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INTRODUCTION 

1. The necessity of the research 

Research associated with practical application is an activity that requires a lot of 

time and effort of scientists. Moreover, in the 4.0 technology era, applications not only 

support basic business features but also help people make relatively accurate predictions 

at the present time and in the future. The rapid growth of these intelligent systems 

increases the demand for practical applications resulting in the generation of large 

amounts of data daily. Traditional statistical tools and methods are based on application 

needs, but they are not capable of handling the huge amounts of data that are derived 

from these applications. The analysis of such data is a top priority task otherwise it will 

turn into a very complex and unfavorable system. To overcome this problem, data 

mining [1]–[3] is one of the approaches that benefits by assisting in data analysis and 

summarizing data into useful information. The concept of data mining is to generate 

previously unidentified information with great relevance from the database for decision 

making. Depending on the variety of knowledge, data mining methods can be divided 

into the following categories: association rules [4]–[8], classification [7], [9]–[11], 

clustering [12]–[14] and sequential samples [15], [16]. In particular, association rule 

mining is very important for data mining research [17]–[19]. In common business 

transactions, association rules are of the form A→B with the purpose of finding the 

relationship of items in the database. This helps businesses make decisions in planning 

business and marketing strategies. In the first stage of association rule mining, frequent 

itemsets are obtained from a given set of data. From the extracted frequent item sets, 

association rules are built in the second stage. The main stage of association rule mining 

is frequent item set mining because it takes a lot of effort to locate frequent itemsets in 

a data set. Most of the research in this field has focused on improving the efficiency of 

cluster mining in terms of time and memory.   

Traditional association rule or frequent item set mining algorithms [20], [21] mostly 

only represent transaction data in binary value, that is, it deals with the occurrence of 

items. However, with a clear approach, it is difficult to mine frequent item sets for 

association rules in databases containing quantitative data. Due to its ease of use and 

similarity to human inference, fuzzy set theory [22], [23] is being used in intelligent 

systems more often [24]–[27]. Linguistic representation makes knowledge simpler for 

humans to understand, so it is widely used. Therefore, in order to mine fuzzy association 

rules from the quantitative database, the domains of the quantitative attribute will be 

converted into a fuzzy set represented in the linguistic variables by using the 

membership function [ 28], this approach can reduce computations. Several fuzzy 

mining algorithms have been widely studied and developed using fuzzy set theory to 

convert the quantitative value of items into linguistic terms based on the same 

mechanism as regular Apriori [29]. [30], [31] [32]. 

The author used byte-vector representing the tidlist, the compressed list used 

contributes to the performance increase. Previously, Janikow combined symbolic 

decision trees on rule-based systems for fuzzy control [34] using fuzzy representation. 

Watanabe and Fujioka [35], [36] have defined equivalence redundancy of fuzzy 

elements and related theorems for fuzzy association rule mining. The goal of the 

algorithm is to refine the time spent on rule mining and at the same time remove 

redundant rules in data mining applications. However, most fuzzy association rule 

mining methods apply Apriori [37] to generate candidates and check their support, thus 

requiring multiple rescans of the database, since so it causes slow and inefficient process 

in large database. Furthermore, with the fuzzy representation in the above algorithms, 

the fuzzy set of the quantitative attributes and their membership functions depends on 
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the subjective opinion of the expert or the availability. This problem causes "sharp" 

boundaries between fuzzy intervals, so it is difficult to determine the extent of the 

membership function for elements near the interval boundary. This is the first gap 

identified in the research problem of the thesis.  

Instead of using the conventional approach according to Apriori, Lin et al. 

implemented fuzzy frequent tree (FFP)-tree method [38], [39] to mine fuzzy frequent 

itemsets based on pattern growth mechanism. This approach applied both fuzzy set 

theory and FP tree structure (Frequent pattern) to build FFP tree (Fuzzy Frequent 

Pattern) which can be used for mining process. The transformed language variables and 

their membership degree are sorted in ascending order of each transaction, thus 

preserving the downward closure property for recursive construction of the condition 

tree and mining fuzzy frequent items. This approach can require a lot of computation 

time when the transaction size is very large. The tree compression algorithm (CFFP- 

Compact Fuzzy Frequent Pattern) [40] was then designed to reduce the size of the FFP 

tree. Thus, an array is attached to each node by preserving the fuzzy values for the 

currently processed language variable with any of its prefix itemsets in the path. 

Although the number of tree nodes of the CFFP tree is significantly reduced compared 

with the FFP tree algorithm, it is necessary to keep an additional array of each node to 

store the member values of the currently processed node with any language variables in 

the way. Therefore, it requires a large amount of memory to hold such information, 

which is not efficient in a sparse database. To overcome this limitation, the upper-bound 

fuzzy frequent pattern (UBFFPT) algorithm [41] was then designed to keep not only the 

dense tree structure, but also the ability to fuzzy frequent item sets from memory limit 

compared to FFP tree and CFFP tree algorithm. The UBFFPT tree algorithm can 

efficiently mine fuzzy frequent items keeping the same size of tree nodes as the CFFP 

tree algorithm but memory and computational usage can be greatly reduced. The above 

algorithms only use a single language term to represent the item being processed in the 

database, so the information detected may be incomplete. Many algorithms related to 

multiple fuzzy frequent set mining [42]–[44] have been proposed to help knowledge be 

mined more fully than traditional methods. Then, Hong et al. [42] created a tree-based 

structure based on the concept of FP and FFPT trees [38] while maintaining multiple 1-

item fuzzy frequent itemsets with an MFFP tree designed for mining necessary 

information extraction. Not only is a single language variable maintained to represent 

an item, but every item's fuzzy value is greater than the minimum support threshold. In 

order to make wise decisions, a more complete set of facts is thus maintained. The 

similar concept is then implemented for UBMFFP trees [44] and CMFFP trees [43]. 

Effective techniques for decision-making can consequently be attained with more 

comprehensive information regarding various derived fuzzy frequent patterns. 

Nevertheless, because the mining of fuzzy frequent itemsets in these methods is done 

recursively from the tree structure, a lot of memory is needed to store the temporary 

trees. The thesis will address this as the second gap. 

Frequent itemset mining from many fuzzy datasets is mentioned in the article [45]. 

In the article, the author merges multiple tables using a star schema to find fuzzy multi-

level association rules in a relational database model, capable of handling many tables. 

The algorithm uses joins and entities to recognize frequent item sets. However, the 

results of the paper still have many limitations in calculating the support of item sets 

related to other connections containing fuzzy properties. Another method such as [46] 

uses the differential evolutionary algorithm (DE) to mine optimized statistically 

significant fuzzy association rules that have large numbers and significant measurable 

values with strict control over the risk of speculative rules. In addition, the pattern-based 
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algorithm proposed in [47] aims to find fuzzy association rules from large quantitative 

data sets. Various studies have been carried out not only to improve the performance but 

also to improve the search speed of fuzzy association rules with hash tables, schemas or 

tree data structures [40], [41], 43], [44]. The FFI-Miner frequent fuzzy item set mining 

algorithm [48] was developed to mine the complete set of FFIs without generating 

candidates. Algorithms using efficient pruning strategy were also developed to reduce 

the search space, thus speeding up the mining process to directly detect frequent fuzzy 

item sets. Frequent patterns are sets of items found in a significant number of 

transactions. Along with the increase in data size, the data types are heterogeneous and 

the data variation is extremely dynamic. Therefore, extending efficient fuzzy mining 

algorithms to the era of big data is an important problem, mining by applying parallel 

processing techniques has become a possible way to overcome this problem. processing 

time problem. This is the third gap identified in the thesis. 

In Vietnam, association rule mining has been researched by research groups at the 

Institute of Information Technology under the Vietnam Academy of Science and 

Technology such as the doctoral thesis of Nguyen Huy Duc [49] introducing the FSM 

algorithm as an algorithm. quickly mine all the high-stakes item sets in the transaction 

database and propose the AFSM (Advanced FSM) algorithm based on the steps of the 

FSM algorithm with a new method of more efficient pruning of the candidate item sets. 

The doctoral thesis of Nguyen Long Giang [50] presents data mining methods using 

rough set theory. Author Nguyen Cong Hao's article [51] presents a fuzzy association 

rule processing method based on Hedge algebra. The research group of Prof. Dr. Vo 

Dinh Bay and Prof. Dr. Le Hoai Bac proposed a method of mining common item sets in 

a clear database like [52]–[55], which can be considered as the foundation for the 

research in the thesis.  

 This thesis aims to address the three gaps identified above. The research to solve 

those problems is really necessary not only in terms of theoretical development but also 

in terms of practical application. That is the motivation for the author of the thesis to 

conduct a research on the topic "Fuzzy frequent item set mining based on tree 

structure and parallel processing techniques" to come up with new effective methods 

of item set mining and mining of fuzzy association rules based on fuzzy set theory. 

2. Research scope and subjectives 

a. Research objectives 

The objective of the thesis is to propose solutions to mining fuzzy frequent itemsets 

in quantitative databases, to overcome the "sharp boundary" problem when partitioning 

fuzzy data for quantitative attributes. 

Specifically, the thesis focuses on proposing solutions to: 

- Identify fuzzy sets for each quantitative attribute in the database through 

clustering techniques. 

- Reduced storage memory during fuzzy frequent item set mining 

- Reduce processing time in mining fuzzy frequent itemsets in large databases. 

b. Research objects 

- Frequent itemset mining algorithms in transactional databases 

- Algorithms of fuzzy frequent item set mining, fuzzy association rule mining in 

quantitative databases. 

c. Research scope 

- The thesis studies fuzzy association rules, fuzzy frequent itemsets in quantitative 

databases. 
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- Synthesize scientific publications related to fuzzy frequent item set mining 

methods. 

- Compare experiments with existing algorithms 

3. Research methods 

The following research techniques were employed in the thesis:  

- Synthesize and assess published results on fuzzy frequent item set mining 

techniques from various sources of information acquired. On this foundation, 

suggest new outcomes and assess new results by putting various algorithms to the 

test. Apply the results to address a real-world issue. 

- Comparative method is used to analyze methodologies and algorithms that have 

been proposed to address relevant research problems. Thereby, generating ideas for 

novel algorithms to solve research problem. 

