versa, each function

F satisfying those relations also gives rise to a formal Lie group. We call F a formal

group law of dimension n on R.
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Example 1.10. (a) The additive group Ga corresponds to F (X, Y ) = X + Y .

(b) The multiplicative group Gm corresponds to F (X, Y ) = X + Y +XY .

From this description, a R−homomorphism f between formal Lie group schemes G

and G′ of dimension n and n′ respectively corresponds to a n′−tuple of formal power

series without constant terms f = (f1, ..., fn′), fi ∈ R[[X1, ..., Xn]] such that

F ′(f(X), f(Y )) = f(F (X, Y )).

Additionally, f is an isomorphism if there is f ′ = (f ′1, ..., f
′
n), f

′
i ∈ R[[X1, ..., Xn′ ]] such

that

f ◦ f ′ = id, f ′ ◦ f = id.

As in the case of group schemes, we have a endomorphism [m] on G which is the

multiplication-by-m map.

Lemma 1.5.4. The homomorphism [m] on G is an isomorphism if and only if m is a

unit in R.

Now we want to associate to algebraic groups G over a field K a formal Lie group F .

Let ÔG,e denote the completion of the local ring OG,e at the identity e with respect to

its maximal ideal me. Sinve G is smooth and of finite type, it admits local parameters

x1, ..., xn (n = dimG) and we have an isomorphism

ÔG,e
∼= K[[x1, ..., xn]].

In addition, the maps m and i on G give rise to maps of local rings

m∗ : OG,e → OG×G,(e,e), i
∗ : OG,e → OG,e.

Taking completion both sides, we then have

F : K[[x1, ..., xn]]→ K[[x1, ..., xn, y1, ..., yn]], i : K[[x1, ..., xn]]→ K[[x1, ..., xn]].

Then we have a formal Lie group assciated to G at e, and the map F and i give us a

formal group law over K, also denote by F . Now let G = A be an abelian variety over

the fraction field K = Frac(R) of a complete valuation ring (R,m) with its residue

field k of characteristic p. In this case, the formal group is useful to understand the

reduction map of abelian varieties. First we have

Lemma 1.5.5. If A have good reduction at m (i.e., A can be lifted to an abelian scheme

A over R), then the associated formal group F is defined over R. Here, the formal

group F is said to be defined over R if its coefficients are in R
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Proof. Because A has good reduction at m, its reduction abelian variety Ã is an abelian

variety. We let x1, ..., xn be local parameters at e such that their reductions x̃1, ..., x̃n

are also local parameters of Ã at ẽ. Then the power series giving the group law on the

formal Lie group associated to Ã must be the reduction module m of the power series

corresponding to the formal Lie group associated to A. Therefore, the coefficients of

the latter power series must lie in R.

Definition 1.5.6. Let F be a formal group law of dimension n over a complete valua-

tion ring (R,m). We denote F (m) the group associated to F , i.e., the set of n-tuples

mn with the group law, in the usual sense,

mn ×mn +F−−→ m, (X, Y ) 7→ F (X, Y ).

Because of the completeness of R, the series F (X, Y ) converges in m for X, Y ∈ m.

Proposition 1.5.7. With these above notations, the group F (m) has no prime-to-p

torsion.

Proof. For an integer m prime to p, [m]X = mX + ... has an inverse m−1X + ... since

m ∈ R×. When applying to mg where g = dimF , we have an automorphism of F (m),

and hence, the multiplication-by-m map has trivial kernel.

Proposition 1.5.8. Let A/K be an abelian variety having good reduction at m, and

we let

A1(K) := ker(A(R)
red−−→ Am(k)).

Here Am is the reduction of A at m. Let F be a formal group of A at e, then

F (m) ∼= A1(K).

Proof. We refer to [23] Theorem C.2.6 for the proof.

Because the reduction map A(R)→ Am(k) is surjective (since the complete valua-

tion ring is henselian and A is smooth, so one can lift maps from Spec k → A to maps

from SpecR→ A via Hensel’s lemma), we have an exact sequence

0→ A1(K)→ A(R)→ Am(k)→ 0.

If K is a local field with R its ring of integer and m its unique maximal ideal, we note

that the group A(K) is profinite because

A(K) = A(R) = A(lim←− R/mi) = lim←− A(R/mi)

With those results, we have a quite stronger claim compared to Corollary 1.4.9
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Corollary 1.5.9. Let A be an abelian variety over a global field K. Suppose that A has

good reduction at some finite place v. Let kv be the residue field at v whose characteristic

is p. Then for any m > 1 prime to p, the reduction map on the m−torsion K−points

of A

A(K)[m]
red−−→ Am(kv)

is injective.

Proof. Because F (m) has no prime-to-p torsion, A1(K)[m] = F (m)[m] = 0.

When A = E is an elliptic curve over the fraction field of a complete valuation

ring (R,m), we can describe the map in Proposition 1.5.8 explicitly as follows (see [14]

Chapter VII.2). Assume E satisfies a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

and we want to investigate the structure of E close to the origin and its addition law

around the origin. So we let z = −x

y
(so z is a local coordinate, and also a uniformizer

at O because O is its zero of order 1), and w = −1

y
, then we have

w = z3 + a1zw + a2z
2w + a3w

2 + a4zw
2 + a6w

3

and keep substituting this equation into itself, we have

w = z3(1 + A1z + A2z
2 + ...),

where Ai ∈ Z[a1, ..., a6]. This procedure must converge due to Hensel’s lemma. So

we have just seek a solution (z, w(z)) to the Weierstrass equation where w(z) ∈
Z[a1, ..., a6][[z]]. We then have

x(z) =
z

w(z)
, y(z) = − 1

w(z)
.

In addition, to get the formal group law F on E at O, we formally compute the w-

coordinate of (x1, y1) + (x2, y2) using these above power series, and similarly for the

inversion. We then have

F (z1, z2) = z1 + z2 − a1z1z2 − a2(z
2
1z2 + z1z

2
2) + ...

In this case, Proposition 1.5.8 can be described as follows.

Proposition 1.5.10. Let the notation be as above. Suppose that E have good reduction

at m, then

F (m)→ E1(K), z 7→
(

z

w(z)
,− 1

w(z)

)
,

is isomorphic. Here, the map sends z = 0 to O.



35

Chapter 2

Height Functions and Diophantine Geometry

The main references for this chapter are [14] and [24]. In the chapter, we present

1. Height functions,

2. Some applications of heights in Diophantine Geometry.

2.1 Height Functions

Height functions are tools to determine the size of a point. It, in some sense, reflects

both local and global behaviors of the point. We will define height function over

arbitrarily global fields. The main reference is [14] Chapter III. Although this book

only deal with number fields, the results below also hold for global function fields.

First, we recall that for a tower of number fields L/K/F, and v ∈ MK we have the

extension formula ∑
w∈ML,w|v

Nw = [L : K]Nv.

(Here w|v means that w is an extension of v to L.)

Definition 2.1.1. Let K be a global field, and P ∈ Pn(K) be a point with

P = [x0 : ... : xn], x0, ..., xn ∈ K.

The (relative to K) height of P is

HK(P ) =
∏

v∈MK

max{|x0|v, ..., |xn|v}.

Proposition 2.1.2. For P ∈ Pn(K), we have

1. HK(P ) ⩾ 1.

2. Let L/K be a finite extension. Then

HL(P ) = HK(P )1/[L:K].

Proof. It is a direct corollary of the extension formula and the product formula.
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This result motivates us to define an absolute height, which does not depend on

the field.

Definition 2.1.3. Let P ∈ Pn(F̄). We choose a global field K such that P ∈ Pn(K).

Then the absolute height of P is

H(P ) := HK(P )1/[K:F],

and the logarithmic height (or Weil height) of P is

h(P ) := logH(P ).

Theorem 2.1.4. (Northcott) Let C and d be constants. Then the set

{P ∈ Pn(F̄) : H(P ) ⩽ C and [F(P ) : F] ⩽ d}

is finite.

Proof. We remark that the proof in the global function field case is harder due to the

non-separability of field extensions. We refer to [24] Theorem 10.1.6 for the proof.

2.1.1 Heights on Elliptic Curves

Definition 2.1.5. Let E be an elliptic curve ove a global field K, and f ∈ K̄(E). The

height of E (relative to f) is defined to be

hf : E(K̄)→ R, hf (Q) := h(f(Q)),

where h is the Weil height.

We have the following results about heights (see [14] VIII.6). Although those results

are stated for number fields there, their proofs still hold in global function fields.

Proposition 2.1.6. Let f ∈ K̄(E) be non-constant. Then for any C

{Q ∈ E(K) : hf (Q) ⩽ C}

is finite.

We recall that a function f ∈ E(K) is even if f ◦ [−1] = f .

Proposition 2.1.7. For f ∈ E(K) an even function, and for all Q,R ∈ E(K̄) we

have

hf (Q+R) + hf (Q−R) = 2hf (Q) + 2hf (R) +O(1).

Here O(1) depends only on E/K and f .
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Lemma 2.1.8. For f, g ∈ K(E) even

(deg g)hf = (deg f)hg +O(1).

Corollary 2.1.9. Let f ∈ K(E) be even.

1. Let Q ∈ E(K̄). Then

hf (Q+R) ⩽ 2hf (R) +O(1),∀R ∈ E(K̄).

Here O(1) depends only on E, f, and Q.

2. Let m ∈ Z. Then

hf ([m]Q) = m2hf (Q) +O(1),∀Q ∈ E(K̄).

Here O(1) depends only on E, f, and m.

Example 2.1. Let us experiment with two examples.

(a) Consider a Q−point Q = (3, 5) on E/Q with Weierstrass equation y2 = x3 − 2,

see [25] section 7.

Table 2.1: Heights of Points on y2 = x3 − 2 over Q.

n hx(nQ) (to nearest .1)

1 1.1

2 4.9

3 12.0

4 21.6

5 33.4

6 48.1

7 66.1

8 86.3

(b) Consider a F5(t)−point Q = (t+2, 3t+3) on E/F5(t) with Weierstrass equation

y2 = x3 − t2x+ (t+ 1).
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Table 2.2: Heights of Points on y2 = x3 − t2x+ (t+ 1) over Ft(t).

n hx(nQ)

1 1

2 4

3 9

4 14

5 25

6 36

7 49

8 64

Evidently, hx(nQ) grows roughly quadratically in n. So one hopes that by letting

n tend to ∞, we obtain a "more canonical" height function. More precisely, we

have the following results (for the proofs of those results for number fields, we

refer to [14] Chapter VIII.9, and we note that those proofs work well for the

global function fields).

Proposition 2.1.10 (Tate’s theorem). Let f be a non-constant even function on an

elliptic curve E/K, and Q ∈ E(K̄). Then the limit

1

deg f
lim

N→∞

hf ([2
N ]Q)

4N

exists and is independent of f .

Definition 2.1.11. The canonical height on E, denoted ĥ, is the function

ĥ : E(K̄)→ R, Q 7→ 1

deg f
lim

N→∞

1

4−N
hf ([2

N ]Q)

for some f non-constant even (e.g. the function x when E is given by the normal form).

Theorem 2.1.12 (Néron-Tate, see [14] Theorem 9.3). With above notations, we have

1. For all Q,R ∈ E(K̄) we have

ĥ(Q+R) + ĥ(Q−R) = 2ĥ(Q) + 2ĥ(R)

2. For all Q ∈ E(K̄) and all n ∈ Z,

ĥ([n]Q) = n2ĥ(Q).
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3. ĥ is a quadratic form on E(K̄).

4. Let Q ∈ E(K̄). Then ĥ(Q) ⩾ 0, and

ĥ(Q) = 0 if and only if Q torsion.

5. For even f ∈ K(E)

(deg f)ĥ = hf +O(1).

Here O(1) depends only on E and f .

´

Corollary 2.1.13. The canonical height ĥ induces a symmetric bilinear form <,>:

E(K)× E(K)→ R

< Q,R >= ĥ(Q+R)− ĥ(Q)− ĥ(R)

such that

1. < Q,Q >⩾ 0 for all Q ∈ E(K), and

2. {Q ∈ E(K) :< Q,Q >< C} is finite for all C > 0.

2.1.2 Roth’s Theorem

Roth’s theorem plays an important role in Diophantine approximation. Over number

fields, it is stated as follows, see [14] Chapter IX, Theorem 1.4.

Theorem 2.1.14. Let K be a number field. Let ϵ > 0, let α ∈ K̄, and let v ∈ MK

that extend to K(α) in some way. Then for any constant C, there exist only finitely

many x ∈ K satisfying

|x− α|v < C.HK(x)−2−ϵ. (2.1)

Remark. Even more, Lang has established a general version of Roth’s theorem.

Theorem 2.1.15. Let K be a number field, and S be a finite set of non-Archimedean

places of K. For each v ∈ S, let αv ∈ Kv be algebraic over K. We fix a real number

κ > 2. Then there are only finitely many x ∈ K satisfying∏
v∈S

min(1, |x− αv|v) ⩽ HK(x)−κ.

