

MINISTRY OF EDUCATION

AND TRAINING

VIETNAM ACADEMY OF

SIENCE AND TECHNOLOGY

GRADUATE UNIVERSITY OF SIENCE AND TECHNOLOGY

NGUYEN TUAN KHANG

RESEARCH AND DEVELOPMENT OF

SOME SESSION-BASED RECOMMENDATION TECHNIQUES

WITH DEEP LEARNING MODELS

SUMMARY OF DISSERTATION ON COMPUTER SCIENCE

Major code: 9 48 01 01

Ha Noi – 2023

The dissertation has been completed at: Graduate University of Science and

Technology - Vietnam Academy of Science and Technology

Supervisors

1. Supervisor 1: PhD. Nguyen Phu Binh
 Victoria University of Wellington, New Zealand

2. Supervisor 2: Assoc. Prof., PhD. Nguyen Viet Anh

 Institute of Information Technology

 Vietnam Academy of Science and Technology

Referee 1: …

Referee 2: …

Referee 3: …

The dissertation will be examined by Examination Board of Graduate University of

Science and Technology, Vietnam Academy of Science and Technology at …………,

…………………… (time, date)

This dissertation can be found at:

1. Graduate University of Science and Technology

2. The National Library of Vietnam

https://www.bing.com/ck/a?!&&p=1f1180a05db859b3JmltdHM9MTY5NTk0NTYwMCZpZ3VpZD0yOGYwZTNjMS00OWQ3LTYyZjQtMTU4MC1mMGY0NDhjNTYzY2YmaW5zaWQ9NTMzNw&ptn=3&hsh=3&fclid=28f0e3c1-49d7-62f4-1580-f0f448c563cf&psq=Victoria+Wellington&u=a1aHR0cHM6Ly93d3cud2d0bi5hYy5uei9zdHVkeS9wcm9ncmFtbWVzLWNvdXJzZXM&ntb=1

Introduction

1 Thesis motivation
In the context of rapid development of e-commerce and online services, recommendation systems

have become an important tool to enhance customer experience and drive business growth. Tradi-
tional recommendation models such as content-based approaches and collaborative filtering meth-
ods mainly focus on long-term personal preferences and overlook short-term interactions.

With such research motivation, the session-based recommendation system has been proposed,
and its aim is to predict the next customer action based on the behavior of the current session. From
this perspective, the author emphasizes the importance of researching models that recommend
customer purchasing behavior based on sessions and exploring new possibilities that they bring
to enhance the field of recommendation systems in order to forecast customer behavior.

2 Thesis objective
Problem statement

Analyzing customer sessions to predict their likelihood of purchasing a specific product or choos-
ing the next product is a common forecasting problem in the e-commerce industry. This forecasting
helps businesses come up with appropriate sales ideas during the user’s interaction with their sales
system.

Research subject
The research subject of this dissertation is the mouse-click behavior sequence in the process

of customer product selection. The mouse-click behavior sequence is recorded during a shopping
session on an e-commerce system or any social networking platform.

Research objective
The objective of this thesis is to study and propose a model for predicting a customer behavior

during the product selection in the current session of the sales system. Specifically, this thesis has
several main research objectives as below:

• Research and propose a method for representing session data

• Research and propose several deep neural network models and graph neural network models
to build a predictive model for purchasing behavior.

• Experiment with various alternative options and compare them with several baseline models
to evaluate the effectiveness of the proposed model.

Research scope
The scope of the research approaches two specific problems:

• The Problem 1 answers the question "With the current list of selected products in the in-
teractive session, what is the likelihood that customers will make a purchase, and if they do,
which item are they likely to choose?".

• The Problem 2 is more general and answers the question "With the current list of selected
products in the interactive session, what is the likelihood that customers will choose certain
products next?"

1

Introduction

3 Research methodology
Problem 1 is a simple binary classification. The thesis proposes two neural network models: wide

and deep learning networks, and transformer-based machine learning networks to analyze session
data in tabular format. The session data consists of attributes with numerical and categorical
data to predict whether a customer will make a purchase or not. These neural network models are
simple and suitable for tabular data sessions. However, their limitation is that they only evaluate
data within specific sessions (intra-session) and do not assess the relationships between sessions
in the entire dataset.

With Problem 2, the research approach needs to be improved by Learn and propose a method for
representing session data, especially the ability to clearly show the relationship between millions
of sessions in real-world datasets, this concept is called inter-session. Graph is a very suitable
approach to represent session data of millions of customers in the process of selecting from a set of
products of a certain system. From the architectural perspective, the thesis research and propose
using graph neural network model to build recommendation models for Problem 2.

4 Thesis layout
The structure of the thesis consists of an Introduction and four chapters, and the Conclusion is

described briefly as follows:

• ”Introduction”: The introduction presents an overview of the research problem, its urgency,
and the practical scientific significance of the topic.

• Chapter 1 ”Overview of recommendation systems”: This chapter presents the problem of
recommendation that many e-commerce systems or social networking platforms are imple-
menting. It defines and states two problems corresponding to two specific objectives of the
thesis mentioned in the Introduction section, including Problem 1 as a binary prediction
model of whether or not to make a purchase and Problem 2 as a top-k recommendation sys-
tem based on the current customer’s browsing session when clicking on product selections
in the e-commerce system.

• Chapter 2 ”Proposal of a deep neural network model for customer purchasing prediction”:
This chapter addresses Problem 1 of the dissertation, answering the question "Does the
customer make a purchase in the current session?". It proposes two specific neural network
models, namely wide and deep neural networks, and transformational neural networks, to
build a purchasing prediction model.

• Chapter 3 ”Proposal of a graph neural network model for the top-k recommendation”: Chapter
3 addresses the general top-k problem, which is the main focus of this thesis. This chapter
presents several graph design options to model the input information as customer session
logs, including two single graphs G and H, and a multi-relational graph K.

• Chapter 4 ”Improvement of GNN model with embedding”: In order to further improve the
proposed GNN model in Chapter 3, Chapter 4 introduces graph transformation to enhance
the effectiveness of the model. The author suggests optimizing the GNN graph neural net-
work model by proposing a new special graph embedding layer to improve top-k prediction.
This chapter designs a session embedding layer using a combination of embedding transfor-
mations, including vertex embedding, graph embedding, and label embedding.

• ”Conclusion”: The final section presents general conclusions and comments on the achieved
results of the thesis to explain the research motivation and steps for improving the models.

