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Introduction

Overview of research situation and the necessity of the re-
search

Numerous problems in the fields of mechanics, physics, biology, environment, etc.
are reduced to boundary value problems for high order nonlinear ordinary differential
equations (ODE), integro-differential equations (IDE) and functional differential equa-
tions (FDE). The study of qualitative aspects of these problems such as the existence,
uniqueness and properties of solutions, and the methods for finding the solutions al-
ways are of interests of mathematicians and engineers. One can find exact solutions
of the problems in a very small number of special cases. In general, one needs to seek
their approximations by approximate methods, mainly numerical methods. Below we
review some important topics in the above field of nonlinear boundary value problems
and justify why we select problems for studying in this thesis.

a) Existence of solutions and numerical methods for two-point third order
nonlinear boundary value problems

High order differential equations, especially third order and fourth order differen-
tial equations describe many problems of mechanics, physics and engineering such as
bending of beams, heat conduction, underground water flow, thermoelasticity, plasma
physics and so on [1,2,3,/4]. The study of qualitative aspects and solution methods for
linear problems, when the equations and boundary conditions are linear, is basically re-
solved. In recent years, ones draw a great attention to nonlinear differential equations.
There are numerous researches on the existence and solution methods for fourth order
nonlinear boundary value problems. It is worthy to mention some typical works con-
cerning the existence of solutions and positive solutions, the multiplicity of solutions,
and analytical and numerical methods for finding solutions [5,6,7,8,9,10]. Among the
contributions to the study of fourth order nonlinear boundary value problems, there
are some results of Vietnamese authors (see, e.g., |[11,|12}/13}/14]).

Concerning the not fully or fully third order differential equations

u"'(t) = f(tu(t),d(t),d"(t), 0<t<l1 (0.0.1)

there are also many researches. A number of works are devoted to the existence, unique-
ness and positivity of solutions of the problems with different boundary conditions. The
methods for investigating qualitative aspects of the problems are diverse, including the
method of lower and upper solutions and monotone technique [7,/15,/16,/17,/18,[19],
Leray-Schauder continuation principle [20], fixed point theory on cones [21], etc. It
should be emphasized that in the above works there is an essential assumption that
the function f(t,z,y,2) : [0,1] x R® — R satisfies a Nagumo-type condition on the
last two variables 22|, or linear growth in z,y, z at infinity [20], or some complicated
conditions including monotone increase in each of x and y 23|, or one-sided Lipschitz
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condition in x for f = f(¢t,z) |19] and in =,y for f = f(¢,z,y) [17]. Sun et al. in |24]
studied the existence of monotone positive solution of the BVP for the case f = f(u(t))
under conditions which are difficult to be verified.

Differently from the above approaches to the third order boundary value problems,
very recently Kelevedjiev and Todorov [25] using barrier strips type conditions gave suf-
ficient conditions guaranteeing positive or non-negative, monotone, convex or concave
solutions.

It should be said that in the mentioned works, no examples of solutions are shown
although the sufficient conditions are satisfied and the verification of them is difficult.
Therefore, it 1s desired to overcome the above shortcoming, namely, to construct easily
verified sufficient conditions and show examples when these conditions are satisfied and
solutions in these examples.

For solving third order linear and nonlinear boundary value problems for the equa-
tion having in mind that the problems under consideration have solutions, there
is a great number of methods including analytical and numerical methods. Below we
briefly review these methods via some typical works. First we mention some works
where analytical methods are used. Specifically, in |26] the authors proposed an it-
erative method based on embedding Green’s functions into well-known fixed point
iterations, including Picard’s and Krasnoselskii-Mann’s schemes. The uniform con-
vergence is proved but the method is very difficult to realize because it requires to
calculate integrals of the product the Green function of the problem with the func-
tion f(t, u,(t),ul (t),ul(t)) at each iteration. In [|27,28] the Adomian decomposition
method and its modification are applied. Recently, in 2020, He [29] suggests a simple
but effective way to the third-order ordinary differential equations by the Taylor series
technique. In general, for solving the BVPs for nonlinear third order equations numer-
ical methods are widely used. Namely, Al Said et al. [30] have solved a third order
two point BVP using cubic splines. Noor et al. [31] generated second order method
based on quartic splines. Other authors [32,33] generated finite difference schemes
using fourth degree B-spline and quintic polynomial spline for this problem subject to
other boundary conditions. El-Danaf [34] constructed a new spline method based on
quartic nonpolynomial spline functions that has a polynomial part and a trigonomet-
ric part to develop numerical methods for a linear differential equation. Recently, in
2016 Pandey [35] solved the problem for the case f = f(t,u) by the use of quartic
polynomial splines. The convergence of the method of at least O(h?) for the linear
case f = f(t) was proved. In the following year, this author in [36| proposed two
difference schemes for the general case f = f(¢,u(t),u/(t),u”(t)) and also established
the second order accuracy for the linear case. In 2019, Chaurasia et al. [37] used ex-
ponential amalgamation of cubic spline functions to form a novel numerical method of
second-order accuracy. [t should be emphasized that all of above mentioned authors
only drew attention to the construction of the discrete analogue of the equation
associated with some boundary conditions and estimated the error of the obtained solu-
tion assuming that the nonlinear system of algebraic equations can be solved by known
iterative methods. Thus, they did not take into account the errors arising in the last
iterative methods.

Motivated by the above facts we wish to construct iterative numerical methods
of competitive accuracy or more accurate compared with some existing methods, and
importantly, to obtain the total error combining the error of iterative process and the
error of discretization of continuous problems at each iteration.



b) Boundary value problems with integral boundary conditions
Recently, boundary value problems for nonlinear differential equations with integral
boundary conditions have attracted attention from many researchers. They consti-
tute a very interesting and important class of problems because they arise in many
applied fields such as heat conduction, chemical engineering, underground water flow,
thermoelasticity and plasma physics. It is worth mentioning some works concern-
ing the problems with integral boundary conditions for second order equations such
as [38,39,140,41},142,43]. There are also many papers devoted to the third order and
fourth order equations with integral boundary conditions.

Below we mention some works concerning the third order nonlinear equations. The
first work we would mention, is of Boucherif et al. [44] in 2009. It is about the problem

u"(t) = [t u(t), ' (t),u"(t), 0<t<l,
u(0) =0,

'(0) — au"(0) = / ha(u(s), o/ (5))ds,
(1) + bu(1) = /g ho(u(s), 1 (s))ds,

where a,b are positive real numbers, f,hq, hy are continuous functions. Based on a
priori bounds and a fixed point theorem for a sum of two operators, one a compact
operator and the other a contraction, the authors established the existence of solutions
to the problem under complicated conditions on the functions f, hy, ho. Independently
from the above work, in 2010 Sun and Li |24] considered the problem

u"(t) + f(tu(t),d(t) =0, 0<t<l,

By using the Krasnoselskii’s fixed point theorem, some sufficient conditions are ob-
tained for the existence and nonexistence of monotone positive solutions to the above
problem.

Next, in 2012 Guo, Liu and Liang [45] studied the boundary value problem with
second derivative

u"'(t) + f(tu(t),u’"(t) =0, 0<t<1,

The authors obtained sufficient conditions for the existence of positive solutions by
using the fixed point index theory in a cone and spectral radius of a linear operator.
No examples of the functions f and g satisfying the conditions of existence were shown.

In another paper, in 2013 Guo and Yang [46] considered a problem with other
boundary conditions, namely, the problem

W) = fltu(t), W (1), 0<t<l1,

Based on the Krasnoselskii fixed-point theorem on cone, the authors established the
existence of positive solutions of the problem under very complicated and artificial
growth conditions posed on the nonlinearity f(¢,x,y).
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Very recently, in [47] Guendouz et al. studied the problem

u(t) + fu(t)) =0, 0<t<1,

By applying the Krasnoselskii’s fixed point theorem on cones they established the
existence results of positive solutions of the problem. This technique was used also by
Benaicha and Haddouchi in [48] for an integral boundary problem for a fourth order
nonlinear equation.

Many authors also studied fourth order differential equations with integral boundary
conditions (see, e.g., [48/49,50,51}52,53|[54]55,56//57.,58]). Below we mention only some
typical works. First it is worthy to mention the work of Zhang and Ge [58|, where they
studied the problem

u"(t) = w(t) f(t,u(t),u"(t), 0<t<l,
:/ s)ds, u(1l) =0,
u"(0) :/0 h(s)u”(s)ds, u"(1) =0,

where w may be singular at t = 0 and/or ¢t =1, f : [0, 1] x RT xR~ — R is continuous,
and g,h € L'[0,1] are nonnegative. Using the fixed point theorem of cone expansion
and compression of norm type, the authors established the existence and nonexistence
of positive solutions.

In 2013, Li et al. [54] studied the fully nonlinear fourth-order boundary value prob-
lem

W) = F(tult), (), (), w" (1)), te[0,1],

uw(0) =u'(1) =" (1) =0, «"(0) = /0 h(s,u(s),u'(s),u"(s))ds,

where f: [0,1] x R* = R, h:[0,1] x R® — R are continuous functions. Based on a
fixed point theorem for a sum of two operators, one is completely continuous and the
other is a nonlinear contraction, the authors established the existence of solutions and
monotone positive solutions for the problem.

Later, in 2015, Lv et al. |55] considered a simplified form of the above problem

W) = (), (0,0 @), e [0,1],
u(0) = /(1) = w"(1) = 0, u'(0) = / g(s)u(s)ds,

where f : [0,1] x RT x RT x R~ — R, g : [0,1] — R are continuous functions.
Using the fixed point theorem of cone expansion and compression of norm type, they
obtained the existence and nonexistence of concave monotone positive solutions.

It should be emphasized that in all mentioned above works of integral boundary
value problems the authors could only show examples of the nonlinear terms satisfying
required sufficient conditions, but no exact solutions are shown. Moreover, the known
results are of purely theoretical character concerning the existence of solutions but not
methods for finding solutions.



Therefore, it is needed to give conditions for existence of solutions, to show exam-
ples with solutions, and importantly, to construct methods for finding the solutions for
integral boundary value problems.

c) Boundary value problems for integro-differential equations
Integro-differential equations are the mathematical models of many phenomena in
physics, biology, hydromechanics, chemistry, etc. In general, it is impossible to find
the exact solutions of the problems involving these equations, especially when they are
nonlinear. Therefore, many analytical approximation methods and numerical methods
have been developed for these equations (see, e.g. [59,61},62,63,64,65]66,67,68.,/69]).

Below, we mention some works concerning the solution methods for integro-differential
equations. First, it is worthy to mention the recent work of Tahernezhad and Jalilian
in 2020 [65]. In this work, the authors consider the second order linear problem

u"(z) + pla)u'(z) + g(x)u(z) = f(x) —|—/ k(z,t)u(t)dt, a <z <D,
u(a) = a, u(b) = B,

where p(x), q(x), k(x,t) are sufficiently smooth functions.

Using non-polynomial spline functions, namely, the exponential spline functions,
the authors constructed the numerical solution of the problem and proved that the
error of the approximate solution is O(h?), where h is the grid size on [a, b]. Before |65]
there are interesting works of Chen et al. [60,69|, where the authors used a multiscale
Galerkin method for constructing an approximate solution of the above second order
problem, for which the computed convergence rate is two.

Besides the researches evolving the second order integro-differential equations, re-
cently many authors have been interested in fourth order integro-differential equations
due to their wide applications. We first mention the work of Singh and Wazwaz [63].
In this work, the authors developed a technique based on the Adomian decomposition
method with the Green’s function for constructing a series solution of the nonlinear
Voltera equation associated with the Dirichlet boundary conditions

Y9 (2) = g(a) + / k@ t)f(y(B)dt, 0 <z <b,
y(0) = ay, ¥'(0) = ag, y(b) = az, y'(b) = ay.

Under some conditions it was proved that the series solution converges as a geometric
progression.
For the linear Fredholm IDE [59]

b
y(e) + ay' (o) + By(e) — | K(n.pt)dt = f(@), a<a<b

with the above Dirichlet boundary conditions, the difference method and the trape-
zoidal rule are used to design the corresponding linear system of algebraic equations.
A new variant called the Modified Arithmetic Mean iterative method is proposed for
solving the latter system, but the error estimate of the method is not obtained.

The boundary value problem for the nonlinear IDE

V@) = @) = 2( [ WOP#)y @) =pla). 0<a<r

y(0) =0, y(7) =0, y"(0) =0, y'(m) =0



was considered in [12,/68|, where the authors constructed approximate solutions by the
iterative and spectral methods, respectively. Recently, Dang and Nguyen [11] studied
the existence and uniqueness of solution and constructed iterative method for finding
the solution for the IDE

u (z) — M</0 |u'(t)|2dt>u"( )= flz,u, v/ 0" W), 0<z<L,
uw(0) =0, u(L) =0, «"(0) =0, v (L) =0,

where M is a continuous non-negative function.
Very recently, Wang [66] considered the problem

y(2) = [z, y(a), / Kz, y(t)dr), 0 < < 1,
y(0) = 0, y(1) = 0, ¥"(0) = 0, y/(1) = 0.

