

MINISTRY OF EDUCATION

AND TRAINING

VIETNAM ACADEMY

OF SCIENCE AND TECHNOLOGY

GRADUATE UNIVERSITY SCIENCE AND TECHNOLOGY

NGUYEN THI UYEN

RESEARCH ON VARIANTS OF STABLE MARRIAGE

PROBLEM BASED HEURISTIC APPROACH

Major: Computer Science

 Major code: 9 48 01 01

SUMMARY OF COMPUTER DOCTORAL THESIS

Ha Noi - 2023

The thesis has been completed at: Graduate University of

Science and Technology- Vietnam Academy of Science and

Technology

 Supervisor 1: Prof Hoang Huu Viet

 Supervisor 2: Prof Nguyen Long Giang

Reviewer 1:

Reviewer 2:

Reviewer 3:

The thesis shall be defended in front of the Thesis Committee at

Vietnam Academy Of Science And Technology - Graduate University

Of Science And Technology, at ..… hour……, date… month…year

2023.

The thesis can be found at:

 - The Library of Graduate University of Science and Technology

 - The National Library of Vietnam

Ha Noi - 2023

LIST OF PUBLICATIONS

1. Publications used in the Thesis

[A.1]Hoang Huu Viet, Nguyen Thi Uyen, SeungGwan Lee,TaeChoong Chung, and Le

Hong Trang, “A Max-Conflicts based Heuristic Search for the Stable Marriage

Problem with Ties and Incomplete Lists”, Journal of Heuristics (SCIE - Q2), vol.

27, no.3, pp. 439–458, 2021.

[A.2]Hoang Huu Viet, Nguyen Thi Uyen, Cao Thanh Sơn, and TaeChoong Chung: A

Heuristic Repair Algorithm for the Maximum Stable Mar- riage Problem with

Ties and Incomplete Lists, in Proceedings of the 34th Australasian Joint

Conference on Artificial Intelligence 2022 (AI 2022), Sydney, Australia, Feb.2-

4, 2022, pp.494-506, Lecture Notes in Artificial Intelligence 13151 (SCOPUS),

Springer, ISBN 978-3-030- 97545-6.

[A.3] Nguyen Thi Uyen, Nguyen Long Giang, Nguyen Truong Thang, and Hoang Huu

Viet: A min-conflicts algorithm for maximum stable match- ings of the

hospitals/residents problem with ties, in Proceedings of the 14th International

Conference on Computing and Communication Technologies (RIVF 2020),

RMIT, Ho Chi Minh, Apr.6-7, 2020, pp.1- 6, Lecture Notes in Computer Science

(SCOPUS), Springer, ISBN 978-1-7281-5377-3.

[A.4] Nguyen Thi Uyen, Nguyen Long Giang, Tran Xuan Sang and Hoang Huu Viet

“An efficient heuristics algorithm for solving the Student- Project Allocation with

Preferences over Projects”, 24th Hội thảo Quốc gia (VNICT 2021), Thai Nguyen,

Việt Nam, Dec. 13-14, pp. 1-6, 2021.

[A.5] Nguyen Thi Uyen, Giang L. Nguyen, Canh V. Pham, Tran Xuan Sang and Hoang

Huu Viet: “A Heuristic Algorithm for the Student-Project Allocation Problem

with Lecturer Preferences over Students with Ties, in Proceedings of the 11th
International Conference on Computational Data and Social Networks (CSoNET

2022), Tampa, Florida, USA, Dec. 5-7, 2022, in Press, Lecture Notes in

Computer Science (SCOPUS), Springer.

[B.1] Nguyen Thi Uyen, Giang L. Nguyen and Hoang Huu Viet, “An effi- cient

Heuristic search algorithm for the Hospitals/Residents with Ties problem”,

Applied Artificial Intelligence (đang gửi tạp chí).

[B.2] Nguyen Thi Uyen, Nguyen Long Giang and Hoang Huu Viet “Faster and Simpler

Heuristic Algorithm for the Student-Project Allocation with Preferences over

Projects”, International Journal of Fuzzy Logic and Intelligent Systems (đang

gửi tạp chí).

2. Other publications

[C.1] Nguyen Thi Uyen and Tran Xuan Sang, “An efficient algorithm to find a

maximum weakly stable matching for SPA-ST problem, in Proceed- ings of the

21st International Conference on Artificial Intelligence and Soft Computing

(ICAISC 2022), Zakopane, Poland, Jun. 18-22, 2022, in Press, Lecture Notes in

Artificial Intelligence (SCOPUS), Springer.

[C.2] Hoang Huu Viet, Nguyen Thi Uyen, Cao Thanh Sơn, and Le Hong Trang, “Một

thuật toán tìm kiếm cục bộ giải bài toán phân công địa điểm thực tập cho sinh

viên”, 23th Hội thảo Quốc gia (VNICT 2020), Hạ Long, Việt Nam, Nov. 5-6, pp.

271–276, 2020.