2

Chapter 1|Overview of recommendation systems and deep
neural networks

1.1 Recommendation system
1.1.1 Overview

There are several different recommendation systems depending on the context of the problem.
The simplest system relies on the user’s historical information or preferences to find the most
suitable product. This type of system is easy to understand but faces challenges when it comes
to providing recommendations for new users, as it has no historical information from them. A
new form of recommendation system relies solely on the current interaction process of the user,
known as a session. Based on session information, the system can provide recommendations after
just a few interactions with the user, and this model is called a session-based recommendation
system.

1.1.2 Classification of recommendation systems
Each type of recommendation system uses different algorithms and techniques to understand

and analyze data, in order to provide suitable recommendations based on user preferences and
needs.

• Content-Based Filtering.

• Collaborative Filtering.

• Hybrid Recommendation Systems.

• Knowledge-Based Recommendation Systems.

• Context-Aware Recommendation Systems.

• Reinforcement Learning-Based Recommendation Systems.

• Session-Based Recommendation Systems.

1.2 Two fundamental problems
1.2.1 Definition of a working session
Definition 1. A customer’s working session is a sequence of mouse click events when selecting
products, recorded by the system as a vector s = {id1, id2, ..., idc} where idi is the product identifier,
c is the number of products clicked in the working session s, and also the length of that session.

1.2.2 Problem 1 - Purchase behavior prediction
Problem 1. Given a time-ordered sequence of mouse clicks generated from a customer’s working
session when selecting products, we need to build a model to predict whether the customer will
make a purchase in the current work session or not.

1.2.3 Problem 2 - Top-k recommendation system
Problem 2. Given a sequential mouse click string generated from a customer’s session when
selecting products, we need to build a recommendation model to determine which item the customer
will choose next in the current session.

3

Chapter 1. Overview of recommendation systems and deep neural networks

1.3 Theory of deep neural networks
1.3.1 Feedforward neural network model

This section explores some specific improved models of feedforward neural networks (FNN)
to provide a broader understanding of deep learning techniques in solving Problem 1. These
three models have similar characteristics to FNN but differ in the pre-processing method of the
embedding layer before entering the deep learning layer. The variations of the FNN model are
illustrated in Figure 1.1.

Figure 1.1: Some neural network models used in mouse click prediction

1.3.2 Wide and deep neural network model
With a focus on researching and applying deep neural network for Problem 1, the author utilizes

a wide and deep neural network to serve the stated objective. This model was proposed in 2016
by a team at Google.

Figure 1.2: The architecture of a wide and deep neural network

The wide and deep model is a hybrid neural network with a structure consisting of two branches
described as follows:

Wide branch

The wide component is a linear model in the form of:

y = W Tx+ b (1.1)

The input field includes raw attributes and some special attributes generated through cross-
product transformations, as shown in formula 1.2:

φk(x) =
d∏

i=1

xcki
i , cki ∈ {0, 1} (1.2)

where cki takes the value of 1 if the if the i-th attribute belongs to the k-th transformation of
φk, and takes the value of 0 otherwise.

4

Chapter 1. Overview of recommendation systems and deep neural networks

Deep branch

The deep part is a feedforward deep neural network combined with embedding technique, where
the first layer of the feedforward network is the attribute embedding layer. The output of the
embedding layer is in the form of a(0) = [e1, e2, ..., em], where m is the number of attribute fields
and ei is the embedding vector of the i-th attribute field. These vectors are then combined with
numerical attributes and passed to the next hidden layers of the deep neural network.

al+1 = σ(W (l)a(l)) + b(l)) (1.3)

In which σ is the activation function, usually the ReLU function in the form f(x) = x+ =
max(0, x); W (l), a(l), and b(l) are the output and bias of the l-th neuron layer.

The learning process of the network occurs simultaneously for both parts to generate the final
result of the predictive model according to Formula 1.4

ŷ = Sigmoid(yR + yS) =
1

1 + e−(yR+yS)
(1.4)

In which ŷ ∈ (0, 1) is the prediction value of purchase probability, yR is the output of wide
branch and yS is the output of deep branch.

1.3.3 Transformer neural network model
The Transformer transformation model consists of two main modules: the encoding block and

the decoding block, described in Figure 1.3:

Figure 1.3: Illustration of the Transformer architecture

The Transformer architecture is quite similar to basic deep neural networks such as W&DNN,
FNN, PNN... as presented in the previous section, as it also uses a combination of embedding
layers and feed-forward neural networks. However, there are two differences: (1) the Transformer
architecture uses self-attention mechanism for transforming the input data into sequential form,
(2) these blocks are stacked together to process different attributes from the input data in paral-
lel.

Figure 1.4: Layers of the Transformer architecture

5

Chapter 1. Overview of recommendation systems and deep neural networks

1.4 Graph neural network theory
1.4.1 Definition of graph

According to the basic definition, a graph is a collection of objects called vertices connected by
edges, where each edge represents a specific relationship between two vertices. Depending on the
specific problem, the edges can be directed or undirected, and the corresponding graph is then
referred to as directed or undirected, respectively, as stated in some statements.

Definition 2. A simple graph G consists of a non-empty set V , whose elements are called vertices,
and a set E, whose elements are called edges, which are unordered pairs of distinct vertices. This
graph is also known as an undirected graph.

The mathematical expression represents a graph described by Formula 1.5.

G = (V,E) (1.5)

where

• V = {v1, v2, ..., vn} lis the set of vertices of the graph, and the number of vertices n = |V |.

• E = {e1, e2, ..., em} is the set of edges of the graph, and the number of edges m = |E|.

Definition 3. A directed graph G = (V,E) consists of a set of vertices V and a set of edges E,
which are ordered pairs of elements belonging to V .

With more complex graph structures, they can have different types of edges connecting vertices.
This graph is called a multi-relational graph because it contains multiple layers of different relation-
ships. For a multi-relational graph, we need to add a parameter to indicate the type of relationship
(type of edge) between 2 vertices (u, v) through a function f such that f(e) = (u, v).

Definition 4. A multi-relational undirected graph G = (V,E) consists of a set of vertices V , a
set of edges E, and a function f from E to {{u, v}|u, v ∈ V, u ̸= v}. Edges e1 and e2 are called
parallel edges if f(e1) = f(e2).

Definition 5. A directed multi-relational graph G = (V,E) consists of a set of vertices V , a set
of edges E, and a function f from E to {{u, v}|u, v ∈ V }. Edges e1 and e2 are called parallel edges
if f(e1) = f(e2).

Definition 6. (Adjacent vertices) Two vertices u and v in an undirected graph G are called ad-
jacent if {u, v} is an edge of graph G. If e = {u, v}, then e is called an incident edge with vertices
u and v. Edge e is also called a connecting edge between vertices u and v, and vertices u and v
are called the endpoints of edge {u, v}.

