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Introduction

1. Rationale

Changes in the earth’s surface occur due to natural disasters, deforestation,
changes due to erosion, urbanization, or natural variability such as weather, cli-
mate, etc. are issues of particular concern today. Timely and accurate forecasting
of changes makes the interaction between nature and humans appropriate, helps
manage and use resources better, and helps orient production and business ac-
tivities more appropriately. [1, 2] .
With the development of remote sensing image systems, remote sensing image

change detection has been attracting widespread attention as one of the most
critical applications in remote sensing. Remote sensing images have several types,
such as Landsat, Sentinel, SPOT, etc. In particular, the Landsat 7 ETM+ image
includes eight channels: indigo, green, red, near-infrared, mid-infrared (short-
wave), thermal infrared, and panchromatic. SPOT 5 image includes five channels:
green, red, near-infrared, mid-infrared (short wave), and panchromatic channel
[3].
A short-term forecast of a series of satellite images (Landsat images) is a fore-

cast that uses a finite number of images (from 6 to 10 images) at a previous time
as the basis for forecasting a finite number of images at the next time with data
including spatial and temporal factors. The spatial-temporal factor is the image
of a specified place at different times. [4, 5].
This thesis is focused on the problem of predicting the next change in a sequence

of satellite images using spatiotemporal data. In essence, this problem involves
predicting the next state of an object or phenomenon by analyzing satellite images
of the same location captured at different times, in order to discern patterns of
change and make accurate predictions [6, 7].
More specifically, the problem of predicting changes in a sequence of satellite

images can be framed as follows: given a set of satellite images captured at
different times T (1), T (2), ..., T (k) of the same spatial area, the aim is to predict
the image of that spatial area at the next time step (k + 1) based on an analysis
of the changes observed in the input sequence.
This thesis adopts a rigorous academic methodology to conduct an in-depth

investigation of this problem.
One of the most popular research directions for this problem can be attributed

to the use of inference systems such as Mamdani [8–14] or the use of adaptive
neuro-fuzzy inference systems [15–19] (ANFIS). ANFIS is a combination of ANN
and a traditional fuzzy inference system through the learning mechanism of ANN
via IF-THEN rules with defined fuzzy functions. This overcomes the limitations
of both methods and has the ability to learn noisy data from this set of IF-THEN
rules, as well as the ability to retain information from the neural network. In
addition to using neural networks [2, 20–23], many researchers are interested in
their ability to maximize data usage, high efficiency, and automatic identification
of important input features. In addition to the traditional fuzzy inference sys-
tem, complex fuzzy inference systems [24–28] have received more attention lately,
with their complex value adding additional information to the fuzzy model to
determine image features more clearly. In addition to model-related factors, rule
systems also play a very important role [29–32]. A good rule system is one that
ensures both the quality and quantity of rules, therefore mechanisms for rule gen-
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eration, rule selection, and appropriate rule reduction are needed [33–35, 35–37].
In addition to rule-related factors and inference systems, high-performing models
today often have very large and diverse parameter sets, so selecting a suitable
training method [37–40] is also critical. Different methods of adjusting rules will
lead to different rule systems, requiring a toolkit to evaluate the effectiveness of
these rule systems.
Based on related publications, most proposed methods for predicting changes

in satellite image sequences involve combining different approaches from deep
learning, supervised and unsupervised learning, and various classification meth-
ods during the sample training, difference detection, etc., to obtain the predicted
results of the next image. However, there are still some limitations as follows:
- Machine learning methods usually yield good results for small data, but these

models often perform poorly for large or incomplete data.
- With deep learning approaches, the models have high accuracy, but they

require a large amount of input data and slow processing time, making them
unsuitable for short-term forecasting problems.
- Due to the characteristics of short-term satellite image sequence forecasting,

which require quick prediction time and contain spatial and temporal elements,
the approach of building a complex fuzzy inference system without time may be
more suitable, as demonstrated in some studies. However, some new inference
methods focus only on the real part and neglect the phase or separate the real and
phase parts of the input values, reducing the significance of the fuzzy inference
system on complex domains.
These practical issues indicate that researching and developing a Spatial com-

plex fuzzy inference system and applying it to short-term satellite image sequence
forecasting is a critical theoretical requirement (such as improving studies on com-
plex fuzzy inference systems without time, determining good parameter sets in
models, optimizing rule methods in inference systems) and applying the proposed
model to practical prediction processes.

2. Research objectives of the thesis

2.1. General objective of the thesis

The general objective of this thesis is to study the development of Spatial Com-
plex fuzzy inference system and its application in short-term prediction of satellite
image sequences. Subsequently, the proposed method will be implemented, com-
pared, and evaluated against other methods using various metrics to demonstrate
its effectiveness.

2.2. Specific Objectives

Based on the existing limitations and drawbacks of publications on fuzzy sets,
fuzzy inference systems and short-term prediction methods for satellite imagery,
as well as the general objective, the thesis focuses on proposing the construction
of a complex fuzzy inference system that is spatial and applying it to short-term
prediction of satellite imagery with the following specific objectives:

• Objective 1 : To propose a Spatial complex fuzzy inference system for short-
term prediction of satellite imagery.

• Objective 2 : To propose a method for simultaneous determination of param-
eters in the spatial complex fuzzy inference system.

• Objective 3 : To propose a method for optimizing rules in the spatial complex
fuzzy inference system.
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• Objective 4 : To propose a model for applying the spatial complex fuzzy
inference system to short-term prediction of satellite imagery.

3. Object and Scope of the Thesis

3.1. Object of Study

The object of study in this thesis is the inference systems based on the complex
fuzzy sets approach, the methods for simultaneously determining the parameters
of complex fuzzy rule systems, and the techniques for enhancing fuzzy rule sys-
tems.