INTRODUCTION

1. The urgency of the thesis
The Stable Marriage Problem (SMP) is a well-known matching problem

first introduced by Gale and Shapley in 1962. An instance of SMP size n,
denoted by I , consists of a set of n men and women. Each person has a rank
list, in which each person ranks the opposite sex in a certain order of prefer-
ence. The goal of the problem is to find matching between men and women
that satisfies stability according to some criteria. Recently, the SMP problem
has received much attention from researchers in the fields of Artificial Intel-
ligence and Optimal Computing.
- In terms of practice: In 2012, Shapley and Roth were awarded the Nobel
Prize in Economics for their achievements based on models derived from the
SMP problem in the field of stock market management in the United States.
Besides, it has been attracting much attention from the research community
due to its important role in a wide range of applications such as the Hospital-
s/Residents with Ties problem, the Student-Project Allocation problem, the
Stable Marriage Roommates problem and the problem of optimizing service
requests of Internet users to telecommunications carriers. Therefore, it is nec-
essary to study the stable marriage problem and its variants to find the optimal
solutions to the matching problem in practical applications.
-In terms of science: Several variants of the SMP have been proposed re-
cently, such as the Stable Marriage problem with Ties (SMT), the Stable Mar-
riage problem with Incomplete (SMI), the Stable Marriage Problem with Ties
and Incomplete lists (SMTI). According to, with the appearance of ties in the
preference lists, Irving et al. (2002) has shown that there are three stability
criteria of a matching are defined, including weakly stable, strongly stable
and super-stable. The authors proved that a weakly stable matching always
exists, while strong and superstable matching may not exist for all instances
of SMT and SMTI problems. In addition, the authors have also demonstrated,
finding a weakly stable matching with maximum size (MAX) is an NP-hard
problem. In this study, the thesis focused on finding a weakly stable matching
with the maximum size, so for simplicity, the thesis calls the weakly stable
matching a stable matching. To study this problem, it is necessary to research
heuristic algorithms to find a weakly stable coupling with maximum size for
MAX-SMTI and variants.
2. Research objectives of the thesis
- Research overview of the stable marriage problem and variants.

1

- Research and propose heuristic algorithms to solve problems MAX-SMTI,
MAX-HRT, and MAX-SPA.
3. The main contents of the thesis.
Chapter 1. Overview. In this chapter, the thesis presents an overview of the
theoretical basis and research situation of the stable marriage problem and its
variations.
Chapter 2. Proposed algorithms for solving the MAX-SMTI problem. The
thesis proposes 02 algorithms to solve the MAX-SMTI problem in this chap-
ter. The results are published in the specialized journal SCIE and international
conferences with the SCOPUS index.
Chapter 3. Proposed algorithms for solving the MAX-HRT problem. The
thesis proposes 02 algorithms to solve the MAX-HRT problem in this chapter.
The results are published in the specialized international conferences with the
SCOPUS index.
Chapter 4. Proposed algorithms for solving the MAX-SPA problem. The
thesis proposes 02 algorithms to solve the MAX-SPA problem in this chapter.
The results are published in the specialized international conferences with the
SCOPUS index.

2

CHAPTER 1. OVERVIEW OF STABLE MARRIAGE
PROBLEM

1.1. The Stable Marriage problem
An instance of SMP size n, denoted by I , consists of a set of n men and

women. Each person has a rank list, in which each person ranks the opposite
sex in a certain order of preference. An example of an instance including 8
men and 8 women is shown in Table 1.1. Gale and Shapley (1962) showed

Table 1.1: An instance of SMP

mi’s rank list, mi ∈ M wj’s rank list, wj ∈ W
m1: w4 w3 w1 w5 w2 w6 w8 w7 w1: m4 m7 m3 m8 m1 m5 m2 m6

m2: w2 w8 w4 w5 w3 w7 w1 w6 w2: m5 m3 m4 m2 m1 m8 m6 m7

m3: w5 w8 w1 w4 w2 w3 w6 w7 w3: m2 m8 m6 m4 m3 m7 m5 m1

m4: w6 w4 w3 w2 w5 w8 w1 w7 w4: m5 m6 m8 m3 m4 m7 m1 m2

m5: w6 w5 w4 w8 w1 w7 w2 w3 w5: m1 m8 m5 m2 m3 m6 m4 m7

m6: w7 w4 w2 w5 w6 w8 w1 w3 w6: m8 m6 m2 m5 m1 m7 m4 m3

m7: w8 w5 w6 w3 w7 w2 w1 w4 w7: m5 m2 m8 m3 m6 m4 m7 m1

m8: w4 w7 w1 w3 w5 w8 w2 w6 w8: m4 m5 m7 m1 m6 m2 m8 m3

that there exists at least one stable matching for every instance of SM and
proposed an algorithm, called the Gale-Shapley algorithm, to find a stable
matching of SM instances of size n in time O(n2). In addition, some other
research methods have also been proposed such as approximation algorithms,
heuristic algorithms, and other research methods. However, the SMP has
little application in practice because of the strict constraints of the favorite
list, i.e., each man must rank all the women and vice versa. Therefore, some
variants of the SMP problem have been introduced and applied in practice in
recent years.
1.2. Variation of the Stable Marriage problem

The first is Stable Marriage Problem with Ties (SMT), meaning that each
person can rank two or more people of the opposite sex in an equal order on
the rank list. The second is the Stable Marriage Problem with Incomplete
(SMI), meaning that each person only ranks some people of the opposite sex
on their rank list. If we combine the two variants SMT and SMI, we have
a Stable marriage problem with Ties and Incomplete lists (SMTI). The goal
of the SMTI problem is to find a matching that is not only stable but also
has the maximum number of matched men, also known as the MAX-SMTI.
Manlove et al (2008) demonstrated that MAX-SMTI is an NP-hard problem,

3

therefore, finding an efficient algorithm to solve the problem of large sizes
is a challenge for researchers. In this thesis, we focus on the SMTI and its
variants.

Definition 1.1 (SMTI instance). An SMTI instance of size n involves a set
M = {m1, m2,· · · ,mn} of men and a set W = {w1, w2,· · · ,wn} of women
in which each person ranks some members of the opposite sex in order of
preference, i.e., the rank list of each person may include ties and be incom-
plete.

We denote rank(mi, wj) such that rank of wj ∈ W in mi’s rank list and
rank(wj ,mi) is rank of mi ∈ M (mi ∈ M) in wj’s rank list (wj ∈ W).
If mi ∈ M prefers wj ∈ W to wk ∈ W , meaning that rank(mi, wj) <
rank(mi, wk) and if mi ∈ M prefers wj ∈ W and wk ∈ W the same ranks
rank(mi, wj) = rank(mi, wk).