- Experimental method is used to assess the accuracy and viability of the suggested 

algorithms, real data sets are used for testing. 

4. The main contributions of the thesis 

The main contributions of the thesis are to propose and solve the following 

problems: 

- Propose a method to determine fuzzy sets for each quantitative attribute in the 

database through clustering techniques. More specifically, the thesis presents the 

EMC clustering technique. The goal of these algorithms is to divide data into 

meaningful clusters. These clusters are then used to classify each quantitative 

attribute as a fuzzy set and determine their membership functions. [CT2], [CT4]. 

- Propose a method to mine fuzzy frequent itemsets in quantitative databases using 

Node-list data structure. Fuzzy frequent itemset mining based on PP_code or 

POS_code helps to limit the required memory consumption. [CT1], [CT2], [CT5]. 

- Propose a parallel processing method to mine fuzzy frequent itemsets using the 

approach of cellular learning automata (CLA). According to CLA, space is 

represented as a lattice, with each element being a cell. Line by line, transaction data 

will be read and simultaneously transferred to cells, which are processed in parallel. 

Through the use of these autonomous data cells, mining of fuzzy frequent itemsets 

is performed. This process shortens the execution time of the algorithm. [CT3]. 

5. The main research contents of the thesis 

The thesis consists of Introduction, 03 chapters and conclusion. 

- Introduction: Presenting the necessity and motivation of the research topic; 

research objectives, objects and scope; Research Methods; the main contributions 

and structure of the thesis. 

- Chapter 1: Theoretical foundations 

- Chapter 2: Mining fuzzy frequent itemsets based on tree structure. 

- Chapter 3: Mining fuzzy frequent itemsets using parallel processing  

 

  



5 

 

CHAPTER 1: THEORETICAL FOUNDATIONS 

In this chapter, the author presents the basic concepts of association rules, 

quantitative association rules, fuzzy logic, fuzzy association rules and related studies on 

fuzzy association rules. From there, identify outstanding issues to be solved in Chapter 

2.  

1.1 Association rule 

1.1.1 Basic concepts of association rules [55] 

Definition 1.1:  Transaction database  

Assume 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑚} is the set of items. 𝐷 = {𝑇1, 𝑇2, … , 𝑇𝑛} is a set of 

transactions, called the transaction database, where each transaction t in D has the form 

(tid, X) where each transaction t has identifier tid itemset t-itemset, 𝑡 =
(𝑡𝑖𝑑, 𝑡 − 𝑖𝑡𝑒𝑚𝑠𝑒𝑡); X is called the itemset if 𝑋 ⊆ 𝐼.  

Definition 1.2: The support of an itemset 

The support of an itemset X in the transaction database D denoted sup (X) is the 

number of transactions containing the item set X, calculated by the following formula: 

𝑠𝑢𝑝(𝑋) = |𝑡| 𝑋 ⊆ 𝑡, 𝑡 ∈ 𝐷|                                            (1.1) 

In which the symbol |.| is the number of transactions. 

Definition 1.3: Frequent itemset 

 An item set X contained in transaction database D is said to be frequent if its support 

(𝑠𝑢𝑝(𝑋)) is greater than or equal to a given minimum support threshold (minsup) 

defined by the user. Therefore, support is considered as the frequency of simultaneous 

occurrence of items. 

Definition 1.4: Association rules 

An association rule is a proposition of the form X →Y, where X and Y are sets of 

items that satisfy the following conditions: 𝑋 ⊆ 𝐼, 𝑌 ⊆ 𝐼 và 𝑋⋂ 𝑌 = ∅. X is called 

antecedent while Y is called consequent, the rule means X implies Y.  

Definition 1.5: The support of a rule 

Given an association rule 𝑟 = 𝑋 → 𝑌, the support of rule r denoted as sup(r) is the 

ratio of the number of transactions T ⊆ D containing both itemset X and itemset Y to 

the total number of transactions in D is defined as: 

                                            𝑠𝑢𝑝(𝑟) =
|{𝑇 ∈ 𝐷|𝑇 ⊃ 𝑋 ∪ 𝑌}|

|𝐷|
                                        (1.2) 

Definition 1.6:  The confidence of a rule 

Given an association rule 𝑟 = 𝑋 → 𝑌, the confidence of the rule r denoted as conf(r) 

is the ratio of the number of transactions T ⊆ D containing both itemset X and itemset 

Y to the total number of transactions in D contains the itemset X, defined as follows: 

𝑐𝑜𝑛𝑓(𝑟) =
|{𝑇 ∈ 𝐷|𝑇 ⊃ 𝑋 ∪ 𝑌}|

|{𝑇 ∈ 𝐷|𝑇 ⊃ 𝑋}|
=

𝑠𝑢𝑝(𝑋 ∪ 𝑌)

𝑠𝑢𝑝(𝑋)
                    (1.3) 

Definition 1.7: Strong association rule 

Given an association rule 𝑟 = 𝑋 → 𝑌, if the rule r satisfies both the minimum 

support (minsup) and minimum confidence thresholds (minconf), it is called a strong 

association rule, that is:  

𝑠𝑢𝑝(𝑟 = 𝑋 → 𝑌) = 𝑃(𝑋 ∪ 𝑌) ≥ 𝑚𝑖𝑛𝑠𝑢𝑝 

𝑐𝑜𝑛𝑓(𝑟 = 𝑋 → 𝑌) = 𝑃(𝑋 ∪ 𝑌) =
𝑠𝑢𝑝(𝑋 ∪ 𝑌)

𝑠𝑢𝑝(𝑋)
≥ 𝑚𝑖𝑛𝑐𝑜𝑛𝑓 

Problem statement: The association rule problem is stated as follows [49]: 
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For a transactional database D, minimum support minsup, minimum confidence 

minconf. Find all association rules of the form 𝑋 → 𝑌 that satisfy 𝑠𝑢𝑝(𝑋 ∪ 𝑌) ≥

𝑚𝑖𝑛𝑠𝑢𝑝 và độ tin cậy 𝑐𝑜𝑛𝑓(𝑋 → 𝑌) =
𝑠𝑢𝑝(𝑋∪𝑌)

𝑠𝑢𝑝(𝑋)
≥ 𝑚𝑖𝑛𝑐𝑜𝑛𝑓. 

1.1.2 Association rule in binary database 

Binary association rules refer to classical rules in the shopping cart analysis 

problem. Where products may or may not be in the transaction, only Boolean values 

(represented by 1s and 0s) are produced. Therefore, every item in the transaction can be 

identified as a binary attribute with the domain {0,1}. The model is defined in [55] as 

follows: 

Let 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑚} be a set of binary attributes, called items. Let T be the 

transaction database. Each transaction t is represented as a binary vector with 𝑡[𝑘] = 1 

if transaction t contains the entry i_k and 𝑡[𝑘] = 0 otherwise. Given X is a set of items 

contained in I, a transaction t satisfies X if every item in X, 𝑖𝑘 ∈ 𝑋, 𝑡[𝑘] = 1. 

1.1.3 Association rule in quantitative database 

According to this form of binary association rule, items are only interested in 

whether or not they appear in the transaction database, not how often or how often they 

occur. In fact, the database contains not only binary attributes, but also quantitative and 

categorical attributes that cannot be mined by classical techniques. The mining of rules 

in such data can be called a quantitative association rule problem [29].The quantitative 

association rule mining strategy is implemented by converting the attributes with 

quantitative values to binary values. In this method, each quantifiable/categorical value 

of the form 〈𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒, 𝑣𝑎𝑙𝑢𝑒〉 is mapped to a binary value. Then, binary association 

rule mining techniques are performed to find the rule. In quantitative association rule 

mining, the attributes can be both quantitative and categorical. 

1.2 Overview of Fuzzy logic 

1.2.1 Fuzzy set 

Given a universe set U with elements denoted by 𝑢 , 𝑈 = {𝑥}. A fuzzy set 𝐴̃ over U 

is a set characterized by a function 𝜇𝐴(𝑢) that associates each element 𝑢 ∈ 𝑈 with a real 

number in the interval [0,1]. 

𝐴̃ = {(𝑢, 𝜇𝐴(𝑢)) | 𝑢 ∈ 𝑈}                                    (1.4) 

Where 𝜇𝐴(𝑢) is a mapping from U to [0,1] and is called the membership function 

of the fuzzy set 𝐴̃. 

1.2.2 Membership function 

The membership function 𝜇𝐴(𝑢) defined for the set 𝐴 on the universe set U in the 

classical set concept has only two values of 1 if 𝑢 ∈ 𝐴 or 0 if 𝑢 ∉ 𝐴. However, in the 

concept of a fuzzy set, the membership function value indicates the membership degree 

of the element u into the fuzzy set 𝐴. The specified interval of the function 𝜇𝐴(𝑢) is the 

interval [0, 1], where the value 0 indicates the degree of non-belonging, and the value 1 

indicates the degree of complete belonging. 

𝜇(𝐴) ∶ 𝑈 →  [0, 1]                                                        (1.5) 

The type of the fuzzy set depends on different types of membership functions. There 

are many different types of member functions proposed. 

1.2.3 Linguistic variables 

Linguistic variable is characterized by a quintuple (𝑋, 𝑇(𝑋), 𝑈, 𝑅, 𝑀), where X is 

the variable name, T(X) is the set of linguistic values of the variable X, U is a universe 

of discourse, each linguistic value is considered a fuzzy variable on U combined with 

the base variable u, R is a syntactic rule that generates linguistic values of 𝑇(𝑋), M is 

the the semantic rule assigns each linguistic value in 𝑇(𝑋) to a fuzzy set on U. 
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For an example: Given X is a linguistic variable named AGE, the base variable u is 

taken according to the age of a person whose domain is defined as 𝑈 = [0,100]. The set 

of linguistic values 𝑇(𝐴𝐺𝐸) = {𝑣𝑒𝑟𝑦 𝑦𝑜𝑢𝑛𝑔, 𝑦𝑜𝑢𝑛𝑔, 𝑚𝑖𝑑𝑑𝑙𝑒, old, very old}. 