This problem can be seen as a generalization of the linear fourth order problem

(0.0.2)

()()+Mu N/ (x,t)u(t)dt) = p(x), 0 <z <1,
u(0) =0, u(1) =0, «"(0) =0, (1) =0,

where M, N are constants, p € C[0,1]. The latter problem arises from the models for
suspension bridges [70,71], quantum theory [72].

Using the monotone method and a maximum principle, Wang constructed the se-
quences of functions, which converge to the extremal solutions of the problem ((0.0.2)).

From the above reviewed works we see that some integro-differential equations,
linear and nonlinear, are studied by different methods. The development of a uni-
fied method for investigating both the qualitative and quantitative aspects of extended
integro-differential equations is necessary and is of great interest.

d) Boundary value problems for functional differential equations
Functional differential equations have numerous applications in engineering and sci-
ences [73]. Therefore, for the last decades they have been studied by many authors.
There are many works concerning the numerical solution of both initial and bound-
ary value problems for them. The methods used are diverse including collocation
method [74], iterative methods [75,[76|, neural networks |77,|78|, and so on. Below we
mention some typical results.

First it is worthy to mention the work of Reutskiy in 2015 [74]. In this work, the au-
thor considered the linear pantograph functional differential equation with proportional
delay

—

n—

= 33 @B () + f(2), @€ [0,T]

7=0 0

£
Il

associated with initial or boundary conditions. Here o are constants (0 < a; < 1). The
author proposed a method, where the initial equation is replaced by an approximate
equation which has an exact analytic solution with a set of free parameters. These free
parameters are determined by the use of the collocation procedure. Many examples
show the efficiency of the method but no error estimates are obtained.



In 2016 Bica et al. |75] considered the boundary value problem

P (8) = f(t, 2(t), 2(0(1)), T € [a,b],
29D(a) =a;, 2P(b)=b;, i=0p—1

where ¢ : [a,b] = R, a < p(t) < b,Vt € [a,b]. For solving the problem, the authors
constructed successive approximations for the equivalent integral equation with the use
of cubic spline interpolation at each iterative step. The error estimate was obtained
for the approximate solution under very strong conditions including (a + 135)(b —
a)Mg < 1, where a and ( are the Lipschitz coefficients of the function f(s,u,v) in the
variables u and v in the domain [a,b] X R x R, respectively; Mg is a number such that
|G(t,s)] < Mg Vt,s € |a,b], G(t,s) being the Green function for the above problem.
Some numerical experiments demonstrate the convergence of the proposed iterative
method. But it is a regret that in the proof of the error estimate for fourth order
nonlinear BVP there is a mistake when the authors by default considered that the
partial derivatives %37?, %47? are continuous in [a, b] X [a, b]. Indeed, it is invalid because
%37? has discontinuity on the line s = ¢. Due to this mistake the authors obtained that
the error of the method for fourth order BVP is O(h*). This mistake and a similar
mistake in the proof of O(h?) convergence for the second order problem are corrected
in the recent corrigendum |79]. Although in [75] the method was constructed for the
general function () but in all numerical examples only the particular case p(t) = at
was considered and the conditions of convergence were not verified. It is a regret that
in all examples the Lipschitz conditions for the function f(s,u,v) are not satisfied in
unbounded domains as required in the conditions (ii) and (iv) |75, page 131].

Recently, in 2018 Khuri and Sayfy |76] proposed a Green function based iterative
method for functional differential equations of arbitrary orders. But the scope of ap-
plication of the method is very limited due to the difficulty in calculation of integrals
at each iteration.

For solving functional differential equations, beside analytical and numerical meth-
ods, recently computational intelligence algorithms also are used (see, e.g., [77,[78]),
where feed-forward artificial neural networks of different architecture are applied. These
algorithms are heuristic, so no errors estimates are obtained and they require large
computational efforts.

The further investigation of the existence of solutions for functional differential
equations and effective solution methods for them has a great significance. It is why
in this thesis we shall study this topic.

(0.0.3)

Objectives and contents of the research

The aim of the thesis is to study the existence, uniqueness of solutions and solution
methods for some BVPs for high order nonlinear differential, integro-differential and
functional differential equations. Specifically, the thesis intends to study the following
contents:

Content 1 The existence, uniqueness of solutions and iterative methods for some
BVPs for third order nonlinear differential equations.

Content 2 The existence, uniqueness of solutions and iterative methods for some
problems for third and fourth order nonlinear differential equations with integral bound-
ary conditions.



Content 3 The existence, uniqueness of solutions and iterative methods for some
BVPs for integro-differential and functional differential equations.

Approach and the research method

We shall approach to the above contents from both theoretical and practical points
of view, which are the study of qualitative aspects of the existence solutions and con-
struction of numerical methods for finding the solutions. The methodology throughout
the thesis is the reduction of BVPs to operator equations in appropriate spaces, the
use of fixed point theorems for establishing the existence and uniqueness of solutions
and for proving the convergence of iterative methods.

The achievements of the thesis

The thesis achieves the following results:
Result 1 The establishment of theorems on the existence, uniqueness of solutions and
positive solutions for third order nonlinear BVPs and the construction of numerical
methods for finding the solutions.
These results are published in the two papers [AL1| and [AL2|. Specifically,
- in [AL1] we propose a unified approach to investigate boundary value problems
(BVPs) for fully third order differential equations. It is based on the reduction of BVPs
to operator equations for the nonlinear terms but not for the functions to be sought
as some authors did. By this approach we have established the existence, uniqueness,
positivity and monotony of solutions and the convergence of the iterative method for
approximating the solutions under some easily verified conditions in bounded domains.
These conditions are much simpler and weaker than those of other authors for studying
solvability of the problems before by using different methods. Many examples illustrate
the obtained theoretical results.
- in [AL2| we establish the existence and uniqueness of solution and propose simple
iterative methods on both continuous and discrete levels for a fully third order BVP.
We prove that the discrete methods are of second order and third order of accuracy
due to the use of appropriate formulas for numerical integration and obtain estimate
for total error.
Result 2 The establishment of the existence, uniqueness of solutions and construction
of iterative methods for finding the solutions for nonlinear third and fourth order dif-
ferential equations with integral boundary conditions. These results are published in
the two papers [AL3| and [AL5|. Specifically,
- The work [AL3| is devoted to third order differential equations.
- The work [AL6| concerns fourth order differential equations.
Result 3 The establishment of the existence, uniqueness of solutions and construction
of numerical methods for finding the solutions of nonlinear integro-differential equa-
tions. The results are published in [ALG6].
Result 4 The establishment of the existence, uniqueness of solutions and construc-
tion of numerical methods for finding the solutions of nonlinear functional differential
equations. The results are published in [AL4].

The obtained results of the thesis are published in the six papers [AL1]-[AL6| (see
"List of the works of the author related to the thesis").



Structure of the thesis

Except for "Introduction", "Conclusions" and "References", the thesis contains 4
chapters. In Chapter 1 we recall some auxiliary knowledges. The results of the thesis
are presented in Chapters 2, 3 and 4. Namely,

1. Chapter 2 presents the results on the existence, uniqueness of solutions and pos-
itive solutions for third order nonlinear BVPs and the construction of numerical
methods for finding the solutions.

2. Chapter 3 is devoted to the study of the existence, uniqueness of solutions and
construction of iterative methods for finding the solutions for nonlinear third and
fourth order differential equations with integral boundary conditions.

3. Chapter 4 presents the results on the existence, uniqueness of solutions and con-
struction of numerical methods for finding the solutions of nonlinear integro-
differential equations and functional differential equations.



Chapter 1

Preliminaries

In this chapter we recall some preliminaries on fixed point theorems, Green’s func-
tions and quadrature formulas which will be used in the next chapters.

1.1. Some fixed point theorems

1.1.1. Schauder Fixed-Point Theorem

The material of this subsection is taken from [80].

Theorem 1.1.1 (Brouwer Fixed-Point Theorem (1912)). Suppose that U is a
nonempty, convex, compact subset of RV, where N > 1, and that f: U — U is a
continuous mapping. Then f has a fixed point.

A typical example of the Brouwer Fixed-Point Theorem is proof of the existence of
solutions of system of nonlinear algebraic equations.

Remark that Brouwer Fixed-Point Theorem is applicable only to continuous map-
pings in finite dimensional spaces. A generalization of the theorem to infinite dimen-
sional spaces is the Schauder fixed-point theorem.

Definition 1.1.1. Let X and Y be B-spaces, and T': D(T') C X — Y an operator.
T is called compact iff:

(i) T is continuous;

(ii) T maps bounded sets into relatively compact sets.

Compact operators play a central role in nonlinear functional analysis. Their im-
portance stems from the fact that many results on continuous operators on RY carry
over to B-spaces when "continuous" is replaced by "compact".

Typical examples of compact operators on infinite-dimensional B-spaces are integral
operators with sufficiently regular integrands. Set

b

(Tz)(t) = /K(t,s,x(s))ds,

a

(Sz)(t) = /K(t,s,x(s))ds, Vt € [a, b].

Suppose
K :[a,b] x [a,b] X [-R, R] = K,
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where —co < a < b< 400, 0 < R < oo and K=R,C. Denote
U= {z € C(la,b,K) : o]l < R},

where ||z|| = max,<s<; and C([a, b], K) is the space of continuous maps z : [a,b] — K.
Then the integral operators 7" and S map U into C([a, b], K) and are compact.

Theorem 1.1.2 (Schauder Fixed-Point Theorem (1930)). Let U be a nonempty,
closed, bounded, convex subset of a B-space X, and suppose T : U — U is a
compact operator. Then T has a fixed point.

Corollary 1.1.3 (Alternate Version of the Schauder Fixed-Point Theorem).
Let U be a nonempty, compact, convex subset of a B-space X, and suppose
T :U — U is a continuous operator. Then T has a fixed point.

The corollary is the direct translation of the Brouwer fixed-point theorem to B-
spaces. The first verison (Theorem [1.1.2)) is more frequently used in applications, in
which case U is often chosen to be a ball.

1.1.2. Krasnoselskii Fixed-Point Theorem

Theorem 1.1.4 (Krasnoselskii Fixed-Point Theorem [81}/82]). Let X be Banach
space, P C X be a cone, €, be open sets in X with 0 € Q; € Q; C Q,. Suppose
T:Pn(Q)\ Q) — P are compact operators satisfying the conditions:

D) 7@ < [lzfl, = € PN O and [T(x)|] = [, 2 € P N0y
or

(i) 1T (@)[| = |z, € PN 02 and [|T(z)| < |lz]|, x € PN OQ.
Then T has a fixed point in PN (9 \ ).

This theorem usually is used for studying the existence of positive solutions of
operator equations to which nonlinear boundary value problems are reduced. An im-
provement of the above theorem is the following theorem.

Theorem 1.1.5. [81] Let X be a Banach space, and P C X be a closed convex
cone. Assume that €, are bounded open subsets of X with 6 € wy,Q; C Q.
Let A: PN (Q\ Q) — P be a completely continuous mapping. If A satisfies the
following conditions:

(1) Mu # u for ue PNy, 0 < XA <1

(2) there exists e € P\ {0} such that u — Au # 7e for u € PN Ny, 7 > 0;

or the following conditions:

(3) there exists e € P\ {0} such that u — Au # e for u € PN OQy, 7 > 0;

(4) Mu # u for ue PNy, 0 < A < 1;

then A has a fixed point in PN (2 \ Q).

1.1.3. Banach Fixed-Point Theorem

Theorem 1.1.6 (Banach Fixed-Point Theorem (1922) [80]). Suppose that

(i) we are given an operator T: M C X — M, i.e., M is mapped into itself by T}
(ii) M is a closed nonempty set in a complete metric space (X, d);

(iii T is g-contractive, i.e.,

d(Tz,Ty) < qd(z,y) (1.1.1)
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for all z,y € M and for a fixed ¢,0 < ¢ < 1.

Then we may conclude the following:

(a) Existence and uniqueness: Equation has exactly one solution, i.e., T
has exactly one fixed point on M;

(b) Convergence of the iteration: The sequence z,, 1 = Tz, of successive approx-
imations converges to the solution, z,for an arbitrary choice of initial point zg
in M;

(c) Error estimates: For all n =0,1,2,... we have the a priori error estimate

n

1—g¢q

d(zy,z) < d(zg, 7).

and the a posteriori error estimate

d($n+17$) < 1;1qd<xn7xn+l)-

(d) Rate of convergence: For all n=0,1,2,... we have
d(rpi1,7) < qd(zy, ).

Banach Fixed-Point Theorem has many important applications in qualitative study
as well as in approximate solution of nonlinear equations, system of linear or nonlinear
equations, integral equations, differential equations,...

1.2. Green’s functions

Green’s functions play an important role in the study of existence and uniqueness
of boundary value problems for ordinary differential equations.
Consider the linear homogeneous boundary-value problem

dn dn— 1

Lly(x)] = p0<x>d_xg +p1(a:)dxn_?{ + .+ pu(z)y =0, (1.2.1)
n-l kula gk
Mi(y(a),y(b)) = (a;ddi(k) +B,1ddi(kb)) =0, i=1,...,n, (1.2.2)

where p;(z),i = 0,...,n are continuous functions on (a,b), po(z) # 0 in all points in
(a,b).