Definition 1.2 (Acceptable pair). A pair (mi, wj) is called an acceptable
pair, if rank(mi, wj) > 0 and rank(wj ,mi) > 0.

Definition 1.3 (Matching). A matching M of SMTI instance is a set of ac-
ceptable pairs such that each person belongs to at most one pair M =
{(mi, wj) ∈ M × W|rank(mi, wj) > 0 and rank(wj ,mi) > 0}, where
each mi ∈ M only assigns to wj ∈ W and vice versa. If (mi, wj) ∈ M ,
then mi and wj are partners, denoted by M(mi) = wj and M(wj) = mi.
If mi ∈ M is an unassigned to M , then mi is called single and denoted by
M(mi) = ∅. Similarly, if wj ∈ W is an unassigned in M , then wj is called
single and denoted by M(wj) = ∅.

Definition 1.4 (Blocking pair). A (mi, wj) ∈ M×W is blocking pair in M
if:

1. rank(mi, wj) > 0 and rank(wj ,mi) > 0;

2. M(mi) = ∅ or rank(mi, wj) < rank(mi,M(mi));

3. M(wj) = ∅ or rank(wj ,mi) < rank(wj ,M(wj)).

Definition 1.5 (Dominated blocking pair). A blocking pair (mi, wj) domi-
nates a blocking pair (mi, wk) if rank(mi, wj)¡rank(mi, wk).

Definition 1.6 (Undominated blocking pair). A blocking pair (mi, wj) is un-
dominated if there are no other blocking pairs dominating (mi, wk) such that
rank(mi, wk) < rank(mi, wj).

4

Definition 1.7 (Stable matching). A matching M is called stable if it admits
no blocking pair, otherwise, it is called unstable.

Definition 1.8 (Matching size). Matching size is the number of assigned men
in a stable matching M , denoted by |M |.

Definition 1.9 (Perfect matching). A matching M is called perfect if |M | =
n, otherwise, it is called non-perfect.

Table 1.2: An instance of SMTI

mi’s rank list, mi ∈ M wj’s rank list, wj ∈ W
m1: w1 w1: m1 (m5 m6)
m2: w5 (w3 w4 w6) (w7 w8) w2: (m3 m5 m6)
m3: w4 (w2 w5) w3: m6 (m7 m8)m5 m2

m4: (w5 w6) w8 w7 w4: m3 (m2 m6 m7)m5

m5: (w1 w3) (w4 w5) w2 w5: (m5 m7 m8) (m3 m4) m2

m6: (w4 w7) w1 (w2 w3 w8) w6: m2 m7 (m4 m8)
m7: w4 w6 (w3 w5 w7) w7: (m2 m6)m7 m4

m8: w5 w6 w3 w8: (m2 m4)m6

Several research directions have been proposed to solve MAX-SMTI
problem such as:

i) Approximation algorithms: There are several approximation algorithms
proposed to consider lower bounds for the MAX-SMTI problem. In gen-
eral, the problem MAX-SMTI has been solved quite well with relatively good
solution quality and with an increasing approximate ratio compared to the
previously proposed algorithms. The best approximation algorithm is 3/2.
Although the approximation algorithms have solved the problem relatively
well in terms of time and quality of solutions, we found that it is possible to
improve the quality of solutions better. In addition, these algorithms do not
show effective experiments to solve the SMTI problem with a large size.

ii) Heuristics algorithms: Constraint programming approaches to solve
the variants of the SM problem have also been studied by several researchers.
Gent and Prosser (2002) proposed an empirical study of the MAX-SMTI
problem. First, they proposed an algorithm to randomly generate SMTI in-
stances of three parameters (n, p1, p2), where n is the number of men or
women, p1 is the probability of incompleteness and p2 is the probability of
ties. Then, they applied a constraint programming approach to consider the
influence of parameters p1 and p2 on solution quality. Recently, local search
approaches to deal with the MAX-SMTI problem have been applied by some
researchers. Gelain et al (2013) proposed a local search algorithm, namely

5

LTIU for MAX-SMTI. Munera et al (2015) modeled SMTI s a permutation
problem and applied the adaptive search method, called AS to solve the prob-
lem.

iii) Other approaches: In addition, some researchers have proposed new
approaches to solving the SMTI problem such as Integer Programming (IP),
SAT model, and Integer Linear Programming (ILP).
1.3. Variants of the SMTI
1.3.1. The Hospitals/Residents with Ties

The Hospitals/Residents with Ties problem (HRT), is a variant of SMTI
problem. An instance I of HRT consists of a set R = {r1, r2, · · · , rn} of
residents and a set H = {h1, h2, · · · , hm} of hospitals in which each resident
ri ∈ R ranks in strict order a subset of H in its rank list, each hospital hj ∈ H
ranks in strict order applicants in its rank list, and each hospital hj ∈ H has
a capacity cj ∈ Z+ indicating the maximum number of residents that can be
assigned to it.

Table 1.3 shows an instance of HRT of 8 residents and 5 hospitals.