3.2. Scope of Study

Based on the research objectives and content, the scope of this thesis is pro-
posed as follows:

• Theory: Theoretical study on complex fuzzy sets, fuzzy logic inference sys-
tems, methods for simultaneously determining the parameters of fuzzy rule
systems, and techniques for optimizing rules.

• Experiment: The thesis focuses on studying and testing short-term predic-
tion problems of remote sensing image sequences with spatial factors.

• Data: Research conducted on Landsat remote sensing images of the United
States Navy and PRISMA data.

4. Methodology and Research Content

4.1. Research Methodology

The research methodology of this thesis includes both theoretical and experi-
mental methods.

4.2. Research Content

With the aforementioned research objectives, the thesis focuses on investigating
the following main contents:

• Studying satellite image databases and models/methods for short-term pre-
diction of satellite image sequences.

• Reviewing related publications on fuzzy sets, fuzzy reasoning systems, and
their applications in short-term prediction of satellite image sequences. Un-
derstanding the advantages and limitations of each method and proposing an
improved approach.

• Developing and improving the proposed fuzzy reasoning system with spa-
tial reasoning, developing a spatial rule consistency measure and a method
for simultaneous determination of parameters for the spatial fuzzy reasoning
system.

5. Contribution of the Thesis

The main contributions of this thesis are as follows, in accordance with the
formal style of a doctoral dissertation in the field of Information Technology:
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• Proposal of a spatial complex inference system for short-term pre-
diction of satellite image.
The proposed model processes input data to obtain a set of real and phase
components (the difference between pixel values of two consecutive images).

After preprocessing, the input data is clustered using the Fuzzy C-Means
algorithm [41].

Based on the clustering results, complex fuzzy rules are generated in a triangular-
shaped space.
The parameters for the fuzzy inference function are trained using the ADAM
algorithm [42] to find suitable values. The resulting complex fuzzy rules in
the triangular-shaped space are then defuzzified by the parameters obtained
from the training process.
The predicted results of the real and phase components are further trained
using the ADAM algorithm [42] to determine the dependency coefficients for
better image synthesis.

• Proposal of a method for simultaneous determination of parameters
in Spatial complex fuzzy inference systems.
This thesis extends the spatial complex fuzzy-nonlinear-time inference system
for short-term prediction of satellite image sequences introduced in Chapter
2 by adding four sets of parameters to the model.
A method for simultaneously determining these parameters is proposed using
the FWADAM+ algorithm.

• Proposal of a method for optimizing rules in spatial complex fuzzy
inference systems.
The thesis introduces an adaptive spatial complex fuzzy inference model
based on the complex fuzzy inconsistency measure for detecting changes in
Remote Sensing Images (RSI).

The proposed model generates rules directly from newly acquired images in
the test set and compares the resulting complex fuzzy inconsistency measures
with those of the old rule set generated by the Spatial CFIS. The system
decides whether to add, remove, or aggregate rules based on the comparison
results.
Finally, a new rule set is obtained to adjust and adapt to the new image set,
improving both the accuracy and speed of the model.

6. Novelty of the thesis

Compared to the studies on fuzzy reasoning such as Lan et al.’s work on fuzzy
inference systems with uncertain premises ([25]), this thesis contributes to the
development of complex fuzzy inference systems for spatio-temporal reasoning
(Spatial CFIS) and related improvements in simultaneous parameter learning.
In contrast to the classical fuzzy inference systems like Mamdani, Takagi-

Sugeno, and Tsukamoto, which are commonly used in research, the thesis provides
a complex fuzzy inference system capable of processing data with both spatial
and temporal factors, which classical fuzzy inference systems cannot handle.
Moreover, compared to the studies on machine learning and deep learning

models, the proposed solutions in this thesis can handle short-term data with
high accuracy and require small input data.
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7. The layout of thesis

The thesis ”Research and Development of Spatial Complex Fuzzy In-
ference System for Short-term Prediction of Satellite Image” consists
of an introduction, 4 chapters, a conclusion, and a list of references with the
following main contents:

• Introduction
• Chapter 1: Presents the fundamental knowledge for the research topic.

• Chapter 2: Presents the proposal for constructing the spatial complex fuzzy
inference system for short-term prediction of satellite image time series (Spa-
tial CFIS), experimental results, and analysis of the proposed model.

• Chapter 3: Presents the proposed method for determining the parameters
simultaneously in the spatial complex fuzzy inference system for short-term
prediction of satellite image time series, experimental results, and analysis of
the proposed method.

• Chapter 4: Presents the proposed method for optimizing the rules in the
spatial complex fuzzy inference system for short-term prediction of satellite
image time series, experimental results, and analysis of the proposed method.

• Conclusion and Future Work

Chapter 1

OVERVIEW OF RESEARCH AND THEORETICAL BA-

SIC

1.1 Theoretical basic

1.1.1 A fuzzy set

The concept of fuzzy sets was introduced by Lotfi A.Zadel [43] in 1965 with the
aim of describing the concepts of ”unclear sets” in the study of uncertain factors

Definition 1.1. [43] If X is a base set (or a topological space) and its elements
are denoted by x, then a fuzzy set A in X is determined by a pair of values as the
formula (1.1) below.

A = {(x, µA(x))|x ∈ X} (1.1)

Where µA(x) is called the membership function of x in the fuzzy set A, abbreviated
as MF. That is, the membership function is a mapping of each element of X to a
degree of membership in the range [0, 1].