Definition 1.2.1. (see [83]) The function G(z,t) is said to be the Green’s func-
tion for the boundary value problem (1.2.1)-(1.2.2)) if, as a function of its first
variable x, it meets the following defining criteria, for any ¢ € (a, b):

(i) On both intervals [a,t) and (¢, b], G(z,t) is a continuous function having contin-
uous derivatives up to n-th order and satisfies the governing equation in ([1.2.1))
on (a,t) and (¢,b), that is:

LIG(z,t)] =0,z € (a,t); L[G(z,t)] =0,z € (t,b).
(i) G(z,t) satisfies the boundary conditions in (|1.2.2)), that is

Mi(G(a,1),G(b, 1) =0, i=1,..n.
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(iii) For x = t, G(z,t) and all its derivatives up to (n — 2) are continuous

k k
lim "G(x,t) lim 0"G(x,t)

=0 k=0,...n—2.
r—tT 8xk Tt~ 8Jfk ’ e

(iv) The (n — 1)th derivative of G(z,t) is discontinuous when z = ¢, providing

_ lim o Gla,t) 1
T—tt Oxn—1 Tt~ Oxn—1 N Po (t) ’

The following theorem specifies the conditions for existence and uniqueness of the
Green’s function.

Theorem 1.2.1. (see [85/) If the homogeneous boundary-value problem in
(1.2.1)-(1.2.2) has only a trivial solution, then there exists an unique Green’s
function associated with the problem.

Consider the linear nonhomogeneous equation

dny dnfl

Lly(@)] = po(a) 2 + pi(@) Tt A pula)y = —f(2), (1.23)

subject to the homogeneous boundary conditions

n—1 dk

M;(y(a),y(b)) = <ai ygg(a) + B dki(b)) =0, i=1,..n, (1.2.4)

where p;(z) and the right-hand side term f(z) in (1.2.3) are continous functions,
with po(z) # 0 on (a,b) and M; represent linearly independent forms with constant
coefficients.

The following theorem establishes the link between the uniqueness of the solution

of ([1.2.3))-(|1.2.4]) and the corresponding homogeneous problem.

Theorem 1.2.2. (see [83/) If the homogeneous boundary-value problem corre-
sponding to (|1.2.3))-(1.2.4) has only the trivial solution, then the problem in
(1.2.3)-(1.2.4)) has a unique solution in the form

y(z) = / Gl ) F(H)dt,

where G(x,t) is the Green’s function of the la& ham Green of the corresponding
homogeneous problem.

Let us consider some Green’s functions that will later be used in the thesis.

Example 1.2.1. Consider the problem

Lo =ty o’ (129

The corresponding Green’s function is of the form

(1.2.6)



where A;, A, and Bi, By are the functions of ¢. G(x,t) satisfies the condition
(i). Because G(x,t) must satisfy the homogeneous boundary conditions in (ii),
it follows that A; = B; = 0. Therefore

a%ﬂ:{zgé%b,ggfixii (1.2.7)
The condition (iii) leads to
By(1—1t) — Ast = 0. (1.2.8)
From the condition (iv) we have
Byt Ay = 1. (1.2.9)

We can find A,, B, by solving ((1.2.8) and (1.2.9)). It follows that A, = 1—t, B, = 1.
Substitute into (|1.2.7)) we obtain the Green’s function

G@j%_{m1—@,0§t<x<1. (12.10)

The solution of the problem (1.2.5)) can be represented in the form

1
u(x):/ G(x,t)p(t)dt.
0
Example 1.2.2. Consider the problem

u(z) = p(z), 0<z<l,
{ a(0) = (0) = w'(1) — 0. (1.2.11)

The corresponding Green’s function is of the form

<t

< 1
<t<uzx

Ay + Aga + Aga®, 0
G@,):{ LAt s . 1 (1.2.12)

<
Bl+BQ<1—$>—|—Bg<1—.§C’)2, S
where A;, Ay, A3 and By, By, Bs are the functions of t. G(z,t) satisfies the condi-
tion (i). Because G(z,t) must satisfy the homogeneous boundary conditions in
(i), it follows that

Therefore )
G@J%:{giﬁ%u_xﬂ ssﬁ:isi (1.2.13)
The condition (iii) leads to
2 2
{'§E;f§1%jhéf%t (1.2.14)
From the condition (iv) we have
By — Ay = —1/2. (1.2.15)
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We can find As, By, B3 by solving ((1.2.14]) and ([1.2.15)). It follows that

t 1 2t t
3 2—1‘2, 1 5 +2, 3 5

Substitute into (1.2.13)) we obtain the Green’s function

22 (t—1)/2, 0<x<t<l,

o 1.2.1
et {t(x2—2x+t)/2, 0<t<z<l -

The solution of the problem ([1.2.11]) can be represented in the form

1
u(a:):/ G(z,t)p(t)dt.
0
Example 1.2.3. Consider the problem

u(z) = p(x), 0<z<l,

The corresponding Green’s function is of the form

<

IA
—

A+ A Asx?® + Ay
G(Jj‘,t):{ 1+ 2$+ 3T + 4T,

0 <
By + Bo(1 —2) 4+ Bs(1 —2)* 4+ By(1—2)*, 0<t<ux

IN —

x
<

~
—_

Y

(1.2.18)
where Ay, Ay, A3, Ay and By, By, Bs, B, are the functions of t. G(z,t) satisfies the
condition (i). Because G(z,t) must satisfy the homogeneous boundary conditions
in (ii), it follows that

Therefore

A2$+A4$3, 0<z <1t
G(Q?,t)_{ 0 <

1.2.19
Bs(1 — ) + By(1 — 2)?, ( )
The condition (iii) leads to

Bo(1 — ) + By(1 —t)® = Agt + Agt?
—By —3B4(1 —t)? = Ay + 3A4t? (1.2.20)
6B4(1 —t) = 6A4L.

From the condition (iv) we have

By+ Ay = —1/6. (1.2.21)
We can find A4, By, B, By by solving ([1.2.20)) and (|1.2.21]). It follows that
3 42

P

6 2 3 6 6
Bt t
By=—— 4+~ By=—-.
2 6 + 6’ 4 6

Substitute into (|1.2.19) we obtain the Green’s function

(1.2.22)

ot = tlx —1)(t* - 20 +2%)/6, 0<t<ax<l,
)zt =D -2t +2%)/6, 0<az<t<l

The solution of the problem ([1.2.17)) can be represented in the form

() = /O Gla, £)p(t)dt.
15



1.3. Some quadrature formulas

The material of this section is taken from [84]).
Trapezoidal rule:
Let f € C*[a,b],h = b — a. Then there exists a point £ € (a,b) such that

[ =t + g0 - e

Theorem 1.3.1. Let f € C?[a,b],h = (b —a)/n, and z; = a + jh, for each
j=0,1,...,n. There exists a pu € (a,b) for which the Composite Trapezoidal rule
for n subintervals can be written with its error term as

[ s +2foj 1) = R ).

Briefly,
/f +2fo] + f( )}+O(h2).

Simpson’s rule:
Let f € C*a,b],x; = a+ jh for j =0,1,2. Then there exists a £ € (a,b) such that

[ sete = bt + 1500 + 56w - 70

Theorem 1.3.2. Let f € C*[a,b], n be even, n = 2m, h = (b—a)/n, and x; = a+jh,
for each j = 0,1, ...,n. There exists a u € (a, b) for which the Composite Simpson’s
rule for n subintervals can be written with its error term as

flo)dr =5 [f(a) + 2 223 f(ws;) +4 223 Fleaya) + FB)] = B O ).

f@de = 5 [5(@) +2 3 flan) +4Y Sl + F0)] + 00
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Chapter 2

Existence results and iterative method for
two-point third order nonlinear BVPs

2.1. Existence results and continuous iterative method for
third order nonlinear BV Ps

2.1.1. Introduction

In this section we propose a unified efficient method to investigate the solvability
and approximation of BVPs for the fully third order equation

u"'(t) = f(t,u(t),d'(t),u"(t), 0<t<l1 (2.1.1)

with general boundary conditions

Bi[u] = au(0) + B4/ (0) + 11" (0) = 0,
Bslu] = agu(0) + Sou/(0) + y2u”(0) = 0, (2.1.2)
Bslu] = azu(1) + Bsu/(1) + y3u” (1) = 0,

and
Bi[u] = aqu(0) + 11/ (0) + 11" (0) = 0,
Bslu] = agu(1) + Bou/(1) + y2u"(1) = 0, (2.1.3)
Bs[u] = azu(1) 4+ B3u/(1) + y3u” (1) = 0,

such that

ap B 0 0 0
Rank | as By 72 0 0 0] =3.

0 0 0 az B3 73

The boundary conditions include as particular cases the boundary conditions
considered in [16,(17,/19,20, 23|, meanwhile the boundary conditions include
as particular cases the boundary conditions considered in [16,22|. Notice that the
boundary conditions of the form (2.1.3)) can be transformed to the boundary conditions
of the form by changing variable t =1 — s.

To investigate the BVP — as the BVP , we use a new
approach based on the reduction of them to operator equations for the nonlinear terms
but not for the functions to be sought. This approach was used to some boundary
value problems for fourth nonlinear equations in very recent works [11,13]/14,85|86].
Here, by this approach we have established the existence, uniqueness, positivity and
monotony of solutions and the convergence of the iterative method for approximating
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the solutions of the problems — under some easily verified conditions in
bounded domains. These conditions are much simpler and weaker than those of other
authors for studying solvability of particular cases of the problems before by using
different methods. Many examples illustrate the obtained theoretical results.

2.1.2. Existence results

Since the problem ([2.1.1))-(2.1.2)) and the problem (2.1.1]), (2.1.3)) are completely

similar, below we consider only the first of them.

For convenience we rewrite the problem ([2.1.1)-(2.1.2)) in the form

u"(t) = f(t,u(t),u'(t),u"(t), 0<t<l1

where Bj[u], Bs[u], Bs[u] are defined by (2.1.2). We shall associate this problem with
an operator equation as follows.
For functions ¢(z) € C|0, 1] consider the nonlinear operator A defined by

(Ap)(t) = f(t, u(t), u'(t), u"(t)), (2.1.5)

where u(t) is the solution of the problem
(2.1.6)

provided that it is uniquely solvable. It is easy to verify the following:

Proposition 2.1.1. If the function ¢(¢) is a fixed point of the operator A, i.e.,
©(t) is a solution of the operator equation

Ap = ¢, (2.1.7)
then the function u(t) determined from the boundary value problem ([2.1.6)) solves
the problem (22.1.4). Conversely, if u(t) is a solution of the boundary value
problem ([2.1.4]) then the function

p(t) = [t u(t), u'(t),u"(t))

is a fixed point of the operator A defined above by (2.1.5)), (2.1.6]).

Thus, the solution of the original problem is reduced to the solution of the
operator equation .

Now consider the problem . Suppose that the Green function of it exists
and is denoted by G(t,s). Then the unique solution of the problem is represented in
the form

u(t):/o G(t,s)p(s)ds. (2.1.8)

By differentiation of both sides of the above formula we obtain

u'(t)—/o G1(t, s)p(s)ds, u”(t)—/o Gy (t, s)p(s)ds, (2.1.9)
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where G4(t,s) = Gj(t,s) is a function continuous in the square @ = [0,1]*> and
Gso(t, s) = Gi,(t, s) is continuous in the square @) except for the line ¢ = s.
Further, let

1
52?2(1/0 |G(t,s)|ds = My

(2.1.10)

0<t<1 Jq

1 1
max/ |G1(t, s)|ds = My, max/ |Go(t, s)|ds = M.
0<t<1 J,

Next, for each fixed real number M > 0 introduce the domain
Dy =A{(t,z,y,2)| 0 <t <1, |z| < MM, |y| < MM, |z| < MyM},

and as usual, by B[O, M| we denote the closed ball of radius M centered at 0 in the
space of continuous in [0, 1] functions, namely,

B[O, M] = {¢ € C0, 1]] [lpll < M},

where
[l = max [p(2)].