Table 1.3: An instance of HRT

ri’s rank list, ri ∈ R hj’s rank list, hj ∈ H
r1: h1 h3 h2 h1: r3 (r7 r5 r2) r4 r6 r1
r2: h1 (h5 h4) h3 h2: r5 r6 (r3 r4) r1
r3: h1 h5 h2 h3: (r5 r2) r6 r1 r7
r4: h1 (h2 h4) h4: r8 r2 r4 r7
r5: h3 h1 h2 h5: r3 (r7 r6 r8) r2
r6: (h3 h2) h1 h5

r7: h3 h4 h5 h1

r8: h5 h4

hj’s capacity, hj ∈ H: c1 = 2, c2 = 3, c3 = c4 = c5 = 1

1.3.2. The Student-Project Allocation
In project-based courses, students have to be assigned to projects offered

by lecturers. The question for this problem is how to allocate students to
projects to meet the requirements of students and lecturers. To solve this
problem, Abraham et al (2003) introduced a formal definition of the Student-
Project Allocation problem (SPA). Recently, variants of SPA-P and SPA-ST
have been of great interest to the research community in practical applica-
tions. Therefore, the thesis focuses on studying two variants of the SPA prob-
lem, which is the problem of SPA-P và SPA-ST. The goal of the problem is to
find a stable matching with the maximum size, that is, the maximum number

6

of students who receive the projects satisfy the constraints on the capacity of
the lecturers and the projects (MAX-SPA). Given SPA-P instance in Table 1.4
and SPA-ST instance in Table 1.5.

Table 1.4: An instance of SPA-P

si’s rank list, si ∈ S lk’s rank list, lk ∈ L
s1: p1 p3 p4 l1: p1 p2 p3
s2: p5 p1 l2: p4 p5
s3: p2 p5
s4: p4 p2
s5: p5
pj’s capacity pj ∈ P: c1 = c2 = c3 = c4 = 1, c5 = 2
lk’s capacity, lk ∈ L: d1 = 3, d2 = 2

Table 1.5: An instance of SPA-ST

si’s rank list, si ∈ S lk’s rank list, lk ∈ L
s1: (p1 p7) l1: (s7 s4) s1 s3 (s2 s5) s6
s2: p1 p3 p5 l2: s3 s2 s7 s5
s3: (p2 p1) p4 l3: (s1 s7) s6
s4: p2
s5: p1 p4 l1 offers p1, p2, p3
s6: p2 p8 l2 offers p4, p5, p6
s7: (p5 p3) p8 l3 offers p7, p8
pj’s capacity, pj ∈ P: c1 = 2, cj = 1, (2 ≤ j ≤ 8)
lk’s capacity, lk ∈ L: d1 = 3, d2 = 2, d3 = 2

1.3.3. Related works
Several approximation algorithms have been proposed to solve the MAX-

HRT problem with ratio approximation 3/2. Munera et al.(2015) modeled
Adaptive Search and Gelain et al. (2013) proposed a Local search algorithm
for solving HRT problem. However, the proposed algorithms have not effec-
tively solved the problem regarding solution quality and execution time for
HRT large size. Therefore, this thesis focuses on researching and proposing
heuristics algorithms to solve the problem MAX-HRT with large size. For the
SPA-P problem, where a stable join can have different sizes, finding a join
that is both stable and has a maximum size is an NP-hard problem. Cooper
and Manlove (2018) proposed a 3/2 approximation algorithm to find a stable
matching with maximum size for the SPA-ST problem.

7

CHAPTER 2. PROPOSED ALGORITHMS TO SOLVE
MAX-SMTI PROBLEM

2.1. Max-Conflicts Algorithm
This section proposes a Max-Conflicts-based heuristic search, called MCS

shown in Algorithm 2.1, to solve the MAX-SMTI problem.

Algorithm 2.1: MCS algorithm
Input: - An instance I of SMTI.

- A small probability, p.
- The maximum number of iterations, max iters.

Output: A matching M .
1. function Main(I)
2. Randomly generate M ;
3. Mbest := M ;
4. fbest := n;
5. iter := 0;
6. while (iter ≤ max iters) do
7. X := Find UBPs(M);
8. if (X = ∅) then
9. if (fbest > f(M)) then

10. Mbest := M ;
11. fbest := f(M);

12. if (fbest > 0) then
13. M := Escape Local Minima(M);
14. continue;
15. else
16. break;

17. for (each mi ∈ X) do
18. ubp(wj) := ubp(wj) + 1, where (mi, wj) ∈ X;

19. for (each mi ∈ X) do
20. h(mi) := n ∗ ubp(wj)− rank(wj ,mi);

21. if (a small p) then mj := a random mi ∈ X;
22. else mj := argmax(h(mi)), ∀mi ∈ X ;
23. Remove blocking pair (mj , wk);
24. iter := iter + 1;

25. return Mbest;

26. end function

8

The main idea of MCS is that starting from a random matching, the algo-
rithm will find a set of UBP and define a heuristic function to select the best
UBP and remove them from the matching. Let X = {(mi, wj) | mi ∈ M,
wj ∈ W} denote a set of UBP from the men’s point of view for an unstable
matching M . For each (mi, wj) ∈ X , there exist no blocking pairs dominat-
ing (mi, wj) from the men’s point of view, meaning that mi appears once,
while wj may appear many times in X . Let ubp(wj) be the number of UBP
formed by woman wj ∈ X , we define a heuristic function as follows:

h(mi) = n× ubp(wj)− rank(wj ,mi),∀(mi, wj) ∈ X. (2.1)

Algorithm 2.2: Finding a set UBPs, X
Input: A matching M .
Output: A set of UBPs X .

1. function Find UBPs(M)
2. X := ∅;
3. for (each mi ∈ M) do
4. wj := M(mi);
5. while (∃wk ∈ W|rank(mi, wk) > 0) do
6. wk := argmin(rank(mi, wk) > 0);
7. if (rank(mi, wk) = rank(mi, wj)) then
8. break;

9. if ((mi, wk) is a blocking pair) then
10. X := X ∪ (mi, wk);
11. break;
12. else
13. Delete wk in mi’s rank list;

14. return X;

15. end function

First, MCS finds a set X of UBP pairs for M using Algorithm 2.2. Sec-
ond, MCS checks if X is empty, i.e., M is a stable matching, and if (i) Mbest

has a number of singles more than M , then M is assigned to Mbest; (ii) Mbest

is a non-perfect matching, i.e., the MCS is stuck at the local minimum, then
the MCS calls Algorithm 2.3 to overcome the local minimum and performs
the next iteration, otherwise, MCS returns perfect matching Mbest. Third,
MCS counts the number of UBP, ubp(wj), generated by each wj ∈ X and
determines the heuristic values, h(mi), for each mi ∈ X . Fourth, MCS ran-

9

Algorithm 2.3: Escape from local minima
Input: A matching M .
Output: A matching M .

