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Abstract

CP and CPT are among the most fundamental symmetries of Nature. Test-

ing CP and CPT invariances is of prime importance for fundamental physics. T2K

is a long-baseline neutrino oscillation experiment. It uses an intense muon neutrino

(antineutrino) beam to study neutrino oscillation phenomenon. By operating in both

neutrino mode and antineutrino mode, T2K is able to test CP symmetry in lepton

sector. In addition, the disappearance channels of muon neutrino and antineutrino at

long-baseline experiments such as T2K are the “golden channels” to test CPT invari-

ance.

The on-axis near detector INGRID provides information about neutrino event

rate and beam profile. The measurements at INGRID are in good agreement with MC

predictions. The neutrino event rate and beam profile are stable within the physics

requirements in T2K run 10.

Testing CP and CPT symmetries with T2K and with a combined analysis of

T2K-II, NOνA extension, and JUNO experiments are presented. T2K ruled out CP

conserving values (δCP = 0; π) at more than 95% C. L. using data collected from run

1 to run 9 with a total exposure of 3.13× 1021 POT. The value of CP violating phase

(δCP ) was measured to be−2.14+0.90
−0.69 for normal mass ordering (NO) and−1.26+0.61

−0.69 for

inverted mass ordering (IO). With constraint from short baseline reactor experiments,

the best fit values of δCP with ±1σ uncertainties are −1.89+0.70
−0.58 for NO and −1.38+0.48

−0.55

for IO. We also show that by 2028, the joint fit of T2K-II, NOνA extension, and JUNO

will be able to exclude CP conservation at ∼ 5σ C. L.

The analysis of the T2K data with 3.13× 1021 POT exposure is consistent with

CPT conservation hypothesis. The joint analysis of T2K-II, NOνA extension, and

JUNO will be able to exclude CPT conservation at 1.7σ (4σ) and 3σ (4.6σ) C. L. if

the best-fit values of T2K (NOνA) in the mass squared splittings (∆m2
31, ∆m

2
31) and

mixing angles (θ23, θ23) are presumed to be true values. In addition, the synergy can

improve the bound on |∆m2
31−∆m2

31| to the world’s best value ever made, 5.3×10−5eV 2

at 3σ C. L., which is slightly better than DUNE and about one order of magnitude

better than the value analysed by current neutrino oscillation experiments.
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1

Introduction

From ancient times to the present, symmetry has played a crucial role, being

considered as one of the most important factors in judging beauty. For human beings,

the harmony and balance of a body, an object, or an architectural structure lie behind

the standard of beauty. In mathematics, a geometric shape or an object is said to be

symmetric if it is invariant under a specific group of transformations such as translation,

reflection, or rotation. Although symmetry underpins conservation laws in physics, its

importance was not recognized until the early 20th century. It was Emmy Noether who

first apparently pointed out in 1918 the profound connection between the continuous

symmetries of a physics system and conservation laws. In the later part of the 20th

century, with the developments of quantum mechanics and field theory, symmetry

emerged as one of the most important concepts in physics. Its role is like a lighthouse,

guiding scientists in searching for the fundamental laws of nature.

“I do not know what I may appear to the world, but to myself I seem to have

been only like a boy playing on the seashore, and diverting myself in now and then

finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of

truth lay all undiscovered before me”. The humble quote of Newton well describes our

knowledge before the vastness of the universe. Nature has its own intriguing beauty

that will always be mysterious to us. Throughout its history, humanity has been

“like a boy playing on the seashore” of the universe, trying to find some “smooth

pebbles and pretty shells” before “the undiscovered ocean of truth”. Among those

secrets, the asymmetry between matter and antimatter is one of the biggest puzzles

waiting for humanity to discover. Once again, symmetry is placed at the center of that

journey. And this time, the historical role is entrusted to discrete symmetry. Discrete

symmetries, including charge conjugation C, parity inversion P, and time reversal T

play a vital role in particle physics. Their conservation or violation, individual or in

combination, may be the key to unveil the secrets of the universe. For a long time,

one has believed that C, P, and T and their combinations are conserved in physics

processes. Developments in theory and experiment in the last 66 years, however, have

gradually proved the opposition. Parity violation was theoretically predicted by Tsung

Dao Lee and Chen Ning Yang in 1956 [13], then experimentally confirmed by Chien

Shiung Wu et. al. [14] one year later, resulting in the formation of the V-A structure in

weak interaction. Next, CP violation in the quark sector was experimentally found in

the neutral kaon system in 1964 [15], in B-meson decay at the BaBar experiment [16],

and the Belle experiment [17] in 2001. Recently, the long baseline neutrino oscillation

experiment T2K has announced an indication of CP violation in the lepton sector by

ruling out a large amount of CP-violating phase δCP at 3σ C. L. [18]. Searching for

CP violation in the lepton sector is one of the most important goals of the current and

future neutrino oscillation experiments.
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Most of the models in modern physics are based on the framework of quantum

field theory. CPT is a fundamental symmetry in quantum field theory. Once the sym-

metry is tested, it consequently tests the fundamental physics also. If CPT symmetry

is proved to be not conserved, the impact on the fundamental physics is therefore

enormous: at least one of the three assumptions of the quantum field theories must

be abandoned: (1) Lorentz invariance, (2) locality or (3) hermiticity of Hamiltonian.

In addition, the CPT combination contains the charge conjugation operator C, which

transforms particles into antiparticles and vice versa. Therefore, CPT violation can be

a candidate to explain matter-antimatter asymmetry of the universe [19]. The CPT

symmetry has been tested by different types of experiments with different methods.

The Standard Model Extension provides a formalism to test CPT by measuring and

deriving the Lorentz and CPT violating coefficients [20], [21], [22]. Ref. [23] summarizes

the latest results on Lorentz and CPT violation searches in the context of Standard

Model Extension. The CPT can also be tested based on the consequences of CPT theo-

rem which says that the particle and its antiparticle must have the same energy spectra,

implying identical mass and lifetime, and opposite in charge and magnetic (electric)

dipole moment [24]. Testing CPT invariance by comparing the masses, charges, mag-

netic moments, and hyperfine spectroscopy has been done on several systems of particle

and its antiparticle [25], [12]. The measurement on neutral kaon system has provided

the best limit on the CPT violation so far [12]. In terms of mass squared difference, the

bound reads |m2(K◦)−m2(K
◦
)| < 0.3 eV 2. Comparing this to the two mass-squared

differences of the three neutrino mass eigenstates [12], m2
ν2 −m2

ν1 ≈ 7.39 × 10−5 eV2

and |m2
ν3 − m2

ν2| ≈ 2.45 × 10−3 eV2, it becomes clear that neutrino measurements,

rather than neutral kaons, provide the best constraint on the CPT test in terms of the

mass-squared difference [26,27]. The aforementioned neutrino mass-squared differences

come from measurements in neutrino oscillation. Therefore, testing CPT with neutrino

oscillation has recently become of interest in the physics community.

The purpose of this thesis is to investigate the current status and future prospects

of testing the CP and CPT invariances from neutrino oscillation experiments. In which

we focus on the analysis of recent T2K data and the sensitivity with the synergy of

T2K-II, NOvA extension (denoted as NOvA-II from now on), and JUNO experiments.

In addition to the introduction and conclusion sections, the thesis consists of three

chapters and is organized as follows. In Chapter 1, we introduce a general overview

of neutrino oscillation phenomenon and relevant experiments. Chapter 2 presents ba-

sic results on neutrino flux and beam profile at T2K near detector INGRID which we

had directly done the measurement and simulation during the time at J-PARC in 2019.

Recently, we have also involved in measuring neutrino interactions at WAGASCI Baby-

MIND which preliminary result is shown in the Appendix A. The subject of Chapter 3

is about CP and CPT testing in the T2K and with the joint fit of the T2K-II, NOvA-II,

and JUNO experiments.
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Chapter 1. Neutrino oscillation phenomenon and ex-

periments

1.1 Neutrino oscillation

Neutrino oscillation is a quantum mechanical phenomenon in which one type

of neutrino “oscillates” or transforms into another type during propagation in space-

time. The first idea was suggested by B. Pontecorvo in 1957, describing the neutrino-

antineutrino transition [28]. In 1962, Z. Maki, M. Nakagawa and S. Sakata developed

the Pontecorvo’s idea to describe flavor oscillation [29]. Neutrino oscillation theory can

explain the solar neutrino anomaly [30], [31] and the atmospheric neutrino anomaly [32].

The phenomenon was observed for the first time by the Super-Kamiokande experi-

ment [33], SNO experiment [34] and later by many other neutrino experiments. The

discovery of neutrino oscillation indicates that neutrinos must have masses. This is the

only experimental evidence for the physics beyond Standard Model (SM) of elementary

particles so far, because in SM, neutrinos are massless. In this section, we will briefly

introduce the history of neutrinos, how neutrinos are described in SM and the neutrino

oscillation phenomenon.

1.1.1 Neutrino history

The study of beta decay in the early 20th century provided the first indirect

evidence of the existence of neutrinos. In the 1920s, the spectra of alpha and gamma

decays were apparently known to be mono-energetic or discrete. The physicists at first

expected that beta decay would have similar behavior to alpha and gamma decays

because they only detected two particles in the final state

XA
Z → Y A

Z−1 + e−. (1.1)

The electron kinetic energy was expected to be mono-energeticKe = (mX−mY −me)c
2.

A series of studies carried out by Lise Meitner and Otto Hahn in 1911 and Jean Danysz

in 1913, however, pointed out that the beta spectrum is continuous. Moreover, the

energy spectral of emitted beta particles was observed to be smaller than predicted by

the law of energy conservation. This fact made scientists confused. More and more

evidence on the long tail spectrum of the beta decay even led some of them, including

Niels Bohr, to doubt about the correctness of the conservation law of energy. In 1930,

physicist Wolfgang Pauli suggested a hypothesis to explain the continuous spectrum

behavior in the beta decay. He proposed the existence of a very light neutral particle

(denoted by ν) emitted along with the beta particle.

XA
Z → Y A

Z−1 + e− + νe. (1.2)
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The electron kinetic energy now also depends on the kinetic energy of the invisible

particle Ke = (mX −mY −me)c
2 −Kν . The continuous spectrum of the electron is

therefore explained. The new particle is “undetectable” according to Pauli, and he

first named it neutron. The neutron, found by James Chadwick later in 1932, is also

a neutral particle but has the same mass as the proton. In July 1932, Enrico Fermi

called Pauli’s hypothesis particle neutrino, in Italian means “little neutral one”. Since

then, neutrino has had a name, and an amazing journey has started.

Pauli sighed after suggesting the existence of neutrino: “I have done a terrible

thing: I have postulated a particle that cannot be detected”. Neutrino has no electric

charge, it does not have electromagnetic interaction; its very tiny mass makes it invisi-

ble to gravity. Extremely weak interactions with matter allow neutrino to pass through

our bodies, the Earth, and the Sun without any deviation. Is there any chance to detect

neutrino experimentally? The answer is yes. Twenty four years after Pauli’s postu-

lation, the first experimental evidence of neutrino was carried out by Clyde Cowan,

Frederick Reines and their colleagues [35]. In this experiment, neutrinos were created

by the Savannah River Plant near Augusta, Georgia state and detected by inverse beta

decay

νe + p→ n+ e+. (1.3)

After being created, the positron quickly annihilates with environmental electron to

produce two gamma rays with prompt signals of 0.5 MeV energy. Neutron is captured

by Cadmium nucleus to produce delayed gamma signal after 5 µs (Eq. 1.4)

n+ 108Cd→ 109Cd∗ → 109Cd+ γ. (1.4)

These gamma rays were detected by 110 5-inch Photo-Multiplier Tube (PMT). Cowan

and Reines’s detector was placed at 11m from the reactor core, 12m underground,

contained total of about 200 liters of water with about 40 kg dissolved cadmium chloride

(CdCl2). With intense flux of 5×1013 neutrinos per second, their detector could detect

about three neutrinos per hour. This breakthrough result was recognized by the 1995

Nobel Prize in physics for Frederick Reines (Clyde Cowan died in 1974 at 54).

The one discovered by Cowan and Reines’s experiment is electron anti-neutrino

(νe). In 1962, Leon M. Lederman, Melvin Schwartz and Jack Steinberger discovered

that there exists more than one type of neutrino [36]. This is the first time an in-

tense neutrino beam was created from an accelerator, which had been independently

proposed since the 1950s by Bruno Pontecorvo (Dubna, Soviet Union) and Melvin

Schwartz (Colombia University and Brookhaven National Laboratory, USA). Leon Le-

derman, Jack Steinberger, and others from Columbia University together with Melvin

Schwartz used Alternating Gradient Synchrotron (AGS) at Brookhaven to produce a

15 giga-electron-volt (GeV) proton beam. The proton beam was projected to a beryl-

lium (Be) target, producing charged pions (π±). Finally, charged pions decay into

muons (µ) and neutrinos. At the detector, neutrinos interact with medium protons

to produce associated leptons, almost muons. They claimed that there exists another
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type of neutrino which is different from the one emitted along with electron in the beta

decay. This type of neutrino is associated with muon, namely muon neutrino (νµ).

Schwartz, Lederman, and Steinberger were honored by the 1988 Nobel Prize in physics

for their discovery of the second type of neutrino.

In the SM, there are three leptons including electron, muon and tau. The

existence of tau neutrino (ντ ) was predicted right after the tau particle found in 1975.

First efforts in searching for tau neutrino in 1980s at Fermilab was unsuccessful. In

1994, a group of about 40 scientists from USA, Japan, Korea and Greece initiated

Direct observation of the nu tau, E872 (DONUT) experiment to directly detect tau

neutrino. It is really difficult to detect neutrino in general, now it is even much harder

to detect tau neutrino because its partner, tau lepton is more massive than muon or

electron. After produced by interaction between tau neutrino and target nucleus, tau

quickly decays into lighter leptons such as muon or electron. With a lifetime of about

30 pico-seconds (30×10−12s), tau only leaves a 1mm-track in the detector. In DONUT,

proton beam was accelerated by Tevatron at Fermilab up to 800 GeV and projected

to tunsten target to produce charm meson Ds (charm meson consists of one charm

quark and one strange quark). Charm meson Ds then decays into tau lepton and tau

anti-neutrino in beam dump. The DONUT detector was filled with nuclear emulsion

with a total mass of 260 kg and situated after a 36-meter system of magnets and bulk

matter to eliminate unwanted backgrounds. In July 2000, the DONUT collaboration

announced the direct observation of tau neutrino for the first time [37]. So until the late

20th century, three types of neutrino flavor were experimentally discovered, including

electron neutrino νe, muon neutrino νµ, and tau neutrino ντ .

1.1.2 Neutrino in Standard Model

In the SM, neutrinos only participate in weak interaction. Wu’s 1957 experiment

on cobalt-60 proved that parity is not conserved in the weak interaction. This exper-

imental evidence confirms that weak interaction current is different from Quantum

Electrodynamics (QED) and Quantum Chromodynamics (QCD) that have four-vector

current of the form jµ = ψγµψ (ψ is Dirac spinor field). The other difference is that

the weak interaction is mediated by massive W± and Z◦ bosons, while QED and QCD

are mediated by massless bosons (photon for QED and eight gluons for QCD).

The requirement of Lorentz invariance on interaction matrix element restricts

the form of weak interaction. The interaction current must be of the form jµ = ψΓϕ,

where Γ is a combination of Dirac γ matrices. There are only five of such combination

[38]: scalar (ψϕ), pseudoscalar (ψγ5ϕ), vector (ψγµϕ), axial vector (ψγµγ5ϕ) and

tensor (ψ(γµγν − γνγµ)ϕ). It is known from experiment that charged current (CC)

weak interaction must has a form of V − A (vector minus axial vector). The V − A

structure of the weak interaction is characterized by a charged vertex factor

−igW√
2
γµ

1

2
(1− γ5), (1.5)
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and a neutral vertex factor

−igZγµ
1

2
(gV − gAγ

5), (1.6)

where gW and gZ are strength couplings, gV and gA respectively are vector and axial-

vector coupling constants, γµ are Dirac gamma matrices, and γ5 = iγ0γ1γ2γ3. The

corresponding four-vector CC and neutral current (NC) are

jµCC =
gW√
2
ψ̄γµ

1

2
(1− γ5)ϕ, (1.7)

jµNC = gZψ̄γ
µ1

2
(gV − gAγ

5)ψ. (1.8)

Left-handed and right-handed chiral projection operators are defined as

PL =
1

2
(1− γ5), PR =

1

2
(1 + γ5), (1.9)

with properties

PLPL = PL, PRPR = PR, PLPR = PRPL = 0, PL + PR = 1, (1.10)

and

P †
L = PL, P †

R = PR, PLγ
0 = γ0PR, PRγ

0 = γ0PL. (1.11)

In terms of left-handed and right-handed chiral projection operators, any Dirac field ψ

can be decomposed into left-handed and right-handed chiral components as follows

ψ =
1

2
(1− γ5)ψ +

1

2
(1 + γ5)ψ = PLψ + PRψ ≡ ψL + ψR. (1.12)

We see that

ψL = PLψ = (PLψ)
†γ0 = ψ†PLγ

0 = ψ†γ0PR = ψPR, (1.13)

and

ψR = PRψ = (PRψ)
†γ0 = ψ†PRγ

0 = ψ†γ0PL = ψPL. (1.14)

Under charge conjugation, the Dirac spinor field and its adjoint transform as follows:

ψ → ψC = Cψ
T
, (1.15)

and

ψ → ψ
C
= −ψTC−1. (1.16)

In Dirac representation, charge conjugation operator C has an explicit form

C = iγ0γ2 =

 0 iσ2

iσ2 0

 . (1.17)

It is straightforward to verify that

PLψL = ψL, (1.18)

PLψR = 0, (1.19)

PLψ
C
L = 0, (1.20)

PLψ
C
R = ψC

R . (1.21)
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The V − A nature of CC weak interaction consequently leads to the fact that the

currents associated to right-handed field and left-handed conjugate field are zero

jµRR =
gW√
2
ψRγ

µ1

2
(1− γ5)ϕR =

gW√
2
ψRγ

µPLϕR = 0, (1.22)

j̄µLL =
gW√
2
ψ
C
Lγ

µ1

2
(1− γ5)ϕCL =

gW√
2
ψ
C
Lγ

µPLϕ
C
L = 0, (1.23)

and only the currents associated with left-handed and right-handed conjugate fields

are non-zero. This means that in the SM, only left-handed particles and right-handed

anti-particles participate in the CC weak interaction.

In the case of neutrinos in the SM, wherem = 0, the chiral and helicity states are

the same. Hence, the V −A nature allows only left-handed neutrinos and right-handed

anti-neutrinos participate in the CC weak interaction.

1.1.3 Neutrino mass and seesaw mechanism

The neutrino oscillation phenomenon indicates that neutrinos do have masses.

Therefore, we must have the mass term for neutrino in Lagrangian. The simplest way

is to add right-handed neutrino into the SM and construct a Dirac mass term as follows

LD = −mDνLνR −mT
DνRνL. (1.24)

Since νLνR is equivalent to νcRν
c
L and mT

DνRνL is the Hermitian conjugate (h.c) of

mDνLνR, we can rewrite the above equation as follows

LD = −1

2
mD(νLνR + νcRν

c
L) + h.c. (1.25)

This way, however, is unnatural since neutrino masses are much smaller than other

fermion masses. We then need to look for another mechanism to generate masses for

neutrinos.

We already know that in the SM, right-handed neutrinos and left-handed an-

tineutrinos transform as singlets under gauge transformation. As a result, any com-

bination of them can be incorporated into the Lagrangian without disrupting gauge

symmetry. Let νR to be right-handed neutrino and its CP conjugate field νcR to be

left-handed antineutrino. A gauge invariant Majorana mass term can be constructed

as follows

LM = −1

2
MνcRνR + h.c. (1.26)

This mass term however allows a direct coupling between a particle and an antiparticle

which violates lepton number by two units (∆L = ±2). Since neutrinos are neutral

particles, they can be their own anti-particles. If so, neutrino-less double beta decay

can be experimentally found.

The most general mass term for neutrinos that can be incorporated into the SM
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Lagrangian contains both Dirac (1.25) and Majorana (1.26) mass terms

L = LD + LM

= −1

2
mD(νLνR + νcRν

c
L)−

1

2
MνcRνR + h.c

= −1

2
(mDνLνR +mDν

c
Rν

c
L +MνcRνR) + h.c

= −1

2

(
νL νcR

) 0 mD

mD M


 νcL

νR

+ h.c. (1.27)

The masses of physical states are eigenvalues of mass matrix

M =

 0 mD

mD M

 . (1.28)

In order to find eigenvalues of the mass matrix, we solve the characteristic equation

det(M− λI) = 0

⇒ λ2 −Mλ−m2
D = 0

⇒ m± ≡ λ± =
M ±

√
M2 + 4m2

D

2
. (1.29)

If the Majorana mass is taken to much larger than the Dirac mass, we obtain one light

neutrino state

|mν | ≈
m2

D

M
, (1.30)

and one heavy neutrino state

mN ≈M. (1.31)

It is supposed that the Dirac mass term mD should be at the order of other fermion

masses (∼ 1 GeV). In order for a light neutrino to have mass at order of 0.1 eV, the

Majorana mass must be at the order of 1010 GeV!