Definition 7. When e = {u, v} is an edge of the directed graph G. u is called the starting vertex
and v is called the ending vertex of the edge {u, v}.

Definition 8. (Degree of a vertex) The degree of a vertex in an undirected graph is the number
of edges connected to it. The degree of vertex v is denoted as deg(v).

Definition 9. In a directed graph, the incoming degree (deg−(v)) of vertex v is the number of
edges with v as the ending vertex. The outgoing degree (deg+(v)) of vertex v is the number of edges
with v as the starting vertex.

Definition 10. (Path) A path P from vertex v1 to vertex vk is a set of vertices {v1, v2, ..., vk}
such that there exists (vi, vi+1) ∈ E,∀i : 1 ≤ i < k. The length of path P is P (v1, vk) = k − 1 as it
does not count the starting vertex v1, and this length is also the number of edges contained in that
path.

6

Chapter 1. Overview of recommendation systems and deep neural networks

1.4.2 Graph representation

a. Adjacency list

The adjacency list is a list that represents all the edges of a graph. In an undirected graph,
each element of the list is a pair of two vertices that are the endpoints of the corresponding edge.
In a directed graph, each element is an ordered pair of two vertices representing the starting and
ending vertex of the corresponding arc.

Figure 1.5 illustrates how to represent a graph using an adjacency list.

v2v1 v5

v4v3

e1

e
2

e
3

e4

e
5

e 6

(a) Graph illustration

Vertex Adjacent vertices
v1 v2, v3, v4
v2 v1, v4, v5
v3 v1
v4 v1, v2, v5
v5 v2, v4

(b) List of adjacent vertices

Figure 1.5: Representation of a graph using an adjacency list

b. Adjacency matrix

When representing a graph using an adjacency list, the algorithm construction process can be
quite cumbersome if the graph has many edges. To simplify the computation, we can represent
the graph using an adjacency matrix.

Let’s assume G = (V,E) is a simple graph with n vertices. We can represent the graph using a
matrix AG = [aij] ∈ Rn×n, which is also known as an adjacency matrix:

• aij = 1 if {vi, vj} ∈ E.

• aij = 0 if there is no edge connecting vertex vi and vertex vj.

• It is conventionally set that aii = 0 with ∀i.

In the case of weighted graph representation, the value aij = w(i, j) represents the weight of
the edge connecting two adjacent vertices vi and vj.

1.4.3 Mô hình ma.ng n-ron đ` thi.
The graph neural network model was first introduced in 2005. GNN is a type of neural network

that operates directly on graph structures. By using neurons as nodes in the network structure,
each node contains its own information and collects additional information from neighboring nodes
to represent their relationships in the graph. These nodes are organized and combined according
to a specific model architecture to make predictions or classify results. Typically, GNN focuses on
solving the following problems:

• Node classification.

• Link prediction.

• Clustering detection.

• Graph classification.

7

Chapter 1. Overview of recommendation systems and deep neural networks

1.5 Embedding transformation
1.5.1 Concept of embedding

In the field of machine learning, embedding is a technique used to transform discrete attribute
data, such as words or categories, into continuous vectors in a lower-dimensional space. Thus,
embedding maps each discrete variable to a real-valued vector, which can be used as input for a
neural network.

Embedding techniques can be used with various types of data such as discrete data, text,
time series data, images, or graphs. The next section of the thesis will present some embedding
techniques used in the following chapters of the thesis, including:

• Embedding techniques for discrete data used for feedforward neural networks proposed in
chapter 2 and chapter 3.

• The technique of embedding sequential data (such as text sentences) is used for the proposed
transformation of neural networks in chapter 2, or time series data is used for recurrent neural
networks.

• The technique of embedding graph data is used for the proposed graph neural networks in
chapter 4.

1.5.2 Embedding transformation with discrete data
The two most common types of data are continuous and discrete data, which are categorized as

tabular data. Continuous data is represented by real numbers, while discrete values like product
categories are represented by text labels or numeric labels. In reality, labeling is just a convenient
way to represent the value dictionary of a discrete attribute, these labels don’t actually have any
useful value like continuous attributes.This type of data is called categorical attributes, they can
be ordered or unordered.

The important point is that the neural network model is not suitable for processing categori-
cal data due to their discrete nature. Therefore, discrete attributes need to be transformed into
vector form to represent their continuous nature within their value range. The transformed vector
representations will help improve the learning ability of neural network models in capturing the
correlation between discrete attribute values as well as the interactions between attributes. The
transformation process consists of two steps as shown in Figure 1.6.

Figure 1.6: Transformation of categorical attributes into embedding vectors

The technique of feature embedding is used to construct a feature vector for a categorical
attribute in its value domain. This technique aims to represent and rearrange elements with similar
influences close to each other in order to (1) discover the continuity of data in the embedding space,
and (2) capture the relationships between discrete categories of the attribute, thereby enabling
deep neural networks to learn more effectively. With this technique, the transformed embedding
vector has lower dimensions and its components are real numbers instead of just 0 and 1 values
like a one-hot vector.

8

Chapter 1. Overview of recommendation systems and deep neural networks

1.5.3 Embedding transformation with sequential data
Basic deep neural network models (such as feedforward neural networks) can handle numerical

and categorical data well, but they cannot process sequential data such as word sequences in a
sentence or time series data. Therefore, when processing text, neural network models not only
compute each word in a sentence but also consider how those words appear in order and relate
to each other. The meaning of words can change depending on the words that appear before and
after them in a sentence.

a. Sequential text data

There are three transformation techniques combined with embedding, as shown in Figure 1.7,
using neural networks to process sequential data.

Figure 1.7: Techniques for processing sequential data for neural networks

b. Sequential time-series data

Time series data is quite common, such as stock prices, electrocardiogram signals, or more com-
plex signals collected from IoT devices or smartphones. For this type of time series data, more
suitable neural network models are needed, such as convolutional neural networks (CNN) or recur-
rent neural networks (RNN). Especially when working with multivariate time series data, Principal
Component Analysis (PCA), although not entirely considered an embedding technique, is a very
popular method for analyzing and reducing the dimensionality of this multivariate data.

1.5.4 Embedding transformation with graph data
Graph embedding, also known as graph embedding, is a technique that allows representing a

graph as high-dimensional vectors. This enables the use of suitable machine learning algorithms or
neural networks to process and analyze information within the graph, such as node classification,
link prediction, and graph clustering.

There are multiple ways to perform graph embedding, such as random walk, deep walk, matrix
factorization, and other methods based on deep neural networks. The results of graph embedding
have numerous practical applications, such as social network analysis or recommendation system
development. For example, it can be used to cluster similar users in a social network or suggest
similar products to customers during the purchasing process.