Proof. We refer to [26] Chapter 6.
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Remark. Over function fields, there is a counter example showing that Theorem 2.1.15

does not hold, which is due to Mahler (see [26] example 6.2.8). The obstruction in this

counter example is αv lying in an extension of K of degree p. So, to obtain a version of

2.1.15 for global function fields, one has to discard elements lying in a cyclic extension

of K of degree a power of p. In fact, by slightly modifying the proof of Theorem 2.1.15,

J. V. Armitage proved the following theorem, see [4].

Theorem 2.1.16. Let K be a global function field of characteristic p, and S a finite

subset of MK . For each v ∈ S, let αv be K-algebraic and assume that v is extended in

some way to the algebraic closure K. Let ϵ be any positive number. Then if none of

the αv lies in a cyclic extension of degree a power of p over K, the elements x ∈ K

satisfying the approximation condition∏
v∈S

inf(1, |αv − x|v) < HK(x)−2−ϵ,

have bounded height. In particular, there are only finitely many of them.

Remark. Thanks to this theorem, now we are able to obtain the classical result of

Roth for global function fields

Corollary 2.1.17. Let K be a global function field of characteristic p. Let ϵ > 0,

and α ∈ K̄ which does not lie in any cyclic extension of degree a power of p, and let

v ∈ MK . Then for any C > 0, there exist only finitely many x ∈ K satisfying the

approximation condition

|x− α|v < C.HK(x)−2−ϵ. (2.2)

Proof. We first fix a positive number ϵ1 ∈ (0, ϵ) and let ϵ2 := ϵ − ϵ1. Let x be an

element satisfying (2.2). If C.HK(x)−ϵ1 > 1 then

HK(x) < C1/ϵ1

which is bounded. Otherwise, x then satisfies

|x− α|v < HK(x)−2−ϵ2 .

• If |x− α|v ⩾ 1, then 1 < HK(x)−2−ϵ2 and hence

HK(x) < 1.

• If |x− α|v ⩽ 1, then

inf(1, |α− x|v) < HK(β)−2−ϵ2

Apply the above theorem for S = {v} and αv = α, we deduce that the height of

x must be bounded.
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Thus, these elements x’s satisfying (2.2) have bounded height, and hence we conclude

the corollary.

2.2 Some Applications in Diophantine Geometry

2.2.1 Mordell-Weil Theorem

We follows [14] Chapter XIII and [24] Lecture 10. We aim to prove

Theorem 2.2.1 (Mordell–Weil theorem). Let E/K be an elliptic curve over a global

field K. Then E(K) is finitely generated.

To prove this theorem, we need a weaker version, Weak Morell-Weil Theorem, and

the Descent Theorem which is based on the height function hf . The Mordell-Weil

theorem also holds for abelian varieties over global fields. While Weak Morell-Weil

Theorem for abelian varieties are proven similarly, height functions on abelian varieties

are hard to construct, so we will not give details here. In fact, the construction is the

main goal of A. Weil’s thesis, and we refer to [24] Lecture 10 for more details.

Weak Mordell-Weil Theorem

Theorem 2.2.2 (Weak Mordell–Weil theorem). Let A/K be an abelian variety over

a global field K. Then the group A(K)/m.A(K) is finite for all integers m coprime to

p. In particular, the group E(K)/m.E(K) is finite for all integer m coprime to p.

Remark. The main idea is to realize A[m] as a subgroup of an appropriate cohomology

group which is finite. First we have an exact sequence K−group scheme

0→ A[m]→ A
.m−→ A→ 0.

Here we consider A[m] as a finite group scheme. We claim that taking Ks−points we

obtain a short exact sequence of discrete Γ = Gal(Ks/K)-modules

0→ A[m](Ks)→ A(Ks)
.m−→ A(Ks)→ 0.

The only non-trivial point here is the surjectiveness of the last arrow. Let a ∈ A(Ks),

we have a pullback diagram

E SpecKs

A Am

a
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Since m ∈ K×, [n] is a finite étale cover. Therefore, the morphism E → SpecKs is a

finite étale cover too, and hence split since Ks is separable. So E admits a Ks−point,

i.e., the last morphism is surjective. Applying Galois cohomology H∗(Γ, ·), we obtain

a long exact sequence

0 A[m](K) A(K) A(K) H1(Γ, A[m])m

Thus A(K)/mA(K) injects to H1(Γ, A[m]), but the latter group is not finite. The

main reason is that the group K× is very large. To obtain the finiteness, we will need

an "integral version" of K like O×
S . Thus, we need to lift A to an abelian scheme A

over OS , and because the base is no longer a field, so we need a more general version

of Galois cohomology for schemes over any base, which is étale cohomology. For more

details on etale cohomology, we refer to [8] section 6.4.

Proof of Theorem 2.2.2. First we spread out A → SpecK to get an abelian scheme

A → U , where U := SpecOS for some finite set S ⊂MK containing all the Archimedean

places m and |A[m](Ks)| are S-units. Because OS is Dedekind, the valuative crite-

rion (see [8] Theorem 3.2.13) gives us A(K) = A(U), and hence A(K)/mA(K) =

A(U)/mA(U). One has a similar exact sequence in étale topology on U

0→ A[m]→ A .m−→ A → 0.

(Since m is invertible in U , [m] is an étale surjection on every geometric fiber, it then

is an etale surjection). So we have a long exact sequence

0 A[m](U) A(U) A(U) H1
et(U,A[m])m

which yields an injection

A(U)/mA(U) ↪−→ H1
et(U,A[m]).

Further, the diagram

A(U)/m H1
et(U,A[m])

A(K)/m H1(Γ, A[m])

is commutative, where the right arrow is induced by SpecK → U .

Claim. The image of A(K)/mA(K) in H1(Γ, A[m]) is contained in the subgroup of ξ

unramified outside S; i.e., ξ|Iu ∈ H1(Iu, A[m]) is trivial for all u ̸∈ S.



43

Here, for such u, the inertia group Iu is defined as follows. The first approach

is to view Iu as Gal(Ks
u/K

unr
u ) where Ku is the completion of K at u and Kunr

u is

the maximal unramified extension. This group injects into Gal(Ks
u/K) and hence Γ

by restriction. One has another way to define Iu is to view it as as the absolute

Galois group of Fu := Frac(Osh
U,u), where Osh

U,u is the strict henselization of OU,u. Here

we note that the equivalence between these approaches follows from the contruction

of Osh
U,u which is henselian with the residue field κ(u)s satisfying universally strictly

henselian property. So the diagram

A(U)/m H1
et(U,A[m])

A(K)/m H1(Γ, A[m])

A(Fu)/m H1(Iu, A[m])

Res

commutes. So it suffices to show that [m] : A(Fu) → A(Fu) is surjective. Via the

identification A(Fu) = A(Osh
U,u), we can prove this in a similar way as above (note that

since SpecOsh
U,u is strictly henselian, any finite étale cover is split over SpecOsh

U,u. Then

we obtain the claim.

Now we note that

Claim. The Γ−module A[n](Ks) is unramified at all u ̸∈ S, i.e., the action of the

inertia group Iu is trivial, since A has good reduction at such u.

Therefore, we have reduced the proof of the finiteness to the following claim

Claim. Let K be a global field, and S ⊂MK a finite set containing all the Archimedean

places. Let M be a finite Γ-module such that m := |M | ∈ O×
S . We suppose further

that M is unramified outside S. Then

H1
S(K,M) := {ξ ∈ H1(K,M) : ξ is unramified outside S}

is finite.

We first note that one may assume that µm ⊂ K, M = µd as Γ−modules for some

d|m, and the places of K which divide m are contained in S. Indeed, there exists a

finite Galois extension K ′ of K containing µm such that Γ′ := Gal(Ks/K ′) acts trivially

on M. By the hypothesis of m, the m−th root of unities are unramified outside places

dividing m. Since enlarging S increases the size of H1
S(K,M), we may assume that S

contains those places of K which divide m. We denote S′ the set of places of K ′ above

places in S. Then we have the inflation-restriction sequence
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0 H1(K ′/K,M) H1(K,M) H1(K ′,M)Inf Res

satisfying Res(H1
S(K,M)) ⊂ H1

S′(K ′,M) (since for each u ̸∈ S, u′|u, if the element

ξu ∈ H1(Iu,M) = Hom(Iu,M) is 0, then ξu|Iu′ : Iu′ ↪−→ Iu → M is 0 too). Because

H1(K ′/K,M) is finite, we want that H1
S′(K ′,M) is finite. Since we have isomorphisms

between Γ′-modules

M ∼=
∏

(Z/diZ) ∼=
∏

µdi

for various integers di|n, we need to prove that H1
S′(K ′, µd) is finite. So we can assume

K = K ′, S = S′, and M = µd. We increase S more so that hK,S = |PicS(K)| = 1

(we can do this since PicS(K) is finite). In addition, Kummer theory gives us an

isomorphism

K×/(K×)d
∼−→ H1(K,µd) = Hom(Γ, µd), [c] 7→ ξc :=

(
ξc(σ) =

σ(c)

c

)
.

We note that ξc is unramified at u ̸∈ S iff σ(c) = c ∀σ ∈ Iu, i.e., K( d
√
c)/K is unramified

at u which is equivalent to d| ordu(c) (by considering the equation Xd− c over Ku with

discriminant ±dd.cd−1). So the set H1
S(K,µd) is in a bijective correspondence to

TS := {c ∈ K×/(K×)d : ordu(c) ≡ 0 mod m,∀u ̸∈ S}.

Furthermore, we have an isomorphism

O×
K,S/(O

×
K,S)

d → TS

which is induced from a natural map

ι : O×
K,S → TS .

Indeed, suppose c ∈ K× represents an element of TS . Then cOK,S is the dth power of

an ideal in O×
K,S . Since OK,S is a PID, there exists b ∈ K× satisfying cOK,S = bdOK,S .

Hence ∃a ∈ O×
K,S satisfying

c = a.bd,

i.e., a = c in TS , which means ι is surjective. Clearly ker ι contains (O×
K,S)

d. Using the

above argument and comparing ordu of both sides, it is evident that ker ι = (O×
K,S)

d.

So we have the desired isomorphism. Since O×
K,S/(O

×
K,S)

d is finite by Theorem 1.1.5

and Corollary 1.1.9, we obtain the finiteness of TS , and hence of H1
S(K,µd). Therefore,

the finiteness of A(K)/mA(K) follows.
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Descent Theorem

Next, we need the descent theorem, see [24] Lemma 9.2.1 and [14] Chapter VIII The-

orem 3.1.

Theorem 2.2.3. Let A be an abelian group such that A/mA is finite for some m > 1.

Suppose that there exists a symmetric bilinear form <,>: A× A→ R satisfying

1. < a, a >⩾ 0 for all a ∈ A, and

2. {a ∈ A :< a, a >< C} is finite for all C > 0

Then A is finitely generated.

Proof. We define ||a|| = √< a, a > and call it the radius of a, and let {a1, .., an} be

representatives of A/mA. We choose C > maxi ||ai||.

Claim. If ||a|| ⩽ 2C, then ||a− ai|| ⩽ (3/2) for all i.

Indeed, we have

||a− ai||2 =< a− ai, a− ai >=< a, a > −2 < a, ai > + < ai, ai > .

The Cauchy-Schwarz inequality gives us | < a, ai > | ⩽ ||a||.||ai||. So we have

||a− ai||2 ⩽ ||a||2 + ||aj ||.(2||a||+ ||aj ||).

Since ||ai|| ⩽ C ⩽
1

2
||a||, so we have the desired result

||a− ai||2 ⩽ ||a||2 +
1

2
||a||
(
2||a||+ 1

2
||a||
)
=

9

4
||a||2.

Now we will prove that A is generated by ai and elements of A of radius less than 2C.

Let a ∈ A such that ||a|| ⩾ 2C. There exists some ai such that a− ai = ma′ for some

a′ ∈ A. Then

m.||a′|| = ||a− ai|| ⩽
3

2
||a||.

Hence,

||a′|| ⩽ 3

2m
||a||.

So we keep discarding ai’s until reaching a point lying in the ball of radius 2C. Since

this ball contains only finitely many points, A must be finitely generated.

Combining Corollary 2.1.13, Theorem 2.2.2, and Theorem 2.2.3, E(K) is finitely

generated. In fact, A(K) is also finitely generated for any abelian variety A over a

global field K. We note that T (OK,S) is also finitely generated for any torus T over K

due to the Dirichlet’s finiteness theorem. Therefore, we obtain
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Corollary 2.2.4. Let G be an algebraic group over U = SpecOK,S (for some set of

finitely many non-Archimedean places S) whose generic fiber GK is semi-abelian. Then

G(U) is finitely generated.

