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INTRODUCTION 

 In previous studies, most of the works focused on developing 

energy-harvesting devices based on linear resonance effects. However, the 

efficiency of the linear piezoelectric energy harvesting system (PEHs) is 

limited to a very narrow band around the resonant frequency. Any 

deviation of the excitation frequency away from the resonance vicinity can 

lead to a drastic reduction in the amount of recovered power. Among the 

analytical methods, averaging method is one of the most effective and 

powerful techniques to analyze nonlinear phenomena in dynamic systems. 

Although the averaging method has long been used in mechanics. 

However, to the best of the Ph.D. student's knowledge, there is no 

published research to determine the analytic expressions of the device 

electromechanical response with a nonlinear one-degree-of-freedom 

model, under harmonic agitation, in different resonance effects when 

using averaging method. Developing theoretical research methods to 

analyze nonlinear electromechanical system responses, energy collection 

efficiency evaluation becomes a topic of scientific and practical 

significance.  

The objective of this thesis is to develop an average method for 

a nonlinear electromechanical system subjected to harmonic excitation 

with lumped mass model a one-degree-of-freedom of device harvests 

energy piezoelectric; from that result, applied to the mono-stable 

Duffing PEHs at nonlinear resonance effects including main, secondary 

resonance and linear respectively used to compare; The analy, surveys, 

and evaluate the influence of parameters on the amplitude-frequency 

relationship, the responses of the nonlinear electromechanical system, 

and the corresponding linear systems used for comparison. 

 Research object of the present thesis is a mono-stable Duffing 

PEHs subjected to harmonic excitation with lumped mass model a single-

degree-of-freedom of device harvests energy piezoelectric. 

 Scope of the present thesis studies the device harvests energy 

piezoelectric with a cantilever beam structure, beams fitted with 
piezoelectric layer on the entire upper and lower surfaces, cantilever 
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beams have no mass added at the free end, the research beam has a 

rectangular cross-section, the cantilever beam structure with two 
piezoelectric layers is subjected to harmonic excitation at the section 
adjacent to the mount end and on the basis of the Euler–Bernoulli beam 
theory, considering to the nonlinear strain-displacement relations. The 
structure of the research device can be simplified by considering only the 
first vibration mode is modeled as a lumped mass model a single-degree-

of-freedom subjected to harmonic excitation. 
Methodology used in this study is mainly the average method and 

combines the analyzed, surveyed, and evaluated by numerical 
accomplished in MATLAB code.   
Content of thesis consists of followings:  
Chapter 1 presents an overview of energy harvesting using piezoelectric 

materials and introduces the research content of the thesis. 
Chapter 2 presents the construction, setting, and determination of the 
electromechanical system of connection equations of the beam structure 
with two layers of piezoelectric materials, and the first vibration mode is 
modeled as a lumped mass model a single-degree of freedom of the mono-
stable Duffing-type subjected to a harmonic base excitation. 

Chapter 3 presents the content of developing the average method used for 
the mono-stable Duffing PEHs at nonlinears resonance effects different. 
Determining the expressions of the response of the electromechanical 
system the thesis studied the resonance effects with the nonlinear and 
linear systems respectively.  
Chapter 4 presents the analysis and evaluation of the influence of 

parameters on the responses of the electromechanical system the thesis 
studies in nonlinear resonance effects including primary and secondary 
resonance, and corresponding linearity for comparison using the Matlab 
software tool. 

Conclusion presents main results obtained in the thesis and subject of 
further study for the author. 

Novelty of results obtained in this thesis can be formulated as: 
1. On the basis of modeling a set of nonlinear piezoelectric energy 

harvesters with a cantilever beam structure attached with piezoelectric 
layers by a single degree of freedom model with a lumped mass subject 
to harmonic, the thesis has established the system of differential 
equations for the Duffing nonlinear oscillations of the one-degree-of-

freedom electromechanical system; 
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2. The thesis has developed the averaging method for a nonlinear 

electromechanical system subjected to harmonic excitation with 
lumped mass model a single-degree-of-freedom of piezoelectric energy 
harvester; from that result, applied to the mono-stable Duffing PEH 
system in the resonance domain including primary and secondary 
resonances and linear respectively used to compare; 

3. The thesis has used the content developed, and expanded the average 

method to determine the analytic expressions of the relationship 
between amplitude-frequency, displacement response, voltage, input 
and output mechanical power, mechanical and useful electrical energy, 
and efficiency of energy harvesting in nonlinear resonance and linear 
respectively used to compare; 

4. The thesis has analyzed, surveyed, and evaluated the influence of 

parameters on displacement responses, voltage, input mechanical 
power, output, input mechanical energy, output potential useful 
electrical energy, and efficiency of energy harvesting of the 
electromechanical system the thesis studied in nonlinear resonance 
effects including primary, secondary resonance, and linear respectively 
used to compare; 