 

1.2.4 Fuzzy Logic operations 

Three basic fuzzy logic operations: complement, union and intersection are 

commonly used in fuzzy set theory, described below [22]. 

Complement: The complement operation of fuzzy set A is denoted ⌐A. The 

membership function of ⌐A can be defined as: 

𝜇⌐𝐴(𝑥) = 1 − 𝜇𝐴(𝑥),     ∀𝑥 ∈ 𝑋                                      (1.9) 

Union: The union of two fuzzy sets A and B is denoted 𝐴 ∪ 𝐵. The membership function 

of 𝐴 ∪ 𝐵 for the normal operation can be defined as follows: 

𝜇𝐴∪𝐵(𝑥) = 𝑚𝑎𝑥{𝜇𝐴(𝑥), 𝜇𝐵(𝑥)}, ∀𝑥 ∈ 𝑋                      (1.10) 

Intersection: The intersection operation of two fuzzy sets A and B is denoted 𝐴 ∩ 𝐵. 

The membership function of 𝐴 ∩ 𝐵 for the normal operation can be defined as follows: 

𝜇𝐴∩𝐵(𝑥) = 𝑚𝑖𝑛{𝜇𝐴(𝑥), 𝜇𝐵(𝑥)}, ∀𝑥 ∈ 𝑋                      (1.11) 

1.3 Fuzzy association rules  

1.3.1 Fuzzy transactional database 

Let 𝐼 = {𝐼1, 𝐼2, … , 𝐼𝑚} be the set of n attributes, 𝑖𝑢 is the uth attribute in I. 𝐷𝑄 =
{𝑇1, 𝑇2, … , 𝑇𝑛} is a set of transactions with each 𝑇𝑣 ∈  𝐷𝑄 is a subset of I containing items 

that have a quantitative value and have a unique identifier TID. A transaction T is said 

to contain X if 𝑋 ⊆ 𝑇𝑞, in which X is a set containing some items contained in I. Each 

attribute 𝐼𝑘 can be associated with the represented fuzzy set of values 𝐹𝑖𝑘 =

{𝑓𝑖𝑘
1 , 𝑓𝑖𝑘

2 , … , 𝑓𝑖𝑘
ℎ} where 𝑓𝑖𝑘

𝑗
 is the jth fuzzy value in 𝐹𝑖𝑘. Using the related membership 

function to determine the fuzzy set for each attribute, the quantitative database 𝐷𝑄 is 

transformed into a database containing the fuzzy value 𝐷𝑓. 

1.3.2  The support of fuzzy itemset 

A fuzzy attribute set in fuzzy association rule is a pair 〈𝑋, 𝐴〉 where A is the set of 

fuzzy sets corresponding to the attributes in X and 𝑋 ⊆ 𝐼. 

The support of the itemset 〈𝑋, 𝐴〉 denoted by 𝑓𝑠𝑢𝑝(〈𝑋, 𝐴〉 ) is determined by the 

following formula:  

𝑓𝑠𝑢𝑝(〈𝑋, 𝐴〉) = ∑ 𝜇𝑥1(𝑡)

𝑡∈𝑇

⨂ 𝜇𝑥2(𝑡)⨂ … ⨂ 𝜇𝑥𝑝(𝑡)                        (1.12) 

where, 𝜇𝑥𝑝(𝑡) is fuzzy value of attribute 𝑥𝑝 in a transaction t.  

⨂ is T-norm operator. In fuzzy logic theory, it has the same role as the AND 

operation in classical logic. There are many ways to choose T-norm operation such as: 

𝑎 ⊗ 𝑏 = 𝑚𝑖𝑛(𝑎, 𝑏) 

𝑎 ⊗ 𝑏 = 𝑎𝑏 

𝑎 ⊗ 𝑏 = 𝑚𝑎𝑥(0, 𝑎 + 𝑏 − 1) 

𝑎 ⊗ 𝑏 = {

𝑎 (𝑖𝑓 𝑏 = 1)

𝑏 (𝑖𝑓 𝑎 = 1)

0 (𝑖𝑓 𝑎, 𝑏 < 1)
 

Intersection: 𝑎 ⊗ 𝑏 = 1 − 𝑚𝑖𝑛 [1, ((1 − 𝑎)𝑤 + (1 − 𝑏)𝑤)
1

𝑤]  với (𝑤 > 0) 

The minimization operation and algebraic product are the two most suitable 

operations because it is convenient for calculations and shows the close relationship 

between the attributes in the frequent sets. 
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When we choose the minimization operation for T-norm operator, the formula for 

calculating the support of the itemset 〈𝑋, 𝐴〉 will be: 

𝑓𝑠𝑢𝑝(〈𝑋, 𝐴〉) = ∑ 𝑚𝑖𝑛{𝜇𝑥1(𝑡),  𝜇𝑥2(𝑡), … ,  𝜇𝑥𝑝(𝑡)}

𝑡∈𝑇

                   (1.13) 

When we choose algebraic product for T-norm operator, the formula for calculating 

the support of the itemset 〈𝑋, 𝐴〉 will be: 

𝑠𝑢𝑝(〈𝑋, 𝐴〉) = ∑ ∏ { 𝜇𝑥𝑝(𝑡)}                                             (1.14)

𝑥𝑝∈𝑋𝑡∈𝑇

 

1.3.3  The fuzzy frequent itemset 

Definition 1.8: (The fuzzy frequent itemset): [41] 

An item set 〈𝑋, 𝐴〉 is said to be frequent if its support is greater than or equal to the 

user-defined minimum support (fminsup) 𝑓𝑠𝑢𝑝(〈𝑋, 𝐴〉) ≥ 𝑓𝑚𝑖𝑛𝑠𝑢𝑝. 

Mining frequent fuzzy item sets is the problem of extracting all frequent fuzzy item 

sets of the form:  

𝐹𝐹𝐼𝑘 = {𝑋 | 𝑓𝑠𝑢𝑝(𝑋) ≥ 𝛿 × |𝐷𝑓|}                                         (1.15) 

1.3.4 Fuzzy association rules 

After obtaining the fuzzy intervals and their corresponding membership functions 

for each fuzzy itemset of quantitative attributes, a transformed database 𝐷𝐹 (by 

fuzzification) is created from the original database. Given a fuzzy database 𝐷𝐹 =
{𝑇1, 𝑇2, … , 𝑇𝑛} with attributes  𝑖𝑗 ∈ 𝐼 and fuzzy sets 𝐹𝑖𝑗  corresponding to the attributes in 

I. A fuzzy association rule has the following form:  

𝐼𝑓 𝑋 = {𝑥1, 𝑥2 … , 𝑥𝑝} 𝑖𝑠 𝐴 = {𝑎1, 𝑎2 … , 𝑎𝑝}  𝑡ℎ𝑒𝑛 𝑌 = {𝑦1, 𝑦2 … , 𝑦𝑞} 𝑖𝑠 𝐵 =

{𝑏1, 𝑏2 … , 𝑏𝑞}   

where: 𝑎𝑖 ∈ 𝐹(𝑥𝑖), 𝑖 = 1, … , 𝑝 and 𝑏𝑗 ∈ 𝐹(𝑦𝑗), 𝑗 = 1, … , 𝑞. X and Y are ordered 

subsets of I and distinct, 𝑋 ∩ 𝑌 = ∅. X is called antecedent while Y is called consequent, 

the rule means X implies Y. 

An example of an association rule takes the form: IF AGE is Young THEN Salary 

is Low. 

Definition 1.9: (The support of a fuzzy association rule) 

The support of a fuzzy association rule 𝑋 𝑖𝑠 𝐴 ⇒ 𝑌 𝑖𝑠 𝐵 is determined by the 

following formula: 

𝑓𝑠𝑢𝑝(〈𝑋 𝑖𝑠 𝐴 ⟹ 𝑌 𝑖𝑠 𝐵〉) = 𝑓𝑠𝑢𝑝(〈𝑋 ∪ 𝑌, 𝐴 ∪ 𝐵〉)              (1.16) 

Definition 1.10: (The confidence of a fuzzy association rule) 

The confidence of a fuzzy association rule 𝑋 𝑖𝑠 𝐴 ⇒ 𝑌 𝑖𝑠 𝐵 is determined by the 

following formula: 

𝑓𝑐𝑜𝑛𝑓(〈𝑋 𝑖𝑠 𝐴 ⟹ 𝑌 𝑖𝑠 𝐵〉) =
𝑓𝑠𝑢𝑝(〈𝑋 𝑖𝑠 𝐴 ⟹ 𝑌 𝑖𝑠 𝐵〉)

𝑓𝑠𝑢𝑝(〈𝑋, 𝐴〉)
                       (1.17) 

A rule is said to be frequent if its support is greater than or equal to fminsup, that is 

𝑓𝑠𝑢𝑝(〈𝑋 𝑖𝑠 𝐴 ⟹ 𝑌 𝑖𝑠 𝐵〉) ≥ 𝑓𝑚𝑖𝑛𝑠𝑢𝑝. 

A rule is said to be reliable if its confidence is greater than or equal to the user-

defined minimum confidence fminconf, that is 𝑓𝑐𝑜𝑛𝑓(〈𝑋 𝑖𝑠 𝐴 ⟹ 𝑌 𝑖𝑠 𝐵〉) ≥
𝑓𝑚𝑖𝑛𝑐𝑜𝑛𝑓. 

1.4 Related works 

1.4.1 Apriori-based approach studies 

The studies based on Apriori approach were used to mine fuzzy frequent itemsets, 

then the remaining fuzzy frequent itemsets can be used to generate fuzzy association 

rules such as F-APACS [69], [31], [32]. In which, the values of the quantitative 



9 

 

attributes are first converted into representations of linguistic terms with their 

membership values according to predefined membership functions.  

1.4.2 Extensive studies from Apriori 

Several variant algorithms have been presented to mine fuzzy association rules [70], 

[71], [72], [73], [74]. Then the author also developed a multi-level fuzzy mining 

algorithm to mine fuzzy association rules by integrating the concepts of fuzzy set and 

multi-level classification [28]. 