1.1.4 Neutrino oscillation in vacuum

The neutrino oscillation can be well described by Pontecorvo–Maki–Nakagawa–Sakata

(PMNS) framework. In this framework, the flavor eigenstates are related to the mass

eigenstates by a 3× 3 uniraty mixing matrix, so-called PMNS

|να⟩ =
3∑

i=1

U∗
αi|νi⟩, (1.32)

where να = (νe, νµ, ντ ) represent the flavor eigenstates and νi = (ν1, ν2, ν3) represent

the mass eigenstates with corresponding masses mi = (m1, m2, m3). The PMNS

matrix can be parameterized by three mixing angles (θ12, θ13, θ23) and one Dirac phase
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δCP as expressed in equation (1.33)

UPMNS =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



=


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδ

0 1 0

−s13eiδ 0 c13




c12 s12 0

−s12 c12 0

0 0 1



=


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (1.33)

where sij = sin θij , cij = cos θij and δCP is the CP violating Dirac phase. If neutrinos

are Majorana particles, the mixing matrix includes two additional phases which do not

appear in the expression of oscillation probabilities. The unitarity of PMNS matrix

implies U−1 = U † ≡ (U∗)T . Then condition UU † = I leaves nine equations:

3∑
i=1

UαiU
∗
βi = δαβ, (1.34)

where α and β can be e, µ, or τ . The mass eigenstates therefore can also be performed

via flavor eigenstates as

|νi⟩ =
e,ν,τ∑
α

Uαi|να⟩. (1.35)

Time evolution of the wave function at the time t later is

|να⟩ =
3∑

i=1

U∗
αie

−iϕi |νi⟩, (1.36)

where ϕi = pi.xi = Eit− p⃗i.x⃗i. Taking into account the equation (1.35), we can rewrite

the equation (1.36) as follows

|να⟩ =
e,µ,τ∑
β

3∑
i=1

U∗
αiUβie

−iϕi |νβ⟩. (1.37)

Neutrino experiments often measure the oscillation probability from flavor να to flavor

νβ after traveling some distance. The oscillation probability is defined as the square of

the sum of the amplitudes as follows

P (να → νβ) =
∣∣⟨νβ|να⟩∣∣2 =

∣∣∣∣∣
3∑

i=1

U∗
αiUβie

−iϕi

∣∣∣∣∣
2

. (1.38)
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The neutrino masses are extremely small (mi ≈ 0), and their speeds are near the speed

of light in vacuum (vν ≈ c), in natural unit (c = 1) we have t ≈ L. Also from relativity

relation E2 = p2+m2 we deduce E−p = m2

E+p ≈ m2

2E . Therefore at distance x = L from

the neutrino source, we can express the phase factor in terms of the neutrino mass mi,

energy E and distance traveled L as

ϕi = pi.xi = Eit− p⃗i.x⃗i = (Ei − pi)L ≈
m2

iL

2E
. (1.39)

If ϕ1 = ϕ2 = ϕ3 (≈ m2L
2E ), from unitary condition (1.34) we can see that the oscillation

probability is now simplified to

P (να → νβ) =

∣∣∣∣∣
3∑

i=1

U∗
αiUβi

∣∣∣∣∣
2

ei
m2L
2E e−im

2L
2E = δαβ. (1.40)

If α ̸= β, then P (να → νβ) = 0, there is no oscillation at all. Equivalently, the

oscillation occurs only if the neutrinos have masses (mi ̸= 0) and the masses are not

the same (m1 ̸= m2 ̸= m3).

The equation (1.38) can be rewritten in the most common form :

P (να → νβ) = δαβ − 4
∑
i>j

Re
[
U∗
αiUβiUαjU

∗
βj

]
sin2

(
∆m2

ij

4E
L

)

+ 2
∑
i>j

Im
[
U∗
αiUβiUαjU

∗
βj

]
sin

(
∆m2

ij

2E
L

)
, (1.41)

where ∆m2
ij = m2

i −m2
j . The formula for antineutrino can be achieved by taking the

complex conjugate of the product matrix

P (ν̄α → ν̄β) = δαβ − 4
∑
i>j

Re
[
U∗
αiUβiUαjU

∗
βj

]
sin2

(
∆m2

ij

4E
L

)

− 2
∑
i>j

Im
[
U∗
αiUβiUαjU

∗
βj

]
sin

(
∆m2

ij

2E
L

)
. (1.42)

The probabilities (1.41) and (1.42) are called transition probabilities or appearance

channels at experiments. The survival probabilities or disappearance channels for a

flavor α is

P (να → να) = P (ν̄α → ν̄α) = 1− 4
∑
i>j

|Uαi|2|Uαj |2 sin2
(
∆m2

ij

4E
L

)
. (1.43)

By restoring ℏ and c into the phases of (1.41), (1.42) and (1.43), we can express them

in a practical form

∆m2
ij [kg]

2L[m]

4E[J ]

c3

ℏ =
∆m2

ij [eV ]2

(5.61× 1035)2
.
L[km]

10−3
.
6.25× 109

4E[GeV ]

(2.998× 108)3

1.055× 10−34

= 1.269
∆m2

ij [eV
2]L[km]

E[GeV ]
. (1.44)
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In accelerator-based experiments, muon (anti-)neutrino νµ(νµ) is produced at

the source by shooting a proton beam to a graphite target. At low energy of few GeVs,

muon (anti-)neutrino transforms into electron (anti-)neutrino νe(νe) and be detected

at the detector. The reactor-based experiments study the disappearance of electron

anti-neutrino νe created by nuclear reactions. Now we will derive the specific oscillation

formulae for the channels studied in a given experiment.

Survival probability P (νµ → νµ) in vacuum

In the scope of PMNS model, the survival probability P (νµ → νµ) in vacuum

can be written down from equation (1.43) as follows.

P (νµ → νµ) = P (ν̄µ → ν̄µ) = 1 − 4|Uµ1|2|Uµ2|2 sin2∆21

− 4|Uµ1|2|Uµ3|2 sin2∆31

− 4|Uµ2|2|Uµ3|2 sin2∆32, (1.45)

in which ∆ij =
∆m2

ijL
4E . In order to calculate a complete formula, we first write down

the explicit form of PMNS matrix elements

Uµ1 = −(s12c23 + c12s23s13 cos δ)− ic12s23s13 sin δ, (1.46)

U∗
µ1 = −(s12c23 + c12s23s13 cos δ) + ic12s23s13 sin δ, (1.47)

Uµ2 = (c12c23 − s12s23s13 cos δ)− is12s23s13 sin δ, (1.48)

U∗
µ2 = (c12c23 − s12s23s13 cos δ) + is12s23s13 sin δ, (1.49)

Uµ3 = U∗
µ3 = s23c13. (1.50)

Then we can calculate the relevant terms in equation (1.45)

|Uµ1|2 = (s12c23 + c12s23s13 cos δ)
2 + (c12s23s13 sin δ)

2, (1.51)

|Uµ2|2 = (c12c23 − s12s23s13 cos δ)
2 + (s12s23s13 sin δ)

2, (1.52)

|Uµ3|2 = s223c
2
13. (1.53)

Inserting the expressions (1.51) - (1.53) into equation (1.45) and rearrange the common

terms, we get the complete form of survival probability in vacuum

P (νµ → νµ) = 1− sin 2θ12 sin 2θ13 sin 2θ23s
2
23c13 cos δ(sin

2∆31 − sin2∆32)

−
[
sin2 2θ12(c

4
23 + s423s

4
13) + sin2 2θ23(s

4
12 + c412)s

2
13

+sin 4θ12 sin 2θ23(c
2
23 − s223s

2
13)s13 cos δ

− sin2 2θ12 sin
2 2θ23s

2
13 cos

2 δ
]
sin2∆21 (1.54)

−c213 sin2 2θ23(s212 sin2∆31 + c212 sin
2∆32)

−s423 sin2 2θ13(c212 sin2∆31 + s212 sin
2∆32).

We have known that ∆m2
21 ≈ 7.5 × 10−5eV 2 is much smaller than ∆m2

31 ≈ ∆m2
32 ≈

2.55×10−3eV 2. Hence, for long-baseline neutrino oscillation experiments like T2K and
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Figure 1.1: Survival probabilities P (νµ → νµ) (left) and transition probabilities P (νµ → νe) (right)

at T2K (red line) and NOνA (blue line).
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Figure 1.2: The νe survival probability as a function of L/E.

NOνA, we can ignore the second order terms of ∆21. Also the mixing angle θ13 ≈ 8.5◦,

so the approximations c13 ≈ 1, s13 ≈ 0 hold. The equation (1.54) can be rewritten in

approximation form as

P (νµ → νµ) ≈ 1− sin2 2θ23 sin
2

(
∆m2

31L

4E

)
. (1.55)

With the help of (1.44), we can rewrite eq. (1.55) in a practical form

P (νµ → νµ) ≈ 1− sin2 2θ23 sin
2

(
1.27

∆m2
31[eV ]2L[km]

E[GeV ]

)
. (1.56)

We can see from the equation (1.56) that the disappearance channel at long baseline

experiments like T2K and NOνA are sensitive to atmospheric parameters θ23 and

∆m2
31. Fig. 1.1 (left) demonstrates the probability (1.56) as a function of neutrino

energy for different baselines: The red line is for T2K with a baseline of L = 295km

and the blue line is for NOνA with a baseline of L = 810km.
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Transition probability P (νµ → νe) in vacuum

From the general equation (1.41), we rewrite the transition probability in a

convenient form

P (νµ → νe) = −4Re
[
U∗
µ1Ue1Uµ2U

∗
e2

]
sin2∆21

−4Re
[
U∗
µ1Ue1Uµ3U

∗
e3

]
sin2∆31

−4Re
[
U∗
µ2Ue2Uµ3U

∗
e3

]
sin2∆32 (1.57)

+8Im
[
U∗
µ1Ue1Uµ3U

∗
e3

]
sin∆21 sin∆31 sin∆32.

By referring to the PMNS matrix, we now can calculate the terms in (1.57) as follows:

Re[U∗
µ1Ue1Uµ2U

∗
e2] = −

[
s212c

2
12c

2
13c

2
23 − s212c

2
12s

2
13c

2
13s

2
23

+(c212 − s212)s12c12s13c
2
13s23c23 cos δ

]
, (1.58)

Re[U∗
µ1Ue1Uµ3U

∗
e3] = −c12c213s23(c12s213s23 + s12s13c23 cos δ), (1.59)

Re[U∗
µ2Ue2Uµ3U

∗
e3] = s12c

2
13s23(c12s13c23 cos δ − s12s

2
13s23), (1.60)

Im[U∗
µ1Ue1Uµ3U

∗
e3] = −s12c12s13c213s23c23 sin δ. (1.61)

Substituting the above expressions into (1.57), we get the complete formula of transition

probability in vacuum

P (νµ → νe) =
1

4

[
4 sin2 2θ12c

2
13c

2
23 − sin2 2θ12 sin

2 2θ13s
2
23

]
sin2∆21

+
1

4
sin 4θ12 sin 2θ13 sin 2θ23c13 cos δ sin

2∆21

+sin2 2θ13s
2
23(c

2
12 sin

2∆31 + s212 sin
2∆32) (1.62)

+
1

2
sin 2θ12 sin 2θ13 sin 2θ23c13 cos δ(sin

2∆31 − sin2∆32)

− sin 2θ12 sin 2θ13 sin 2θ23c13 sin δ sin∆21 sin∆31 sin∆32.

By dropping out the second order terms of ∆21 and making approximation ∆31 ≈ ∆32,

we can get the approximation form of the transition probability

P (νµ → νe) ≈ sin2 2θ13s
2
23 sin

2∆31

− sin 2θ12 sin 2θ13 sin 2θ23c13 sin δ sin∆21 sin
2∆31. (1.63)

The equation (1.63) says that the appearance channel in long baseline experiments like

T2K and NOνA is sensitive to mixing angles θ13, θ23, CP violating phase δCP ≡ δ and

mass squared difference ∆m2
31. Fig. 1.1 (right) demonstrates the probability (1.63) as

a function of neutrino energy for different baselines: The red line is for T2K and the

blue line is for NOνA.

Survival probability P (νe → νe) in vacuum

From equation (1.43) we can write down the probability of νe disappearance as
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bellows:

P (ν̄e → ν̄e) = 1 − 4|Ue1|2|Ue2|2 sin2∆21

− 4|Ue1|2|Ue3|2 sin2∆31

− 4|Ue2|2|Ue3|2 sin2∆32. (1.64)

By using |Ue1|2 = c212c
2
13, |Ue2|2 = s212c

2
13, |Ue3|2 = s213, we can explicitly write down

the equation (1.64)

P (ν̄e → ν̄e) = 1 − 4s212c
2
12c

4
13 sin

2∆21

− 4c212s
2
13c

2
13 sin

2∆31

− 4s212s
2
13c

2
13 sin

2∆32. (1.65)

For reactor experiments at solar L/E which is around 16 km/MeV (see Fig. 1.2) such

as KamLAND and JUNO where the solar term dominates (∆21 = π/2), we can rewrite

the equation (1.65) as

P (ν̄e → ν̄e) ≈ 1− sin2 2θ12c
4
13 sin

2∆21. (1.66)

These experiments are sensitive to θ12, θ13 and ∆m2
21. For reactor experiments at

atmospheric L/E which is around 0.5 km/MeV (see Fig. 1.2) such as Double-Chooz

and Daya Bay, the atmospheric terms dominate (∆31 ≈ ∆32 = π/2). The equation

(1.65) can be rewritten as

P (ν̄e → ν̄e) ≈ 1− sin2 2θ13 sin
2∆31. (1.67)

These experiments are sensitive to θ13 and ∆m2
31. Fig. 1.2 demonstrates the νe survival

probability as a function of L/E.

1.1.5 Neutrino oscillation in matter

In this section, we will revisit the derivation of the oscillation probability of

neutrinos in matter. We mainly follow the notations and steps mentioned in Ref. [39].

When passing through ordinary matter such as in the Sun or the Earth, neutrinos

may be affected by the matter effect or Mikheyev–Smirnov–Wolfenstein (MSW) effect

[40], [41]. Matter may enhance the oscillation probability of neutrinos while depressing

the one of antineutrinos. This consequently causes a fake CP violation effect. It is

therefore important to study matter effect in searching for CP violation in neutrino

oscillation experiments. In matter, neutrinos may undergo incoherent or coherent

forward scatterings. For normal matter with number density N ∼ 1024/cm3 and low

energy neutrino (< 105 GeV), the probability of incoherent scattering is very small

and can be neglected [42]. At low momentum transfer, the coherent forward elastic

scattering is significant and responsible for the matter effect in neutrino oscillation [42]

[43].
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Figure 1.3: Feynman diagrams for CC and NC coherent forward scatterings of neutrinos.

We will first derive the matter-induced potentials of neutrinos. The forward

scatterings can be CC or NC. For NC which produces NC potential VNC , all three

flavors of (anti-)neutrino νe(νe), νµ(νµ), ντ (ντ ) can interact with electron, proton or

neutron of matter by exchange of Z0 boson. For CC which creates CC potential VCC ,

electron neutrino can scatter off and electron antineutrino can annihilate with electrons

by exchange of W± bosons. Let us first consider CC interactions demonstrated by

the Feynman diagrams (a) and (b) in Fig. 1.3. At low neutrino energy, the effective

Hamiltonian is [42]

HCC =
GF√
2

[
ēγµ(1− γ5)νe

] [
ν̄eγ

µ(1− γ5)e
]

=
GF√
2

[
ēγµ(1− γ5)e

] [
ν̄eγ

µ(1− γ5)νe
]
, (1.68)

in which the second line can be achieved by using Fierz transformation. In a homoge-

neous and isotropic gas of unpolarized electrons, the Hamiltonian (1.68) is calculated

to be

HCC = VCCνeγ
0νe, (1.69)

where

VCC =
√
2GFNe (1.70)

is the CC potential, Ne is the electron density of the medium. The effective Hamiltonian

for NC interactions is

HNC =
GF√
2

∑
α

[
ν̄αγ

µ(1− γ5)να
]∑

f

[
f̄γµ(g

f
V − gfAγ

5)f
]
, (1.71)

where α = (e, µ, τ) and f = (e, p, n). As for the CC potential, we get the NC potential

of the similar form

VNC =
√
2GFNfg

f
V . (1.72)
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We note that

geV = −1

2
+ 2 sin2 θW , (1.73)

gpV = 2guV + gdV =
1

2
− 2 sin2 θW , (1.74)

gnV = guV + 2gdV = −1

2
. (1.75)

Ordinary matter on the Earth consists of electrons, protons, and neutrons. In normal

condition, the medium is electrically neutral, which implies the equality of the number

of electrons and the number of protons, Ne = Np. That means the NC current poten-

tials of electrons and protons cancel out each other (VNC)e+(VNC)p = 0, leaving only

contribution of the neutron NC potential

VNC = −1

2

√
2GFNn, (1.76)

where Nn is the neutron density of the medium. Finally, the effective Hamiltonian of

neutrino interaction in matter is

Heff =
∑
α

Vαν̄αLγ
0ναL, (1.77)

where

Vα = VCCδαe + VNC

=
√
2GF (Neδαe −

1

2
Nn). (1.78)

For antineutrino, we replace Vα by −Vα in equation (1.78).

We now derive the oscillation probability of neutrinos in matter from Hamilto-

nian formalism. Let us recall the relation (1.32) between mass eigenstates and flavor

eigenstates

|να⟩ =
3∑

i=1

U∗
αi|νi⟩. (1.79)

The total Hamiltonian H of neutrino in matter consists of a vacuum part H0 and a

matter part HI as follows

H = H0 +HI , (1.80)

where

H0|νi⟩ = Ei|νi⟩ with Ei =

√
p2i +m2

i ≈ p+
m2

i

2E
, (1.81)

HI |να⟩ = Vα|να⟩ = (VCCδαe + VNC)|να⟩. (1.82)

In the previous section, we have worked with the mass eigenstate basis to derive os-

cillation probability formulae in vacuum. In matter, it is however more convenient to

work with the flavor basis since the matter-induced potentials of neutrinos are diagonal

in this basis. In terms of the flavor basis, the vacuum Hamiltonian now becomes

UH0U
†|να⟩ = UαiEiU

†
αi|να⟩ =

(
p+ Uαi

m2
i

2E
U †
αi

)
|να⟩. (1.83)
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The Schrodinger equation for neutrino in matter in the flavor basis is

i
d

dt
|να(t)⟩ = H|να(t)⟩

= (H0 +HI)|να(t)⟩

=

(
p+ Uαi

m2
i

2E
U †
αi + Vα

)
|να(t)⟩

=

(
p+ Uαi

m2
i

2E
U †
αi + VCCδαe + VNC

)
|να(t)⟩

=

[(
p+

m2
1

2E
+ VNC

)
+

(
Uαk

∆m2
k1

2E
U †
αk + VCCδαe

)]
|να(t)⟩,(1.84)

k = (2, 3). From the fourth to the last line, we have added the term (Uα1
m2

1

2EU
†
α1 −

Uα1
m2

1

2EU
†
α1). We can see that p+ m2

1

2E +VNC is the same for all neutrinos. They generate

a phase common to all flavors and will cancel out in transition by a phase shift

|να(t)⟩ → |να(t)⟩e−diag(X,0,0), (1.85)

where X = p+ m2
1

2E + VNC (note that ediag(X,0,0) = diag(X, 1, 1)). Hence, we can ignore

them here for simplicity. So we rewrite the above equation as

i
d

dt
|να(t)⟩ =

(
Uαk

∆m2
k1

2E
U †
αk + VCCδαe

)
|να(t)⟩. (1.86)

or explicitly

i
d

dt


νe

νµ

ντ

 =

 1

2E
U


0 0 0

0 ∆m2
21 0

0 0 ∆m2
31

U † +


VCC 0 0

0 0 0

0 0 0





νe

νµ

ντ

(1.87)
The total Hamiltonian now can be separated into two parts

H = H0 +HI (1.88)

=
1

2E
U


0 0 0

0 0 0

0 0 ∆m2
31

U † +
1

2E

U


0 0 0

0 ∆m2
21 0

0 0 0

U † +


a 0 0

0 0 0

0 0 0


 ,

in which a = 2EVCC = 2
√
2EGFNe represents the matter effect. Since ∆m2

21 and

a are at the order of ∼ O(10−5) which are much smaller than ∆m2
31 ∼ O(10−3)eV 2,

we can treat HI as a pertubation. The Schrodinger equation has a solution of Dyson

series form

|ν(x)⟩ = S(x)|ν(0)⟩, (1.89)

where S(x) ≡ Te
∫ x

0
H(s)ds, T is the symbol of time ordering. The oscillation probability

at distance x = L then can be calculated through S(x)

P (να → νβ) = |Sβα(L)|2. (1.90)
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We have

S0(x) = e−iH0x, (1.91)

and

S1(x) = e−iH0x(−i)
∫ x

0

dsH1(s) = e−iH0x(−i)
∫ x

0

dseiH0sH1e
−iH0s. (1.92)

We now calculate S0(x) and S1(x) as follows

(S0(x))βα =
[
Ue−i x

2E
diag(0,0,∆m2

31)U †
]
βα

=
∑
i,j

[
Uβi

(
e−i x

2E
diag(0,0,∆m2

31)
)
ij
U∗
αj

]
. (1.93)

Note that

e−i x
2E

diag(0,0,∆m2
31) =


1 0 0

0 1 0

0 0 e−i
∆m2

31x

2E

 . (1.94)

Hence

(S0(x))βα = Uβ1U
∗
α1.1 + Uβ1U

∗
α2.0 + Uβ1U

∗
α3.0

+Uβ2U
∗
α1.0 + Uβ2U

∗
α2.1 + Uβ2U

∗
α3.0

+Uβ3U
∗
α1.0 + Uβ3U

∗
α2.0 + Uβ3U

∗
α3.e

−i
∆m2

31x

2E

= Uβ1U
∗
α1 + Uβ2U

∗
α2 + Uβ3U

∗
α3.e

−i
∆m2

31x

2E . (1.95)

By using Uβ1U
∗
α1 + Uβ2U

∗
α2 + Uβ3U

∗
α3 = δαβ we can deduce

(S0(x))βα = δαβ + Uβ3U
∗
α3

(
e−i

∆m2
31x

2E − 1

)
. (1.96)

We now can calculate (S1(x))βα

(S1(x))βα =

(
e−iH0x(−i)

∫ x

0

dseiH0sH1e
−iH0s

)
βα

= −i
∫ x

0

ds
(
e−iH0(x−s)H1e

−iH0s
)
βα

= −i
∫ x

0

ds
(
Ue−ix−s

2E
diag(0,0,∆m2

31)U †H1Ue
−i s

2E
diag(0,0,∆m2

31)U †
)
βα

= −i
∫ x

0

ds
∑

i,j′,i′,j

[
Uβi

(
e−ix−s

2E
diag(0,0,∆m2

31)
)
ij′

×U∗
γj′(H1)γσUσi′

(
e−i s

2E
diag(0,0,∆m2

31)
)
i′j
U∗
αj

]
. (1.97)

Since
(
e−ix−s

2E
diag(0,0,∆m2

31)
)
ij′

= 0 for j′ ̸= i and
(
e−i s

2E
diag(0,0,∆m2

31)
)
i′j

= 0 for i′ ̸= j.
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We deduce

(S1(x))βα =

−i
∫ x

0

ds
∑
i,j

[
Uβi

(
e−ix−s

2E
diag(0,0,∆m2

31)
)
ii
U∗
γi(H1)γσUσj

(
e−i s

2E
diag(0,0,∆m2

31)
)
jj
U∗
αj

]
= −i

∑
i,j

UβiU
∗
γi(H1)γσUσjU

∗
αj

∫ x

0

ds

(
e−i

∆m2
31

2E
[(x−s)δi3+sδj3]

)
. (1.98)

Let

Xij = UβiU
∗
γi(H1)γσUσjU

∗
αj , (1.99)

and

Yij =

∫ x

0

ds

(
e−i

∆m2
31

2E
[(x−s)δi3+sδj3]

)
=

∫ x

0

ds

(
e−i

∆m2
31x

2E
δi3 .e−i

∆m2
31s

2E
(δj3−δi3)

)
.