Proof. We can lift the exact sequence associating to GK to an exact sequence of group

scheme over some small enough open subscheme V ⊂ U , i.e., we have

1→ T → G|V → A→ 1

for some torus T and abelian scheme A over V . Taking V -points yields an exact

sequence

1→ T (V )→ G|V (V )→ A(V )

Since T (V ) is finitely generated, and by the valuative criterion, A(V ) = A(K) is also

finitely generated. Therefore, G(V ) = G|V (V ) is finitely generated. In addition, since

G(U) ⊂ G(V )
⋃

p∈V \U

G(k(p)),

we need to show that G(k(p)) is finitely generated. Indeed, we first cover G by finitely

many affine opens Gi. Since each point G(k(p)) lies in only one of Gi’s, we need

that Gi(k(p)) be finitely generated. Since Gi is of finite type over U , it is of the

form Gi = SpecOK,S [x1, ..., xn]/I. Then Gi(k(p)) is the set of ring homomorphisms

OK,S [x1, ..., xn]/I → k(p) compatible with the projection OK,S ↠ k(p), which is

clearly finite. We then obtain the result.

2.2.2 Distance Function

In this section, we follow [14] Chapter IX. Here K is a global field of characteristic p.

Definition 2.2.5. Let C be a smooth projective curve over K. For P and Q in C(Kv),

we choose tQ ∈ Kv(C) which has a zero of order e, for some positive integer e, at Q

and no other zeros. The v-adic distance from P to Q is then defined to be

dv(P,Q) = min
{
|tQ(P )|1/ev , 1

}
.

Here, if tQ has a pole at P , we let |tQ(P )| = ∞, and so dv(P,Q) = 1. In addition, P

is called to be v−adically convergent to Q if dv(P,Q)→ 0.

Remark. 1. We note that tQ exists due to the Riemann-Roch theorem over Kv.

Indeed, if g is the genus of C, and e ⩾ g+1, the Kv−the vector spaces L(e(Q)) :=
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{f ∈ Kv(C)× : div(f) ⩾ −e(Q)}∪{0} has dimension at least deg(e(Q))+1 = 2.

Therefore, there is a non-constant function f ∈ Kv(C) whose only pole is Q, and

we take tQ =
1

f
.

2. This distance function does not give rise to a topology on C(Kv), it works in the

sense that it measures v−adically the distance from P to the fixed point Q.

3. When C = P1, it is given by

dv([x0 : x1], [y0 : y1]) =
max{|xiyj − xjyi|v}

(maxi{|xi|v}maxj{|yj |v})
.

4. For more geometric interpretations on distance functions, we refer to [27] section

2.

The following results are proved exactly in the same way as in [14], although in this

book, the author only deals with number fields.

Proposition 2.2.6 (see [14], Proposition IX.2.2.). Let Q ∈ C(Kv), and f ∈ Kv(C) a

function vanishing at Q. Then

lim
P∈C(Kv)

P
v−→Q

log |f(P )|v
log dv(P,Q)

= ordQ(f)

exists.

Proposition 2.2.7. Let ϕ : C1 → C2 be a finite map between smooth projective curves

over K. Let Q ∈ C1(Kv). Then

lim
P∈C1(Kv)

P
v−→Q

log dv(ϕ(P ), ϕ(Q))

log dv(P,Q)
= eϕ(Q),

the ramification index of ϕ at Q.

Corollary 2.2.8. Let v ∈ MK , let f ∈ K(C) be non-constant, and Q ∈ C(K̄) such

that f(Q) does not lie in any cyclic extension of degree power of p. Then

lim inf
P∈C(Kv)

P
v−→Q

log dv(P,Q)

logHK(f(P ))
⩾ −2.

Proof. We can assume that f(Q) ̸=∞ (otherwise, replace f by
1

f
, the height does not

change). So Q is a zero of f − f(Q) of order e ⩾ 1. So we have

lim
P∈C(Kv)

P
v−→Q

log |f(P )− f(Q)|v
log dv(P,Q)

= e.
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Therefore

lim inf
P∈C(Kv)

P
v−→Q

log dv(P,Q)

logHK(f(P ))
= lim inf

P∈C(Kv)

P
v−→Q

log |f(P )− f(Q)|v
e logHK(f(P ))

.

For arbitrary ϵ > 0, Proposition 2.1.17 gives us

|f(P )− f(Q)|v ⩾ HK(f(P ))−2−ϵ

for almost all P ∈ C(K). Hence

log |f(P )− f(Q)|v
e logHK(f(P ))

⩾
−2− ϵ

e
> −2.

From this we obtain the claim.

Now we prove a version of an important theorem of Siegel. We need to modify

the proof for number fields as in [14] Theorem IX.3.1 a little bit. First we consider

f = x ∈ K(E) which is an even non-constant function.

Proposition 2.2.9. Let E/K be an elliptic curve with #E(K) =∞, Q ∈ E(K), and

a valuation v ∈MK . Then

lim
P∈E(K)
hf (P )→∞

log dv(P,Q)

hf (P )
= 0.

Proof. First we there exists a sequence of K−points P1, P2, ... of E such that

lim
i→∞

dv(Pi, Q)

hf (Pi)
= lim

P∈E(K)
hf (P )→∞

log dv(P,Q)

hf (P )
= L.

Since dv(P,Q) ⩽ 1 and hf (P ) ⩾ 0, we have L ⩽ 0. So now we need L ⩾ 0. Indeed, let

m be a sufficient large prime number larger than p = char.K such that p ∤ m− 1 and

K does not contain any mth primitive roots of unity. Since E(K)/mE(K) is finite, it

implies that there is a coset containing infinitely many Pi. We then replace Pi’s by its

subset, and there exists Ui, R ∈ E(K) satisfying

Pi = [m]Ui +R.

Properties of height functions give us

m2hf (Ui) ⩽ 2hf (Pi) +O(1).

If there does not exist a subsequence Pj of Pi such that Pj
v−→ Q, then dv(Pj , Q) is

bounded and then L = 0. Therefore, by replacing Pi by its subsequence, we may
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suppose that Pi
v−→ Q, then [m]Ui

v−→ Q− R. Because there are m2 quantities of mth-

roots of Q−R, there must be a subsequence of Ui which converges to one of the roots.

Therefore, there exists V ∈ E(Ks) such that

Ui
v−→ V and Q = [m]V +R.

Because the multiplication-by-m map and the translation map are unramified, their

composition E → E,P 7→ [m]P +R is also unramified. Therefore

lim
i→∞

dv(Pi, Q)

dv(Ui, V )
= 1.

Thus

L = lim
i→∞

log dv(Pi, Q)

hf (Pi)
⩾ lim

i→∞

log dv(Ui, V )

1/2m2hf (Ui) +O(1)
.

Because Ui
v−→ V , to apply the previous corollary, we will show that f(V ) does not lie

in any cyclic extension of degree power of p = char.K in the case K is of characteristic

p > 0 (in the number field case, there is no condition for f(V )). Indeed, if x(V ) lies in

an extension of degree a power of p of K, then so are x(U) for any W ∈ 1

m
Q because

they are Gal(Ks/K)-conjugate. Therefore x
(
1

m
Q
)

also lies in an extension of degree a

power of p of K. Because of the equation defining E, y
(
1

m
Q
)

must lie in an extension

of degree 2 times a power of p of K. So K
(
E
(
1

m
Q
))

also lies in an extension of degree

2 times a power of p of K. On the other hand, K
(
E
(
1

m
Q
))

contains K(E[m]), and

hence K(µm). Therefore, [K(µm) : K] is a common divisor of m− 1 and 2ps for some

s, and by the assumption of m, it implies that [K(µm) : K] = 1 or 2, a contradiction

since K does not contain any mth primitive roots of unity. Therefore, the previous

corollary gives us

lim inf
i→∞

dv(Ui, V )

[K : F]hf (Ui)
⩾ −2.

Then the last two inequalities yields

L ⩾ −4[K : F]
m2

.

Because there are infinitely many such m, therefore we have L ⩾ 0 and the result

follows.

We note that y is not an even function, so we can not apply the proof of this

theorem for y. However, when E is given by

y2 = x3 + ax+ b

then y2 is an even function. Therefore, we have



50

Proposition 2.2.10. Let E be an elliptic curve over K given by y2 = x3+ax+ b with

#E(K) =∞, and f = y2 ∈ E(K). Let Q ∈ E(K), and v ∈MK a valuation. Then

lim
P∈E(K)
hf (P )→∞

log dv(P,Q)

hf (P )
= 0.

Remark. When K is a number field, Proposition 2.2.9 holds for any non-constant

even functions, it is known as Siegel’s Theorem, see [14] Theorem IX.3.1. In fact, it

holds for any non-constant functions, see [14] Exercise 9.14d.

2.2.3 Siegel’s Theorem and S-Units Equation

In this section, we will follow the strategy of [14] Chapter IX.3 in proving some classical

theorems for integral points on affine curves over global fields. Again, we denote K a

global field of characteristic p.

S-Units Equation

Theorem 2.2.11. Let S be a set of finitely many places of K, and a, b ∈ K×. Then

the set

{(x, y) ∈ (O×
K,S)

2 : ax+ by = 1}

is finite.

Proof. Let m be a large prime number such that m > p, then O×
K,S/O

×m
K,S is finite,

i.e., we can choose a finite set of elements c1, ..., cr representing O×
K,S/O

×m
K,S . Then any

solution (x, y) is written as

x = ciX
m, y = cjY

m

for some X, Y ∈ OK,S and some ci and cj . In other words, (X, Y ) satisfies

aciX
m + bcjY

m = 1.

Therefore it remains to show

Claim. For any a, b ∈ K×, the equation

aXm + bY m = 1

has only finitely many S−integral solutions.

To prove this, we first suppose that this equation has infinitely many solutions

(X, Y ). Since Y is S−integral,

HK(Y ) =
∏
v∈S

max{1, |Y |v}.
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Therefore, there exists v ∈ S such that there are infinitely many (X, Y ) satisfying

|Y |v ⩾ HK(Y )1/#S

Let γ ∈ K̄ be an mth root of −b/a. We note that by the assumption of m, γ does

not lie in any cyclic extension of degree a power of p over K. From the equation

aXm + bY m = 1 we have ∏
ξ∈µm

(
X

Y
− ξγ

)
=

1

aY m
.

Thus ∏
ξ∈µm

∣∣∣X
Y
− ξγ

∣∣∣ = 1

aY m
.

Because there are infinitely many solutions, HK(Y ) can be very large, and hence, |Y |v
is large. Therefore, X/Y is v−adically close to some ξγ, and by the infiniteness of

solutions, there exists a ξ such that infinitely many solutions (X, Y ) are v−adically

close to ξγ. By replacing γ by ξγ, we then have that X/Y is v−adically closed to γ,

i.e., |X/Y − γ|v closed to 0. Then |X/Y − ξγ|v is bounded below for ξ ̸= 1 since∣∣∣X
Y
− ξγ

∣∣∣
v
⩾ |γ(1− ξ)|v −

∣∣∣X
Y
− γ
∣∣∣
v
.

Therefore, there exists a constant C1, independent of X and Y , satisfying∣∣∣X
Y
− γ
∣∣∣ ⩽ C1

|Y |mv
.

In addition, because

a
(
X

Y

)m
=
(
1

Y

)m
− b,

there exists a sufficiently large constant C2, independent of X and Y , such that

HK

(
X

Y

)
⩽ C2HK(Y ).

Those above inequalities imply that for some constant C independent of X and Y , we

have ∣∣∣X
Y
− γ
∣∣∣
v
⩽ CHK

(
X

Y

)−m/#S

.

Because m is very large, Proposition 2.1.17 implies that there are only finitely many

possibilities for X/Y . Further, since

Y m =
(
a
(
X

Y

)
+ b
)−1

,

there are also finitely many (X, Y ), a contradiction.
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Siegel’s Theorem

Theorem 2.2.12. Let f(x) ∈ K[x] be a polynomial of degree d ⩾ 3 and separable over

K̄. Then the set

{(x, y) ∈ (OK,S)
2 : y2 = f(x)}

is finite.

Proof. We note that if this theorem is true for a finite extension of K and a larger set

S, this clearly holds also for the original K and S. Therefore we many assume that f

is of the form

f(x) = a(x− α1)...(x− αd)

where α1, ..., αd ∈ K and a ∈ O×
K,S , αi − αj ∈ O×

K,S for all i ̸= j, and OK,S is a PID.

Let x, y ∈ OK,S such that y2 = f(x), and let p ̸∈ S. Then p ∤ a, and p divides at most

one x − αi since p ∤ αi − αj . In addition, since ordp(y
2) is even, ordp(x − αi) must

be even. In addition, if x − αi ̸∈ OK,S , then for some q ̸∈ S, ordq(x − αi) < 0, and

hence ordq(x−αj) > 0 for some j, a contradiction since ordq(αi−αj) = 0. Therefore,

(x−αi)OK,S is a square of an ideal in OK,S , hence, there exist zi ∈ OK,S and bi ∈ O×
K,S

such that

x− αi = bi.z
2
i for i = 1, ..., d.