1.4.3  Tree-based methods 

To solve the problem of computation time, Papadimitriou proposed the algorithm 

of Frequent Fuzzy Pattern Tree (FFPT) [75]. Lin then presents another framework for 

fuzzy mining to find fuzzy frequent items based on tree structure. Three algorithms, FP 

fuzzy frequent tree (FFP)-tree [38], compressed fuzzy frequent tree (CFFP)-tree [39] 

and upper bound fuzzy frequent pattern tree (UBFFP)-tree [40] have been developed to 

mine fuzzy frequent itemset from quantitative databases. These algorithms differ mainly 

in the tree structure. 

1.5 Define research problem 

In Apriori-based fuzzy data mining methods, quantitative values are converted into 

fuzzy sets according to predefined membership functions. Then, fuzzy frequent itemsets 

and fuzzy association rules can be generated based on the Apriori implementation. Since 

the execution time of Apriori-based methods is time-consuming, tree-based fuzzy data 

mining methods are described to speed up the mining process. Basically, these methods 

are modified from the FP-tree to handle fuzzy itemset. The mining of frequent fuzzy 

item sets is done entirely in the tree, which takes up a lot of memory space. This thesis 

has proposed a fuzzy frequent itemset mining algorithm based on the Node-list structure 

to solve the problem of memory space in the works [CT1], [CT2], [CT5]. 

Furthermore, member functions can be given by experts. However, expert opinions 

may not always be available. To solve this problem, the thesis has proposed a method 

to determine fuzzy sets for each quantitative attribute in the database by EMC clustering 

technique in the works [CT2], [CT2], [CT4]. 

Along with the increase in the size of data, data mining in large databases has 

become an important issue. Besides applying cloud computing or other parallel and 

distributed architectures to speed up the fuzzy mining process is also worth 

investigating. The thesis proposes a parallel processing method for fuzzy frequent 

itemset mining using the cellular learning automata approach. [CT3] 

Conclusion of chapter 1 

In Chapter 1, the thesis presents an overview of issues related to association rules, 

fuzzy logic and fuzzy association rules, different fuzzy data mining methods, including 

fuzzy data mining based on Apriori, tree-based fuzzy data mining and then identify the 

research problems of the thesis. 

This thesis focuses on presenting the solution of problems in the studies [CT1], 

[CT2], [CT5], CT[4], [CT3]. Specifically, the thesis will focus on researching proposals 

and solutions to thoroughly solve the following 3 problems: 

− Propose a method to determine fuzzy sets for each quantitative attribute in the 

database through clustering techniques.  

− Propose a method to mine fuzzy frequent itemsets in quantitative databases using 

Node-list data structure.  

− Propose a parallel processing method to mine fuzzy frequent itemset using cellular 

learning automata. 

The remaining two chapters of the thesis will present the corresponding solutions to 

the three research problems above.  
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 CHAPTER 2: FUZZY FREQUENT ITEMSET MINING BASED ON TREE 

STRUCTURE 

In this chapter, the thesis presents the process of performing fuzzy association rule 

mining. In which, in the first step to convert the quantitative database to the fuzzy 

database, the author performs the fuzzification of the quantitative values of the items by 

the EMC clustering method and identifies the fuzzy intervals. The results of these two 

algorithms are used for the preprocessing step of the data and then applying the 

membership functions to convert the quantitative value to the fuzzy value. In the second 

step, the author proposes two popular fuzzy item set mining methods using Node-list 

structure based on suffix prefix tree (FPPC - Fuzzy Pre-order, Post-order Code) and 

FPOSC tree (Fuzzy Pre-order) Size Code). The result of the frequent fuzzy item set 

mining step is the main basis used to perform the search for fuzzy association rules. 

2.1 State the fuzzy association rule mining problem 

Given a quantitative database 𝐷𝑄 = {𝑇1, 𝑇2, … , 𝑇𝑛} and the set of items 𝐼 =

{𝐼1, 𝐼2, … , 𝐼𝑚}. Given a fuzzy set 𝐴𝑗 = {𝐴𝑗1, 𝐴𝑗2, … , 𝐴𝑗ℎ} where 𝐴𝑗𝑘 is defined as the kth 

element in the fuzzy set 𝐴𝑗 of item 𝐼𝑗 and 𝑓𝑗,𝑘
(𝑖)

 is the fuzzy value (defined by the 

membership function) of 𝐴𝑗𝑘 in transaction 𝑇𝑖. 

Mining fuzzy association rule (MFAR) is the problem that extracts all rules of form 

𝐴 → 𝐵 satisfied 𝑓𝑠𝑝(𝐴 → 𝐵) ≥ 𝑚𝑖𝑛𝑠𝑢𝑝  and 𝑐𝑓𝑐𝑓(𝐴 → 𝐵) ≥ 𝑚𝑖𝑛𝑐𝑜𝑛𝑓, with 𝑚𝑖𝑛𝑠𝑢𝑝 

and 𝑚𝑖𝑛𝑐𝑜𝑛𝑓 are the threshold predefined by user. The fuzzy association rule mining 

algorithm is implemented through three main phases: 

− Phase one: Convert quantitative database to fuzzy database. 

− Phase two: Extract all frequent fuzzy itemset that fuzzy support greater than 

minimum threshold support 𝐹𝐹𝐼𝑘 = {𝐴| fsp (𝐴) ≥ 𝛿}. 

− Phase three: Initiate all fuzzy association rules with confidence greater than 

the minimal confidence threshold from the frequent fuzzy item sets found in 

Phase two. 

2.2 Data clustering algorithm and identification of fuzzy intervals 

2.2.1 Basic concepts 

2.2.1.1 Data clustering 

In data mining, Expectation Maximization (EM) [77]– [79] is a data clustering 

algorithm used in knowledge discovery tasks. The EM algorithm has the following 

limitations: First, EM runs fast in the initial loops but slower in the next loops. Second, 

EM did not always find the optimal parameter for the global, instead the local optimal.  

 Definition 2.1:  

The coefficient of variation 𝐶𝑣 is defined as the ratio of the standard deviation 𝜎 to 

the expectation 𝑥 of the cluster i containing the elements 𝑋𝑖{𝑥𝑖1
, 𝑥𝑖2

, … , 𝑥𝑖𝑛
}: 

𝐶𝑣(𝑋𝑖) =  
𝜎

𝑥̅
× 100                                                           (2.1) 

Definition 2.2: univariant Gaussian distribution [77]–[79] 

𝑁(𝑋|𝑥̅, 𝜎) =
1

√2𝜋𝜎2
𝑒

−
(𝑋−𝑥̅)2

2𝜎2                                        (2.2) 

Definition 2.3: Multivariant Gaussian distribution [77]–[79] 

 

𝑁(𝑋|𝑥̅, 𝛴) =
1

(2𝜋|𝛴|)
1

2⁄
𝑒𝑥𝑝 {−

1

2
(𝑋 − 𝑥̅)𝑇 ∑(𝑋 − 𝑥̅)

−1

}           (2.3) 

The method of parameter estimation (Maximum Likelihood). Calculate the log for 

the Gaussian distribution [77]–[79]. 



11 

 

𝑙𝑛 𝑝(𝑋|𝑥̅, 𝛴) = −
1

2
𝑙𝑛(2𝜋) −

1

2
𝑙𝑛|𝛴| −

1

2
(𝑋 − 𝑥̅)𝑇 ∑(𝑋 − 𝑥̅)

−1

     (2.4) 

Derivative: 

𝛿 𝑙𝑛 𝑝(𝑋|𝑥̅, 𝛴)

𝛿𝑥̅
=  0, 𝑥̅𝑀𝐿 =

1

𝑁
∑ 𝑋𝑛

𝑁

𝑛=1

 

𝛿 𝑙𝑛 𝑝(𝑋|𝑥̅, 𝛴)

𝛿 𝛴
=  0, 𝛴𝑀𝐿 =

1

𝑁
∑ 𝑋𝑛

𝑁

𝑛=1

 

Where N is the number of samples. Gaussian linear mixed distribution: 

𝑝(𝑥)  = ∑ 𝜋𝑘 𝒩(𝑋|𝑥̅𝑘, 𝛴𝑘)

𝐾

𝑘=1

                                      (2.5) 

Where K is the Number of Gaussians and 𝜋𝑘 is the mixing coefficient, with a weight 

for each Gaussian unit: 0 ≤ 𝜋𝑘 ≤ 1, ∑ 𝜋𝑘 = 1𝐾
𝑘=1 . Consider log likelihood: 

𝑙𝑛 𝑝(𝑋|𝑥̅, 𝛴, 𝜋) = ∑ 𝑙𝑛 𝑝

𝑁

(𝑋𝑛) = ∑ 𝑙𝑛 {∑ 𝜋𝑛(𝑋𝑛|𝑥̅𝑘, 𝛴𝑘)

𝑁

𝑛=1

}

𝑁

    (2.6) 

2.2.1.2 Determination of fuzzy intervals 

When manipulating data in fuzzy databases, the most important problem is how to 

find a method to handle fuzzy values from which to build matching relationships 

between them. The values in fuzzy databases are complex, including linguistic values, 

numeric values, and interval values. There are many different approaches to dealing with 

fuzzy values that have been studied in recent years, such as: fuzzy set theory [22], 

possibility theory [22] 80], [81], similarity relationship [82]. The interval values are 

almost converted to fuzzy numbers in the form of triangles, trapezoids, bells for 

processing. 

2.2.2 Problem 

Given a database containing quantitative values 𝐷𝑄. 

The problem is: Determine the set of fuzzy sets of quantitative attributes in 𝐷𝑄 and 

the corresponding membership functions. Convert quantitative database to fuzzy 

database. 

2.2.3 Data Clustering Algorithm EMC 

2.2.3.1 Algorithm idea 

EMC algorithm is a dynamically operated iterative optimization technique 

(Algorithm improved to increase flexibility for clustering while reducing local 

optimization and increasing global optimization). 

1. Step E: For the given parameter values, we can calculate the expected value of 

the latent variable (Based on the given parameters of the model, calculate the probability 

for the expected value of the potential variables and label the data points into a group). 

2. Step M: The parameters of the model are updated through the latent variables 

calculated according to the maximum estimation method. 

