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PREFACE
1. The necessities of the thesis

In order to improve the accuracy of first-order approximation solutions of
Galerkin's method as well as develop orthogonal properties and apply to
some typical problems of elastic stability of columns and consider with
constant cross-section and cross-sectional change, while improving the
orthogonality by developing a dual-weighted linearization method for
nonlinear deterministic dynamic systems by the equivalent replacement of
a nonlinear function with a linearity is briefly corrected using a dual
method with two forward and backward substitutions. The selection of an
additional a weight parameter connecting the two objective functions is
investigated and applied to the frequency analysis of the nonlinear
oscillations, and some case studies are then performed to verify the
accuracy and the effect of non-linearity on the efficiency of the proposed
technique.

With the above analysis, the author has chosen the topic: "Research for
orthogonality developing applied in the analysis of stability and
nonlinear oscillation™ to be the research topic.

2. Research objectives of the thesis

Developing the orthogonality of the weighted residuals method (in
particular the Galerkin method) with the normal mean and applying the
weighted dual criterion of the equivalent linearization method to the elastic
stability problems.

Solve the problem of choosing a specific weight function among a class of
single-parameter weight functions and develop orthogonality by proposing
to build a new weighted local average applied to Galerkin and combined
with the method of least squares to investigate the stability problem with
columns with constant cross section and variable cross section.
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Proposing a new and efficient alternative calculation tool for engineering
calculations in the design of structural systems with variable cross-
sections.

Building process, developing orthogonal property through single-weight
dual linearization method for nonlinear deterministic dynamic systems and
applying to frequency analysis of nonlinear oscillations in some cases
typical and compare the results of some approximate methods to evaluate
the effectiveness of the proposed method.

3. Contents of the thesis

The thesis consists of an introduction, 04 chapters, a conclusion, a list of
the author's published works related to the thesis, and references. The main
contents of the chapters are as follows:

Chapter 1: “Overview of methods to solve elastic stability problems and
one-degree-of-freedom system of nonlinear oscillations”. Presenting
stability models, elastic stability problems, one-degree-of-freedom
nonlinear oscillation problems and some common nonlinear oscillation
systems, and an overview of methods to solve stability problems and
nonlinear oscillations problems, approximation methods of the weighted
residual method, Galerkin and orthogonal analysis in these methods.

Chapter 2: “Equivalent linearization method”, present equivalent
linearization methods and analyze the advantages and disadvantages of the
methods, the idea of weighted dual linearization for stability problem and
nonlinear oscillation problem as a basis for orthogonal property
development and applied in Chapter 3, Chapter 4.

Chapter 3: “Develop orthogonality applied in stability problem analysis”.
Developing orthogonality through weighted duality criterion (WDC) and
by weighted local averaging (WLA) at a local value r with a local function
/™. Applying weighted dual linearization, GWLA, SGWLA, choosing
weight function, numerical survey with elastic stability problems of
constant cross-section, variable cross-section, concluding about the
effectiveness of the proposed technique.
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Chapter 4: “Develop orthogonality applied in the analysis of nonlinear
oscillation problems”. Building the theoretical basis, developing the
orthogonal property, building a linearization process and numerical
investigation with nonlinear deterministic oscillation problems and
concluding on the efficiency of the proposed computational technique.

Conclusion and new contributions of the thesis and future research
directions. List of published works and citations.

CHAPTER 1. OVERVIEW OF METHODS TO SOLVE ELASTIC
STABILITY PROBLEMS AND ONE-DEGREE-OF-FREEDOM
SYSTEM OF NONLINEAR OSCILLATIONS

1.1. Elastic stability
1.1.1. Static method

Method of setting and solving differential equations; Initial parameter
method; force method; Transposition method; Mixed method; Finite
difference method; The leash method; The test method is correct at each
point; Bubnov-Galerkin method; Correct solution method. In practice,
applying static methods to find exact solutions of stability problems is
often difficult and sometimes impossible.

1.1.2. Dynamic method

Set up and solve the system's partial oscillation equations. Determine the
critical force by arguing the solution property of motion: if the system's
oscillation amplitude increases continuously with time, the initial
equilibrium form is unstable; conversely, if the system is always oscillating
slightly around the initial equilibrium position or decreasing, then the form
is stable.

1.1.3. Energy method

Directly the Lejeune-Dirichlet principle; Rayleigh-Ritz method;
Timoshenko method. Due to the presumption of the system's deformation,
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the resulting critical force is usually approximate and gives results larger
than the exact critical force value.

The paths of the three types of methods (static method; dynamic method;
energetic method) although different, give the same result for the
conserved system. For non-conservative systems, static methods and
energetic methods lead to inaccurate results, one must use dynamical
methods.

1.2. Instability models

The first type of instability that has been studied and received a lot of
attention is class 1 or classical or branching instability. Type 2 instability
(snapthrough buckling) is a phenomenon characterized by a visible and
abrupt jump from an equilibrium to another equilibrium with a
displacement greater than the displacement at the initial equilibrium.
Another type of instability that Libove [25] calls finite displacement
instability.