We denote L := K(
√
a : a ∈ O×

K,S), then L is a finite extension of K since OK,S/O2
K,S

is finite. We denote T ⊂ ML the set of places of L above S. Since each bi = β2
i for

some βi ∈ OT,L, we have x− αi = (βizi)
2. Therefore for i ̸= j

αj − αi = (βizi − βizi)(βizi + βizi).

Because αj − αi ∈ OL,T and βizi ± βjzj ∈ OL,T , it follows that

βizi ± βjzj ∈ O×
L,T .

Because
β1z1 ± β2z2
β1z1 − β3z3

∓ β2z2 ± β3z3
β1z1 − β3z3

= 1,

and each term is in O×
L,T . Therefore Theorem 2.2.11 implies that there are only finitely

many possibilities for
β1z1 + β2z2
β1z1 − β3z3

and
β1z1 − β2z2
β1z1 − β3z3

.

Thus there are also only finitely many choices for

β1z1 + β2z2
β1z1 − β3z3

.
β1z1 − β2z2
β1z1 − β3z3

=
α2 − α1

(β1z1 − β3z3)2
.
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So there are only finitely many choices for β1z1 − β3z3, and hence only finitely many

for

β1z1 =
1

2

(
(β1z1 − β3z3) +

α3 − α1

β1z1 − β3z3

)
.

Therefore there are only finitely many possible values for x = α1 + (β1z1)
2. Thus the

number of such pair (x, y) is finite.

Some Relevant Results

We state here two landmarks of arithmetic geometry, for more details, we refer to [22]

Chapter 1.

Theorem 2.2.13 (Mordell’s conjecture, proved by Manin and Grauert for complex

function fields, and by Falting for number fields). Let C be a smooth projective curve

of genus g over a global field K. If g > 1, then C(K) is finite.

Theorem 2.2.14 (Siegel’s theorem, see [22] Chapter 1 section 2). Let C be a smooth

projective curve of genus g over a global field K, and let S be a finite set of places

containing all the Archimedean places. Let Z be non-empty zero dimensional subscheme

over K of C, and U := C \ Z. Let

χ(U) := 2− 2g − r

where r := #Z(K̄). Let U be a finite type OK,S−scheme such that UK = U . If

χ(U) < 0, then U(OK,S) is finite.

Remark. χ(U) < 0 means

1. g = 0 and r ⩾ 3,

2. g ⩾ 1 and r ⩾ 1.

Example 2.2. 1. Consider a projective curve excluding three distinct points C =

P1, Z := {0, 1,∞}, and U := P1 \ {0, 1,∞}. Then

U = SpecOK,S

[
x,

1

x
,

1

1− x

]
.

So its integral points

U(OK,S) = {(x, y) ∈ O2
K,S : x+ y = 1}.

In addition, when r = 0, 1, 2 we obtain U = P1,Ga,Gm respectively, and hence

the set of integral points of U in those cases is infinite.
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2. Consider U : y2 = f(x) where f ∈ OK,S [x] of degree d ⩾ 3 that is separable over

K̄. Its smooth projective model C has genus
⌊
d− 1

2

⌋
. When d = 3, U is an

elliptic curve minus the unique point at infinity. When d = 4, U is an elliptic

curve minus the two points at infinity. When d ⩾ 5, U is a hyperelliptic curve

minus one points (resp. two points) at infinity when d is odd (resp. d is even).
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Chapter 3

The Orders of The Reductions of Rational Points on

Algebraic Groups

Following Theorem 0.0.1, one can ask the following general question:

Question (1). Let G be an algebraic group over a global field K of characteristic

p ⩾ 0, and P a non-torsion K−point of G. How big is the set

O(P ) := {n ∈ N : there exists a place v of K satisfying n = ord(P mod pv)}?

This chapter contains the main results of the thesis which gives an answer to above

question on the order of the reduction of points. It contains three main following

contents:

1. An answer for tori ,

2. An answer for elliptic curves, and

3. An answer for a similar question for semi-abelian varieties.

In this chapter, we show that N \ (O(P )∪ pN) is finite when G is a torus over a global

field, and when G is an elliptic curve over a global field of characteristic p ̸= 2, 3.

3.1 Algebraic Tori

Number Fields

When G = Gm over a number field K, the answer to this question is given by Theorem

0.0.1, which is proven by Schinzel and Postnikova. We will give a detailed proof of

Theorem 0.0.1 after Schinzel and Postnikova [1]. Let K be a number field of degree l

over Q. First we need some lemmas.

Lemma 3.1.1 (Some properties of Möbius function µ).

For n > 0

•
∑
m|n

µ(d) =

1 if n = 1,

0 if n > 1.
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•
∑
m|n

µ
(
n

m

)
m = ϕ(n), where ϕ(n) is the Euler’s totient function.

• For 0 < λ < n ∑
λ|m|n

µ
(
n

m

)
= 0,

where m runs over the set {m > 0 : λ|m and m|n}.

• Let Φn(x, y) be the nth cyclotomic homogeneous polynomial, then

Φn(x, y) =
∏
m|n

(xm − ym)
µ

(
n

m

)
.

Proof. We prove the third and the fourth formula. Other formulas are well-known.

• If λ ∤ n, then there is no m > 0 satisfying λ|m and m|n. Thus the formula holds.

If λ|n, we have ∑
λ|m|n

µ
(
n

m

)
=
∑
λ|m|n

µ
(
n/λ

m/λ

)
=
∑

d|(n/λ)

µ
(
n/λ

d

)
= 0 since

n

λ
> 1.

• Since

xn − yn =
∏
m|n

Φm(x, y),

using the Möbius inversion formula we obtain

Φn(x, y) =
∏
m|n

(xm − ym)
µ

(
n

m

)
.

Lemma 3.1.2 (Kronecker’s theorem).

Let f be a monic polynomial with integers coefficients whose complex roots are non-zero

and lie in the unit disk. Then then the roots of f are roots of unity.

Proof. See [26, Theorem 1.5.9]

Lemma 3.1.3 (Gel’fond’s theorem).

For a and b as in Theorem 0.0.1, there exists a constant c(a, b) depending on a and b

such that ∀m > 0, we have∣∣∣(a
b

)m
− 1
∣∣∣ > exp

{
max

(
m. ln

∣∣∣a
b

∣∣∣, 0)− c(a, b) ln4m
}
.
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Proof. See [28].

Lemma 3.1.4 (Euler’s totient function for ideals). For any ideal I in OK , let ϕ(I) be

the number of invertible elements in OK/I. As in the usual Euler’s totient function,

we have:

• For z + I ∈ (OK/I)×, I|zϕ(I) − 1.

• For p ∈ SpecOK and k > 0, ϕ(pk) = N(p)k−1(N(p)− 1). (Here denote N(I) :=

#OK/I the norm of an ideal I of OK .)

Proof.

• Since z + I ∈ (OK/I)×, zN(I) + I = 1 + I. Thus I|zϕ(I) − 1.

• We have a surjective homomorphism between local rings

OK/pk ↠ OK/p

such that the preimage of (OK/p)× = {a + p : a ∈ OK \ p} is {a + pk : a ∈
OK \ pk} = (OK/pk)× since OK/pk is local with maximal ideal p/pk. Thus

ϕ(pk) =
|OK/pk|
|OK/p|

.|(OK/p)×| = N(pk)

N(p)
(N(p)− 1) = N(p)k−1(N(p)− 1).

Lemma 3.1.5. Let p ∈ MK above a rational prime p. Denote e := e(p|p) := ordp p.

Let A,B ∈ K such that

ordpB = 0 and ordp(A−B) >
e

p− 1
,

then

ordp(A
n −Bn) = ordp(A−B) + ordp n.

Proof. There are three cases.

1. (n, p) = 1. We see that

An −Bn

A−B
= (A−B).Q(A,B) + nBn−1,

for some Q ∈ Z[x, y]. Since ordp(A−B) > 0, ordpB = 0 and (p, n) = 1, we have

ordp(A
n −Bn) = ordp(A−B).

2. n = ps for some s > 0. We prove by induction on s.
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(a) When s = 1, since

Ap −Bp =

p∑
k=1

Ck
pB

p−k(A−B)k,

ordp(A−B) + e < p. ordp(A−B), and since ordpC
k
p = 1 for 1 ⩽ k < p, we

have

ordp

(
C1
p .B

p−1(A−B)
)
= e+ ordp(A−B) < ordp

(
Ck
pB

p−k(A−B)k
)

for 1 < k ⩽ p. Hence

ordp(A
p −Bp) = ordp(A−B) + ordp p = ordp(A−B) + e.

(b) If

ordp(A
ps −Bps) = ordp(A−B) + s.e,

then we have

ordp

(
Aps+1

−Bps+1

)
= ordp

(
Aps+1 −Bps+1

Aps −Bps
.
Aps −Bps

A−B

)

= ordp

(
Aps+1 −Bps+1

Aps −Bps

)
+ s.e

= e+ s.e = (s+ 1).e (by (a)).

3. When p|n, we write n = ps.m with (m, p) = 1. We have

ordp

(
An −Bn

A−B

)
= ordp

(
(Am)p

s − (Bm)p
s

Am −Bm
.
Am −Bm

A−B

)
= s.e = s. ordp n (by cases 1 and 2).

Hence,

ordp(A
n −Bn) = ordp(A−B) + ordp n.

The following lemma allows us to detect whether a prime ideal is primitive or not.

Lemma 3.1.6. Let p ∈MK . For a and b as in Theorem 0.0.1, if

n > 2l(2l − 1), p|Φn(a, b)

and if p is not a primitive divisor of the number an − bn, then

ordpΦn(a, b) ⩽ ordp n.
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Proof. For every i ⩾ 1, let λi be the least exponent λ > 0 such that

pi|aλ − bλ.

We note that pi|aλ − bλ is equivalent to λi|λ. Since p|Φn(a, b)|an − bn, a and b are

not contained in p. Indeed, if a ∈ p, then b is also in p, which is a contradiction as a

and b are relatively primitive. Thus p|an − 1 and p|bn − 1, therefore p|an − bn. As a

consequence, λi|ϕ(pi). Further, by Lemma 3.1.1, we have

Φn(a, b) =
∏
m|n

(am − bm)
µ

(
n

m

)
.

Hence,

ordpΦn(a, b) =
∑
m|n

µ
(
n

m

)
ordp(a

m − bm).

In view of Lemma 3.1.5, the number λk is important when we calculate ordp, here

k :=

⌊
e

p− 1

⌋
. For every i, if λi|m, but λi+1 ∤ m, then ordp(a

m − bm) = i by the

definition of λi. If λk+1|m, then (by Lemma 3.1.5)

ordp(a
m − bm) = ordp(a

λk+1 − bλk) + ordp

(
m

λk+1

)
.

From these observations, we get

ordpΦn(a, b) =

k∑
i=1

∑
λi|m|n

µ
(
n

m

)
+

∑
λk+1|m|n

µ
(
n

m

)
(ordp(a

λk+1 − bλk+1)− k)

+
∑

λk+1|m|n

µ
(
n

m

)
ordp

m

λk+1
.

We note that λk+1 < n. Indeed, if k = 0, λ1 is the least exponent λ such that

p|aλ− bλ. Since p|an− bn is not a primitive divisor of an− bn, there exists some d with

d|n and 0 < d < n such that p|ad − bd. Hence, λ1 ⩽ d < n. If k > 0, then e + 1 ⩾ p,

and since N(pe) ⩽ N(p) = pl, it follows that

λk+1 ⩽ Φ(pk+1) = N(pk)(N(p)−1) ⩽ p
k.l
e (p

l
e−1) ⩽ p

l
p−1 ((e+1)

l
e−1) ⩽ 2l(2l−1) < n.

Here we use Lemma 3.1.4 and the fact that u
1

u−1 ⩽ 2 for all real numbers u ⩾ 2. Thus,

using Lemma 3.1.1, we obtain∑
λi|m|n

µ
(
n

m

)
= 0, i = 1, 2, ..., k + 1.

We consider the following two cases
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1. If λk+1 ∤ n or λk+1|n and p ∤ n

λk+1
, then ord

m

λk+1
= 0 for λk+1|m|n. Hence,

ordϕn(a, b) = 0.