(1.100)

We first calculate the Xij term. We see that

U∗
γi(H1)γσUσj =

1

2E
[U∗

γi(V12)γσUσj + U∗
γi(Va)γσUσj ]. (1.101)

Since U∗
γi(V12)γσUσj = diag(0,∆m2

21, 0) then

1

2E
U∗
γi(V12)γσUσj =

∆m2
21

2E
δ2iδ2j . (1.102)

Since (Va)11 = a and (Va)γσ = 0 for γ ̸= 1 or σ ̸= 1 then

1

2E
U∗
γi(Va)γσUσj =

a

2E
U∗
1iU1j . (1.103)

Therefore

U∗
γi(H1)γσUσj =

∆m2
21

2E
δ2iδ2j +

a

2E
U∗
1iU1j , (1.104)

and

Xij = UβiU
∗
γi(H1)γσUσjU

∗
αj

= Uβi

[
∆m2

21

2E
δ2iδ2j +

a

2E
U∗
1iU1j

]
U∗
αj

=
∆m2

21

2E
UβiU

∗
αjδ2iδ2j +

a

2E
UβiU

∗
1iU1jU

∗
αj . (1.105)

The Yij integral is

Y11 = Y12 = Y21 = Y22 = x, (1.106)

Y13 = Y23 = Y31 = Y32 =

(
−i

∆m2
31

2E

)−1(
e−i

∆m2
31x

2E − 1

)
, (1.107)

Y33 = xe−i
∆m2

31x

2E . (1.108)

In general

Yij = (1− δi3)(1− δj3)x+ δi3δj3xe
−i

∆m2
31x

2E (1.109)

+[(1− δi3)δj3 + δi3(1− δj3)]

(
−i

∆m2
31

2E

)−1(
e−i

∆m2
31x

2E − 1

)
.
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Inserting (1.109) and (1.105) into (1.96), we get

(S1(x))βα = −i ax
2E

e−i
∆m2

31x

2E Uβ3U
∗
α3|U13|2

−ix
[
∆m2

21

2E
Uβ2U

∗
α2 +

a

2E
(Uβ1U

∗
11U11U

∗
α1 + Uβ1U

∗
11U12U

∗
α2

+Uβ2U
∗
12U11U

∗
α1 + Uβ2U

∗
12U12U

∗
α2)
]

−i
(
−i

∆m2
31

2E

)−1(
e−i

∆m2
31x

2E − 1

)
a

2E
(Uβ1U

∗
11U13U

∗
α3 + Uβ2U

∗
12U13U

∗
α3

+Uβ3U
∗
13U11U

∗
α1 + Uβ3U

∗
13U12U

∗
α2). (1.110)

Note that
∑2

k=1 U
∗
αkU1k = δα1 − U∗

α3U13. We now can calculate the factors that are

relevant to matrix elements as follows

Uβ1U
∗
11U11U

∗
α1 + Uβ1U

∗
11U12U

∗
α2 + Uβ2U

∗
12U11U

∗
α1 + Uβ2U

∗
12U12U

∗
α2

= (Uβ1U
∗
11 + Uβ2U

∗
12)(U11U

∗
α1 + U12U

∗
α2)

= (δβ1 − Uβ3U
∗
13)(δα1 − U13U

∗
α3)

= δα1δβ1 − δα1Uβ3U
∗
13 − δβ1U13U

∗
α3 + Uβ3U

∗
α3|U13|2

= δα1δβ1 + Uβ3U
∗
α3(|U13|2 − δα1 − δβ1), (1.111)

and

Uβ1U
∗
11U13U

∗
α3 + Uβ2U

∗
12U13U

∗
α3 + Uβ3U

∗
13U11U

∗
α1 + Uβ3U

∗
13U12U

∗
α2

= U13U
∗
α3(δβ1 − Uβ3U

∗
13) + Uβ3U

∗
13(δα1 − U13U

∗
α3)

= δα1Uβ3U
∗
13 + δβ1U13U

∗
α3 − 2Uβ3U

∗
α3|U13|2

= Uβ3U
∗
α3(δα1 + δβ1 − 2|U13|2). (1.112)

Therefore

(S1(x))βα = −i ax
2E

e−i
∆m2

31x

2E Uβ3U
∗
α3|U13|2

−i x
2E

[
∆m2

21Uβ2U
∗
α2 + a(δα1δβ1 + Uβ3U

∗
α3(|U13|2 − δα1 − δβ1))

]
− a

∆m2
31

(
e−i

∆m2
31x

2E − 1

)
(2|U13|2 − δα1 − δβ1)Uβ3U

∗
α3. (1.113)

From (1.113) and (1.96) we get

(S(x))βα = (S0(x))βα + (S1(x))βα

= δαβ + Uβ3U
∗
α3

(
e−i

∆m2
31x

2E − 1

)
− a

∆m2
31

(
e−i

∆m2
31x

2E − 1

)
(2|U13|2 − δα1 − δβ1)Uβ3U

∗
α3

−i ax
2E

e−i
∆m2

31x

2E Uβ3U
∗
α3|U13|2 +

(
i
ax

2E
Uβ3U

∗
α3|U13|2 − i

ax

2E
Uβ3U

∗
α3|U13|2

)
−i

∆m2
31x

2E

[
∆m2

21

∆m2
31

Uβ2U
∗
α2 +

a

∆m2
31

(δα1δβ1 + Uβ3U
∗
α3(|U13|2 − δα1 − δβ1))

]
. (1.114)

By rearranging the common terms and note that sinX/2 = eiX/2−e−iX/2

2i withX = ∆m2
31

2E ,
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the above equation becomes

(S(x))βα = δαβ − i2e−i∆31 sin∆31Uβ3U
∗
α3

[
(1− C)− iax

2E
|U13|2

]
−i2∆31

[
ϵUβ2U

∗
α2 +

a

∆m2
31

δα1δβ1 + CUβ3U
∗
α3

]
= δαβ + A+B, (1.115)

where ∆31 = ∆m2
31x

4E ; ϵ = ∆m2
21

∆m2
31

and C = a
∆m2

31
(2|U13|2 − δα1 − δβ1). The oscillation

probability now can be calculated

P (να → νβ) = |(S(x))βα|2

= δαβ(1 + A+ A∗ +B +B∗) + AA∗ +BB∗ + A∗B + AB∗.(1.116)

• The tearm which is relevant to δαβ

δαβ(1 + A+ A∗ +B +B∗)

= δαβ

{
1− i2e−i∆31 sin∆31Uβ3U

∗
α3

[
(1− C)− iax

2E
|U13|2

]
+i2ei∆31 sin∆31U

∗
β3Uα3

[
(1− C) +

iax

2E
|U13|2

]
−i2∆31

[
ϵUβ2U

∗
α2 +

a

∆m2
31

δα1δβ1 + CUβ3U
∗
α3

]
+i2∆31

[
ϵU∗

β2Uα2 +
a

∆m2
31

δα1δβ1 + CU∗
β3Uα3

]}
= δαβ

[
1− 4(1− C)|Uα3|2 sin2∆31 −

ax

E
|Uα3|2|U13|2 sin 2∆31

]
(1.117)

= δαβ

[
1− 4|Uα3|2 sin2∆31

(
1− 2a

∆m2
31

(|U13|2 − δα1)

)
− ax

E
|Uα3|2|U13|2 sin 2∆31

]
.

• In order to calculate the tearm which is irrelevant to δαβ, we first calculate its
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components

AA∗ = 4 sin2∆31|Uβ3|2|Uα3|2
[
(1− 2C + C2) +

(
ax

2E

)2
|U13|4

]
(1.118)

BB∗ = 4(∆31)
2

[
ϵ2|Uβ2|2|Uα2|2 + ϵ

2a

∆m2
31

|U13|2δα1δβ1

+2ϵC.Re(U∗
β3Uα3Uβ2U

∗
α2) + C2|Uβ3|2|Uα3|2 (1.119)

+
2aC

∆m2
31

|U13|2δα1δβ1 +
(

a

∆m2
31

)2
]
,

A∗B + AB∗ = 2Re(AB∗)

= 4ϵ(1− C)∆31 sin 2∆31Re(U
∗
β3Uα3Uβ2U

∗
α2)

−8ϵ(1− C)∆31 sin
2∆31Im(U∗

β3Uα3Uβ2U
∗
α2)

−8ϵ
(
ax

2E

)
∆31 sin

2∆31|U13|2Re(U∗
β3Uα3Uβ2U

∗
α2)

−4ϵ
(
ax

2E

)
∆31 sin

2∆31|U13|2Im(U∗
β3Uα3Uβ2U

∗
α2) (1.120)

+4(1− C)
a

∆m2
31

∆31 sin 2∆31|U13|2δα1δβ1

−8
a2x

2E∆m2
31

∆31 sin
2∆31|U13|2δα1δβ1

+4(1− C)C∆31 sin 2∆31|Uβ3|2|Uα3|2

−8

(
axC

2E

)
∆31 sin

2∆31|U13|2|Uβ3|2|Uα3|2.

Since C ∝ a ∼ O(10−5), ϵ∆31 = ∆21 = ∆m2
21

4E ∼ O(10−5), we therefore can neglect all

the terms that contain a2, C2, aC, ϵa, ϵC, ϵC∆31, and ϵa∆31, leaving

AA∗ = 4 sin2∆31|Uβ3|2|Uα3|2
[
1− 2

a

∆m2
31

(2|U13|2 − δα1 − δβ1)

]
(1.121)

BB∗ = 4∆2
21|Uβ2|2|Uα2|2, (1.122)

A∗B + AB∗ = 2Re(AB∗)

= 4∆21 sin 2∆31Re(U
∗
β3Uα3Uβ2U

∗
α2)

−8∆21 sin
2∆31Im(U∗

β3Uα3Uβ2U
∗
α2)

+4
ax

4E
sin 2∆31|U13|2δα1δβ1 (1.123)

+4
ax

4E
sin 2∆31|Uβ3|2|Uα3|2(2|U13|2 − δα1 − δβ1).

Finally, up to the first order perturbations of a and ∆m2
21, we get the general form of
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oscillation probability

P (να → νβ) = δαβ(1 + A+ A∗ +B +B∗) + AA∗ +BB∗ + A∗B + AB∗

≈ δαβ

{
1− 4|Uα3|2 sin2∆31

[
1− 2a

∆m2
31

(
|U13|2 − δα1

)]
− ax

E
|Uα3|2|U13|2 sin 2∆31

}
+4 sin2∆31|Uβ3|2|Uα3|2

[
1− 2

a

∆m2
31

(2|U13|2 − δα1 − δβ1)

]
−8∆21 sin

2∆31Im(U∗
β3Uα3Uβ2U

∗
α2) (1.124)

+4∆21 sin 2∆31Re(U
∗
β3Uα3Uβ2U

∗
α2)

+
ax

E
sin 2∆31

(
|U13|2δα1δβ1 + |Uβ3|2|Uα3|2(2|U13|2 − δα1 − δβ1)

)
.

For anti-neutrino, P (να → νβ) can be obtained from Eq.(1.124) by taking complex

conjugate of the matrix element product and replacing a→ −a.

Survival probability P (νµ → νµ) in matter

For α = β = µ we have

P (νµ → νµ) ≈ 1 + 4 sin2∆31|Uµ3|2
[
(|Uµ3|2 − 1)− 2a

∆m2
31

|Ue3|2
(
2|Uµ3|2 − 1

)]
(1.125)

+4∆31 sin 2∆31|Uµ3|2
[
∆m2

21

∆m2
31

|Uµ2|2 +
a

∆m2
31

|Ue3|2
(
2|Uµ3|2 − 1

)]
.

Inserting the PMNS matrix elements Ue2 = s12c13, Ue3 = s13e
−iδ, Uµ2 = c12c23 −

s12s13s23e
iδ, Uµ3 = s23c13 into the above equation, we get

P (νµ → νµ) ≈ 1 + 4s223c
2
13(s

2
23c

2
13 − 1) sin2∆31

+4s223c
2
13s

2
13

(
2s223c

2
13 − 1

) 2a

∆m2
31

sin2∆31 (1.126)

+4s223c
2
13s

2
13

(
2s223c

2
13 − 1

) a

∆m2
31

∆31 sin 2∆31

+4s223c
2
13(c

2
12c

2
23 + s212s

2
13s

2
23 − 2s12s13s23c12c23 cos δ)∆21 sin 2∆31.

Transition probability P (νµ → νe) in matter

For α = µ and β = e we have

P (νµ → νe) ≈ 4 sin2∆31|Ue3|2|Uµ3|2

−8 sin2∆31|Ue3|2|Uµ3|2
a

∆m2
31

(2|Ue3|2 − 1)

+4 sin 2∆31
ax

4E
|Ue3|2|Uµ3|2(2|Ue3|2 − 1) (1.127)

−8∆21 sin
2∆31Im(U∗

e3Uµ3Ue2U
∗
µ2)

+4∆21 sin 2∆31Re(U
∗
e3Uµ3Ue2U

∗
µ2).
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Substituting the PMNS matrix elements Ue2 = s12c13, Ue3 = s13e
−iδ, Uµ2 = c12c23 −

s12s13s23e
iδ, Uµ3 = s23c13 into the above equation and making an approximation

∆21 ≈ sin∆21 for ∆21 ≪ 1, we get the approximation transition probability as follows

P (νµ → νe) ≈ 4s213s
2
23c

2
13 sin

2∆31

−8s213s
2
23c

2
13

a

∆m2
31

(2s213 − 1) sin2∆31 (1.128)

+4s213s
2
23c

2
13
ax

4E
(2s213 − 1) sin 2∆31

−8s12s13s23c12c
2
13c23 sin δ sin∆21 sin

2∆31

+4s12s13s23c
2
13(c12c23 cos δ − s12s13s23) sin∆21 sin 2∆31.

where ∆ij =
∆m2

ijL
4E , and a = 2

√
2EGFNe = 7.56 × 10−5[eV 2]( ρ

g/cm3 )(
E

GeV ), Ne is

the electron density of the matter, and ρ is the density of the matter. For anti-

neutrino, P (νµ → νe) can be obtained from Eq.(1.128) by replacing δ → −δ and

a → −a. In Eqs. (1.126) and (1.128), the first term dominates. The terms which

contain a constant present matter effect. The terms proportional to sin δ are called

CP-violating since their contributions for total probability are opposite for neutrino

and antineutrino. And finally, the ones contain cos δ are called CP-conserving term

since their contributions are the same for neutrino and antineutrino. Fig. 1.4 shows

the oscillation probabilities of νµ → νe and ν̄µ → ν̄e as functions of neutrino energy

at different true values of δ for T2K baseline L = 295 km (left) and NOνA baseline

L = 810 km (right), respectively. In the figure, the differences between solid and dashed

blue lines indicate the matter effect, and the differences between solid and dashed red

lines show the combined effects of both matter and CP-violation. For more intuitively

illustrating of the matter effect, it is convenient to express CP asymmetry in terms of

relative difference between P (νµ → νe) and P (ν̄µ → ν̄e) near the oscillation maximum(
|∆m2

31|L
4Eν

= π/2
)
[43]

ACP

(
|∆m2

31|L
4Eν

= π/2

)
=
P (νµ → νe)− P (ν̄µ → ν̄e)

P (νµ → νe) + P (ν̄µ → ν̄e)

∼ − π sin 2θ12
tan θ23 sin 2θ13

∆m2
21

|∆m2
31|

sin δCP ± L

2800km
, (1.129)

where +(−) sign is taken for the neutrino (antineutrino), respectively. With the

values listed in Table 3.1, we find that the δCP-dependent true CP asymmetry is
π sin 2θ12

tan θ23 sin 2θ13
∆m2

21

|∆m2
31|

sin δCP ∼ 0.256 sin δCP, which means the CP violation effect can

be observed somewhat between −25.6% and +25.6%. For a 295km baseline of the

T2K experiment, the matter effect which causes fake CP asymmetry is subdominant

with ∼ 10.5%. For NOνA with a baseline of 810km, the effect is even larger, ∼ 28.9%.

Fig. 1.5 shows CP asymmetry versus δCP with contribution of matter effect. We can

see that ACP ̸= 0 even at CP conserving values δCP = (0, π).
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Figure 1.4: The transition probabilities νµ → νe and ν̄µ → ν̄e for T2K baseline (left) and NOνA

baseline (right).

Figure 1.5: The relative CP asymmetry as a function of δCP , the solid band indicates the uncertainty

of θ23. The plot is taken from Ref. [7].
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1.2 Introduction to some neutrino oscillation experiments

Accelerator-based long baseline and reactor-based neutrino experiments have

played a crucial role in oscillation studies. The accelerator-based experiments normally

consist of three main parts: accelerator complex, near detector(s), and far detector(s).

Because neutrinos interact weakly with matter, to have enough statistics for oscilla-

tion study, the accelerator complex is used to generate very intense neutrino beams.

Unoscillated neutrinos are measured by the near detector(s) to monitor component,

fraction and direction of the beam before sending to the far detector(s). During the

propagation, a specific flavor of neutrino may oscillate into the others and will be de-

tected at the far detector(s). The oscillation parameters are extracted by comparing

information between the near(s) and far detector(s).

The reactor-based experiments use electron antineutrino (νe) flux from nuclear

power plants to study neutrino oscillation. The νe flux mainly comes from four isotopes
235U , 238U , 239Pu, and 241Pu.

In this section, we will describe the Tokai to Kamioka (T2K), NuMI Off-axis

νe Appearance (NOvA), and Jiangmen Underground Neutrino Observatory (JUNO)

experiments. T2K and NOνA are the two on-going off-axis accelerator-based long

baseline neutrino oscillation experiments, while JUNO is a reactor-based experiment.

1.2.1 The T2K experiment

T2K is located in Japan. Its muon (anti-)neutrino beam is produced by 500 kW

Japan Proton Accelerator Research Complex (J-PARC). T2K has three near detectors

placed at 280 m downstream from the target including INGRID, ND280, and WA-

GASCI BabyMIND. The on-axis near detector Interactive Neutrino GRID (INGRID)

controls direction, stability and profile of the neutrino beam. The ND280, which is

placed at 2.5◦ off-axis, will measure muon (anti-)neutrino flux, cross section and in-

trinsic electron (anti-)neutrino backgrounds. The WAter Grid SCIntillator Detector –

prototype Magnetized Iron Neutrino Detector (WAGASCI BabyMIND) is located at

1.5◦ off-axis in the near detector hall inside J-PARC. The main goal of the WAGASCI

BabyMIND is to precisely measure neutrino interactions with water (H2O) and hydro-

carbon (CH). T2K has one far detector, Super-K, which is situated in Kamioka, 295

km from the neutrino source. The off-axis angle of 2.5◦ of the Super-K position is to

expose a narrow band beam of neutrinos at a 0.6 GeV maximum peak. A schematic of

the T2K experiment is described in Fig. 1.6. In the first phase of the operation from

2010 to 2021, T2K observed for the first time the appearance of electron neutrino from

the muon neutrino beam νµ → νe [44] [45] and gave the first hint on CP violation in

the lepton sector [18].

T2K-II: T2K-II [46] is a proposal to extend the T2K run until 2027 before

Hyper-Kamiokande (HK) [47] starts operation. T2K originally planned to take data
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Figure 1.6: Schematic diagram of the T2K experiment.

equivalent to 7.8 × 1021 protons-on-target (POT) exposure. In Neutrino 2020 confer-

ence, T2K reported a collected data sample from 3.6×1021 POT exposure [48]. T2K-II

proposes to collect 20×1021 POT, allowing it to explore CP violation with a confidence

level of 3σ or higher if δCP is close to −π/2 [46]. The main goals of T2K-II are:

• Searching for CP violation in the lepton sector.

• Searching for sterile neutrino.

• Precise measurement of the oscillation parameters ∆m2
31 and θ23.

• Precise measurement of the neutrino-nucleus interactions on water, hydrocar-

bon and iron.

1.2.2 The NOvA experiment

Ongoing NOvA [49] is also the 2nd generation of accelerator-based long baseline

neutrino experiments placed in the US with a baseline of 810 km between the produc-

tion source and the far detector. Such a long baseline allows NOνA to explore the

neutrino mass hierarchy (MH) with high sensitivity via the matter effect [50] on the

(anti-)neutrino interactions. From Eq. 1.129, it can be estimated that the matter effect

in NOνA is ∼ 28.9%, which is slightly higher than the CP violation effect. Similar to

T2K, NOνA adopts the off-axis technique such that the far detector is placed at an

angle of 14 mrad to the averaged direction of the neutrino beam. NOνA uses a near

detector, located 1 km away from the production target, to characterize the unoscil-

lated neutrino flux. The NOνA far detector is filled with liquid scintillator contained

in PVC cells, totally weighted up to 14 ktons with 63% active materials. NOνA takes

advantage of machine learning for particle classification to enhance the event selection

performance. In 2018, NOνA provided more than 4σ C.L. evidence of electron anti-

neutrino appearance from a beam of muon anti-neutrinos [51]. At the Neutrino 2020

conference, NOνA reported a collected data sample of 2.6 × 1021 POT exposure [52].