1.3. Elastic stability problems

o |p b’iﬁ”ﬂ 9 <o)
T £
1 l l
v v v

Figure 1.6. Eulerian stability problems
1.3.1. Column with two hinged ends (P-P)
1.3.2. Column with two fixed ends (C-C)
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1.3.3. Column with one fixed end and one free end (C-F)
1.3.4. Column with a fixed end and a hinge end (C-P)
1.4. Nonlinear oscillation problem

1.4.1. Classification of Nonlinear Vibrations: Free oscillation, damping
oscillation, undamping oscillation, resisted oscillation, predetermined
oscillation, stochastic oscillation, 1-degree-of-freedom oscillation,
multiple degrees of freedom, and infinite degrees of freedom

1.4.2. One-degree-of-freedom nonlinear mechanical system:

mi + bttx + kttx + gpt(x, x) = u(t) (15)

v

Figure 1.7. One-degree-of-freedom nonlinear mechanical system
1.4.3. Some common nonlinear oscillation systems: Lutes Sarkani, Van
der pol oscillator system, with third-order nonlinear damping, exponential
nonlinear elasticity, Duffing, Atlik-Utku, with fractional order restoring
force, Duffing harmonic, capable of organic expansion term, Duffing style
oscillator system.

1.5. Some approximate methods to solve differential equations
1.5.1. Rayleigh-Ritz Variation Method
1.5.2. Weighted Residual Method

f W;Rpdl' = 0 (1.34)

The orthogonality shown in Equation (1.34) and the different weighted
residual methods in the function definition W;.
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1.5.3. Galerkin method and orthogonality of residuals with comparison
functions

The Galerkin method solves directly from differential equations while the
Rayleigh-Ritz method focuses on energy.

1
f Q)g;(x)dx =0,v6ii=1,2,..,n (1.49)
0

The relationships given by equation (1.49) are called Galerkin equations.
For a given problem any hypothetical displacement function that fits the
boundary conditions and the Galerkin equation will be an approximate
solution of the problem. This equation shows the orthogonality between
the n trial functions and the residual.

1.6. Conclusion Chapter 1

Presents an overview of methods to solve elastic stability problems and
exact solutions of these problems, and also shows the general properties of
approximation methods such as Rayleigh-Ritz, Galerkin and other
methods. The weighted residual method (MWR) is shown by the
orthogonality between the residuals and the comparison function, and the
orthogonality depends on the averaging operator acting on the residuals.
Therefore, to obtain other approximations using the same Galerkin
procedure and comparison functions, we can modify the averaging
operator to be the orthogonal property. The thesis builds and develops the
orthogonal property in analyzing the problem of stability and nonlinear
oscillation based on the exact results obtained from the problem of stability
and nonlinear free oscillation to compare with the method Galerkin and
other approximate methods to evaluate the effectiveness of the proposed
method.

CHAPTER 2. EQUIVALENT LINEARIZATION METHOD
2.1. Introduce

This chapter presents the equivalent linearization methods for the one-
degree-of-freedom system in Section 2.2 with linearization coefficients,
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we have different versions based on the classical criteria, criteria of
minimum potential error, equivalent linearization criteria with adjustment,
partial linearization criteria. The development of the duality criterion and
its application is presented in 2.3. The formulation and idea of the weighted
dual criterion and its properties are detailed in 2.4. Conclusion Chapter 2
presented in 2.5.

2.2. Equivalent linearization method for one-degree-of-freedom
system

2.3. The dual criterion of the equivalent linearization method
2.4. Weighted dual criterion
Sq = (1 =p)(A—kgB)?) + p{(kqB — 144)?)

g
The criterion (2.65) is called the weighted dual criterion (WDC), which is
stated as the weighted average of the mean squares of the forward and
backward substitution processes that are the smallest in terms of the
linearization coefficients k,; and the return coefficient A; given by (2.60),
(2.61) and r2 are defined and given by (2.62) with (2.63) and the condition
to be satisfied from (2.64)

(2.65)

2.5. Conclusion of chapter 2

The equivalent linearization method is how to find the linearization
coefficients for a given nonlinear system. The goal of the improvements
and developments to the equivalence linearization method is to determine
the linearization coefficients so that an approximate mean squared or
variance can be obtained that is closest to the exact solution. The
development of orthogonality in averaging applied in the weighted duality
criterion for stability problems will be examined in detail in Chapter 3, and
the extension and development of orthogonality from Galerkin's method
with weighted local mean. In Chapter 4, the author will present the
development of orthogonality in dual-equivalent linearization with a
weight parameter for nonlinear deterministic dynamic systems, at the same
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time, survey and apply dual equivalence linearization with selected weight
parameters to analyze nonlinear free oscillation frequencies and some
typical cases and evaluate the effectiveness of the proposed method.

CHAPTER 3 DEVELOP ORTHOGONALITY APPLIED IN
STABILITY PROBLEM ANALYSIS

3.1. Introduce

This chapter is organized as follows: Section 3.2 Applying the weighted
dual criterion to the elastic stability problem, Choosing a weight parameter
p presented in Section 3.3 and Section 3.4 presents the development of
orthogonality through weighted local averaging. Then the combination of
weighted local averaging with the Galerkin method is given in Section 3.5.
The accuracy of the Galerkin method with its weighted local averaging and
its approximation is investigated in Section 3.6 with the application of
determining the critical load of a constant section elastic Euler column and
with different typical boundary conditions. In addition, the application of
the Galerkin method with weighted local averaging for columns with
variable cross-section is presented in Section 3.7, which develops the
orthogonality in the least squares method. deployed. Finally, a discussion
of the orthogonal development results is summarized in Section 3.8,
followed by the conclusion of Chapter 3 in 3.9.