1. function Escape Local Minima(M)
2. if (a probability p ≤ 0.5) then
3. U := {mi |M(mi) = ∅};
4. Randomly generate mj ∈ U ;
5. for (each wk ∈ mj’s rank list) do
6. if (M(wk) ̸= ∅) then
7. break pair (M(wk), wk) into two singles, M(wk) and

wk;

8. else
9. V := {wi |M(wi) = ∅};

10. Randomly generate wj ∈ V ;
11. for (each mk ∈ wj’s rank list) do
12. if (M(mk) ̸= ∅) then
13. break pair (mk,M(mk)) into two singles, mk and

M(mk);

14. return M ;

15. end function

domly chooses a mj ∈ X with small probability p or chooses a mj ∈ X cor-
responding to the maximum h(mj). The MCS repeats until a perfect match-
ing is found or the number of iterations has reached the maximum.

We ran the experiments of MCS, LTIU, and AS algorithms in Matlab
R2017a software environment on a laptop computer with Core i7-8550U CPU
1.8 GHz and 16 GB RAM on Windows-10. Experiments showed that MCS
outperforms LTIU and AS algorithms in terms of execution time and solution
quality for the MAX-SMTI problem. The experimental results have shown
that MCS is more efficient than algorithms LTIU and AS in terms of the qual-
ity of the solution and the execution time for the MAX-SMTI problem.
2.2. Heuristic-Repair Algorithm

The proposed HR algorithm includes the algorithm GS to find a stable
concatenation and a heuristic function to improve the size of the matching
found by GS for an instance of SMTI is described in Algorithm 2.4. First, HR
finds a stable matching by improving the idea of GS.

10

Algorithm 2.4: HR algorithm
Input: - An instance I of SMTI.

- The maximum number of iterations, max iters.
Output: A matching M .

1. function Main(I)
2. for (each mi ∈ M) do
3. M(mi) := ∅;
4. a(mi) := 1;
5. c(mi) := 0;

6. iter := 1;
7. while iter ≤ max iters do
8. mi := some man is active, i.e., a(mi) = 1;
9. if ∄a(mi) = 1 then

10. if |M | = n then break;
11. iter := iter + 1;
12. M := Improve(M);
13. continue;

14. if mi’s rank list is empty then
15. a(mi) := 0;
16. c(mi) := c(mi) + 1;
17. continue;

18. if there exists a single woman wj to whom mi prefers most then
19. M(mi) := wj ;
20. a(mi) := 0;
21. else
22. wj := a woman to whom mi prefers most;
23. mk := M(wj);
24. if there exists a single wt that rank(mk, wt) = rank(mk, wj)

then
25. repair(mi,mk);

26. if M(mi) = ∅ and rank(wj ,mi) < rank(wj ,mk) then
27. repair(mi,mk);
28. rank(mk, wj) := 0;
29. else
30. rank(mi, wj) := 0;

31. return M ;

32. end function

11

Algorithm 2.5: Improve a stable matching M

Input: A stable matching M .
Output: A stable matching M .

1. function Improve(M)
2. for each single man mi ∈ M do
3. recover mi’s original rank list;
4. X := {};
5. for each wj ∈ m′

is rank list do
6. mk := M(wj);
7. if rank(mi, wj) ≤ rank(mk, wj) or

rank(wj ,mi) = rank(wj ,mk) then
8. X := X ∪ {wj};

9. if X = ∅ then continue;
10. for each wj ∈ X do
11. mk := M(wj);
12. k := number of wt in mk’s rank list, where

rank(mk, wt) = rank(mk, wj);
13. h(wj) := 1/k+(rank(w,mi)−rank(wj ,mk))×(1−c(mk));

14. wj := argmin(h(wj)),∀wj ∈ X;
15. repair(mi,mk), where mk := M(wj);
16. rank(mk, wj) := 0;

17. return M ;

18. end function

Then, the HR algorithm re-applies the improved GS algorithm. If a stable
matching is found that has not reached its maximum size, HR calls Algo-
rithm 2.5 to improve the size of the M by proposing a heuristic function. The
HR algorithm terminates when a stable matching with maximum size or the
maximum number of iterations is reached. We implemented HR and GSA2
by Matlab R2017b software on a laptop computer with Core i7-8550U CPU
1.8 GHz and 16 GB RAM, running on Windows 10. The experimental results
for large randomly generated instances of SMTI showed that HR outperforms
GSA2 and MCS in terms of solution quality for finding perfect matchings of
MAX-SMTI problem.

12

CHAPTER 3. PROPOSED ALGORITHM TO SOLVE
MAX-HRT PROBLEM

3.1. Min-Conflicts Algorithm
This section presents a Min-Conflicts algorithm, named MCA to solve

MAX-HRT problem in Alg. 3.1.

Algorithm 3.1: Min-Conflicts Algorithm
Input: - An instance I of HRT.

- A small probability p.
- The maximum iterations, max iters.