5. The thesis has survey results showing that: Amplitude and frequency 
of excitation are two parameters that greatly affect the responses of the 
electromechanical system; The frequency range near the resonance 
domain of the nonlinear resonant of the nonlinear PEHs is wider than 
the corresponding linear system; The efficiency energy harvests of the 
electromechanical system are larger in the resonance domain of 

subharmonic resonance but smaller in the resonance domain of 
superharmonic and primary resonance. However, the input-output 
mechanical power, input mechanical energy, and use of electrical 
energy in the resonance effects are always larger than the 
corresponding linear system; 

Chapter 1. OVERVIEW PIEZOELECTRIC ENERGY HARVESTING 

1.1. Contents about piezoelectric energy harvesting 

 Energy harvesting is defined as the direct conversion of energy 
from the surrounding environment into electricity by using a transitional 
material or mechanism (the surrounding environment including 
mechanical, solar, heat, wind, liquid flow, etc.)... According to Williams 

and Yates, there are three mechanisms to energy harvesting from vibration 
to electricity: electromagnetic, electrostatic, and piezoelectric; The energy 
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harvesting of mechanical vibrational energy into electricity using 

piezoelectric materials is called piezoelectric energy harvesting. 
According to aggregated data by Ghazanfarian et al., in the last two 
decades excluding conference reports and assessments, the keyword 
"piezo and energy harvesting" extracted from Scopus is shown in Fig 1.1. 
This result shows the attraction, a significant increase in demand, and 
application of piezoelectric materials as well as research trends. 

  
Fig 1.1. Overall history and future estimation of publications on 

piezoelectric energy harvesting 

The relationship of stress, strain, electric field intensity, and 

electric displacement of the form (3-1) is shown: 

                                   
3 33 3 31 3

3 31 3 33 3

c S e E

D e S E





 

 
                                          (1.2) 

The system of equations (1.2) is the basis of the linkage equations in the 

electromechanical system for piezoelectric energy harvesting studied 

and used in this thesis. 

1.2. Structure and mathematical modeling of piezoelectric energy 

harvesters 

According Li et al, Figure 1.4 shows the papers’ number on 
typical structure of PEHs in the database of Web of Science using 
cantilever piezoelectric energy harvesting, cymbal piezoelectric energy 
harvesting, and stack piezoelectric energy harvesting as key words, 
respectively. Results show that researchers pay much attention on the 
cantilever PEHs as the simple fabrication process and relatively larger 

strain.Fig 1.5. Nonlinearity in typical designs of piezoelectric energy 
collectors with cantilever beam structure has been announced by popular 
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scientists in two aspects that are: Nonlinearity of beam structure (mainly 

based on the large deformation properties of the basic beam structure) and 
the nonlinear properties of the piezoelectric layer mounted on the beam (a 
substrate layer). 

 

 

 

 

 
Fig 1.4. Published papers’ number on the typical structure of PEHs 

 from 2000 to 2016 

 

  
Fig 1.5. Geometrically piezoelectric energy harvester configurations 

with a) uniform unimorph b) uniform bimorph c) uniform bimorph with 

tip mass  

1.3. Research orientation and problem formulation 

Main research content in this thesis: 

Firstly, setting up a system of differential equations describing a set 

of energy-collecting devices with a cantilever beam structure subjected to 

the agitation of the air conditioning platform, the beam with a piezoelectric 

layer on the entire upper and lower surface of the beam, cantilever beam 

without tip mass, the studied beam has a rectangular cross-section, based on 

the Euler–Bernoulli beam theory, considering the nonlinear relationship of 

displacement and strain. Since then, the thesis has modeled the structure 

a) 

b) 

c) 

Stack 

Stack 

Cantilever 

Cymbal 
Cymbal structure  

Xếp chồng 
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cantilever beam with a piezoelectric layer attached in the first mode shape of 

vibration of the piezoelectric energy harvester by a lumped mass model of 

one degree of freedom subjected to a harmonic ground motion (Chapter 2); 

Second, develop averaging method for Duffing type nonlinear 

electromechanical system, subjected to harmonic base excitation with a one-

degree-of-freedom lumped mass model of piezoelectric energy harvester, 

from which applied to the single-well system in nonlinear resonance effects 

including superharmonic, sub resonance, main resonance, and linear system 

for comparison with the corresponding nonlinear system, the expressions 

amplitude-frequency relationship analysis, displacement responses, voltage, 

input and output mechanical power, mechanical energy, useful electrical 

energy, and efficiency piezoelectric energy harvesting are determination 

(Chapter 3); 

Third, use the Matlab program to survey and evaluate the influence 

of parameters on displacement response, voltage, input mechanical power, 

output, input mechanical energy, useful electrical energy, output potential,  

efficiency  piezoelectric energy harvesting the electromechanical system 

studied in the effects related to resonance phenomena including main 

resonance, secondary resonance and corresponding linearity (Chapter 4); 

