

MINISTRY OF EDUCATION

AND TRAINING

VIETNAM ACADEMY OF

SIENCE AND TECHNOLOGY

GRADUATE UNIVERSITY OF SIENCE AND TECHNOLOGY

……..….***…………

TRAN THI THUY TRINH

MINING FUZZY FREQUENT ITEMSETS BASED ON TREE

STRUCTURE AND PARALLEL PROCESSING TECHNIQUE

Major: Information System

Major code: 9 48 01 04

SUMMARY OF COMPUTER DOCTORAL THESIS

Ha Noi – 2023

The thesis has been completed at: Graduate University of Science

and Technology- Vietnam Academy of Science and Technology

Supervisor 1: Assoc.Prof. Phd. Nguyen Long Giang

Supervisor 2: Phd. Truong Ngoc Chau

Reviewer 1: …

Reviewer 2: …

Reviewer 3: ….

The thesis shall be defended in front of the Thesis Committee at

Vietnam

Academy Of Science And Technology - Graduate University Of

Science And Technology, at ….… hour……, date……

month….…year 2023

This thesis could be found at:

 - The National Library of Vietnam

 - The Library of Graduate University of Science and

Technology

1

INTRODUCTION

1. The necessity of the research

Research associated with practical application is an activity that requires a lot of

time and effort of scientists. Moreover, in the 4.0 technology era, applications not only

support basic business features but also help people make relatively accurate predictions

at the present time and in the future. The rapid growth of these intelligent systems

increases the demand for practical applications resulting in the generation of large

amounts of data daily. Traditional statistical tools and methods are based on application

needs, but they are not capable of handling the huge amounts of data that are derived

from these applications. The analysis of such data is a top priority task otherwise it will

turn into a very complex and unfavorable system. To overcome this problem, data

mining [1]–[3] is one of the approaches that benefits by assisting in data analysis and

summarizing data into useful information. The concept of data mining is to generate

previously unidentified information with great relevance from the database for decision

making. Depending on the variety of knowledge, data mining methods can be divided

into the following categories: association rules [4]–[8], classification [7], [9]–[11],

clustering [12]–[14] and sequential samples [15], [16]. In particular, association rule

mining is very important for data mining research [17]–[19]. In common business

transactions, association rules are of the form A→B with the purpose of finding the

relationship of items in the database. This helps businesses make decisions in planning

business and marketing strategies. In the first stage of association rule mining, frequent

itemsets are obtained from a given set of data. From the extracted frequent item sets,

association rules are built in the second stage. The main stage of association rule mining

is frequent item set mining because it takes a lot of effort to locate frequent itemsets in

a data set. Most of the research in this field has focused on improving the efficiency of

cluster mining in terms of time and memory.

Traditional association rule or frequent item set mining algorithms [20], [21] mostly

only represent transaction data in binary value, that is, it deals with the occurrence of

items. However, with a clear approach, it is difficult to mine frequent item sets for

association rules in databases containing quantitative data. Due to its ease of use and

similarity to human inference, fuzzy set theory [22], [23] is being used in intelligent

systems more often [24]–[27]. Linguistic representation makes knowledge simpler for

humans to understand, so it is widely used. Therefore, in order to mine fuzzy association

rules from the quantitative database, the domains of the quantitative attribute will be

converted into a fuzzy set represented in the linguistic variables by using the

membership function [28], this approach can reduce computations. Several fuzzy

mining algorithms have been widely studied and developed using fuzzy set theory to

convert the quantitative value of items into linguistic terms based on the same

mechanism as regular Apriori [29]. [30], [31] [32].

The author used byte-vector representing the tidlist, the compressed list used

contributes to the performance increase. Previously, Janikow combined symbolic

decision trees on rule-based systems for fuzzy control [34] using fuzzy representation.

Watanabe and Fujioka [35], [36] have defined equivalence redundancy of fuzzy

elements and related theorems for fuzzy association rule mining. The goal of the

algorithm is to refine the time spent on rule mining and at the same time remove

redundant rules in data mining applications. However, most fuzzy association rule

mining methods apply Apriori [37] to generate candidates and check their support, thus

requiring multiple rescans of the database, since so it causes slow and inefficient process

in large database. Furthermore, with the fuzzy representation in the above algorithms,

the fuzzy set of the quantitative attributes and their membership functions depends on

2

the subjective opinion of the expert or the availability. This problem causes "sharp"

boundaries between fuzzy intervals, so it is difficult to determine the extent of the

membership function for elements near the interval boundary. This is the first gap

identified in the research problem of the thesis.

Instead of using the conventional approach according to Apriori, Lin et al.

implemented fuzzy frequent tree (FFP)-tree method [38], [39] to mine fuzzy frequent

itemsets based on pattern growth mechanism. This approach applied both fuzzy set

theory and FP tree structure (Frequent pattern) to build FFP tree (Fuzzy Frequent

Pattern) which can be used for mining process. The transformed language variables and

their membership degree are sorted in ascending order of each transaction, thus

preserving the downward closure property for recursive construction of the condition

tree and mining fuzzy frequent items. This approach can require a lot of computation

time when the transaction size is very large. The tree compression algorithm (CFFP-

Compact Fuzzy Frequent Pattern) [40] was then designed to reduce the size of the FFP

tree. Thus, an array is attached to each node by preserving the fuzzy values for the

currently processed language variable with any of its prefix itemsets in the path.

Although the number of tree nodes of the CFFP tree is significantly reduced compared

with the FFP tree algorithm, it is necessary to keep an additional array of each node to

store the member values of the currently processed node with any language variables in

the way. Therefore, it requires a large amount of memory to hold such information,

which is not efficient in a sparse database. To overcome this limitation, the upper-bound

fuzzy frequent pattern (UBFFPT) algorithm [41] was then designed to keep not only the

dense tree structure, but also the ability to fuzzy frequent item sets from memory limit

compared to FFP tree and CFFP tree algorithm. The UBFFPT tree algorithm can

efficiently mine fuzzy frequent items keeping the same size of tree nodes as the CFFP

tree algorithm but memory and computational usage can be greatly reduced. The above

algorithms only use a single language term to represent the item being processed in the

database, so the information detected may be incomplete. Many algorithms related to

multiple fuzzy frequent set mining [42]–[44] have been proposed to help knowledge be

mined more fully than traditional methods. Then, Hong et al. [42] created a tree-based

structure based on the concept of FP and FFPT trees [38] while maintaining multiple 1-

item fuzzy frequent itemsets with an MFFP tree designed for mining necessary

information extraction. Not only is a single language variable maintained to represent

an item, but every item's fuzzy value is greater than the minimum support threshold. In

order to make wise decisions, a more complete set of facts is thus maintained. The

similar concept is then implemented for UBMFFP trees [44] and CMFFP trees [43].

Effective techniques for decision-making can consequently be attained with more

comprehensive information regarding various derived fuzzy frequent patterns.

Nevertheless, because the mining of fuzzy frequent itemsets in these methods is done

recursively from the tree structure, a lot of memory is needed to store the temporary

trees. The thesis will address this as the second gap.

Frequent itemset mining from many fuzzy datasets is mentioned in the article [45].

In the article, the author merges multiple tables using a star schema to find fuzzy multi-

level association rules in a relational database model, capable of handling many tables.

The algorithm uses joins and entities to recognize frequent item sets. However, the

results of the paper still have many limitations in calculating the support of item sets

related to other connections containing fuzzy properties. Another method such as [46]

uses the differential evolutionary algorithm (DE) to mine optimized statistically

significant fuzzy association rules that have large numbers and significant measurable

values with strict control over the risk of speculative rules. In addition, the pattern-based

3

algorithm proposed in [47] aims to find fuzzy association rules from large quantitative

data sets. Various studies have been carried out not only to improve the performance but

also to improve the search speed of fuzzy association rules with hash tables, schemas or

tree data structures [40], [41], 43], [44]. The FFI-Miner frequent fuzzy item set mining

algorithm [48] was developed to mine the complete set of FFIs without generating

candidates. Algorithms using efficient pruning strategy were also developed to reduce

the search space, thus speeding up the mining process to directly detect frequent fuzzy

item sets. Frequent patterns are sets of items found in a significant number of

transactions. Along with the increase in data size, the data types are heterogeneous and

the data variation is extremely dynamic. Therefore, extending efficient fuzzy mining

algorithms to the era of big data is an important problem, mining by applying parallel

processing techniques has become a possible way to overcome this problem. processing

time problem. This is the third gap identified in the thesis.

In Vietnam, association rule mining has been researched by research groups at the

Institute of Information Technology under the Vietnam Academy of Science and

Technology such as the doctoral thesis of Nguyen Huy Duc [49] introducing the FSM

algorithm as an algorithm. quickly mine all the high-stakes item sets in the transaction

database and propose the AFSM (Advanced FSM) algorithm based on the steps of the

FSM algorithm with a new method of more efficient pruning of the candidate item sets.

The doctoral thesis of Nguyen Long Giang [50] presents data mining methods using

rough set theory. Author Nguyen Cong Hao's article [51] presents a fuzzy association

rule processing method based on Hedge algebra. The research group of Prof. Dr. Vo

Dinh Bay and Prof. Dr. Le Hoai Bac proposed a method of mining common item sets in

a clear database like [52]–[55], which can be considered as the foundation for the

research in the thesis.

 This thesis aims to address the three gaps identified above. The research to solve

those problems is really necessary not only in terms of theoretical development but also

in terms of practical application. That is the motivation for the author of the thesis to

conduct a research on the topic "Fuzzy frequent item set mining based on tree

structure and parallel processing techniques" to come up with new effective methods

of item set mining and mining of fuzzy association rules based on fuzzy set theory.

2. Research scope and subjectives

a. Research objectives

The objective of the thesis is to propose solutions to mining fuzzy frequent itemsets

in quantitative databases, to overcome the "sharp boundary" problem when partitioning

fuzzy data for quantitative attributes.

Specifically, the thesis focuses on proposing solutions to:

- Identify fuzzy sets for each quantitative attribute in the database through

clustering techniques.