In Ref. [53], NOνA gives a prospect of extending the run through 2024 (NOνA-II), in

order to get 3σ C.L. or higher sensitivity to the MH in case the MH is normal and δCP

is close to −π/2, and more than 2σ C.L. sensitivity to CP violation.
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1.2.3 The JUNO experiment

JUNO [11] is a reactor-based medium-baseline neutrino experiment located in

China. JUNO houses a 20 kton large liquid scintillator detector for detecting the

electron anti-neutrinos (νe) from the Yangjiang (YJ) and Taishan (TS) nuclear power

plants (NPPs) with an average baseline of 52.5 km. Each of the six cores at YJ nuclear

plant will produce a power of 2.9 GW and the four cores at TS NPP will generate

4.6 GW each. They are combined to give 36 GW thermal power. JUNO primarily aims

to determine the MH by measuring the surviving νe spectrum, which uniquely displays

the oscillation patterns driven by both solar and atmospheric neutrino mass-squared

splittings [54]. This feature can be understood via the ν̄e disappearance probability in

vacuum expressed in equation (1.65).

An averaged 52 km baseline of the JUNO experiment is to obtain the maxi-

mum oscillation corresponding to ∆21 = π/2 around 3 MeV, and relatively enhances

the oscillation patterns driven by ∆31 and ∆32 terms. The relatively small difference

between ∆m2
31 and ∆m2

32 make oscillation patterns in the normal and inverted MH

scenarios distinguishable. To realize practically the capability of mass hierarchy res-

olution, JUNO must achieve a very good neutrino energy resolution, which has been

demonstrated recently in Ref. [55], and collect a huge amount of data. With six years

of operation, JUNO can reach 3σ C. L. or higher sensitivity to the MH and achieve bet-

ter than 1% precision on the solar neutrino parameters and the atmospheric neutrino

mass-squared splitting |∆m2
31|.
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Chapter 2. Measurements at INGRID - the T2K

on-axis near detector

The INGRID is an on-axis near detector of the T2K experiment. The detector

consists of 14 identical modules arranged in a cross section of 10m × 10m as shown

in Fig. 2.1. This configuration is to ensure that the neutrino beam profile at IN-

GRID is fully covered within 1σ spatial width. Each basic module is made from nine

124cm × 124cm × 6.5cm iron plates and eleven 120cm × 120cm × 1.0cm scintillator

trackers of sandwich structure. The scintillator tracker has two scintillator layers placed

perpendicular to each other. Each layer includes 24 scintillator bars. In order to pre-

vent the wrong signal of charged particles coming from outside of the module, every

basic module is covered by six VETO scintillator planes, which consist of 22 scintillator

bars.

Light coming from neutrino interaction inside the detector module is collected

by scintillators and transported by wavelength shifting fibers. The light is then read

out by Multi-Pixel Photon Counter (MPPC) which are attached at the end of the

wavelength shifting fibers.

The INGRID detector has an important role in the T2K experiment. It has

monitored the neutrino beam direction, stability, and profile. Currently, the magnetic

horn current is being upgraded from 250 kA to 320 kA. The more current is applied to

the horns, the more intense the neutrino beam will be. In this section, we will present

some results of our simulation and basic measurements at the INGRID detector. The

simulation programs are described as shown in Fig. 2.2. In which, we use JNUBEAM

[56] (version 13a v1.1) to predict neutrino flux, NEUT [57–59] (version 3.5.2) to study

neutrino interaction with matter, and GEANT4 [60] (version 9.2.01.00, physics list:

QGSP BERT) to simulate detector response.

2.1 Neutrino flux prediction

The T2K experiment has a plan to run up to 2027 with a total exposure of 1022

protons-on-target (POT). Base on the fact that statistical uncertainty of the flux is

about 10% [8], for further study we generate 1100 MC files with 1021 POT in each file.

We investigate both neutrino mode (FHC) and anti-neutrino mode (RHC) to produce

fluxes at different configurations of horn operation:

• On-axis, 0kA.

• On-axis, ± 250kA.

• On-axis, ± 320kA.

• Off-axis, ± 320kA.

The simulation process is as follows. First, we create 1100 MC files which
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Figure 2.1: The schematic view of INGRID detector.

Figure 2.2: INGRID MC simulation programs, taken from Ref. [8].
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Figure 2.3: Neutrino fluxes at INGRID without horn current applied.



31

contain information about the interaction of a 30 GeV proton beam with a graphite

target by FLUKA 2011.2 [61–63]. Then the products, including neutrino parents and

their decays, are simulated by JNUBEAM. The flux is finally provided after tuning

based on hadronic production data from the NA61/SHINE experiment [64–66].

JNUBEAM [56] is a neutrino beamMonte Carlo simulation package based on the

GEANT3 tool [60]. It allows us to replicate the second beamline geometry, including

the baffle, target, three horn magnets, decay volume, beam dump, and muon monitor.

The near detectors (NDs) are positioned according to the latest survey results. The

neutrino parents (π±, K±, Ko
L and µ±) after proton-target collision are focused by

horn magnetic fields and tracked into decay volume. These particles then decay into

neutrinos or are absorbed into the material. All the information about neutrinos and

their parents is recorded in the direction of ND and Super-K, including flavor, energy,

and tracking.

The fluxes of different configurations of horn operation are shown from Fig.

2.3 to Fig. 2.8. Our study shows that without horn current applied (see Fig. 2.3),

the neutrinos and anti-neutrinos are approximately equally produced. This means

that the backgrounds are too high, leading to a large uncertainty in measurements.

From the Fig. 2.4 - 2.8, we clearly see the separations between neutrino channels.

Therefore, by applying the current to the horns, we can effectively reduce the statistical

uncertainty. The study also shows that the higher the current applied, the higher fluxes

will be achieved. For the present operation at 250 kA and future setup at 320 kA horn

configurations, the signal neutrino fluxes increase about 13-14 times and 14-15 times

at neutrino peak energy (about 1GeV at INGRID location) compared to without horn

current applied, respectively. Our investigation shows that when the horn current is

increased from 250 kA to 320 kA, the fluxes at neutrino peak energy are increased by

10% for both neutrino mode and anti-neutrino mode (see Fig. 2.6 and 2.7). Fig. 2.8

shows the fluxes at 2.5o off-axis from the neutrino beam center which is in direction of

ND280 and Super-K detectors.

2.2 Event rate measurement

2.2.1 Simulation of neutrino interactions with NEUT

In accelerator-based long baseline neutrino oscillation experiments, precise mea-

surements of oscillation parameters require a precise understanding of neutrino inter-

action with the target at the detectors. Oscillation parameters are extracted from os-

cillation probabilities between flavors by analyzing the event rates at near detector and

far detector. The oscillation probabilities , says P (νµ → νµ), P (νµ → νe), P (ν̄µ → ν̄µ)

and P (ν̄µ → ν̄e) at T2K for example are functions of baseline and neutrino energy.

Unfortunately, we don’t know much about the neutrino energy in accelerator-based

experiments like T2K since neutrinos are produced from the decay of products of the
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Figure 2.4: Neutrino fluxes at INGRID with -250 kA horn current applied.
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Figure 2.5: Neutrino fluxes at INGRID with +250 kA horn current applied.
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Figure 2.6: Neutrino fluxes at INGRID with -320 kA horn current applied.
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Figure 2.7: Neutrino fluxes at INGRID with +320 kA horn current applied.
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Figure 2.8: -320 kA (left) and +320 kA (right) fluxes at 2.5o off-axis.

Figure 2.9: Cellular automaton algorithm.
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proton-target collision. We therefore need to better understand neutrino-nucleus in-

teractions at the detectors by which the neutrino energy can be reconstructed. There

are some simulation packages called event generator allow us to study this procedure,

such as NEUT, NUANCE, NEUGEN, GENIE, etc. T2K uses NEUT as its standard

event generator, among others.

NEUT is a Monte Carlo simulation package studying interaction of neutrino

with nucleus and nucleon from tens of MeV to hundreds of TeV energy range [57–59].

At the beginning, NEUT was developed to simulate the interaction of atmospheric

neutrinos with hydrogen and oxygen nuclei in the water Cherenkov detector at the

Kamikokande experiment. The program has been continuously updated to include

more nuclear targets such as scintillators and iron in T2K near detectors. In NEUT,

the simulation is not only for the primary interaction between neutrinos and nucleus but

also for final state interaction (FSI) which describes the interaction between produced

particles inside the nucleus. To run the program, we need to provide initial information,

including neutrino source, target material, neutrino interaction models, and some other

parameters. After running, the event generator will give kinematic information about

target nucleons, outgoing leptons, all hadrons, and gamma rays.

2.2.2 Event selection

We follow the event selection procedure for INGRID data described in Ref. [67]

for neutrino mode and Ref. [68] for anti-neutrino mode. The selection follows eight

steps including:

1. Time clustering.

2. Number of continuous active planes selection.

3. Two-dimensional track reconstruction.

4. Three-dimensional track reconstruction.

5. Vertexing.

6. Beam timing cut.

7. Upstream VETO cut.

8. Fiducial volume cut.

Light produced by neutrino-nucleus interaction is collected by scintillators, then

transmitted by wavelength shifting fiber before being detected by MPPCs (Multi-Pixel

Photon Counters). The output charge of the signal is called ADC (Analog-to-Digital

Converter), which is proportional to the number of detected photons or the number

of PE (PhotoElectron). In our analysis, channels with ADC signals larger than 2.5PE

are defined as hit.

At first, hits are classified into a cluster if there are more than five hits within

100 ns in an INGRID module. This step is to reduce the random MPPC noise hit.

Next, the so-called “continuous active planes selection” is applied to reduce

accidental noise events. “Continuous active planes” are the neighborhood layers that
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have at least one coincident hit in both x and y layers. The events which have more

than two continuous active planes are selected.

In the third step, an algorithm called ”cellular automaton” is used to reconstruct

two-dimensional tracks (in x-z and y-z planes). The algorithm is a discrete model

consisting of a regular grid of cells. Each cell has a finite number of states. First, a

cluster is defined as adjacent hits in a layer (Fig. 2.9 (a)). Then two adjacent clusters

are connected with a line segment which is cell of the cellular automaton (Fig. 2.9 (b)).

The initial state value of cells is set to be zero (Fig. 2.9 (b)). Two cells are defined as

neighbors if they share a common cluster which χ2 is less than 1.5. If the upstream cell

has the same state value as the current one, the state value increases by one unit (Fig.

2.9 (c and d)). The evolution is stopped if there are no more neighboring cells with

the same state value. The downstream cluster of the last cell which has the largest

state value is called starting point of the track reconstruction procedure (Fig. 2.9 (d)).

From the starting point, the track is back upstream neighbor cells layer by layer until

the state value of one upstream cell is zero or χ2 is larger than two (Fig. 2.9 (e)). The

algorithm reconstructs tracks from clusters belonging to the tracked cells (Fig. 2.9 (f)).

After two-dimensional track reconstruction is done, the work continues with

three-dimensional ones. In this step, pairs of two-dimensional tracks in x track (x-z

plane) and y track (y-z plane) are selected to combine three-dimensional tracks (i) if

the difference between upstream point z of x track and y track is smaller than three

layers; (ii) if there is more than one track satisfying the above condition with another

one, the smallest difference is chosen; (iii) if there is more than one pair of tracks

having the same difference from upstream point z, the pair with the smallest different

downstream point z is selected. If they are still equal, the pair which has closest total

PE per track length is selected.

The sixth step will search for vertexes of the tracks from three-dimensional

tracks. The vertex is commonly identified as the upstream edge of each three-dimensional

track. Two three-dimensional tracks are defined as from a common vertex if they satisfy

both conditions:

(i) The sum of the z position distance between the upstream edges of the two

tracks in x view and y view is less than one

|∆zx|+ |∆zy| ≤ 1 (plane), (2.1)

where |∆zx| and |∆zy| are z position distance between the upstream edges of the two

track in x view and y view.

(ii) Distance between upstream edges of the two track in xy-plane is less than

150mm √
∆x2 +∆y2 < 150(mm), (2.2)

where ∆x and ∆y are x and y position distance between the upstream of the two

tracks.
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Item FHC mode (%) RHC mode (%)

Iron mass 0.13 0.13

Accidental PMMC noise 0.27 0.1

Hit efficiency 0.39 0.43

Event pileup 0.14 0.19

Beam related backgrounds 0.27 0.60

Not beam related background 0.01 0.01

Track reconstruction 0.49 1.21

Track matching 0.19 0.55

Vertexing 0.43 0.25

Beam timing selection 0.01 0.01

Upstream VETO cut 0.13 0.54

Fiducial volume cut 0.09 0.26

Total 0.91 1.67

Table 2.1: Systematic errors for total number of events in all modules for neutrino mode and anti-

neutrino mode.

The beam timing cut is applied for events outside of expected on-timing interval

[-100ns, +100ns] to reduce off-timing backgrounds such as cosmic rays.

The last two steps VETO cut and fiducial volume cut are applied to exclude

events coming from outside the modules.

2.2.3 Systematic uncertainties

The systematic error of Data/MC is the INGRID detector systematic error

of the total number of events selected in all modules, not including uncertainties of

flux and neutrino interaction. The total systematic error is estimated to be 0.91%

for the neutrino mode [67] and 1.67% for the anti-neutrino mode [68]. The sources of

uncertainty are summarized in Table 2.1.

2.2.4 The event rate at INGRID

Fig. 2.10 shows daily event rate at INGRID detector in T2K run 10 taking

data from 7/11 - 19/12/2019 and 13/01 - 12/02/2020. These data sets are for neutrino

mode (FHC) at 250 kA horn operation. The data processing efficiencies are 99.91%

with a total of 4.7656× 1020 POT (protons-on-target). The neutrino event rate during

the whole run is stable, and the average value is measured to be 1.694 [/1014 POT]

± 0.001(stat.) ± 0.015(sys.) with hps (horn power supply current) correction. The

data to MC ratio for run 10 is 0.969 ± 0.001(stat.) ± 0.009(sys.). Tables 2.2 and 2.3

summarize the comparison between our MC simulation and data at INGRID.

Our MC study shows that when the horn current is increased from 250 kA to

320 kA, the neutrino event rates at INGRID are increased by 26% and 18% to be
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Data MC Data/MC

[/1014 POT] [/1014 POT] [/1014 POT]

run1 1.710 ± 0.002(stat.) ± 0.015(sys.) 1.748 0.978 ± 0.001(stat.) ± 0.009(sys.)

run2 1.746 ± 0.001(stat.) ± 0.016(sys.) 1.748 0.999 ± 0.001(stat.) ± 0.009(sys.)

run3c 1.739 ± 0.001(stat.) ± 0.016(sys.) 1.748 0.995 ± 0.001(stat.) ± 0.009(sys.)

run8a 1.700 ± 0.001(stat.) ± 0.015(sys.) 1.748 0.973 ± 0.001(stat.) ± 0.009(sys.)

run8b 1.702 ± 0.001(stat.) ± 0.015(sys.) 1.748 0.974 ± 0.001(stat.) ± 0.009(sys.)

run8c 1.699 ± 0.001(stat.) ± 0.015(sys.) 1.748 0.972 ± 0.001(stat.) ± 0.009(sys.)

run9 1.697 ± 0.001(stat.) ± 0.015(sys.) 1.748 0.971 ± 0.001(stat.) ± 0.009(sys.)

run10 1.694 ± 0.001(stat.) ± 0.015(sys.) 1.748 0.969 ± 0.001(stat.) ± 0.009(sys.)

Table 2.2: Event rate comparison between FHC runs and MC with +250kA horn operation.

Data MC Data/MC

[/1014 POT] [/1014 POT] [/1014 POT]

run5 0.560 ± 0.0010(stat.) ± 0.0094(sys.) 0.565 0.991 ± 0.001(stat.) ± 0.017(sys.)

run6 0.554 ± 0.0004(stat.) ± 0.0093(sys.) 0.565 0.981 ± 0.001(stat.) ± 0.017(sys.)

run7 0.555 ± 0.0004(stat.) ± 0.0093(sys.) 0.565 0.982 ± 0.001(stat.) ± 0.017(sys.)

Table 2.3: Event rate comparison between RHC runs and MC with -250kA horn operation.

2.209 [/1014 POT] and 0.664 [/1014 POT] for neutrino mode and anti-neutrino mode,

respectively.

Fig. 2.11 illustrates some basic MC distributions of number of events in both

neutrino mode (FHC) and anti-neutrino mode (RHC) for 320 kA horn running.

2.3 Beam profile measurement

The physics of beam profile measurement at INGRID is as follows. The beam

profiles for horizontal and vertical modules are reconstructed separately based on the

neutrino event numbers of every single module (seven in the horizontal direction and

seven in the vertical direction). Then the fitted Gaussian functions are used to specify

peak position and standard deviation, which respectively correspond to the beam center

and beam width.

For T2K run 10, the measurements of neutrino beam direction are stable with

a requirement within 1 mrad (see Fig. 2.12):

θ̄H = −0.055± 0.013(stat.)± 0.096(sys.) mrad, (2.3)

θ̄V = 0.085± 0.014(stat.)± 0.106(sys.) mrad. (2.4)

Fig. 2.13 and 2.14 show that the beam center and beam width are stable and

within allowed variation range. The data to MC ratio of beam width is calculated for
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Figure 2.10: The daily event rate at INGRID in T2K run 10 without correction.
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Figure 2.11: MC event distributions vs angle (left) and vertex x (right) of RHC mode (top) and FHC

mode (bottom) for 320 kA horn operation.
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Horizontal center [cm] Vertical center [cm]

FHC 250kA 2.33 ± 0.89 -0.24 ± 0.99

FHC 320kA 2.53 ± 0.67 -1.27 ± 0.72

RHC 250kA 2.93 ± 0.96 -0.56 ± 1.65

RHC 320kA 1.94 ± 1.11 -0.49 ± 1.19

Table 2.4: Summary of INGRID MC beam center with 250 kA and 320 kA horn operations.

Horizontal width [cm] Vertical width [cm]

FHC 250kA 430.162 ± 1.429 454.508 ± 1.682

FHC 320kA 388.378 ± 0.962 399.982 ± 1.088

RHC 250kA 451.607 ± 2.444 483.255 ± 3.033

RHC 320kA 408.151 ± 1.680 423.141 ± 1.906

Table 2.5: Summary of INGRID MC beam width with 250 kA and 320 kA horn operations.

250 kA horn operation as follow:

W (Data/MC)H = 1.016± 0.004(stat.), (2.5)

W (Data/MC)V = 1.009± 0.004(stat.). (2.6)

The results of the MC study on beam profile are presented. The particular values

of the beam center and beam width of the horizontal module and vertical module for

both FHC mode and RHC mode are summarized in Table 2.4 and Table 2.5 for 250

kA and 320 kA horn operations.

2.4 Conclusion

In the section, we have presented the MC study and the measurements at

the INGRID detector for different horn configurations. The comparison shows good

agreement between the MC results and the T2K data up to run 10 for 250 kA horn

operation.

We also showed the MC study at INGRID with a 320 kA horn configuration,

which can be tested with future data of T2K. At 320 kA operation, the expected event

rates are 2.209 [/1014 POT] and 0.664 [/1014 POT] for neutrino mode and anti-neutrino

mode, respectively. The expected beam directions with respect to the centers of the

neutrino mode are 0.091 ± 0.024 mrad for horizontal and -0.046 ± 0.026 mrad for

vertical. For anti-neutrino mode, the corresponding values are 0.070 ± 0.040 mrad and

-0.018 ± 0.044 mrad.
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Figure 2.12: Reconstructed neutrino beam profiles for horizontal (left) and vertical (right) modules

for T2K run 10. Each point represents the number of selected events in each module.

Figure 2.13: The stability of neutrino beam profiles of INGRID horizontal (left) and vertical (right)

modules for T2K run 10.

Figure 2.14: The history of neutrino beam width for INGRID horizontal (left) and vertical (right)

modules for T2K run 10.
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Chapter 3. Testing CP and CPT invariances with

neutrino oscillation measurements in T2K experi-

ment

3.1 C, P, and T symmetries

3.1.1 Charge conjugation C

Charge conjugation is an important discrete symmetry that transforms a particle

into its antiparticle and vice versa. In particular, it converts not only the sign of

electric charge but also other quantum charges such as baryon number, lepton number,

strangeness, charm, beauty, truth, ... while leaving mass, energy, momentum, and

spin unchanged [69]. The charge conjugation operator is denoted by the letter C and

defined as follows

C|p⟩ = |p⟩, (3.1)

where |p⟩ and |p⟩ represent particle and antiparticle states, respectively. It is obvious

that if we apply the charge conjugation twice, we get back to the initial state. That

is, C2 = I, or eigenvalues of the operator C are ±1.

C|p⟩ = ±|p⟩ = |p⟩. (3.2)

Because they differ only by a sign, equation (3.2) shows that |p⟩ and |p⟩ represent the
same physical state. This means that only particles that are their own antiparticles

can be eigenstates of C. They are called Majorana particles. Charge conjugation

symmetry is conserved in strong and electromagnetic interactions but not in weak

interaction. When we apply C to left-handed neutrino, it will give the left-handed

antineutrino, which doesn’t exist in the SM.