Chapter 2.  SETTING OF GOVERNING EQUATIONS FOR CANTILEVER 

BEAM NONLINEAR PIEZOELECTRIC ENERGY HARVESTERS 

2.1. The system of electromechanically coupled governing equations for 

geometric nonlinearity cantilever beam piezoelectric energy harvesters 

 Consider a bimorph piezoelectric energy harvester  is shown in Fig 

2.1 and with cross-section 
1 1A A  (Fig 2.1.b.) Based on Euler–Bernoulli 

beam theory, the axial displacement 1u  and the transverse displacement 1w , 

at any point of the element are given by 

                                          

0
1 1

1

1

1 0 1

0

( )

w
u z

x

v

w w x


  




 



     (2.1) 
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where, 1 1 1( , ,w )u v   are respectively the displacements in the directions 

of the axis 1 1 1( , ,z )x y , respectively, and 0w
 
is the deflection at any point 

on the neutral axis and 1z  is the distance from the considering point to 
the mid-plane.  

 

 Fig 2.1. Schematic diagram of piezoelectric bimorph cantilever beams; 

b) The cross section of the piezoelectric cantilever beam 

A degenerated form of Green’s strain resulted from the displacements can 

be adopted for the local axial strain 1 1( , , )x s x z t  , can be as 

               

2
1

1 1 0 1 1 2
1

( , , ) ( , )x s x

w
x z t x t z

x
 


 

                                        
(2.3) 

Therefore, the nonlinear displacement at the point considering the neutral 

axis ( 
1 0z  ) 

              

22 2
1 1 1

0 1 12 2
11 1

1

2
x s x

w w w
z z

xx x
 

   
    

  
                         (2.4) 

                              
x p x s                                                              (2.5)  

Assuming the linearly elastic behavior, the axial stress-strain, and the 
axial stress - electric displacement, the electric field- axial strain of the 
substructure and the layers of the piezoelectric material, respectively as  

                                         
_x s x sE                                              (2.6) 

h
s

h
p

h
p

b=bs=bp

b)

z

y
1

1

v1

O

w1

z

x1

1

u1

w1

A1

a)

L=Ls=Lp

R

A1
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31 3

31 33 3;

p x p

p

x p

x p

e

D

E E

e E

 

 












                                      (2.7) 

where, ; xx p   the are the stress components (in the x-direction) in the 

substructure and the piezoelectric layers; the axial strain in the 

substructure and the piezoelectric layers are defined as x s   and x p  , 

respectively. ;s pE E  are the elastic modulus of the substructure and the 

piezoelectric layers, 31e  
is the effective piezoelectric stress constant, 33

is the permittivity component at constant strain with the plane-stress 

assumption for a beam; pD is the electric displacement. 3E  is the electric 

field component in the 3 direction. pv  is the voltage across the electrodes 

of each piezoceramic layer can be expressed as : 

                                       
3

2

p

p

v
E

h
                                                   (2.8) 

The potential energy per unit volume of beam bimorph PEH
 

      

2

2 2
31 33 2

1 1
2

2 2 2 8

p p

s x s p x p x p

p p

v v
W E E e

h h
     

 
    

 
 

               (2.11) 

The potential energy for an element with initial length of L  reads  

     

2 22 2
1 1

1 12
1 10 0

22

1
33 1 12

10 0

1 1 1

2 2 2

( )
( )

4

p p

L L

el b b b b

L L

p

p

p

w w
W E A dx I E dx

x x

v t w
dx v t dx

xh
 

     
     

      

 
   

 

 

 

  (2.19) 

The kinetic energy for an element with initial length real L
 
 

                

2

1 1
1

0

1
( ) ;

2

sL

s s s

w z
T A x dx

t t


  
  

  
                                    (2.20)  

                   

2

1 1
1

0

1
( ) ;

2

pL

p p p

w z
T A x dx

t t


  
  

  
                               (2.21) 

Assuming that the influence of gravity is ignored, and the imaginary 

work of the charge displacement, then the imaginary work of the 
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resistance is determined by 

                         

2

1

1
1

0

2

1( , )t L
m

nc t
t

x t
W x dt

t

w
c d





 
 




                           (2.23) 

Applying Hamilton's principle, Hence S  defined as 

                              

2

1

( )m
n

t

l s

t

ce pS tWW T T d                                  (2.24)                          

the Euler–Lagrange equation of motion of the Euler–Bernoulli beam as: 

      

22 4
1 1 1 1 1

2 4
1 1 1

2
11 1

2
1 1

1

2

( )( )
4 ( ) ;

b b b b b b

p

p b

w w w w w
m c E I E A

t x x xt x

d x Ld x z
v t m

dx dx t




        
     

        

  
    

 

    

(2.30)