- Reduced storage memory during fuzzy frequent item set mining

- Reduce processing time in mining fuzzy frequent itemsets in large databases.

b. Research objects

- Frequent itemset mining algorithms in transactional databases

- Algorithms of fuzzy frequent item set mining, fuzzy association rule mining in

quantitative databases.

c. Research scope

- The thesis studies fuzzy association rules, fuzzy frequent itemsets in quantitative

databases.

4

- Synthesize scientific publications related to fuzzy frequent item set mining

methods.

- Compare experiments with existing algorithms

3. Research methods

The following research techniques were employed in the thesis:

- Synthesize and assess published results on fuzzy frequent item set mining

techniques from various sources of information acquired. On this foundation,

suggest new outcomes and assess new results by putting various algorithms to the

test. Apply the results to address a real-world issue.

- Comparative method is used to analyze methodologies and algorithms that have

been proposed to address relevant research problems. Thereby, generating ideas for

novel algorithms to solve research problem.

- Experimental method is used to assess the accuracy and viability of the suggested

algorithms, real data sets are used for testing.

4. The main contributions of the thesis

The main contributions of the thesis are to propose and solve the following

problems:

- Propose a method to determine fuzzy sets for each quantitative attribute in the

database through clustering techniques. More specifically, the thesis presents the

EMC clustering technique. The goal of these algorithms is to divide data into

meaningful clusters. These clusters are then used to classify each quantitative

attribute as a fuzzy set and determine their membership functions. [CT2], [CT4].

- Propose a method to mine fuzzy frequent itemsets in quantitative databases using

Node-list data structure. Fuzzy frequent itemset mining based on PP_code or

POS_code helps to limit the required memory consumption. [CT1], [CT2], [CT5].

- Propose a parallel processing method to mine fuzzy frequent itemsets using the

approach of cellular learning automata (CLA). According to CLA, space is

represented as a lattice, with each element being a cell. Line by line, transaction data

will be read and simultaneously transferred to cells, which are processed in parallel.

Through the use of these autonomous data cells, mining of fuzzy frequent itemsets

is performed. This process shortens the execution time of the algorithm. [CT3].

5. The main research contents of the thesis

The thesis consists of Introduction, 03 chapters and conclusion.

- Introduction: Presenting the necessity and motivation of the research topic;

research objectives, objects and scope; Research Methods; the main contributions

and structure of the thesis.

- Chapter 1: Theoretical foundations

- Chapter 2: Mining fuzzy frequent itemsets based on tree structure.

- Chapter 3: Mining fuzzy frequent itemsets using parallel processing

5

CHAPTER 1: THEORETICAL FOUNDATIONS

In this chapter, the author presents the basic concepts of association rules,

quantitative association rules, fuzzy logic, fuzzy association rules and related studies on

fuzzy association rules. From there, identify outstanding issues to be solved in Chapter

2.

1.1 Association rule

1.1.1 Basic concepts of association rules [55]

Definition 1.1: Transaction database

Assume 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑚} is the set of items. 𝐷 = {𝑇1, 𝑇2, … , 𝑇𝑛} is a set of

transactions, called the transaction database, where each transaction t in D has the form

(tid, X) where each transaction t has identifier tid itemset t-itemset, 𝑡 =
(𝑡𝑖𝑑, 𝑡 − 𝑖𝑡𝑒𝑚𝑠𝑒𝑡); X is called the itemset if 𝑋 ⊆ 𝐼.

Definition 1.2: The support of an itemset

The support of an itemset X in the transaction database D denoted sup (X) is the

number of transactions containing the item set X, calculated by the following formula:

𝑠𝑢𝑝(𝑋) = |𝑡| 𝑋 ⊆ 𝑡, 𝑡 ∈ 𝐷| (1.1)

In which the symbol |.| is the number of transactions.

Definition 1.3: Frequent itemset

 An item set X contained in transaction database D is said to be frequent if its support

(𝑠𝑢𝑝(𝑋)) is greater than or equal to a given minimum support threshold (minsup)

defined by the user. Therefore, support is considered as the frequency of simultaneous

occurrence of items.

Definition 1.4: Association rules

An association rule is a proposition of the form X →Y, where X and Y are sets of

items that satisfy the following conditions: 𝑋 ⊆ 𝐼, 𝑌 ⊆ 𝐼 và 𝑋⋂ 𝑌 = ∅. X is called

antecedent while Y is called consequent, the rule means X implies Y.

Definition 1.5: The support of a rule

Given an association rule 𝑟 = 𝑋 → 𝑌, the support of rule r denoted as sup(r) is the

ratio of the number of transactions T ⊆ D containing both itemset X and itemset Y to

the total number of transactions in D is defined as:

 𝑠𝑢𝑝(𝑟) =
|{𝑇 ∈ 𝐷|𝑇 ⊃ 𝑋 ∪ 𝑌}|

|𝐷|
 (1.2)

Definition 1.6: The confidence of a rule

Given an association rule 𝑟 = 𝑋 → 𝑌, the confidence of the rule r denoted as conf(r)

is the ratio of the number of transactions T ⊆ D containing both itemset X and itemset

Y to the total number of transactions in D contains the itemset X, defined as follows:

𝑐𝑜𝑛𝑓(𝑟) =
|{𝑇 ∈ 𝐷|𝑇 ⊃ 𝑋 ∪ 𝑌}|

|{𝑇 ∈ 𝐷|𝑇 ⊃ 𝑋}|
=

𝑠𝑢𝑝(𝑋 ∪ 𝑌)

𝑠𝑢𝑝(𝑋)
 (1.3)

Definition 1.7: Strong association rule

Given an association rule 𝑟 = 𝑋 → 𝑌, if the rule r satisfies both the minimum

support (minsup) and minimum confidence thresholds (minconf), it is called a strong

association rule, that is:

𝑠𝑢𝑝(𝑟 = 𝑋 → 𝑌) = 𝑃(𝑋 ∪ 𝑌) ≥ 𝑚𝑖𝑛𝑠𝑢𝑝

𝑐𝑜𝑛𝑓(𝑟 = 𝑋 → 𝑌) = 𝑃(𝑋 ∪ 𝑌) =
𝑠𝑢𝑝(𝑋 ∪ 𝑌)

𝑠𝑢𝑝(𝑋)
≥ 𝑚𝑖𝑛𝑐𝑜𝑛𝑓

Problem statement: The association rule problem is stated as follows [49]:

6

For a transactional database D, minimum support minsup, minimum confidence

minconf. Find all association rules of the form 𝑋 → 𝑌 that satisfy 𝑠𝑢𝑝(𝑋 ∪ 𝑌) ≥

𝑚𝑖𝑛𝑠𝑢𝑝 và độ tin cậy 𝑐𝑜𝑛𝑓(𝑋 → 𝑌) =
𝑠𝑢𝑝(𝑋∪𝑌)

𝑠𝑢𝑝(𝑋)
≥ 𝑚𝑖𝑛𝑐𝑜𝑛𝑓.

1.1.2 Association rule in binary database

Binary association rules refer to classical rules in the shopping cart analysis

problem. Where products may or may not be in the transaction, only Boolean values

(represented by 1s and 0s) are produced. Therefore, every item in the transaction can be

identified as a binary attribute with the domain {0,1}. The model is defined in [55] as

follows:

Let 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑚} be a set of binary attributes, called items. Let T be the

transaction database. Each transaction t is represented as a binary vector with 𝑡[𝑘] = 1

if transaction t contains the entry i_k and 𝑡[𝑘] = 0 otherwise. Given X is a set of items

contained in I, a transaction t satisfies X if every item in X, 𝑖𝑘 ∈ 𝑋, 𝑡[𝑘] = 1.

1.1.3 Association rule in quantitative database

According to this form of binary association rule, items are only interested in

whether or not they appear in the transaction database, not how often or how often they

occur. In fact, the database contains not only binary attributes, but also quantitative and

categorical attributes that cannot be mined by classical techniques. The mining of rules

in such data can be called a quantitative association rule problem [29].The quantitative

association rule mining strategy is implemented by converting the attributes with

quantitative values to binary values. In this method, each quantifiable/categorical value

of the form 〈𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒, 𝑣𝑎𝑙𝑢𝑒〉 is mapped to a binary value. Then, binary association

rule mining techniques are performed to find the rule. In quantitative association rule

mining, the attributes can be both quantitative and categorical.

1.2 Overview of Fuzzy logic

1.2.1 Fuzzy set

Given a universe set U with elements denoted by 𝑢 , 𝑈 = {𝑥}. A fuzzy set 𝐴̃ over U

is a set characterized by a function 𝜇𝐴(𝑢) that associates each element 𝑢 ∈ 𝑈 with a real

number in the interval [0,1].

𝐴̃ = {(𝑢, 𝜇𝐴(𝑢)) | 𝑢 ∈ 𝑈} (1.4)

Where 𝜇𝐴(𝑢) is a mapping from U to [0,1] and is called the membership function

of the fuzzy set 𝐴̃.

1.2.2 Membership function

The membership function 𝜇𝐴(𝑢) defined for the set 𝐴 on the universe set U in the

classical set concept has only two values of 1 if 𝑢 ∈ 𝐴 or 0 if 𝑢 ∉ 𝐴. However, in the

concept of a fuzzy set, the membership function value indicates the membership degree

of the element u into the fuzzy set 𝐴. The specified interval of the function 𝜇𝐴(𝑢) is the

interval [0, 1], where the value 0 indicates the degree of non-belonging, and the value 1

indicates the degree of complete belonging.

𝜇(𝐴) ∶ 𝑈 → [0, 1] (1.5)

The type of the fuzzy set depends on different types of membership functions. There

are many different types of member functions proposed.

1.2.3 Linguistic variables

Linguistic variable is characterized by a quintuple (𝑋, 𝑇(𝑋), 𝑈, 𝑅, 𝑀), where X is

the variable name, T(X) is the set of linguistic values of the variable X, U is a universe

of discourse, each linguistic value is considered a fuzzy variable on U combined with

the base variable u, R is a syntactic rule that generates linguistic values of 𝑇(𝑋), M is

the the semantic rule assigns each linguistic value in 𝑇(𝑋) to a fuzzy set on U.