0<t<1

Theorem 2.1.2 (Existence of solutions). Suppose that there exists a number
M > 0 such that the function f(¢,z,y, z) is continuous and bounded by M in the
domain Dy, i.e.,

lf(t,z,y,2) <M (2.1.11)

for any (¢,z,y,z) € Dy.
Then, the problem ([2.1.4]) has a solution u(t) satisfying

u(t)] < MM, ['(t)] < MM, |u"(t)] < MuM forany 0 <t <1.  (2.1.12)

Proof. Having in mind Proposition the theorem will be proved if we show
that the operator A associated with the problem has a fixed point. For
this purpose, it is not difficult to show that the operator A maps the closed
ball B[0, M] into itself. Next, from the compactness of integral operators (2.1.8)),
, which put each ¢ € C]0,1] in correspondence to the functions w,u’, u”,
respectively [87, Sec. 31| and the continuity of the function f(¢,z,y, 2) it follows
that A is a compact operator in the Banach space C[0, 1] By the Schauder Fixed
Point Theorem [80] the operator A has a ﬁxed pomt in B0, M]. The estimates

(2.1.12)) hold due to the equalities (2.1.8 and ( m O

Now suppose that the Green function G(a:,t) and its first derivative G1(z,t) are
of constant signs in the square Q = [0,1]%>. Let’s adopt the following convention for
simplification of writing:

For a function H(z,t) defined and having a constant sign in the square () we define

o(H) = sign(H(t,s)) :{ E1, ifi?gk:,)8>zg’0~

In order to investigate the existence of positive solutions of the problem ([2.1.1]),(2.1.2)
we introduce the notations

Dy ={(t,z,y,2)|0<t <1, 0<z < MM,
0<0(G)o(Gr)y < MM, |z| < MyM}

and
Sy ={peC[0,1]] 0 <a(G)p < M}.
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Theorem 2.1.3 (Existence of positive solution). Suppose that there exists a
number M > 0 such that the function f(¢, z,y, z) is continuous and

0<o(G)f(t,z,y,2) <M (2.1.13)

for any (¢,z,y,2) € D;;. Then, the problem ([2.1.1]),(2.1.2)) has a monotone non-
negative solution wu(t) satisfying

0 <u(t) < MM, 0<o(G)o(Gr)u'(t) < MiM, |u"(t)] < MaM. (2.1.14)

In addition, if o(G)o(G1) = 1 then the problem has a nonnegative, increasing

solution, and if o(G)o(G1) = —1 then the problem has a nonnegative, decreasing
solution.

Besides, if f(¢,0,0,0) £ 0 for ¢t € (0,1) then the solution is positive.

Proof. The proof of the existence of monotone nonnegative solution of the prob-
lem is similar to that of solution in Theorem with the replacements of
Dy by Dy, B[0, M] by Sy and the condition ([2.1.11]) by the condition ([2.1.13]).
From the estimates it is obvious that if o¢(G)o(G1) = 1 then u/(¢) > 0,
consequently, the solution is increasing function, otherwise, if o(G)o(G;) = —1
then «/(t) < 0, therefore, the solution is decreasing function. Moreover, if
f(t,0,0,0) £ 0 for ¢t € (0,1) then u = 0 cannot be the solution of the problem.
Therefore, it must be positive. O

Theorem 2.1.4 (Existence and uniqueness of solution). Assume that there exist
numbers M, Ly, L1, L, > 0 such that

f(t,z,y,2)] < M,

|f(t, 22,9, 22) — f(t, 21,91, 21)] < Lolwy — 21| 4+ Lalys — y1| + Lalze — 21| (2.1.15)
for any (¢,z,y, 2), (t,x;,y;, z;) € Dy (1 = 1,2) and
q:= LoMy+ Li M, + LoMy < 1. (2.1.16)
Then, the problem (2.1.1]),(2.1.2) has a unique solution u(t) such that |u(t)|] <
MM, |u/(t)] < MM, |u"(t)] < MM for any 0 <t < 1.

Proof. 1t is easy to show that under the conditions of the theorem, the operator

A associated with the problem (2.1.1)),(2.1.2)) is a contraction mapping from the
closed ball B[0, M] into itself. By the contraction principle the operator A has

a unique fixed point in B[O, M], which corresponds to a unique solution u(t) of

the problem (2.1.1)),(2.1.2)).
The estimates for w(t) and its derivatives are obtained as in Theorem [2.1.2]

Thus, the theorem is proved. ]

Analogously, we have the following theorem for the existence and uniqueness of

positive solution of the problem ,.

Theorem 2.1.5 (Existence and uniqueness of positive solution). Assume that
all the conditions of Theorem are satisfied in the domain Dj,. More-
over, assume that there exist numbers Ly, L, L, > 0 such that the function
f(t,z,y,2) satisfies the Lipschitz conditions (2.1.15]), (2.1.16)). Then, the prob-
lem (2.1.1),(2.1.2) has a unique monotone nonnegative solution u(t) satisfying
(2.1.14). Besides, if f(¢,0,0,0) £ 0 for ¢t € (0,1) then the solution is positive.

Remark 2.1.1. Due to the representation ([2.1.9)) for u”(¢), based on the sign of
G(t,s) and Gs(t,s) we can conclude of the convexity or concavity of solutions of
the problem ([2.1.4)).
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2.1.3. Iterative method
Consider the following iterative method for solving the problem (2.1.1)), (2.1.2)):

1. Given a starting approximation ¢, € B[0, M|, say

wo(t) = 0. (2.1.17)

2. Knowing ¢y (k =0, 1,...) compute
u(t) :/o G(t, s)er(s) ds, (2.1.18)
yr(t) =y (t), zk(t) = ui(t), (2.1.19)

or equivalently,

wlt) = [ Gult.shanls) ds.
o (2.1.20)

() = / Galt, )on(s) ds.
0

3. Update the new approximation
pre(t) = ft un(t), y(t), zi(1)). (2.1.21)
Set
k
e = —— o = woll.
p 1—g

Theorem 2.1.6 (Convergence). Under the assumptions of Theorem the
above iterative method converges and there hold the estimates

g — ul] < Mopr,  |lug, —w'|| < Mipg, [ug —u"|| < Mapy, (2.1.22)

where u is the exact solution of the problem (2.1.1)), (2.1.2)), and My, M, M, are
given by ([2.1.10)).

Proof. Indeed, the above iterative process is the successive approximation of
the fixed point of the operator A associated with the problem (2.1.1)-(2.1.2).
Therefore, it converges with the rate of geometric progression and there is the
estimate

ler — el < pr, (2.1.23)

where ¢ is the fixed point of A. Taking into account the representations ([2.1.8)),
(2.1.9), (2.1.18)), (2.1.20) and the formulas (2.1.10]), from the above estimate we
obtain the estimates (2.1.22). Thus, the theorem is proved. ]

In many problems when the Green function and its derivatives have constant sign
and the right-hand side function f(t,z,y,2) is monotone in variables x,y, z we can
establish the monotony of the sequence of approximations wuy(t). Below we consider a
particular case, which will be met in some examples in the next section.
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Theorem 2.1.7 (Monotony). Consider the problem (2.1.1)-(2.1.2), where the
Green function G(t,s) and its derivative Gy(t,s) are nonpositive in the square
Q = [0,1]%, the function f = f(t,x,y) < 0 is decreasing in z,y for z,y > 0. Then
the sequence of approximations u(t) generated by the above iterative process is
increasing, i.e.

0=1up(t) <u(t) <..<wut) <., telo1]. (2.1.24)

Proof. Indeed, starting from ¢, = 0 by the iterative process (2.1.17))-(2.1.21)) we
obtain uy = 0, yo = 0. Since f = f(¢t,z,y) < 0 we have p; = f(¢,0,0) < 0.
Therefore, uy(t) = fol G(t, s)p1(s)ds > 0 due to G(t,s) < 0. Analogously, y(t) > 0.
Thus, we have u; > wug, y1 > yo. Due to the decrease of f(t,z,y) in =,y we
have ¢o(t) = f(t,u1,y1) < f(t,u0,90) = ¢1(t). Therefore, from the formulas for

computing wus(t),y2(t) it follows that us > wuy, y2 > 3. Repeating the above
argument we obtain (2.1.24)). The theorem is proved. H

2.1.4. Some particular cases and examples

Consider some particular cases of the general BVP (2.1.1))-(2.1.2) and BVP ({2.1.1)),
(2.1.3]), which cover the problems studied by other authors using different methods.

For each case, the theoretical results obtained in the previous section will be illus-
trated on examples, including some examples considered before by other authors. In
numerical realization of the proposed iterative method, for computing definite integrals
the trapezium formula with second order accuracy is used. In all examples, numerical
computations are performed on the uniform grid on the interval [0, 1] with the gridsize
h = 0.01 until || — ¢r_1|| < 1075 The number of iterations for reaching the above
accuracy will be indicated.

From the particular cases together with examples it will be clear of the efficiency
of the proposed approach to BVPs for nonlinear third order differential equations by
the reduction of them to operator equations for the nonlinear terms.

2.1.4.1. Case 1.
Consider the problem

u® (t) = f(t,u(t), ' (t),4"(t), 0<t<l,
u(0) = u/(0) = /(1) = 0.

Notice that for the case f = f(t,u(t)) in [19|, using the lower and upper solutions
method and the fixed point theorem on cones Yao and Feng established several results
of solution and positive solution. For the case f = f(¢, u(t),u (t)) in [17] Feng and Liu
also obtained existence results by the use of the upper and lower solutions method and
a new maximum principle. It should be emphasized that the results of these two works
are pure existence but not uniqueness.
The Green function associated with the considered problem has the form
g(t2—2t—|—s), 0<s<t<l,

G(t, S) = t?
5(8—1), O<t<$§1
After differentiation of G(t,s) we obtain

[ os(t—=1), 0<s<t<l1,
Gl(t75)_{t(5_1)7 0<t<s<l,

22



s, 0<s<t <,
GQ(t’S):{s—l, 0<t<s<L

It is obvious that
G(t,s) <0, Gi(t,s) <0, 0<t,s<1

and we have

1 1
1 1
Mo = max i Gt s)l ds = 15, M= (}235/0 [G1(t, )] ds = ¢,
1
1
M, = gr<1tax1/0 Gs(t, s) ds = 3

Example 2.1.1 (Example 7 in [19]). Consider the problem

u®(t) = - 0<t <1,

u(0) = u'(0) = (1) = 0. (2.1.25)

Yao and Feng [19] using the lower and upper solutions method and the fixed
point theorem on cones proved that the above problem has a solution w(t) such
that |lul]| <1, u(t) > 0 for t € (0,1) and u(¢) is an increasing function. Here, using
the theoretical results obtained in the previous section we establish the results
which are more strong than the above results.

Indeed, for the problem f = f(t,z) = —e*. In the domain

M
DL:{(t,xﬂOgtgl, OSxSE}

there hold —eM/12 < f(t,z) < 0. So, with the choice M = 1.1 we have —M <
f(t,z) < 0. Further, in D}, the function f(t,z) satisfies the Lipschitz condition
with Ly = eM/12 = 1.096. Therefore, ¢ = Ly/12 = 0.0913. By Theorem the
problem has a unique monotone positive solution u(t) satisfying the estimates

M 11 M 11
< < =2 —=0.091 <dW(t) < = ==—"-=01
0<u(t) < 15 =15 = 00917, 0 < /(1) < = = == = 0.1357,
M 1.1
()] < = === =0.55.
WO < 5 =

Clearly, these results are better than those in [19].

The numerical solution of the problem obtained by the iterative method
(2.1.17)-(2.1.21)) after 5 iterations is depicted in Figure 2.1} From this figure it is
clear that the solution is monotone, positive and is bounded by 0.0917 as shown
above by the theory.

Example 2.1.2 (Example 8 in [19]). Consider the problem

5w’ (t) +4u(t) +3
211

u(0) =4'(0) =4/(1) = 0.

u®(t) =

0<t<1
= (2.1.26)

Yao and Feng in [19] showed that the above problem has a solution u(t) such
that w(t) > 0 for ¢t € (0,1) and wu(¢) is an increasing function. Similarly as in
Example 4.1.1 we established that the problem has a unique monotone
positive solution u(t) satisfying

0 < u(t) <0.3417, 0 < o/(t) < 0.5125, [u(t)| < 2.05.
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Figure 2.1: The graph of the approximate solution in Example

o] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2.2: The graph of the approximate solution in Example

The numerical solution of the problem obtained by the iterative method ([2.1.17)-
after 8 iterations is depicted in Figure [2.2] From this figure it is clear
that the solution is monotone, positive and is bounded by 0.3417 as shown above
by the theory.

Example 2.1.3 (Example 4.2 in [17]). Consider the problem

u®(t) = —e® — 'O o<t <1,
u(0) =4/(0) = /(1) = 0.

Using the lower and upper solutions method and a new maximum principle,
Feng and Liu in [17] established that the above problem has a solution u(t) such
that [jul| < 1, u(t) > 0 for ¢t € (0,1) and wu(¢) is an increasing function. Here,
using Theorem [2.1.5| with the choice M = 2.7 we conclude that the problem has
a unique monotone positive solution u(t) satisfying the estimates

0 < u(t) < 0.2250, 0 < u'(t) < 0.3375, |u(t)| < 1.350.

The numerical solution of the problem obtained by the iterative method
(2-1.17)-(2.1.21)) after 9 iterations is depicted in Figure[2.3] From this figure it is
clear that the solution is monotone, positive and is bounded by 0.2250 as shown
above by the theory.

Remark 2.1.2. In the above examples, it is easy to see that all the conditions
of Theorem are satisfied. Therefore, the sequences of approximations are
increasing. This fact is also confirmed by the numerical experiments.
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Figure 2.3: The graph of the approximate solution in Example [2.1.3

Remark 2.1.3. It should be emphasized that in [17] and [19] the authors used
one very important assumption, which means that the nonlinear functions f(¢, x)
or f(t,x,y) satisfy one-side Lipschitz condition in z or z,y in the whole space
R or R? respectively. If now change the sign of the right-hand sides then this
condition is not satisfied. Therefore, it is impossible to say anything about the
solution of the problem. But Theorem [2.1.4]ensures the existence and uniqueness
of a solution. Moreover, in a similar way as in Theorem it is possible
conclude that this solution is nonpositive.