2. If λk+1|n and p| n

λk+1
, then

ordpΦn(a, b) =
∑

λk+1|m|n

µ
(
n

m

)
ordp

m

λk+1

=
∑

λk+1|m|n
ordp(n/m) = 0

µ
(
n

m

)
ordp

m

λk+1

+
∑

λk+1|m|n
ordp(n/m) = 1

µ
(
n

m

)
ordp

m

λk+1

=
∑

λk+1|m|n
ordp(n/m) = 1

(
µ
(

n

mp

)
ordp

mp

λk+1
+ µ
(
n

m

)
ordp

m

λk+1

)

=
∑

λk+1|m|n
ordp(n/m) = 1

(
µ
(

n

mp

)
ordp p+ µ

(
n

mp

)
ordp

m

λk+1

+ µ(p)µ
(

n

mp

)
ordp

m

λk+1

)
=

∑
λk+1|m|n

ordp(n/m) = 1

µ
(

n

mp

)
ordp p

=
∑
r|d

µ
(
d

r

)
ordp p, where

n

λk+1
= pt.d and (d, p) = 1

=

ordp p if d = 1,

0 otherwise

⩽ ordp n

and therefore Lemma 3.1.6 is proven.

Now we have enough ingredients for the proof of Theorem 0.0.1.
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Proof of Theorem 0.0.1. By Lemma 3.1.3, there exists a number c(a, b) satisfying for

all natural number m∣∣∣(a
b

)m
− 1
∣∣∣ > exp

{
m. lnmax

(∣∣∣a
b

∣∣∣, 1)− c(a, b) ln4m
}
.

By considering |a| ⩽ |b| and |a| > |b|, we get∣∣∣(a
b

)m
− 1)

∣∣∣ ⩽ exp
{
m. lnmax

(∣∣∣a
b

∣∣∣, 1)+ ln 2
}
.

For n > 0, from these evaluations and Lemma 3.1.1 we obtain

ln |Φn(a, b)| =
∑
m|n

µ
(
n

m

)
ln |am − bm|

=
∑
m|n

µ
(
n

m

)(
m ln |b|+ ln

∣∣∣(a
b

)m
− 1
∣∣∣)

> ϕ(n) ln |b|+
∑
m|n

µ
(
n

m

)
m lnmax

(∣∣∣a
b

∣∣∣, 1)
−
∑
m|n

∣∣∣µ(a
b

)∣∣∣(ln 2 + c(a, b) ln4 n)

> ϕ(n)
(
ln |b|+ lnmax

(∣∣∣a
b

∣∣∣, 1))− 2ω(n)(ln 2 + c(a, b) ln4 n).

Here ω(n) is an arithmetic function which counts the number of divisors of n. In a

similar way, ∀σ ∈ HomQ(K,C) we have

ln |σ(Φn(a, b))| = ln |Φn(σa, σb)|

> ϕ(n)
(
ln |σb|+ lnmax

(∣∣∣σa
σb

∣∣∣, 1))− 2ω(n)(ln 2 + c(σa, σb) ln4 n).

Thus

ln |N(Φn(a, b))| >ϕ(n)
(
ln |N(b)|+

∑
σ

lnmax
(∣∣∣σa

σb
, 1
∣∣∣))

− l.2ω(n) ln 2− 2ω(n) ln4 n
∑
σ

c(σa, σb).

We note that

c := ln |N(b)|+
∑
σ

lnmax
(∣∣∣σa

σb
, 1
∣∣∣) > 0.

Indeed, if |N(b)| ⩾ 2, then c > 0. If |N(b)| = 1, then

f(x) :=
∏
σ

(σb.x− σa) = ±
∏
σ

(
x− σa

σb

)
.

Since a, b ∈ OK , it implies that f(x) ∈ Z[x], and, since
a

b
is not a root of unity, it

follows by Lemma 3.1.2 that there is a root of f , say
∣∣∣σa
σb

∣∣∣, which is larger than 1. Thus

c > 0. Further, we need the following estimates
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1. [29, Theorem 317] There exists a constant C > 0 satisfying

2ω(n) ⩽ eC
lnn

ln lnn < e
1
2
lnn =

√
n

for all n large enough.

2. [29, Theorem 328] There exists a constant D > 0 satisfying

ϕ(n)

n
⩾

D

ln lnn

for all n large enough.

Hence, for n sufficiently large we have

ln |N(Φn(a, b))| > n.
D

ln lnn
c−
√
n
(
l ln 2 + ln4 n.

∑
σ

c(σa, σb)
)
>
√
n

and therefore

|N(Φn(a, n))| > e
√
n > nl. (3.1)

So, for n large enough, there is a primitive divisor of Φn(a, b). Indeed, let’s suppose

that Φn(a, b) doesn’t admit any primitive divisor. By Lemma 3.1.6, for p|Φn(a, b) we

have

ordΦn(a, b) ⩽ ordp n.

It follows that

|N(Φn(a, b))| =
∏
p

N(p)ordp Φn(a,b) ⩽
∏
p

N(p)ordp n = N(n) = nl,

contradicts (3.1). In other words, for all n large enough, an− bn admits some primitive

divisor.

Remark. In their paper, L. Postnikova and A. Schinzel also proved that if K is purely

real fields (i.e. all of whose conjugate fields are real), the number n0(a, b) is independent

of a and b. In 1974, A. Schinzel showed that the number n0(a, b) depends only on the

degree of
a

b
over Q (see [30, Theorem 1, page 1090]).

When G = T is a one-dimensional torus over a number field, Question 3 is affirma-

tive due to Mikdad who proved it in his master thesis [31].

Theorem 3.1.7. Let T be a one-dimensional torus over a number field K, and P a

non-torsion K−point of T . Then the set

{n ∈ N : ̸ ∃p ∈ SpecOK such that n = ord(P mod p)}

is finite.

Proof. See [31] Theorem 3.1. It is also can by proved by using Lemma 1.4.3 and

Theorem 0.0.1, as in the proof of Theorem 3.1.9 below.
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Global Function Fields

Similarly, I will show that Theorem 0.0.1 and 3.1.7, after discarding those n′s which is

not prime to the characteristic of the base field, also hold in the global function field

case. As usual, one of the advantages of global function fields is that global function

field does not admit any Archimedean place. In addition, as in the proof of Theorem

0.0.1, the key idea is how to detect primitive divisors.

Proposition 3.1.8. Let K be a global function field over Fq of charateristic p, and let

x ∈ K \ {0} be not a root of unity. Then for every n > 1 coprime to p, there exists

v ∈MK such that ord(x mod pv) in Gm(Ov/pv) is equal to n.

Proof. We denote P := {v ∈MK : v(xn − 1) > 0}. We consider four following cases.

1. v in P such that n is not the order of x modulo pv, we call this order by n0. Then

n = n0.k for some k > 0 and

xn − 1 = (xn0 − 1)(xn0(k−1) + xn0(k−2) + ...+ xn0 + 1).

Since xn0(k−1) + xn0(k−2) + ... + xn0 + 1 ≡ k ̸≡ 0 mod pv ((k, p) = 1), we have

v(xn − 1) = v(xn0 − 1). Thus

v(Φn(x)) =
∑
m|n

µ
(
n

m

)
v(xm − 1)

=
∑

n0|m|n

µ
(
n

m

)
v(xm − 1)

=
∑

n0|m|n

µ
(
n

m

)
v(xn0 − 1)

= 0 since n0 < n.

(3.2)

(Here Φn(x) is the nth cyclotomic polynomial.)

2. v ∈ MK satisfying v(x) > 0. Then v(xm − 1) = 0 for all positive integer m. It

implies that v(Φn(x)) = 0.

3. v ∈ MK satisfying v(x) < 0. Then v(xm − 1) = v(1 − x−m) + v(xm) = mv(x).

Hence

v(Φn(x)) =
∑
m|n

µ
(
n

m

)
v(xm − 1)

=
∑
m|n

µ
(
n

m

)
mv(x)

= ϕ(n).v(x).
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4. v ∈ MK satisfying v(x) = 0 and v ̸∈ P . Then v(xm − 1) = 0 for all m|n, and

hence v(Φn(x)) = 0.

Combining these equalities, we obtain that if for every v ∈ P , n is not the order of x

modulo pv, then

0 =
∑
v∈MK

v(Φn(x))

=
∑

v∈MK :v(x)<0

v(Φn(x))

=
∑

v∈MK :v(x)<0

ϕ(n).v(x).

This equality holds if and only if there is no place v such that v(x) < 0, which means

that x must lie in the constant field Fq, a contradiction. Thus, there exists some v in

P such that n = ordx mod pv, this is what we want.

For non-split tori, we have (see [32])

Theorem 3.1.9. Let G be a one-dimensional torus over a global function field K of

characteristic p, and let x ∈ G(K) be non-torsion. Then for every sufficiently large n

prime to p, there exists a place v ∈ MK such that at there, we can take the reduction

of x modulo pv, and the order of x modulo pv is n.

Proof. This theorem can be proven using the behaviour of reduction under field exten-

sions as in 1.4. Firstly, after discarding a finite set S ⊂MK , we see that the coefficients

of x are in OK,S . After discarding finitely many more places (still denote this set by

S), we can assume that G admits an integral model G over OK,S and x ∈ G(OK,S).

Further, there exists a finite Galois extension K ′ of K such that G ×K K ′ = Gm,K′ .

After discarding finitely many more places (still denote this set of places by S), one

can assume that Gm,K′ admits an integral model Gm,OK′,S′ (S′ is the set of places in

MK′ above S) which is an extension G, i.e., Gm,OK′,S′ = G ×OK,S
OK,S′ (thanks to the

uniqueness of integral models). Now for any v ̸∈ S and w ̸∈ S′ above v, let P be an

Ov−point of G. Then P is also an Ov−point of G, and it can be lifted to a point

Ow−point P ′ of Gm,K′ , since Ov ⊗K K ′ ∼=
∏
w|v

Ow. Since OK,S′ ⊂ Ow, the point P is

also an Ow−point of Gm,S′ , i.e., we have the commutative diagram

SpecOw Gm,OK′,S′ Gm,K′

SpecOv G G

P ′

P



65

In other words, G(Ov) ⊂ Gm,OK′,S′ (Ow). Taking reduction, we see that the group of

reduction points modulo pv in G is injected in the group of reduction points modulo pw

in Gm,OK′,S′ , and hence the order of P modulo pv is equal to the order of P ′ modulo

pw for every w|v and every P ∈ G(Ov). Now we take P to be x ∈ G(OK,S), then x lifts

to x′ ∈ Gm,OK′,S′ (OK′,S′) = O×
K′,S′ , and we have the following commutative diagram

SpecOw SpecOK′,S′ Gm,OK′,S′

SpecOv SpecOK,S G

x′

x

Applying Proposition 3.1.8, for every sufficiently large integer n prime to p, since S′ is

finite, there is a place w0 ̸∈ S′ such that ordx′ mod pw0 equals n. Thus ordx mod pv0

also equals n for v0 ̸∈ S the place that lies under w0.

3.2 Elliptic Curves

The question (1) also has an affirmative answer for elliptic curves over global function

fields as follows (see [32]).

Theorem 3.2.1. Let E be an elliptic curve over a global function field K of charac-

teristic p ̸= 2, 3 and P ∈ E(K) a non-torsion point. Then for every sufficiently large

integer n prime to p, there exists p ∈ MK of good reduction so that the order of P

modulo p equals n. Moreover, for almost all P there exists such p for all n > 0 prime

to p.

The main tools is the comparision between Weil height and Néron-Tate height, and

versions of Siegel’s Theorem, see Proposition 2.2.9 and Proposition 2.2.10. We note

that every elliptic curve E over a global field K of characteristic p ̸= 2, 3 can be given

in the normal form

y2 = x3 + ax+ b (a, b ∈ K)

with the identity element O. We fix an embedding E ↪→ P2, and let S be a finite set

containing all the places at which E has bad reduction, and all places at which either

a or b has the non-zero valuation, i.e.,

S = {v ∈MK : E has bad reduction at v} ∪ {v ∈MK : v(a) ̸= 0 or v(b) ̸= 0}.

For P = (x, y) ∈ E(K), the local height function hv at P is defined as follows:

hv(P ) :=

 −
1

[K : F] min{0, v(x), v(y)} if P ̸= O

0 if P = O
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We remark that h(P ) =
∑
v∈MK

hv(P ) at P = [x : y : 1] ∈ P3(K), the projective closure

of E(K). We note that hv(P ) ⩾ 0 for all v ∈MK and P ∈ E(K). In addition, we will

use the Néron-Tate height, due to H. Zimmer [3], because we need to compare the Weil

height and the Néron-Tate height over global function fields. We need an auxiliary

function d. The real-valued function d is defined by

d(P ) :=
1

[K : F]
∑
v∈MK

dv(P ),

where

dv(P ) :=


− 1

[K : F] .
3

2
min

{
1

2
v(a),

1

3
v(b), v(x)

}
if P ̸= O

− 1

[K : F] .
3

2
min

{
1

2
v(a),

1

3
v(b)
}

if P = O

The Néron-Tate height ĥ now can be defined by

ĥ(P ) := lim
t→∞

d(2tP )

22t
,

where the limit is taken over all positive integers t.

We note that ĥ and ĥ are defined differently. As in [3], the Néron-Tate height behaves

similarly as the usual canonical height.

Proposition 3.2.2 (see [3], §2).