7

For an example: Given X is a linguistic variable named AGE, the base variable u is

taken according to the age of a person whose domain is defined as 𝑈 = [0,100]. The set

of linguistic values 𝑇(𝐴𝐺𝐸) = {𝑣𝑒𝑟𝑦 𝑦𝑜𝑢𝑛𝑔, 𝑦𝑜𝑢𝑛𝑔, 𝑚𝑖𝑑𝑑𝑙𝑒, old, very old}.

1.2.4 Fuzzy Logic operations

Three basic fuzzy logic operations: complement, union and intersection are

commonly used in fuzzy set theory, described below [22].

Complement: The complement operation of fuzzy set A is denoted ⌐A. The

membership function of ⌐A can be defined as:

𝜇⌐𝐴(𝑥) = 1 − 𝜇𝐴(𝑥), ∀𝑥 ∈ 𝑋 (1.9)

Union: The union of two fuzzy sets A and B is denoted 𝐴 ∪ 𝐵. The membership function

of 𝐴 ∪ 𝐵 for the normal operation can be defined as follows:

𝜇𝐴∪𝐵(𝑥) = 𝑚𝑎𝑥{𝜇𝐴(𝑥), 𝜇𝐵(𝑥)}, ∀𝑥 ∈ 𝑋 (1.10)

Intersection: The intersection operation of two fuzzy sets A and B is denoted 𝐴 ∩ 𝐵.

The membership function of 𝐴 ∩ 𝐵 for the normal operation can be defined as follows:

𝜇𝐴∩𝐵(𝑥) = 𝑚𝑖𝑛{𝜇𝐴(𝑥), 𝜇𝐵(𝑥)}, ∀𝑥 ∈ 𝑋 (1.11)

1.3 Fuzzy association rules

1.3.1 Fuzzy transactional database

Let 𝐼 = {𝐼1, 𝐼2, … , 𝐼𝑚} be the set of n attributes, 𝑖𝑢 is the uth attribute in I. 𝐷𝑄 =
{𝑇1, 𝑇2, … , 𝑇𝑛} is a set of transactions with each 𝑇𝑣 ∈ 𝐷𝑄 is a subset of I containing items

that have a quantitative value and have a unique identifier TID. A transaction T is said

to contain X if 𝑋 ⊆ 𝑇𝑞, in which X is a set containing some items contained in I. Each

attribute 𝐼𝑘 can be associated with the represented fuzzy set of values 𝐹𝑖𝑘 =

{𝑓𝑖𝑘
1 , 𝑓𝑖𝑘

2 , … , 𝑓𝑖𝑘
ℎ} where 𝑓𝑖𝑘

𝑗
 is the jth fuzzy value in 𝐹𝑖𝑘. Using the related membership

function to determine the fuzzy set for each attribute, the quantitative database 𝐷𝑄 is

transformed into a database containing the fuzzy value 𝐷𝑓.

1.3.2 The support of fuzzy itemset

A fuzzy attribute set in fuzzy association rule is a pair 〈𝑋, 𝐴〉 where A is the set of

fuzzy sets corresponding to the attributes in X and 𝑋 ⊆ 𝐼.

The support of the itemset 〈𝑋, 𝐴〉 denoted by 𝑓𝑠𝑢𝑝(〈𝑋, 𝐴〉) is determined by the

following formula:

𝑓𝑠𝑢𝑝(〈𝑋, 𝐴〉) = ∑ 𝜇𝑥1(𝑡)

𝑡∈𝑇

⨂ 𝜇𝑥2(𝑡)⨂ … ⨂ 𝜇𝑥𝑝(𝑡) (1.12)

where, 𝜇𝑥𝑝(𝑡) is fuzzy value of attribute 𝑥𝑝 in a transaction t.

⨂ is T-norm operator. In fuzzy logic theory, it has the same role as the AND

operation in classical logic. There are many ways to choose T-norm operation such as:

𝑎 ⊗ 𝑏 = 𝑚𝑖𝑛(𝑎, 𝑏)

𝑎 ⊗ 𝑏 = 𝑎𝑏

𝑎 ⊗ 𝑏 = 𝑚𝑎𝑥(0, 𝑎 + 𝑏 − 1)

𝑎 ⊗ 𝑏 = {

𝑎 (𝑖𝑓 𝑏 = 1)

𝑏 (𝑖𝑓 𝑎 = 1)

0 (𝑖𝑓 𝑎, 𝑏 < 1)

Intersection: 𝑎 ⊗ 𝑏 = 1 − 𝑚𝑖𝑛 [1, ((1 − 𝑎)𝑤 + (1 − 𝑏)𝑤)
1

𝑤] với (𝑤 > 0)

The minimization operation and algebraic product are the two most suitable

operations because it is convenient for calculations and shows the close relationship

between the attributes in the frequent sets.

8

When we choose the minimization operation for T-norm operator, the formula for

calculating the support of the itemset 〈𝑋, 𝐴〉 will be:

𝑓𝑠𝑢𝑝(〈𝑋, 𝐴〉) = ∑ 𝑚𝑖𝑛{𝜇𝑥1(𝑡), 𝜇𝑥2(𝑡), … , 𝜇𝑥𝑝(𝑡)}

𝑡∈𝑇

 (1.13)

When we choose algebraic product for T-norm operator, the formula for calculating

the support of the itemset 〈𝑋, 𝐴〉 will be:

𝑠𝑢𝑝(〈𝑋, 𝐴〉) = ∑ ∏ { 𝜇𝑥𝑝(𝑡)} (1.14)

𝑥𝑝∈𝑋𝑡∈𝑇

1.3.3 The fuzzy frequent itemset

Definition 1.8: (The fuzzy frequent itemset): [41]

An item set 〈𝑋, 𝐴〉 is said to be frequent if its support is greater than or equal to the

user-defined minimum support (fminsup) 𝑓𝑠𝑢𝑝(〈𝑋, 𝐴〉) ≥ 𝑓𝑚𝑖𝑛𝑠𝑢𝑝.

Mining frequent fuzzy item sets is the problem of extracting all frequent fuzzy item

sets of the form:

𝐹𝐹𝐼𝑘 = {𝑋 | 𝑓𝑠𝑢𝑝(𝑋) ≥ 𝛿 × |𝐷𝑓|} (1.15)

1.3.4 Fuzzy association rules

After obtaining the fuzzy intervals and their corresponding membership functions

for each fuzzy itemset of quantitative attributes, a transformed database 𝐷𝐹 (by

fuzzification) is created from the original database. Given a fuzzy database 𝐷𝐹 =
{𝑇1, 𝑇2, … , 𝑇𝑛} with attributes 𝑖𝑗 ∈ 𝐼 and fuzzy sets 𝐹𝑖𝑗 corresponding to the attributes in

I. A fuzzy association rule has the following form:

𝐼𝑓 𝑋 = {𝑥1, 𝑥2 … , 𝑥𝑝} 𝑖𝑠 𝐴 = {𝑎1, 𝑎2 … , 𝑎𝑝} 𝑡ℎ𝑒𝑛 𝑌 = {𝑦1, 𝑦2 … , 𝑦𝑞} 𝑖𝑠 𝐵 =

{𝑏1, 𝑏2 … , 𝑏𝑞}

where: 𝑎𝑖 ∈ 𝐹(𝑥𝑖), 𝑖 = 1, … , 𝑝 and 𝑏𝑗 ∈ 𝐹(𝑦𝑗), 𝑗 = 1, … , 𝑞. X and Y are ordered

subsets of I and distinct, 𝑋 ∩ 𝑌 = ∅. X is called antecedent while Y is called consequent,

the rule means X implies Y.

An example of an association rule takes the form: IF AGE is Young THEN Salary

is Low.

Definition 1.9: (The support of a fuzzy association rule)

The support of a fuzzy association rule 𝑋 𝑖𝑠 𝐴 ⇒ 𝑌 𝑖𝑠 𝐵 is determined by the

following formula:

𝑓𝑠𝑢𝑝(〈𝑋 𝑖𝑠 𝐴 ⟹ 𝑌 𝑖𝑠 𝐵〉) = 𝑓𝑠𝑢𝑝(〈𝑋 ∪ 𝑌, 𝐴 ∪ 𝐵〉) (1.16)

Definition 1.10: (The confidence of a fuzzy association rule)

The confidence of a fuzzy association rule 𝑋 𝑖𝑠 𝐴 ⇒ 𝑌 𝑖𝑠 𝐵 is determined by the

following formula:

𝑓𝑐𝑜𝑛𝑓(〈𝑋 𝑖𝑠 𝐴 ⟹ 𝑌 𝑖𝑠 𝐵〉) =
𝑓𝑠𝑢𝑝(〈𝑋 𝑖𝑠 𝐴 ⟹ 𝑌 𝑖𝑠 𝐵〉)

𝑓𝑠𝑢𝑝(〈𝑋, 𝐴〉)
 (1.17)

A rule is said to be frequent if its support is greater than or equal to fminsup, that is

𝑓𝑠𝑢𝑝(〈𝑋 𝑖𝑠 𝐴 ⟹ 𝑌 𝑖𝑠 𝐵〉) ≥ 𝑓𝑚𝑖𝑛𝑠𝑢𝑝.

A rule is said to be reliable if its confidence is greater than or equal to the user-

defined minimum confidence fminconf, that is 𝑓𝑐𝑜𝑛𝑓(〈𝑋 𝑖𝑠 𝐴 ⟹ 𝑌 𝑖𝑠 𝐵〉) ≥
𝑓𝑚𝑖𝑛𝑐𝑜𝑛𝑓.

1.4 Related works

1.4.1 Apriori-based approach studies

The studies based on Apriori approach were used to mine fuzzy frequent itemsets,

then the remaining fuzzy frequent itemsets can be used to generate fuzzy association

rules such as F-APACS [69], [31], [32]. In which, the values of the quantitative

9

attributes are first converted into representations of linguistic terms with their

membership values according to predefined membership functions.