1.1.2 Complex Fuzzy Set

Definition 1.2. Complex Fuzzy Set [44] is characterized by a membership func-
tion µS (x) that lies within the unit circle in the complex plane and has the
form:1.2 as follows:

µS (x) = rS (x) .e
jωS(x), j =

√
−1 (1.2)

Where the amplitude rS (x) and phase ωS (x) are both real-valued with condition
rS (x) ∈ [0, 1].
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According to Ramot [44, 45], complex fuzzy sets are considered an effective
modeling tool for problems, time-varying meaningful objects, or problems with
periodic factors

1.1.3 Fuzzy Inference System (FIS

Fuzzy Inference System (FIS) [46] is a popular computational framework based
on fuzzy theory. It is commonly applied when constructing decision support
models. There are three types of FIS: Mamdani FIS, Sugeno FIS(or Takagi –
Sugeno), and Tsukamoto FIS.

1.1.4 Complex fuzzy logic system (CFLS)

Ramot [45] proposed a complex fuzzy logic system (CFLS) that consists of
three stages: The fuzzification module, The fuzzy inference stage, and The de-
fuzzification process. The three stages of the CFLS are summarized below:
The fuzzification module: the process of converting the crisp inputs into com-

plex fuzzy inputs
The fuzzy inference stage: the process of using CFLs to map the complex fuzzy

inputs into complex fuzzy outputs through the complex fuzzy implication.
The fuzzy inference stage: the process of using CFLs to map the complex fuzzy

inputs into complex fuzzy outputs through the complex fuzzy implication.
In CFLS, Ramot et al. did not outline any specific method of defuzzification

to reduce the complex fuzzy outputs into crisp outputs.

1.1.5 Mamdani Complex Fuzzy Inference System (M-CFIS)[47]

The general structure of Mamdani CFIS consists of six following steps:
Step 1: Create a set of complex fuzzy rule
Step 2: Fuzzify of the inputs
Step 3: Find the rule’s firing strength
Step 4: Define the consequence of the complex fuzzy rules
Step 5: Aggregation
Step 6: Defuzzification

1.1.6 Some basic operations of CFS

Complement of a Complex Fuzzy Set
Let A be a complex fuzzy sets, and let: µA(x) = rA(x)e

jωA(x).

Definition 1.3 ([44]). The complement of A (denoted as A) and is specified by
the function:

A = {(x, µA(x))|x ∈ U} =
{
(x, rA(x)e

jωA(x))|x ∈ U
}

(1.3)

Where rA(x) = 1− rA(x) ωA(x) = 2π − ωA(x).

In [44], Complement of a Complex Fuzzy Set has some forms as follows:

A = (1− rA (x)) .ej(−ωA(x)) (1.4)

A = (1− rA (x)) .ej(ωA(x)) (1.5)

A = (1− rA (x)) .ej(ωA(x)+π) (1.6)

Union and intersection of two Complex Fuzzy Sets
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Consider two CFSs, A and B , in a universe of discourse X with membership
degrees of µA(x) = rA(x)e

jωA(x) and µB(x) = rB(x)e
jωB(x), , respectively. The

operations of these two CFSs are defined as follows:

Definition 1.4 ([44]). The union of A and B (denoted as A ∪B) :

A ∪B = {(x, µA∪B(x))|x ∈ U}

=
{
(x, rA∪B(x)e

jωA∪B(x))|x ∈ U
}

=
{
(x, [rA(x)⊕ rB(x)] e

jωA∪B(x))|x ∈ U
} (1.7)

where ⊕ is t-conorm, example rA∪B(x) = max {rA(x), rB(x)}.
Definition 1.5 ([44]). Intersection of two Complex Fuzzy Sets, A andB (denoted
as A ∩B ):

A ∩B = {(x, µA∩B(x))|x ∈ U}

=
{
(x, rA∩B(x)e

jωA∩B(x))|x ∈ U
}

=
{
(x, [rA(x)⊗ rB(x)] e

jωA∩B(x))|x ∈ U
} (1.8)

Where rA∩B(x) = min {rA(x), rB(x)} and ωA∩B(x) = min (ωA(x), ωB(x)). Where
⊗ is t-norm, for example, Min-operator.

1.1.7 Complex Fuzzy Measures

Definition 1.6. A distance of complex fuzzy sets [48] is ρ : (F ∗ (U)× F ∗ (U)) →
[0, 1] for any A, B and C ∈ F ∗ (U) if satisfies:

1. ρ (A,B) ≥ 0, ρ (A,B) = 0 if and only if A = B

2. ρ (A,B) = ρ (B,A)

3. ρ (A,B) ≤ ρ (A,C) + ρ (C,B)

where F ∗ (U) lis the set of all complex fuzzy sets in U
1.1.7.1. Complex Fuzzy Cosine Similarity Measure (CFCSM) [49]

Definition 1.7. Assume that there are two complex fuzzy sets, namely S1 =
rS1

(x) ejωS1
(x) and S2 = rS2

(x) ejωS2
(x), x ∈ X.