Output: A matching M .
1. function MCA(I)
2. Randomly generate M ;
3. Mbest := M ;
4. fbest := n;
5. iter := 0;
6. while (iter ≤ max iters) do
7. iter := iter + 1;
8. [f(M), X] := Find Cost And UBPs(M);
9. if (X = ∅) then

10. if (fbest > f(M)) then
11. Mbest := M ;
12. fbest := f(M);

13. if (fbest > 0) then
14. M := a randomly generated matching;
15. continue;
16. else
17. break;

18. if (a small probability of p) then
19. rj := a random resident ri ∈ X;
20. else
21. rj := argmin(rank(hk, ri)), ∀(ri, hk) ∈ X;

22. Remove blocking pair (rj , X(rj));

23. return Mbest;

24. end function

13

Initially, the algorithm generates a random matching M and assigns the
best matching Mbest to M . At each iteration, MCA finds the set of UBP,
X = {(ri, hj) ∈ R ×H}, for M . Then, the algorithm calls the function in
Alg. 3.2 to find the cost, f(M) = #nbp(M) +#nur(M), where #nbp(M)
is the number of UBP for M and #nur(M) is the number of unassigned
residents in M . If M is not perfect, the algorithm restarts a new matching
M and continues the next iteration. Then, the algorithm checks if a small
probability of p is accepted, it chooses a random resident rj ∈ X . Otherwise,
it chooses the resident, rj ∈ X , such that it is most preferred by hospital
hk ∈ X . The algorithm repeats until either Mbest is a perfect matching or
a maximum number of iterations is reached. In the latter case, the algorithm
returns either a maximum stable matching or an unstable matching.

Algorithm 3.2: Find the cost and UBPs of a matching
Input: A matching M .
Output: The cost, f(M), and the set of UBPs, X .

1. function Find Cost And UBPs(M)
2. X := ∅;
3. #nur := 0;
4. #nbp := 0;
5. for (each ri ∈ R) do
6. ubp := false;
7. while (there exists a hj ∈ H in ri’s rank list) do
8. hj := a hj such that ri prefers most;
9. if (rank(ri, hj) = rank(ri,M(ri)) then

10. break;

11. if ((ri, hj) is a blocking pair) then
12. X := X ∪ (ri, hj);
13. #nbp := #nbp+ 1;
14. ubp := true;
15. break;
16. else
17. Delete hj in ri’s rank list;

18. if ((ubp = false) and (ri is unassigned)) then
19. #nur := #nur + 1;

20. f(M) := #nbp+#nur;
21. return (f(M), X);

22. end function

14

We present experimental results to compare the execution time and solu-
tion quality of MCA with those of LTIU. All the experiments were imple-
mented by Matlab software on a personal computer with a Core i7-8550U
CPU 1.8GHz and 16 GB memory. Experiments showed that MCA is efficient
in terms of execution time and solution quality for MAX-HRT.
3.2. Heuristic-Search Algorithm

This section proposes a Heuristic Search algorithm, named HS to find a
maximum stable matching for MAX-SMTI shown in Algorithm 3.3. Start-
ing from a random matching M , at each iteration, if there exists a ri such that
a(ri) = 1, HS finds a hj and a list wait W (ri) shown in Algorithm 3.4 such
that (ri, hj) is an UBP and W (ri) is a set of hk ∈ H where rank(ri, hk) <
rank(ri,M(ri)) or rank(ri, hk) = rank(ri, hj). If there no exists hj , such
that (ri, hj) is a blocking pair, the algorithm assigns a(ri) = 0. If there are
no active residents, HS means that HS finds a stable matching M . If the algo-
rithm finds a non-perfect matching and we consider this is the case of getting
stuck at a local minimum. Therefore, the algorithm calls the function given
in Algorithm 3.5 to overcome the local minimum and continues the next iter-
ation. The algorithm terminates when it finds a perfect matching or reaches a
given maximum number of iterations. In the latter case, the algorithm returns
a stable matching of the maximum size found so far.

We implemented all the HS, AS, and HP algorithms in Matlab 2019a soft-
ware and ran them on a computer with Core i7-8550U CPU1.8 GHz and 16
GB RAM in Windows 10. The experimental results show that our algorithm
not only finds a much higher percentage of perfect matchings but also runs
much faster than AS and HP algorithms for MAX-HRT problem.

15

Algorithm 3.3: HS Algorithm
Input: - An instance I of HRT.

- A maximum number max iter.
Output: A stable matching M .

1. function HS (I)
2. Randomly generate M ;
3. Mbest := M ;
4. a(ri) := 1,∀ri ∈ R;
5. y(ri) := 0,∀ri ∈ R;
6. z(hj) := 0,∀hj ∈ H;
7. rank†(ri, hj) := rank(ri, hj),∀ri ∈ R, hj ∈ H;
8. iter := 0;
9. while iter ≤ max iter do

10. iter := iter + 1;
11. ri := an active ri;
12. if (∄ri such that a(ri) = 1) then
13. if |Mbest|<|M | then
14. Mbest := M ;
15. if (|Mbest| = n) then break;

16. M ′ :=ImproveM ;
17. if M ′ = M then break;
18. M := M ′;
19. continue;

20. [hj ,W (ri)] := Find UBP and Wait List ri,M ;
21. if hk ̸= ∅ then
22. M := M \ {(ri, hk)} ∪ {(ri, hj)}, where hk := M(ri);
23. a(ri) := 0;
24. for rl such that W (rl) = hk do
25. rank(rl, hk) := rank†(rl, hk);
26. a(rl) := 1;

27. if |M(hj)| > cj then
28. rw := hj’s worst resident;
29. M := M\{(rw, hj)};
30. a(rw) := 1;

31. else
32. a(ri) := 0;

33. return Mbest;

34. end function

16

Algorithm 3.4: Finding an UBP and W (ri)

Input: - A resident ri and matching M .
Output: - A hj such that (ri, hj) is an UBP.