3. Step C: Update the model's parameters based on latent variables calculated by the 

method of maximum estimator and similarity ratio among objects in a cluster and 

evaluate the coefficient of variation of the elements in the cluster.. 

2.2.3.2 EMC Algorithm 

EMC algorithm is presented in Algorithm 2.1 

The EMC algorithm starts with the parameters for the predictive model. Then execute 

the 5-process loop shown in Algorithm 2.4. 
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Algorithm 2.4: EMC (Expectation Maximization Coefficient) 

Input: Initialize the value of the coefficient of variation 𝐶𝑣𝑣𝑎𝑙𝑢𝑒
 

Output:  Optimal number of clusters 

1: Initialize expectation 𝑥̅𝑗, covariance 𝛴𝑗, mixing coefficient 𝜋𝑗, coefficient of 

variation 𝐶𝑣 and evaluate for the initial value of log likelihood 

2: Step E: Based on the model parameters, calculate the probabilities of 

labeling the data points in a group 

           γj(X) =
πk𝒩(X|x̅k, Σk)

∑ πj𝒩
K
j=1 (X|x̅j, Σj)

                                                    (2.7) 

3: Step M: Update model parameters based on groups obtained from step E 

                               x̅j =
∑ γj(Xn)Xn

N
n=1

∑ γj(Xn)N
n=1

                                                       (2.8) 

                         Σj

=
∑ γj(Xn)(Xn − x̅j)Xn − x̅j

TN
n=1

∑ γj(Xn)N
n=1

                                      (2.9) 

πj =
1

N
∑ γj(Xn)

N

n=1

                                             (2.10) 
4: Evaluate log likelihood. 

ln p(X|x̅, Σ, π) = ∑ ln

N

n−1

= ∑ ln {∑ πk(Xn|x̅k, Σk)

K

k=1

}                                 (2.11)

N

 

 

5: Step C: Update information about the coefficients of variation of clusters 

and evaluate the variability of the elements for each cluster, specifically, 

we evaluate the coefficient of variation of the ith cluster with Cvi
 satisfying 

the variable value bias Cvvalue
 given or not. 

Cvi
=

∑ γj(Xn)Xn
N
n=1

1
n

∑ xk
n
k=1

                                                      (2.12) 

Cvi
≤ Cvvalue

                                                          (2.13) 

 

6: If there is no convergence and the given Cvvalue
 variation is satisfied, go 

back to step 2. If the likelihood does not change much, the algorithm 

terminates. 2.2.3.3 Evaluation of EMC algorithm based on Log Likelihood 

To evaluate the effectiveness of the EMC algorithm by the proposed statistical 

method through the works announced [CT3].  

2.2.4 Algorithm for determining fuzzy intervals. 

2.2.4.1 Determine the mean  

In a fuzzy database, the domain of values of the quantitative attributes of the fuzzy 

object in which (the attributes can contain clear or fuzzy values) is divided into two or 

more fuzzy intervals. In fuzzy intervals, an element can belong to more than one interval 

with different degrees. In this section, it is assumed that each quantitative attribute is 

divided into three fuzzy intervals using a statistical approach that uses the expectation 𝑥̅ 

(mean) and standard deviation (Sd) as illustrated in the below figure. 

 
Figure 1.3: Fuzzy intervals of a quantitative attribute 
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The degree of overlap between the fuzzy data objects belong to two or more cluster 

is defined as: 

                                        𝑂𝑣𝑒𝑟𝑙𝑎𝑝 =
∑ |𝐶𝑗|𝑛

𝑗=1

|⋃ 𝐶𝑗
𝑛
𝑗 |

∗ 100                                    (2.14) 

where 𝐶𝑗 là jth cluster,  j=1, 2,..., n;  

2.2.4.2 Determination the intervals 

The first interval: (𝑑−) is the lower bound of the first interval that is the minimum 

value in the domain of the age attribute. The upper bound  (𝑑+) is calculated by the 

standard deviation and the standard deviation (Sd) of the values of the age attribute. The 

mathematical expressions of  (𝑑−) and  (𝑑+) are presented as follows: 

    
                             𝑑− = 𝑀𝐼𝑁(𝑋1𝐶𝑗 , 𝑋2𝐶𝑗 , … . , 𝑋𝑁𝐶𝑗)

                                𝑑+ = 𝑥̅ −
𝑆𝑑

2
+ 𝑥̅  × 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

}                            (2.15)  

The membership function is used by the Z-membership to compute the membership 

degree for the first interval, which is shown as follows. 

 𝑓(𝑥)𝒵 =
1

2
+

1

2
 𝑐𝑜𝑠 (

𝑥 − 𝑑−

𝑑+ − 𝑑−
) Π                                 (2.16) 

The second interval:  The lower bound (𝑑−) and upper bound (𝑑+) of the second 

interval is calculated as: 

                                    𝑑− = 𝑥̅ −
𝑆𝑑

2
− 𝑥̅ ∗ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

                                        𝑑+ = 𝑥̅ +
𝑆𝑑

2
+ 𝑥̅ ∗ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

}                        (2.17) 

Both membership functions S-membership and Z-membership are used to compute the 

second interval, which is shown as follows: 

             𝑓(𝑥)𝑆 =
1

2
+

1

2
 𝑐𝑜𝑠 (

𝑥̅ − 𝑥

𝑥̅ − 𝑑−
) Π, với  𝑑− ≤ 𝑥 ≤ 𝑥̅

          𝑓(𝑥)𝒵 =
1

2
+

1

2
 𝑐𝑜𝑠 (

𝑥 − 𝑥̅

𝑑+ − 𝑥̅
) Π, với  𝑥̅ ≤ 𝑥 ≤ 𝑑+

}                      (2.18) 

The third interval: The expression below is calculated for the lower bound 𝑑−  and 

the upper bound 𝑑+ of the third interval as follows: 

                                   
     𝑑− = 𝑥̅ −

𝑆𝑑

2
− 𝑥̅ ∗ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝑑+ =  𝑀𝐴𝑋(𝑋1𝐶𝑗 , 𝑋2𝐶𝑗 , … . , 𝑋𝑁𝐶𝑗)
}                      (2.19) 

The third interval use of the membership function (S-Membership) is calculated as 

follows. 

                                          𝑓(𝑥)𝑆 =
1

2
+

1

2
 𝑐𝑜𝑠 (

𝑑+ − 𝑥

𝑑+ − 𝑑−
) Π                       (2.20) 

2.2.4.3 Converting Quantitative Database to Fuzzy Database 

After determining the fuzzy intervals, the initial quantitative database is converted 

into a fuzzy database, preparing for fuzzy association rule mining. For each fuzzy set 

that we previously defined, there is a row in the new database containing the 

membership degree of the single elements for the particular set.  

2.3 Mining fuzzy frequent itemsets 

2.3.1 Problem 

Given a database containing fuzzy values 𝐷𝑓 and minimum support 𝛿 
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Problem statement: Frequent fuzzy itemsets mining (FFIM) is the problem that 

extracts all frequent fuzzy itemsets as: 

𝐹𝐹𝐼𝑘 ≔  {𝑋| 𝑠𝑢𝑝(𝑋) ≥ 𝛿 × |𝐷𝑓|} 

2.3.2 Fuzzy frequent itemset mining using FPPC-tree structure 

2.3.2.1 The idea of algorithm 

From the database containing the fuzzy value 𝐷𝑓, calculate the support of each fuzzy 

item 𝐴𝑖𝑙 in the transaction 𝑇q. Check if fuzzy item support 𝐴𝑖𝑙 is greater than minimum 

support δ then add 𝐴𝑖𝑙 to 𝐹1. Sort fuzzy frequent items in 𝐹1 by decreasing support. Fuzzy 

items that are not fuzzy frequent items are excluded from 𝐷𝑓. Build the FPPC tree. 

After constructing the FPPC tree, by traversing the FPPC tree in pre-order order, we 

obtain the Node-list of each fuzzy (1-item) frequent item. For each 𝑁𝑖, node, we insert 
〈𝑁𝑖 . 𝑝𝑟𝑒, 𝑁𝑖 . 𝑝𝑜𝑠𝑡, 𝑁𝑖 . 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 〉 into the Nodelist of each item represented by N. The 

FPPC tree is deleted after obtaining the Node-list to reduce memory space. 

After obtaining the Node-list of each 1-item frequent item, we perform the Node-

list intersection of 1-item frequent items to find the Node-list of the item set (k-itemset). 

For any candidate (k + 1) Pc, we get the support of Pc by summing the support values of 

all the FPP_Codes in its Node-list. Based on the support of Pc, we can judge whether Pc 

is frequent or not. By repeating the above procedure, we find all the frequent fuzzy 

patterns. 

2.3.2.2 Algorithm for building FPPC-tree 

The algorithm for building FPPC-tree is presented in Algorithm 2.2 

Algorithm 2.1: FPPC_tree_ Construction 

Input: Database containing the fuzzy value Df, minimum fuzzy support fminsup 𝛿. 

Output:  FPPC-tree (FTr), fuzzy frequent itemset 1-itemset (𝐹1). 

(1) Scan database 𝐷𝑓 containing fuzzy values to compute the support of each fuzzy 

item 𝐴𝑖𝑙 in the transaction 𝑇q as in the formula:  

𝑠𝑢𝑝(𝐴𝑖𝑙  ) = ∑ 𝑓𝑖𝑙

𝐴𝑖𝑙 ⊆𝑇𝑞⋀𝑇𝑞∈𝐷𝑓

               

(2) Check if 𝑠𝑢𝑝(𝐴𝑖𝑙  ) ≥ 𝑚𝑖𝑛𝑠𝑢𝑝 𝛿, put 𝐴𝑖𝑙 in 𝐹1. That is  𝐹1 = {𝐴𝑖𝑙  |  𝑠𝑢𝑝(𝐴𝑖𝑙  ) ≥
𝑛 × 𝛿}. 

(3) Sort the frequent fuzzy items in 𝐹1 in support decreasing order. 

(4) if 𝐴𝑖𝑙  𝑛𝑜𝑡 𝑖𝑛 𝐹1, delete 𝐴𝑖𝑙  from all  𝑇𝑞 (𝑞 = 1. . 𝑛).     