A Complex Fuzzy Cosine Similarity Measure (CFCSM) between S1 and S2 is:

CCFS =
1

n

n∑
k=1

a1a2 + b1b2√
(a1)

2 + (b1)
2.
√
(a2)

2 + (b2)
2

(1.9)

Where a1 = Re
(
rS1

(x) ejωS1
(x)
)
; b1 = Im

(
rS1

(x) ejωS1
(x)
)
; a2 = Re

(
rS2

(x) ejωS2
(x)
)
;

b2 = Im
(
rS2

(x) ejωS2
(x)
)

1.1.7.2. Complex Fuzzy Dice Similarity Measure (CFDSM) [49]

Definition 1.8. Assume that there are two complex fuzzys ets, namelyS1 =
rS1

(x) ejωS1
(x) and S2 = rS2

(x) ejωS2
(x), x ∈ X. A Complex Fuzzy Dice Simi-

larity Measure (CFCSM) between S1 and S2 is:
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DCFS =
1

n

n∑
k=1

2
√
a1b1a2b2

a1b1 + a2b2
(1.10)

Where a1 = Re
(
rS1

(x) ejωS1
(x)
)
; b1 = Im

(
rS1

(x) ejωS1
(x)
)
; a2 = Re

(
rS2

(x) ejωS2
(x)
)
;

b2 = Im
(
rS2

(x) ejωS2
(x)
)

1.1.7.3. Complex Fuzzy Jaccard Similarity Measure (CFJSM) [49]

Definition 1.9. Assume that there are two complex fuzzy sets, namely S1 =
rS1

(x) ejωS1
(x) and S2 = rS2

(x) ejωS2
(x), x ∈ X.

A Complex Fuzzy Jaccard Similarity Measure (CFJSM) between S1 and S2 is:

JCFS =
1

n

n∑
k=1

√
a1b1a2b2

(a1b1 + a2b2)−
(√

a1b1.
√
a2b2

) (1.11)

Where a1 = Re
(
rS1

(x) ejωS1
(x)
)
; b1 = Im

(
rS1

(x) ejωS1
(x)
)
; a2 = Re

(
rS2

(x) ejωS2
(x)
)
;

b2 = Im
(
rS2

(x) ejωS2
(x)
)

1.1.8 Remote Sensing

Remote sensing is a scientific field that collects information about the Earth’s
surface without actually making physical contact with it. This is achieved by
recording reflected or emitted energy and then processing, analyzing, and apply-
ing that information [50].
Remote sensing imagery has various characteristics, including spectral bands,

spatial resolution, spectral resolution, radiometric resolution, and temporal reso-
lution. There are many types of remote sensing images/satellites available, such
as Landsat, SPOT, MOS, IRS, IKONOS, WORLD VIEW – 2, COSMOS [50],
and so on.
With outstanding advantages compared to traditional methods, remote sens-

ing technology has been widely used and has brought tremendous benefits in
agriculture, forestry, natural resource management, environmental monitoring,
etc.

1.2 Data, environment, and measure Used in the experiment

The first dataset is a series of consecutive satellite images extracted from the
US Navy’s weather image database [51].
The second dataset is from the PRISMA project [52] of the Italian Space

Agency.
To evaluate the effectiveness of proposed methods, the thesis uses two metrics:

R Squared (R2) [53] and Root Mean Squared Error (RMSE) [54], and then uses
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two-way ANOVA to analyze the results.

Chapter 2

SPATIAL COMPLEX FUZZY INFERENCE SYSTEM

2.1 Introduction

In this chapter, the thesis focuses on presenting the new contribution of the
proposed Spatial Complex Fuzzy Inference System applied in the short-
term prediction of the satellite image.
The main idea of this proposal is that from the input image sequences, first,

we processed to obtain the input dataset consisting of real and phase parts (the
difference between pixels of two consecutive images). These matrices are then
processed by the FCM algorithm [41] to be divided into appropriate clusters.
From the clustering results, spatial complex fuzzy inference rules will be generated
in time. The parameters for the fuzzy solver in this method are trained by the
Adam algorithm [42] to find appropriate parameters.

2.2 Proposed Model

Figure 2.1: Proposed Model Spatial CFIS

2.3 Algorithm details

1. Step 1: Data pre-processing
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(a) Step 1.1. Convert color images from satellite images (RGB
color image) to gray images
The obtained remote sensing color image is grayed [55] out according to
formula (2.1) for calculation

Y = 0.2126R + 0.7152G+ 0.0722B (2.1)

(b) Step 1.2. Determine the difference matrix
Each value in the difference matrix is computed by using equation (2.2)
based on the difference HoDk(i), i = 1, .., N between the corresponding
regions of the remote sensing image X(t) at time t, where k = 1, 2, ..., d.

HoDk(i) = X(t) − X(t−1) (2.2)

The difference set {HoD1(i), HoD2(i), HoD3(i), ..., HoDd(i)} of the time
series input at time t is determined by equation (2.2).

2. Step 2: Clustering the input data using Fuzzy C-means at the same
time in both the real part and the imaginary part

The data dependency of Xk(X
(t), HoD(t)) on cluster j is denoted by Ukj and

incorporated into the objective function using the formula 2.3

J =
∑N

k=1

∑C

j=1
Um
kj∥Xk − Vj∥2 → min (2.3)

3. Step 3: Generating rules according to the spatial fuzzy triangle

Triangular fuzzy rules created on clusters {P1, P2, P3, ..., Pc} in which the jth

rule corresponding to Pj represented as follows:

Rule j: if x1 = A1j and x2 = A2j and . . . and xk = Adj then y = Bj The
values of (a, b, c, a′, b′, c′) computed by following formulas

bkj = Vj (2.4)

akj =

∑
i=1,2, ...n and I

(k)
i ≤ bkj

Ui,j × I
(k)
i∑

i=1,2, ...n and I
(k)
i ≤ bkj

Ui,j
(2.5)

ckj =

∑
i=1,2, ...n and I

(k)
i ≥ bkj

Ui,j × I
(k)
i∑

i=1,2, ...n and I
(k)
i ≥ bkj

Ui,j
(2.6)

b′kj = Vj (2.7)

a′kj =

∑
i=1,2, ...n and HoD

(k)
i ≤ bkj

Ui,j × HoD
(k)
i∑

i=1,2, ...n and HoD
(k)
i ≤ bkj

Ui,j
(2.8)
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c′kj =

∑
i=1,2, ...n and HoD

(k)
i ≥ bkj

Ui,j × HoD
(k)
i∑

i=1,2, ...n and HoD
(k)
i ≥ bkj

Ui,j
(2.9)

where I
(k)
i , HoD

(k)
i is the real and imaginary path value kth input of the

training Xi.