C|νL⟩ = |νL⟩. (3.3)

C is an hermitian unitary operator C = C−1 = C† which has explicit form in Dirac

representation

C = iγ0γ2 =

 0 iσ2

iσ2 0

 . (3.4)

The Dirac γ matrices satisfy

C(γµ)TC−1 = −γµ, (3.5)

C(γ5)TC−1 = γ5, (3.6)

C(γµγ5)TC−1 = −γµγ5. (3.7)
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The operation of C on scalar field ϕ(x), vector field A(x), and Dirac spinor field ψ(x)

operators are

Cϕ(x)C−1 = ϕ(x)†, (3.8)

CAµ(x)C
−1 = −A†

µ(x), (3.9)

Cψ(x)C−1 = iγ0γ2ψ(x)T = Cψ(x)T = −iγ2ψ(x)∗, (3.10)

Cψ(x)C−1 = iψ(x)Tγ2γ0 = −ψ(x)T (iγ0γ2) = −ψ(x)TC−1. (3.11)

We can take an example to see how it works for the Dirac spinor field. Consider

the Dirac equation of a particle with charge q and mass m coupled to an external

electromagnetic field Aµ [38].

iγµ(∂µ + iqAµ)ψ −mψ = 0. (3.12)

By taking complex conjugate of equation (3.12) and multiplying left-handed with −iγ2

gives (note that for γ matrices, (γ0)* = γ0, (γ1)* = γ1, (γ2)* = - γ2, (γ3)* = γ3, and

γ2γµ = −γµγ2 for µ ̸= 2)

(−iγ2)(−iγµ∗)(∂µ − iqA∗
µ)ψ

∗ −m(−iγ2)ψ∗ = 0

⇔ −iγµ(∂µ − iqA∗
µ)(iγ

2ψ∗) +m(iγ2ψ∗) = 0 (3.13)

⇔ iγµ(∂µ − iqA∗
µ)(iγ

2ψ∗)−m(iγ2ψ∗) = 0.

This is the Dirac equation of a particle with the same mass as the original particle

but with opposite charge −q which is coupled to an external electromagnetic field A∗
µ.

We refer to it as an antiparticle of the original one and its wave function is defined as

ψC = iγ2ψ∗.

We now can check for each Lorentz invariant terms in the free Dirac Lagrangian

L = ψγµ∂µψ −mψψ (3.14)

under C transformation with the help of equations (3.10) and (3.11) (note fermion

fields are anticommutative ψψ = −ψψ, and ψ∂µψ = −ψ∂µψ). For the mass term

ψψ → CψψC−1 = CψC−1CψC−1 = −ψTC−1Cψ
T
= −ψψ = ψψ. (3.15)

For kinematic term

ψγµ∂µψ → Cψγµ∂µψC
−1 = CψC−1CγµC−1C∂µC

−1CψC−1

= (−ψTC−1)(−γµT )C∂µC−1(Cψ
T
)

= (ψTC−1)α(γ
µT )αβ(C∂µψ

T
)β

= ψα′(C−1γµC)α′β′(∂µψ)β′

= ψα′(−γµ)β′α′(∂µψ)β′

= ψβ′(γµ)β′α′(∂µψ)α′

= ψγµ∂µψ. (3.16)
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Therefore, the free Dirac Lagrangian is invariant under the charge conjugation trans-

formation

L → CLC−1 = iCψγµ∂µψC
−1 −mCψψC−1

= iψγµ∂µψ −mψψ = L. (3.17)

Similarly, we can derive the transformation of vector current jµV = ψγµψ and axial-

vector current jµA = ψγµγ5ψ as follows

jµV → CψγµψC−1 = −ψγµψ = −jµV , (3.18)

jµA → Cψγµγ5ψC−1 = ψγµγ5ψ = jµA. (3.19)

3.1.2 Parity inversion P

The second discrete symmetry we now discuss is parity transformation, which

is associated to spatial inversion through the origin

xµ = (t, x, y, z) → xµ = (t,−x,−y,−z). (3.20)

It is well known that parity is conserved in QED and QCD, but not in weak interaction.

The parity operator is denoted as P such that

P |ψ(t, x)⟩ = |ψ(t,−x)⟩. (3.21)

Apparently, if P is applied twice, the original state is recovered

P 2|ψ(t, x)⟩ = P |ψ(t,−x)⟩ = |ψ(t, x)⟩. (3.22)

Therefore, parity is a hermitian and unitary operator with eigenvalues ±1. The parity

transformation applied for scalar field ϕ(x), vector field Aµ(x) and Dirac field ψ(x) are

as follows

Pϕ(x)P−1 = ϕ(−x), (3.23)

PAµ(x)P−1 = Aµ(−x), (3.24)

Pψ(x)P−1 = γ0ψ(−x), (3.25)

Pψ(x)P−1 = ψ(−x)γ0. (3.26)

The matrix γ0 is called intrinsic parity of the Dirac field. The transformation of a

vector and an axial vector currents under parity are

jµV → PψγµψP−1 = PψP−1PγµP−1PψP−1 = ψγ0γµγ0ψ

= (ψγ0ψ,−ψγiψ) = (j0V ,−j
i
V ) = (jV )µ, (3.27)

jµA → Pψγµγ5ψP−1 = PψP−1PγµP−1Pγ5P−1PψP−1 = ψγ0γµγ5γ0ψ

= (−ψγ0γ5ψ,+ψγiψ) = (−j0A,+j
i
A) = −(jA)µ. (3.28)

We then can easily check that

jµV .jV µ → jµV .jV µ, (3.29)

jµA.jAµ → jµA.jAµ, (3.30)

jµA.jV µ → −jµA.jV µ. (3.31)
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The result of equation (3.31) provides a mechanism to explain violation of parity in the

weak interaction. In particular, the weak interaction current should be a combination

of vector and axial vector of the form V - A.

3.1.3 Time reversal T

Time reversal is a transformation that takes the sign of time to be opposite

(t, x, y, z) → (−t, x, y, z). (3.32)

Time reversal operator is denoted by the letter T . It is hermitian and unitary: T =

T−1 = T †. For a field ψ(t, x), we have

T |ψ(t, x)⟩ = |ψ(−t, x)⟩. (3.33)

T is called anti-linear operator since it converts imaginary number i to −i. Time

reversal transformation for scalar field ϕ(t, x), vector field Aµ(t, x), and Dirac field

ψ(t, x) are

Tϕ(t, x)T−1 = ϕ(−t, x), (3.34)

TAµ(t, x)T
−1 = Aµ(−t, x), (3.35)

Tψ(t, x)T−1 = γ1γ3ψ(−t, x), (3.36)

Tψ(t, x)T−1 = ψ(−t, x)γ3γ1. (3.37)

The transformation of a vector and an axial vector currents under time reversal are

jµV → TψγµψT−1 = TψT−1TγµT−1TψT−1 = ψγ3γ1γµ∗γ1γ3ψ

= (ψγ0ψ,−ψγiψ) = (j0V ,−j
i
V ) = (jV )µ, (3.38)

jµA → Tψγµγ5ψT−1 = TψT−1TγµT−1Tγ5T−1TψT−1 = ψγ3γ1γµγ5γ1γ3ψ

= (ψγ0γ5ψ,−ψγiγ5ψ) = (j0A,−j
i
A) = (jA)µ. (3.39)

3.2 The CPT theorem

CPT symmetry is a fundamental symmetry of Nature which simultaneously

transforms the charge conjugation C, parity inversion P, and time reversal T. The CPT

theorem states that all interactions described by an unitary, local, Lorentz-invariant

quantum field theory in a flat Minkowski space must be invariant under the combined

CPT transformation. Here we denote the combined CPT transformation as an antiu-

nitary operator

Θ = CPT, Θ−1 = Θ†. (3.40)

By applying the CPT operator Θ, a particle state transforms into an anti-particle state

as follows

Θ|p⟩ = |p⟩. (3.41)
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We present here the proofs of the CPT theorem based on Lagrangian and ax-

iomatic quantum field theories. The work is comprehensibly summarized by Ralf Lehn-

ert in Ref. [70]. A physical state in the Hilbert space and a quantum operator transform

under CPT conjugation as follow:

|ψ⟩ → |Θψ⟩ = Θ|ψ⟩ ≡ |ψ⟩, (3.42)

A → ACPT = ΘAΘ†. (3.43)

3.2.1 Proof of CPT theorem based on Lagrangian quantum field theory

The CPT theorem was studied for the first time and formulated in the context

of Lagrangian quantum field theory by Schwinger [71] [72], Luders [73], Pauli [74], and

Bell [75]. Therefore this theorem is also called Lagrangian CPT theorem. This formal-

ism simply means all terms that appear in Lagrangian must be CPT invariant. The

CPT transformation of field operators, ordinary derivative and tensor are as follows:

ϕ(x) → Θϕ(x)Θ† = ϕ†(−x), (3.44)

ψ(x) → Θψ(x)Θ† = −γ5ψ∗(−x), (3.45)

ψ(x) → Θψ(x)Θ† = −ψT (−x)γ5γ0, (3.46)

Aµ(x) → ΘAµ(x)Θ
† = −A†

µ(−x), (3.47)

∂µ → Θ∂µΘ
† = ∂µ, (3.48)

Tµ1,µ2,...,µn(x) → ΘTµ1,µ2,...,µn(x)Θ
† = (−1)nT †

µ1,µ2,...,µn
(−x). (3.49)

Here we denote the general spacetime coordinates x ≡ (t, x, y, z). It is straightforward

to check that following terms in the Lagrangian are CPT invariant

ψψ, ψγµ∂µψ, ψγµAµψ, ψγµγ5ψWµ, ψσµνψFµν .

For example under single C, P and T transformation

ψγµψ = jµV
C−→ −jµV

P−→ −(jV )µ
T−→ −jµV ,

ψγµγ5ψ = jµA
C−→ jµA

P−→ −(jA)µ
T−→ −jµA,

Aµ
C−→ −Aµ

P−→ −Aµ T−→ −Aµ.

Then

ψγµAµψ = jµVAµ
C−→ jµVAµ

P−→ (jV )µA
µ T−→ jµVAµ, (3.50)

ψγµγ5ψWµ = jµAWµ
C−→ −jµAWµ

C−→ (jA)µW
µ T−→ jµAWµ. (3.51)

We now proof the theorem through three steps as follows:

(1) Lorentz invariance: All possible terms in the Lagrangian must be Lorentz

scalars. Therefore, Lorentz indices must come in pairs in such terms, or equivalently,

the total number of Lorentz indices in such terms must be even. The Lagrangian then

transforms under CPT as

ΘL(x)Θ−1 = (−1)2kL†(−x) = L†(−x). (3.52)
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(2) Unitarity: The Lagrangian must be hermitian in order to preserve proba-

bility conservation

ΘL(x)Θ−1 = L†(−x) = L(−x). (3.53)

(3) Locality: This requires quantum fields to interact locally or they must be

point interactions. If the theory satisfies this property, then the action is invariant

under CPT

ΘSΘ−1 =

∫
d4xL(−x) =

∫
d4xL(x) = S. (3.54)

In the last step, we note that all terms in the Lagrangian are Lorentz invariant, so

it is straightforward to change the integration variable and eliminate the minus sign.

We have just shown that every quantum field theory that respects Lorentz symmetry,

unitarity, and locality must be CPT invariant.

3.2.2 Proof of CPT theorem based on axiomatic quantum field theory

Later, R. Jost [76] (English version by Greenberg [77]) completed a general

proof based on axiomatic quantum field theory, which is known as axiomatic CPT

theorem. Jost’s version is more abstract and mathematically rigorous because it can

perform a CPT transformation of any relativistic field without using individual dis-

crete transformations C, P, and T separately. Jost’s approaching method is to admit

necessary axioms as follows:

(1) Enlargement of Lorentz group:

In order to prove the CPT theorem, we need to enlarge proper Lorentz group to

complex Lorentz group. We will now see why it should be so. We have already known

that spacetime coordinates xµ change sign under CPT operation

xµ
CPT−−−→ −xµ.

This means that the CPT transformation can be interpreted by multiplying with −I4×4

matrix. Proper Lorentz group L↑
+, however does not contain this entity. An extension

from the proper Lorentz group to complex Lorentz group, luckily satisfies our require-

ment. For example, consider a complex Lorentz group Λ

Λ =



cosϕ i sinϕ 0 0

i sinϕ cosϕ 0 0

0 0 cosϕ − sinϕ

0 0 sinϕ cosϕ


. (3.55)

It can be obviously seen that Λ = −I4×4 if we choose ϕ = π. This requirement shows a

closed relationship between the CPT transformation and the Lorentz transformation.

(2) Poincare invariance of vacuum state:
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The vacuum state is assumed to be invariant under the Poincare transformation,

which consists of complex Lorentz and translation transformations.

U(Λ, a)|0⟩ = |0⟩

More clearly, the vacuum should have zero momentum and angular momentum.

(3) Assumptions about domain and continuity of the field:

The domain of analyticity needs to be enlarged in order to contain real points

(also called Jost’s points). Under Poincare symmetry, a general field transforms as

U(Λ, a)ϕi(x)U(Λ, a)
† =
∑

Sij(Λ
−1)ϕj(Λx+ a). (3.56)

+ Scalar field: U(Λ, a)ϕ(x)U(Λ, a)† = ϕ(Λx+ a).

+ Vector field: U(Λ, a)Aµ(x)U(Λ, a)
† = Λν

µ(Λ
−1)Aν(Λx+ a).

+ Dirac field: U(Λ, a)ψα(x)U(Λ, a)
† =
∑4

β=1 S(Λ
−1)αβψβ(Λx+ a).

(4) Energy positivity:

Except for the zero energy level of vacuum, all physical states are required to

have positive energy. This means that four-momenta pµ must have a light-like nature,

or in other words, lie in or on the forward light cone.

(5) Microscopic causality or local commutativity:

Microscopic causality requires that commutators or anti-commutators must van-

ish for all space-like point (x− y)

[ϕi(x), ϕj(y)]± = 0, if (x− y)2 < 0.

We now use the above axioms to prove the CPT theorem. The Wightman

reconstruction theorem states that a quantum field theory is uniquely determined by its

Wightman function W which is defined as vacuum expectation values of field operators

W(∆x1,∆x2, · · · ,∆xn) ≡ ⟨0|ϕ(x0)ϕ(x1) · · ·ϕ(xn)|0⟩, (3.57)

where ∆xi = xi−1 − xi, xi are physical spacetime points. With the light of Wightman

reconstruction theorem, we do not directly works with field operators but rather with

ordinary function W only. If W is conserved under CPT, so will the corresponding

quantum field theory. With the help of equations (3.44) and (3.49), the CPT operator

applied for Wightman function corresponding to scalar fields ϕ(x) is

W(∆x1,∆x2, · · · ,∆xn) = ⟨0|ϕ(x0)ϕ(x1) · · ·ϕ(xn)|0⟩
CPT−−−→ ⟨0|ϕ†(−x0)ϕ†(−x1) · · ·ϕ†(−xn)|0⟩∗

= ⟨0|[ϕ(−xn)ϕ(−xn−1) · · ·ϕ(−x0)]†|0⟩∗

= ⟨0|ϕ(−xn)ϕ(−xn−1) · · ·ϕ(−x0)|0⟩

= W(∆xn,∆xn−1, · · · ,∆x1). (3.58)

This is what we need to prove. The Wightman function associated to scalar fields
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under axiom (2) and (3) transforms as

W(∆x1, · · · ,∆xn) = ⟨0|ϕ(x0)ϕ(x1) · · ·ϕ(xn)|0⟩

= ⟨0|U †(Λ, a)U(Λ, a)ϕ(x0)ϕ(x1) · · ·ϕ(xn)U †(Λ, a)U(Λ, a)|0⟩

= ⟨0|ϕ(Λx0 + a)ϕ(Λx1 + a) · · ·ϕ(Λxn + a)|0⟩

= W(Λ∆x1, · · · ,Λ∆xn), for real xi,Λ. (3.59)

By requiring positivity of energy, we can expand above expression applied for complex

∆zi in extended tube which is a set of complex Lorentz transformations

W(∆z1, · · · ,∆zn) = W(Λc∆z1, · · · ,Λc∆zn)

= W(−∆z1, · · · ,−∆zn), for complex zi,Λc. (3.60)

Now complex Lorentz transformations Λc can also acts on complex ∆zi to give real

four vector called Jost points ∆yi = Λc∆zi. The equation (3.60) can be rewritten for

physical Jost points ∆yi as

W(∆y1, · · · ,∆yn) = W(−∆y1, · · · ,−∆yn). (3.61)

Therefore at Jost points we have

W(∆y1, · · · ,∆yn) = ⟨0|ϕ(y0)ϕ(y1) · · ·ϕ(yn)|0⟩

= ⟨0|ϕ(−y0)ϕ(−y1) · · ·ϕ(−yn)|0⟩

= ⟨0|ϕ†(−yn)ϕ†(−yn−1) · · ·ϕ†(−y0)|0⟩∗

= ⟨0|ϕ†(−y0)ϕ†(−y1) · · ·ϕ†(−yn)|0⟩∗ (for scalar fields)

= ⟨0|[ϕ(−yn)ϕ(−yn−1) · · ·ϕ(−y0)]†|0⟩∗

= ⟨0|ϕ(−yn)ϕ(−yn−1) · · ·ϕ(−y0)|0⟩

= W(∆yn, · · · ,∆y1). (3.62)

This result can be generalized for any physical spacetime position ∆xi, that is

W(∆x1, · · · ,∆xn) = W(∆xn, · · · ,∆x1). (3.63)

3.3 Testing CP invariance with neutrino oscillation experi-

ments

3.3.1 Testing CP invariance in neutrino oscillation

As we already know in the SM, neutrinos are left-handed particles, while an-

tineutrinos are right-handed. If CP symmetry is conserved in the lepton sector, the

oscillation probabilities of the neutrino and antineutrino must be identical if the CPT

symmetry holds

P (να → νβ) = P (να → νβ). (3.64)
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From (1.41) and (1.42), the CP asymmetry is defined as the difference between the

neutrino and antineutrino oscillation probabilities

ACP = P (να → νβ)− P (ν̄α → ν̄β)

= 4
∑
i>j

Im
[
U∗
αiUβiUαjU

∗
βj

]
sin

(
∆m2

ij

2E
L

)
. (3.65)

If CP is violated, ACP must be nonzero, or equivalently U∗
αiUβiUαjU

∗
βj has to contain

an imaginary component. For α = µ and β = e, then

ACP = P (νµ → νe)− P (ν̄µ → ν̄e)

= 4
∑
i>j

Im
[
U∗
µiUeiUµjU

∗
ej

]
sin

(
∆m2

ij

2E
L

)

= 16c12s12c
2
13s13c23s23 sin δCP sin

∆m2
21L

4E
sin

∆m2
31L

4E
sin

∆m2
32L

4E
. (3.66)

In equation (3.66), Jarlskog invariant J , a quantity for evaluating CP violation that is

independent of parameterization, is defined as

J =
∑
i>j

Im
[
U∗
αiUβiUαjU

∗
βj

]
= c12s12c

2
13s13c23s23 sin δCP . (3.67)

In the quark sector, Jarlskog invariant is measured precisely [12]

Jquark = 3.08+0.15
−0.13 × 10−5. (3.68)

In the lepton sector, by inserting values of mixing angles measured by neutrino oscil-

lation experiments from Table 3.1 in equation (3.67), we can calculate the Jarlskog

invariant

Jlepton ≈ −2.25× 10−2. (3.69)

From Fig. 3.1, we can see that CP violation in the quark sector is too small to explain

the matter-antimatter asymmetry of the universe, while CP violation in the lepton

sector (if confirmed, at least with current values of oscillation parameters) could well

do so.

3.3.2 Testing CP invariance with T2K experiment

T2K is able to measure simultaneously the disappearance of muon (anti-)neutrinos

and the appearance of electron (anti-)neutrinos from the flux of almost pure muon

(anti-)neutrinos. While the data samples of the νµ(νµ) disappearance provide a pre-

cise measurement of the atmospheric neutrino parameters, sin2 2θ23 and ∆m2
31, the

νe(νe) appearance rates are driven by sin2 2θ13 and sensitive to δCP and mass hier-

archy (MH). T2K made an observation of electron neutrinos appearing from a muon
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Parameter Value

sin2 θ12 0.304

sin2 θ13 0.0212

sin2 θ23 0.528

∆m2
31 2.509× 10−3eV 2

∆m2
21 7.53× 10−5eV 2

δCP -2.14

Mass hierarchy Normal (NH)

Table 3.1: Values of oscillation parameters used in calculating Jarlskog invariant.

Figure 3.1: The Jarlskog invariant versus the baryon asymmetry varying δCP = [0, 2π] (cyan). The

red region denotes the 2σ range for the baryon asymmetry. The magenta and blue lines indicate values

of Jarlskog invariant in the quark and lepton sectors. The plot is taken from Ref. [9].

Figure 3.2: The ∆χ2 distribution as a function of δCP for T2K, with and without reactor constraint.
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1Re ν mode 1Re ν mode 1Re + 1de ν mode

νµ → νe 59.0 3.0 5.4

νµ → νe 0.4 7.5 0.0

Background 13.8 6.4 1.5

Total predicted 73.2 16.9 6.9

Systematic uncertainty 8.8% 7.1% 18.4%

Data 75 15 15

Table 3.2: The predicted number of events for δCP = −π/2 and the measured number of events in

the three electron-like samples at Super-K.

neutrino beam [78] and presented an indication of CP violation in the neutrino oscil-

lation [18]. In this section, we will investigate the T2K ability to explore CP violation

in the lepton sector by using neutrino oscillation measurements.

In 2020, T2K published a paper on Nature indicating CP violation in lepton

sector [18]. In this analysis, T2K used data collected from 2009 to 2018 with a total

exposure of 3.13 × 1021 POT in both neutrino mode (1.49 × 1021 POT) and antineu-

trino mode (1.64× 1021). Neutrinos are detected at the far detector Super-K via their

weak interactions with target material (water). At a peak energy of 0.6 GeV, the dom-

inant neutrino-nucleus interaction is charged current quasi-elastic (CCQE) scattering.

CCQE interaction of neutrino (antineutrino) will produce charged lepton (antilepton)

of the same flavour. Super-K can detect charged leptons (muons, electrons) with high

precision, it is able to identify the flavour of incoming neutrinos. Table 3.2 summa-

rizes the number of predicted events for δCP = −π/2 and number of observed events

at Super-K. The analysis indicates that δCP is near the maximal CP violating value

−π/2. The CP conserving values δCP = 0 and δCP = π are disfavoured at 95% C. L.