1.4.2 Extensive studies from Apriori

Several variant algorithms have been presented to mine fuzzy association rules [70],

[71], [72], [73], [74]. Then the author also developed a multi-level fuzzy mining

algorithm to mine fuzzy association rules by integrating the concepts of fuzzy set and

multi-level classification [28].

1.4.3 Tree-based methods

To solve the problem of computation time, Papadimitriou proposed the algorithm

of Frequent Fuzzy Pattern Tree (FFPT) [75]. Lin then presents another framework for

fuzzy mining to find fuzzy frequent items based on tree structure. Three algorithms, FP

fuzzy frequent tree (FFP)-tree [38], compressed fuzzy frequent tree (CFFP)-tree [39]

and upper bound fuzzy frequent pattern tree (UBFFP)-tree [40] have been developed to

mine fuzzy frequent itemset from quantitative databases. These algorithms differ mainly

in the tree structure.

1.5 Define research problem

In Apriori-based fuzzy data mining methods, quantitative values are converted into

fuzzy sets according to predefined membership functions. Then, fuzzy frequent itemsets

and fuzzy association rules can be generated based on the Apriori implementation. Since

the execution time of Apriori-based methods is time-consuming, tree-based fuzzy data

mining methods are described to speed up the mining process. Basically, these methods

are modified from the FP-tree to handle fuzzy itemset. The mining of frequent fuzzy

item sets is done entirely in the tree, which takes up a lot of memory space. This thesis

has proposed a fuzzy frequent itemset mining algorithm based on the Node-list structure

to solve the problem of memory space in the works [CT1], [CT2], [CT5].

Furthermore, member functions can be given by experts. However, expert opinions

may not always be available. To solve this problem, the thesis has proposed a method

to determine fuzzy sets for each quantitative attribute in the database by EMC clustering

technique in the works [CT2], [CT2], [CT4].

Along with the increase in the size of data, data mining in large databases has

become an important issue. Besides applying cloud computing or other parallel and

distributed architectures to speed up the fuzzy mining process is also worth

investigating. The thesis proposes a parallel processing method for fuzzy frequent

itemset mining using the cellular learning automata approach. [CT3]

Conclusion of chapter 1

In Chapter 1, the thesis presents an overview of issues related to association rules,

fuzzy logic and fuzzy association rules, different fuzzy data mining methods, including

fuzzy data mining based on Apriori, tree-based fuzzy data mining and then identify the

research problems of the thesis.

This thesis focuses on presenting the solution of problems in the studies [CT1],

[CT2], [CT5], CT[4], [CT3]. Specifically, the thesis will focus on researching proposals

and solutions to thoroughly solve the following 3 problems:

− Propose a method to determine fuzzy sets for each quantitative attribute in the

database through clustering techniques.

− Propose a method to mine fuzzy frequent itemsets in quantitative databases using

Node-list data structure.

− Propose a parallel processing method to mine fuzzy frequent itemset using cellular

learning automata.

The remaining two chapters of the thesis will present the corresponding solutions to

the three research problems above.

10

 CHAPTER 2: FUZZY FREQUENT ITEMSET MINING BASED ON TREE

STRUCTURE

In this chapter, the thesis presents the process of performing fuzzy association rule

mining. In which, in the first step to convert the quantitative database to the fuzzy

database, the author performs the fuzzification of the quantitative values of the items by

the EMC clustering method and identifies the fuzzy intervals. The results of these two

algorithms are used for the preprocessing step of the data and then applying the

membership functions to convert the quantitative value to the fuzzy value. In the second

step, the author proposes two popular fuzzy item set mining methods using Node-list

structure based on suffix prefix tree (FPPC - Fuzzy Pre-order, Post-order Code) and

FPOSC tree (Fuzzy Pre-order) Size Code). The result of the frequent fuzzy item set

mining step is the main basis used to perform the search for fuzzy association rules.

2.1 State the fuzzy association rule mining problem

Given a quantitative database 𝐷𝑄 = {𝑇1, 𝑇2, … , 𝑇𝑛} and the set of items 𝐼 =

{𝐼1, 𝐼2, … , 𝐼𝑚}. Given a fuzzy set 𝐴𝑗 = {𝐴𝑗1, 𝐴𝑗2, … , 𝐴𝑗ℎ} where 𝐴𝑗𝑘 is defined as the kth

element in the fuzzy set 𝐴𝑗 of item 𝐼𝑗 and 𝑓𝑗,𝑘
(𝑖)

 is the fuzzy value (defined by the

membership function) of 𝐴𝑗𝑘 in transaction 𝑇𝑖.

Mining fuzzy association rule (MFAR) is the problem that extracts all rules of form

𝐴 → 𝐵 satisfied 𝑓𝑠𝑝(𝐴 → 𝐵) ≥ 𝑚𝑖𝑛𝑠𝑢𝑝 and 𝑐𝑓𝑐𝑓(𝐴 → 𝐵) ≥ 𝑚𝑖𝑛𝑐𝑜𝑛𝑓, with 𝑚𝑖𝑛𝑠𝑢𝑝

and 𝑚𝑖𝑛𝑐𝑜𝑛𝑓 are the threshold predefined by user. The fuzzy association rule mining

algorithm is implemented through three main phases:

− Phase one: Convert quantitative database to fuzzy database.

− Phase two: Extract all frequent fuzzy itemset that fuzzy support greater than

minimum threshold support 𝐹𝐹𝐼𝑘 = {𝐴| fsp (𝐴) ≥ 𝛿}.

− Phase three: Initiate all fuzzy association rules with confidence greater than

the minimal confidence threshold from the frequent fuzzy item sets found in

Phase two.

2.2 Data clustering algorithm and identification of fuzzy intervals

2.2.1 Basic concepts

2.2.1.1 Data clustering

In data mining, Expectation Maximization (EM) [77]– [79] is a data clustering

algorithm used in knowledge discovery tasks. The EM algorithm has the following

limitations: First, EM runs fast in the initial loops but slower in the next loops. Second,

EM did not always find the optimal parameter for the global, instead the local optimal.

 Definition 2.1:

The coefficient of variation 𝐶𝑣 is defined as the ratio of the standard deviation 𝜎 to

the expectation 𝑥 of the cluster i containing the elements 𝑋𝑖{𝑥𝑖1
, 𝑥𝑖2

, … , 𝑥𝑖𝑛
}:

𝐶𝑣(𝑋𝑖) =
𝜎

𝑥̅
× 100 (2.1)

Definition 2.2: univariant Gaussian distribution [77]–[79]

𝑁(𝑋|𝑥̅, 𝜎) =
1

√2𝜋𝜎2
𝑒

−
(𝑋−𝑥̅)2

2𝜎2 (2.2)

Definition 2.3: Multivariant Gaussian distribution [77]–[79]

𝑁(𝑋|𝑥̅, 𝛴) =
1

(2𝜋|𝛴|)
1

2⁄
𝑒𝑥𝑝 {−

1

2
(𝑋 − 𝑥̅)𝑇 ∑(𝑋 − 𝑥̅)

−1

} (2.3)

The method of parameter estimation (Maximum Likelihood). Calculate the log for

the Gaussian distribution [77]–[79].

11

𝑙𝑛 𝑝(𝑋|𝑥̅, 𝛴) = −
1

2
𝑙𝑛(2𝜋) −

1

2
𝑙𝑛|𝛴| −

1

2
(𝑋 − 𝑥̅)𝑇 ∑(𝑋 − 𝑥̅)

−1

 (2.4)

Derivative:

𝛿 𝑙𝑛 𝑝(𝑋|𝑥̅, 𝛴)

𝛿𝑥̅
= 0, 𝑥̅𝑀𝐿 =

1

𝑁
∑ 𝑋𝑛

𝑁

𝑛=1

𝛿 𝑙𝑛 𝑝(𝑋|𝑥̅, 𝛴)

𝛿 𝛴
= 0, 𝛴𝑀𝐿 =

1

𝑁
∑ 𝑋𝑛

𝑁

𝑛=1

Where N is the number of samples. Gaussian linear mixed distribution:

𝑝(𝑥) = ∑ 𝜋𝑘 𝒩(𝑋|𝑥̅𝑘, 𝛴𝑘)

𝐾

𝑘=1

 (2.5)

Where K is the Number of Gaussians and 𝜋𝑘 is the mixing coefficient, with a weight

for each Gaussian unit: 0 ≤ 𝜋𝑘 ≤ 1, ∑ 𝜋𝑘 = 1𝐾
𝑘=1 . Consider log likelihood:

𝑙𝑛 𝑝(𝑋|𝑥̅, 𝛴, 𝜋) = ∑ 𝑙𝑛 𝑝

𝑁

(𝑋𝑛) = ∑ 𝑙𝑛 {∑ 𝜋𝑛(𝑋𝑛|𝑥̅𝑘, 𝛴𝑘)

𝑁

𝑛=1

}

𝑁

 (2.6)

2.2.1.2 Determination of fuzzy intervals

When manipulating data in fuzzy databases, the most important problem is how to

find a method to handle fuzzy values from which to build matching relationships

between them. The values in fuzzy databases are complex, including linguistic values,

numeric values, and interval values. There are many different approaches to dealing with

fuzzy values that have been studied in recent years, such as: fuzzy set theory [22],

possibility theory [22] 80], [81], similarity relationship [82]. The interval values are

almost converted to fuzzy numbers in the form of triangles, trapezoids, bells for

processing.

2.2.2 Problem

Given a database containing quantitative values 𝐷𝑄.

The problem is: Determine the set of fuzzy sets of quantitative attributes in 𝐷𝑄 and

the corresponding membership functions. Convert quantitative database to fuzzy

database.

2.2.3 Data Clustering Algorithm EMC

2.2.3.1 Algorithm idea

EMC algorithm is a dynamically operated iterative optimization technique

(Algorithm improved to increase flexibility for clustering while reducing local

optimization and increasing global optimization).

1. Step E: For the given parameter values, we can calculate the expected value of

the latent variable (Based on the given parameters of the model, calculate the probability

for the expected value of the potential variables and label the data points into a group).

2. Step M: The parameters of the model are updated through the latent variables

calculated according to the maximum estimation method.