Based on the equations (2.4) – (2.9), the triangles of the fuzzy rules are built
from which to determine the Spatial Complex Fuzzy System Rules (Spatial
CFIS).

4. Step 4: Output interpolating

(a) Step 4.1. Move pixels to the area of the complex fuzzy rule of
the triangle.
Move pixels to the complex fuzzy space of the law of the triangle by
determining a α coefficient so that after dividing the value of the point
outside the triangle fuzzy space by α we obtain all the points in the
solution region.

(b) Step 4.2. Interpolate values
Interpolate value O∗

i = (O∗
i.Re l, O

∗
i. Im g) according to the following formula

O∗
i.Re l =

q∑
j=1

min1≤k≤dUA
kj
(X

(k)
i ) × DEF (Xi)

q∑
j=1

min1≤k≤dUA
kj
(X

(k)
i )

(2.10)

O∗
i. Im g =

q∑
j=1

min1≤k≤dUA
kj
(X

(k)
i ) × DEF (HoDi)

q∑
j=1

min1≤k≤dUA
kj
(X

(k)
i )

(2.11)

5. Step 5: Train the weights of the defuzzification
Defuzzification values are calculated below

DEF (Xi) =
h1a+ h2b+ h3c

3∑
i=1

hi

(2.12)

DEF (HODi) =
h′

1a
′ + h′

2b
′ + h′

3c
′

3∑
i=1

h′
i

(2.13)

To get a good prediction, it is necessary to determine appropriate defuzzified
weights (h1, h2, h3, h

′
1, h

′
2, h

′
3). Using the ADAM algorithm [42], the optimal

defuzzified parameters are determined and the mean of variance (RMSE) is
the objective function.

RMSE =

√√√√ n∑
i=1

(
X

(t)
i − X̂

(t)
i

)2
(2.14)
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where X̂
(t)
i is the predicted value determined by the formula (2.10, 2.11).

6. Step 6. Predict the output image
The output pixel value of the real part forecast image is taken directly from
the result O∗

i.Re l (calculated in Step 4.2), and the phase is calculated based

on the conversion ratio of the phase O∗
i. Im g (2.15), where Xi

(t−1) is the actual
value at the time t− 1:

O∗′
i. Img = Xi

(t−1) ∗ (1 +O∗
i. Img) (2.15)

Finally, the next forecast image results O∗
i can be calculated based on the

combined results of the pixel real and imaginary part according to the formula
(2.16) follow:

O∗
i = γ ×O∗

i.Re l + (1− γ)×O∗′
i. Img (2.16)

2.4 Experimental Results

The figure below showcases the outcomes of the RMSE analysis conducted
on Spatial CFIS using the dataset of the United States Navy. The images un-
der examination have dimensions of 100x100 and 500x500 pixels. The graphical
representation of the RMSE analysis is of utmost importance in evaluating the
efficiency of the implemented system. Through this analysis, the deviation be-
tween the predicted values and the actual values can be assessed, thus providing
a measure of the system’s precision.

The figure below illustrates the results of R2 analysis on Spatial CFIS with
respect to the dataset of the United States Navy. The images in consideration
possess dimensions of both 100x100 and 500x500 pixels. The visualization of
said analysis serves as a fundamental aspect of evaluating the effectiveness of the
implemented system. Through this analysis, the degree of correlation between
predicted and actual values can be assessed, thus providing a measure of the
system’s accuracy.
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The figure below displays the outcomes of the RMSE and R2 analyses carried
out on Spatial CFIS using the Prisma dataset. The graphical representation
of said analyses serves as a crucial aspect in evaluating the effectiveness of the
implemented system. By utilizing both RMSE and R2 analyses, the accuracy
and precision of the system can be comprehensively assessed. Therefore, the
graphical representation of the results of these analyses is crucial in evaluating
the performance of the system in a real-world scenario.

Chapter 3

THEMETHOD FOR CONCURRENT PARAMETER IDEN-

TIFICATION IN SPATIAL COMPLEX FUZZY INFER-

ENCE SYSTEMS

3.1 Introduction

In this paper, a new method is proposed to determine the inference process
parameters of boundary point, rule coefficient, defuzzification coefficient, and
dependency coefficient and present a new FWADAM+ method to train that set of
parameters simultaneously. The initial data is clustered simultaneously according
to each data group. This result will be the basis for determining a suitable set of
parameters using the FWADAM+ concurrent training algorithm.
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3.2 Proposed Model Co-Spatial CFIS+

Figure 3.1: The implementation process

3.3 Details of the proposed algorithm

• Step 1: Input data preprocessing
- The satellite images are converted from color images to gray images.
- Reduce image size by representative pixels; the original input image is
divided into small images of size c × c, with each image will find the repre-
sentative image according to the (3.1) following formula:

I m̄ =
c2∑
i=1

κiImi (3.1)

where κi and Imi are calculated using the formula (3.2)
κi =

1
∥Imtb−Imi∥×di

κi tha mãn
c2∑
i=1

κij = 1

Imtb =

c2∑
i=1

Imi

c2

(3.2)

- Then, the difference matrix (imaginary part) is determined by directly sub-
tracting the difference between the respective regions of the representative
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image of the corresponding remote sensing image using the formula (3.3).