2.1.4.2. Case 2.

Consider the problem

u®(t) = f(t,u(t), o' (t),u" (1)),
u(0) = w/(0) = u"(1) =0,

t<1
O<t<l, (2.1.27)

In [20] under the assumptions that the function f(¢,z,vy, z) defined on [0,1] x R® — R
is L,-Caratheodory, and there exist functions «, 3,7,0 € L,[0, 1], p > 1, such that

f(t2,y,2) < alt)r + B(H)y + ()2 +6()], ¢ (0,1)

and
Aollally + AdllBllp + 17l < 1,

where Ag, A, are some constants depending on p, the problem has at least one solution.
The tool used is the Leray-Schauder continuation principle. No examples are given for
illustrating the theoretical results.

Here, assuming that the function f(¢,x,y, z) is continuous, we establish the exis-
tence of unique solution by Theorem m For the problem the Green function

1S

st 0<s<i<l,
G(t’ 8) = t2 2

—5, 0<t S S S 1

The first and the second derivatives of this function are
-5, 0<s<t<1,
&@”y_{—u 0<t<s<l,
0, 0<s<t<l,
G“tﬁ_{-ﬁ, 0<t<s<l.
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Figure 2.4: The graph of the approximate solution in Example [2.1.4

It is easy to see that
G(t,s) <0, Gy(t,s) <0, 0<ts<1

and
0<t<1

! 1 1
M, = max/ |G(t,s)| ds = 3 M, = max | |Gi(t,s)| ds = 3
0

1
M, — max/ Golt, 5)| ds = 1.
0

0<t<1

Example 2.1.4. Consider the following problem

1 1 1
u"(t) = —%(u'(t)f +—uu () +-t2—6, 0<t<I,

24 4
u(0) = v'(0) = u"(1) =

(2.1.28)

In this example

1 1 1
t =+ = —t2 —6.
ft,x,y,2) 36Y +24$Z+4

It is possible to verify that with M = 7.5, L; = 0.3125, Ly, = 0.2083, L3 = 0.1042.
So, all the conditions of Theorem are met, and the problem has
a unique positive solution satisfying the estimates 0 < w(t) < 2.5, 0 < /() <
3.75, [u"(t)| < T7.5.

The numerical solution of the problem obtained by the iterative method
(2.1.17)-(2.1.21) after 5 iterations is depicted in Figure 2.4 From this figure it
is clear that the solution is bounded by 2.5 as shown above by the theory.

It is interesting that the problem ([2.1.28)) has the exact solution u(t) = —t> + 3¢2.

This solution satisfies the exact estimates 0 < u(t) < 2, 0 < J/(t) <3, 0 <
u’(t) <6 for 0 <t < 1, which are better than the theoretical estimates above.
On the grid with the gridsize h = 0.01 the maximal deviation of the obtained
approximate solution and the exact solution is 3.7665¢ — 04.

2.1.4.3. Case 3.

Consider the problem

u(t) = f(t,ult), ' (),u"(t), 0<t<l, (2.1.29)



Under the conditions similar to those in the previous case, Hopkins and Kosmatove
in [20] established the existence of a solution of the problem without illustrative ex-
amples. Very recently, in [22] Li Yongxiang and Li Yanhong studied the existence of
positive solutions of the problem ([2.1.29)) under conditions on the growth of the func-
tion f(t,x,y,z) as |x| + |y| + |z| tends to zero and infinity, including a Nagumo-type
condition on y and z. The tool used is the fixed point index theory on cones.

Here, assuming that the function f(¢,z,y,z) is continuous, we can establish the
existence results by the above theorems. For the problem the Green function

1S

G(t,s) =

The first and the second derivatives of this function are

0, 0<s<t<,
Gl(t’s)_{s—t, 0<t<s<l,

It is easy to see that
G(t,s) >0, Gi(t,s) >0, 0<t,s<1

and we obtain | .
My=—-, M; =—, My, =1.
0 67 1 27 2

Example 2.1.5. Consider the following problem

1 2 1 11
") = — (W (t)) — —=ult)u" (¢t —t+ — 0<t<1
w(t) = 5 () — U O + 5+ 5 ’ (2.1.30)
w(0) =4'(1) =u"(1) =0
In this example
f UL NP RS D PN
) E gy Tt T Ty
. . . . 2 4
It is possible to verify that with M =8, L; = 3 Ly = o Ly = ¢, and all

the conditions of Theorem are met. Therefore, the problem ([2.1.30)) has
a unique positive solution, which is increasing and satisfies the estimates 0 <
u(t) < 5, 0 <) <4, -8 < () <0.

The numerical solution of the problem obtained by the iterative method
(2-1.17)-(2.1.21)) after 6 iterations is depicted in Figure 2.5 From this figure it
is clear that the solution is monotone, positive and is bounded by 4/3 as shown
above by the theory.

It is possible to verify that the function u(t) = t3 — 3t> + 3t is the exact solution of
the problem (12.1.30]). This solution is positive, increasing and satisfies the exact
estimates 0 < w(t) < 1, 0 < u/(t) <3, =6 < u"(t) < 0 for 0 < ¢t < 1, which
are better than the theoretical estimates above. On the grid with the gridsize
h = 0.01 the maximal deviation of the obtained approximate solution and the
exact solution is 3.6256e — 04.
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Figure 2.5: The graph of the approximate solution in Example

2.1.4.4. Case 4.

Consider the problem

u®(t) = f(t u(t), o' (t),u"(t), 0<t<1,
u(0) = u"(0) = /(1) = 0.

Using the lower and upper solutions method and Schauder fixed theorem on cones,
Bai |23] established the existence of a solution under complicated conditions on the
right-hand side function.

For the problem the Green function is

(2.1.31)

12 52
G(t,S): E—t‘i‘?, OSSStS]_,
t(s—1), 0<t<s<l1

The first and the second derivatives of this function are

t—1, 0<s<t<l,
Gﬁ”»‘{s—L 0<t<s<l,

1, 0<s<t<lI,

G““Q_{o, 0<t<s<l.

Obviously,
G(t,s) <0, Gi(t,s) <0, 0<t,s<1
and it is easy to obtain
1 1
My=—-, My =—, My =1.
0 3 ) 1 92 ) 2

In view of the above facts concerning the Green function, using theorems in the previous
section we can establish the results on the existence of solution of the problem ([2.1.31]).

Example 2.1.6 (Example 3.5 in [23]).

u@@y:—iﬁ+&@+@mwf+u%m, 0<t<l,
u"(0) = /(1) = 0.

(2.1.32)

£
—

(=}
N~—

Il

Defining
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Figure 2.6: The graph of the approximate solution in Example [2.1.6

for M = 0.835 we have
—wfﬁf@xyx):—%ﬁ+e”+f+w}§0
Further, it is easy to calculate the Lipschitz coefficients of f(t,z,y, 2):
Lozzie””3zz03302,L1::%§::(12087,L2::L

Therefore, ¢ = Lo/3+ L1/2 + Ly = 0.4851 < 1. By Theorem the problem has
a unique monotone positive solution u(t) such that

0 <u(t) < M/3=02783,0 < u'(t) < M/2 = 0.5, [u"(t)] < 1.

Notice that in [23] Bai could only conclude that the problem has a positive
solution.

The numerical solution obtained by the iterative method (2.1.17))-(2.1.21)) after
5 iterations is depicted in Figure[2.6] From this figure it is clear that the solution
is monotone, positive and is bounded by 0.2783 as shown above by the theory.

2.1.4.5. Case 5.
Consider the problem

u () = f(t,u(t), ' (t),u"(t), 0<t<l,

w(0) = /(1) = u"(1) = 0. (2.1.33)

In |22], based on the fixed point index theory in cones authors established the existence
of positive solution under complicated conditions posed on the growth of the function
f including a Nagumo-type condition.

For the problem ([2.1.33)) the Green function is

—, 0<s<t<,
G(t,S): 2 tg
St—a, 0<t<s<1

The first and the second derivatives of this function is

0, 0<s<t<l,
Gﬂhﬂz{s—u 0<t<s<l

Y
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It is easy to see that
G(t,s) >0, Gi(t,s) >0, Go(t,s) <0, 0<t,s<1

and ) .
0 67 1 27 2

In view of the above facts concerning the Green function, using theorems in the previous
section we can establish the results on the existence of solution of the problem ([2.1.33)).

Example 2.1.7. Consider the following problem

1 1 11

u"(t) = — (1) - TuOu ) + 5t 5, 0<t< L,

18
u(0) =u/(1) =u"(1) = 0.

1
18 (2.1.34)

In this example

1 1 1 11
ft,z,y,2) Y Tttt o

111
f(£.0,0,0)= 5t + = >0 Vi€ 0,1,

It is easy to verify that with M = 8 all the conditions of Theorem [2.1.4] are

satisfied. Due to this the problem has a unique positive increasing solution
e . 4

satisfying the estimates 0 < u(t) < 3 0 <u(t) <4, [u"(t)] <8.

Notice that the function u(t) = t*—3¢*+ 3t is the exact solution of the problem
. This solution is positive, increasing and satisfies the exact estimates
0<wu(t) <1, 0<u(t) <3, —6 <u”(t) <0 for 0 <t <1, which are better than
the theoretical estimates above.

Example 2.1.8. Consider the following problem

" (t) = () + u(t) (W' ()" + u(t) (W' (1)%, 0 <t <1,

u(0) =u'(1) =u"(1) = 0. (2.1.35)

In this example
ft,z,y, 2) = 2° + vy® + 22°.

It is easy to verify that with 0 < M < /32 Theorem [2.1.5 guarantees that the
problem ([2.1.35)) has a unique nonnegative monotone solution. Because u(t) =0
is a nonnegative solution of the problem, we conclude that the problem cannot
have positive solution. This conclusion is contrary to the conclusion in [22].
Therefore, we think that there may be some inaccuracy in their results.

2.1.5. Conclusion

In this section, we have proposed a novel efficient approach to study fully third order
differential equation with general two-point linear boundary conditions. The approach
is based on the reduction of boundary value problems to fixed point problems for
nonlinear operators for the right-hand sides of the equation but not for the function to
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be sought. The results are that we have established the existence, uniqueness, positivity
and monotony of solution under the conditions, which are simpler and easier to verify
than those of other authors. The applicability and advantages of the proposed approach
are illustrated on some examples taken from the papers of other authors, where our
approach gives better results.

The proposed approach can be applicable to other boundary value problems for the
third order and higher orders nonlinear differential equations. This is the subject of
our researches in the future.

2.2. Numerical methods for third order nonlinear BVPs

2.2.1. Introduction

In the previous section we have established the existence,uniqueness of solutions
and the convergence of an iterative method on continuous level for the fully third order
differential equations with general two-point linear boundary conditions. We also have
shown some particular cases and examples for illustrating the obtained theoretical
results. In this section we will discuss numerical realization of the proposed iterative
method on continuous level. The investigation will be done for a case, namely, for Case
1 in the previous section. So, we consider the BVP

u®(t) = f(t,u(t), ' (t),d" (), 0<t<l,

u(0) = 0,4/(0) = 0,4/(1) = 0. (2.2.1)

In order to be easily tracked we recall some facts concerning the existence of solutions
of the above problem. The Green function of the problem, and its first and second
derivatives are

G0<t73): t2
Sls=1), 0<t<s<1
/ _ S(t_1)7 0 S 17
Gt s) G(ts)_{t(s—l), 0<t<s<l,
. 1 87 O§S§t§]~7
G’g(t,s)—Gtt(t,s){ s—1 0<t<s<l. (2.2.2)
We have Gy(t,s) <0, Gi(t,s) <0in Q = [0,1]* and
1
MOZ(¥I<1?<X1/ ’Gts‘dS——Z t<1/ ‘Gltslds_
N ) (2.2.3)
M2:0H<1ta<xl/ |G2t8|d8_§

Next, for each fixed real number M > 0 introduce the domain
Dy ={(t,z,y,2)| 0<t <1, |z| < MM, [y| < MM, || < MoM},

Theorem 2.2.1 (Existence and uniqueness of solution). Assume that there exist
numbers M, Lo, Ly, Ly > 0 such that

’f(t7 x? y? Z)| S M7
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|f(t, 22, y2, 22) — f(t, 21,91, 21)] < Lolza — @1] + Lilys — wn| + Lalzo — 21| (2.2.4)
fOf any (tvxayv Z)? (taxiayhzi) € DM (Z = 172> and
q:= LoMy+ LM, + LoMsy < 1.

Then, the problem (2.2.1)) has a unique solution w(t) such that |u(t)| < MM,
lu' (6)] < MM, |u"(t)| < MaM for any 0 <t < 1.

Below we recall the iterative method on continuous level for the problem:

1. Given

wo(t) = £(¢,0,0,0). (2.2.5)

2. Knowing ¢ (t) (k= 0,1,...) compute

u(t) = / Golt, )on(s)ds,
ualt) = / Ga(t, 5)pw(s)ds, (2.2.6)
zk(t):/o Go(t, s)pr(s)ds.