Recently, in 2021, the T2K experiment reported the updated measurements of

neutrino and antineutrino oscillation using both appearance and disappearance chan-

nels [79]. This analysis used the same data-set collected at Super-K as the previous

analysis reported in [18]. In the updated analysis, the event reconstruction algorithm is

improved to match directly with the pattern of light observed in Super-K. This provides

more information about the event, makes it easier to discriminate between the event

categories, and improves the resolution of the lepton momentum and vertex location.

The fiducial volume, therefore, can be significantly expanded, leading to more statis-

tics, roughly equivalent to a 20% increase in statistics for the νe samples and a 40%

reduction in the background contamination in the νµ samples. The new analysis also

improves the theory of neutrino interaction models. The models of dominant CCQE

and subdominant processes have been updated. The new analysis therefore provides

more results than the previous one. Fig. 3.2 shows the distribution of ∆χ2 function

versus δCP , with and without constraint from reactor, for both neutrino mass hierarchy

cases. The best-fit values and 1σ confidence intervals for δCP in both mass hierarchy
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Parameters NH IH

δCP (T2K only) −2.14+0.90
−0.69 −1.26+0.61

−0.69

δCP (T2K+reactor) −1.89+0.70
−0.58 −1.38+0.48

−0.55

Table 3.3: The best fit and best fit ±1σ intervals of δCP for T2K only and T2K+reactor for normal

(NH) and inverted (IH) hierarchies. The ±1σ interval corresponds to the values for which ∆χ2 ≤ 1.

Parameter Best fit±1σ

sin2 θ12 0.310+0.013
−0.012

sin2 θ13(×10−2) 2.241+0.067
−0.066

sin2 θ23 0.558+0.020
−0.033

δCP(
◦) 222+38

−28

∆m2
21(10

−5eV2/c4) 7.39+0.21
−0.20

∆m2
31(10

−3eV2/c4) 2.523+0.032
−0.030

Table 3.4: Nominal values of oscillation parameters used for study in Section 3.3.3. Normal mass

hierarchy is assumed.

scenarios are summarized in Table 3.3, with and without constraint from sin2 θ13 from

reactors.

3.3.3 Sensitivity to CP violation with a joint fit of T2K-II, NOvA-II, and

JUNO

The content of this section is based on some parts of our study in the paper [80].

Accordingly, we will present the sensitivity to CP violation by combining the data from

the three experiments, T2K-II, NOνA-II, and JUNO. The study in this section is done

with the oscillation parameters available in Ref. [2,81], which is briefly summarized in

Table 3.4.

Searching for CP violation and measuring the value of δCP depend on the abil-

ity to resolve the parameter degeneracies among δCP , the sign of |∆m2
31|, θ13, and

θ23 [82]. Combining the data samples of the accelerator-based long baseline experi-

ments (T2K-II and NOνA-II) and JUNO would enhance the CP violation search and

MH determination since the JUNO sensitivity to MH has no ambiguity to δCP . To fur-

ther enhance the CP violation search, one can break the δCP -θ13 degeneracy by using

the constraint of θ13 from reactor-based short-baseline (R-SBL) neutrino experiments

such as Daya Bay [83], Double Chooz [84], and RENO [85]. This combination also

helps to solve the θ23 octant in the case of non-maximal mixing.

GLoBES setup for simulating T2K-II, NOνA-II, and JUNO experiments

General Long Baseline Experiment Simulator (GLoBES) [86, 87] is a software

package used to simulate neutrino oscillation phenomenon in accelerator-based long
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baseline and reactor-based experiments. In GLoBES, the experiments are described

by Abstract Experiment Definition Language (AEDL) files which contain information

of the experiments including fluxes, cross sections, efficiencies, oscillation channels,

backgrounds, energy resolutions, energy ranges and bin widths, detector setup, as well

as source power. The output information including oscillation probabilities, event rates,

and χ2 values can be extracted by a C-library.

The AEDL allows GLoBES to incorporate different experiment setups within

one data structure. The experiment setup is implemented into the experiment defini-

tion by three abstraction levels (Fig. 3.3): channel, rule, and experiment. A channel

specifies the link between a specific neutrino flavor produced at the source and a recon-

structed neutrino flavor detected at the detector. A rule consists of several channels

which are defined as ”signal” and ”background” oscillation channels. Number of events

of each rule is the sum of all channels in the rule. The χ2 value of each rule is then

calculated and the total χ2 of one experiment is the sum of all χ2’s of all rule.

χ2 is a function of all oscillation parameters which is used to measure the differ-

ence between the spectral of test parameters and the spectral of true parameters. The

smaller χ2 is, the better matching between the two spectra. The GLoBES built-in χ2

function is defined by a Gaussian statistics

χ2 =

# of bin∑
i

(Oi − Ti)
2

Oi
, (3.70)

where Oi is the event rate for the i-th bin at far detector, calculated for the assumed

true values of the oscillation parameters, Ti is the event rate for the test values of the

oscillation parameters.

In some experiments which have multi-detector setup such as reactor-based

experiment JUNO or RENO, the GLoBES built-in χ2 function is not sufficient to handle

the systematical errors that are correlated between different detectors. In this cases,

user-defined systematics can be used to replace the default χ2 function of GLoBES

χ2 =

# of bin∑
i

∑
d=N,F

(Od,i − (1 + aR + ad)Td,i)
2

Od,i
+
a2R
σ2R

+
a2N
σ2N

+
a2F
σ2F

, (3.71)

where, N and F are corresponding to near and far detectors. aR, aN , and aF are the

uncertainties in the reactor flux and the fiducial mass of the two detectors. σR, σN ,

and σF are the standard deviations of the central values which are assumed to be zero.

In each specific situation, the ∆χ2 is defined accordingly. For example, in

searching for CP violation, ∆χ2 = χ2(δCP = 0,±π) − χ2(true δCP ) to exclude CP

conservation. The statistical significane of a measurement is defined as the squared

root of the ∆χ2 in terms of σ C. L. value

σ =
√

∆χ2. (3.72)

In our study in this section and the following sections, we use GLoBES to

simulate experiments and calculating the statistical significance. We describe the ex-
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Figure 3.3: The abstract levels which define the AEDL file.
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Characteristics T2K-II [10,46] NOνA-II [51,53]

Baseline 295 km 810 km

Matter density [88] 2.6 g/cm3 2.84 g/cm3

Total Exposure 20× 1021 POT 72× 1020 POT

Detector fiducial mass 22.5 kton 14 kton

Systematics 3% (0.01%) 5% (2.5%)

Energy resolution 0.03×
√
E(GeV) x×

√
E(GeV)

Energy window APP (DIS ) 0.1-1.3 GeV (0.2-5.05 GeV) 0.0-4.0 GeV (0.0-5.0 GeV)

Bin Width APP (DIS ) 0.125 GeV/bin (0.1 GeV/bin) 0.5 GeV/bin (0.1 GeV/bin)

Table 3.5: Experimental specifications of T2K-II and NOνA-II in GLoBES.

νµ → νe ν̄µ → ν̄e νµ CC ν̄µ CC νe CC ν̄e CC NC

T2K-II ν mode 65.5 46.2 0.02 0.02 19.8 19.8 0.41

ν̄ mode 45.8 70.7 0.01 0.01 17.5 17.5 0.45

NOνA-II ν mode 62.0 38.0 0.15 – 79.0 69.0 0.87

ν̄ mode 25.0 67.0 0.14 0.05 20.7 40.7 0.51

Table 3.6: Detection efficiencies(%) of νe/ν̄e events in appearance samples. Normal hierarchy and

δCP = 0 are assumed.

periments using updated information on fluxes, signal and background efficiencies, and

systematic errors. Remaining differences between the energy spectra of the simulated

data sample at the reconstruction level obtained by GLoBES and the real experiment

simulation can be due to the effects of the neutrino interaction model, the detector

acceptance, detection efficiency variation as a function of energy, etc... These differ-

ences are then treated quantitatively using post-smearing efficiencies, allowing us to

match our simulation with the published spectra of each simulated sample from each

experiment. Each experimental setup is validated at the event rate level and sensitivity

level to ensure that the physics reaches of the simulated data samples we obtain are in

relatively good agreement with the real experimental setup.

For each of T2K-II and NOνA-II, four simulated data samples per each exper-

iment are used: νµ(ν̄µ) disappearance and νe(ν̄e) appearance in both ν mode and ν

mode. The experimental specifications of these two experiments are shown in Table 3.5,

in which APP and DIS are shortened for the appearance sample and the disappearance

sample, respectively. The values of x for NOνA-II are defined as x = 0.107, 0.091, 0.088

and 0.081 for νe, νµ, ν̄e and ν̄µ, respectively. The systematics indicates normalization

(calibration) error for both signals and backgrounds. Detection efficiencies1 of νe/νe

events in appearance samples and νµ/νµ events in disappearance samples are listed in

Table 3.6 and Table 3.7, respectively.

1defined per each interaction channel as the ratio of selected events in the data sample to the totally simulated

interaction supposed to happen in the detector
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νµ νµ ν̄µ ν̄µ (νe + ν̄e) NC νµ → νe

CCQE CC non-QE CCQE CC non-QE CC NC

T2K-II ν mode 71.2 20.4 71.8 20.4 0.84 2.7 0.84

ν̄ mode 65.8 24.5 77.5 24.5 0.58 2.5 0.58

NOνA-II ν mode 31.2 27.0 – 0.44 –

ν̄ mode 33.9 20.5 – 0.33 –

Table 3.7: Detection efficiencies(%) of νµ/ν̄µ events in disappearance samples. Normal hierarchy is

assumed.

In T2K(-II), neutrino events are dominated by the Charged Current Quasi-

Elastic (CCQE) interactions. Thus, for appearance (disappearance) in ν mode and

ν mode, the signal events are obtained from the νµ → νe (νµ → νµ) CCQE events

and ν̄µ → ν̄e (ν̄µ → ν̄µ) CCQE events, respectively. In the appearance samples, the

intrinsic νe/ν̄e contamination from the beam, the wrong-sign components i.e νµ → νe

(νµ → νe) in ν (ν) mode respectively, and the neutral current (NC) events constitute

the backgrounds. In the disappearance samples, the backgrounds come from νµ, νµ CC

interaction excluding CCQE, hereby called CC-nonQE, and NC interactions. We use

the updated T2K flux released along with Ref. [89]. In simulation, the cross section for

low and high energy regions are taken from Ref. [90] and Ref. [91] respectively. In our

T2K-II set-up, an exposure of 20× 1021 POT equally divided among the ν mode and

ν mode is considered along with a 50% effectively statistic improvement as presented

in Ref. [46]. The signal and background efficiencies and the spectral information for

T2K-II are obtained by scaling the T2K analysis reported in Ref. [10] to same expo-

sure as the T2K-II proposal. In Fig. 3.4, the T2K-II expected spectra of the signal

and background events as a function of reconstructed neutrino energy obtained with

GLoBES are compared to those of the Monte-Carlo simulation scaled from Ref. [46]. A

3% error is assigned for both the energy resolution and the normalization uncertainties

of the signal and background in all simulated samples.

For NOνA-II, we consider a total exposure of 72 × 1020 POT equally divided

among ν mode and ν mode [53]. We predict the neutrino fluxes at the NOνA far

detector by using the flux information from the near detector given in Ref. [92] and

normalizing it with the square of their baseline ratio. A 5% systematic error for all

samples and 8-10% sample-dependent energy resolution are assigned. Significant back-

ground events in the appearance samples stem from the intrinsic beam νe/ν̄e, NC

components, and cosmic muons. In the appearance sample of the ν mode, wrong-sign

events from νe appearance events are included as the backgrounds in the simulation.

We use the reconstructed energy spectra of the NOνA far detector simulated sam-

ple reported in Ref. [93] to tune our GLoBES simulation. The low- and high-particle

identification (PID) score samples are used but not the peripheral samples since the

reconstructed energy information is not available. In the disappearance samples of
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Figure 3.4: Expected event spectra of the signal and background as a function of reconstructed

neutrino energy for T2K-II. The top (bottom) spectra are for the appearance (disappearance) samples

and the left (right) spectra are for ν (ν) mode. Same oscillation parameters as Ref. [10] are used.
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Figure 3.5: Expected event spectra of the signal and background as a function of reconstructed

neutrino energy for NOνA-II. The top (bottom) spectrum is for the appearance (disappearance)

channel and the left (right) spectrum is for ν (ν) mode. Normal MH, δCP = 0, and other oscillation

parameters given in Tab. 3.1 are assumed.
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Characteristics Inputs

Baseline 52.5 km

Density 2.6 g/cm3 [95]

Detector type Liquid Scintillator

Detector mass 20 kton

ν̄e Detection Efficiency 73%

Running time 6 years

Thermal power 36 GW

Energy resolution 3% /
√
E (MeV)

Energy window 1.8-9 MeV

Number of bins 200

Table 3.8: JUNO simulated specifications in GLoBES.

both ν mode and ν mode, events from both CC νµ and ν̄µ interactions are considered

as signal events, which is tuned to match with the NOνA far detector simulated signal

given an identical exposure. Background from the NC νµ (ν̄µ) interactions is taken into

consideration and weighted such that the rate at a predefined exposure is matched to

a combination of the reported NC and cosmic muon backgrounds in Ref. [93]. Fig. 3.5

shows the simulated NOνA-II event spectra as a function of reconstructed neutrino

energy, for νe appearance and νµ disappearance channels in both ν mode and ν mode,

where normal MH is assumed, δCP is fixed at 0◦, and other parameters are given in

Table 3.1.

In JUNO, the electron anti-neutrino νe flux, which is produced mainly from four

radioactive isotopes 235U, 238U, 239Pu, and 241Pu [94], is simulated with an assumed

detection efficiency of 73%. The backgrounds, which have a marginal effect on the

MH sensitivity, are not included in our simulation. In our setup, to speed up the

calculation, we consider one core of 36 GW thermal power with an average baseline

of 52.5 km instead of the true distribution of the reactor cores, baselines, and powers.

The simulated JUNO specification is listed in Table 3.8. The contribution of the event

rate of four isotopes as a function of the neutrino energy is shown in Fig. 3.6. For

systematic errors, we use 1% commonly for the errors associated with the uncertainties

of the normalization of the νe flux produced from the reactor core, the normalization

of the detector mass, the spectral normalization of the signal, the detector response

to the energy scale, the isotopic abundance, and the bin-to-bin reconstructed energy

shape.

Besides T2K-II, NOνA-II, and JUNO, we implement a R-SBL neutrino ex-

periment to constrain sin2 θ13 at 3% uncertainty, which is reachable as prospected in

Ref. [96]. This constraint is important to break the parameter degeneracy between

δCP -θ13, which is inherent from the measurement with the electron (anti-)neutrino

appearance samples in the A-LBL experiments.
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To calculate the sensitivity, a joint χ2 is formulated by summing over all in-

dividual experiments under consideration without taking into account any systematic

correlation among experiments. For T2K-II and NOνA-II, we use a built-in χ2 function

(equation 3.70) from GLoBES for taking the signal and background normalization sys-

tematics with the spectral distortion into account. For JUNO, an user-defined formula

for χ2 (equation 3.71) is used. For a given true value of the oscillation parameters,

Θ⃗truth = (θ12, θ13, θ23, δCP; ∆m
2
21,∆m

2
31)truth, at a test set of oscillation parameters,

Θ⃗test, and systematic variations s⃗syst., a measure χ2(Θ⃗truth|Θ⃗test, s⃗syst.) is calculated.

It is then minimized over the nuisance parameters (both systematic parameters and

marginalized oscillation parameters) to obtain the statistical significance on the hyper-

plane of parameters of interest.

CP violation sensitivity with the joint fit of T2K-II, NOνA-II, and JUNO

The statistical significance
√

∆χ2 to exclude the CP-conserving values (δCP =

0, π) or sensitivity to CP violation is evaluated for any true value of δCP with the

normal MH assumed. For the minimization of χ2 over the MH options, we consider

two cases: (i) MH is known and normal, same as the truth value or (ii) MH is unknown.

Fig. 3.7 shows the CP violation sensitivity as a function of the true value of δCP for

both MH options obtained by different analyses: (i) T2K-II only; (ii) a joint T2K-II

and R-SBL experiments; (iii) a joint of T2K-II, NOνA-II and R-SBL experiments; and

(iv) a joint of T2K-II, NOνA-II, JUNO and R-SBL experiments. The result shows

that whether the MH is known or unknown affects the first three analyses, but not the

fourth. This is because, as concluded in the above section, the MH can be determined

conclusively with a joint analysis of all considered experiments. It can be seen that

the sensitivity to CP violation is driven by T2K-II and NOνA-II. Contribution of the

R-SBL neutrino experiment is significant only at the region where δCP is between

0 and π and when the MH is not determined conclusively. JUNO further enhances

the CP violation sensitivity by lifting up the overall MH sensitivity and consequently

breaking the MH-δCP degeneracy. At δCP close to −π/2, which is indicated by recent

T2K data [18], the sensitivity of the joint analysis with all considered experiments can

reach approximately the 5σ C.L. We also calculate the statistical significance of the

CP violation sensitivity as a function of true δCP at different values of θ23, as shown

in Fig. 3.8. When inverted MH is assumed, although ACP amplitude fluctuates in

the same range as when normal MH, that the probability and rate of νe appearance

becomes smaller make the statistic error, σstat.νe , lower. In sum, sensitivity to CP

violation, which is proportional to ACP/σ
stat.
νe , is slightly higher if the inverted MH is

assumed to be true as shown at the right of the Fig. 3.8.

Table 3.9 shows the fractional region of all possible true δCP values for which

we can exclude CP conserving values of δCP to at least the 3σ C.L., obtained by the

joint analysis of all considered experiments. Due to the fact that the MH is resolved



61

2 3 4 5 6 7 8 9
Neutrino energy [MeV]

0

200

400

600

800

1000

1200

 e
ve

nt
s

eν

JUNO 6 years simulated data @36GWth

JUNO TDR report

GLoBES, total signal

GLoBES, signal from U235

GLoBES, signal from U238

GLoBES, signal from Pu239

GLoBES, signal from Pu241

Figure 3.6: JUNO event rate calculated at same oscillation parameters as Ref. [11].
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Figure 3.7: CP violation sensitivity as a function of the true δCP obtained with different analyses.

Normal MH and sin2 θ23 = 0.5 are assumed to be true. Left (right) plot is with the MH assumed to

be unknown (known) in the analysis, respectively.
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Value of sin2 θ23 0.43 0.50 0.60

Fraction of true δCP values (%), NH 61.6 54.6 53.3

Fraction of true δCP values (%), IH 61.7 57.2 54.2

Table 3.9: Fractional region of δCP, depending on sin2 θ23, can be explored with 3σ or higher signifi-

cance.

completely with the joint analysis, the CP violation sensitivities are quantitatively

identical no matter whether the MH is assumed to be known or unknown.

3.4 Testing CPT invariance with neutrino oscillation experi-

ments

3.4.1 Testing CPT invariance in neutrino oscillation

We consider an unitary, local, Lorentz-invariant quantum field theory with

Hamiltonian H. The CPT transformation reads

⟨p|H|p⟩ CPT−−−→ ⟨p|Θ−1ΘHΘ−1Θ|p⟩ = ⟨p|ΘHΘ−1|p⟩ = ⟨p|H|p⟩. (3.73)

The result in equation (3.73) shows that if the CPT symmetry is conserved, the particle

and its anti-particle must have the same energy spectra. This is an important conse-

quence of the CPT theorem that opens a possibility for direct testing CPT invariance

by comparing the mass spectra, or other properties such as lifetime or magnetic mo-

ment of a particle and its antiparticle. In terms of relative precision, the most stringent

constraint on the CPT violation was achieved on the neutral kaon system [12]∣∣∣∣m(K◦)−m(K
◦
)

mK

∣∣∣∣ < 6× 10−19 at 90% C.L. (3.74)

The bound on the K◦ −K
◦
system seems so strong that there is very little room for

CPT violation. However, it is pointed out in Ref. [27] that this may be misleading.

The terms that appear in the Lagrangian and Einstein’s mass-energy relation are mass

squared instead of mass itself. In terms of mass squared difference, the bound in

Eq.(3.74) becomes much weaker

|m2(K◦)−m2(K
◦
)| < 0.3 eV 2. (3.75)

From neutrino oscillation experiments, the mass-squared differences of neutrinos have

been measured to be of order O(10−3) eV2 and O(10−5) eV2 [97]. We can see that

in terms of the mass-squared difference, measurements on neutrino provide the best

limit on the CPT violation but not neutral kaon [26, 27]. It is worth noting that the

neutrino mass spectrum cannot be calculated solely from neutrino oscillations, but

must be combined with cosmological constraints and beta decay, as recently discussed

in Ref. [7]. Neutrinos, unlike neutral kaon mesons, are neutral elementary particles
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and it is intriguing that this particle could be a Majorana particle, where neutrino

and antineutrino are indistinguishable in the conventional sense of the CPT invariant

paradigm. The neutrino nature under the CPT-violating scenario has been explored

in Ref. [98]. Here we focus on the phenomenological consequence of the CPT violation

in the observable neutrino oscillation.

In context of three-flavor PMNS framework [29, 99], neutrino oscillation is de-

scribed by an unitary 3×3 matrix with six oscillation parameters including three mixing

angles θ12, θ13, θ23, one Dirac phase δ, and two mass squared differences ∆m2
21, ∆m

2
31.