9

Chapter 2|Proposal of a deep neural network model for cus-
tomer purchasing prediction

Chapter 2 presents the approach to solving Problem 1, which is the binary prediction of whether
a customer will make a purchase in the current working session. This chapter proposes the use of
two deep neural networks, including wide and deep neural networks and transformational neural
networks, to learn from sequential data representing customer session information.

2.1 Problem statement
Let’s assume that the training dataset consists of n samples (X , y), where X is a recorded

data string with m attributes related to customers and products, and y ∈ (0.1) is the label
corresponding to the customer’s purchasing behavior (y = 1 if the customer buys the product,
and y = 0 otherwise). Therefore, Problem 1 is to build a model that predicts y ≈ ŷ = f(x) in
order to estimate the probability of a user making a purchase based on the input data string.

2.2 Proposed models
2.2.1 Wide and deep neural network

The proposed wide and deep neural network model has the following architectural design:

• Wide branch: consists of 2 feed-forward layers, with the output layer having one neuron and
the input layer having a number of neurons determined by: N = Ncat + Nnum, where N is
the number of neurons in the input layer, Ncat is the number of categorical attribute fields,
and Nnum is the number of pairwise interactions between categorical attribute fields.

• Deep branch: consists of 6 feed-forward layers, including 1 input layer with a number of
neurons equal to the number of attribute fields, 1 embedding layer, 3 hidden layers with
neuron numbers taken as 400 − 400 − 400 respectively, and 1 output layer with 1 neuron.
The hidden neurons use the ReLU activation function, while the output neuron uses the
sigmoid activation function.

The structure of the model is shown in Figure 2.1.

Figure 2.1: A wide and deep model structure used for mouse click prediction

This proposed network model has the following improvements:

10

Chapter 2. Proposal of a deep neural network model for customer purchasing prediction

• The proposal suggests using embedding with categorical attributes and linking data with
other attributes to create a feature embedding vector for session work.

• Building a network architecture with several neuron layers in the deep branch (FNN branch).

• Performing cross-product transformation between pairs of attributes to discover hidden in-
teractions between attribute fields.

Combining both deep and wide learning techniques helps improve the accuracy of the forecasting
model compared to models that only use one technique.

2.2.2 Transformer network
The author proposes a modified Transformer architecture by adding an attribute embedding

layer to improve the model’s performance on tabular data, as described in Figure 2.2, called the
FE-Transformer model. This model suggests adding an embedding layer to transform all attributes,
including numerical and categorical ones, into embedding vectors, which will then be processed
by a sequence of Transformer layers. Therefore, each Transformer layer has the ability to learn
distinct features in the dataset.

Figure 2.2: FE-Transformer Architecture

The detailed design of the two components of the FE-Transformer architecture is illustrated in
Figure 2.3:

(a) Attribute embedding layer (b) Transformer layer

Figure 2.3: Design of layers for FE-Transformer model

11

Chapter 2. Proposal of a deep neural network model for customer purchasing prediction

2.3 Experimental technique
2.3.1 Experimental dataset

This experimental section uses the dataset provided by Yoochoose GmbH.

2.3.2 Feature engineering
Table 2.1 lists the extracted base attributes.

Table 2.1: List of extracted attributes

I Product attributes (2 attributes)
1 Product ID Category Product code
2 Cat ID Category Product category code
II Session attributes (11 attributes)
3 The First Product Category The first product in the session
4 The Pre Product Danh mu. c The previous product in the session
5 Session Duration Numberic Length of the session
6 Current Duration Numberic
7 #Clicks/Session Numberic Number of clicks in the session
8 #Products/Session Numberic Number of products in the session
9 #Clicks So Far Numberic Number of clicks up to now in the session
10 #Products So Far Numberic Number of products clicked up to now
11 #Views of Product Numberic Number of views for this product
12 #Products of the same Cat Numberic Number of products in the same category
13 #Cats Numberic Number of categories
III Time attributes in hours, minutes, seconds (9 attributes
14-16 Session Start Category Session start time
17-19 The first time that product

is clicked
Danh mu. c First time selecting a product

20-22 Current Time Category Current time
IV Boolean attribute (4 attributes)
23 The most clicked product Boolean The most clicked product in the session
24 The most viewed product Boolean The most viewed product in the session
25 The first clicked product Boolean The first clicked product in the session
26 The most viewed category Boolean The category with the highest views

2.3.3 Data splitting method
The entire dataset is randomly divided into 60% for training, 20% for evaluating the effectiveness

during network structure optimization, and 20% for testing and comparing between expected
network models during network structure construction.

Table 2.2: Label quantities for each dataset after splitting

Data Yes No Total
Train 325,966 5,593,860 5,919,826
Validation 81,808 1,398,149 1,479,957
Test 101,922 1,748,024 1,849,946

2.3.4 Model evaluation metric
In order to find the best forecasting model, the experimental part uses the following basic

indicators to analyze and evaluate different network structures:

• AUC (Area Under the Curve).

12

Chapter 2. Proposal of a deep neural network model for customer purchasing prediction

• Logloss (Logarithmic Loss).

• Ð. chính xác (Accuracy).

2.4 Experimental results
2.4.1 Experimental results

Table 2.3: Comparison of effectiveness among models in mouse click prediction

Model AUC Logloss Accuracy
LR 0.7604 0.5842 0.6967
FNN 0.8521 0.6145 0.7789
FMNN 0.8620 0.5061 0.7814
PNN 0.8596 0.5332 0.7808
W&DNN 0.8670 0.4519 0.7826
FE-Transformer 0.7868 0.1844 0.9449

2.4.2 Comparison with related works
The study also compared the results with Yandex Data Factory in the RecSys Challenge 2015,

using the Yoochoose dataset. According to this study, they used a combined method including
Gradient Boosted Decision Tree + Factorization Machine + Singular Value Decomposition (SVD)
analysis with an AUC score of 0.85 and an accuracy of 0.77. Therefore, it can be seen that the
current research achieves better results with fewer computational resources.

The contributions of proposing and designing two deep neural networks are as follows:

• Both models use an improved feedforward neural network architecture. The W&DNN model
combines the FNN network with a linear model in the wide branch. The FE-Transformer
model uses self-attention to learn important features from session components.

• The W&DNN model uses embedding in the deep branch and cross-product transforma-
tion in the wide branch, allowing the model to capture both low and high-order attribute
interactions. The FE-Transformer model is enhanced with attribute embedding.