3. Step C: Update the model's parameters based on latent variables calculated by the

method of maximum estimator and similarity ratio among objects in a cluster and

evaluate the coefficient of variation of the elements in the cluster..

2.2.3.2 EMC Algorithm

EMC algorithm is presented in Algorithm 2.1

The EMC algorithm starts with the parameters for the predictive model. Then execute

the 5-process loop shown in Algorithm 2.4.

12

Algorithm 2.4: EMC (Expectation Maximization Coefficient)

Input: Initialize the value of the coefficient of variation 𝐶𝑣𝑣𝑎𝑙𝑢𝑒

Output: Optimal number of clusters

1: Initialize expectation 𝑥̅𝑗, covariance 𝛴𝑗, mixing coefficient 𝜋𝑗, coefficient of

variation 𝐶𝑣 and evaluate for the initial value of log likelihood

2: Step E: Based on the model parameters, calculate the probabilities of

labeling the data points in a group

 γj(X) =
πk𝒩(X|x̅k, Σk)

∑ πj𝒩
K
j=1 (X|x̅j, Σj)

 (2.7)

3: Step M: Update model parameters based on groups obtained from step E

 x̅j =
∑ γj(Xn)Xn

N
n=1

∑ γj(Xn)N
n=1

 (2.8)

 Σj

=
∑ γj(Xn)(Xn − x̅j)Xn − x̅j

TN
n=1

∑ γj(Xn)N
n=1

 (2.9)

πj =
1

N
∑ γj(Xn)

N

n=1

 (2.10)
4: Evaluate log likelihood.

ln p(X|x̅, Σ, π) = ∑ ln

N

n−1

= ∑ ln {∑ πk(Xn|x̅k, Σk)

K

k=1

} (2.11)

N

5: Step C: Update information about the coefficients of variation of clusters

and evaluate the variability of the elements for each cluster, specifically,

we evaluate the coefficient of variation of the ith cluster with Cvi
 satisfying

the variable value bias Cvvalue
 given or not.

Cvi
=

∑ γj(Xn)Xn
N
n=1

1
n

∑ xk
n
k=1

 (2.12)

Cvi
≤ Cvvalue

 (2.13)

6: If there is no convergence and the given Cvvalue
 variation is satisfied, go

back to step 2. If the likelihood does not change much, the algorithm

terminates. 2.2.3.3 Evaluation of EMC algorithm based on Log Likelihood

To evaluate the effectiveness of the EMC algorithm by the proposed statistical

method through the works announced [CT3].

2.2.4 Algorithm for determining fuzzy intervals.

2.2.4.1 Determine the mean

In a fuzzy database, the domain of values of the quantitative attributes of the fuzzy

object in which (the attributes can contain clear or fuzzy values) is divided into two or

more fuzzy intervals. In fuzzy intervals, an element can belong to more than one interval

with different degrees. In this section, it is assumed that each quantitative attribute is

divided into three fuzzy intervals using a statistical approach that uses the expectation 𝑥̅

(mean) and standard deviation (Sd) as illustrated in the below figure.

Figure 1.3: Fuzzy intervals of a quantitative attribute

13

The degree of overlap between the fuzzy data objects belong to two or more cluster

is defined as:

 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 =
∑ |𝐶𝑗|𝑛

𝑗=1

|⋃ 𝐶𝑗
𝑛
𝑗 |

∗ 100 (2.14)

where 𝐶𝑗 là jth cluster, j=1, 2,..., n;

2.2.4.2 Determination the intervals

The first interval: (𝑑−) is the lower bound of the first interval that is the minimum

value in the domain of the age attribute. The upper bound (𝑑+) is calculated by the

standard deviation and the standard deviation (Sd) of the values of the age attribute. The

mathematical expressions of (𝑑−) and (𝑑+) are presented as follows:

 𝑑− = 𝑀𝐼𝑁(𝑋1𝐶𝑗 , 𝑋2𝐶𝑗 , … . , 𝑋𝑁𝐶𝑗)

 𝑑+ = 𝑥̅ −
𝑆𝑑

2
+ 𝑥̅ × 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

} (2.15)

The membership function is used by the Z-membership to compute the membership

degree for the first interval, which is shown as follows.

 𝑓(𝑥)𝒵 =
1

2
+

1

2
 𝑐𝑜𝑠 (

𝑥 − 𝑑−

𝑑+ − 𝑑−
) Π (2.16)

The second interval: The lower bound (𝑑−) and upper bound (𝑑+) of the second

interval is calculated as:

 𝑑− = 𝑥̅ −
𝑆𝑑

2
− 𝑥̅ ∗ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

 𝑑+ = 𝑥̅ +
𝑆𝑑

2
+ 𝑥̅ ∗ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

} (2.17)

Both membership functions S-membership and Z-membership are used to compute the

second interval, which is shown as follows:

 𝑓(𝑥)𝑆 =
1

2
+

1

2
 𝑐𝑜𝑠 (

𝑥̅ − 𝑥

𝑥̅ − 𝑑−
) Π, với 𝑑− ≤ 𝑥 ≤ 𝑥̅

 𝑓(𝑥)𝒵 =
1

2
+

1

2
 𝑐𝑜𝑠 (

𝑥 − 𝑥̅

𝑑+ − 𝑥̅
) Π, với 𝑥̅ ≤ 𝑥 ≤ 𝑑+

} (2.18)

The third interval: The expression below is calculated for the lower bound 𝑑− and

the upper bound 𝑑+ of the third interval as follows:

 𝑑− = 𝑥̅ −

𝑆𝑑

2
− 𝑥̅ ∗ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝑑+ = 𝑀𝐴𝑋(𝑋1𝐶𝑗 , 𝑋2𝐶𝑗 , … . , 𝑋𝑁𝐶𝑗)
} (2.19)

The third interval use of the membership function (S-Membership) is calculated as

follows.

 𝑓(𝑥)𝑆 =
1

2
+

1

2
 𝑐𝑜𝑠 (

𝑑+ − 𝑥

𝑑+ − 𝑑−
) Π (2.20)

2.2.4.3 Converting Quantitative Database to Fuzzy Database

After determining the fuzzy intervals, the initial quantitative database is converted

into a fuzzy database, preparing for fuzzy association rule mining. For each fuzzy set

that we previously defined, there is a row in the new database containing the

membership degree of the single elements for the particular set.

2.3 Mining fuzzy frequent itemsets

2.3.1 Problem

Given a database containing fuzzy values 𝐷𝑓 and minimum support 𝛿

14

Problem statement: Frequent fuzzy itemsets mining (FFIM) is the problem that

extracts all frequent fuzzy itemsets as:

𝐹𝐹𝐼𝑘 ≔ {𝑋| 𝑠𝑢𝑝(𝑋) ≥ 𝛿 × |𝐷𝑓|}

2.3.2 Fuzzy frequent itemset mining using FPPC-tree structure

2.3.2.1 The idea of algorithm

From the database containing the fuzzy value 𝐷𝑓, calculate the support of each fuzzy

item 𝐴𝑖𝑙 in the transaction 𝑇q. Check if fuzzy item support 𝐴𝑖𝑙 is greater than minimum

support δ then add 𝐴𝑖𝑙 to 𝐹1. Sort fuzzy frequent items in 𝐹1 by decreasing support. Fuzzy

items that are not fuzzy frequent items are excluded from 𝐷𝑓. Build the FPPC tree.

After constructing the FPPC tree, by traversing the FPPC tree in pre-order order, we

obtain the Node-list of each fuzzy (1-item) frequent item. For each 𝑁𝑖, node, we insert
〈𝑁𝑖 . 𝑝𝑟𝑒, 𝑁𝑖 . 𝑝𝑜𝑠𝑡, 𝑁𝑖 . 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 〉 into the Nodelist of each item represented by N. The

FPPC tree is deleted after obtaining the Node-list to reduce memory space.

After obtaining the Node-list of each 1-item frequent item, we perform the Node-

list intersection of 1-item frequent items to find the Node-list of the item set (k-itemset).

For any candidate (k + 1) Pc, we get the support of Pc by summing the support values of

all the FPP_Codes in its Node-list. Based on the support of Pc, we can judge whether Pc

is frequent or not. By repeating the above procedure, we find all the frequent fuzzy

patterns.

2.3.2.2 Algorithm for building FPPC-tree

The algorithm for building FPPC-tree is presented in Algorithm 2.2

Algorithm 2.1: FPPC_tree_ Construction

Input: Database containing the fuzzy value Df, minimum fuzzy support fminsup 𝛿.

Output: FPPC-tree (FTr), fuzzy frequent itemset 1-itemset (𝐹1).

(1) Scan database 𝐷𝑓 containing fuzzy values to compute the support of each fuzzy

item 𝐴𝑖𝑙 in the transaction 𝑇q as in the formula:

𝑠𝑢𝑝(𝐴𝑖𝑙) = ∑ 𝑓𝑖𝑙

𝐴𝑖𝑙 ⊆𝑇𝑞⋀𝑇𝑞∈𝐷𝑓

(2) Check if 𝑠𝑢𝑝(𝐴𝑖𝑙) ≥ 𝑚𝑖𝑛𝑠𝑢𝑝 𝛿, put 𝐴𝑖𝑙 in 𝐹1. That is 𝐹1 = {𝐴𝑖𝑙 | 𝑠𝑢𝑝(𝐴𝑖𝑙) ≥
𝑛 × 𝛿}.

(3) Sort the frequent fuzzy items in 𝐹1 in support decreasing order.

(4) if 𝐴𝑖𝑙 𝑛𝑜𝑡 𝑖𝑛 𝐹1, delete 𝐴𝑖𝑙 from all 𝑇𝑞 (𝑞 = 1. . 𝑛).

(5) Create root of FPPC-tree and label it as “null”

(6) for each 𝑇q in 𝐷𝑓{

(7) Sort the remaining fuzzy items in support decreasing order;

(8) Insert the fuzzy items into FFPC_tree (this process is similar to MFFP_tree

[42])

(9) }

(10) Traverses FPPC-tree to generate the PP_Code of each node..