3.2. Applying the dual criterion to the problem of elastic stability
3.2.1. Column with two hinged ends (P-P)

Table 3.1. Critical force PS. and error for different functions f;

No £ Galerkin's Error with Euler
! solution solution (%)

1 x(l—x) 10 1,321180
2 x(l = x)? 14 41,849660
3 x2(l—x) 14 41,849660
4 x2 (1 —x)? 12 21,585420
5 x(l— x)+x%(l — x) 10.5 6,387240
6 x(1 — x)+x2(1 — x)? 9,87097 0,013814




Table 3.2. Critical force PZ"™ and error for y(x) = x(I — x)

9

t v r p pan Error for PE
1 0 0,087129080  9,84341568 -0,265347%
1 1 0,079537600  9,85802719 -0,117302%
1 2 0,072607600  9,87119382 0,016104%
2 2 0,006326230  9,98940041 1,213787%
2 1 0,006930040  9,98838285 1,203477%
3 1 0,000603808  9,99899315 1,310982%
3 2 0,000551198  9,99908091 1,311871%
2 3 0,005775030  9,99032840 1,223190%
1 3 091287092 heeo81300  9.88307270 0,136462%
3 3 0,000503173  9,99916103 1,312683%
4 3 0,000043841  9,99992693 1,320443%
3 4 0,000459332  9,99923415 1,313424%
4 4 4,00212E-05  9,99993330 1,320508%
5 5 3,18319E-06  9,99999469 1,321130%
6 6 2,53183E-07  9,99999958 1,321179%
10 10 1,01327E-11  10,0000000 1,321184%
Table 3.3. Critical force PZ™ and error for y(x)
y(x) r p chn PCE‘ L v ch‘
0316869 1122346 98696 1,0 1400
1 x(-x) 068313 ) >16463 1220212 98696 1.1 00
0132084 1081502 986% L2
2 x2(-x)? 053452 0115814 1007333  9,8696 21 o'
0,465478 7,39818  9,.8696 1.0
x(L— x)+x2(l 0,163339  9,91005  9,8696 1,0 1050
S 083666 136660 1002308 98696 1.1 00
x(l 0000576  9,87096  986% L0
4 —x)+x2( 099942 0000575 98709 98696 L1 o
% 0,000575 9,87096  9,8696  1:2

3.2.2. Column with two fixed ends (C-C)
P5 5 P3"
39,4784El1/1? 41,3369EI/1? 39.3943 El/[?

3.2.1. Column with one fixed end and one free end (C-F)
| PE | 73 | e |
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| 24674El/12 | 1,33E1/12 | 15037El/12 |
3.2.1. Column with a fixed end and a hinge end (C-P)
PE PS P
20,1906 El/l2 22,4211El/l2 21,5968 EI/l2

3.3. Choosing weight parameter p for elastic stability problem
p={0—-rH%r?
Table 3.4. Critical force P4™ and error for £; with weight functions p; (1)

(3.41)

Pi2:Pio

kizikio

P3™ va error (%)

P& va %)

O B WN |

0,124145; 0,10680
0,056938; 0,03302
0,091341; 0,08876
0,067206; 0,07377
0,018898; 0,00984

-10,6745; 10,6586
-11,0621; 10,9371
-10,8674; 10,7295
-11,0048; 10,7870
-11,2689; 11,0187

21,3330 (5,91297)
21,9992 (9,22042)
21,5968 (7.22262)
21,7917 (8,19021)
22,2876 (10,6512)

22,4211
(11,3147

)

Table 3.5. Critical force PZ"™ and error for f; with p;(r)

7 f pi P& vaerror (%)  PS va (%)
p1 19,8803 (-1.29959)
p, 20,4618 (1,58733)

3M,

. fi= e ps 202217039651 i hecd
ps  20,4509(1,53348) '
ps  20,8157(3,34441)
p, 31,0252 (54,0319)
p, 31,7871 (57,8144)

) f, = i;‘g ¥3(1 - %) ps 31,6788 (57,2771) ?622‘8523?4)
p, 32,0766 (59,2520) ’
ps 32,4233 (60,9733)
py 44,5491 (121,174)
p,  456020(126,402)

A P 2?1453 (=) ps 455307 (126,048) ?173'}140232)
pa 459478 (128,119) ’
ps 46,5097 (130,908)

M, ; p, 20,8242 (3,38678)
5 Js= 1o T8~ 2 — 2 p2  21,4487(6,48699) ?81 gf?;()zl)
- x) ps 21,0456 (4,48593) ’
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ps 212132 (5,31816)
ps  21,6940(7,70495)

p;  31,4423(56,1026)
p,  32,3490(60,6042)
M, 33,1190
6 £ = mx4(3l —2x)(l — %) ps  3L9280(SB5186) oy
ps 32,2642 (60,1832) ’
ps __ 32,8613(63,1479)

p. 33,2967 (65,3092)

M, p 34,1035 (69,3149)
3,2 _ Q432 2 4,5291
7 fr = 1o *7Px* - 9% ps 335610 (66,6215) ?71'542979)
+2x°) ps 33,7619 (67,6192) :
ps 34,3975 (70,7747)
3.4. Weighted local averaging
<g(x)|x1+0{—20ﬂ"r)
r1+a—20n' r
= x)dx
r f 9 (3.53)
1 1+a—2ar
+—f g(x)dx