2.5 Chapter conclusion
This chapter investigates and proposes the use of two specific neural network models, namely

wide & deep networks and transformer networks, to address Problem 1 in predicting customers’
shopping behavior based on clickstream data. The results show that the wide and deep model
has several advantages: (1) it does not require pre-training, (2) it can learn both low-level and
high-level interactions of attribute fields, (3) it leverages the memorization ability of linear models
and the generalization ability of deep neural networks within the same model. The transformer
model performs well in processing sequential data after applying an attribute embedding layer.
The research results of the wide and deep model have been published in [A-1], and the transformer
model has been submitted for publication in [A-8] (to ensure diversity in experiments, [A-8] uses
a different dataset from this dissertation).

One important conclusion for Problem 1 is that accurate predictions of customer purchasing
behavior can be achieved by analyzing mouse click sequences in the current session, without
considering the user’s historical information.

13

Chapter 3|Proposal of a graph neural network model for
the top-k recommendation

Chapter 3 presents an approach to solving Problem 2 in constructing a suggestive model. This
chapter proposes representing session data as a graph, from which the use of graph neural networks
to build the top-k recommendation problem is studied.

3.1 Problem statement
The top-k problem is a recommendation system that suggests products (such as movies, music,

or items when making purchases...) for users based on their interactions and those of others with
the system. The recommendation system will rank all proposed products in descending order
of probability. The options can be chosen by users, and the return will be limited to the top-k
recommended products.

3.2 Proposed design using graph
3.2.1 Session representation using graph

A session s can be represented by a directed graph Gs = (Vs, Es). In which, each vertex represents
a product vs,i ∈ V (V is the set of overall vertices of the entire system). Illustration of graph
representation from work sessions sk is shown in Figure 3.1.

Session s1 v1 → v2 → v4 → v3
Session s2 v1 → v2 → v5 → v4
Session s3 v2 → v5 → v6 → vn

... ...
Session sk v5 → v4 → v3 → v6

... ...

(a) List of sessions

v1

v2

v4

v3

v5

v6

vn

(b) Graph representation

Figure 3.1: Illustration of representing sessions with a graph

Similar to a graph, when representing a session as a graph, we have some definitions:

Definition 11. (local path length) Let vi and vj be any two clicked items in session s with click
orders x and y respectively, where x < y. The length of the path from vi to vj in session s is
denoted as ps(vi, vj) satisfying the formula:ps(vi, vj) = y − x.

Definition 12. (p-click) Two clicks on the products vi and vj in a session s are called p-click if
the item vj is clicked exactly p times after vi in the session s. In other words, two clicks on vi and
vj in a session s are p-click if and only if ps(vi, vj) = p.

Definition 13. (adjacent click) Two clicks on the products vi and vj in a session s are called
adjacent click if the item vj is clicked immediately after vi in the session s. In other words, two
clicks on vi and vj in a session s are adjacent click if and only if ps(vi, vj) = 1.

Definition 14. (adjacent click weight) Two clicks on products vi and vj in a session s have a
weight equal to the number of adjacent clicks generated by the two products vi and vj in session s,
denoted as w

vi,vj
s . This weight is called the adjacent click weight.

14

Chapter 3. Proposal of a graph neural network model for the top-k recommendation

Definition 15. (p-click weight) Two clicks on products vi and vj in a session s have a weight
equal to the number of p-clicks generated by the two products vi and vj in session s, denoted as
w

vi,vj
s,p . This weight is called the p-click weight.

Definition 16. (global path) A path P from vertex v1 to vertex vk where the vertices v1 to vk
can be in different sessions, then the global path between these two vertices is the path between 2
vertices in the overall graph G representing the entire set of working sessions, denoted as P (v1, vk).

The question is: ”With a vertex set V = {v1, v2, ..., vn} with a fixed number of n products, how
should we represent the overall graph G?”.

3.2.2 Proposed graph design
This section proposes several options for constructing graph G from the working session list of

customers. Specifically, the author suggests three types of graphs as follows:

a. Graph G

Let’s call G a graph that satisfies adjacency matrix MG ∈ Rn×n, where M
vi,vj
G is the number of

times product vj is immediately clicked after product vi in a session.

M
vi,vj
G =

∑
s

wvi,vj
s ,∀s (3.1)

where w
vi,vj
s is ”adjacency weight” of two vertices vi, vj in working session s.

b. Graph H

Let’s call H be a graph satisfying the adjacency matrix MH ∈ Rn×n where M
vi,vj
H is the number

of times product vj is clicked after product vi in a session.

M
vi,vj
H =

∑
s

|s|∑
p=0

wvi,vj
s,p , ∀s (3.2)

where w
vi,vj
s,p is ”p-click weight” of two vertices vi, vj in working session s.

c. Graph K

Suppose c is the maximum number of clicks in a session in the dataset. Let’s call K be a graph
satisfying the block adjacency matrix MK ∈ Rn×n×c, where M

vi,vj
K [p] represents the number of

times the product vj is clicked after product vi exactly p clicks in a session.

M
vi,vj
K [p] =

∑
s

wvi,vj
s,p (3.3)

3.3 Proposed models
3.3.1 Feedforward neural network model (FNN)

This section proposes the use of a Feedforward Neural Network (FNN) as in chapter 2, but
addresses Problem 2, which is to build a top-k recommendation model instead of Problem 1.

a. Product embedding layer

The section proposes the construction of a product embedding layer as shown in Figure 3.2.
This embedding layer will be used as the base layer to build various models in this thesis.

15

Chapter 3. Proposal of a graph neural network model for the top-k recommendation

id1

id2

c

idc

O
ne

 h
ot

 e
nc

od
in

g

c * n

x1

x2

xc

n * 256

w1

w2

wn

.

.

.

c * 256

e1

e2

ec

ID X W E

.

.

.

.

.

.

.

.

.

Figure 3.2: Product embedding layer (Layer.ItemEmbed)

b. Feedforward neural network model

id1

id2
Lớ

p
nh

ún
g

(L
ay

er
.It

em
Em

be
d)

e1

e2

D
en

se
 S

of
tm

ax

c x 1 c x q

y

 n x 1
Flatten

idc

.

.

.

ec

.

.

.

q=256

n = 52069

Figure 3.3: Baseline FNN model

3.3.2 Graph Neural Network (GNN)

a. Models for graph G và H

N
or

m
 L

ay
er

p1

p2

pc Fu
lly

 C
on

ne
ct

ed
 L

ay
er

 S

of
tm

ax

d x c

G
ra

ph

id1

id2

idc

c x 1

y

d x 1

z1

z2

zc

d x c

.

.

.

.