HOD = Im
(t)
tb − Im

(t−1)
tb (3.3)

Get the input method is: X(Imt
tb, HoD)

- Finally, the input data is divided into the number of samples according to
the following (3.4) formula:

M =
N − Z

Z (1− dr)
+ 1 (3.4)

• Step 2: Data clustering

After preprocessing data, we apply Fuzzy C-means [41] to cluster the
input data, simultaneously the real and the imaginary part of each image in
each data sample. The result of the clustering process is the set of degree
matrix U and the cluster center vector V of each corresponding image.

• Step 3: Generate and aggregate Spatial CFIS+ rules from cluster-
ing results

At first, we determine the boundary point value a, b, c, a′, b′, c′ of input dataX t

boundary point parameters αj of each rule. We use the center Vj represented
to b and b′ , where:

bij = αb
j × V rel

j (3.5)

b′ij = αb
j

′ × V img
j (3.6)

aij = αa
j ×


∑

i=1,2, ...n and X
(k)
i ≤ bij

Ui,j ×X
(k)
i∑

i=1,2, ...n and X
(k)
i ≤ bij

Ui,j

 (3.7)

a′ij = αa′

j ×


∑

i=1,2, ...n and HOD
(k)
i ≤ bij

Ui,j × HOD
(k)
i∑

i=1,2, ...n and HOD
(k)
i ≤ bij

Ui,j

 (3.8)

cij = αc
j ×


∑

i=1,2, ...n and X
(k)
i ≥ bij

Ui,j × X
(k)
i∑

i=1,2, ...n and X
(k)
i ≥ bij

Ui,j

 (3.9)

c′ij = αc′

j ×


∑

i=1,2, ...n and HOD
(k)
i ≥ bij

Ui,j × HOD
(k)
i∑

i=1,2, ...n and HOD
(k)
i ≥ bij

Ui,j

 (3.10)

• Step 4: Calculate inference value and predict the next image

Determine rule coefficient βi by the (3.11) following formula:

Wi =
βi1 × wi1 + βi2 × wi2 + ...+ βiR × wiR + βiR+1

βi1 + βi2 + ...+ βiR+1
(3.11)



16

Then, we calculate the defuzzification coefficient h1j, h2j, h3j, h′
ij, h′

2j, h′
3j

by formula (3.12-3.13):

DEFj(X
(t)) =

h1ja+ h2jb+ h3jc

h1j + h2j + h3j
(3.12)

DEFj(HOD(t)) =
h′

1ja
′ + h′

2jb
′ + h′

3jc
′

h′
1j + h′

2j + h′
3j

(3.13)

The dependence coefficient γ ∈ [0, 1] is determined to control real and imag-
inary parts of the prediction result as follows:

O∗
i = γ ×O∗

i.Re l + (1− γ)×O∗′
i. Im g (3.14)

(*) Prediction result of the next image O∗
i.Rel belong to real part calculated

(3.15) below fomula.

O∗
i.Re l =

R∑
j=1

Wi(X
(k)
i ) × DEFj(X

(t))

R
(3.15)

(**) Prediction result of the next image belonging to the imaginary part
O∗′

i.Img calculated by the (3.16) formula:

O∗′
i. Im g = Xi

(t) × (1 +O∗
i. Im g) (3.16)

O∗
i. Im g =

R∑
j=1

Wi(X
(k)
i ) × DEFj(HOD(t))

R
(3.17)

The next predicted image Xdb is the result from the inference of all of the
pixels from center image O∗.

Xdb
i = abs

(
1

κi × di
−O∗

⌈ i
c2⌉

)
(3.18)

• Step 5: Simultaneous training of the parameters in the model (Co-
Learning)

From this set of parameters αj, βi, hi, and γ, we also propose a new method
for training simultaneously a set of parameters above by the FWADAM+ op-
timization method so that the objective function (3.1) reaches the minimum
value:
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Table 3.1: FWADAM+ Algorithm

3.4 Experimental results of the proposed model

The average results of RMSE and R2 when applying SeriesNet, DSFA, PFC-
PFR, and the proposed method are presented as follows:
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The results show that the proposed method outperforms the other three meth-

ods. Specifically, the runtime of the proposed method is equivalent to about

90.6%, 93.4%, and 38.1% of the runtime of SeriesNet, DSFA, and PFC-PFR

methods, respectively.

Chapter 4

THE OPTIMALMETHOD FOR COMPLEX RULE-BASED

FUZZY INFERENCE SYSTEMS

4.1 Introduction

In Chapter 2 and Chapter 3, the thesis proposed a model of Spatial Complex
fuzzy inference systems (Spatial CFIS) and a method for concurrent parameter
identification in Spatial Complex fuzzy inference systems (Co-Spatial CFIS+).
The proposed model is built based on rule generation and training at time t,
followed by forecasting future images (t+ 1, t+ 2, ...).
However, in practical applications, forecasting future images t+1, t+2, ... will

introduce errors that accumulate over time, making the model less effective.
To reduce the accumulation of errors in the forecasting process, the thesis pro-

poses an adaptive Spatial Complex fuzzy inference system using fuzzy measures
called Spatial CFIS++. The main features of this approach include:
- Introducing an adaptive Spatial Complex fuzzy inference systems model based

on fuzzy measures to detect changes in remote sensing image (RSI) sequences.
This model takes into account the spatial and temporal characteristics of RSI
images using CFS theory.
- Proposing a method to directly generate rules from new images obtained in

the test set.
- Introducing fuzzy measures for comparing two rule sets to determine which

rules should be added, removed, or combined based on the comparison results.
Finally, a new rule set is obtained to adjust and adapt to the new image set,
improving both the accuracy and time efficiency of the model.
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4.2 Proposed Model Spatial CFIS++

Figure 4.1: The implementation process

4.3 Details of the proposed algorithm

• Step 1. Preprocessing input data

• Step 1.1 Convert color images into gray images

• Step 1.2 Determine the imaginary part (HOD)

The phase part is specified by the different points between the first image
in the forecast set (the picture has just been obtained) and the last image
in the previously trained. The phase value is obtained using the following
formula (4.1).