3. Update
prar(t) = f (& w(t), yn(t), 21 (t)). (2.2.7)

Set

qk

1—

Theorem 2.2.2 (Convergence). Under the assumptions of Theorem the
above iterative method converges and there hold the estimates

pe=1 g 4=l =l (2.2.8)

[ = ull < Moped, ||luj, — o'l < Miprd,  Juy — u”[| < Mopid,

where u is the exact solution of the problem ({2.2.1)) and M,, M;, M, are given by
©2.2.3).

2.2.2. Discrete iterative method 1

To numerically realize the above iterative method we construct the corresponding
discrete iterative methods. For this purpose cover the interval [0,1] by the uniform
gl"ld W = {tl = Zh, h = 1/N,Z = 0, 1, ,N} and denote by (I)k(t),Uk(t),Yk(t),Zk(t)
the grid functions, which are defined on the grid w;, and approximate the functions
or(t), ug(t), yr(t), zx(t) on this grid, respectively.

First, consider the following discrete iterative method, named Method 1:

1. Given

®o(t;) = f(t;,0,0,0), i =0,...,N. (2.2.9)
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2. Knowing ®x(t;), K = 0,1,...; i = 0,..., N, compute approximately the definite
integrals (2.2.6)) by the trapezoidal rule

Uk(ts) = Y hp;Goltis t;)®i(ty),

J=0

=D hpiGalti, ) Pu(t;), (2.2.10)

§=0
N
Zk(tl) = Z hijg(ti, tj)q)k(tj), 1= 0, ceey N,
§=0
where p; are the weights

_J12.5=0N
PImN1, =12 N—1

and
S, 0<s<t <,
Gi(t,s) =<s—1/2, s=t, (2.2.11)
s—1, 0<t<s<1.
3. Update
Pri1(ts) = f(ts, Ur(ts), Ya(ts), Zi(ts))- (2.2.12)

In order to get the error estimates for the numerical approximate solution for u(¢) and
its derivatives on the grid we need some following auxiliary results.

Proposition 2.2.3. Assume that the function f(¢,z,y,2) has all continuous
partial derivatives up to second order in the domain D,,;. Then for the functions

ug(t), y(t), z1(t), k = 0,1, ..., constructed by the iterative method ({2.2.5))-(2.2.7)),
we have (1) € C3[0, 1], y(t) € CH0, 1], ux(t) € C7[0, 1].

Proof. We prove the proposition by induction. For k& = 0, by the assumption
on the function f we have goo( ) € C?[0,1] since po(t) = f(£,0,0,0). Taking into
account the expression of the function Gy(t,s) we have

t) = /0 Ga(t, s)po(s)ds = /Ot spo(s)ds — /tl(s — D)o(s)ds.

It is easy to see that z{(t) = ¢o(t). Therefore, z(t) € C?3[0,1]. This implies
yo(t) € C0,1], uo(t) € C°[0,1].

Now suppose z,(t) € C30,1], y(t) € C*0,1], uk(t) € C°[0,1]. Then, be-
cause pri1(t) = f(t,up(t), yr(t), z,(t)) and the function f by the assumption has
continuous derivative in all variables up to order 2, it follows that ¢ 1(t) €
C?[0,1]. Repeating the same argument as for ¢,(t) above we obtain that 2z, (t) €
C3[0,1], yry1(t) € C*0,1], ugy1(t) € C?[0,1]. Thus, the proposition is proved. [

Proposition 2.2.4. For any function o(t) € C?[0, 1] we have

/1 Gn(ti, s)p(s)ds = Z hp;Gn(ti t)e(t;) + O(h?), (n=0,1) (2.2.13)

/0 Golt, 5)p(s)ds = S hps Gt ) (ts) + O(h?). (2.2.14)

J=0
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Proof. In the case n = 0,1, since the functions G, (¢;,s) are continuous at s = t;
and are polynomials in s in the intervals [0,¢;] and [t;, 1] we have

[ Guttstoto)ts = [ Gt stoto)is + /[ Gt $)o(s)ds

h(3G,(ti, to)p(to) + Gulti t1)p(tr) + ... + Gulti tima)p(tiz1) + 2Ga(ti, t)p(t:)
h(%G (ti, i)y (m + Gty tivn)o(tivr) + oo+ Gulti tv—1)(tv-1)

G
=D hpiGultssty)p(ty) + O(h?)  (n=0,1).

Thus, the estimate (2.2.13) is established. The estimate ([2.2.14] is obtained

using the following result, which is easily proved.

Lemma 2.2.1. Let p(t) be a function having continuous derivatives up to second
order in the interval [0, 1] except for the point ¢;, 0 < ¢; < 1, where it has a jump.

Denote limg_;, o p(t) = p; , im0 p(t) = pf, pi = 3(p; +p;"). Then
/ t)dt = thjp +O(h?), (2.2.15)

Where P = p(tj),j # 7.
[]

Proposition 2.2.5. Under the assumption of Proposition [2.2.3 for any k =
0,1,... we have
1P — il = O(n?), (2.2.16)

Uk = ull = O(R®), IV = wsll = O(h?), 12k — 2l = O(R?), (2.2.17)
where ||.||c(,) is the max-norm of function on the grid wy,.

Proof. We prove the proposition by induction. For k = 0 we have || &y — ¢y = 0.
Next, by the first equation in (2.2.6)) and Proposition we have

uo(t;) = / Gol(ti, s)po(s)ds = Y hp;Go(ti,t;)o(t;) + O(h?) (2.2.18)

for any i = 0,..., N. On the other hand, in view of the first equation in (2.2.10))
we have
N
=0
Therefore, |Uy(t;) — uo(t;)| = O(h?). Consequently, ||Uy — ugl| = O(h?).
Similarly, we have
1Yo = woll = O(h?), | Zo — 2|l = O(h?). (2.2.20)

Now suppose that (2.2.16)) and (2.2.17)) are valid for £ > 0. We shall show that

these estimates are valid for k& + 1.
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Indeed, by the Lipschitz condition of the function f and the estimates ([2.2.17))
it is easy to obtain the estimate

[Pri1 — @]l = O(h?) (2.2.21)
Now from the first equation in (2.2.6) by Proposition we have

1 N
U1 (ti) = / Golti, )prsa(s)ds = Y hp;Golti, t)oria(t;) + O(h?)
0

=0

On the other hand by the first formula in (2.2.10) we have

N
Ug+1(t:) = Z hp;iGo(ti, t;)Prs1(t;).

J=0

From the above equalities, having in mind the estimate (2.2.21)) we obtain the
estimate
|Uk1 — uisa || = O(h2)-

Similarly, we obtain
Vi1 =yl = O(B?), 1 Zks1 — ziia |l = O(R?).
Thus, by induction we have proved the proposition. ]
Combining Proposition [2.2.5] and Theorem [2.2.2] results in the following theorem.

Theorem 2.2.6. For the approximate solution of the problem ([2.2.1)) obtained
by the discrete iterative method (2.2.9))-(2.2.12)) on the uniform grid with gridsize
h we have the estimates

U — ul| < Moprd + O(h?), ||y — /|| < Myprd + O(h?), || Z), — u"|| < Maprd + O(h?),

where My, My, M, are defined by (2.2.3) and py,d are defined by (12.2.8]).

Remark 1. We perform the discrete iterative process (12.2.9)-(2.2.12)) until || @y —
®|| < TOL, where TOL is a given tolerance. From Theorem it is seen that the
accuracy of the discrete approximate solution depends on both the number ¢ defined in
Theorem [2.2.1], which determines the number of iterations of the continuous iterative
method and the gridsize h. The number ¢ describes the nature of the BVP, therefore,
it is necessary to choose an appropriate h consistent with ¢ as the choice of very small
h does not increase the accuracy of the approximate discrete solution.

2.2.3. Discrete iterative method 2

Consider another discrete iterative method, named Method 2. The steps of this
method are the same as of Method 1 with an essential difference in Step 2 and now
the number of grid points is even, N = 2n. Namely,

2’. Knowing ®(t;), k = 0,1,...; i = 0,..., N, compute approximately the definite
integrals (2.2.6)) by the modified Simpson rule

Ui(t;) = F(Golti, )Px(.)),
Vii(t:) = F(Gi(ts, ) Pi(.),
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where
Z] o hpiGi(ti, t))Pr(t;) if z is even
ZJ thJGl( ) (t]) <Gl(t2>tz 1)Pr(tiz1) — 2G(t;, ;) Pr(ts)

F(Gi(t;, )Px(.)) =
Gt i) B m)) if 4 is odd,
/=0,1;7=0,1,2,..
p; are the weights of the Simpson rule
1/3, j=0,N

pi=14/3,j=1,3,.,N—1
2/3, j=2,4,.,N —2,

F(G5(t;, . )®x(.)) is calculated in the same way as F(G(t;,.)®x(.)) above, where G| is
replaced by G5 defined by the formula (2.2.11]).

Proposition 2.2.7. Assume that the function f(¢,z,y,z) has all continuous
partial derivatives up to fourth order in the domain D,,;. Then for the functions
uk(t), ye(t), ze(t), wri1(t), K =0,1,..., constructed by the iterative method (2.2.5))-
(2.2.7) we have z(t) € C°[0,1], yx(t) € CY0,1], ux(t) € C7[0,1], pr11(t) € C*0, 1].

Proposition 2.2.8. For any function (t) € C*[0, 1] we have

/0 Gi(ts,s)p(s)ds = F(Gy(ti, () + O(h*), (1=0,1) (2.2.22)

/0 Galts, $)o(s)ds = F(Gi(t, Jol.)) + O(h). (2.2.23)

Proof. Recall that the interval [0,1] is divided into N = 2n subintervals by the
points ¢; = ih,h = 1/N. In each subinterval [0,¢;] and [t;, 1] the functions G(¢;, s)
are continuous as polynomials. Therefore, if 7 is an even number, i = 2m then
we represent

/01 Gi(ti, s)p(s)ds = /Otm Gi(ti, s)p(s)ds + /t; Gy(ti, s)p(s)ds

Applying the Simpson rule to the integrals in the right-hand side we obtain

| Guttss)(s)ds = F(Gutsol0) + O(hY
because by assumption ¢(t) € C*[0,1].

Now consider the case when 7 is an odd number, i = 2m + 1. In this case we
represent

1 tom+1
[:/ Gi(ti, s)p ds—/ Gi(ti, s)p ds+/ Gi(ti, s)p(s)ds
0

\ fom (2.2.24)
2m—+2
—l—/ Gl(ti,s)g)(s)ds—i—/ Gi(ti, s)p(s)ds.

tom41 tom+2

For simplicity we denote
fi = Gi(ti, 55)p(s5)
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Applying the Simpson rule to the first and the fourth integrals in the right-hand
side ([2.2.24)) and the trapezoidal rule to the second and the third integrals, we
obtain

I'= g[fo + fam T AL+ f3+ o+ fome1) +2(f2 + f1 + o+ fom—2)] + O(R?)
+ 5 am+ fome) + OU) 4 5 (fames + Famsz) + O
+ g[f2m+2 + fon + 4(fomes + fomes + oo+ fono1) + 2(fomea + fomis + o + fon2)] + O(h)

o+ fon +4(fi + fs+ o+ fono1) F2(fo+ fa + o+ fon2)]

h
3
+ %(fzm — 2 foms1 + foms2) + O(h?)
= F(Gi(t;,.)¢(.)) + O(h%).

Thus, in both cases of 7, even or odd, we have the estimate ([2.2.22]).
The estimate (2.2.23)) is obtained analogously as ([2.2.22)) if taking into account
that

where G;: (tl, tz) = lims_mio G2 (t“ S). ]
Theorem 2.2.9. Under the assumptions of Proposition [2.2.7], for the approxi-
mate solution of the problem ({2.2.1)) obtained by Discrete iterative method 2 on
the uniform grid with gridsize h we have the estimates
||Uk - UH S Mgpkd—i- O(hs), HYk - UIH S Mlpk;d“r‘ O(hg),
1 Z — || < Maped + O(h).

2.2.4. Examples

Consider some examples for confirming the validity of the obtained theoretical re-
sults and the efficiency of the proposed iterative method. For the first two examples the
exact solutions are known, and for the third example the exact solution is not known.

Example 2.2.1 (Problem 2 in |35]). Consider the problem

u”(r) = tu(r) —u?(z) +g(x), 0 <z <1,

uw(0) =0, «'(0) = —1, «'(1) = sin(1), (2.2.25)

where g(x) = —3sin(z) — (z — 1) cos(z) — 2*(z — 1)sin(z) + (z — 1)?sin®(z). It is
possible to verify that the function u*(z) = (z — 1) sin(x) is the exact solution of
the problem.