2.3.2.3 Nodelist construction algorithm of fuzzy frequent items based on FFPC-tree

Construction the Node-list of all frequent fuzzy 1-itemsets is shown in Algorithm

2.3

Algorithm 2.2: Nodelist_Construction

Input: FPPC-tree (R) and L1 (the list of frequent fuzzy 1-itemsets)

Output: 𝑁𝐿1 (the set of Node list of frequent fuzzy 1-itemsets 𝐿1)

1: Create 𝑁𝐿1, 𝑁𝐿1[𝑘] is the node list of a kth element in 𝐿1[𝑘]
2: for each node 𝑁𝑖 in R traversed in pre-order do

15

3: if 𝑁𝑖 . 𝑓_𝑖𝑡𝑒𝑚 = 𝐿1[𝑘]. 𝑓_𝑖𝑡𝑒𝑚 then

4: insert <N.pre, N.post, N. support> into NL1[k]

5: end if

6: end for

7: return 𝑁𝐿1 = ⋃ 𝑁𝐿1[𝑘]𝑘 ;

➢ Nodelist intersection

Algorithm to perform Nodelist intersection of two fuzzy frequent sets of length k is

described in algorithm 2.4.

Algorithm 2.3: FNodelist_Intersection Algorithm

Input: 𝑁𝐿1 and 𝑁𝐿2 t where 𝑁𝐿𝑘1 , 𝑁𝐿𝑘2 are the node list of two frequent fuzzy k-

itemsets.

Output: NL3 the node list of frequent fuzzy (k+1) itemsets.

(1) for (𝑖 = 0; 𝑖 < 𝑁𝐿1. 𝑆𝑖𝑧𝑒(); 𝑖 + +) do

(2) for (𝑗 = 0; 𝑖 < 𝑁𝐿2. 𝑆𝑖𝑧𝑒(); 𝑗 + +) do

(3) if (𝑁𝐿1[𝑖]. 𝑓𝑝𝑟𝑒_𝑐𝑜𝑑𝑒 < 𝑁𝐿2[𝑗]. 𝑓𝑝𝑟𝑒_𝑐𝑜𝑑𝑒) then

(4) if (𝑁𝐿1[𝑖]. 𝑓𝑝𝑜𝑠_𝑐𝑜𝑑𝑒 > 𝑁𝐿2[𝑗]. 𝑓𝑝𝑜𝑠_𝑐𝑜𝑑𝑒) then

(5) Insert 𝑁𝐿2[𝑗] into NL3;

(6) End if

(7) else

(8) if (𝑁𝐿1[𝑖]. 𝑓𝑝𝑜𝑠_𝑐𝑜𝑑𝑒 < 𝑁𝐿2[𝑗]. 𝑓𝑝𝑜𝑠_𝑐𝑜𝑑𝑒) then

(9) Insert 𝑁𝐿1[𝑖] into NL3;

(10) End if

(11) End if

(12) End for

(13) return NL3;

(14) End for

2.3.2.4 NFFP algorithm

The NFFP algorithm is described as in Algorithm 2.5

Algorithm 2.4: Fuzzy frequent itemset mining - NFFP

Input: minimum fuzzy support fminsup (δ), fuzzy frequent itemset (1-item) (𝐿1),

Nodelist of L1 (NL1);

Output: Set of fuzzy frequent itemsets (FFIs)

(1) For (𝑘 = 2; 𝐿𝑘−1 ≠ ∅; 𝑘 + +) do begin

(2) For each 𝑝 = 𝑖1𝑖2 … 𝑖𝑘−2𝑖𝑥 ∈ 𝐿𝑘−1 𝑎𝑛𝑑 𝑞 = 𝑖1𝑖2 … 𝑖𝑘−2𝑖𝑦 ∈ 𝐿𝑘−1 , do

(3) If 𝑖𝑥 ≻ 𝑖𝑦 then

(4) 𝑙 = 𝑖1𝑖2 … 𝑖𝑘−2𝑖𝑥𝑖𝑦

(5) If each k-1 subsets l in 𝐿𝑘−1 then begin

(6) l.Node-list = NL_Intersection (p.Node-list, q.Node-list);

(7) Calculate 𝑙. 𝑠𝑢𝑝𝑝𝑜𝑟𝑡;

(8) If (𝑙. 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 ≥ 𝑛 × 𝛿) then begin

(9) 𝐿𝑘 = 𝐿𝑘 ∪ {𝑙};

(10) 𝑁𝐿𝑘 = 𝑁𝐿𝑘 ∪ {𝑙. 𝑁𝑜𝑑𝑒𝑙𝑖𝑠𝑡};

(11) end if

(12) end if

(13) end if

(14) end for

(15) Delete 𝑁𝐿𝑘−1;
(16) end for

(17) 𝐹𝐹𝐼𝑠 = ⋃ 𝐿𝑘𝑘

16

2.3.3 Mining frequent itemsets using the FPOSC-tree structure

2.3.3.1 The idea of algorithm

From the database containing the fuzzy value 𝐷𝑓, calculate the support of each fuzzy

item 𝐴𝑖𝑙 in the transaction 𝑇q. Check if fuzzy item support 𝐴𝑖𝑙 is greater than minimum

support δ then add 𝐴𝑖𝑙 to 𝐹1. Sort fuzzy frequent items in 𝐹1 by decreasing support. Fuzzy

items that are not fuzzy frequent items are excluded from 𝐷𝑓. Build the FPOSC tree.

While building the FPOSC tree it is possible to add several child nodes without

having to traverse the tree and the pre-order is calculated at the same time as the Node-

list construction of the common fuzzy items. For each node 𝑁𝑖, we insert
〈𝑁𝑖 . 𝑝𝑟𝑒, 𝑁𝑖 . 𝑠𝑖𝑧𝑒, 𝑁𝑖 . 𝑓_𝑠𝑢𝑝〉 into the Nodelist of each item represented by N. The

FPOSC tree is deleted after obtaining the Nodelist to reduce memory space.

After obtaining the Nodelist of each 1-item frequent item, we perform the Nodelist

intersection of 1-item frequent items to find the Nodelist of the item set (k-itemset). For

any candidate (k + 1) Pc, we get the support of Pc by summing the support values of all

the FPP_Codes in its Nodelist. Based on the support of Pc, we can judge whether Pc is

frequent or not. By repeating the above procedure, we find all the frequent fuzzy

patterns.

2.3.3.2 Algorithm for building FPOSC-tree (Fuzzy Pre-order Size Coding)

The algorithm for constructing the FPOSC tree is determined by adjusting the

structure of the FPPC tree [CT1], presented in algorithm 2.6.

Algorithm 2.5: FPOSC-Tree_Construction
Input: Fuzzy Database 𝐷𝑓, fminsup 𝛿
Output: 𝐹𝑇𝑟 (FPOSC-tree), 𝐹1 (frequent fuzzy itemsets (length=1)

 Begin
1: Traverse 𝐷𝑓 to calculate the fuzzy support for each 𝐴𝑗𝑘 in transaction 𝑇𝑖

2: If 𝑓𝑠𝑢𝑝(𝐴𝑗𝑘) ≥ 𝛿 then

3: Insert 𝐴𝑗𝑘 into 𝐹1;
4: End if
5: If 𝐴𝑗𝑘 not in 𝐹1 then
6: Delete 𝐴𝑗𝑘 from all 𝑇𝑖 (𝑖 = 1 … 𝑛)
7: End if
8: Create 𝐹𝑇𝑟 NodeRoot=null
9: Let Flist be the list containing the remaining fuzzy items in each 𝑇𝑖
10: For each 𝑇𝑖 in 𝐷𝑓
11: Sort FList in descending order of fsup

 12: 𝑒 = 𝐹𝐿𝑖𝑠𝑡[0] ; e is the first element in Flist
13: 𝐿𝑖𝑠𝑡𝑟 = 𝐿𝑖𝑠𝑡[𝑠𝑖𝑧𝑒 − 1]
14 Insert_tree ([𝑒| 𝐿𝑖𝑠𝑡𝑟], 𝐹𝑇𝑟)
15: End for

/* Procedure Insert_Tree is used to recursively invoke the building of the POSC-

tree. Where, e is the first element of Flist and Flist is the remaining list */

Procedure Insert_tree ([𝑒| 𝐿𝑖𝑠𝑡𝑟], 𝐹𝑇𝑟)
1: Let N is a node corresponds to a branch in the 𝐹𝑇𝑟

 2 If 𝑒. 𝑓𝑖𝑡𝑒𝑚 == 𝑁. 𝑓𝑖𝑡𝑒𝑚 then

3: Add fuzzy value 𝑓𝑗,𝑘
(𝑖)

 of e to fsup of N;

4: Else

5:
 Create a new node N that has fsup as 𝑓𝑗,𝑘

(𝑖)
 and add N into the end of

corresponding branch;

17

6: 𝑁. 𝑠𝑖𝑧𝑒 = 1;
7:

 If 𝐿𝑖𝑠𝑡𝑟 is nonempty then
8: Call Insert_Tree (𝐿𝑖𝑠𝑡𝑟 ,N) recursively

 9: End if
10: End if
11: 𝑁. 𝑠𝑖𝑧𝑒 = 𝑁. 𝑐𝑜𝑢𝑛𝑡𝐶ℎ𝑖𝑙𝑑 + 1
End procedure

2.3.3.3 Nodelist construction algorithm of fuzzy frequent items based on FPOSC-tree

The node-list construction of frequent fuzzy item sets (length = 1) (F1 is presented

in Algorithm 2.7.
Algor.6: FNode_List_Gen
Input: POSC-tree (𝐹𝑇𝑟), fuzzy frequent itemset length=1 (𝐹1)
Output: Node-list of 𝐹1 (𝑁𝐿1)
 Begin
1: for each Ni in FTr browsed by pre-order do
2: Let NL1[k] be Node-list of item kth in F1.
3: If Ni. fitem == F1[k]. f_item then
4: insert 〈Ni. pre, Ni. size, Ni. fsup〉 into NL1[k];
5: Return NL1 = ⋃ NL1[k]k
End.