HoDi = (Ii − I(i−1)) (4.1)

• Step 1.3 Transform the amplitude and phase part of the grayscale
image into the form [0,1]

• Step 2. Fuzzification
To perform the fuzzification of both the real and imaginary parts of the input
image, we make use of the Gaussian fuzzification function, as described by
Kreinovich [56]. Formula (4.2) is employed to achieve this purpose.

µgaussian (x;m,σ) = e−
1
2(

x−m
σ )

2

(4.2)

• Step 3. Determine the rule space
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Definition 4.1. The rule space [57] is the space that is calculated by the
formula (4.3) as follows:

Ω = {(x, y, z) |xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax, zmin ≤ z ≤ zmax} (4.3)

• Step 4. Rule generation

Step 4.1 Define regions (groups of pixels)

In the case of RSI with a vast number of pixels, processing each pixel will
consume a lot of computational time and system resources. Therefore, reduc-
ing the data dimension to minimize computation time and system resources
is necessary. This study suggests using a histogram [58] to group pixels, then
divide pixels into specific regions.

Step 4.2 Determine the boundary parameters of a rule (a, b, c, a′, b′, c′)

Because of using complex fuzzy rulebase of Co-Spatial CFIS+, this step
needs to determine the rule parameters such as (a, b, c, a′, b′, c′):

Step 4.2.1. Determine value (b, b′)

The values b and b′’ have been established via the Ternary search algorithm
[59].

Step 4.2.2. Determine the value (a, a′, c, c′)

The values (a, a′, c, c′) are the boundary parameters and calculate by the
following formulas (4.4-4.7) [? ]:

aj =

∑
i=1,2, ...,|NPj | and X

(k)
ij ≤ bij

Ui,j ×X
(k)
i,j∑

i=1,2, ...,|NPj | and X
(k)
ij ≤ bij

Ui,j
(4.4)

a′j =

∑
i=1,2, ...,|NPj | and HOD

(k)
ij ≤ bij

Ui,j ×HOD
(k)
i,j∑

i=1,2, ...,|NPj | and HOD
(k)
ij ≤ bij

Ui,j
(4.5)

cj =

∑
i=1,2, ...,|NPj | and X

(k)
ij ≥bij

Ui,j ×X
(k)
i,j∑

i=1,2, ...,|NPj | and X
(k)
ij ≥ bij

Ui,j
(4.6)

c′j =

∑
i=1,2, ...,|NPj | and HOD

(k)
ij ≥ bij

Ui,j ×HOD
(k)
i,j∑

i=1,2, ...,|NPj | and HOD
(k)
ij ≥ bij

Ui,j
(4.7)

• Step 5: Rule review
Let D be the solution coverage region, V be the domain of the rule space,
and D is bounded by:

V =

∫∫∫
D
dV (4.8)
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⇔ V =

∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)
dzdydx =

∫ b

a

∫ g2(x)

g1(x)

(∫ f2(x,y)

f1(x,y)
dz

)
dydx. (4.9)

Steps 5.1: Determine the intersection between two rule space do-
mains p, q

The rule space domain of two rules p, q is specified by the formula (4.10
- 4.11) as follows:

Vp =

∫ bp

ap

∫ gp2(x)

gp2(x)

(∫ fp
2 (x,y)

fp
2 (x,y)

dz

)
dydx (4.10)

Vq =

∫ bq

aq

∫ gq2(x)

gq2(x)

(∫ fq
2 (x,y)

fq
2 (x,y)

dz

)
dydx (4.11)

The author determines the measure of two complex fuzzy rules in the
triangular space as the intersection space part between the two rules p, q due
to formula (4.12) below:

Vpq = Vp ∩ Vq (4.12)

To determine the value Vpq of the intersection domain between two rules,
the solution space Ω divided into square blocks according to formula (4.13)
as follows:

Ωijk = [xi−1, xi]× [yj−1, yj]× [zk−1, zk] (4.13)

After being divided into square blocks of size θ as shown above, the solution
domain Ω needs to satisfy the following expression (4.14):{

Vactual = Sbase area × h∣∣∣1− Vactual

Vθ

∣∣∣ ≤ ε
(4.14)

Steps 5.1.1: Determine the relative position of the square block with the
rule space
Consider the first side of the rule space V

Suppose points’ coordinates A (xA, yA, zA), B (xB, yB, zB), C (xC , yC , zC)
are on the first side of the rule space. The equation of the first side is
determined by equation (4.15)

Nax+Nby +Ncz + d = 0 (4.15)

The coefficients (Na, Nb, Nc) satisfy the following set of equations (4.16):

N⃗ ·Gijk = Na × xi +Nb × yj +Nc × zk (4.16)

Repeat with all the remaining sides of the solution space domain V and
determine the point’s relative position Gijk with the rule space V as formula
(4.17). After that, we can specify the square block v in the rule space V.{

If N⃗ ·Gijk < 0, Gijk /∈ V
elsewise, Gijk ∈ V

(4.17)

Steps 5.1.2: Determine the intersection of two rule spaces
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The intersection of two rule spaces (denote Vpq) is the set of square blocks
Ωijk in the rule spaces p and q. Therefore, Vpq is determined by the following
formula:

Vpq =
∑

VΩikj
(4.18)

VΩijk
= |xi−1, xi| × |yj−1, yj| × |zk−1, zk| (4.19)

Steps 5.2. Optimizing rule
At this step, we process to optimize the rule, including combining rules,

removing rules, or adding rules to obtain a better rule system as follows:

- If
Vpq

Vp
≥ εv and

Vpq

Vq
≥ εv and

ap
ap
+

cp
cp
+

a′p
a′p

+
c′p
c′p

< εR then combining the rules:

anew =
ap + aq

2
; bnew =

bp + bq
2

; bnew =
cp + cq

2

a′new =
a′p + a′q

2
; b′new =

b′p + b′q
2

; b′new =
c′p + c′q

2

- If
Vpq

Vq
≥ εv and

Vpq

Vp
< εv and

ap
ap
+

cp
cp
< εR or

a′p
a′p

+
c′p
c′p

< εR Then remove the

rule q.

- If
Vpq

Vq
< εv and

Vpq

Vp
≥ εv and

ap
ap
+

cp
cp
< εR or

a′p
a′p

+
c′p
c′p

< εR Then remove the

rule p.

- If
Vpq

Vq
< εv and

Vpq

Vp
< εv Then use both rules p and q.

After evaluating all pairs of rules, we obtain the rule base generated from the
new image R′.

• Step 6: Synthesize the old rulebase R and new rulebase R′

In this step, we will compare each rule of the new rulebase with the rules
of the old rulebase using the intersection of the rulebase in step 5.

4.3.1 Experimental results of the proposed model

Based on the average RMSE results of the methods on three datasets, the
RMSE value of the proposed method is equivalent to that of the Co-Spatial
CFIS+ method (the average total RMSE value of the proposed method is about
1% higher than that of Co-Spatial CFIS+), but it performs better than the
seriesNet, DSFA, and PFC-PFR methods. These results are visually presented
below.

The computation time and the total number of processed rules of the proposed
method and the SeriesNet, DSFA, PFC-PFR, and Co-Spatial CFIS+ methods on
all 3 datasets
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From the results, we have the total processing time of the proposed method is
lower than that of Co-Spatial CFIS+ (34%), SeriesNet (40%), DSFA (38%) and
notably lower than that of PFC-PFR (60%).

CONCLUSION

The main key contributions

With the research focus on developing a complex fuzzy inference system with-
out time applied to the short-term prediction of satellite image sequences, the
thesis has the following main contributions:

• Firstly, the thesis proposed a spatial complex fuzzy inference system without
time (Spatial CFIS) to detect changes in satellite images.
- The proposed method generates complex fuzzy rules using fuzzy clustering
(FCM) and predicts images through complex fuzzy rules in a triangular space.
- To improve the effectiveness of the method, Spatial CFIS uses the ADAM
algorithm to optimize the weights of the fuzzy coefficient and the dependence
coefficient between the real part and the imaginary part.

• Secondly, the thesis proposed a method to simultaneously determine the
parameters for the spatial complex fuzzy inference system without time (Co-
Spatial CFIS+), including:
- Proposed an improved complex fuzzy rules without time by adding param-
eters for the rule system for each rule.
- Proposed a method for simultaneously training FWADAM+ to find better
parameters to serve the image prediction process.

• Thirdly, the thesis proposed an adaptive spatial complex fuzzy inference
system based on complex fuzzy measures called Spatial CFIS++ with the
following features:
- Introduce a complex fuzzy inference model without time based on complex
fuzzy measures to detect changes in Remote Sensing Image (RSI) sequences.
This model relates to the spatial and temporal characteristics of RSI images
through the theory of CFS.
- Propose a method for generating rules directly from newly obtained images
in the test set.
- Propose complex fuzzy measures for comparing two rule systems: the old
rule system generated based on Spatial CFIS and the new rule system gen-
erated directly from the image. The system will decide to add, subtract
or aggregate rules based on the comparison results. Finally, a new rule set
is obtained to adjust and adapt to the new image set, improving both the
accuracy and time of the model.
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Some limitations

Along with the research results achieved, the dissertation still has some limi-
tations such as:
The complex fuzzy clustering algorithm is an iterative algorithm that requires

a lot of computational time. Some input values are initialized randomly, so the
number of algorithm iterations depends on the quality of the initial data.
Clustering using groups of pixels can reduce processing time, but still uses the

FCM algorithm for clustering, so the speed has not been significantly improved.
The determination of the intersection domain of the rule system still has a lot

of errors, which will directly affect the model’s results.
The mechanism of dividing groups of pixels is still simple, leading to the oc-

currence of fragmented, discrete pixel groups.
The MapReduce method and distributed processing in the proposed model are

only used at the clustering step to replace the FCM algorithm, so the processing
speed of the model has not been significantly improved.
The rule reduction and optimization mechanism in the model is still quite

simple, so there is still room for improvement in the rules.
Future works

In the future, the next development direction of the thesis can be carried out
according to the following research directions:

– Improve the algorithm to increase computational efficiency and reduce mem-
ory resource utilization.

– Improve the model by further reducing processing time while ensuring the
stability and accuracy of the model;

– Continue to research and propose learning algorithms such as transfer learn-
ing, collaborative learning, etc., in the process of training parameter sets, and
further reduce the Spatial CFIS rule system to optimize the rule system.

– Test the proposed models in the dissertation with more complex datasets in
various fields of life such as healthcare, economics, geography, etc.

– Apply, deploy, and integrate the proposed research into real-world systems
such as weather forecasting, natural disasters, hurricane forecasting, etc.
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