• The Néron-Tate height ĥ is well-defined on E(K) and is a quadratic form on

E(K).

• There exists a constant C satisfying

|ĥ(P )− h(P )| < C for all P ∈ E(K).

Proposition 3.2.3 (see [3], Property 5, §4). Let P ∈ E(K). Then ĥ(P ) ⩾ 0, and

ĥ(P ) = 0 if and only if P is a torsion point.

We note that

Proposition 3.2.4 (Northcott-type finiteness theorem). For any B > 0, the set

{P ∈ E(K) : h(P ) < B}

is finite.
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Proof. It follows directly from 2.1.4. For elliptic curves (and also abelian varieties),

it also can be proved by using K/k-trace theory, which is used by Lang and Néron

to prove the Mordell-Weil theorem for finitely generated fields, as follows. Since E is

an abelian variety over K, E admits a K/k-trace (A, τ) (see [33] section 3, Chapter

VIII, Theorem 8), where k is the constant subfield of K. It means that A is an abelian

variety over k and τ is a K−homomorphism

A×k K → E

satisfying the usual universal property in the set of pairs of this form. Because

dimK E = 1, A is also of dimension 1 over k, and hence, A is an elliptic curve over k.

Applying Theorem 5.3 of Chapter 6, §5 in [10], the set {P ∈ E(K) : h(P ) < B} lies in

a finite number of cosets of A(k). Since k is finite, A(k) is finite. Hence the proposition

follows.

Proposition 3.2.5. Let P be a point of infinite order on E. Then for any place v, we

have

lim
n→∞

hv(nP )

h(nP )
= 0.

Proof. Applying Proposition 2.2.9 for Q = O, and tO =
1

x
(O is the only one zero of x

and ordOx = 2), we have

lim
R∈E(K)
hx(R)→∞

logmin{|x(R)|−1/2, 1}
hx(R)

= 0

since dv(R,O) = min{|x(R)|−1/2, 1}. Thus we obtain

lim
R∈E(K)
hx(R)→∞

−min{v(x(R)), 0}
hx(R)

= 0.

In addition, because min{w(x(R)), 0} ⩾ min{w(x(R)), w(y(R)), 0} for all w ∈MK , we

have 0 ⩽ hx(R) ⩽ h(R). Consequently,

−min{v(x(R)), 0}
hx(R)

⩾
−min{v(x(R)), 0}

h(R)
⩾ 0.

Therefore

lim
R∈E(K)
hx(R)→∞

−min{v(x(R)), 0}
h(R)

= 0.

Similarly, we have

lim
R∈E(K)
hy(R)→∞

−min{v(y(R)), 0}
h(R)

=
1

2
. lim

R∈E(K)
hy2(R)→∞

−min{v(y2(R)), 0}
h(R)

= 0.

Here we note that in this case, x, y2 are even functions, and hy2(R) = 2hy(R).
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Claim. We have hx(nP ) tends to ∞ as n tends to ∞.

Indeed, suppose that there exists N > 0 and positive integers n1 < n2 < ... such

that hx(niP ) < N for all ni, i.e., h(x(niP )) < N ∀i ∈ N. Hence {x(niP )|i ∈ N} ⊂ K

takes only finitely many values by Proposition 3.2.4, and then so does {y(niP )|i ∈ N}
thanks to the equation defining E. It follows that the set {niP |i ∈ N} is finite, whilst

P is non-torsion, a contradiction. This concludes the claim.

Similarly, hy(nP ) also tends to ∞ as n→∞. Let R run over the set {nP |n ∈ N},
then the two above limits give

lim
n→∞

−min{v(x(nP )), 0}
h(nP )

= lim
n→∞

−min{v(y(nP )), 0}
h(nP )

= 0.

Since

−min{v(x(nP )), 0} −min{v(y(nP )), 0)} ⩾ −min{v(x(nP )), v(y(nP )), 0},

we obtain

lim
n→∞

−min{v(x(nP )), v(y(nP )), 0}
h(nP )

= 0, i.e., lim
n→∞

hv(nP )

h(nP )
= 0.

We need a result that helps us indicate whether a non-torsion point is trivial after

taking reduction or not.

Lemma 3.2.6. Let v ∈MK \ S, and P ∈ E(K) be non-torsion. Then

• If P modulo pv ̸= O, we have hv(P ) = 0.

• If P modulo pv = O, we have

hv(nP ) = hv(P ) > 0

for any n > 0 prime to p.

Proof. We may write P = (x, y) and P = [X : Y : Z] in the corresponding projective

closure of E (X, Y, Z ∈ OK,v). The condition P modulo pv = O means that v(X) >

v(Y ), v(Z) > v(Y ), and hence v(y) < 0. Therefore, the condition P modulo pv ̸= O

is equivalent to either v(X) ⩽ v(Y ) or v(Z) ⩽ v(Y ). If v(Z) ⩽ v(Y ), then v(y) ⩾ 0,

and from y2 = x3 + ax + b we obtain v(x) ⩾ 0 (since if v(x) < 0, then 2v(y) =

v(x3 + ax + b) = 3v(x) < 0, a contradiction), i.e., hv(P ) = 0. If v(X) ⩽ v(Y ) and

v(Y ) < v(Z), then v(X) < v(Z). But then from the homogeneous Weierstrass equation

Y 2Z = X3 + aXZ2 + bZ3 we obtain

2v(Y ) + v(Z) = 3v(X),
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a contradiction. Therefore the first statement is proven. For the second one, from the

Weierstrass equation y2 = x3 + ax+ b, we have

3v(x) = 2v(y) < 0,

and then hv(P ) = −nv.v(y) > 0. Moreover, recall that if we let

E1(Kv) := {M ∈ E(Kv) : M mod pv = O},

we then have an isomorphism of groups, see Proposition 1.5.10,

E1(Kv)→ F (pv), M = (x(M), y(M)) 7→ z(M) =
−x(M)

y(M)
.

Further, this isomorphism gives us the formula

v(y(M)) = −3v(z(M)).

Thus via this isomorphism, nP maps to

[n].
(−x

y

)
= n.

(−x
y

)
+ (higher-order terms),

here [n].
(−x

y

)
is
(−x

y

)
+
(−x

y

)
+ ...+

(−x
y

)
(n times) in F (pv). Since v(x) > v(y),

v(n) = 0 and F is defined over Ov, we obtain

v(z(nP )) = v
(
[n].
(−x

y

))
= v
(−x

y

)
= v(x)− v(y).

Consequently, we get

v(y(nP )) = −3v(z([n].P )) = 3v(y)− 3v(x) = 3v(y)− 2v(y) = v(y) < 0.

Similar to these above arguments, we obtain

hv(nP ) = −v(y(nP )), and hence hv(nP ) = hv(P ) > 0.

Now, to prove the main theorem, we will give estimates for places in S (as in

Proposition 3.2.5) and places in MK \ S (as in the above lemma) and combine them

together to deduce a contradition.

Proof of Theorem 3.2.1. Assume that for any sufficiently large n > 1 not divisible by

p, ord(P mod pv) does not equal n for any v ∈ MK . In other words, if nP modulo

pv = O, then there exists some prime divisor r of n satisfying
n

r
P modulo pv = O. In

this case, Lemma 3.2.6 give us

hv(nP ) = hv

(
n

r
P
)

for v ∈MK \ S.
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It follows that

hv(nP ) ⩽
∑
r

hv

(
n

r
P
)

for v ∈MK \ S,

where r runs over the set of prime divisors of n.

For v ∈ S, Proposition 3.2.5 give us

lim
n→∞

hv(nP )

h(nP )
= 0.

Since #S is finite, it follows that for any ϵ > 0,

hv(nP ) ⩽ ϵh(nP )

for all large enough integers n. Combining these estimates, we get

h(nP ) =
∑
v

hv(nP ) ⩽
∑
v ̸∈S

∑
r|n

hv

(
n

r
P
)
+
∑
v∈S

ϵ.h(nP )

⩽
∑
r|n

h
(
n

r
P
)
+#S.ϵ.h(nP ).

So

(1−#S.ϵ)h(nP ) ⩽
∑
r|n

h
(
n

r
P
)
. (3.3)

Now by Proposition 3.2.2, there exists C > 0 satisfying

ĥ(Q)− C < h(Q) < ĥ(Q) + C, ∀Q ∈ E(K).

Combining with (3.3) implies

(1−#S.ϵ)(ĥ(nP )− C) <
∑
r|n

ĥ
(
n

r
P
)
+ C.n

since #{prime divisors of n} ⩽ n. Because of the quadraticity of ĥ, it follows that

(1−#S.ϵ)(n2.ĥ(P )− C) <
∑
r|n

n2

r2
ĥ(P ) + C.n <

n2

2
ĥ(P ) + Cn

since
∑
r|n

1

r2
<

1

2
. Therefore

(
1

2
−#S.ϵ

)
n2.ĥ(P ) < (n+ 1−#S.ϵ).C

We choose ϵ <
1

2#S
and let n tend to ∞, we obtain ĥ(P ) = 0, which contradicts

Proposition 3.2.3 since P is non-torsion. It remains to prove the second claim. Thanks

to finiteness theorems and Proposition 3.2.3, it suffices to consider points P such that
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h(P ) and ĥ(P ) is very large. Therefore hv(nP ) = hv(P ) for any n > 0 prime to p by

Proposition 3.2.6 and P is non-torsion since E(K)tors is finite. Therefore, similarly to

the previous arguments, we have for 0 < ϵ <
1

2#S
,

hv(nP ) ⩽ ϵh(nP )

for all positive integer n prime to p. Thus, as above, if for any v ∈MK , ord(P mod pv)

does not equal some n prime to p, we then have(
1

2
−#S.ϵ

)
n2.ĥ(P ) < (n+ 1−#S.ϵ)C,

i.e., ĥ(P ) is bounded, a contradiction.

Remark. We note that the condition gcd(n, p) = 1 is necessary. For example, consider

a supersingular elliptic curve E over K (for instance, we take E to be the base change

to K of a supersingular elliptic curve over Fq). Then [p] is an isomorphism, and so for

almost all v ∈MK

Epv
[p]−→ Epv

is also an isomorphism, where Ev is the reduction modulo pv of E (see [5] Proposition

1.3.1 for the number field case and we note that the proof also works for global function

fields). Hence, for almost all v, Epv is a supersingular elliptic curve, and then Epv [n] =

Epv [np] for all integer n. Therefore, for almost all v, ordP mod pv must be prime to

p.

When E is ordinary, we have (see [32])

Theorem 3.2.7. Let E be an ordinary elliptic curve over some global function field K

of characteristic p ̸= 2, 3 and let P ∈ E(K) be a non-torsion point. We fix a positive

integer t. Then for every sufficiently large n prime to p, there exists p ∈ MK of good

reduction so that ord(P mod p) is equal to npt.

Proof. Because E is ordinary, there exists Q ∈ E(K̄) of order pt. Set L := K(E[pt]) the

pt−division field of E, and denote EL the base change of E to L. Then P −Q ∈ EL(L)

is also a non-torsion point. We recall the following properties of the reduction of points.

1. For almost all p ∈ MK , we have for any q ∈ Ml above p, the order of P (as an

L−point of EL) modulo q equals the order of P modulo p.

2. Since Q is torsion, the order of Q modulo q equals the order of Q, which is pt,

for almost all q ∈ML.
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We call V the set of exceptional primes of K in (1) and call U the set of exceptional

primes of L in (2) and primes of L lying above primes in V . Then both V and

U are finite. Now we apply Theorem 3.2.1 for P − Q ∈ EL(L), we have for every

sufficiently large integer n prime to p, there exists q ∈ ML of good reduction so that

P − Q modulo q is of order n. Since U is finite, q ̸∈ U n sufficiently large. Since

nptP = npt(P − Q) + nptQ = npt(P − Q), the point nptP modulo q equals O. So P

modulo q has the order of the form mps where m|n and s ⩽ t. Then

O = mptP mod q = mptQ+mpt(P −Q) mod q = mpt(P −Q) mod q,

and hence, n|mpt which implies that m = n. Similarly we have

O = npsP mod q = npsQ+ nps(P −Q) mod q = npsQ mod q.

Thus pt|nps which means that s = t. Therefore the order of P modulo q is npt. Since

p, the prime of K lying under q, does not lie in V , the order of P modulo p also equals

npt. The theorem is then proven.

3.3 Semi-Abelian Varieties

In this section, we summarize the Kummer theory for abelian varieties after Ribet [34].

We also assume that K is always a number field. The reason why we need this condition

is that we need a theorem of Serre on the homotheties of the group Gl associated to an

abelian variety, see the discussion in 3.3.2. Then we apply this theory to give a proof

of Theorem 0.0.3 in Section 3.3.2.