3.5. Developing orthogonality in Galerkin's method with weighted
local averaging

Applying GCA to (3.57) leads to the following equations of the
orthogonal condition:

N
A ZaJW(x) W;(x))=0,i=12,...,N (3.59)

pl+a—2ar N
fA Zajo(x) W, (x)dx

j=1
| ita-zar N (3.61)
— f z Wi(x) |Wy(x)dx =0,
i=12,...,N

or
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N T1+a—2m” r
2 a; [#L A (Wj(x)) W;(x)dx

=t 1 — plta—2ar (1 (366)
+ TJ; A (VV](X)) Wi(x)dx]
=0,
i=12,...,N

GWLA allows getting much more precise solutions to some problems
GWLA will be deployed to find the critical loads for elastic columns with
different types of boundary conditions and cross-sections, when compared
compared with solutions obtained from GCA.

3.6. Elastic instability of Euler column with constant cross-section

Péwik(a,m)
1+a—2ar 4 1+a—2ar 4
r rd*w 1-—r 1d*w
_ T 0 dx* wdx + ——3— h dxt wdx  (372)
- rlta-2ar . 42y, 1 — plta-2ar 542y
- 0 dn? wdx + 1=+ 1 da? wdx

To reduce the computational volume, the author proposes a simplified
Galerkin method with weighted local averaging (SGWLA for short).

PEgty = min(PEGEE(0.5,025), PEGEE(0.5,075))  (3.79)

99

90— 00—+ /.' 22
@ o - (b)
215 )
981 1
219~_* - - > - *> w
975 } !
plar) pla.r)
205 1
97t 1
p—— . i =
9.65 | |—e—p(0.1) 4 20 |—e—p0.n |1
—*—p(0.5,r) —&—p(0.51)
96 p(1.n) 195 | p(1.n) |4
v—pP)a(.I 7‘)#.4(1

0 0.2 04 ).6 08 1 0 0.2 0.4 0.6 0.8 1
r ¥
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.

*~—p(0.1) |
|—*—p(0.5,)
p(1.r)

(d) <.

22 —e—p(0,n)
—*—p(0.5,r)
39 1 2+ —*p(ln)

Dexacl

385 1.8
0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1

r

Figure 3.2. Normalized critical load, PE3: (a, 7) by GWLA, as a function
of r, 7 € [0,1] and three values of a: 0, 0,5 and 1 compare with exact value,
peenst for a column of constant cross-section: a) P-P, b) C-P, ¢) C-C va d)
C-F.

Table 3.7. Normalized critical loads obtained by GWLA and SGWLA,
GCA and exact solutions for four different column types of constant cross-
section.

CoU Poonet  Pewis WE Pagia  WE  Pem  %E
P-P 9,8696 19,7054 1,6640 19,7011 11,7074 9,8823  0,1289
C-P 20,1907 20,1444 0,2293 20,1247 0,3271 21,0000 4,0081
C-C 39,4784 39,9657 1,2344 39,8185 0,8614 42,0000 6,3872

C-F 24674 25248 2,3263 2,5881  4,8900 3,0725 24,5230

3.7. Elastic instability of Euler columns with variable cross-section
3.7.2. Convert the variable section column to the equivalent column

PELa = K PGS (393)
3.7.2. Applied to the problem Euler with variable cross-section
For columns with exponential moment of inertia, we have
G(Lx) = e~ oLx (3.94)

Table 3.9. Normalized critical load, obtained by GWLA, GCA and exact
solution for four column types with exponential moment of inertia

A exp exp 0, exp,CA 0, exp,WLA 0,
Cot al  peyaee  Poca YoE Pewra YE Pewia  Er %E

P-P O 9,8696 9,8823 0,1289  9,7054 1,6639 9,7054 11,6639
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0,1 93800 9,4020 0,2349  9,2337 1,5597 9,2210 1,6951

0,5 7,6340 17,7308 1,2676  7,5923 0,5462 7,5386 1,2497

1 5,8270 16,1017 4,7139  5,9925 2,8402 5,9043 11,3266

0 20,1907 21,0000 4,0081 20,1444 0,2293 20,1444 10,2294

C-p 0,1 19,2000 20,1519 4,9577 19,3269 0,6609 19,1603 0,2068
0,5 15,6400 17,2408 10,2355 16,5210 56330 15,7930 10,9783

1 11,9900 14,4716 20,6976 13,8517 155271 12,6102 5,1726

0 39,4784 42,0000 6,3872 39,9657 1,2344 39,9657 11,2343

C-C 0,1 37,5500 39,9778 6,4655 38,0322 12842 37,6781 0,3411
0,5 30,6000 33,2473 8,6514 31,5969 3,2578 30,0830 1,6895

1 23,4900 27,1709 15,6700 25,7867 9,7773 23,2644 0,9604

0 24674 3,0725 24,5230 @ 2,5248 2,3263 2,5248 2,3263

01 23943 21381 10,6993  2,4588 2,7014 2,4476 2,2268

C-F 0,5 21104 -0,6757 132,0193  2,2212 5,2558 2,1702 2,8320
1 11,7824 -2,7134 2522319 19731 10,7036 1,8825 5,6155

For columns whose moment of inertia is given by a power function,
G(Lx) = (1 — bLx)*

pow,CA
F GWLA

Ppow,WLA — kpowP

GWLA

Table 3.12. Normalized critical loads obtained by GWLA, GCA and
exact solutions for four column types with linearly varying moment of