By setting u(x) = v(z)+P(x), where P(x) = %(H—sin(l))ﬁ—x is the polynomial

of the second degree satisfying the boundary conditions in (2.2.25)), the problem
for u(x) is reduced to the following problem for v(x):

0" (z) = 2'v(x) — v*(z) — 2P(z)v(z) + 2 P(z) — P*(z) + g(z), 0 <z < 1,

v(0) =0, v'(0) =0, v(1) =0, (2.2.26)

In order to apply Theorem [2.2.1 we need to determine the number M. For the
right-hand side function

f(z,v) = —v*(z) + 2*v(z) — 2P(z)v(z) + 2*P(x) — P*(x) + g(2)
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in the domain Dy = {(z,v)| 0 < ¢ <1, |v| < MyM}, where My = & we have
1< o] + ol + 2|P(@)][o] + |2*P(z)] + | P(2)]* + |g(=)]

M M
< (=P +(1+2% 0'2715>E +0.140.2715% + 4.12

12
M2 155M
= 43
St ¢

Here we use the estimates
|P(z)| < 0.2715, |2*P(z)| < 0.1, z € [0,1],
that are easily obtained. Besides, for estimating |g(x)| we use the estimates

|(z — 1) sin(z)| < 0.2401, |2*(z — 1) sin(z)| < 0.0596, = € [0, 1].

It is easy to verify that with M = 6 then = 4 LM 4 43 < A/, Hence,
for this chosen M we have |f(z,v)| < M in D). Furthermore, in this domain
the function f(x,v) satisfies the Lipschitz condition in the variable v with the
coefficient Ly = 2.543. Therefore, ¢ = 0.2119. Hence, all conditions of Theorem
are satisfied, so the problem has a unique solution and the iterative method

converges. The results of the numerical experiments with two different tolerances

are given in Tables 2.3
Table 2.1: The convergence in Example for TOL = 107*

N K Errorye Order  Errorgy,, Order
8 3 9.9153e-04 9.7143e-04

16 3 2.4646e-04 2.0083 1.3101e-04 2.8905
32 3 6.0906e-05 2.0167 1.6020e-05 3.0317
64 3 1.4563e-05 2.0643 1.2587e-06 3.6696
128 3 2.9796e-06 2.2891 8.8553e-07 0.5073
256 3 4.3187e-07 2.7865 8.8165¢-07 0.0063

Table 2.2: The convergence in Example for TOL = 107

N K Errorye Order  Errorsimy, Order

8 4 9.99237e-04 9.7223e-04

16 4 2.4734e-04 2.0044 1.3189e-04 2.8820

32 4  6.1802e-05 2.0008 1.6915e-05 2.9629

64 4 1.5462e-05 1.9989 2.1492e-06 2.9765
128 4 3.8797e-06 1.9947 2.8688e-07 2.9053
256 4 9.8437e-07 1.9787 5.2749e-08 2.4439
512 4 2.6054e-07 1.9177 2.3446e-08 1.1698
1024 4 7.9583e-08 1.7110 1.9786e-08 0.2448

In the above tables N is the number of grid points, K is the number of
iterations, Erroriqy, Errorsim, are errors |Ux —u*|| in the cases of using Method
1 and Method 2, respectively, Order is the order of convergence calculated by

N/2 %
|UR? — ||

Order = 10g2 m
K
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Table 2.3: The convergence in Example for TOL = 10710

N K  Errorye, Order Errorgi,, Order

8 7 9.9235e-04 9.7222e-04

16 7 24732¢-04 2.0045 1.3187e-04 2.8822

32 7 6.1782e-05 2.0011 1.6896e-05 2.9643

64 7 1.5443e-05 2.0003 2.1301e-06 2.9877
128 7 3.8605e-06 2.0001 2.6774e-07 2.9923
256 7 9.6511e-07 2.0000 3.3544e-08 2.9965
012 7 2.4128e-07 2.0000 4.1977e-09 2.9984
1024 7 6.0319e-08 2.0000 5.2483e-10 2.9997

In the above formula the superscripts N/2 and N of Ux mean that Uy is com-
puted on the grid with the corresponding number of grid points.

From the tables we observe that for each tolerance the number of iterations
is constant and the errors of the approximate solution decrease with the rate (or
order) close to 2 for Method 1 and close to 3 for Method 2 until they cannot
improved. This can be explained as follows. Since the total error of the actual
approximate solution consists of two terms: the error of the iterative method on
continuous level and the error of numerical integration at each iteration, when
these errors are balanced, the further increase of number of grid points N(or
equivalently, the decrease of grid size h) cannot in general improve the accuracy
of approximate solution.

Notice that in [35] the author used Newton-Raphson iteration method to
solve nonlinear system of equations arising after discretization of the differential
problem. The iteration process is continued until the maximum difference be-
tween two successive iterations , i.e., |Ugy1 — Ui is less than 107°. The number
of iterations for achieving this tolerance is not reported. The accuracy for some
different N is given in Table [2.4] (see [35], Table 2]).

Table 2.4: The results in [35] for the problem in Example [2.2.1

N 8 16 32 64
Error 0.11921225e-01 0.33391170e-02 0.87742222¢-03 0.23732412¢-03

From the tables of our results and of Pandey it is clear that our method gives
much better accuracy.

Example 2.2.2 (Problem 2 in |36]). Consider the problem

u"(z) = —zu(z) —62° +3r —6, 0 <1 < 1,
w(0) =0, «'(0) =0, «/(1) = 0.

It is easy to verify that with M = 18, Ly = L; = 0, Ly, = 1,q = 0.5 all conditions

of Theorem are satisfied, so the problem has a unique solution. This solu-

tion is u(x) = z*(2 — z). The results of the numerical experiments with different

tolerances are given in Tables [2.5] [2.6] and [2.7]

Notice that in [36] the author used Gauss-Seidel iteration method to solve
linear system of equations arisen after discretization of the differential problem.
The iteration process is continued until the maximum difference between two
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Table 2.5: The convergence in Example for TOL = 107*

N K Errorye Order  Errorgy,, Order
8 6 0.0078 9.7662e-04
16 6 0.0020 2.0000 1.2215e-04 2.9991
32 6 4.8837e-04 1.9998 1.5345e-05 2.9929
64 6 1.2216e-04 1.9992 1.9936e-06 2.9443
6
6

128 3.0604e-05 1.9969 3.2471e-07 2.6181
256 7.7157e-06 1.9878 1.1612e-07 1.4835

Table 2.6: The convergence in Example for TOL = 1076

N K Errorye Order Errorg,, Order

8 8 0.0078 9.7662e-04

16 6 0.0020 2.0000 1.2215e-04 2.9991

32 6 4.8837e-04 1.9998 1.5345e-05 2.9929

64 6 1.2216e-04 1.9992 1.9936e-06 2.9443

128 6  3.0604e-05 1.9969 3.2471e-07 2.6181
6
6
6

256 7.7157e-06 1.9878 1.1612e-07 1.4835
012 1.9937¢-06 1.9524 9.0051e-08 0.3868
1024 5.6316e-07 1.8238 8.6794e-08 0.0532

Table 2.7: The convergence in Example for TOL = 10719

N K Errorge Errorgimpy N K Errory, Errorsimp
§ 11 0.0078 2.0650e-13 64 11 1.2207e-04 2.5890e-13
16 11 0.0020 2.6790e-13 128 11 3.0518e-05 2.5790e-13
32 11 4.8828e-04 2.6279%-13 256 11 7.6294e-06 2.5802e-13

Table 2.8: The results in [36] for the problem in Example

N 128 256 512 1024
Error 0.30696392e-4 0.61094761(-5) 0.14379621e-5 0.41723251e-6
Iter 53 5 3 4

successive iterations, i.e., |[Uyt1 — Uil is less than 107*°. The results for some
different N are given in Table [2.§]
From Tables of our results and Table of Pandey’s results, it is clear

that our method gives better accuracy and requires less computational work.

Example 2.2.3. Consider the problem for fully third order differential equation

1

u///<x> _ _eu(x) _ eu/(m) . 1_0(11’//(‘7;))27 0< < 1’

w(0) =0, «'(0) =0, «/(1) = 0.

(2.2.27)

For the above problem the exact solution is not known. It is easy to verify
that all conditions of Theorem are satisfied with M = 3, Ly = 1.284, L, =
1.455, Ly = 0.3 and ¢ = 0.4389. So, the problem has a unique solution and the
iterative method for it converges.

The numerical solution of the problem is depicted in Figure [2.7]
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Table 2.9: The convergence in Example for TOL = 101

N 8 16 32 64 128 256
K 15 15 15 15 15 15

0o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2.7: The graph of the approximate solution in Example m

Notice that in [17] the authors could only establish the existence but not

the uniqueness of a solution to the equation u"(z) = —e™“® associated with the
boundary conditions as in (2.2.27)), and later, in [19] Yao and Feng also could
only obtain the similar result for the equation u"”(z) = —e*(® — ¢¥'(®),

Remark 2.2.1 (Convergence of the iterative method). It should be remarked
that Theorem provides only sufficient conditions for the existence and
uniqueness of a solution to the problem and Theorem [2.2.2] gives the
convergence rate of the iterative method for finding the solution. When these
conditions are not satisfied the iterative method may converge or not converge.
Below we give some examples for illustrating this statement.

First, consider the problem

u"(z) = —e"@ — '@ — (4"(2))?, 0 <z < 1,
u(0) =0, «'(0) =0, «/(1) = 0.

2

For this problem the right-hand side function is f(z,u,y,2) = —e* —e¥ — 2%, In

the domain

D ( )0 < <1||<M||<M||<M
=< (z,u,vy,z T U — —. |z —
M , U, Y, = = 4 = 127 Y > 87 =9
we have
M
g(M):= max |f(z,u,y,z)| = M2 4 M/8 (—)2
(m,u,y,z)GDM 2

It is easy to verify that g(M) > M + 1.4019 > M for any M > 0. Hence, there
does not exist M > such that |f(z,u,y,2)] < M V(z,u,y,z) € Dy. Therefore,
Theorem cannot guarantee the existence and uniqueness of a solution and
the convergence of the iterative method. Nevertheless, for TOL = 107!° the
iterative method converges after 23 iterations.

Next, an example when the conditions of Theorem are not satisfied and
the iterative method does not converge is for the equation

u(z)

u"(z) = —e"® — '@ _ (4" (2))? 4+ 50" (z) + 10, 0 < z < 1.
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2.2.5. On some extensions of the problem

2.2.5.1. The problem on large intervals

First consider the problem ([2.2.1)) on the interval [0, 77, i.e., the problem

u(t) = f(t,u(t), v (t),u"(t), 0<t<T

2.2.28
u(0) = 0,4 (0) = 0,4/ (T) = 0. ( )
For this problem, it is easy to verify that the Green function is
s t2
2(=—2t+s), 0<s<t<T
GO(t7 S) = 2t2T3
—(=—1 <t<s<T
The first and the second derivatives of this function with respect to t are
t
s(=—1), 0<s<t<T,
Gl (tv S) = Z—'
t=—-1), 0<t<s<T,
T
s
T 0 S S S t S T7
GQ (ta 8) = %'
Z 1, 0<t<s<T
T
It is easy to see that Go(t,s) <0, Gi(t,s) <0in Q = [0,1]* and
T TS T T2
A%:rmx/|G@$Mk:—ﬂ Aﬁ:nmg/|aaﬁﬂ@:—ﬂ
0<t<T J 12 0<t<T J 8 (2.2.29)

T T
%zm%/|@@ﬂ$:f
0<t<T J, 2
Clearly, the numbers M; (i = 0, 1,2) increase with the increase of T'. Therefore, the do-
main D,; becomes more extended. This implies that the Lipschitz coefficients Lq, L1, Lo
of the function f(¢,z,y, z) with respect to x,y, z do not decrease, and accordingly, the
number ¢ = LoMy + L1M7 + Ly Ms increases. This leads to narrowing the scope of ap-
plicability of Theorem [2.2.1] on the existence and uniqueness of solution and Theorem
on the convergence of the iterative method.
For demonstrating the above remark we consider some examples.

Example 2.2.4. Consider the problem on [0,7] for the equation of Example
2.2.2| namely, the problem

u"(r) = —zu’(z) —62° +3r —6, 0 <z < T,
uw(0) =0, «'(0) =0, «'(T) = 0.

Below are the results of convergence for Discrete iterative method 2 with n = 256
for some T

Table 2.10: The convergence in Example for TOL =107

T 1 2 3 4 5
K 8 18 82 2009 no convergence

42



Here K is the number of iterations for achieving the given tolerance TOL. Notice
that from 7' = 2 the conditions of Theorem are not satisfied but only
from T = 5 the iterative method diverges. From Table 2.10] clearly that the
convergence of the iterative method depends on the width of the interval, where
the problem is considered.