(5) Create root of FPPC-tree and label it as “null”  

(6) for each 𝑇q in 𝐷𝑓{ 

(7)      Sort the remaining fuzzy items in support decreasing order; 

(8)      Insert the fuzzy items into FFPC_tree (this process is similar to MFFP_tree 

[42]) 

(9)  } 

(10) Traverses FPPC-tree to generate the PP_Code of each node.. 

2.3.2.3 Nodelist construction algorithm of fuzzy frequent items based on FFPC-tree 

Construction the Node-list of all frequent fuzzy 1-itemsets is shown in Algorithm 

2.3 

Algorithm 2.2: Nodelist_Construction 

Input: FPPC-tree (R) and L1 (the list of frequent fuzzy 1-itemsets) 

Output: 𝑁𝐿1 (the set of Node list of frequent fuzzy 1-itemsets  𝐿1) 

1: Create 𝑁𝐿1,  𝑁𝐿1[𝑘] is the node list of a kth element in 𝐿1[𝑘] 
2: for each node 𝑁𝑖 in R traversed in pre-order do 
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3:  if 𝑁𝑖 . 𝑓_𝑖𝑡𝑒𝑚 = 𝐿1[𝑘]. 𝑓_𝑖𝑡𝑒𝑚 then 

4:   insert <N.pre, N.post, N. support> into NL1[k] 

5:  end if 

6: end for 

7: return 𝑁𝐿1 = ⋃ 𝑁𝐿1[𝑘]𝑘 ; 

➢ Nodelist intersection 

Algorithm to perform Nodelist intersection of two fuzzy frequent sets of length k is 

described in algorithm 2.4. 

Algorithm 2.3: FNodelist_Intersection Algorithm 

Input: 𝑁𝐿1 and 𝑁𝐿2 t where 𝑁𝐿𝑘1 , 𝑁𝐿𝑘2 are the node list of two frequent fuzzy k-

itemsets. 

Output: NL3 the node list of frequent fuzzy (k+1) itemsets. 

(1)  for (𝑖 = 0; 𝑖 < 𝑁𝐿1. 𝑆𝑖𝑧𝑒(); 𝑖 + +)  do 

(2)          for (𝑗 = 0; 𝑖 < 𝑁𝐿2. 𝑆𝑖𝑧𝑒( ); 𝑗 + +) do 

(3)     if (𝑁𝐿1[𝑖]. 𝑓𝑝𝑟𝑒_𝑐𝑜𝑑𝑒 < 𝑁𝐿2[𝑗]. 𝑓𝑝𝑟𝑒_𝑐𝑜𝑑𝑒) then 

(4)           if (𝑁𝐿1[𝑖]. 𝑓𝑝𝑜𝑠_𝑐𝑜𝑑𝑒 > 𝑁𝐿2[𝑗]. 𝑓𝑝𝑜𝑠_𝑐𝑜𝑑𝑒) then 

(5)      Insert 𝑁𝐿2[𝑗] into NL3; 

(6)         End if 

(7)    else  

(8)                                      if  (𝑁𝐿1[𝑖]. 𝑓𝑝𝑜𝑠_𝑐𝑜𝑑𝑒 < 𝑁𝐿2[𝑗]. 𝑓𝑝𝑜𝑠_𝑐𝑜𝑑𝑒) then 

(9)                       Insert 𝑁𝐿1[𝑖] into NL3; 

(10)           End if 

(11)              End if 

(12)   End for 

(13)    return NL3; 

(14) End for 

2.3.2.4 NFFP algorithm 

The NFFP algorithm is described as in Algorithm 2.5 

Algorithm 2.4: Fuzzy frequent itemset mining - NFFP  

Input: minimum fuzzy support fminsup (δ), fuzzy frequent itemset (1-item) (𝐿1), 

Nodelist of L1 (NL1); 

Output: Set of fuzzy frequent itemsets (FFIs) 

(1) For  (𝑘 = 2; 𝐿𝑘−1 ≠ ∅; 𝑘 + +) do begin 

(2)       For each 𝑝 = 𝑖1𝑖2 … 𝑖𝑘−2𝑖𝑥 ∈  𝐿𝑘−1 𝑎𝑛𝑑 𝑞 = 𝑖1𝑖2 … 𝑖𝑘−2𝑖𝑦 ∈  𝐿𝑘−1 , do  

(3)                If  𝑖𝑥 ≻ 𝑖𝑦  then 

(4)       𝑙 = 𝑖1𝑖2 … 𝑖𝑘−2𝑖𝑥𝑖𝑦  

(5)       If each k-1 subsets l  in 𝐿𝑘−1 then begin 

(6)               l.Node-list = NL_Intersection (p.Node-list, q.Node-list); 

(7)              Calculate 𝑙. 𝑠𝑢𝑝𝑝𝑜𝑟𝑡;  

(8)                              If  (𝑙. 𝑠𝑢𝑝𝑝𝑜𝑟𝑡  ≥ 𝑛 ×  𝛿) then begin   

(9)         𝐿𝑘 = 𝐿𝑘 ∪ {𝑙}; 

(10)         𝑁𝐿𝑘 = 𝑁𝐿𝑘 ∪ {𝑙. 𝑁𝑜𝑑𝑒𝑙𝑖𝑠𝑡}; 

(11)             end if 

(12)         end if 

(13)            end if 

(14)       end for 

(15)       Delete 𝑁𝐿𝑘−1; 
(16) end for 

(17)   𝐹𝐹𝐼𝑠 =  ⋃ 𝐿𝑘𝑘  
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2.3.3 Mining frequent itemsets using the FPOSC-tree structure 

2.3.3.1 The idea of algorithm 

From the database containing the fuzzy value 𝐷𝑓, calculate the support of each fuzzy 

item 𝐴𝑖𝑙 in the transaction 𝑇q. Check if fuzzy item support 𝐴𝑖𝑙 is greater than minimum 

support δ then add 𝐴𝑖𝑙  to 𝐹1. Sort fuzzy frequent items in 𝐹1 by decreasing support. Fuzzy 

items that are not fuzzy frequent items are excluded from 𝐷𝑓. Build the FPOSC tree. 

While building the FPOSC tree it is possible to add several child nodes without 

having to traverse the tree and the pre-order is calculated at the same time as the Node-

list construction of the common fuzzy items. For each node 𝑁𝑖, we insert 
〈𝑁𝑖 . 𝑝𝑟𝑒, 𝑁𝑖 . 𝑠𝑖𝑧𝑒, 𝑁𝑖 . 𝑓_𝑠𝑢𝑝〉 into the Nodelist of each item represented by N. The 

FPOSC tree is deleted after obtaining the Nodelist to reduce memory space. 

After obtaining the Nodelist of each 1-item frequent item, we perform the Nodelist 

intersection of 1-item frequent items to find the Nodelist of the item set (k-itemset). For 

any candidate (k + 1) Pc, we get the support of Pc by summing the support values of all 

the FPP_Codes in its Nodelist. Based on the support of Pc, we can judge whether Pc is 

frequent or not. By repeating the above procedure, we find all the frequent fuzzy 

patterns. 

2.3.3.2 Algorithm for building FPOSC-tree (Fuzzy Pre-order Size Coding) 

The algorithm for constructing the FPOSC tree is determined by adjusting the 

structure of the FPPC tree [CT1], presented in algorithm 2.6. 

Algorithm 2.5: FPOSC-Tree_Construction 
Input: Fuzzy Database 𝐷𝑓, fminsup 𝛿 
Output: 𝐹𝑇𝑟 (FPOSC-tree), 𝐹1 (frequent fuzzy itemsets (length=1) 

 Begin 
1: Traverse 𝐷𝑓  to calculate the fuzzy support for each 𝐴𝑗𝑘 in transaction 𝑇𝑖 

2: If 𝑓𝑠𝑢𝑝(𝐴𝑗𝑘) ≥ 𝛿 then 

3:        Insert 𝐴𝑗𝑘 into 𝐹1; 
4: End if 
5: If 𝐴𝑗𝑘 not in 𝐹1 then 
6:         Delete 𝐴𝑗𝑘 from all 𝑇𝑖  (𝑖 = 1 … 𝑛) 
7: End if 
8: Create  𝐹𝑇𝑟 NodeRoot=null 
9: Let Flist be the list containing the remaining fuzzy items in each 𝑇𝑖 
10: For each  𝑇𝑖  in 𝐷𝑓 
11:         Sort FList in descending order of fsup 

 12:         𝑒 = 𝐹𝐿𝑖𝑠𝑡[0]  ;  e is the first element in Flist 
13:         𝐿𝑖𝑠𝑡𝑟 = 𝐿𝑖𝑠𝑡[𝑠𝑖𝑧𝑒 − 1] 
14        Insert_tree ([𝑒| 𝐿𝑖𝑠𝑡𝑟], 𝐹𝑇𝑟  ) 
15: End for 

/* Procedure Insert_Tree is used to recursively invoke the building of the POSC-

tree. Where, e is the first element of Flist and Flist is the remaining list */ 

Procedure Insert_tree ([𝑒| 𝐿𝑖𝑠𝑡𝑟], 𝐹𝑇𝑟  ) 
1: Let N is a node corresponds to a branch in the 𝐹𝑇𝑟 

  2 If 𝑒. 𝑓𝑖𝑡𝑒𝑚 == 𝑁. 𝑓𝑖𝑡𝑒𝑚 then 

3:        Add fuzzy value 𝑓𝑗,𝑘
(𝑖)

 of e to fsup of N;  

4:  Else 

5:  
       Create a new node N that has fsup as 𝑓𝑗,𝑘

(𝑖)
  and add N into the end of 

corresponding branch; 
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6:        𝑁. 𝑠𝑖𝑧𝑒 = 1; 
7:

  

       If 𝐿𝑖𝑠𝑡𝑟  is nonempty then 
8:      Call Insert_Tree (𝐿𝑖𝑠𝑡𝑟 ,N) recursively 

 9:        End if 
10: End if 
11: 𝑁. 𝑠𝑖𝑧𝑒 = 𝑁. 𝑐𝑜𝑢𝑛𝑡𝐶ℎ𝑖𝑙𝑑 + 1 
End procedure 
 

2.3.3.3 Nodelist construction algorithm of fuzzy frequent items based on FPOSC-tree 

The node-list construction of frequent fuzzy item sets (length = 1) (F1 is presented 

in Algorithm 2.7. 
Algor.6: FNode_List_Gen 
Input: POSC-tree (𝐹𝑇𝑟),  fuzzy frequent itemset length=1 (𝐹1)  
Output: Node-list of 𝐹1 (𝑁𝐿1) 
 Begin 
1: for each Ni in FTr browsed by pre-order do 
2:  Let NL1[k] be Node-list of item kth in F1. 
3:  If Ni. fitem == F1[k]. f_item then 
4:   insert 〈Ni. pre, Ni. size, Ni. fsup〉 into NL1[k]; 
5: Return NL1 = ⋃ NL1[k]k  
End. 