- A wait list W (ri).
1. function Find UBP and Wait List(ri,M)
2. for hk ∈ ri’s rank list do
3. f(hk) := rank(ri, hk) + |M(hk)|/(ck + 1);

4. hj := ∅;
5. while ri’s rank list is not empty do
6. hk := argmin(f(hk) ≥ 1), ∀hk ∈ H;
7. if rank(ri, hk) = rank(ri,M(ri)) then
8. break;

9. if (ri, hk) is a blocking pair then
10. hj := hk;
11. break;
12. else
13. W (ri) := W (ri) ∪ hk;
14. rank(ri, hk) := 0;
15. f(hk) := 0;

16. return hj và W (ri);

17. end function

17

Algorithm 3.5: Improve stable matching
Input: A stable matching, M .
Output: A matching, M .

1. function Improve Matching(M)
2. for each ru ∈ R, such that M(ru) = ∅ do
3. Find (ri, hk) ∈ M such that rank(hk, ri) = rank(hk, ru);
4. if y(ru) ≥ y(ri) then
5. M := M \ {(ri, hk)} ∪ {(ru, hk)};
6. y(ru) := y(ru) + 1;
7. a(ru) := 0;
8. a(ri) := 1;
9. rank(ru, hk) := rank†(ru, hk);

10. for each ht ∈ H, such that |M(ht)| < cj do
11. Find (ri, hk) ∈ M such that rank†(ri, hk) = rank†(ri, ht)
12. if z(ht) ≥ z(hk) then
13. M := M \ {(ri, hk)} ∪ {(ri, ht)};
14. z(ht) := z(ht) + 1;
15. rank(ri, ht) := rank†(ri, ht);

16. for each rw such that W (rw) = hk do
17. rank(rw, hk) := rank†(rw, hk);
18. a(rw) := 1;

19. return M ;

20. end function

18

CHAPTER 4. PROPOSED ALGORITHMS TO SOLVE
MAX-SPA PROBLEM

4.1. SPA-P-heuristic algorithm for MAX-SPA-P problem

Algorithm 4.1: SPA-P-heuristic Algorithm
Input: An instance I ofSPA-P.
Output: A stable matching M .

1. function SPA-P-heuristic(I)
2. M := ∅;
3. a(si) := 1, ∀si ∈ S;
4. hlk (si) := 0, ∀lk ∈ L, ∀si ∈ S;
5. while there exists an active si do
6. if si’s rank list is empty then
7. a(si) := 0;
8. continue;

9. pj := the most prefered project in si’s rank list;
10. lk := lecturer who offers pj ;
11. M := M ∪ {(si, pj)};
12. a(si) := 0;
13. y(si) := number of project ranked by si;
14. hlk (si) := rank(lk, pj) + y(si)/(q + 1);
15. if |M(pj)| > cj then
16. st := argmax(hlk (st)), ∀st ∈ M(pj);
17. M := M \ {(st, pj)};
18. rank(st, pj) := 0;
19. hlk (st) := 0;
20. a(st) := 1;

21. if |M(lk)| > dk then
22. st := argmax(hlk (st)), ∀st ∈ M(lk);
23. pz := M(st);
24. M := M \ {(st, pz)};
25. rank(st, pz) := 0;
26. hlk (st) := 0;
27. a(st) := 1;

28. return M ;

29. end function

19

This section presents heuristic algorithm, called SPA-P-heuristic for MAX-
SPA-P problem, shown in Algorithm 4.1. Initialize from an empty matching
M . At each iteration, when a student si is assigned to the most preferred
project pj in her/his list to form a pair (si, pj) ∈ M if the project pj or the
lecturer lk who offers pj is over-subscribed, then an arbitrary student sr in
M(pz), where pz is lk’s worst non-empty project, is removed from M . We
recognize that if three following conditions are met: (i) M(pz) consists of at
least two students sr and st; (ii) sr ranks only one project; and (iii) st ranks
more than one project, then if we remove sr from M , then sr is unassigned
in M forever, while if we remove st from M , then st can be assigned to some
project in her/his list at the next iterations. To solve this problem, we propose
a heuristic function as follows:

hlk(st) = rank(lk, pz) + y(st)/(q + 1). (4.1)

where lk is a lecturer who offers project pz and y(st) is the number of projects
ranked by st. If pj is over-subscribed, then the worst student st in M(pj) is
removed from M . If so, st deletes pj in her/his list and she/he becomes active
again. If lk is over-subscribed, then the worst student st in M(lk) is removed
from M . If so, st deletes pz in her/his list, where pz is assigned to st, and
she/he becomes active again. When a student st is removed from M , the
heuristic value hlk(st) is assigned to zero. The algorithm is repeated until all
students are inactive and it returns a maximum stable matching.

Our experimental results show that our proposed algorithm outperforms
SPA-P-approx, SPA-P-promotion, and SPA-P-MCH algorithms in terms of
solution quality and execution time for MAX-SPA-P problem.
4.2. HAG algorithm for MAX-SPA-ST problem

This section proposes a heuristic algorithm, called HAG shown in Aglo-
rithm 4.2 for MAX-SPA-ST problem of large size. The algorithm starts from
an empty matching, M = ∅. At each iteration, HAG considers an unas-
signed student si ∈ S whose ranking list of si is not empty and determines
the heuristic function h(pj) for each project pj in si’s rank list, where pj is
offered by lk to choose the best project based on the minimum value of h(pj)
as follows:

h(pj) = rank(si, pj)−min(dk−|M(lk)|, 1)/2−(cj−|M(pj)|)/(2×cj+1).
(4.2)

20

Algorithm 4.2: HAG algorithm for MAX-SPA-ST
Input: An SPA-ST instance I
Output: A stable matching M .