3.3.1 Kummer Theory

Classical Kummer theory aims to describe the Galois group of a field extension of K

obtained by adjoining mth roots elements of some elements in K (also called the m-

division field) of a torus Gm. Similar questions arises when one considers the division

fields of abelian varieties and semi-abelian varieties. A lot of amazing results were

established by J. Serre, D. Bertrand, K. Ribet, etc. Here, we summarize some results

of K. Ribet that we need. The main references are his paper [34] and Bertrand’s paper

[35]. Let G be a semi-abelian variety over K with the affine part T and the abelian

part A. For t, l ⩾ 1 and P1, ..., Pt ∈ G(K), we want to understand the Galois group of

the extension

K
(
G[l],

1

l
P1, ...,

1

l
Pt

)
/K(G[l]).
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Ribet showed that in some certain circumstances, this group can be as large as possible.

From now on, l will always be a prime number. First we have some observations. The

group G[l] is isomorphic to (Z/bZ)b where b is the first Betti number of G (dimension

of its first étale cohomology): when G is a split torus Gg
m (resp. an abelian variety), b

is equal to dimG (resp. 2 dimG). Recall that we Gal(K̄/K) acts on G[l] via

ρl : Gal(K̄/K)→ Aut(G[l]) = GLb(Z/lZ).

Its kernel is Gal(K̄/K(G[l])), and its image Gl
∼= Gal(K(G[l])/K). For a point P ∈

G(K), and for any l−th division points Q ∈ 1

l
P , we have the map (so-called Kummer

map)

ξ(P ) : ker(ρl)→ G[l], σ 7→ σ(Q)−Q.

We then obtain a map

ξ : G(K)/lG(K)→ H1(ker(ρl), G[l]), P 7→ ξ(P ).

In fact, Galois cohomology theory tells us that this map is the composition of the

coboundary map

G(K)/lG(K) ↪−→ H1(Gal(K̄/K), G[l])

and the restriction map

H1(Gal(K̄/K), G[l]) −→ H1(ker(ρl), G[l]).

For P1, ..., Pn ∈ G(K), let

φ : ker(ρl)→ G[l]n

be the product of ξ(Pi). Then the kernel of φ is

Gal
(
K̄/K

(
G[l],

1

l
P1, ...,

1

l
Pn

))
.

Now we state the main result in the paper of Ribet, see [34] Theorem 1.2.

Theorem 3.3.1. Let t be an integer with 0 ⩽ t ⩽ n. Assume that the points P1, ..., Pt

are linearly independent over EndK(G), modulo the points Pt+1, ..., Pn. Further, sup-

pose that G satisfies four axioms B1, B2, B3, B4 stated below. Then for almost all

primes l, the image of φ contains

G[l]t × 0n−t = (G[l]× ...×G[l])× (0× ...× 0).

In other words, the Galois group of the field extension

K
(
G[l],

1

l
P1, ...,

1

l
Pn

)
/K
(
G[l],

1

l
Pt+1, ...,

1

l
Pn

)
,

which is the subgroup of G[l]t obtained by intersecting Im(φ) with G[l]t × 0n−t, is as

large as possible for almost all l.
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Now we will explain that what the assumption in this theorem means.

Definition 3.3.2. Let M be a left module over a (not necessarily commutative) ring

R, and let m1, ...,mt be elements in M . These elements are said to be linearly inde-

pendent (over R) if the equation

r1m1 + ...+ rtmt = 0

implies that the ri = 0,∀i . In addition, when N is an R-submodule of M , we say

that the mi are linearly independent mod N if their images in M/N are linearly

independent. In particular, when N is generated over R by elements {nj} of M , we

then say that mi’s are independent mod nj ’s.

In out situation, the ring EndK(G) acts on the points P1, ..., Pn.

Definition 3.3.3. For a point P ∈ G(K), let GP := (ZP )zar and we denote Go
P its

connected component. Then P is said to be independent in G if GP = G. Here, one

can show that P is independent in G if and only if the left EndK(G)-submodule of

G(K) generated by P is free, see [5] Remark 3.3.2.

Now we describe Ribet’s four axioms mentioned in Theorem 3.3.1.

• Axiom B1: For almost all primes l, EndK(G)/lEndK(G) equals the commutant

of G[l] in End(G[l]).

• Axiom B2: For almost all primes l, the Gal(K(G[l])/K)−module G[l] is semisim-

ple.

• Axiom B3: For almost all primes l, H1(Gal(K(G[l])/K), G[l]) vanishes.

• Axiom B4: For each finitely generated subgroup Γ of G(K), the group

Γ′ = {Q ∈ G(K)|mQ ∈ Γ for some m ⩾ 1}

satisfies Γ′/Γ has finite exponent.

The key insight in the proof of this theorem is that Gl = Gal(K(G[l])/K) has a natural

action on Gal
(
K
(
G[l],

1

l
P
)
/K(G[l])

)
(resp. Im(ξ(P ))) via conjugation (resp. ρl). In

other words, we have

ξ(P )(τστ−1) = τ
[
ξ(P )(σ)

]
for σ ∈ ker(ρl) and τ ∈ Gal(K̄/K) . Note that when G = A is an abelian variety, we

have
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• Axiom B1 holds, see [36] Property (b) p.400.

• Axiom B2 holds. It is a direct consequence of Falting’s Theorem (Tate conjecture)

which says that ρ : Gal(K̄/K) → Vl(A) = Tl(A) ⊗ Ql is semisimple, see [22]

Chapter 2 Theorem 4. Indeed, let W be a Gal(K̄/K)-stable subgroup of A[l].

Then its preimage V under the projection Tl(A) ↠ Tl(A)/lTl(A) = A[l] is a

Gal(K̄/K)-stable submodule of Tl(A). Therefore its complement V ′ projects

down to W ′ ⊂ A[l] which is stable under Gal(K̄/K).

• Axiom B3 holds, thanks to the vanishing of Hi(Gal(K(A[l∞])/K), Tl(A)) for

almost all l and for all i ⩾ 0, see [37] Theorem 2.4, and the injectivity of the

inflation map

H1(Gal(K(A[l])/K), A[l]) ↪→ H1(Gal(K(A[l∞])/K), Tl(A)).

• Axiom B4 holds because it is a direct consequence of the Mordell-Weil theorem.

Therefore, this theorem can by applied for abelian varieties. However, we want to know

whether those axioms are satisfied by semi-abelian varieties. To deal with it, we need

an extra axiom (for A).

• Axiom B+
3 : A satisfies axiom B3 and for almost all l, we have

H1(Gal(K(A[l])/K), µl) = 0.

Here, we recall that (see Corollary 1.2.30) the division field K(A[l]) contains µl. There-

fore ker(ρl) = Gal(K̄/K(A[l])) acts trivially on µl, and hence, we have an action of

Gl = Gal(K(A[l])/K) = Gal((K̄/K)/ ker(ρl)) on µl. Furthermore, we have

• Axiom B+
3 holds for all abelian varieties. Indeed, it follows from the two following

lemmas.

Lemma 3.3.4 (Sah’s theorem, see [38] Theorem 5.1). Let H be a group and let M be

a H-module. Let α ∈ Z(H), the center of H. Then H1(H,M) is annihilated by the

map

x 7→ α.x− x

on M . Particularly, if this map is an automorphism of M , then H1(H,M) = 0.

From this lemma, we see that axiom B+
3 is a consequence of

Lemma 3.3.5. Gl contains a homothety [d] ∈ F×
l of Aut(A[l]) such that d ̸≡ ±1 mod l

for almost all l.
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Now for l very large, we choose α ∈ Gl correspond to [d] ∈ F×
l ⊂ Gl. We choose

a polarization λ : A → Â. It then induces a homomorphism between Galois modules

λ[l] : A[l]→ Â[l] which is an isomorphim since l is large. Therefore eλl : A[l]×A[l]→ µl

is non-degenerate. Thus, there exists a, b ∈ A[l] such that el(a, b) = ξl, an l−primitive

root of unity. Then

ξα
2

l = el(a, b)
α2

= el(α.a, α.b) = α.el(a, b) = α.ξl,

and hence
α.ξl
ξl

= ξd
2−1

l which is another l−primitive root of unity because d2 − 1

is coprime to l. So the map µl → µl, x 7→ α.x − x is an automorphism. Therefore

H1(Gl, µl) = 0.

Proof of the lemma. Serre proved in the l− adic situation that the group of homotheties

Cl of Im(ρl), where ρl : Gal(K̄/K) → Aut(Tl(A)) (also denote by ρl), has bounded

index c (independently of l) in Z×
l , see [39] section 2. Suppose that for some l very

large, Cl, the group of homotheties (mod l) in Gl, is contained in Jl the group of

homoteties congruent to ±1 mod l. So c > #Z×
l /Cl ⩾ #Z×

l /Jl =
l − 1

2
, it can not

happen when l is sufficiently large.

Now we turn to the case G = T × A for a torus T and an abelian variety A. As

above, G satisfies Axiom B4. For other axioms, we have

Proposition 3.3.6. Suppose that axioms B1, B2, and B+
3 hold for all abelian varieties

over all number fields. Then the axioms B1, B2, B3, B4 hold for G.

Proof. See [34] Theorem 2.6.

Therefore, we can apply Theorem 3.3.1 for G = T × A. We then have

Proposition 3.3.7. Let G = T × A, and P ∈ G(K). Then for almost all primes l,

Gal
(
K
(
G[l],

1

l
P
)
/K(G[l])

)
∼= Go

P [l]. In particular, there exists c = c(G,P ) > 0 such

that for all primes l, the group

Gal
(
K
(
G[l],

1

l
P
)
/K(G[l])

)
is isomorphic to a subgroup Im(ξ(P )) of Go

P [l] of index bounded by c.

Proof. Because P is independent in GP , we can apply Theorem 3.3.1. Thus for almost

all primes l, the image of ξ(P ), Gal
(
K
(
G[l],

1

l
P
)
/K(G[l])

)
, contains G[l]. Therefore

Gal
(
K
(
G[l],

1

l
P
)
/K(G[l])

)
= G[l]. It remains to show that Im(ξ(P )) lies in the

group Go
P [l]. First, we show that it lies in GP [l] (which is a subgroup of G[l]). We pick
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Q ∈ 1

l
P ⊂ GP (K̄) (exists since GP is also a semi-abelian variety and so GP [l] is non-

empty) and then for σ ∈ ker(ρl) = Gal(K̄/K(G[l])) ⊂ Gal(K̄/K(GP [l])), σ(Q) − Q

lies in GP (K̄), and hence in GP [l]. Therefore, Im(ξ(P )) ⊂ GP [l]. In addition, for

l > #GP /G
o
P , the number of connected components of GP , the exact sequence

0→ Go
P [l] ↪→ GP [l]→

GP

Go
P

[l] = 0

implies that GP [l] = Go
P [l]. The proposition is then proven.

Remark. The procedure above also holds for a power of a prime l. In other words,

we can replace G[l] by G[ls], µl by µls , etc. Similarly, we have

Proposition 3.3.8. Let G = T ×A, and P ∈ G(K). Then for almost all primes l and

all s ⩾ 0, Gal
(
K
(
G[ls],

1

ls
P
)
/K(G[ls])

)
is isomorphic to Go

P [l
s].

For arbitrarily l (not necessarily prime), we can not have the similar result for

almost all l. Instead, we have a quite stronger (in some sense) result involving uniformly

bounded constant.

Theorem 3.3.9 (see [35] Theorem 1). Let G = T × A , and assume that GP is

connected for some P ∈ G(K). Then there exists c = c(G,P ) > 0 such that for all pos-

itive integers n, Gal
(
K
(
G[n],

1

n
P
)
/K(G[n])

)
is isomorphic to a subgroup Im(ξ(P ))

of GP [n] of index bounded by c.

Remark. Proposition 3.3.8 and Theorem 3.3.9 implies that Gal(KP,∞/K∞) is iso-

morphic to an open subgroup of T∞(GP ) where K∞ = K(Gtors) = K(∪n>0G[n]),

KP,∞ =
⋃

n>0K∞

(
1

n
P
)
, and T∞ =

∏
l prime

Tl.

3.3.2 A Proof of Theorem 0.0.3

In this section, we will prove Theorem 0.0.3 by using Kummer theory. We will need

some auxiliary results. First, we need a

Lemma 3.3.10. Let G be a semi-abelian variety over K, a prime number l such that

that G[l] ⊂ G(K). Then [K(G[ln]) : K] and
[
K
(
1

ln
P
)
: K
]

are powers of l for all

n > 0 and P ∈ G(K).

Remark. K
(
1

m
P
)
= K

(
G[m],

1

m
P
)
,∀m > 0.