= k2P

const
GWLA

const

WLA" GWLA

(3.101)
(3.103)

(3.104)

inertia (a=1)

Cot bL PIGG  Pien K RRYEY %E  pRoMYM %E
0 98696 09,8823  0,1289 09,7054 1,6639 9,7054 1,6639

pp 01 93720 93882 01729 92201 16205 92069 17613
0,3 83430 84000 06828 82496 1,1196 8,2099 1,5954
05 7,2560 7,4117 21462 7,2791 0,3177 7,2130 0,5932
0 20,1907 21,0000  4,0081 20,1444 0,2293 20,1444 0,2294

cp 01191700 201250  4,9817 193010 0,6831 19,1287 02153
0,3 17,0300 18,3750  7,8978 17,6143 3,4308 17,0972 0,3944
0,5 14,7400 16,6250 12,7883 159274 8,0554 15,0656 2,2089
0 39,4784 42,0000  6,3872 39,9657 1,2344 39,9657 1,2343

c.c 01 374800 399000 64568 37,9578 1,749 375889 0,2907
0,3 33,2700 35,7000  7,3039 33,9421 12,0201 32,8354 1,3062
0,5 28,7000 31,5000  9,7561 29,9259 4,2715 28,0819 2,1537

C-F_ 0 24674 30725 245230 25248 23263 25248 2,3263
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0,1 23932 2,0835 12,9424 24576 2,6926 2,4458 2,1968
03 22350 0,1054 952830 2,3231 3,9438 12,2879 2,3668
05 2,0623 -1,8726 190,8021 2,1887 6,1302 2,1300 3,2814

Table 3.13. Normalized critical loads obtained by GWLA, GCA and
exact solutions for four column types with linearly varying moment of
inertia (a = 2)

Cot bL pPO¥ — pPov  oE pPowCA  o%E pPOWWL %E

exact GCA

0 19,8696 9,8823 0,1289 9,7054 11,6639 9,7054 1,6639
0,1 18,8930 8,9223 0,3297 8,7626 11,4661 8,7373 1,7509

P-P 0,3 17,0060 7,1717 2,3801 7,0433 0,5469 6,9739 0,4438
05 51980 5,6470 8,6381 55460 6,6941 5,4413 4,6812
0 20,1907 21,0000 4,0081 20,1444 10,2293 20,1444 0,2294
c-p 0,1 18,1900 19,3050 6,1297 18,5107 1,7630 18,1779 0,6652
0,3 14,2900 16,4250 13,6809 15,5612 8,8954 14,6345 2,4108
0,5 10,5300 13,6250 29,3922 13,0356 23,7953 11,6112 10,2681
0 39,4784 42,0000 6,3872 39,9657 1,2344 39,9657 11,2343
c-c 0,1 35,5600 37,9600 6,7492 36,1026 1,5259 35,3956 0,4623
0,3 27,9100 30,8400 10,4980 29,2949 4,9619 27,3545 1,9903
0,5 20,4800 25,0000 22,0703 23,7109 15,7757 20,7798 1,4637
0 24674 3,0725 24,5230 2,5248 12,3263 12,5248 2,3263
C-E 0,1 23190 1,2076 47,9254 2,3933 13,2022 2,3703 2,2114

0,3 2,0120 -1,8431 191,606 2,1471 6,7155 2,0824 3,4967
0,5 1,6830 -3,9885 336,989 1,9238 14,3061 1,8222 8,2724

3.8. Discussion on the results of developing orthogonal properties
based on the WLA technique

3.9. Conclusion of chapter 3

These new numerical algorithms can provide a new and efficient
alternative to engineering calculations in the design of structural systems
with variable cross-sections. However, more comprehensive studies need
to be carried out to find suitable weight functions that can give the best
approximations to larger classes of problems. In particular, the proposed
WLA can be verified for columns with other boundary conditions and is
also extended to the buckling problems of more complex structures such
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as columns, plates and nonlinear shells where using of the analytic form of
the Galerkin method is often limited to first-order approximations.

CHAPTER 4. DEVELOP ORTHOGONALITY APPLIED IN
STABILITY PROBLEM ANALYSIS

4.1. Introduce

This chapter develops orthogonality through dual equivalence linearization
with a weight parameter for nonlinear deterministic dynamic systems. The
problem of replacing the equivalence of a nonlinear function with a linear
function is briefly modified using a dual method consisting of two steps
forward and backward. The additional selection of a weight parameter
connecting the two objective functions is investigated using semi-analytic
analysis. The dual equivalent linearization with the weight parameter was
chosen for frequency analysis of the nonlinear free oscillations, and some
specific case studies were then performed to verify the accuracy and
influence of nonlinearity on the efficiency of the proposed technique.