1. function HAG (I)
2. M := ∅
3. v(si) := 0, ∀si ∈ S
4. while true do
5. si := an unassigned student that si’s rank list is non-empty
6. if there exists no student si then
7. if |M | = n then break
8. else
9. M ′ := Escape(M)

10. if M ′ = M then break
11. M := M ′

12. continue

13. for each pj ∈ Ai do
14. lk := a lecturer who offers pj
15. h(pj) = rank(si, pj)-min(dk-|M(lk)|, 1)/2-(cj-|M(pj)|)

/(2× cj + 1)

16. pj := argmin(h(pj) > 0), ∀pj ∈ P
17. lk := a lecturer who offers pj
18. if |M(pj)| < cj and |M(lk)| < dk then
19. M := M ∪ {(si, pj)}
20. else if |M(pj)| = cj then
21. [st, g(st)] := Choose Student(M(pj), lk)
22. if g(st) > n+ 1 or rank(lk, si) < rank(lk, st) then
23. M := M \ {(st, pj)} ∪ {(si, pj)}
24. if g(st) < n+ 1 then
25. rank(st, pj) := 0

26. else
27. rank(si, pj) := 0

28. else
29. [sw, g(sw)] := Choose Student(M(lk), lk)
30. if g(sw) > n+ 1 or rank(lk, si) < rank(lk, sw) then
31. M := M \ {(sw, pu)} ∪ {(si, pj)}, where pu = M(sw)
32. Repair(pu, lk)
33. if g(sw) < n+ 1 then
34. rank(sw, pu) := 0

35. else
36. rank(si, pj) := 0

37. return M ;

38. end function
21

Next, for each student si ∈ S, si propose to pj if pj is full or lk is full,
then HAG defines the function g(st) in Algorithm 4.3 to choose student st
corresponding to the maximum value of g(st).

g(st) = rank(lk, st) + t(st) + r(st)/(q + 1). (4.3)

Algorithm 4.3: Heuristic function for choosing a student
Input: A set of student X .
Output: A student st and g(st).

1. function Choose Student(X, lk)
2. for each st ∈ X do
3. t(st) := 0;
4. for each pu|rank(st, pu) = rank(st,M(st)) do
5. lz := a lecturer who offers pu;
6. t(st) =

t(st)+min(dz−|M(lz)|, 1)×min(cj−|M(pu)|, 1)×n;

7. r(st) := the number of projects is ranked by st;
8. g(st) := rank(lk, st) + t(st) + r(st)/(q + 1);

9. st := mathrmargmax(g(st));
10. return st, g(st);

11. end function

Algorithm 4.4: Breaking blocking pairs satisfying type of (3bi)
Input: A matching M
Output: A matching M .

1. function Repair(pu, lk)
2. f := true;
3. while f = true do
4. f := false;
5. if sk ∈ M(lk) and rank(sk, pu) < rank(sk, pz)|pz = M(sk)

then
6. M := M \ {(sk, pz)} ∪ {(sk, pu)};
7. pu := pz;
8. f := true;

9. return M ;

10. end function

22

The algorithm 4.4 is used to break blocking pairs when a project pu is
removed from M . For each sk ∈ M(lk), if rank(sk, pu) < rank(sk, pz),
where pz = M(sk), the algorithm removes (sk, pz) and adds (sk, pu) to M .
This process repeats for each deleted project until it cannot form blocking
pairs. If a stable matching is found that has not reached its maximum size,
HAG calls Algorithm 4.5 to improve the size of the M by proposing a heuris-
tic function. The HAG algorithm stops when it finds a perfect matching or all
unassign students cannot find any projects to match.

Algorithm 4.5: Escape local minimum
Input: A stable matching M .
Output: A stable matching M .

1. function Escape(M)
2. for each unassigned su ∈ U do
3. recover su’s original rank list;
4. while su’s rank list is non-empty do
5. pz := argmin(rank(su, pz) > 0), ∀pz ∈ P;
6. lk := a lecturer who offers pz;
7. for (each si ∈ M(lk) | rank(lk, si) = rank(lk, su)) do
8. if (|M(pz)|) < cz) or (si ∈ M(pz) and |M(pz)| = cz)

then
9. if v(su) ≥ v(si) then

10. pj := M(si);
11. M := M \ {(si, pj)} ∪ {(su, pz)};
12. v(su) := v(su) + 1;
13. Repair(pj , lk);
14. break;

15. if M(su) ̸= ∅ then
16. break;
17. else
18. rank(su, pz) := 0;

19. return M ;

20. end function

We implemented these algorithms by Matlab R2019a software on a sys-
tem with Xeon-R Gold 6130 CPU 2.1 GHz computer with 16 GB RAM. The
experimental results show that our algorithm is much more efficient than the
APX algorithm in terms of execution time and solution quality for MAX-
SPA-ST of large sizes.

23

CONCLUSION

The thesis has completed the research objectives set out and achieved the fol-
lowing results:
- Proposed 02 algorithms to solve MAX-SMTI problem are published in
Chapter 2.
- Proposed 02 algorithms to solve MAX-HRT problem are published in Chap-
ter 3
- Proposing 02 algorithms to solve the problem SPA-P and SPA-ST published
in Chapter 4.
Research are published in conference proceedings, and prestigious journals
specializing in Heuristic, Computer Science, and Artificial Intelligence do-
mestically and internationally
From the obtained results and limitations in this thesis, in the future, the thesis
will continue to study effective heuristic algorithms for other variations of the
stable marriage problem and other approaches to the problem. matrimonial
stability problems and variations.

24

	1 OVERVIEW OF STABLE MARRIAGE PROBLEM
	2 PROPOSED ALGORITHMS TO SOLVE MAX-SMTI PROBLEMS
	3 PROPOSED ALGORITHM TO SOLVE MAX-HRT PROBLEM
	4 PROPOSED ALGORITHMS TO SOLVE MAX-SPA PROBLEM