The method for construction the intersection of two Node-list is presented in

Algorithm 2.8.

Algorithm 2.7: POS_Node-list_Intersect
Input: 𝑁𝐿𝑘1, 𝑁𝐿𝑘2 trong đó 𝑁𝐿𝑘1, 𝑁𝐿𝑘2 are the Node-list of two fuzzy frequent k-

itemsets.
Output: 𝑁𝐿𝑘1+1 – Node-list of fyzzy frequent (k+1) itemsets

 Begin
1: for 𝑖 = 0; 𝑖 < 𝑁𝐿𝑘1. 𝑙𝑒𝑛𝑔𝑡ℎ; 𝑖 + + do
2: For 𝑗 = 0; 𝑗 < 𝑁𝐿𝑘2. 𝑙𝑒𝑛𝑔𝑡ℎ; 𝑗 + + do
3: If 𝑁𝐿𝑘1[𝑖]. 𝑝𝑟𝑒 < 𝑁𝐿𝑘2[𝑗]. 𝑝𝑟𝑒 then
4: If 𝑁𝐿𝑘2[𝑗]. 𝑝𝑟𝑒 < 𝑁𝐿𝑘1[𝑖]. 𝑝𝑟𝑒 + 𝑁𝐿𝑘1[𝑖]. 𝑠𝑖𝑧𝑒 then
5: Insert 𝑁𝐿𝑘2[𝑗] into 𝑁𝐿𝑘1+1;
6: End if
7: else
8: If 𝑁𝐿𝑘1[𝑖]. 𝑝𝑟𝑒 < 𝑁𝐿𝑘2[𝑗]. 𝑝𝑟𝑒 + 𝑁𝐿𝑘2[𝑗]. 𝑠𝑖𝑧𝑒 then
9: Insert 𝑁𝐿𝑘1[𝑖] into 𝑁𝐿𝑘1+1;
10: End if
11: End if
12: End for
13: End for
End.

2.3.3.4 Algorithm NPSFF

Algorithm 2.8: The algorithm for mining fuzzy frequent itemset NPSFF

Input: minimum fuzzy support fminsup (δ), fuzzy frequent itemset (1-item) (𝐿1),

Nodelist of L1 (NL1);

Output: Set of fuzzy frequent itemsets (FFIs)

1: For (𝑘 = 2; 𝐿𝑘−1 ≠ ∅; 𝑘 + +) do begin

2: For each 𝑝 = 𝑖1𝑖2 … 𝑖𝑘−2𝑖𝑥 ∈ 𝐿𝑘−1 𝑎𝑛𝑑 𝑞 = 𝑖1𝑖2 … 𝑖𝑘−2𝑖𝑦 ∈ 𝐿𝑘−1 , do

3: If 𝑖𝑥 ≻ 𝑖𝑦 then

4: 𝑙 = 𝑖1𝑖2 … 𝑖𝑘−2𝑖𝑥𝑖𝑦

18

5: If each k-1 subsets l in 𝐿𝑘−1 then begin

6: l.Node-list = POS_Node-list_Intersect (p.Node-list, q.Node-list);

7: Calculate 𝑙. 𝑠𝑢𝑝𝑝𝑜𝑟𝑡;

8: If (𝑙. 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 ≥ 𝑛 × 𝛿) then begin

9: 𝐿𝑘 = 𝐿𝑘 ∪ {𝑙};

10: 𝑁𝐿𝑘 = 𝑁𝐿𝑘 ∪ {𝑙. 𝑁𝑜𝑑𝑒𝑙𝑖𝑠𝑡};

11: End if

12: End if

13: End if

14: End for

15: Delete 𝑁𝐿𝑘−1;
16: End for

17: 𝐹𝐹𝐼𝑠 = ⋃ 𝐿𝑘𝑘 ;

2.4 Algorithm for mining fuzzy association rules

All phases in mining fuzzy association rules is performed in Algorithm 2.10 as below:

Algorithm 2.9: MFAR

Input: A quantitative database (𝐷𝑄), minimum support threshold 𝛿, minimum

confidence minfc

Output: All fuzzy association rules FRs

 Begin

1: Transform 𝐷𝑄 to 𝐷𝑓

2: Execute FPOSC _Tree_ Construction (Df, δ) to generate FPOSC Tree (FTr),

𝐹1 3: Execute FNode-list Gen (FTr, 𝐹1)
4: Execute NPSFF (𝛿, 𝐿1, 𝑁𝐿1) to find all FFIs
5: 𝐹𝑅𝑠 = ∅;
6: For each 𝑋 ∈ 𝐹𝐹𝐼𝑠 do
7: For each 𝑌 ⊂ 𝑋 && 𝑌 ≠ 𝜙 do
8: 𝑓𝑟 = 𝑋 \ 𝑌 → 𝑌;

9: 𝑓𝑐(𝑓𝑟) =
𝑠𝑢𝑝(𝑋𝑌)

𝑠𝑢𝑝(𝑋)
;

10: If 𝑓𝑐(𝑓𝑟) ≥ 𝑚𝑖𝑛𝑐𝑓 then
11: 𝐹𝑅𝑠 = 𝐹𝑅𝑠 ⋃{𝑓𝑟};
12: End if
13: End for
14: End for
15: Return 𝐹𝑅𝑠
2.5 Experiment

In the experiment, author use the data set obtained from datasets for Frequent

Itemsets mining [79] called Foodmart, Chess and Chain store. Each transaction in this

data set includes all the items acquired by a customer in one time. The description about

data set is shown in Table 2.1. To resolve with the quantitative database, we assigned

random numbers for all items in this data set with a distribution in the value range 1–

100.

Table 2.1: Description of the data set for the experiment

Dataset Number of

transactions

Number of

items

Average number of

items per transaction

Foodmart 4,141 1,559 4.42

Chess 3,196 75 37

ChainStore 111,294 46,086 7.23

19

2.6 Conclusion of chapter 2

In this chapter, author offers solutions to problems related to "sharp" boundaries

between fuzzy intervals by proposing an algorithm for clustering EMC data. The results

of this algorithm [CT4] are used in the data preprocessing stage, data partitioning to

convert quantitative databases to fuzzy databases. Second, the thesis solves the problem

of memory space by providing two fuzzy association rule mining methods based on the

Nodelist data structure, namely NFFP [CT1] and NPSFF [CT2]. The author proposes

two NFFP algorithms, NPSFF uses FPPC_tree, POSC-tree to store quantitative database

with membership values in descending order. Based on the constructed tree, a Nodelist

of each common fuzzy item is generated. Then, the NFFP, NPSFF algorithm obtains the

Nodelist of the common fuzzy items (k + 1) by intersecting the Nodelist of the frequent

k fuzzy items and then extracts the frequent (k + 1) fuzzy files. The advantage of this

algorithm is that the FPPC_Tree tree as well as the POSC-tree is used to generate the

FPP_Code or POS-code for each node to get the Nodelist of each common fuzzy item

and then it will be deleted so that the request can be reduced memory usage

requirements.

With the increase in data size, the data types are heterogeneous and dynamic data.

Extending efficient fuzzy mining algorithms to the era of big data is an important

problem, mining by applying parallel processing techniques has become a viable way to

overcome the problem of time. processing time. This issue is discussed in chapter 3.

Hình 2.1: Number of rules generated from

3 algorithms
Hình 2.2: Execution time of algorithms

20

CHAPTER 3: MINING FUZZY FREQUENT ITEMSETS USING PARALLEL

PROCESSING

In this chapter, the author presents a parallel processing method for mining frequent

fuzzy itemsets, an important stage in fuzzy association rule mining by using a cellular

learning automata (CLA) approach. According to CLA, space is represented as a

network, with each element being a cell, line by line, transaction data will be read and

simultaneously transferred to cells, they will collaborate with each other in parallel.

Without using neighborhood rules, a type of data automation known irregular cellular

learning automata (ICLA) is used to generate a neighborhood list for each cell. Through

using CLA fuzzy frequent itemset mining is performed. This process shortens the

execution time of the algorithm.

3.1 Introduction

In recent years, many algorithms have been developed to study parallel mining

problems for association rules, classification, clustering, and other tasks. Agrawal et al.

proposed the first parallel association rule mining algorithm [85]–[88], while Wang

studied other parallel association rule mining algorithms [89]–[91]. Among parallel

architectures, the master-slave architecture is often used. This approach offers

significant performance benefits [92]. The main processor allocates tasks to the sub-

processors and collects results from them. Some studies use parallel slave-master

architecture to perform association rule mining suitable for dense data sets such as [94]

[95].

In the field of association rule extraction and PSO, researchers have proposed many

parallel computing algorithms [96], [97], [98]. For a large amount of experimental data,

a parallel PSO algorithm applied to extract association rules is a possible solution.

In addition, the iMFFP algorithm [99] proposed to integrate different MFFP trees

[41] from the branch databases and integrated into the iMFFP tree in sequence. Then,

Header_table is created, and frequent item set mining is performed. With this method,

the calculation of fuzzy support of fuzzy items will be inaccurate and incomplete

because the database is decomposed. Moreover, building each branch of the MFFP tree

and gradually integrating it into the complete iMFFP tree will consume memory space.

In this chapter, the author presents a parallel processing method for mining frequent

fuzzy item sets, an important stage in fuzzy association rule mining by using a cellular

learning automata (CLA) approach. In this strategy, the initial quantitative database is

transformed into a fuzzy database in the preprocessing step. After extracting the fuzzy

frequent 1-itemset from the data set, the infrequent fuzzy itemset will be removed. The

CA environment will start working after the preprocessing phase and generate CA cells

that match each fuzzy frequent 1-itemset. Each line of data in the compressed database

is read and sent to cells concurrently, then they work in parallel.

3.2 Some concepts about cellular learning automata

3.2.1 Learning Automata (LA)

An LA consists of two parts:

1. A random automata with a limited number of actions and a random environment.

2. Learning algorithm: the algorithm by which the automata will learn the optimal

action using that action.