The content of the chapter focuses on the development of dual equivalent
linearization (DEL) with a weight parameter for nonlinear deterministic
dynamic systems. Furthermore, choosing a weight parameter connecting
two objective functions is the main goal. This chapter is structured as
follows: Section 4.2 presents the formula of the DEL, its basic properties
and the selection of proposed weights using a semi-analytic survey. Section
4.3 covers the application of the dual equivalent linearization procedure
with the selected weight parameter to analyze the frequency of the
nonlinear free oscillations, and some typical cases are then investigated.
The approximate solutions proposed by DEL are compared with the exact
solutions as well as of some other approximation analytical methods to
verify the accuracy and the effect of non-linearity on the effectiveness of
the method. offer. The conclusion of Chapter 4 is given in Section 4.4.

4.2. Dual linearization applied to nonlinear deterministic oscillation
systems

4.2.1. Weighted dual criterion
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4.2.2. Selecting the weight parameter for the predefined dynamic system

1-p"  p"
1—n+ﬁ=1,n,R>0 (4'17)
R iy

1+7r2’R" 1+ r2

0.8%\ " 08F .
n o
0.4

02i ™ 023/,

0k~
0 02 04 ,06 08 1
r

0

Figure 4.1. Graph of their curve p,, and 1 — p,, with 12
For the case n=2 we have

2
pp=1- /—1 :-1'2 (4.22)

The corresponding equivalent linearization coefficient will be
I = T (AB)
ST A= r)VT+ 12 + 13 (B?)

4.3. Applying dual linearization in nonlinear free vibration analysis

(4.23)

4.3.1. Dual Linearization Process
Frequency approx

Wapp = ka (4.30)
4.3.2. Problem 1: Oscillator with fraction order restoring force

Table 4.1. Error of approximate frequencies
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n We ¢ (%) Was (%) Waw (%) wd2 (%) rz
1,0 1,000 1,000 0,00 1,000 000 1,000 0,00 1,000 0,00 1,000
15 0955 0,957 021 0965 1,056 0952 -025 0954 -0,06 0,987
2,0 0915 0921 073 0931 174 0912 -025 0914 -0,11 0,961
25 0879 0892 142 10898 212 0878 -0,09 0878 -0,10 0,930
30 0847 0866 222 0866 222 0849 016 0847 -0,02 0,900
35 0818 0844 309 0835 207 082 046 0819 012 0871
4,0 0,792 0824 399 0806 1,71 0799 080 0,795 030 0,843
45 0769 0806 492 0777 115 0778 1,16 0,773 051 0,818
5,0 0747 0791 586 0750 042 0758 153 0,752 0,75 0,79
55 0727 0776 6,79 0724 -045 0,741 191 0734 101 0,771
6,0 0708 0,763 7,72 0698 -145 0,724 228 0,717 128 0,751
6,5 0691 0751 865 0673 -256 0,709 2,66 0,702 156 0,732
7,0 0675 0,740 956 0650 -3,77 069 3,02 0687 185 0,714
75 0660 0729 1046 0,627 -506 0,682 3,39 0,674 214 0,697
8,0 0646 0,719 11,35 0,604 -643 0670 3,74 0,662 243 0,682
8,5 0633 0710 1222 0583 -7,86 0,659 4,09 0,650 2,72 0,667
9,0 0620 0,702 13,08 0563 -933 0,648 442 0639 301 0,653
9,5 0609 0693 1393 0543 -10,85 0,638 4,76 0,629 3,31 0,640
10,0 0598 0,686 14,76 0523 -1241 0,628 508 0619 359 0,628

4.3.3. Problem 2: Duffing-harmonic oscillator

Table 4.2. Error of approximate frequencies

a we wc (%) wmorem (%)  wav=was (%)  we (%) r?
0,01 0,093 00095 222 00095 222 00093 0,15 0,0093 -0,02 0,900
0,05 0,0423 10,0433 2,21 00433 223 00424 0,16 0,0423 -0,02 0,900
01 00844 0,082 220 00863 224 00845 019 0,0844 -0,02 0,901
05 03874 03942 1,77 03974 258  0,3906 0,83 0,3870 -0,09 0,916
1,0 06368 06436 1,07 06547 281 06470 1,60 0,6357 -0,17 0,943
20 08476 08507 0,36 08660 2,17  0,8615 164 08463 -0,16 0,976
30 09196 09209 0,14 09333 149 09308 121 09186 -0,10 0,988
40 09509 09515 0,07 09608 1,04 09592 0,88 0,9502 -0,07 0,994
50 09670 09673 0,03 09744 0,76 09733 0,66 0,9665 -0,05 0,996
60 09763 09765 0,02 09820 058 09813 051 09760 -0,03 0,997
70 09822 0983 001 0987 045 09861 040 0,9820 -0,02 0,998
80 09861 09862 001 09897 037 09893 0,32 0,980 -0,02 0,999
90 09889 09890 001 09919 030 09915 027 0,988 -0,01 0,999
100 10,9909 0,9910 0,00 09934 025 09931 0,22 0,9908 -0,01 0,999