.

.

.

.

.

Figure 3.4: Models G và H

b. Model for graph K

To improve the graph neural network model when working with a multi-relational graph K with
weights of edges is a vector c, the thesis proposes to use an additional deep learning layer as shown
in Figure 3.5.

v1

v2

vc

N
or

m
 L

ay
er

p1

p2

pc Fu
lly

 C
on

ne
ct

ed
 L

ay
er

 S

of
tm

ax

D
ep

th
 L

ay
er

d x c x c d x c

G
ra

ph
 K

id1

id2

idc

c x 1

y

d x 1

z1

z2

zc

d x c

.

.

.

.

.

.

.

.

.

.

.

.

Figure 3.5: Model for graph K

16

Chapter 3. Proposal of a graph neural network model for the top-k recommendation

3.4 Experimental technique
3.4.1 Data preprocessing

The dataset after preprocessing is described in Table 3.1. The distribution chart of the number

Table 3.1: Statistics on the Yoochoose click dataset after preprocessing

Train set Test set Total
Number of sessions 7,990,018 1,996,408 9,986,426
Number of products 52,069 38,733 52,069
Number of clicks 31,744,233 7,926,322 39,670,555
Highest clicks 200 200 200
Lowest clicks 2 2 2
Avg clicks 3.97 3.97 3.97

of sessions clicked from 1 to 10 times in Figure 3.6, as the number of sessions clicked more than
10 is very small, it does not need to be shown in this chart.

2 3 4 5 6 7 8 9 10
S l ng nh p m i phiên

0

1

2

3

4

S
 l

ng
 p

hi
ên

 (t
ri

u)

4 nh p - 11.721%

B hu n luy n
B ki m tra

0

20

40

60

80

Ph
ân

 b
 n

h
p

trê
n

b
 h

u
n

lu
y

n
(%

)

Figure 3.6: Distribution chart of the number of mouse clicks (after preprocessing).

3.4.2 Data normalization for training
The data sessions in the original dataset have different click counts, so they cannot be directly

used for classification models. To obtain suitable training data for the models, the author proposes
several algorithms to normalize the training data according to the input standards designed for
the proposed models.

a. Data normalization for model FNN

The FNN model is a basic model that does not use graphs, so the algorithm for normalizing
the data is quite simple and is shown in model 3.7:

The pseudo code of the data normalization steps is described in Algorithm 3.1:

b. Data normalization for model GNN

To obtain standardized input vectors for graph-based models, the normalization steps are de-
scribed as shown in Figure 3.8 for each session of each graph.

The pseudo code of the data normalization steps is described in Algorithm 3.2:

3.4.3 Model evaluation metrics
Proposed evaluation metrics Recall@k, MRR@k và ACCs@k to evaluate top-k recommenda-

tion systems.

17

Chapter 3. Proposal of a graph neural network model for the top-k recommendation

s1

s2

sc-1

sc

id1

id2

idc'

Á
nh

 x
ạ

đỉ
nh

 v
à

ch
uẩ

n
hó

a

id5

id4

id3

M
ã

hó
a

O
ne

 h
ot

x

y

.

.

.

.

.

.

s3

Figure 3.7: Data normalization for model FNN

Algorithm 3.1: NORM.FNN:
Data normalization for model FNN
Input: s = {id1, id2, ..., idc}
Output: input for training as vector x và output y

1 c′ ← c;
2 while c′ < 5 do
3 Append to session s an item None;
4 c′ ← c′ + 1;

5 x← {id1, id2, id3, id4};
6 Z ← {id5, id6, ..., idc′};
7 y← OneHotEncoding(Z)
8 return x ∈ R4, y ∈ Rn×2;

id1

id2

idc'

.

.

.

Á
nh

 x
ạ

đỉ
nh

 v
à

ch
uẩ

n
hó

a

id5

id4

id3

Đ
ồ

th
ị

v1

v2

v4

v3

M
ã

hó
a

O
ne

 h
ot

x

y

s1

s2

sc-1

sc

.

.

.

s3

Figure 3.8: Data normalization for model GNN

Recall@k =
1

n

n−1∑
i=0

|Si
pred ∩ Si

labels|
|Si

labels|
(3.4)

MRR@k =
1

n

n−1∑
i=0

RR(idi∗, S
i
pred) (3.5)

18

Chapter 3. Proposal of a graph neural network model for the top-k recommendation

Algorithm 3.2: NORM.GNN:
Data normalization for model GNN
Input: s = {id1, id2, id3, ..., idc−1, idc}
Output: input for training as vector x và output y

1 c′ ← c;
2 while c′ < 5 do
3 Append to session s an item None;
4 c′ ← c′ + 1;

5 x← {};
6 for i← 1 to 4 by 1 do
7 if idi == None then
8 vi ← vector with all 0;
9 else

10 vi ← weight vector of vertex idi in the graph;

11 Thêm vi vào x

12 Z ← {id5, id6, ..., idc′};
13 y← OneHotEncoding(Z)
14 return x ∈ R4, y ∈ Rn×2;

ACCs@k =
1

n

n−1∑
i=0

min(1, |Si
pred ∩ Si

labels|) (3.6)

3.5 Experimental results
Figure 3.9 describe the experimental results for models

FN
N.

Ba
se

GN
N.

G

GN
N.

H

GN
N.

K

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re
ca

ll@
k

k= 1
k= 5
k= 10
k= 20

FN
N.

Ba
se

GN
N.

G

GN
N.

H

GN
N.

K

0.2

0.3

0.4

0.5

0.6

0.7

0.8

AC
Cs

@
k

k= 1
k= 5
k= 10
k= 20

FN
N.

Ba
se

GN
N.

G

GN
N.

H

GN
N.

K

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
RR

@
k

k= 1
k= 5
k= 10
k= 20

Figure 3.9: Comparision between model GNN and FNN

3.6 Chapter conclusion
In this chapter, the author discusses the proposal of designing three different graphs, namely a

simple graph G, another simple graph H, and a multi-relational graph K. These graphs differ in
how they are designed in terms of edge sets and edge weights, representing different relationships
between nodes, including relationships within intra-sessions and between inter-sessions in the
dataset. Experimental results show that the Graph Neural Network (GNN) model combined with
graph representations of work sessions yields very promising results compared to the Feedforward
Neural Network (FNN) model without using graphs. The chapter concludes that Graph Neural
Networks (GNNs) can be effectively used to build top-k recommendation systems.

19

Chapter 4|Improvement of GNN model with embedding
With the results achieved in Chapter 3 for Problem 2 by representing work sessions as graphs,

however, there is still a challenge that the proposed model must handle multi-label problems with
a number of labels equivalent to the number of vertices in the graph, which is very large.