Under CPT symmetry, the oscillation probabilities of neutrino and antineutrino are re-

lated as follows:

P (να → νβ)
CPT−−−→ P (νβ → να) = P (να → νβ). (3.76)

Although the T2K result is expected as a hint of CP violation [18], this is,

however, with the assumption of CPT conservation. There is a CP-conserving CPT-

violating scenario that can also explain the observation at T2K [100]. It is also stressed

in Ref. [100] that before we can make a certain claim about CP violation at any level, we

must rule out the CPT violation possibility at the same level first. If CPT is violated,

the two sets of parameters are different for neutrinos and antineutrinos. Let’s assume

P (να → νβ) = f(θ12, θ13, θ23, δ, ∆m
2
21, ∆m

2
31), (3.77)

for neutrino, and

P (να → νβ) = f(θ12, θ13, θ23, δ, ∆m
2
21, ∆m

2
31), (3.78)

for antineutrino. The differences between the parameters of the two sets indicate CPT

violation in the lepton sector. The CPT violation was triggered to explain the anomaly

in the short-baseline neutrino experiment, in Ref. [27]. It is provided in Ref. [100] the

most recent update at 3σ on the bounds of CPT violation with neutrino experiment

analysis.

|δνν(sin2 θ12)| < 0.14,

|δνν(sin2 θ13)| < 0.029,

|δνν(sin2 θ23)| < 0.19, (3.79)

|δνν(∆m2
21)| < 4.7× 10−5 eV 2,

|δνν(∆m2
31)| < 2.5× 10−4 eV 2,

where |δνν(X)| = |X − X| for the X oscillation parameter. The future long baseline

neutrino oscillation experiment DUNE may exclude CPT conservation at 3σ C. L.

and improve the bound on δνν(∆m
2
31) to at least one order compared to its current

value [101]

|δνν(∆m2
31)| < 8.1× 10−5 eV 2 at 3σ C. L. (3.80)
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Figure 3.9: CPT asymmetries in disappearance channels at T2K baseline L = 295 km (left) and

NOνA baseline L = 810 km (right). The differences in solid lines and dashed lines indicate extrinsic

CPT effect caused by matter.

The difference in oscillation probabilities of neutrino and antineutrino can be

evaluated as the CPT asymmetry

ACPT
αβ = P (να → νβ)− P (νβ → να). (3.81)

The asymmetry ACPT
αβ in Eq. (3.81) may consist of two parts: intrinsic or true CPT

asymmetry and extrinsic or fake CPT asymmetry caused by matter effect [102] [103]

[104] [105] [106]. Fig. 3.9 demonstrates the CPT asymmetries in disappearance chan-

nels at T2K baseline (L = 295 km) and NOνA baseline (L = 810 km). The differences

in solid lines and dashed lines indicate extrinsic CPT effect caused by matter. We can

see from the plots that the matter effect is very small in disappearance channels. The

extrinsic CPT asymmetry, therefore, can be neglected in the disappearance measure-

ments. Current long-baseline neutrino oscillation experiments such as T2K and NOνA

focus on four channels, including two appearance channels (νµ → νe, νµ → νe), and

two disappearance channels (νµ → νµ, νµ → νµ). It can be seen from Eq. (3.81) that

T2K and NOνA alone can test CPT invariance via their measurements of the disap-

pearance channels which are sensitive to the atmospheric parameters ∆m2
31,∆m

2
31, θ23,

and θ23. These experiments, therefore, are sensitive to the CPT asymmetric quantities

ACPT
µµ (sin2 θ23) and ACPT

µµ (∆m2
31).

In this section, we will investigate the possibility of testing CPT invariance with

T2K and with the synergy of T2K-II, NOνA-II, and JUNO experiments. In which we

focus only on the disappearance channels of T2K, T2K-II, and NOνA-II. Constraint

on ∆m2
31 from JUNO experiment can help to improve the sensitivity. We will show

that the current T2K data indicates no CPT violation, while the combined analysis of

T2K-II, NOνA-II, and JUNO can achieve the sensitivity levels of DUNE even before

its starting by 2028.
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3.4.2 GLoBES setup for simulating T2K-II, NOvA-II, and JUNO exper-

iments

GLoBES [86, 87] is a flexible framework to simulate neutrino experiments. By

default, GLoBES assumes that CPT symmetry holds. This means that the framework

sets identical definitions and values of the oscillation parameters for neutrinos and anti-

neutrinos in Eq. (3.77) and Eq. (3.78). We can modify or update the software in order

to meet our needs or the realistic setup of the experiments. In our study, the oscillation

framework was modified to include oscillation parameters for antineutrinos. For the

oscillation probability formula, we follow Barger et. al. [107]. Neutrino (anti-neutrino)

oscillation in matter now depends on nine variables, including six parameters listed

in Eq. (3.77) for neutrino and Eq. (3.78) for antineutrino, as well as three additional

parameters Eν , L and ρ. Where Eν , L and ρ respectively represent neutrino energy,

distance travelled, and the matter density.

The similarity in configuration and operating principle of T2K and NOνA makes

it interesting for joint fit. Both experiments use intense muon (anti-)neutrino beams

created by accelerators to study oscillation phenomena. The off-axis technique can op-

timize the probabilities with a narrow-band beam of neutrinos at a defined low energy.

The ability to focus positive or negative particles (mainly pion and kaon) makes them

unique for operating in both neutrino-mode and anti-neutrino-mode. This important

feature enables the testing of CPT invariance in accelerator-based neutrino oscillation

experiments. JUNO [11] is a reactor-based medium baseline neutrino oscillation exper-

iment which studies electron antineutrino disappearance (νe → νe). The experiment

uses electron anti-neutrino flux produced from nuclear reactors to study neutrino os-

cillation. With rich statistics, advanced improvements in electronics and calibration

system, JUNO is able to reach energy resolution below 3% and better than 0.5% preci-

sion on sin2 θ12, ∆m
2
21 and |∆m2

31| [108]. It also can break neutrino mass hierarchy at

3σ after six years of operation, thus significantly contribute to the constraint on ∆m2
31.

We basically follow the GLoBES setup for T2K-II, NOνA-II, and JUNO in the

Ref. [80], which was described in detail in the Section 3.3.3, except for some modifica-

tions in T2K-II and JUNO. T2K is expected to operate until 2027, exposing 20× 1021

protons-on-target (POT) in original proposal [46]. According to the latest plan, the

statistics may be reduced to only one half of the primary plan [109]. We also updated

the T2K flux, which was released in 2020 [110]. For JUNO, a total thermal of 26.6

GWth [108] is used instead of 36 GWth as in the previous report. Also, as mentioned

above, the energy resolution is set at 2.9% [108] to reflect closely the JUNO’s prospect.

In our simulation, for T2K-II and NOνA-II, we used the disappearance channels only,

with statistics equally divided for ν mode and ν mode. For JUNO, νe disappearance

data is used. We assume neutrino masses are in normal ordering throughout the study

in Sec. 3.4.4. The studies are done with the values of nominal parameters listed in Ta-

ble 3.10, in which we follow the measurements of T2K [1] for atmospheric parameters
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Parameter Value

sin2 θ23 0.51

sin2 θ23 0.43

∆m2
31 2.55× 10−3eV2

∆m2
31 2.58× 10−3eV2

sin2 θ12, sin2 θ12 0.318

sin2 θ13, sin2 θ13 0.022

δ, δ 1.08π rad

∆m2
21, ∆m2

21 7.5× 10−5eV2

Table 3.10: Values of nominal parameters used for the study in Section 3.4, taken from Ref. [1] and

Ref. [2].

and global fit [2] for the rest.

The sensitivity to rule out CPT invariance hypothesis with δνν(X) for X pa-

rameter is explored. The χ2 of individual experiment is calculated for given true values

of X and X, where X can be sin2 θ23 or ∆m2
31. We use a GLoBES built-in χ2 func-

tion (equation 3.70) for T2K-II and NOνA-II, while an user-defined formula is used

for JUNO (equation 3.71) as mentioned in the previous section. The calculation of

χ2 is then minimized over the nuisance parameters except for X and X. The two-

dimensional distributions of ∆χ2 which is the sum of all individual ones of the three

experiments, are obtained (see Fig. 3.13). The minimum of ∆χ2 as a function of δνν(X)

is then found. The statistical significance of excluding CPT conservation is expressed

as the squared root of the minimum joint ∆χ2.

3.4.3 Testing CPT invariance with T2K experiment

In 2017, T2K announced its measurements on θ23 and ∆m2
23 using 1.5 × 1021

POT [111] [112] in both neutrino mode (7.482 × 1020 POT) and antineutrino mode

(7.471× 1020 POT)

sin2(θ23) = 0.51+0.08
−0.07 ν mode,

sin2(θ23) = 0.42+0.25
−0.07 ν mode, (3.82)

∆m2
32 = 2.53+0.15

−0.13 × 10−3 eV2 ν mode,

∆m2
32 = 2.55+0.33

−0.27 × 10−3 eV2 ν mode.

In this analysis, νµ and νµ oscillations are treated independently such that θ23 ̸= θ23

and ∆m2
32 ̸= ∆m2

32 while keeping other parameters the same. An updated analysis

using 3.13 × 1021 POT was done in Ref. [1]. This update analyzes disappearance

channels using 1.49×1021 POT in neutrino mode and 1.64×1021 POT in antineutrino
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mode with assuming normal mass hierarchy (NH).

sin2(θ23) = 0.51+0.06
−0.07 ν mode,

sin2(θ23) = 0.43+0.21
−0.05 ν mode, (3.83)

∆m2
32 = 2.47+0.08

−0.09 × 10−3 eV2 ν mode,

∆m2
32 = 2.50+0.18

−0.13 × 10−3 eV2 ν mode.

For NH of neutrinos, we have ∆m2
31 = ∆m2

32 + ∆m2
21. From equation (3.83),

we can derive the values of ∆m2
31 and ∆m2

31 as follows:

∆m2
31 = 2.55+0.08

−0.09 × 10−3 eV2 ν mode, (3.84)

∆m2
31 = 2.58+0.18

−0.13 × 10−3 eV2 ν mode.

The following results are done with GLoBES simulation using 3.13×1021 POT.

Fig. 3.10 shows the distributions of ∆χ2 as a function of ∆m2
31 (left) and sin2 θ23

(right). The νµ parameters (red lines) and νµ parameters (blue lines) are treated

independently. The right plot shows that the antineutrino mode of current T2K data

alone can not resolve the θ23 octant degeneracy. Fig. 3.11 represents 3σ region of ∆χ2

values of ∆m2
31 versus ∆m2

31 (left) and sin2 θ23 versus sin2 θ23 (right). The red points

represent T2K best fits, which are listed in Table 3.10. The statistical significance to

exclude CPT conservation hypothesis is shown in Fig. 3.12 in terms of σ values versus

δνν(∆m
2
31) (left) and δνν(sin

2 θ23) (right). The results show no CPT violation signature

with current T2K data. The expression (3.85) summarizes the CPT violation bounds

at 3σ C. L. with |δνν(∆m2
31)| and |δνν(sin2 θ23)|

|δνν(∆m2
31)| < 6.35× 10−4eV 2, (3.85)

|δνν(sin2 θ23)| < 0.19.

3.4.4 Sensitivity to CPT violation with a joint fit of T2K-II, NOvA-II, and

JUNO

Bounds on CPT violation

In this study, assuming that CPT is exactly conserved, we estimate the expected

bound of the two sensitive parameters, asymmetry in the mass-squared differences

δνν(∆m
2
31) and asymmetry in the leptonic mixing angles δνν(sin

2 θ23), on the possible

CPT violation. In particular, ∆m2
31 = ∆m2

31 = 2.55 × 10−3 eV2 and sin2 θ23 =

sin2 θ23 = 0.51, which are the T2K’s best-fit points with recent measurement [1], are

assumed to be true. To compute the allowed region of the δνν(∆m
2
31) and δνν(sin

2 θ23)

parameters, we build up the χ2 profiles on a two-dimensional grid points of neutrino

and anti-neutrino corresponding parameters (∆m2
31, ∆m2

31) and (sin2 θ23, sin2 θ23),

respectively. The χ2 profiles take into account the correlations among the oscillation
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Figure 3.10: The distributions of ∆χ2 as a function of ∆m2
31 (left) and sin2 θ23 (right). The ∆χ2

functions are treated independently for νµ parameters (red lines) and νµ parameters (blue lines). The
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3σ C. L. upper limits

Experiments |δνν(∆m2
31)| |δνν(sin2 θ23)|

T2K-II 2.0× 10−4 eV2 0.14

T2K-II+NOνA-II 1.2× 10−4 eV2 0.10

T2K-II+NOνA-II+JUNO 5.3× 10−5 eV2 0.10

Table 3.11: The bounds on CPT violation with atmospheric mass-squared difference and mixing

angle at 3σ C. L. for three analyses: T2K-II only, a joint of T2K-II and NOνA-II, a joint of T2K-II,

NOνA-II, and JUNO.

parameters. The ∆χ2 profiles are attained by subtracting to the minimum value of the

according χ2, which is essentially located at the true values.

Fig. 3.13 shows 3σ C. L. allowed regions of pairs of parameters (∆m2
31, ∆m

2
31)

and (sin2 θ23, sin2 θ23) under the assumption that CPT is conserved. Three dif-

ferent analyses are presented: (i) T2K-II only, (ii) a joint of T2K-II and NOνA-

II, and (iii) a joint of T2K-II, NOνA-II, and JUNO. It is expected that a joint

analysis of T2K-II and NOνA-II improves significantly the precision of four involved

(∆m2
31, ∆m2

31, sin2 θ23, sin2 θ23) parameters while JUNO mainly contribute to the

precision of ∆m2
31.

To answer for the question about the allowed parameter magnitudes in the mass-

squared difference δνν(∆m
2
31) and the leptonic mixing angle δνν(sin

2 θ23), projections

of ∆χ2 profiles on these two variables are constructed and depicted in Fig. 3.14. The

upper limits of these two CPT-sensitive variables at 3σ C. L. are extracted and sum-

marized in Table 3.11. With total exposure of 10 × 1020 POT, T2K-II alone can set

more stringent limits on the CPT violation search, if it will be not found, both with

atmospheric mass-squared splitting |δνν(∆m2
31)| ≤ 2.0× 10−4 eV2 and leptonic mixing

angles δνν(sin
2 θ23) ≤ 0.14, than the combined data of current neutrino experiments.

By adding NOνA-II, the 3σ C. L. limit on |δνν(sin2 θ23)| for CPT violation is reduced

to 0.10, a 47% improvement over the current limit. Meanwhile, if no evidence of CPT

violation is found, the potential bound on |δνν(∆m2
31)| at 3σ C. L. will be expected to

be 5.3 × 10−5 eV2 for the combined analysis of the three experiments. This prospec-

tive bound on the possible CPT violation search is slightly better than the DUNE

sensitivity [101], |δνν(∆m2
31)| < 8.1× 10−5 eV2 at 3σ C. L.

Sensitivities to CPT violation

Apparently if the analyses with real data shows the asymmetries of |δνν(∆m2
31)|

or |δνν(sin2 θ23)| larger than the corresponding upper limits presented in Table 3.11, it

would imply the CPT violation in the lepton sector. However, one raised question is

whether these anticipated limits are affected by the true values of the underlying param-

eters, which can fluctuate from the current best-fit values. To investigate this issue, we

performed the full joint analysis of T2K-II, NOνA-II, and JUNO under various assump-

tions of the involved parameters. In particular, for the potential effect on δνν(∆m
2
31), we
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∆m2
31 [eV2]

Shared values of sin2 θ23, sin2 θ23

0.44 0.51 0.57

2.46× 10−3 5.96× 10−5 5.36× 10−5 5.80× 10−5

2.55× 10−3 5.95× 10−5 5.39× 10−5 5.77× 10−5

2.63× 10−3 5.99× 10−5 5.46× 10−5 5.79× 10−5

δνν(∆m2
31) limit to exclude CPT at 3 σ C. L.

Table 3.12: Lower limits for the true |δνν(∆m2
31)| amplitude to exclude CPT at 3σ C. L. are computed

at different true values of the involved parameters.

examine the CPT sensitivity at three points (2.46×10−3, 2.55×10−3, 2.63×10−3eV2)

of ∆m2
31, taken as the T2K best-fit and ±1σ shifted values, in combination with a

variation of ∆m2
31 such that |δνν(∆m2

31)| < 0.15 × 10−3eV2. In this case of study,

sin2 θ23 = sin2 θ23 = 0.51 is assumed to be true. In addition, we check the sensitivities

of CPT violation on the δνν(∆m
2
31) parameter at three shared values (0.44, 0.51, 0.57)

of (sin2 θ23, sin2 θ23). For each case, the statistical significance to exclude the corre-

sponding form of the CPT invariance is extracted as function of δνν(∆m
2
31) and the

results are shown in Fig. 3.15. It is observed that the CPT violation sensitivity mani-

fested on the δνν(∆m
2
31) parameter depends marginally on the central value of ∆m2

31

and ∆m2
31 in the current allowed range of this parameter. Also the dependence of the

δνν(∆m
2
31) sensitivity on the true values of the mixing parameters (sin2 θ23, sin2 θ23)

is relatively small. Apparently, due to the octant degeneracy of (sin2 θ23, sin
2 θ23) pre-

sented in the disappearance probabilities of muon (anti-)neutrinos, the significance of

the CPT test is slightly worse than the case where (sin2 θ23, sin
2 θ23) is exactly equal

or near the maximal mixing. The lower limit of true δνν(∆m
2
31) amplitude to exclude

the CPT at 3σ C. L. or higher significance is presented in Table 3.12.

We find that if the amplitude of δνν(∆m
2
31) is greater than 6.0 × 10−5eV2 the

CPT invariance will be excluded at 3σ C. L. for almost the entire currently-allowed

range of the involved parameters. The range of possible δνν(∆m
2
31) asymmetry to

be explored significantly is slightly extended ([5.36, 5.46] × 10−5eV2) if the mixing

angle is near the maximal mixing. Due to the aforementioned octant degeneracy of

the (anti-)neutrino oscillation probabilities in the disappearance samples, the ampli-

tude of δνν(∆m
2
31) must be moderately greater ([5.77, 5.99] × 10−5eV2) for attaining

a same level of significance to exclude the CPT invariance. To see how impressive

the improvement in the CPT test sensitivity from this three-experiment combined

analysis is, we project the statistical significance from the current measurements. Ta-

ble 3.13 summarize the measurements of the (∆m2
31, ∆m

2
31, θ23, θ23) parameters with

the first generation of the A-LBL experiment MINOS [3, 4], on-going second gener-

ation T2K [1], NOνA [5], and precise constraint of the ∆m2
31 parameter from the

R-SBL experiment Daya Bay [6]. From the Table 3.13, we see that the difference in

mass-squared splitting at the best-fit values of (∆m2
31, ∆m2

31) measured by T2K [1]
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MINOS(+) T2K NOνA Daya Bay

∆m2
31/10

−3eV2 2.48+0.08
−0.09 2.55+0.08

−0.09 2.56+0.07
−0.09 -

∆m2
31/10

−3eV2 2.55+0.23
−0.25 2.58+0.18

−0.13 2.63+0.12
−0.13 2.53+0.06

−0.06

sin2 θ23 0.43+0.20
−0.04 0.51+0.06

−0.07 0.51+0.06
−0.06 -

sin2 θ23 0.41+0.05
−0.08 0.43+0.21

−0.05 0.41+0.04
−0.03 -

Table 3.13: Measurements of the (∆m2
31, ∆m2

31, θ23, θ23) parameters, which govern the muon neutrino

and muon antineutrino disappearances, from different experiments: MINOS(+) [3,4], T2K [1], NOνA

[5], Daya Bay [6]. Normal neutrino mass hierarchy is assumed.

is |δνν(∆m2
31)| = 3× 10−5eV2, well consistent within 1σ uncertainty of 20× 10−5eV2.

However, if this asymmetry persists as the true, it will correspond to 1.7σ C. L. exclu-

sion of CPT conservation by the combined analysis of T2K-II, NOνA-II, and JUNO. If

the level of asymmetrical δνν(∆m
2
31) in the neutrino and anti-neutrino best-fit values

of NOνA and MINOS(+), which is 7.0× 10−5 eV2, are assumed to be persisted as the

true, the synergy of the three experiments can exclude CPT conservation at 4σ C. L.

Regarding the sensitivity of δνν(sin
2 θ23) on the CPT test, we examine and find

that their dependence on the fluctuation of the (∆m2
31, ∆m

2
31) parameters is relatively

small while the dependence on the true value of (sin2 θ23, sin
2 θ23) is significant, as

shown in Fig. 3.16. When the true value of sin2 θ23 belongs to an octant, there ex-

ists a degenerated solution in the other octant. For example, when sin2 θ23=0.44, the

extrinsic CPT-invariant solution of sin2 θ23=0.58 (along with the genuine solution of

sin2 θ23=0.44). Similar behavior is observed when sin2 θ23 values in the higher octant.

The behavior is well-understood due to the dependence of muon (anti-) neutrino dis-

appearance probabilities on the sin2 2θ23 (sin2 2θ23) rather than sin2 θ23 (sin2 θ23). As

summarized in Table 3.14, to attain the same significance level to exclude the CPT,

compared to the maximal case sin2 θ23=0.51, the amplitude of true δνν(sin
2 θ23) asym-

metry in the non-maximal cases (sin2 θ23=0.44 and sin2 θ23=0.57) is required to be

larger or smaller depending on whether the θ23 and θ23 belong to the different or same

octants, respectively. In particular, for sin2 θ23=0.51 as indicated by both T2K [1] and

NOνA [5], the amplitude of δνν(sin
2 θ23) asymmetry must be between [0.076, 0.084] to

be discovered with 3σ C. L. T2K (NOνA) measured δνν(sin
2 θ23)=0.08 (0.10) respec-

tively, and if it remains as true the CPT invariance will be excluded at 3σ or higher C.