The method for construction the intersection of two Node-list is presented in 

Algorithm 2.8. 

Algorithm 2.7: POS_Node-list_Intersect 
Input: 𝑁𝐿𝑘1, 𝑁𝐿𝑘2 trong đó 𝑁𝐿𝑘1, 𝑁𝐿𝑘2 are the Node-list of two fuzzy frequent k-

itemsets. 
Output: 𝑁𝐿𝑘1+1 – Node-list of fyzzy frequent (k+1) itemsets 

 Begin 
1: for 𝑖 = 0; 𝑖 < 𝑁𝐿𝑘1. 𝑙𝑒𝑛𝑔𝑡ℎ; 𝑖 + + do 
2:        For 𝑗 = 0; 𝑗 < 𝑁𝐿𝑘2. 𝑙𝑒𝑛𝑔𝑡ℎ; 𝑗 + + do 
3:    If 𝑁𝐿𝑘1[𝑖]. 𝑝𝑟𝑒 <  𝑁𝐿𝑘2[𝑗]. 𝑝𝑟𝑒 then 
4:   If 𝑁𝐿𝑘2[𝑗]. 𝑝𝑟𝑒 <  𝑁𝐿𝑘1[𝑖]. 𝑝𝑟𝑒 + 𝑁𝐿𝑘1[𝑖]. 𝑠𝑖𝑧𝑒  then 
5:    Insert 𝑁𝐿𝑘2[𝑗] into 𝑁𝐿𝑘1+1; 
6:   End if 
7:  else 
8:   If 𝑁𝐿𝑘1[𝑖]. 𝑝𝑟𝑒 <  𝑁𝐿𝑘2[𝑗]. 𝑝𝑟𝑒 + 𝑁𝐿𝑘2[𝑗]. 𝑠𝑖𝑧𝑒  then 
9:    Insert 𝑁𝐿𝑘1[𝑖] into 𝑁𝐿𝑘1+1; 
10:   End if 
11:  End if 
12:       End for 
13: End for 
End. 

2.3.3.4 Algorithm NPSFF 

Algorithm 2.8: The algorithm for mining fuzzy frequent itemset NPSFF 

Input: minimum fuzzy support fminsup (δ), fuzzy frequent itemset (1-item) (𝐿1), 

Nodelist of L1 (NL1); 

Output: Set of fuzzy frequent itemsets (FFIs) 

1: For  (𝑘 = 2; 𝐿𝑘−1 ≠ ∅; 𝑘 + +) do begin 

2:      For each 𝑝 = 𝑖1𝑖2 … 𝑖𝑘−2𝑖𝑥 ∈  𝐿𝑘−1 𝑎𝑛𝑑 𝑞 = 𝑖1𝑖2 … 𝑖𝑘−2𝑖𝑦 ∈  𝐿𝑘−1 , do 

3:           If  𝑖𝑥 ≻ 𝑖𝑦  then 

4:                𝑙 = 𝑖1𝑖2 … 𝑖𝑘−2𝑖𝑥𝑖𝑦  
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5:                If each k-1 subsets l  in 𝐿𝑘−1 then begin 

6:                     l.Node-list = POS_Node-list_Intersect (p.Node-list, q.Node-list); 

7:                     Calculate 𝑙. 𝑠𝑢𝑝𝑝𝑜𝑟𝑡;          

8:                     If  (𝑙. 𝑠𝑢𝑝𝑝𝑜𝑟𝑡  ≥ 𝑛 ×  𝛿) then begin   

9:                           𝐿𝑘 = 𝐿𝑘 ∪ {𝑙}; 

10:                           𝑁𝐿𝑘 = 𝑁𝐿𝑘 ∪ {𝑙. 𝑁𝑜𝑑𝑒𝑙𝑖𝑠𝑡}; 

11:                     End if 

12:               End if 

13:            End if 

14:      End for 

15:      Delete 𝑁𝐿𝑘−1; 
16: End for 

17: 𝐹𝐹𝐼𝑠 =  ⋃ 𝐿𝑘𝑘  ; 

2.4 Algorithm for mining fuzzy association rules  

All phases in mining fuzzy association rules is performed in Algorithm 2.10 as below: 

Algorithm 2.9: MFAR 

Input: A quantitative database (𝐷𝑄), minimum support threshold 𝛿, minimum 

confidence minfc 

Output: All fuzzy association rules FRs 

 Begin 

1: Transform 𝐷𝑄 to 𝐷𝑓 

2: Execute FPOSC _Tree_ Construction (Df, δ) to generate FPOSC Tree (FTr), 

𝐹1 3: Execute FNode-list Gen (FTr, 𝐹1) 
4: Execute NPSFF (𝛿, 𝐿1, 𝑁𝐿1) to find all FFIs  
5: 𝐹𝑅𝑠 = ∅; 
6: For each 𝑋 ∈ 𝐹𝐹𝐼𝑠 do 
7:  For each 𝑌 ⊂ 𝑋 && 𝑌 ≠ 𝜙 do 
8:   𝑓𝑟 = 𝑋 \  𝑌 → 𝑌; 

9:   𝑓𝑐(𝑓𝑟) =
𝑠𝑢𝑝(𝑋𝑌)

𝑠𝑢𝑝(𝑋)
; 

10:   If 𝑓𝑐(𝑓𝑟) ≥ 𝑚𝑖𝑛𝑐𝑓  then 
11:    𝐹𝑅𝑠 = 𝐹𝑅𝑠 ⋃{𝑓𝑟}; 
12:   End if 
13:       End for 
14: End for 
15:  Return 𝐹𝑅𝑠 
2.5 Experiment 

In the experiment, author use the data set obtained from datasets for Frequent 

Itemsets mining [79] called Foodmart, Chess and Chain store. Each transaction in this 

data set includes all the items acquired by a customer in one time. The description about 

data set is shown in Table 2.1. To resolve with the quantitative database, we assigned 

random numbers for all items in this data set with a distribution in the value range 1–

100. 

Table 2.1: Description of the data set for the experiment 

Dataset Number of 

transactions 

Number of 

items 

Average number of 

items per transaction 

Foodmart 4,141 1,559 4.42 

Chess 3,196 75 37 

ChainStore 111,294 46,086 7.23 
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2.6 Conclusion of chapter 2 

In this chapter, author offers solutions to problems related to "sharp" boundaries 

between fuzzy intervals by proposing an algorithm for clustering EMC data. The results 

of this algorithm [CT4] are used in the data preprocessing stage, data partitioning to 

convert quantitative databases to fuzzy databases. Second, the thesis solves the problem 

of memory space by providing two fuzzy association rule mining methods based on the 

Nodelist data structure, namely NFFP [CT1] and NPSFF [CT2]. The author proposes 

two NFFP algorithms, NPSFF uses FPPC_tree, POSC-tree to store quantitative database 

with membership values in descending order. Based on the constructed tree, a Nodelist 

of each common fuzzy item is generated. Then, the NFFP, NPSFF algorithm obtains the 

Nodelist of the common fuzzy items (k + 1) by intersecting the Nodelist of the frequent 

k fuzzy items and then extracts the frequent (k + 1) fuzzy files. The advantage of this 

algorithm is that the FPPC_Tree tree as well as the POSC-tree is used to generate the 

FPP_Code or POS-code for each node to get the Nodelist of each common fuzzy item 

and then it will be deleted so that the request can be reduced memory usage 

requirements. 

With the increase in data size, the data types are heterogeneous and dynamic data. 

Extending efficient fuzzy mining algorithms to the era of big data is an important 

problem, mining by applying parallel processing techniques has become a viable way to 

overcome the problem of time. processing time. This issue is discussed in chapter 3. 

 

 

  

Hình 2.1: Number of rules generated from 

3 algorithms 
Hình 2.2: Execution time of algorithms 
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CHAPTER 3: MINING FUZZY FREQUENT ITEMSETS USING PARALLEL 

PROCESSING   

In this chapter, the author presents a parallel processing method for mining frequent 

fuzzy itemsets, an important stage in fuzzy association rule mining by using a cellular 

learning automata (CLA) approach. According to CLA, space is represented as a 

network, with each element being a cell, line by line, transaction data will be read and 

simultaneously transferred to cells, they will collaborate with each other in parallel. 

Without using neighborhood rules, a type of data automation known irregular cellular 

learning automata (ICLA) is used to generate a neighborhood list for each cell. Through 

using CLA fuzzy frequent itemset mining is performed. This process shortens the 

execution time of the algorithm. 

3.1 Introduction 

In recent years, many algorithms have been developed to study parallel mining 

problems for association rules, classification, clustering, and other tasks. Agrawal et al. 

proposed the first parallel association rule mining algorithm [85]–[88], while Wang 

studied other parallel association rule mining algorithms [89]–[91]. Among parallel 

architectures, the master-slave architecture is often used. This approach offers 

significant performance benefits [92]. The main processor allocates tasks to the sub-

processors and collects results from them. Some studies use parallel slave-master 

architecture to perform association rule mining suitable for dense data sets such as [94] 

[95]. 

In the field of association rule extraction and PSO, researchers have proposed many 

parallel computing algorithms [96], [97], [98]. For a large amount of experimental data, 

a parallel PSO algorithm applied to extract association rules is a possible solution. 