4.1 Challenges of multi-label classification problem
Multi-label classification is a difficult problem in machine learning for several reasons such as

label dependency, large label space, imbalanced data, and feature extraction.

4.2 Graph embedding method
Definition 17. Graph embedding is a technique to represent a graph as high-dimensional vectors
with the purpose of supporting machine learning algorithms for processing and analyzing graph
information, such as node classification, link prediction, and graph clustering.

4.2.1 Vertex embedding
Vertex embedding is used to transform a vertex v ∈ V into a d-dimensional embedding space

to generate vertex embedding vectors in the new space ∨ ∈ Rd, as illustrated in Figure 4.1.

Figure 4.1: Vertex embedding

4.2.2 Graph embedding
The graph embedding is a transformation that takes a group of related vertices and embeds

them into a d-dimensional embedding space to create embedding vectors in the new space ∨ ∈ Rd,
as illustrated in Figure 4.2.

Figure 4.2: Sub-graph embedding

4.3 Proposed improvement of GNN.K model
4.3.1 Conversion of multi-label problem into binary problem

The author proposes an additional binary model to evaluate the effectiveness between the multi-
label model and the binary model. To transform a multi-label model into a binary model, we input
the labels to the model to answer ”yes” or ”no” with that label.

4.3.2 Proposed binary feedforward neural network
The author converts it into a binary model by continuing to use the Layer.ItemEmbed product

embedding layer as the base model for FNN, but with the difference of adding the label component
id∗ and cross-combination with each idi component of the input data. The proposed model is
described in Figure 4.3.

20

Chapter 4. Improvement of GNN model with embedding

Lớ
p

nh
ún

g
(L

ay
er

.It
em

Em
be

d)

e1

e2

e3

e4

5 x q

e*

Flatten

e1

e*

2 x q

e2

e*

e3

e*

e4

e*

D
en

se
 B

lo
ck

q

d1

d2

d3

d4

4 x q

Flatten

D
en

se
 B

lo
ck

q

Flatten

D
en

se
 B

lo
ck

q

Flatten

D
en

se
 B

lo
ck

q

Flatten

id1

id2

id3

id4

5

id*

z1

z2

z3

1024

z1023

z1024

.

.

. D
en

se
 B

lo
ck

 -
51

2
D

en
se

 B
lo

ck
 -

25
6

D
en

se
 B

lo
ck

 -
12

8

D
en

se
 B

lo
ck

 -
64

D
en

se
 B

lo
ck

 -
32

D
en

se
 B

lo
ck

 -
2

So

ftm
ax

y1

y2

2

q=256

Figure 4.3: Binary FNN model (FNN.bin)

4.3.3 Proposed embedding model for binary graph K

a. Proposed session embedding layer combination

First, the thesis proposes a technical embedding of the session representation graph by combining
the FNN.bin model (Figure 4.3) using the Layer.ItemEmbed product embedding layer and the K
graph embedding layer, where theK graph embedding layer also utilizes cross-embedding technique
by combining label id∗ with each component idi. The proposed session embedding layer, named
Layer.SessionEmbed, is designed as shown in Figure 4.4.

b. Proposed model

The proposed model is complex due to the integration of multiple improvements through exper-
imental models to handle the multi-label problem with a large label space, including: (1) binary
transformation; (2) graph representation; (3) graph embedding combined with label embedding.
The suggested model has a binary structure as shown in Figure 4.5.

4.4 Experimental technique
4.4.1 Data normalization for training

The algorithm for data normalization for training is described in Algorithm 4.1 as follows for
each session corresponding to graph K.

Thu.t toán chun hóa d˜ li.u hu´n luy.n đ.c mô ta nh sau cho m˜i phiên ´ng v´i đ` thi. K đ.c mô
ta ta. i Thu.t toán 4.1:

4.5 Experimental results
Figure 4.6 represents the aggregated results of k ∈ [1, 5, 10, 20] in the same chart for convenient

comparison. The results show that the embedded model with graph K (GNN.Bin.K) outperforms
all other models using different neural networks.

21

Chapter 4. Improvement of GNN model with embedding

Lớ
p

nh
ún

g
(L

ay
er

.It
em

Em
be

d)

e1

e2

e3

e4

5 x q

e*

Flatten

e1

e*

2 x q

e2

e*

e3

e*

e4

e*

D
en

se
B

lo
ck

q

d1

d2

d3

d4

4 x q

Flatten

D
en

se
B

lo
ck

q

Flatten

D
en

se
 B

lo
ck

q

Flatten

D
en

se
 B

lo
ck

q

G
ra

ph
 K v1

v2

v3

v4

4 x 4

D
ep

th
-L

ay
er

s1

s2

s3

s4

4 x 4

M
at

M
ul

Flatten

x1

x2

x3

x4

4 x q

id1

id2

id3

id4

5

id*

z1

z2

z3

1024

z1023

z1024

.

.

.

q=256

Figure 4.4: Session embedding layer with graph K (Layer.SessionEmbed)

Algorithm 4.1: NORM.GNN.Bin:
Data normalization for model GNN binary
Input:

s = {id1, id2, ..., idc}
nid∗ //s´ l.ng đinh c`n c`n quan sát xem có phai là nhãn không

Output: Input data for traiing as x and output as y
1 c′ ← c;
2 while c′ < 5 do
3 Append to session s a click None;
4 c′ ← c′ + 1;

5 Z ← id5, id6, ..., idc′ ;
6 I ← t.p ch´a nid∗ đinh k` cua các đinh ng˜u nhiên trong phiên, u tiên đinh có trong các
{id5, id6, ..., idc′}; //lu ý bo các đinh có giá tri. là None.

7 for đinh o ∈ I do
8 xo ← {vo1, vo2, vo3, vo4} v´i voi là tro.ng s´ ca.nh n´i t` đinh idi đ´n đinh o;
9 yo ← {0, 1}; //true label

10 if o ̸∈ Z then
11 yo ← {1, 0} //false label

12 x← {xo|o ∈ I} ∈ Rnid∗×4;
13 y← {yo|o ∈ I} ∈ Rnid∗×2;
14 return x, y;

22

Chapter 4. Improvement of GNN model with embedding

id1

id2

id3

id4

5

id*

z1

z2

z3

1024

z1023

z1024

.

.

.