   
Equation (2.30) is the partial differential equation describing the 
bending vibrations of a bimorph cantilever beam piezoelectric energy 

harvester, the term component 

22
1 1

12
11 0

2

L

b bE A w w
dx

L xx

   
  

    
  is 

representing the nonlinearity between displacement and strain when 
considering the very small high-order strain. Then, Kirchhoff’s laws, one 
may obtain the governing equation of electrical circuit of the system, as 
follows: 

                       
1

3
1

120
1

( ) ( )
;

pL

p
x

wdv t v t
C dx

dt R x t




  
    

  


                

(2.37) 

In order to solve Eqs.(2.30) and (2.37), the Galerkin method is utilized 

to discretize the partial differential equations. These conditions are, 

respectively, given by: 

                     

1
1 1

1

0: (0, ) 0; (0, ) 0;
w

x w t t
x


  



                 

(2.38)

            

               

2 3
1 1

1 2 3
1 1

: ( , ) 0; ( , ) 0
w w

x L L t L t
x x

 
  

 

                 

(2.39)  

The transversal displacement 1 1( , )w x t  can be assumed as  

                                            1 1 1 1 1( , ) ( ) ( )w x t X x h t                           
(2.40) 

The mode shapes are calculated as: 
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          *1 1 1 1 1 1 1 1
1 1( ) cosh cos sinh sin

x x x x
X x

L L L L

   


  
     

      

(2.41) 

where the relation between 1
1

L



  and  1  is given by 2

1 1
b b

b

E I

m
 

By substituting equation 1 1 1 1 1( , ) ( ) ( )w x t X x h t  into Eqs. (2.51) and 

(2.57), multiplying the resulting equations by 1 1( )X x , and integrating 

over the length of the beam, the following nonlinear ordinary differential 

equations can be obtained 

  

3
1 1 1 1 1 3 1 2 1

1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( )

f p

p p

p

M h t c h t K h t K h t v t M z t

dv t v t
C h t

dt R





      



 


 (2.53)

 

2.2. Modeling of nonlinear cantilever beam bimorph piezoelectric energy 

harvesters 

Consider the lumped-parameter model of a cantilever piezoelectric 

energy harvesting (PEH) system subjected to base excitation is 

illustrated in Fig. 2.3.  

 
Fig 2.3. Schematic of a PEH system 

                                     
1

pC V V x
R

 
                                          

(2.59) 

                                    
3

1 3Mx cx k x k x V Mz                  
(2.60) 

The base excitation is given in the form 

x(t) R
c

Cp

z(t)

y(t)

k1 k3

 M 

Mechanical 

Base excitation 

Piezoelictric  

base 
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2cos ; sin ; cosz A t z A t z A t                   (2.61) 

The governing equations of the system are written as follows 

                          2 2
0 , , cosx x f x x v A t                             (2.63) 

                         v v x                                                                 (2.64) 

 where                   3 2, , 2f x x v x x v     
                           

(2.65)                                (2.84) 

In chapter 2, the thesis presented the following main results: 

1. There was studied, establish the system of electromechanical linkage 

equations of a bimorph piezoelectric energy harvester nonlinear 

cantilever beam when considering the nonlinear relationship of 

displacement and deformation (geometrical nonlinearity when 

considering to infinity small order of deformation); 

2. There was the studied beam structure has been modeled in the form of 

the first specific vibration by the Duffing nonlinear single degree of 

freedom lumped mass parameter model, subject to excitation as 

harmonic. 

Chapter 3.  DEVELOPMENT OF THE AVERAGE METHOD USED 

FOR A NONLINEAR ELECTROMECHANICAL SYSTEM 

SUBJECTED TO BASE EXCITATION WITH A SINGLE DEGREE OF 

FREEDOM LUMPED PARAMETER MODEL OF A CANTILEVER 

PIEZOELECTRIC ENERGY HARVESTER 

3.2. Development of the average method used for a nonlinear 

electromechanical system subjected to base excitation with a 

single degree of freedom lumped parameter model   

The Eq. (2.63) is transformed to the standard form by setting  

     

2

0 0 2 2
0

cos ;
A

x y f t f





   


                     (3.12) 

The system of equations (2.63), (2.64), becomes 

                          
 2

0 0 0cos , sin ,y y f y f t y f t v      
            

(3.13) 

                          0 sinv v y f t   
                                              

(3.14)  

In nonlinear oscillator systems, resonance phenomena are observed not only when 

0 one may use approximate relations between 0  and    
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2
2 2
0 2

m

n
   

                                          
(3.15) 

where   is a detuning parameter. According to the averaging method, 

the solutions ,y y  can be considered as the solutions of the linear 

equation by putting 0   in Eq. (3.13), but constant terms are 

assumed as function of time. Hence one has
 

                                  

( )cos ( )
m

y a t t t
n


 

   
                                   

(3.16)
 

                                   
 ( ) sin

m m
y a t t t

n n


 
     