L. If θ23 and θ23 are in the same octant and relatively far off from the maximal values,

the amplitude of δνν(sin
2 θ23) must be greater than 0.051 in order to rule out CPT

invariance at 3σ C. L.. If θ23 and θ23 are in different octants, θ23 in lower octant and

θ23 in higher octant or vice versa, the amplitude of δνν(sin
2 θ23) must be significantly

higher, varying in the (0.165,0.190) range, to exclude CPT at the same 3σ statistical

significance. The sensitivity to detect CPT violation via the δνν(sin
2 θ23) asymmetry

is not good due to the aforementioned octant degeneracy in the muon (anti-) neu-

trino disappearance samples. The sensitivity can be improved by adding the electron
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Figure 3.16: Statistical significance to exclude CPT is computed as function of true δνν(sin
2 θ23)

under various scenarios of the involved parameters. The left is when sin2 θ23 is examined at three

different true values while ∆m2
31 = ∆m2

31 = 2.55× 10−3eV2 is assumed. The right presents the CPT

sensitivity of δνν(sin
2 θ23) at different true values of ∆m2

31 and ∆m2
31 while sin2 θ23 = 0.51 is assumed

to be true.
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Figure 3.17: Statistical significance to exclude CPT is computed as a function of true δνν(sin
2 θ23)

under various scenarios of the involved parameters. Both muon (anti-)neutrino disappearance samples

and electron (anti-)neutrino appearance samples from T2K-II and NOνA-II are used. The sensitivity

is examined at three different true values of sin2 θ23 values while ∆m2
31 = ∆m2

31 = 2.55× 10−3eV2 is

assumed to be true.

sin2 θ23
Shared values of ∆m2

31, ∆m2
31 [eV2]

2.46× 10−3 2.55× 10−3 2.63× 10−3

0.44 -0.051 (+0.190) -0.049 (+0.187) -0.048 (+0.186)

0.51 -0.084 (+0.082) -0.080 (+0.078) -0.078 (+0.076)

0.57 -0.169 (+0.047) -0.166 (+0.044) -0.165 (+0.043)

δνν(sin
2 θ23) limit to exclude CPT at 3 σ C. L.

Table 3.14: Lower limits for the true |δνν(sin2 θ23)| amplitude to exclude CPT at 3σ C. L. are

computed at different true values of involved parameters. The -(+) signs in each cell correspond to

the negative (positive) value of δνν(sin
2 θ23).
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(anti-)neutrino appearance samples from the A-LBL experiments. Fig. 3.17 shows the

sensitivity of δνν(sin
2 θ23) on the CPT exclusion with a combination of both disappear-

ance and appearance samples. It is observed that by adding the electron (anti-)neutrino

appearance samples, the statistical significance to exclude the extrinsic CPT-invariant

solution is enhanced notably. Consequently, the sensitivity of δνν(sin
2 θ23) to the CPT

violation has improved. However, one must consider carefully when adding the electron

(anti-)neutrino appearance samples. The reason is that the probabilities of νe(νe) from

νµ(νµ) depend not only on θ23(θ23) but also on two known unknowns, CP-violating

phase and mass hierarchy, which will complicate the interpretation of the experimental

observation.
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Conclusions

In the thesis, we have presented the simulations and measurements in the T2K

experiment that we have directly contributed. The results come into two main parts,

neutrino beam profile study at INGRID, and testing CP and CPT invariances with

T2K and with the combined analysis of T2K-II, NOvA-II, and JUNO.

We presented our MC study and the measurements at the INGRID detector for

different horn configurations in the Chapter 2. Our study shows that the event rates,

neutrino beam directions, and beam widths are stable and in good agreement between

the MC study and the data of T2K run 10. We also showed the MC study at INGRID

with a 320 kA horn configuration, which can be tested with future data of T2K.

In the Appendix A, we showed some preliminary results of the neutrino cross

section measurements at WAGASCI BabyMIND experiment which we have currently

involved in the analysis.

In Chapter 3, the CP and CPT violation searches with the T2K experiment are

presented. The current data of T2K rules out CP conserving hypothesis at more than

95%. With T2K data only, the CP violating phase δCP is measured to be −2.14+0.90
−0.69

in case of normal mass ordering and −1.26+0.61
−0.69 in case of inverted mass ordering.

When T2K is combined with short baseline reactor experiments, the best fits and best

fits ±1σ values of δCP are −1.89+0.70
−0.58 for normal ordering and −1.38+0.48

−0.55 for inverted

ordering. We also show that if T2K-II data is combined with NOvA-II and JUNO

experiments, we will be able to discover CP violation at around 5σ C. L. by 2028.

The study shows there is no signature of CPT violation with current data of

T2K. The synergy of T2K-II, NOvA-II, and JUNO will improve the sensitivity and

bounds on CPT violation to unprecedented levels of precision. If the recent T2K

(NOνA) results on mass squared splittings (∆m2
31, ∆m

2
31) and mixing angles (θ23, θ23)

are presumed to be true values, the combined data of the three experiments is able to

exclude CPT symmetry at 1.7σ (4σ) and 3σ (4σ) C. L., respectively. By 2028, before

the next generation neutrino experiments DUNE and Hyper-K begin their operations,

the synergy of T2K-II, NOνA-II and JUNO can improve the bound on |δ(∆m2
31)| to the

world’s best value, 5.3×10−5eV 2 at 3σ C. L. The sensitivity to CPT violation basically

does not depend on the true values of ∆m2
31 and ∆m2

31, and the θ23 octant degeneracy.

The mixing angle CPT violation sensitivity, otherwise significantly depends on the true

values of θ23 and θ23 as well as their differences.

Next step, we will try to make a real data fit with T2K, NOvA, and MINOS.

Also, a preliminary study of the Hyper-K sensitivity shows that it will provide the best

constraint on CPT violation ever. We will make more investigation on this exciting

study.
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Appendix A. Neutrino cross section measurements

at WAGASCI BabyMIND

In the T2K analysis, large sources of systematic uncertainty come from flux and

cross section model, which are strongly constrained by the near detector measurements.

The large cross section uncertainty is mainly caused by the difference in the target

material between the near and far detectors, and by the limited acceptance of ND280

as well. The target material of the ND280 detector is mostly hydrocarbons (CH), while

the Super-K detector is water (H2O). In order to reduce this systematic error, the new

water grid scintillator detector (WAGASCI) is constructed at the B2 floor of the J-

PARC neutrino hall at 1.5◦ off-axis angle. The primary goals of WAGASCI-BabyMIND

are

• to measure the charge current cross section ratio between water and scintillator

targets with 3% accuracy.

• to measure different charged current neutrino interaction channels with high

precision and large acceptance.

In this section, we will present the current status and recent measurements of

neutrino cross sections on water and on hydrocarbons by using WAGASCI-BabyMIND

detectors.

A.0.1 WAGASCI BabyMIND

The WAGASCI BabyMIND consists of several modules classified into the central

detectors and muon range detector (MRD). Fig. A.1 left shows the configuration

of the WAGASCI modules. Along the neutrino flux direction, the central part is

three neutrino interaction targets including water-out WAGASCI, Proton Module, and

water-in WAGASCI detectors. These detectors are surrounded by two Wall-MRDs and

one downstream muon range detector called Baby MIND.

WAGASCI detectors

The WAGASCI central module includes two sub-detectors which are mainly

made from plastic scintillators. The total of 1280 plastic scintillator bars are con-

structed in a hollow cuboid lattice structure which can have 4π angular acceptance

for charged particles as illustrated in Fig. A.2. Scintillator bars are fixed in plane

with 40 parallel bars which are perpendicular to the beam and another 40 lattice bars

which are parallel to the beam. One WAGASCI detector consists of 16 scintillator

tracking planes. The whole structure is protected by a stainless steel tank of size

460mm×1250mm×1250 mm, and weighs 0.5 tonne (Fig. A.3 left). Each plastic scin-

tillator bar used in the WAGASCI experiment has a size of 1020mm×25mm×3 mm.
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The scintillators are made from polystyrene material and covered by a thin reflector

which is made from TiO2. The bars in which one half of them have slits every 50mm

cross each other to form the 3-D grid structure of the detector (Fig. A.2). The WA-

GASCI module can operate with two conditions. The water-in option is the condition

in which the detector is fully filled with pure water. In this case, the water mass inside

fiducical volume is 188 kg and is equal to 80% of the total target mass. The 20% left

is the mass of scintillator. The water-out WAGASCI module doesn’t have water inside

the detector. The water-out detector has a total mass of 47 kg and it is 100% of the

scintillator.

The signal produced by neutrino interaction with the target is collected by Y-

11 wave length shifting fibers. The fibers are gathered in groups of 32 fibers each and

read-out by 32-channel MPPC array (S13660(ES1)) produced by Hamamatsu company.

Proton module

The INGRID proton module is installed between two WAGASCI modules (see

Fig. A.1) on the B2 floor of the T2K near detector hall. It is a fully-active neutrino

detector developed by T2K to measure neutrino cross section with a 100% scintillator

target. Fig. A.3 right illustrates the schematic view of the proton podule. The total

mass of the hydrocarbon target inside the fiducial volume is 302 kg. The module is

surrounded by veto planes to prevent wrong sign signals coming from outside detec-

tors. The main part of the detector is assembled from 36 tracking planes, which are

made from two types of scintillator strips. The inner region has 16 strips with dimen-

sions of 25mm×13mm×1200mm. The outer region has 16 strips with dimensions of

50mm×10mm×1200mm. The signals in the form of scintillation lights are guided by

wave length shifting fibers and read out by MPPCs as for the WAGASCI modules.

Wall-MRD detectors

There are two Wall-MRD modules, which are on the left side and on the right

side of the central WAGASCI module. They are used for muon identification and

muon momenta measurements. One module is composed of 11 steel plates and 10

plastic scintillator layers, with a total weight of about 8.5 tons. Each steel plate has

a size of 1610 mm × 1800 mm × 30 mm. Each scintillator layer consists of eight

scintillator bars, in which every bar has a size of 200 mm × 1800 mm × 7 mm (Fig.

A.4 right). The wavelength shifting fibers and the MPPC readout are the same as for

WAGASCI detectors and the INGRID proton module.

Baby MIND detector

Baby MIND is a downstream muon range detector which also works as a magnet

with a minimum magnetic field of 1.5 T (Fig. A.5 (left)). It is a magnetized iron

neutrino detector used to measure muon momentum and charge identification. The

(anti-)muons produced by neutrino interactions with the WAGASCI targets will be
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Figure A.1: Left: The configuration of WAGASCI-BabyMIND detectors; Right: The flux at WA-

GASCI (1.5o off-axis, red line) and ND280 (2.5o off-axis, back line).

Figure A.2: The 3D grid structure of the plastic scintillator bars.

Figure A.3: WAGASCI module (left) and Proton Module (right).
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Figure A.4: Wall-MRD module (left) and scintillator bar of the module (right).

Figure A.5: Magnetic field inside the magnet module (left) and scintillator module (right) of Baby

MIND.

bent in curvatures by the magnetic field in opposite directions and therefore can be

identified very precisely. The detector consists of 33 magnet modules and 18 scintillator

planes. Each magnet module has one 30 mm thick iron plate and weighs 2 tons. The

total size of one magnet module is 3500 mm × 2000 mm × 50 mm. On one half of the

scintillator module there are 95 horizontal bars of size 3000 mm × 31 mm × 7.5 mm

each and 8 vertical bars of size 1950 mm × 210 mm × 7.5 mm each (Fig. A.5 (right)).

The wavelength shifting fibers and the MPPC readout are same as for WAGASCI

detectors and the INGRID proton module. There are two YASU trakers which have

recently been integrated into the upstream part of the Baby MIND module to detect

low momentum muons.

A.0.2 Neutrino-nucleus interaction cross section models

The neutrino-nucleus interaction cross section is predicted by NEUT, which is

a Monte Carlo simulation package officially used in the T2K experiment to simulate

neutrino-nucleus and nucleon interactions in a wide range of energy from MeV to TeV.

The neutrino interaction with matter depends on its energy.
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Quasi-elastic scatterings

At low energy region (below 1 GeV), quasi-elastic scattering processes dominate:

+ Charged current (CCQE):

νl + n→ l− + p, (A.1)

ν̄l + p→ l+ + n. (A.2)

+ Neutral current (NCQE):

νl +N → νl +N, (A.3)

ν̄l +N → ν̄ +N. (A.4)

in which l is charged lepton and N is nucleon (proton p or neutron n). In NEUT,

CCQE process is modeled by Llewellyn-Smith [113] or Nieves 1p1h [114].

Single meson (π, γ,K, η) production via baryon resonances

At a few GeV, a neutrino is able to excite the nucleus to a baryon resonant state

and consequently produce a meson. The dominating process is via ∆(1232) resonance:

+ CC1π:

νl +N → l− +∆ → l− +N ′ + π, (A.5)

ν̄l +N → l+ +∆ → l+ +N ′ + π. (A.6)

+ NC1π:

νl +N → νl +∆ → νl +N ′ + π, (A.7)

ν̄l +N → ν̄l +∆ → ν̄l +N ′ + π. (A.8)

There are 14 reactions of this kind (6 for CC1π and 8 for NC1π). These processes

were considered by Rein-Sehgal [115] with the assumption that lepton mass ml = 0. In

this model, the resonance region is up to 2 GeV in terms of the relativistic quark model

of Feynman, Kislinger and Ravndal (FKR model [116]). Experimental data indicates

that the Rein-Sehgal model overestimates the cross section in the lowQ2 region. Recent

Graczyk-Sobczyk model [117] has been used since NEUT 5.3.2. In this model Graczyk

and Sobczyk used the same hadronic current as in the Rein-Sehgal model and included

additional correction from ml ̸= 0 effects by appropriate substituting hadronic weak

current matrix elements and adding a new term in the axial current based on partially

conserved axial vector current (PCAC) theorem [118] .

Coherent pion productions

In addition to the above resonant processes in this medium energy range, neu-

trinos can interact coherently with nucleus A, producing pion and leaving the nucleus

unchanged in the final state. This is known as coherent pion production process

+ CCcoh1π:

νl + A→ l− + A+ π+, (A.9)

ν̄l + A→ l+ + A+ π−, (A.10)
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T2K run Period Accumulated POT

Run 10 November to December 2019 2.65 ×1020 POT

Run 10 January to February 2020 2.12 ×1020 POT

Run 11 March to April 2021 1.78 ×1020 POT

Table A.1: Summary of data taking at WAGASCI-BabyMIND.

+NCcoh1π:

νl + A→ νl + A+ π0, (A.11)

ν̄l + A→ ν̄l + A+ π0. (A.12)

There are some models describing these processes, including PCAC based mod-

els and microscopic models. In this essay, we will present in detail the PCAC based

models of Rein-Sehgal [119], [120] and Berger-Sehgal [121], which describe the early

high energy data connection between coherent reaction and π elastic scattering with

target nucleus. These models, however, overestimate at low energy, so they need to

be implemented with corrections to fit the data. The Rein-Sehgal model assumes the

collision is forward-scattering (small scattering angle of out-going lepton) and takes

an approximation of ml = 0 and Q2 = 0. The Berger-Sehgal model is an updated

version of Rein-Sehgal model in order to valid for all Q2 values. The total cross sec-

tion predicted by the Berger-Sehgal model is reduced by a factor of 2 compared to

the Rein-Sehgal model. The Berger-Sehgal model is implemented in NEUT since the

version v5.4.0.

Deep inelastic scatterings

At a high energy of above 5GeV, the interaction is dominated by deep inelastic

scattering (DIS) processes. In these processes, neutrino has enough energy to enter

inside nucleus, interacts with quarks and produces hadrons in the final states:

+ CCDIS:

νl +N → l− +N ′ + hadrons,

ν̄l +N → l+ +N ′ + hadrons. (A.13)

+ NCDIS:

νl +N → νl +N ′ + hadrons,

ν̄l +N → ν̄l +N ′ + hadrons. (A.14)

A.0.3 Data set

WAGASCI-BabyMIND has started taking date since 2019. It collected 6.55 ×
1020 POT in total. The accumulated data is summarized in Table A.1

A.0.4 Monte Carlo simulation

The simulation process is similar to INGRID. First, neutrino beam flux at B2



vii

floor is simulated by JNUBEAM. Then the interactions between neutrinos and target

materials are described by NEUT. Finally, a GEANT4-based package will simulate the

detector response.

In our study we focus on the analysis of CC1π interaction which contains one

pion in the final state. The interaction can be CC1π resonance or CC1π coherent

(Eq.(A.5) and Eq.(A.9)). We can see that a CC1π event has at least two tracks,

including muon track and the pion track. An event is defined as signal if vertex of

the interaction is in a target detector (called vertex detector) and the vertex has

more than two tracks, in which at least one track matches with other modules. There

are three vertex detectors, including upstream wagasci (UWG), downstream wagasci

(DWG), and Proton Module (PM), and three muon range detectors (called Wall-MRD)

including North-MRD, South-MRD, and BabyMIND. In this study, we generated 984

MC files of muon neutrino and antineutrino beams in which each MC file is equivalent

to 1021 POT. The MC fake data is then normalized to 5×1020 POT. The event selection

follows similar steps as for the INGRID study in the section 2.2:

1. Time clustering: The signal is collected by scintillators, transmitted by

WLS (wavelength shifting) fibers and detected by MPPCs. The signal is detected in

terms of ADC counts or number of PE. Channels with ADC signals larger than 2.5 PE

are defined as hits. A cluster is formed if there are more than three hits in which the

difference between any two adjacent hits is less than 100 ns.

2. Two dimensional track reconstruction: The tracks in the XZ and YZ

planes (see Fig. A.6 for coordinate system definition) are reconstructed by using the

“cellular automaton” algorithm, which is described in Fig. 2.9 and Section 2.2.2.

3. Three-dimensional track reconstruction: The tracks are matched from

vertex detector to BabyMIND or Wall-MRDs. The algorithm looks for clusters in either

BabyMIND or WallMRD, then matches them with clusters in vertex detectors under

matching conditions. Matching conditions are mainly divided into two parts: the angle

between two clusters (see Table A.2), and the position difference between a cluster in an

upstream detector and a cluster in a downstream detector (see Table A.3). If an event

has clusters that satisfy matching conditions, it will proceed with three-dimensional

track matching. The algorithm ensures that there is at least one pair of track matching

in both views. It will check if both upstream edge position differences and downstream

edge position differences satisfy a three-dimensional matching condition shown in Table

A.4.

4. Vertexing: The vertex in the target detector will be reconstructed after

three-dimensional track matching is finished. The positions of vertexes X and Y are

taken from the start positions of the three-dimensional matching track, while the po-

sition of vertex Z is the minimum value of matching tracks in both views. Assume

∆Z and ∆XY respectively are differences in positions of Z vertex and X/Y vertexes
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Upstream detector Downstream detector View Threshold angle (◦)

Vertex detector BabyMIND XZ 30

Vertex detector BabyMIND YZ 25

Vertex detector WallMRD XZ 25

Vertex detector Vertex detector XZ and YZ 25

Table A.2: Threshold angles for matching tracks between detectors.

Upstream detector Downstream detector View Threshold distance (mm)

UWG BabyMIND XZ 300

PM and DWG BabyMIND XZ 300

UWG BabyMIND YZ 300

PM and DWG BabyMIND YZ 250

Vertex detector WallMRD XZ 500

UWG PM XZ and YZ 200

UWG DWG XZ and YZ 300

PM DWG XZ and YZ 200

Table A.3: Threshold distancs for matching tracks between detectors.

Detector Threshold distance (mm)

Upstream edge vertex detector 150

Downstream edge vertex detector 200 (WallMRD) and 350 (BabyMIND)

Table A.4: Three dimensional track matching conditions.
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between clusters, the conditions for them to have the same vertex are

∆Z ≤ 80 mm, ∆XY ≤ 80 mm. (A.15)

5. Fiducial volume cut: The fiducial volume cut is applied to remove back-

grounds from outside detectors. The fiducial volume of a WAGASCI module is a cubic

volume dimension 400mm×400mm×150mm. For Proton Module the fiducial volume

is of dimension 500mm× 500mm× 300mm.

6. Charge identification and muon momentum determination: The

charge of a particle is defined by Baby MIND. The particle will be bent upward or

downward depending on its electric charge when it flies into the magnetic field region

of Baby MIND. Muon produced by neutrino interaction with target nuclei will travel

to Wall-MRD modules or Baby MIND. To select muon tracks and reject backgrounds

from neutral current events, the longest track is required to penetrate more than one

and five iron plates in Wall-MRD modules and Baby MIND, respectively. The muon

momentum is then determined by requiring the longest track to stop in Wall-MRD

modules or Baby MIND or penetrate all iron plates. The materials that the muon

may penetrate are iron, scintillator, and water with corresponding densitites: ρ =

7.874 g/cm3, ρ = 1.032 g/cm3, and ρ = 1.002 g/cm3. The energy loss is normalized

to iron by the density ratio of iron to scintillator and water. The reconstructed muon

momentum is calculated using the relationship between the mean energy loss rate in

iron and muon momentum as shown in Fig. A.7.

In the following plots, the vertex detector is Upstream WAGASCI. Fig. A.8

displays the matching tracks with sub-detectors which vertexes are in the fiducial vol-

ume. The left plots correspond to track distribution versus track angle, while the right

plots are versus track momentum. We can see that the track matching with Proton

Module is less than 80◦, while matching with Downstream WAGASCI or BabyMIND

is less than 40◦. The angles of track matching with Wall-MRD are mostly between 20◦

and 80◦. For momentum distribution, we can see the energy peaks at Proton Module,

Downstream WAGASCI, and BabyMIND are around 1 GeV, while at Wall-MRD they

are around 0.5 GeV.

A.0.5 Conclusion

The section has provided a description of the WAGASCI BabyMIND experi-

ment, neutrino cross section models, and how the cross section is measured at WA-

GASCI BabyMIND. The preliminary result is reported with 5 × 1020 POT, which is

equivalent to the data taken in T2K run 10 with 4.77× 1020 POT.
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Figure A.6: Definition of XYZ coordinate system at WAGASCI-BabyMIND experiment. Z axis

is along the neutrino beam, Y axis is perpendicular to the ground and pointed upward, X axis is

perpendicular to both Y and Z axis.

Figure A.7: Mean energy loss rate in liquid (bubble chamber) hydrogen, gaseous helium, carbon,

aluminum, iron, tin, and lead. The plot is taken from Ref. [12].
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Figure A.8: Matching tracks with sub-detectors which vertexes are in the fiducial volume of upstream

WAGASCI, left: versus track angle, right: versus track momentum.
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