D
en

se
 B

lo
ck

 -
51

2
D

en
se

 B
lo

ck
 -

25
6

D
en

se
 B

lo
ck

 -
12

8

D
en

se
 B

lo
ck

 -
64

D
en

se
 B

lo
ck

 -
32

D
en

se
 B

lo
ck

 -
2

So

ftm
ax

y1

y2

2

Lớ
p

nh
ún

g
La

ye
r.S

es
si

on
Em

be
d

Figure 4.5: Binary embedding model with graph K (GNN.Bin.K)

FN
N.

Ba
se

FN
N.

Bi
n

GN
N.

K

GN
N.

Bi
n.

K

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re
ca

ll@
k

k= 1
k= 5
k= 10
k= 20

FN
N.

Ba
se

FN
N.

Bi
n

GN
N.

K

GN
N.

Bi
n.

K

0.2

0.3

0.4

0.5

0.6

0.7

0.8
AC

Cs
@

k

k= 1
k= 5
k= 10
k= 20

FN
N.

Ba
se

FN
N.

Bi
n

GN
N.

K

GN
N.

Bi
n.

K

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
RR

@
k

k= 1
k= 5
k= 10
k= 20

Figure 4.6: Comparison of model GNN.Bin.K with others

4.6 Chapter conclusion
The graph embedding transformation is an important technique for building top-k recommen-

dation systems, especially for problems related to representing user interactions when selecting
products during work sessions in the form of graphs. By learning how to represent the graph into
a new embedding space to capture the underlying features of session embedding vectors, the top-k
recommendation model operates more effectively.

The experimental results in this chapter have demonstrated that the proposed model achieves
good performance with three improvements: (1) binary model conversion, (2) the proposal of a
graph embedding layer for session representation, and (3) the design of combining label embed-
dings.

23

Conclusion

1 General conclusion
The thesis researches using graphs to represent clickstream event data for online shopping,

consisting of three graphs G, H, and K with varying complexities to evaluate the effectiveness of
top-k recommendation models. With the graph representation of the data, the author proposes
using Graph Neural Networks (GNN) as the recommendation model.

2 The achievements
Some observations on the achievements compared to previous studies:

✓ This thesis explores and proposes a deep neural network model for Problem 1 and a graph
neural network for Problem 2. Problem 1 is a binary problem, while Problem 2 is a top-k
multi-label problem.

✓ This thesis utilizes both the training and testing datasets from the original dataset, which
consists of over 52 thousand products, or labels.

➜ Previous studies did not use a separate testing dataset, but instead extracted it from the
training dataset.

✓ This thesis proposes and constructs a highly scalable GNN model that operates on graphs
with over 52 thousand vertices. The thesis suggests designing graph G with the concept of
neighboring nodes, graph H using edge weights as paths between nodes in a session, and
graph K with edge weights as a c-dimensional vector.

➜ Some related studies present the inability to run the model with complete datasets,
therefore they have to experiment with smaller datasets with even fewer labels.

✓ The proposed model achieves a Recall@20 of 0.712 and MRR@20 of 0.363.

➜ The result above is better than Kiewan’s study with a Recall@20 of 0.691 and Tan’s
study with a Recall@20 of 0.680, and significantly better than Balázs Hidas’ initial study
with a Recall@20 of 0.632.

3 The main contributions
This thesis has the following main contributions:

• Using graphs to model customer shopping behavior through clickstream in work sessions,
including both single and multiple relationships.

• The thesis proposes a deep neural network model for Problem 1 and a graph neural network
for Problem 2. For Problem 2, the thesis suggests designing three graphs: G, H, and K. For
the K multi-relational graph, the thesis proposes using edge weights as a vector and also
incorporating an additional linear deep learning layer to enable more effective learning of
this graph by the GNN.

• The algorithm proposed embeds the graph to allow the GNN model to learn hidden attributes
of user behavior during the selection of product categories in the current session.

24

LIST OF THE PUBLICATIONS RELATED TO THE

DISSERTATION

1. Khang Nguyen, Anh V. Nguyen, Lan N. Vu, Nga T. Mai, and Binh P. Nguyen,

”An Efficient Deep Learning Method for Customer Behaviour Prediction Using

Mouse Click Events”, Proceedings of the 11th National Conference on Fundamental

and Applied Information Technology Research (FAIR’2028), 2018, pp.10,

Vietnam, doi = 10.15625/vap.2018.0002.

2. Khang Nguyen, Nga T. Mai, An H. Nguyen, and Binh P. Nguyen, ”Prediction of

Wart Treatment Using Deep Learning with Implicit Feature Engineering”, Soft

Computing for Biomedical Applications and Related Topics, Springer International

Publishing, 2020, pp.153–168, doi = 10.1007/978-3-030-49536-7_14.

3. Nguyễn Tuấn Khang, Nguyễn Viết Việt, Nguyễn Hải An, Mai Sơn, Mai

Thúy Nga, và Nguyễn Việt Anh, ”Phát hiện giao dịch thẻ gian lận sử dụng mô hình

học sâu”, hội thảo quốc gia lần thứ XXIII, 2020, pp.335

4. Nguyễn Tuấn Khang, Mai Thúy Nga, Nguyễn Hải An, và Nguyễn Việt Anh,

”Phân Tích Hành Vi Khách Hàng Với Mô Hình Mạng Học Sâu Đồ Thị”, hội thảo

quốc gia lần thứ XXIV, 2021, p.439

5. Nguyễn Tuấn Khang, Nguyễn Tú Anh, Mai Thúy Nga, Nguyễn Hải An, và

Nguyễn Việt Anh, ”Hệ Gợi Ý Mua Sắm Dựa Theo Phiên Làm Việc Với Mô Hình

Mạng Học Sâu Đồ Thị”, chuyên san Các công trình nghiên cứu, phát triển và ứng

dụng CNTT và Truyền thông, Bộ Thông tin và Truyền thông, 2022, vol. 2022, no.

02.

6. Khang Nguyen, Viet V. Nguyen, Nga T. Mai, An H. Nguyen, and Anh V.

Nguyen, ”Behavioral gait recognition using hybrid Convolutional Neural

Networks”, Journal of Computer Science and Cybernetics, 2023

7. Khang Nguyen, Nga T. Mai, An H. Nguyen, and Anh V. Nguyen, ”A

Computational Model for Predicting Customer Behaviors Using Transformer

Adapted with Tabular Features”, International Journal of Computational

Intelligence Systems, vol. 16, no. 1, pp. 1–8, 2023, doi = 10.1007/s44196-023-

00307-5.

8. Khang Nguyen, Anh T. Nguyen, Nga T. Mai, An H. Nguyen, and Anh V.

Nguyen, ”Developing Advanced Product Recommendation System using

Embedding Graph Neural Networks”, Applied Intelligence, Springer, 2023 (bài

đang nộp)