4.3.4. Problem 3: Finite extensibility nonlinear oscillator



19

Table 4.3. Error of approximate frequencies

a we we (%) Was (%) WIbh (%) wd2 (%) r?
0,100 1,004 1,004 0,00 1,004 0,00 1,004 0,00 1,004 000 1,000
0,200 1,015 1,015 0,00 1,015 0,00 1,015 0,00 1,015 0,00 1,000
0,300 1,036 1,036 0,01 1,036 -0,02 1,036 0,00 1,036 0,00 0,999
0,400 1,067 1,067 004 1,066 -0,06 1,067 0,00 1,067 0,00 0,998
0,500 1,111 1,112 0,10 1,109 -0,18 1,111 0,00 1,111 -0,01 0,995
0,600 1,176 1,179 025 1,170 -0,44 1,175 -0,01 1,175 -0,01 0,988
0,700 1,271 1,278 059 1,257 -1,05 1270 -0,04 1271 0,00 0,972
0,800 1,423 1,443 142 1,387 -256 1420 -0,21 1424 0,06 0,937
0,825 1477 1504 180 1,429 -324 1472 -0,32 1479 0,11 0,923
0,850 1,541 1577 2,32 1477 414 1533 -050 1544 0,17 0,904
0875 1619 1668 303 1533 -536 1606 -0,80 1624 027 0,879
0,900 1,718 1,788 4,06 159 -7,08 1695 -1,31 1725 043 0,846
0,950 2,036 2,209 854 1,759 -1358 1950 -4,18 2061 126 0,725
0,990 2,769 3525 27,30 1,943 -29,83 2305 -16,75 2913 522 0,433
4.3.5. Problem 4: Duffing-type oscillator
Table 4.4. Errors of approximate frequencies, n=1
a ¥ we we (%)  was (%)  waw (%) e (%) r?
01 01 1,000 1,000 000 1,000 000 1,000 000 1,000 0,00 0,9
1 01 1,037 1,037 001 1,037 001 103 -013 1,035 -0,14 09
10 01 2867 2915 170 2915 170 2864 -0,11 2,859 -026 0,9
100 01 26,80 27,400 221 27400 221 26900 0,15 26,800 -002 0,9
sai 56 16n nhét 2,21 2,21 0,15 -0,26
a y e ¢ (%)  was (%)  waw (%) s (%) r?
01 10 1,004 1,004 000 1,004 000 1,004 -001 1,004 -0,02 09
1 1,0 1,318 1,323 039 1323 039 1311 -048 1,311 -0,55 09
10 10 8534 8718 216 8718 216 8544 0,12 8529 -005 0,9
100 1,0 8470 86,60 222 86,600 2,22 84900 0,15 84,700 -0,02 0,9
sai s6 16n nhét 2,22 2,22 -0,48 -0,55
a V4 We ¢ (%) Was (%) Waw (%) Wd2 (%) r2
01 10 1,037 1,037 001 1,037 001 103 -013 1,035 -0,14 09
1 10 2867 2915 170 2915 170 2864 -0,11 2,859 -026 0,9
10 10 26,811 27,404 2,21 27,404 221 26851 015 26,805 -0,02 09
100 10 267,90 27390 2,22 27390 2,22 26830 0,16 26790 -0,02 009
sai 6 16n nhét 2,22 2,22 0,16 -0,26
a }/ e c (%) Mas (%) Waw (%) wd2 (%) I’Z
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100 1318 1323 039 1323 039 1311 -048 1311 -0)55
100 8534 8718 216 8718 216 8544 012 8529 -0,05
100 84,727 86,608 2,22 86,608 2,22 84,859 0,15 84,711 -0,02
100 847,20 866,00 2,22 86600 222 84850 0,16 847,10 -0,02

0.9
0,9
0,9
0,9

sai s6 16n nhét 2,22 2,22 -0,48 -0,55

CONCLUSIONS AND RECOMMENDATIONS
I. Conclustions:

1. In 3.2 of chapter 3, the author has applied the weighted dual linearization
criterion of equivalent linearization to the Euler stability problems. It can
be seen that the proposed technique can give more accurate approximations
than those obtained by the corresponding Galerkin method. The essence of
this method is to determine the equivalence criterion by which to find the
linearization coefficients for a given nonlinear system. The accuracy of the
linearization coefficients can be improved by using a dual method that
combines forward and backward substitution in the weighted duality
criterion. The introduction of the weighted parameter p makes the
weighted dual mean square error criterion more flexible than the
unweighted dual and normal error standard (p = 1/2). This result is
published in paper 2 as a further development of paper 1 for the case of a
column with a fixed end and a hinge end. Through experimental calculation
with 7 test functions, it shows that the weight values calculated by formula
(3.42) all give solutions with corresponding errors smaller than the error of
solutions obtained by Galerkin method. With the problem considered, the
weight value p; is the value to find. This calculation result opens the way
to apply weighted duality criteria to other stability problems.

2. Orthogonality through the mean plays an important role in many fields
of science and engineering especially for the Galerkin method. The
development of orthogonality through different averaging leads to
different approximations. That implies an open question about which
appropriate averaging should be used for a given problem to give the most
accurate solution. In chapter 3, the author has developed orthogonality to
replace the normal averaging (CA) method by weighted local averaging
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(WLA) at a local value r introduced. in this study with a weight function
of r/(™,

4. A first-order single-parameter weighted polynomial class, rite—2er
presented and analyzed in detail. A remarkable feature of these weight
functions is that the corresponding WLA coincides with CA at 3 points,
thatis,r =0,r =0,5andr = 1.

5. The application of the proposed weighted averaging method to the
Galerkin method resulted in a GWLA. The global-local approach is
implemented to solve the problem of choosing a specific weight function
in a class of single-parameter weight functions. The approximations
leading to the SGWLA were performed to improve the computation speed
while maintaining the accuracy of the solutions obtained by the GWLA.