 
  (3.17) 

denote:    ( ) ( )
m

t t t
n

                   (3.18) 

Substituting Eq. (3.16), (3.17) into Eq. (3.14) gives  

                               
sin cos sin cosv B C D t E t                    (3.19) 

Therefore:  

 

 
  

 

22 2

0

2 2

/
sin / cos

/

cos sin

a m n
m n

m n
v t

f
t t

  





 
   
  

  
 

     
 

          (3.21)   

one gets the system of differential equations for a  and   as follows 

cos sintbn
a a f

m


     
 

   

(3.26) 

                                 

cos costbn
a f

am


       

                   

(3.27) 

Considering a,  to be constants during this averaging process one 

obtains the following averaged equations: 

                               
 , ,

n
a S a

m


 


    (3.28)  

                              

 
2

2 2
0 2

1
, ,

2

n m
a Q a

am n
   

  
           

 (3.29)  

where it is denoted 

  , , sintbS a f                                  (3.30)   
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 , , costbQ a f   

                            
(3.31)  

Here     is the averaging operator symbol over period T. The 

stationary solutions a and   of Eqs. (3.28), (3.29),  are then defined by 

the condition 

                                
 0 , , 0a S a      (3.32) 

                              

 
2

2 2
0 2

1
0 , , 0

2

m
a Q a

n
   

 
        

 
  (3.33) 

3.3. Application of averaging method to a mono-stable Duffing 

piezoelectric energy harvester system subjected to base 

excitation harmonic with a single degree of freedom lumped 

parameter model in some nonlinear resonance 

3.3.1.  Primary resonance of piezoelectric Duffing energy harvester 

Two first-order approximate solutions of amplitude-frequency curve 

corresponding to the minus and plus signs, respectively: 

        

2
2 2 2 4 2

2 2

2 2 2 2 2

2
0

3
2

4

A
a

a

  
   

 


  
      

 

   
   
            

(3.56) 

The useful output electrical power delivered to the resistive load is: 

     

   
2

2 2 2 2

2

2 2
cos sinuse main t tP M a


 

 
 

 
    

 

 
  

     

(3.69)  

The useful output electrical energy delivered to the resistive load 

                    

/

2 2

2 2

0
2

use Main use

M
E P dt a












 

 


                   

(3.70) 

the input mechanical power is defined as: 

  

   

 

 

 

 

3 3

2 2

2 2

2

2 2

2
0

2 sin cos

cos
cos

sin

cos

in mainP

a t a t

a
t

M A t

a
t

a t

   


 

 






 

 

  
       
  
  

     
      

  
    

  
 
   

       

(3.73)
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the input mechanical energy of Duffing PEH system at the excitation 

frequency 
S  with the peak amplitude 

peaka  

                    
2 2

2 22
in Main s peak

S

E M a


  




 
   
 
                     

(3.74) 

The efficiency of the mono-stable Duffing PEH system at the excitation 

frequency 
S  with the peak amplitude 

peaka   

                               

2

2 2 22

peak
Main

S




  

   
                              

(3.75) 

3.3.2. Sub-harmonic resonance of piezoelectric Duffing energy harvester 

the case of sub-harmonic resonance:      ; 1;3m n 
   

(3.79) 

the stationary solution  ,a   is determined from the system of 

equations: 

             

 
2

2 2 2
2 2 2
0 0 2 2

2
2

2 2 2 2
02 2

3
2

9 4 9

2 3 9
0

3 169

a f

a f

 
 




  



    
            

 
    

  

                 

(3.86) 

the relation of amplitude-frequency: 

 
 

 

2 2
2 2 2 2

0 0 2 2

1/2
2 2

2 2 2
2 2 2
0 02 2 2 2 2

2
22 2

2 2 0
0 2 2

4 3 4
9

27 2 3 9

4 9 81 3 9
9 2

89 932

9
271 9

9
3 29

a f

f

f




  

    
 

 

 


 


     

 

                        
  

  
     

     

 

(3.87) 

The voltage response in sub-harmonic resonance of PEHs one has 
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 

  
 

2 2

3

2 2 2 2
0

3 1
sin cos

3 3 39

cos sin

a
v t t t

A
t t

  





 

       
         

     


    

 
                  

(3.89) 

The power consumed by the external resistor is calculated as  

                  

   
2 2

2 2 2

2use Sub

p

V
P v t Mv t

R RC


     

              

(3.90) 

the PEHs to the external load or the electrical energy generated per 

cycle 

       

2 2 4 2
2

2 2 22 2 2 2
0

3

2 9
use Sub

A a
E M

 


 


 
 

   
                 

(3.91) 

The input mechanical energy one has as

 

(3.92) 

Work done by the external excitation on the system per one cycle can 

be derived as the input mechanical energy over the period  

   

22 2 2 2
0

0 2 2 2 2
0

3

2

1 2
2

99
in Sub

AM fa a
W f

f

  