Proof. Since G[l] ⊂ G(K), we have an injective homomorphism

Gal(K(G[ln])/K) ↪→ EndG[l](G[ln]), σ 7→ (σ : Q 7→ σ(Q)).
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Since G[ln] ∼= (Z/lZ)2 dimG, we obtain the first claim. In addition, since
[
K
(
1

ln
P
)
: K
]
=[

K
(
1

ln
P
)
: K(G[ln])

]
.[K(G[ln]) : K], we need that

[
K
(
1

ln
P
)
/K(G[ln])

]
is a power

of l. We have the Kummer map

ϕn : Gal
(
K
(
1

ln
P
)
/K(G[ln])

)
→ G[ln] ∼= (Z/lZ)2 dimG;σ 7→ σ

(
1

ln
Q
)
− 1

ln
Q,

where Q is a fixed nth root of P (when n = 1, we obtain ξ(P )). It is straightforward

to check that ϕn is injective. The claim follows.

Lemma 3.3.11. Let G be a product of a torus and an abelian variety over K, and

P ∈ G(K) is an independent point. The for n sufficiently large, we have

K
(
1

ln
P
)
∩K(G[ln+1]) = K(G[ln]).

Proof. We need to show that the restriction map

αn : Gal
(
K
(

1

ln+1
P
)
/K(G[ln+1])

)
→ Gal

(
K
(
1

ln
P
)
/K(G[ln])

)
is surjective for n large enough since this map factors as

Gal
(
K
(

1

ln+1
P
)
/K(G[ln+1])

)
→ Gal

(
K
(

1

ln+1
P
)
/
(
K(G[ln+1]) ∩K

(
1

ln
P
)))

→ Gal
(
K
(
1

ln
P
)
/K(G[ln])

)
.

Next, diagram chasing gives us a surjective map βn : Cokerϕn+1 ↠ Cokerϕn satisfies

the commutative diagram

0 Gal
(
K
(

1

ln+1
P
)
/K(G[ln+1])

)
G[ln+1] Cokerϕn+1 0

0 Gal
(
K
(
1

ln
P
)
/K(G[ln])

)
G[ln] Cokerϕn 0

ϕn+1

ϕn

αn [l] βn

Note that αn is surjective if and only if βn is injective. In addition, since βn is surjective,

it remains to show that the two groups Cokerϕn+1 and Cokerϕn have the same order

for n large. Since P is independent, Theorem 3.3.9 implies that Cokerϕn is bounded

by c which does not depend on n. So the lemma follows.

Lemma 3.3.12. Again, let G = T × A be a product of a split torus and an abelian

variety over K, and l is an arbitrary prime. Then

1. If T is zero or A is zero or l > 2, then n large enough, there exists hl ∈ Gal(K̄/K)

which acts as an automorphism of G[l∞] whose set of fixed points is G[ln].
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2. If T and A are non-zero and l = 2, the for n sufficiently large, there exists

h2 ∈ Gal(K̄/K) acting on G[2∞] whose fixed points are T [2n+1]× A[2n].

Proof. 1. When T = 0, because Gal(K[l∞]/K) is a subgroup of finite index in Z×
l ,

it is open. So it must contains a ball Bn of radius l−n around 1, and hence, a

homothety hl such that hl ≡ 1 mod ln and hl ̸≡ 1 mod ln+1. Therefore, the set

of fixed points of hl is A[ln].

2. When A = 0, we note that when n large enough, K(µln+1)/K(µln) is an non-

trivial Galois extension, and we take hl to any non-trivial element in the Galois

group.

3. When T and A are non-zero and l is odd, then A × Â is also non-zero. So

there is hl ∈ Gal(K̄/K) such that hl acts as a homothety on (A × Â)[l∞] and

hl ≡ 1 mod ln, h ̸≡ 1 mod ln+1. As usual, the Weil pairing gives us a ∈ A[ln]

and L ∈ Â[ln] such that

eln(a,L) = ξln , an lnth primitive root of unity.

So we have

hl(ξln) = hl(eln(a,L)) = eln(hl(a), hl(L)) = eln(hl.a, hl.L) = ξ
h2
l

ln .

Therefore, hl also acts on µln as a homothety with factor h2l . Since l is odd,

we have h2l ≡ 1 mod ln and h2l ̸≡ 1 mod ln+1, and so for n large enough, the

homothety hl satisfies the claim.

4. When T and A are non-zero and l = 2, the proof in of case is similar. Note that

in this cae, h22 ≡ 1 mod 2n+1 and h2 ̸≡ 1 mod 2n+2, so its set of fixed points of

G is T [2n+1]× A[2n].

Proof of Theorem 0.0.3. We note that GP is also a product of a torus T and an abelian

variety A over F , and P is an independent point on GP . Let R ∈ 1

2
P , then R is also

independent in GP . Let S be the set of prime divisors of m, and E be a finite extension

of F such that R ∈ GP (E), T is split over E, and GP [l] is defined over E for every

l ∈ S. We then have

K ′
(
1

ln
R
)
∩K ′(G[ln+1]) = K ′(G[ln])

for n sufficiently large. Furthermore, there exists hl for each l ∈ S as in the previous

lemma. Now, let L be the compositum of all E
(
1

ln
R
)

and E(G[ln+1]) for l ∈ S.
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Thanks to Lemma 3.3.10, the fields E
(
1

ln
R,G[ln+1]

)
, l ∈ S, are linearly disjoint over

K ′. By Galois theory, there exists σ ∈ Gal(L/K) such that ∀ l ∈ S, the restriction of

σ to |K ′
(
1

ln
R
)

is the identity, and the restriction of σ to |K ′(G[ln+1]) is equal to the

restriction of hl to |K ′(G[ln+1]). Now by Theorem 1.1.4, there exists a set of primes p

of K unramified in L whose Dirichlet density is positive such that(
L/K

p

)
= Cσ,

the conjugacy class of σ ∈ Gal(L/K). Therefore, for such p, there exists m ∈ ML

above p such that FrobL/K m = σ, and then we let q be a prime of F below m.

L m

F q

K p

Now for l ∈ S, suppose that l divides ord(R mod q). After excluding finitely many p,

ord(R mod m) is also divisible by l. Now let Z ∈ GP (L) such that lnZ = R. Then

ord(Z mod m) is divisible by ln+1 (resp. 2n+2 when l = 2). Then there exists a ⩾ 1

such that ord(aZ mod m) = ln+1 (resp. 2n+2 when l = 2). Therefore, by Proposition

1.4.10, there exists X ∈ GP (L) of order ln+1 (resp. 2n+2 when l = 2) subjects to

(aZ mod m) = (X mod m).

Now, because FrobL/K m commute with red mod m for almost all p Therefore, after

excluding finitely many p, we have that (aZ mod m) is fixed by FrobL/K m (because

σ = id on |K ′
(
1

ln
R
)
), while (X mod m) is not fixed by FrobL/K m (since the set of

fixed points of σ in GP [l
n+1] is GP [l

n]), we obtain a contradiction. In other words, after

ruling out finitely many p ∈MK (the Dirichlet density of this set is 0), ordR mod q is

prime to m. Since the remaining set of primes still has positive Dirichlet density, the

theorem is then proven.

Other questions

Now, K is an arbitrarily field. First we note the followings well-known classification

result.

Proposition 3.3.13. Let G be a one-dimensional connected smooth algebraic group

over K. Then, one of the following holds:
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• GK̄
∼= Ga,K̄

• GK̄
∼= Gm,K̄

• G is an elliptic curve.

For the additive group, it is clearly that the set in Question 3 is infinite, while

for the other cases, it is finite as we see above. For higher dimensions, it is still

not known whether this set is finite or infinite. For instance, when G = (Gm)2 over

K = Q, and (a, b) ∈ G is an independent point (i.e., Z(a, b) is Zariski-dense, and in

this case, it means that a and b are multiplicatively independent) and suppose that

gcd(a− 1, b− 1) = 1, then the set

{n ∈ N : ̸ ∃a prime number p such that n = ord((a, b) mod p)}

is infinite iff there are infinitely many n ⩾ 1 satisfying

gcd(an − 1, bn − 1) = 1.

The latter claim that there are infinitely many n ⩾ 1 such that gcd(an− 1, bn− 1) = 1

is a conjecture of Ailon and Rudnick, see [40] Conjecture A.

One also could ask whether Theorem 0.0.3 holds for global function fields. As we

see in the proof, the number field case follows from the following results:

• Kummer theory for product of tori and abelian varieties

• Serre’s theorem on homotheties (the openness of the subgroup of homotheties in

Z×
l is due to Bogomolov)

• Chebotarev’s density theorem

The Kummer theory is based the Mordell-Weil theorem and the Dirichlet’s S−unit

theorem, Serre’s theorem on homotheties, Falting’s theorem on the semisimplicity of

the representation of Tate modules. The result of Falting also holds for global function

fields of characteristic greater than 2 due to Zarhin, see [22] Chapter 1 section 7. For

Serre’s theorem on homotheties, it seems that there does not exist similar theorem for

global function field. We note that the theorem is motivated by Serre’s open image

theorem, see Theorem 1.2.35, and in global function field case, we have

Theorem 3.3.14 (Igusa’s theorem, see [41] Theorem 1.4). Considering an isotrivial

elliptic curve E over a global function field K/Fq. Here, E is said to be isotrivial if
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its j−invariant j(E) ̸∈ F̄q. Let n > 0 be prime to p, and let Γn be the inverse image of

Hn :=< p >⊂ (Z/nZ)× under the determinant map in the short exact sequence

1→ SL2(Z/nZ)→ GL2(Z/nZ)→ (Z/nZ)× → 1.

In other words, we have a short exact sequence

1→ SL2(Z/nZ)→ Γn
det−−→ Hn → 1.

Then one can deduce from the Weil pairing for E that Gal(K(E[n])/K) ⊂ Γn. Fur-

thermore, if for a prime l coprime to q, if Γ̂l is the inverse limit of {Γls}s>0, then

Gal(K(E[l∞]/K)) is open in Γ̂l for all l coprime to p, and equals Γ̂l for almost all l.

Although it is not clear whether Serre’s theorem on homotheties hold in the case in

Theorem, we can still prove Theorem 0.0.3 for elliptic curves over global function fields

because we only need to choose homotheties involving some congruence conditions

which are still statisfied thanks to Isuga’s theorem.

Lastly, we can ask similar questions for Drinfeld modules (which are well-known

objects to work with global function fields).

Definition 3.3.15. Let K := K(C) be the function field of a smooth projective geo-

metrically integral curve C over Fq. We fix a closed point ∞ and let A be the ring of

regular functions outside ∞.

1. An A−field F is a field equipped with a fixed morphism ι : A→ F .

2. A Drinfeld module over F is a homomorphism of Fq−algebras ϕ : A→ F{τ}
such that

ϕa = ι(a)τ0 + (higher order terms in τ),∀a ∈ A

and ϕa ̸= ι(a) for some a ∈ A.

Drinfeld modules admit a lot of similar objects like abelian varieties, such as Tate

modules and Galois representations (e.g. by Pink and his students), Reductions (e.g.

by Takahasi), Height machinery (e.g. by Denis and Poonen). For example, one has a

Mordell-Weil type theorem for Drinfeld modules due to Poonen, see [42] Theorem 1.

Theorem 3.3.16. Let ϕ be a Drinfeld A-module over a finite extension L of K. Then

the A−module ϕ(L) (i.e, the additive group L with an action of A via a 7→ ϕa) is the

direct sum of a finite torsion module and a free A−module of countably infinite rank.

So, for example, we have the following question
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Question (2). Let ϕ be a Drinfeld A-module over K and consider the A−module

ϕ(K). One can take reduction modulo p of ϕ for almost all p to get a Drinfeld module

ϕp : A/p → K{τ}. Let x ∈ K be a point that is not annihilated by ϕ(A). Is the

following set

{n ∈ N : gcd(n, q) = 1 and ̸ ∃p ∈ SpecOK such that

n is the smallest positive integer satisfying ϕp(n)x = 0}

finite? Here, since A/p is a finite field extension of Fq, we can consider n as an invertible

element in A/p.

In the future, we want to find similar results of Schinzel - Postnikova for Drinfeld

modules, and similar result of Perucca for elliptic curves (product with tori) over global

function fields and for Drinfeld modules, and for other geometric objects.
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Conclusion

In this thesis, we have presented the following.

1. On the arithmetic side, we presented some properties of global fields, especially

some finiteness theorems for global function fields.

2. On the geometric side, we gave some properties of algebraic groups, especially

linear algebraic groups (including tori), and abelian varieties (including elliptic

curves), and semi-abelian varieties that we need. We also describe the notion of

integral models, formal groups, and the reductions of points on those geometric

objects which are used to prove the main results.

3. We gave constructions of height functions on elliptic curves over global fields.

As a consequence of height machinery, we prove the Mordell-Weil theorem for

elliptic curves, and some finiteness theorems for integral points on some affine

curves over global function fields.

4. Finally, we describe the problems concerning the order of the reduction of a

rational point on tori, elliptic curves, and semi-abelian varieties and gave some

partial results extending Schinzel-Postnikova and Cheon-Hahn to global function

fields. We also sketch the Kummer theory for abelian varieties over number fields

due to Ribet. Relating to those problems, we propose some questions to study

in the future.
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