6. To solve the problem of stability with columns with variable cross-
section, the author proposed WLA to apply the method of least squares and
convert columns with variable cross-section into equivalent columns with
constant cross-section. This result opens up a research direction that can be
applied in many practical engineering problems.

7. The application of GWLA and SGWLA to determining the critical load
of columns with different boundary and cross-sectional conditions is
presented in chapter 3. Numerical calculations show that GWLA and
SGWLA offer significant improvements about the approximate critical
load accuracy relative to the results obtained by the GCA for the columns
under consideration.

The results in chapter 3 are published in publication number [1], [2], [5].

8. Developing the orthogonal property through which some basic
properties of dual equivalence linearization are determined, showing the
similarities and differences between one-way and two-way substitution
processes. Accordingly, it also shows that the weights are closely related
to the squared correlation coefficient.
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9. Based on the dual approach, the forward and backward substitution
processes can be considered in two forms: The first form is the one-way
substitution processes, which are represented by two single-objective
optimization problems. The second is the two-way substitution process
represented by the weighted sum of the two single objective functions
mentioned above. In all these substitution processes, the squared
correlation coefficient, which is a measure of the degree of nonlinearity
between the original nonlinear term and the equivalent linear term, occurs
naturally in the expression of the linear coefficient. equivalence calculation
and optimal substitution error.

10. A family of weighting parameters is proposed based on a semi-analytic
analysis of the contribution of the optimal first and second substitution
errors to their sum. Furthermore, a weight described by the equation of an
ellipse is chosen from this family.

11. The dual linearization procedure with the selected weight parameter is
built for a class of nonlinear deterministic oscillators. Applied to some
typical systems, it shows that the selected weight parameter is a suitable
choice to analyze the free oscillation frequency of the considered nonlinear
deterministic systems. Besides, the evaluation of the error level based on
the squared correlation coefficient shows a clear influence of nonlinearity
on the current approximations.

12. It can be seen that the proposed method has a great potential and it
needs to be explored for broader classes of nonlinear deterministic
dynamic systems. In particular, the proposed weight parameter selection
can be extended and further studied for other problems of multi-objective
optimization..

13. The results of developing orthogonal properties through the proposed
dual linearization method give the lowest absolute maximum error among
the approximate frequencies obtained from some other analytical methods
when considering with relatively large degrees of nonlinearity. Its absolute
maximum error is only about 5%, which is acceptable in the preliminary
engineering design.



23
The research results of chapter 4 are published in publication number [6].

I1. Recomendations

1. The results of developing orthogonality and providing a suitable
weighted parameter have opened up the research direction to apply the
weighted dual standard to other stability problems.

2. The results of developing the orthogonality through the proposed WLA
can be verified for columns with other boundary conditions, more complex
variable cross-sections and also extended to the transformation problems
of the columns. more complex structures such as columns, plates, and
nonlinear shells where the use of the analytic form of the Galerkin method
is often limited to first-order approximations.

3. With WLA apply the method of least squares and convert the column
with variable cross-section into the equivalent column with constant cross-
section. This result opens a research direction that can be applied in many
engineering problems in practice.

4. The improved DEL method with the selected weight parameter p, has a
great potential and it needs to be explored for broader classes of nonlinear
deterministic dynamics and can be considered to apply to classes of
problems of forced nonlinear oscillation systems and other oscillating
systems. In particular, the proposed selection of weighting coefficients can
be extended and further studied for other problems of multi-objective
optimization.

NEW CONTRIBUTIONS OF THE THESIS

1. Developing orthogonality in the approximation through weighted dual
linearization combined with the proposal of specific forms of the weighted
parameter p gives better error approximations than the Galerkin method
apply stability problems while developing the weight parameter more
flexible than normal error standard and unweighted duality. (p=1/2)
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2. Developing the orthogonality by constructing a new weighted local
average (WLA) applied to the Galerkin method, Galerkin proposes that the
Galerkin method uses the weighted local average (GWLA) to significantly
improve the accuracy. exactness of the first-order approximation of the
Galerkin method.

3. Presenting the local - global approach to solve the problem of choosing
a single-parameter weight function and proposing the simplified GWLA
method (SGWLA) to reduce the computational weight but still maintain
the accuracy of the solutions received from the GWLA.

4. Combine WLA with least squares to convert columns of variable cross-
section into equivalent columns of constant cross-section, and these new
numerical algorithms can provide a new and efficient alternative to
computation techniques in the design of structural systems with variable
cross-sections.

5. Developing orthogonality through dual linearization and determining the
squared correlation coefficient, which is a measure of the degree of
nonlinearity between the original nonlinear term and the naturally
occurring equivalent linear term in the expression of the equivalent
linearization coefficient and the optimal substitution error.

6. Proposing a family of weighting parameters (in the form of an ellipse
equation) based on a semi-analytic analysis of the contribution of optimal
forward and backward substitution errors to their sum in dynamic system
analysis nonlinear predestination.

7. Building a weighted dual linearization process for a class of nonlinear
deterministic dynamic systems, choosing a suitable weighted parameter
and effectively applying it in the analysis of the free oscillation frequency
of a number typical routing money system.

8. The absolute maximum error of the frequency approximation from the
proposed method compared with other approximations is about 5%, which
is accepted in the preliminary engineering design.
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