 



  
       

           

(3.94) 

Efficiency:   use Sub
Sub

in Sub

E

E
 





     

(3.98) 

3.3.3. Super-harmonic resonance of piezoelectric Duffing energy harvester 

In the super-harmonic resonance analysis of Duffing system, we use the 

first approximation between 0  and  :  

   
2 2

2 2 2 2
0 02 2

1
, , 3,1 ;

m m
m n

n n
   



 
        

           

(3.100) 

The following amplitude-frequency equation: 
2

2
2 2

2 2

2
2 62 2

2 2 2 0
0 2 2

9 2
9

3 3 9
0

4 2 169

a

f
a a f






 
 



 
  

   

 
      

   

        

(3.108) 
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The amplitude-frequency equation (3.108) reduces to the one for 

Duffing mechanical system when the electromechanical coupling 

coefficient 
2 0; 0   .The relation of amplitude-frequency 

corresponding to two first-order approximate solutions to the minus and 

plus signs, respectively 

          

2 2 22
2 2 20 0
(1) 2 2

0

2
6 6 2 2

2
022 2 2 2

0

3 3

9 9 4 128

2
9 2

I a A

A

a

     

 

  
 

 

 
       

 
    

              

(3.109), (3.110) 

The useful output electrical power delivered to the resistive load is 

    

 

2
sup 2 2

2
3

2 2 2 2
0

3
3 cos 3 sin 3

9

cos sin
( )( )

use er

a
P M t t

A
t t

   





 




       

 


     

   

   

(3.120) 

the useful output electrical energy delivered to the resistive load: 

 

2 2 2 4
2

2 2 2 2 22 2
0

9

2 ( )( )9
use Super

M a A
E

 


 


 
 

    

 
 
 
        

(3.121) 

The input mechanical power is defined as eq.(3.124), and 

the input mechanical energy over the period /T   :  

   

2 2 2

2

0 2 2 2 2 2 2

0 0

9 9 1
2 1

2 9
Win Super

MA a a
f

f f


 

 
     

   


   
            

(3.125) 

The efficiency of the mono-stable Duffing PEH system at super-harmonic 

resonance are presented as follows 

 

 

   

22
2 0

2 22 2

2 2
2

0 2 2 2 2 2 2
0 0

9

( )9

9 9 1
2 1

9

Super

fa

a a
Af

f f






  
 

 
 

 
    


   
               

    

(3.127) 
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In Chapter 3, the thesis presented the following main results: 

1. The thesis has developed and extended the averaging method used for a 

nonlinear electromechanical system subjected to base excitation with a 

Single degree of freedom lumped parameter model. 

2. From the content of the development and expansion of the average 

method used for nonlinear electromechanical systems, the thesis has 

determined the visible expressions of the amplitude-frequency 

relationship, displacement, voltage electrical responses, input-output 

mechanical power, input-output potential useful electrical energy, and 

the efficiency of the mono-stable Duffing PEHs at primary resonance, 

secondary resonance, and linear system corresponding for comparison. 

3. The thesis has verified the content of developing the average method 

used for nonlinear electromechanical systems. 

Chapter 4.   THE ANALYSIS OF THE INFLUENNCE OF PARAMETER 

ON THE MONO-SATBLE DUFFING PEH SYTEM AT NONLINEAR 

RESONONCE EFFECTS 

4.1. Test and Survey Results 

 
Fig 4. 54. Correlation between displacement, voltage response using a 

solution numerical simulation and averaging method of the mono-stable 

Duffing PEH system at super-harmonic resonance over time with 
2

peakza A   

Investigate when changing the excitation amplitude with the same 

excitation frequency in the vicinity of the main harmonic resonance (
2 0.9938  ) and keeping the other parameter values of the system 

unchanged, in order to evaluate the influence of the excitation amplitude 

b) a) 
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affect displacement and voltage response. As shown in Fig 4.1 a) and Fig 4.1 

b), it is clear that the curves representing numerical results are almost 

identical (asymptotic) to those obtained from the averaging method. At the 

same time, numerical and analytical results have the same conclusion that: 

displacement response amplitude and voltage increase sharply when 

increasing the amplitude of background agitation. When changing the 

excitation amplitude, the maximum error of displacement response 

amplitude and maximum voltage between the numerical method and the 

average method is 0.035% and 0.379%, respectively, as detailed in Table 4.1. 
Table 4. 1. compare between numerical method and average method when 

changing base excitation amplitude 

 Parameter Ode45 Average 

method  

Err 

(%) 

Ode45 Average 

method  

Err 

(%) 

Ode45 Average 

method   

Err 

(%) 

A=0.1 A=0.2 A=0.3 

1max x  
0.050 0.050 0.028 0.099 0.099 0.0402 0.282 0.282 0.035 

3max x  
0.035 0.0353 0.003 0.069 0.069 0.007 0.199 0.199 0.379 

The numerical calculation results are consistent with the mechanical 

laws, this has the effect of further confirming the suitability of the 

algorithm and the reliability of the calculated program. 