Each action selected by the potential environment is evaluated and an answer is

given to an auto-learning data. LA will use this answer and choose its action for the next

phase. Figure 3.1 shows the relationship between auto-learning data and the

environment [101].

21

Figure 3.1: Environment, LA and their relationship

3.2.2 Cellular Automata (CA)

A d-dimensional Cellular Automata is a structure of 𝐴 = (𝑍𝑑 , Φ, 𝑁, 𝐹) [35] where:

- 𝑍𝑑 is a lattice of d-tuples of integer number of which this lattice could consist

finite lattice, infinite lattice or semi-finite.
- Φ = {1, … , 𝑚} is a finite set of states.
- 𝑁 = {𝑥1, 𝑥2, … , 𝑥𝑚} is a finite subset of 𝑍𝑑 called the neighborhood vector

(𝑥𝑖𝜖 𝑍𝑑).
- 𝐹 is the local rule of the cellular automata.

3.2.3 Cellular learning automata

Automata is combination of two recent models LA and CA. A d-dimensional

cellular Learning Automata is a structure CLA: 𝐴 = (𝑍𝑑 , Φ, 𝐴, 𝑁, 𝐹)

- 𝑍𝑑 s a lattice of d-tuples of integer number which this lattice could consist of

finite lattice, infinite lattice or semi-finite.
- Φ = {1, … , 𝑚} is a finite set of states.

- A is collection of learning automat (LA) each of which is assigned to one cell

of the CLA. Each cell can have a LA or more than one.

- 𝑁 = {𝑥1, 𝑥2, … , 𝑥𝑚} is a finite subset of 𝑍𝑑 called the neighborhood vector

(𝑥𝑖𝜖 𝑍𝑑).
- 𝐹 is the local rule of the cellular automata. This rule can be defined by users.

3.3 Fuzzy frequent itemset mining algorithm using CLA

3.3.1 The idea of algorithm

In the CLA-Fuzzy Mining algorithm [CT3] is performed according to the below

procedure:

Figure 3.2: CLA-Fuzzy Mining algorithm implementation process

3.3.2 Pre-processing

In this step, the database is converted from quantitative database to fuzzy database.

3.3.3 Mining fuzzy frequent 1-item

The fuzzy frequent itemset (1-item) mining is performed like the algorithms in

Chapter 2. The fuzzy support of each item in the transaction is calculated by the formula

and tested with the minimum support.

3.3.4 Mining fuzzy frequent n-itemset

➢ Perform data compression

Data compression algorithm is shown in Algorithm 3.1
Algorithm 3.1: Data_Compression()
Input: 𝑚𝑖𝑛𝑠𝑢𝑝: minimum support threshold
 𝐹1: tập mục phổ biến 1-item
 𝐷𝑓: CSDL mờ sau khi loại bỏ các tập mục không phổ biến

22

Output: 𝐶𝐷𝑆: Compressed dataset
 Begin
1: for 𝑖 = 1 to 𝐷𝑓 do
2: For 𝑗 = 1 𝑡𝑜 𝑖𝑡𝑒𝑚𝑠 do
3: If 𝑖𝑡𝑒𝑚𝑠(𝑖, 𝑗) == 𝑖𝑡𝑒𝑚𝑠(𝑖 + 1, 𝑗) then
4: Remove (rows (i+1));
5: Update support (rows(i)+ rows(i+1));
6: End if
7: End for
8: End for
9: Return CDS
End.

➢ Determine the neighborhood list

Each cell learning automata will be created according to the frequent fuzzy 1-

itemsets. Because of using ICLA, there is no specific rule in cell’s neighborhoods. The

cellular automata environment reads line by line each transaction in compressed dataset

and sends the frequent fuzzy 1-itemset to the cells. After receiving a row containing

fuzzy items from the dataset, cells begin their operation at the same time as others. These

cells will update their proximity list depending on the fuzzy items in the received

transaction.

Hình 3.3: Automata cells according to frequent fuzzy 1-itemset

➢ Prune the neighborhood list

When all transactions are sent by the environment to cells, each cell deletes

neighbors and neighborhoods whose support is less than a user-defined minimum

threshold from its list of neighborhoods. The neighborhood list is again used to scan and

finally obtain the fuzzy frequent k-Itemset. If these items are already on this list, they

will be removed; otherwise, these items will be included in the list of fuzzy frequent

itemset.

3.3.5 CLA-FuzzyMining algorithm

The CLA-Fuzzy Mining algorithm is described as in Algorithm 3.2

Algorithm 3.2: CLA_Fuzzy_Mining

Input: 𝑚𝑖𝑛𝑠𝑢𝑝: minimum support threshold

 𝐹1: fuzzy frequent 1-item

 𝐷𝑓: Fuzzy database after removing removes infrequent fuzzy itemset

 CDS: compressed dataset

Output: 𝐹𝐹𝐼𝐿: Fuzzy frequent itemsets

Begin

1: for 𝑖 = 1 to 𝐶𝐷𝑆 do

3: CLA_Thread();

4: End for

5: Initialize FFIL;

6: for i=1 to automata cells do

23

7: Execute PruneNeighbors() for cell[i];

8: Execute DFS() function for cells[i];

9: for each anItemset on cell[i].FrequentItemset do

10: if anItemset does not exist in FFIL then

11: FFIL.add (anItemset);

12: else

13: Nothing;

14: End if

15: End for

16: End for

17: Return FFIL;

End.

The CLA_Thread() function is described in Algorithm 3.3.
Algorithm 3.3: CLA_Thread()
Input: Recodset (compressed data record), NodeParent[Cell] (representative of
cells)
Output: automata cells
Begin
1: Thread theard=new Thread();
2: thread.Start();
3: Initialize nodeChil=new Node();
4: for 𝑖 = 1 to Recodset do
5: nodeChil.data= Recodset[value];
6: If(nodeChil in (Recodset)) then
7: nodeChil.data= Recodset[value]+ nodeChil.data;
8: else
9: NodeParent[Cell].next= nodeChil;
10: End if
11: End for
12: Return AutomataCells;
End.

3.4 Experiment

In the experimental part the author uses the Foodmart, Chess and ChainStore data

sets from the frequent set mining dataset [69] for this test. The description of the data

set is shown in Table 3.7. This experiment introduces the experimental results from the

algorithms and compares them with the results of the NPSFF algorithm [CT2] and the

iMFFP algorithm [33]. CLA- Fuzzy Mining algorithm is more efficient than the

previous two algorithms in terms of processing time and temporary storage memory,

according to the test results based on the data set presented in figure 3.12 – 3.14.

Table 3.7: Table of experimental data

Dataset name Transaction# Items# Size

Chess 3196 175 0.78 M

Foodmart 4141 1559 12.4 M

ChainStore 111,294 46,086 28.17 M

24

Figure 3.12 – 3.14: Experimental time on data sets

Figure 3.4: Evaluation of memory usage of algorithms on data sets

3.5 Conclusion of chapter 3

To increase efficiency in big data models, records are constantly updated. Chapter

3 focuses on presenting the fuzzy frequent item set mining method according to CLA

parallel processing technique. According to CLA, space is represented as a network,

with each element being a cell, line by line, transaction data will be read and

simultaneously transferred to cells, they will collaborate with each other in parallel.

Without using neighborhood rules, a type of data automation known as irregular cellular

learning automata (ICLA) is used to generate a neighborhood list for each cell. Through

using these automatic data cells, frequent fuzzy set mining is performed. This process

shortens the execution time of the algorithm. [CT3].

CONCLUSION

The main purpose of the thesis is to study some fuzzy association rule mining

methods. The thesis researches the methods of association rule mining on fuzzy data

based on the combination of fuzzy math and the proposed quantitative database.

However, these methods are in the process of development, it is necessary to propose

new solutions to improve them. Therefore, the thesis proposes an effective approach to

the problem of mining fuzzy association rules.

The main results of the thesis are as follows:

(1) Propose a method to determine fuzzy sets for each quantitative attribute in the

database through EMC clustering technique. These clusters are then used to

classify each quantitative attribute as a fuzzy set and determine their membership

functions. The result of this step is to convert the quantitative database to the

fuzzy database. [CT2], [CT4].

(2) Propose a method to mine common fuzzy item set based on Nodelist structure,

an important step in fuzzy association rule mining. Common fuzzy item set

mining based on PP_code or POS_code helps to limit the required memory

consumption. [CT1], [CT2]

(3) Propose a parallel processing method for the process of mining frequent fuzzy

item sets using CLA mobile auto-learning theory. With this proposal, we aim to

reduce processing time for large databases. [CT3

LIST OF PUBLISH

No ARTICLES

[1]

Tran, T. T., Nguyen, G. L., Truong, C. N., & Nguyen, T. T. “Mining

Frequent Fuzzy Itemsets Using Node-List”. Information Systems Design

and Intelligent Applications Springer, Singapore, 37-48, 2018

[2]

Tran, T. T., Nguyen, T. N., Nguyen, T. T., Nguyen, G. L., & Truong, C. N.,

“A Fuzzy Association Rules Mining Algorithm with Fuzzy Partitioning

Optimization for Intelligent Decision Systems”. International Journal of

Fuzzy Systems, 1-14, 2022 (SCIE – Q2)

[3]

Tran, T. T., Nguyen, T. T., Nguyen, G. L., & Truong, C. N. “Parallel Fuzzy

Frequen Itemset Mining Using Cellular Automata”. Journal of Computer

Science and Cybernetics, 38(4), 293-310, 2022.

[4]

Tran Thi Thuy Trinh, Nguyen Long Giang, Truong Ngoc Chau, Nguyen Tan

Thuan. “Partitioning fuzzy data using statistical methods in fuzzy

association rule mining”. Proceedings of the National Conference on

Selected Issues of Information & Communications Technologies VNICT –

Quy Nhơn, 2017

[5]

Tran Thi Thuy Trinh, Nguyen Tan Thuan, Nguyen Long Giang, Truong

Ngoc Chau, Nguyen Quang Huy. “Intelligent learning advisory model

applying fuzzy association rules”. Proceedings of the National Conference

on Selected Issues of Information & Communications Technologies VNICT

– Quảng Ninh, 2020