In addition, the iMFFP algorithm [99] proposed to integrate different MFFP trees 

[41] from the branch databases and integrated into the iMFFP tree in sequence. Then, 

Header_table is created, and frequent item set mining is performed. With this method, 

the calculation of fuzzy support of fuzzy items will be inaccurate and incomplete 

because the database is decomposed. Moreover, building each branch of the MFFP tree 

and gradually integrating it into the complete iMFFP tree will consume memory space. 

In this chapter, the author presents a parallel processing method for mining frequent 

fuzzy item sets, an important stage in fuzzy association rule mining by using a cellular 

learning automata (CLA) approach. In this strategy, the initial quantitative database is 

transformed into a fuzzy database in the preprocessing step. After extracting the fuzzy 

frequent 1-itemset from the data set, the infrequent fuzzy itemset will be removed. The 

CA environment will start working after the preprocessing phase and generate CA cells 

that match each fuzzy frequent 1-itemset. Each line of data in the compressed database 

is read and sent to cells concurrently, then they work in parallel.  

3.2 Some concepts about cellular learning automata 

3.2.1 Learning Automata (LA) 

An LA consists of two parts: 

1. A random automata with a limited number of actions and a random environment. 

2. Learning algorithm: the algorithm by which the automata will learn the optimal 

action using that action. 

Each action selected by the potential environment is evaluated and an answer is 

given to an auto-learning data. LA will use this answer and choose its action for the next 

phase. Figure 3.1 shows the relationship between auto-learning data and the 

environment [101]. 
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Figure 3.1: Environment, LA and their relationship 

3.2.2 Cellular Automata (CA ) 

A d-dimensional Cellular Automata is a structure of  𝐴 = (𝑍𝑑 , Φ, 𝑁, 𝐹) [35] where: 

- 𝑍𝑑 is a lattice of d-tuples of integer number of which this lattice could consist 

finite lattice, infinite lattice or semi-finite. 
- Φ = {1, … , 𝑚} is a finite set of states. 
- 𝑁 = {𝑥1, 𝑥2, … , 𝑥𝑚} is a finite subset of 𝑍𝑑 called the neighborhood vector 

(𝑥𝑖𝜖 𝑍𝑑). 
- 𝐹 is the local rule of the cellular automata.  

3.2.3 Cellular learning automata 

Automata is combination of two recent models LA and CA. A d-dimensional 

cellular Learning Automata is a structure CLA: 𝐴 = (𝑍𝑑 , Φ, 𝐴, 𝑁, 𝐹)  

-  𝑍𝑑 s a lattice of d-tuples of integer number which this lattice could consist of 

finite lattice, infinite lattice or semi-finite. 
- Φ = {1, … , 𝑚} is a finite set of states. 

- A is collection of learning automat (LA) each of which is assigned to one cell 

of the CLA. Each cell can have a LA or more than one. 

- 𝑁 = {𝑥1, 𝑥2, … , 𝑥𝑚} is a finite subset of 𝑍𝑑 called the neighborhood vector 

(𝑥𝑖𝜖 𝑍𝑑). 
- 𝐹 is the local rule of the cellular automata. This rule can be defined by users. 

3.3 Fuzzy frequent itemset mining algorithm using CLA 

3.3.1 The idea of algorithm 

In the CLA-Fuzzy Mining algorithm [CT3] is performed according to the below 

procedure: 

 
Figure 3.2: CLA-Fuzzy Mining algorithm implementation process 

3.3.2 Pre-processing 

In this step, the database is converted from quantitative database to fuzzy database.  

3.3.3 Mining fuzzy frequent 1-item 

The fuzzy frequent itemset (1-item) mining is performed like the algorithms in 

Chapter 2. The fuzzy support of each item in the transaction is calculated by the formula 

and tested with the minimum support. 

3.3.4 Mining fuzzy frequent n-itemset 

➢ Perform data compression 

Data compression algorithm is shown in Algorithm 3.1 
Algorithm 3.1: Data_Compression() 
Input: 𝑚𝑖𝑛𝑠𝑢𝑝: minimum support threshold 
 𝐹1: tập mục phổ biến 1-item 
 𝐷𝑓: CSDL mờ sau khi loại bỏ các tập mục không phổ biến 
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Output: 𝐶𝐷𝑆: Compressed dataset 
 Begin 
1: for 𝑖 = 1  to 𝐷𝑓 do 
2:        For 𝑗 = 1 𝑡𝑜 𝑖𝑡𝑒𝑚𝑠 do 
3:    If 𝑖𝑡𝑒𝑚𝑠(𝑖, 𝑗) == 𝑖𝑡𝑒𝑚𝑠(𝑖 + 1, 𝑗) then 
4:   Remove (rows (i+1)); 
5:   Update support (rows(i)+ rows(i+1)); 
6:  End if 
7:       End for 
8: End for 
9: Return CDS 
End. 

➢ Determine the neighborhood list 

Each cell learning automata will be created according to the frequent fuzzy 1-

itemsets. Because of using ICLA, there is no specific rule in cell’s neighborhoods. The 

cellular automata environment reads line by line each transaction in compressed dataset 

and sends the frequent fuzzy 1-itemset to the cells. After receiving a row containing 

fuzzy items from the dataset, cells begin their operation at the same time as others. These 

cells will update their proximity list depending on the fuzzy items in the received 

transaction. 

 
Hình 3.3: Automata cells according to frequent fuzzy 1-itemset 

➢  Prune the neighborhood list 

When all transactions are sent by the environment to cells, each cell deletes 

neighbors and neighborhoods whose support is less than a user-defined minimum 

threshold from its list of neighborhoods. The neighborhood list is again used to scan and 

finally obtain the fuzzy frequent k-Itemset. If these items are already on this list, they 

will be removed; otherwise, these items will be included in the list of fuzzy frequent 

itemset. 

3.3.5 CLA-FuzzyMining algorithm 

The CLA-Fuzzy Mining algorithm is described as in Algorithm 3.2 

Algorithm 3.2: CLA_Fuzzy_Mining 

Input: 𝑚𝑖𝑛𝑠𝑢𝑝: minimum support threshold 

 𝐹1: fuzzy frequent 1-item 

 𝐷𝑓: Fuzzy database after removing removes infrequent fuzzy itemset 

 CDS: compressed dataset  

Output: 𝐹𝐹𝐼𝐿:  Fuzzy frequent itemsets 

Begin 

1: for 𝑖 = 1  to 𝐶𝐷𝑆 do 

3:       CLA_Thread(); 

4: End for 

5: Initialize FFIL; 

6: for i=1 to automata cells do 
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7:        Execute PruneNeighbors() for cell[i]; 

8:        Execute DFS() function for cells[i]; 

9:        for each anItemset on cell[i].FrequentItemset do 

10:   if anItemset does not exist in FFIL then 

11:          FFIL.add (anItemset); 

12:  else 

13:          Nothing; 

14:  End if 

15:         End for 

16: End for 

17: Return FFIL; 

End. 

The CLA_Thread() function is described in Algorithm 3.3. 
Algorithm 3.3: CLA_Thread() 
Input: Recodset (compressed data record), NodeParent[Cell] (representative of 
cells)  
Output: automata cells 
Begin 
1: Thread theard=new Thread();     
2: thread.Start(); 
3: Initialize nodeChil=new Node(); 
4: for 𝑖 = 1  to Recodset do 
5:        nodeChil.data= Recodset[value]; 
6:        If(nodeChil in (Recodset)) then 
7:                    nodeChil.data= Recodset[value]+ nodeChil.data; 
8:        else 
9:                  NodeParent[Cell].next= nodeChil; 
10:       End if 
11: End for 
12: Return AutomataCells; 
End. 

3.4 Experiment 

In the experimental part the author uses the Foodmart, Chess and ChainStore data 

sets from the frequent set mining dataset [69] for this test. The description of the data 

set is shown in Table 3.7. This experiment introduces the experimental results from the 

algorithms and compares them with the results of the NPSFF algorithm [CT2] and the 

iMFFP algorithm [33]. CLA- Fuzzy Mining algorithm is more efficient than the 

previous two algorithms in terms of processing time and temporary storage memory, 

according to the test results based on the data set presented in figure 3.12 – 3.14.  

Table 3.7: Table of experimental data 

Dataset name Transaction# Items# Size 

Chess 3196 175 0.78 M 

Foodmart 4141 1559 12.4 M 

ChainStore 111,294 46,086 28.17 M 
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Figure 3.12 – 3.14: Experimental time on data sets 

 

Figure 3.4: Evaluation of memory usage of algorithms on data sets 

3.5 Conclusion of chapter 3 

To increase efficiency in big data models, records are constantly updated. Chapter 

3 focuses on presenting the fuzzy frequent item set mining method according to CLA 

parallel processing technique. According to CLA, space is represented as a network, 

with each element being a cell, line by line, transaction data will be read and 

simultaneously transferred to cells, they will collaborate with each other in parallel. 

Without using neighborhood rules, a type of data automation known as irregular cellular 

learning automata (ICLA) is used to generate a neighborhood list for each cell. Through 

using these automatic data cells, frequent fuzzy set mining is performed. This process 

shortens the execution time of the algorithm. [CT3]. 

 

CONCLUSION 

The main purpose of the thesis is to study some fuzzy association rule mining 

methods. The thesis researches the methods of association rule mining on fuzzy data 

based on the combination of fuzzy math and the proposed quantitative database. 

However, these methods are in the process of development, it is necessary to propose 

new solutions to improve them. Therefore, the thesis proposes an effective approach to 

the problem of mining fuzzy association rules. 

The main results of the thesis are as follows: 

(1) Propose a method to determine fuzzy sets for each quantitative attribute in the 

database through EMC clustering technique. These clusters are then used to 

classify each quantitative attribute as a fuzzy set and determine their membership 

functions. The result of this step is to convert the quantitative database to the 

fuzzy database. [CT2], [CT4]. 

(2) Propose a method to mine common fuzzy item set based on Nodelist structure, 

an important step in fuzzy association rule mining. Common fuzzy item set 

mining based on PP_code or POS_code helps to limit the required memory 

consumption. [CT1], [CT2] 

(3) Propose a parallel processing method for the process of mining frequent fuzzy 

item sets using CLA mobile auto-learning theory. With this proposal, we aim to 

reduce processing time for large databases. [CT3
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