4.2. Analysis and investigation of the influence of parameters on the 

mono-stable Duffing PEH system subjected to harmonic base 

excitation with a single-degree-of-freedom lumped mass model in 

the main harmonic resonance  

The corresponding values of parameters as 

 
0

2

0.01; 1; (0.01;0.1;0.3); (0.15;0.3;0.5;1);

(0.05;0.5;1); 0.015; (0.1;0.3;0.5);A

   

 

   

  
                   

(4.3) 

The branches represent the amplitude-frequency curve of the 

electromechanical system under investigation at the effect main resonance 

is similar to the superharmonic resonance and the mechanical system. That 

confirms the electromechanical parameters (the normalized resistance 

coefficient, electromechanical coupling coefficient) do not affect the 

amplitude-frequency curve form.(Fig. 4.5 và Fig. 4.7). Obviously, the 

frequency range of the nonlinear electromechanical system at the main 

resonant has larger than the corresponding linear, allowing for the 
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expansion of the working frequency range of the piezoelectric energy 

harvester. As shown in Fig 4.7, extreme coordinates )( ;pea Ska  have a 

decrease in the jump when increasing the value of the electromechanical 

coupling coefficient
2 , and the line branches representing the amplitude-

frequency relationship tend to be strongly inclined to the right of the graph 

when the electromechanical coupling coefficient is decreased. 

  
Fig 4. 5. Amplitude–frequency 

relation of the mono-stable Duffing 

PEH system  at main-harmonic 

resonance with =0.0; =0.15; 

=0.3; =0.5; =1;  

Fig 4. 7. Amplitude–frequency 

relation of the mono-stable Duffing 

PEH system  at main-harmonic 

resonance with 
2  

 
Fig.4.16. Efficiency of the mono-stable Duffing PEH system at main 

harmonic and linear system corresponding with 
2 and   

 As shown in Fig 4. 16, the efficiency of the linear electromechanical 

system is much larger than that of the corresponding nonlinear 

a) 

b) 

b) 
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electromechanical system when the same set of input survey parameters, 

besides the efficiency is a linear increasing function for with nonlinear 

electromechanical systems. Specifically, with the same value of background 

excitation amplitude, the performance curves of the linear system are an 

increasing function of the electromechanical bonding coefficient, increasing 

sharply when the electromechanical bonding coefficient is in the range and 

then slightly increasing with the increase of the electromechanical bonding 

coefficient (Fig 4. 16. a)). Investigating the effect of piezoelectric coefficient, 

the curve is a strong increasing function, peaking when then decreasing 

linearly (Fig 4.16 b)). 

4.3. Analysis and investigation of the influence of parameters on the 

mono-stable Duffing PEH system subjected to harmonic base 

excitation with a single-degree-of-freedom lumped mass model in 

the sub-harmonic resonance  

 The corresponding values of parameters as 

 
0

2

0.01; 1; (0.01;0.02;0.3); (0.05;0.5;1);

(0.05;0.5;1); 0.015; (10;20;30;50);A

   

 

   

  
                      

(4.4) 

 

Fig 4. 24. Amplitude–frequency relation of the mono-stable Duffing PEH 

system  at sub-harmonic resonance and linear system corresponding 

The results of the survey on the amplitude-frequency curve 

relationship of the electromechanical system show that, with the same 

value of the background excitation amplitude, the two branches of the 

amplitude-frequency curve of the nonlinear electromechanical system are 

above the linear system. When the amplitude of the base increases (Fig 

4.24.b) and (Fig 4.24.a) the linear system line intersects the branches of 

a) b) 
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the mono-stable Duffing PEH system at sub-harmonic resonance at two 

points (corresponding to the two branches of the line nonlinear 

electromechanical system). 

 

Fig 4. 32. Efficiency of the mono-stable Duffing PEH system  at sub-

harmonic and linear system corresponding 

 The two branches curve the efficiency of the mono-stable Duffing 

PEH system at sub-harmonic correspond to two values of amplitude-

frequency and linearity respectively, presented in Fig 4.32. a) and Fig 

4.32. b). The efficiency curve of the nonlinear system has a peak, which 

peaks when the excitation frequency is near the resonant frequency, and 

after the peak, the nonlinear system efficiency decreases linearly similar to 

the curve of a linear system. however, is still much larger than the 

corresponding linear system in both cases with different values of cubic 

nonlinear coefficients and excitation amplitudes. The efficiency of the 

mono-stable Duffing PEH system at sub-harmonic slightly decreases as 

the value of base excitation amplitude increases. 

4.4. Analysis and investigation of the influence of parameters on the 

mono-stable Duffing PEH system subjected to harmonic base 

excitation with a single-degree-of-freedom lumped mass model in 

the super-harmonic resonance  

 Parameters the thesis selects the survey 

 
0

2

0.01; 1; (0.01;0.1;0.3); (0.3;0.5;1);

(0.05;0.5;1); 0.015; (300;500;700);A

   

 

   

  
                    

(4.2) 

a) 

b) 
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As shown in Fig4. 39. and Fig 4. 40., the peak amplitude value of the 

displacement response of the mono-stable Duffing PEH system at the 

super-harmonic resonance effect is proportional to the price increase values 

of base-excitation amplitude and cubic nonlinear coefficient, and at the 

same time much larger than the corresponding linear system amplitude 

response. 

 

Fig 4. 39. Amplitude–frequency 

relation of the mono-stable Duffing 

PEH system at super-harmonic and 

linear system corresponding   

 

 

Fig 4. 40. Amplitude–frequency 

relation of the mono-stable Duffing 

PEH system super-harmonic and 

linear system corresponding   

with =0.3; =0.5; =1 

When the value of the base excitation amplitude and the cubic 

nonlinear coefficient increases, the curves representing the amplitude-

frequency relationship of the nonlinear electromechanical system tend to 

lean to the right of the graph, obviously, in this case, the working 

frequency range of the nonlinear electromechanical system is extended in 

the superharmonic resonance. In the cases where the value of background 

excitation amplitude and cubic nonlinear coefficient increases the extreme 

point on the frequency axis 
2
 inclined to the right, the coordinate graph 

2a   follows the inclined trend of the curve branches. 

The efficiency of the mono-stable Duffing PEH system at super-

harmonic tends to decrease with the minimum at the peak amplitude, the 

coordinates of the minimum point of the efficiency tend to shift towards 

the left side of the graph, with the jump increasing markedly as the cubic 
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nonlinear coefficient decreases, and at the same time the frequency band 

near the superharmonic resonance region of the system is significantly 

narrowed (Fig 4.50.a) and Fig 4.50. b)). The effect of the base excitation 

amplitude on efficient energy harvesting is similar to the cubic nonlinear 

coefficient, but the minimum point of the efficiency does not have a large 

jump and shifts significantly to the left of the graph.  

 

Fig. 4.50 Efficiency of the mono-stable Duffing PEH system  at super-

harmonic and linear system corresponding   

Conclusion Chapter 4 

The survey results show the frequency range near the vicinity of 

the area approach the resonance of the nonlinear electromechanical 

system wider than the corresponding linear system; The efficiency of 

the mono-stable Duffing PEH system in the research thesis is larger in 

the vicinity of the sub-harmonic resonance but smaller in the vicinity of 

the superharmonic and main resonance compared with the 

corresponding linear system. However, the input mechanical power, 

output, input mechanical energy, and potentially useful electrical energy 

of the electromechanical system the thesis studied in the resonance 

effect is larger than the linear system; 

 

 

 

 

 

a) b) 
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CONCLUDING REMARKS 

1) The thesis has established a system of nonlinear differential equations for 
energy harvesters in the form of Duffing-type nonlinear oscillations of 
cantilever beams structure with two upper and lower piezoelectric layers, 
under harmonic excitation; since then, on the basis of using Galerkin 
method, the thesis has modeled a set of nonlinear piezoelectric energy 
harvesters with a cantilever beam structure attached with piezoelectric 

layers by a lumped mass model a single-degree-of-freedom under 
harmonic excitation; 

2) The thesis has developed the averaging method for a nonlinear 
electromechanical system subjected to harmonic excitation with lumped 
mass model a single-degree-of-freedom of piezoelectric energy 
harvester;  

3) The thesis has used the content developed, expanded, and  the test has 
been for the reliability of the average method to determine the analytic 
expressions of the relationship between amplitude-frequency, 
displacement response, voltage, input, and output mechanical power, 
mechanical energy, useful electrical energy, and efficiency of energy 
harvesting in the resonance domain including primary and secondary 

resonances and linear respectively used to compare; 
4) The thesis has analyzed, surveyed, and evaluated the influence of 

parameters on displacement responses, voltage, input mechanical power, 
output, input mechanical energy, output potential useful electrical 
energy, and efficiency of energy harvesting of the electromechanical 
system the thesis studied in nonlinear resonance effects including 

primary, secondary and linear respectively used to compare; 
5) The thesis has survey results showing that: Amplitude and frequency of 

excitation are two parameters that greatly affect the responses of the 
electromechanical system; The frequency range near the resonance 
domain of the nonlinear resonant of the nonlinear PEHs is wider than the 
corresponding linear system; The efficiency energy harvests of the 

electromechanical system are larger in the resonance domain of 
subharmonic resonance but smaller in the resonance domain of 
superharmonic and primary resonance. However, the input-output 
mechanical power, input mechanical energy, and use of electrical energy 
in the resonance effects are always larger than the corresponding linear 
system; 
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