Example 2.2.5. Consider the problem

1 "
u"(z) = —66_“2 +e W 0<a<T,
u(0) =0, ¥'(0) =0, «/(T) =0.
For this example the right-hand side function is f = f(z,u,y,z) = —fe " +e ¢,
In any domain
T3 T? T }

Du = { w2 00 ST, Jul < M. bl < M, el < 5

we always have |f| < I. Therefore, in Theorem we take M = I. The
Lipschitz coefficients of the function f are Ly = 0.1430, L; = 0, Ly = 0.8579. So,
q = 0.1430 % +0.8579 £ =0.0119 T° 4 0.4289 T'. Clearly, for large values of T not
all conditions of Theorem are satisfied, and it is expected that the iterative
method will diverge for large 7. But it is interesting that this does not occur.
Below are the results of the convergence of the iterative method for n = 200.

ol

Table 2.11: The convergence in Example for TOL = 10-¢

T 1 3 5 10 15 20 40 100
K 6 12 13 16 18 20 27 37

The approximate solution for 7"= 100 is depicted in Figure [2.8

-1000
-2000 |- \
= -3000 - \\
.
-4000 -

-5000

-6000
o]
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Figure 2.8: The graph of the approximate solution in Example [2.2.5

2.2.5.2. The problem for unbounded nonlinear terms

For the problem with unbounded nonlinear terms (right-hand sides) f(¢,u,y, 2)
caused by singular points, of course, Theorem cannot work, and Theorem [2.2.2]
cannot ensure the convergence of the iterative method. But it is interesting that in
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some special cases the discrete iterative methods still converge. Below we report some
nonlinear terms f(t,u,y, z) for which the iterative method converge:

2 2 2

() —e— + eV + 1, (i) ——— e+ 2241, (ii]) ——— + ¥+ 22+ 1.
1] P

Notice that in the above three functions the singular points are irrational points,
therefore, when using the discrete methods on the grids with rational points then the
denominators always are not zero. For this reason the computations can be performed.

When we use the uniform grids with the numbgr of grid points n = 2%, k = 3,4,5, ...,

u
the iterative methods also converge for f = ———— + €Y + 1. This is due to the fact

VIt =3l
that /2% = 1/3 for any i and k.

Above we only made some remarks on the problem ([2.2.1]) when the nonlinear term
is unbounded. In the future we will study this issue deeply.

2.2.6. Conclusion

In this section, we established the existence and uniqueness of solution for a bound-
ary value problem for fully third order differential equations. Next, for finding this
solution we proposed iterative methods at both continuous and discrete levels. The
numerical realization of the discrete iterative methods are very simple. It is based on
the popular trapezoidal rule and a modified Simpson rule for numerical integration.
One of the important results is that we obtained an estimate for the total error of
the approximate solution which is actually obtained. This total error depends on the
number of iterations performed and the discretization parameter. The validity of the
theoretical results and the efficiency of the iterative methods are illustrated in exam-
ples. In addition, we made some remarks on the iterative method for two extensions
of the problem for large intervals and when the nonlinear terms are unbounded due to
interior singular points. In the future we will deeply study these issues.

The method for investigating the existence and uniqueness of solution and the
iterative schemes for finding solution in this section can be applied to other third order
nonlinear boundary value problems, and in general, for higher order nonlinear boundary
value problems.
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Chapter 3

Existence results and iterative method for some
nonlinear ODEs with integral boundary conditions

3.1. Existence results and iterative method for fully third
order nonlinear integral boundary value problems

3.1.1. Introduction
In this section, we consider the boundary value problem

u"(t) = ft,u(t), ' (t),d"(t), 0<t<1, (3.1.1)

w(0) =4/ (0) =0, wu(l)= /o g(s)u(s)ds, (3.1.2)

where f:[0,1] x R® - R*,¢:[0,1] —» R".
This problem is a natural generalization of the problem

u"(t) + f(u(t) =0, 0<t<1,
(3.1.3)

studied recently by Guendouz et al. in [47]. There, by applying the Krasnoselskii’s
fixed point theorem on cones they established the existence results of positive solutions
of the problem. This technique was used also by Benaicha and Haddouchi in [48] for
an integral boundary problem for a fourth order nonlinear equation.

It should be emphasized that in all of the above-mentioned works the authors
only could (even could not) show examples of the nonlinear terms satisfying required
sufficient conditions, but no exact solutions are shown. Moreover, the known results
are of purely theoretical characteristics concerning the existence of solutions but not
methods for finding solutions.

Here, by the method of reducing BVPs to operator equation for right-hand sides
developed in [13,/14,85, 88| we establish the existence, uniqueness and positivity of
solution and propose an iterative method for finding the solution. Some examples
demonstrate the validity of the obtained theoretical results and the efficiency of the it-
erative method. Especially, one example of exact solution of the problem is constructed
so that the functions f and ¢ satisfy the required conditions.

3.1.2. Existence results

To investigate the problem (3.1.1)-(3.1.2)) we associate it with an operator equation

as follows.
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First, we denote the space of pairs w = (¢, )T, where ¢ € C[0,1],a € R, by B,
i.e., set B=C|0,1] x R, and equip it with the norm

[wlls = max({el], kla), (3.1.4)

where ||¢]| = maxo<i<1|p(t)|, k is a number, & > 1. The constant k will have a
significance in the conditions for the existence and uniqueness of solution. Later, in
examples the selection of it will depend on particular cases.

Further, define the operator A : B — B by the formula

(Ftu(t), ), 0)
Aw‘( I g(s)u(s)ds ) (3.1:5)

where u(t) is the solution of the problem

u"(t) =p(t), 0<t<I1, (3.1.6)
u(0) =u'(0) =0, u(l) = a. (3.1.7)

It is easy to verify the following lemma.

Lemma 3.1.1. If w = (¢, a)? is a fixed point of the operator A in the space B,
i.e., is a solution of the operator equation

Aw =w (3.1.8)

in B, then the function u(t) defined from the problem (3.1.6))-(3.1.7)) is a solution

of the original problem (3.1.1))-(3.1.2]).
Conversely, if u(t) is a solution of (3.1.1)-(3.1.2)), then the pair (p, a)”, where

p(t) = ft,ult), o' (1), u" (1)), (3.1.9)

1
a= / g(s)u(s)ds, (3.1.10)
0
is a solution of the operator equation ([3.1.8)).

Thus, by this lemma, the problem (3.1.1)-(3.1.2) is reduced to the fixed point
problem for A.

Remark that the above operator A, which is defined on pairs of functions p(t), ¢t €
[0, 1] and boundary values « of u(t) at t = 1, is similar to the mixed boundary-domain
operator introduced in [89] for studying biharmonic type equation.

Now, we study the properties of A. For this purpose, notice that the problem

(3.1.6)-(3.1.7)) has a unique solution representable in the form

1
u(t) = / Go(t, s)p(s)ds +at?, 0<t<1, (3.1.11)
0
where
—is1 -2t —ts—s), 0<s<t<1
Go(t,s) = 2 ( 2(2 ) - -
—5(1—s)°t%, 0<t<s<l1

is the Green function of the operator u"(t) associated with the homogeneous boundary
conditions u(0) = v/(0) = u(1) = 0.
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Differentiating both sides of (3.1.11)) gives
/ G1(t, s)p(s)ds + 2at, (3.1.12)

u'(t) = / Ga(t, s)p(s)ds + 2a, (3.1.13)

0

where

—s(st—=2t+1), 0<s<t<l1,
Gi(t,s) =
1(t;5) {—(1—3)215, 0<t<s<l,

It is easily seen that Gy(t,s) <0 in Q = [0,1]?, and

0<t<1

1
2
M, = max/ |Go(t, s)|ds = 8_17

0<t<1

M, = max/ |G1(t, s)|ds = (3.1.14)

0<t<

Mg—max/ |G2ts]d3—

Therefore, from (3.1.11]), (3.1.12)), (3.1.13)) and (3.1.14)) we obtain

[ull < Mollel + [a,
[/l < Mulleol| + 2]e, (3.1.15)
[u”] < Malo|| + 2|al.

Now for any number M > 0 define the domain

1
Dy ={(t,z,y,2) | 0<t <1, |z| < (My+ )M,
2 g 92 (3.1.16)
[yl < My + )M, |2 < (My+ 2)M}.
Next, denote
1 1
OO:/ g(s)ds, CQZ/ s%g(s)ds. (3.1.17)
0 0

Lemma 3.1.2. Suppose that the function f(¢, z,vy, z) is continuous and bounded
by M in Dy, i.e.,

|f(t,z,y,2)| <M in Dy (3.1.18)
and

Then the operator A defined by (§3.1.5) maps the closed ball B[0, M] in B into
itself.
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Proof. Take any w = (¢,a)T € B[0, M]. Then |¢| < M and kla| < M. Let u(t)

be the solution of the problem (3.1.6)-(3.1.7). Then from the estimates (3.1.15))

for the solution u(t) and its derivatives we obtain

< (347 ) 00 i< (3n+ 2)on i< (3 2o
Therefore, (¢, u(t),u'(t),w”"(t)) € Dy. Hence, by the assumption (3.1.18)) we have

(£, u(t), (1), u" ()] < M.
Now estimate I := k| fO u(s)ds|. In view of the representation (3.1.11f) we

obtain
ISI{;/ / Go(s,y)e(y)dy ds+k|oz|/ )s?ds

< kCoMoM + CoM = (kCoMy + Co)M < M.

(3.1.20)

The inequalities on the above line occur due to (3.1.14]), (3.1.17) and the as-
sumption (3.1.19).
Therefore, by the definition of the norm in the space B we have

[Aw]|s < M,

which means that the operator A maps the closed ball B0, M] in B into itself.
The lemma is proved. O

Lemma 3.1.3. The operator A is a compact operator in B[0, M].

Proof. The compactness of A follows from the compactness of the integral op-
erators (3.1.11)), (3.1.12)), (3.1.13]), the continuity of the function f(¢,z,y,2) and
the compactness of the integral operator fol g(s)u(s)ds. ]

Theorem 3.1.1 (Existence of solution). Suppose the conditions of Lemma m
are satisfied. Then the problem - - ) has a solution.

Proof. By Lemma and Lemma [3.1.3] the operator A is a compact operator
mapping the closed ball B[0, M] in the Banach space B into itself. Therefore,
according to the Schauder fixed point theorem, the operator A has a fixed point
in B[0,M]. This fixed point corresponds to a solution of the problem (3.1.1f)-
(13.1.2]). ]

In order to establish the existence of positive solutions of (3.1.1)-(3.1.2)), let us

introduce the domain
- - k
9 (3.1.21)

and the strip
Sy={w=(p,a)T | —M<p<0,0<ka< M} (3.1.22)

in the space B.
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Theorem 3.1.2 (Positivity of solution). Suppose the function f(¢, z,y, z) is con-
tinuous and
—M < f(t,z,y,2) <0 in Dy, (3.1.23)

and the condition (3.1.19) is satisfied. Then the problem (3.1.1))-(3.1.2) has a

nonnegative solution. Moreover, if f(¢,0,0,0) £ 0 then this solution is positive.

Proof. 1t is easy to verify that under the conditions of the theorem, the operator
A maps Sy into itself. Indeed, for any w € Sy, w = (¢, ), —M < p < 0,0 <
ka < M. Since Gy(t,s) <0, from (3.1.11)), (3.1.12), (3.1.13)) we have

1 2 2
0<u(t) < (Mo + )M, [ ()] < (My+ )M, [u"(t)] < (M + )M
for 0 < ¢t < 1. Therefore, for the solution u(t) of (3.1.6)-(3.1.7) we have
(t,u(t),u/(t),u"(t)) € Dy, and by the condition (3.1.23) we obtain

—M < f(t,u(t),u(t),u"(t)) <0.

As in the proof of Theorem we also have the estimate
1
0< k;/ g(s)u(s)ds < M.
0

Hence, (f(t,u(t),u'(t),u"(t)), fol g(s)u(s)ds)T € Sy, le. A: Sy — Sy
As was shown above, A is a compact operator in S. Therefore, A has a fixed

point in Sy, which generates a solution of the problem (3.1.1))-(3.1.2). This
solution is nonnegative. Moreover, if f(¢,0,0,0) #Z 0 then w(t) = 0 cannot be the

solution. Therefore, the solution is positive. O

Theorem 3.1.3 (Existence and uniqueness). Suppose that there exist numbers
M >0, Lo, Ly, Ly, > 0 such that

(H1) [f(t,z,y,2)| < M, Y(t,x,y,2) € Dy.

(H2) |f(t, 02, Y2, 22) = f(t, 21,91, 21)| < Lolvo—m1[+Lalya—un|+La|za—21|, V(t, 25, yi, i) €
Dy, i =1,2.

(H3) ¢ :=max{q, ¢} < 1, where ¢; = kCyMy+ C, as was defined by (3.1.19) and

1 2 2
0 :LO(M°+E>+L1(M1+E>+L2(M2+E)‘ (3.1.24)

Then the problem (3.1.1))-(3.1.2) has a unique solution u € C?|0,1].

Proof. To prove the theorem, it suffices to show that the operator A defined by
is a contractive mapping from the closed ball B[0, M] in B into itself.
Indeed, under the assumption (H1) and the condition ¢; < 1 in the assumption
(H2), by Lemma the operator A maps B[0, M| into itself.

Now, we show that A is a contraction map.

Let w; = (pi, ;) € B0, M]. We have

(), (0. u5(0) — F(Ln(2). i (0. (1)
Awz = Ay ( 17 9(5) () — ua(s))ds )
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where w;(t) (i = 1,2) is the solution of the problem

{u;"(t) —pt), 0<t<l
u;(0) = ui(0) =0, w; (1) = a.

From the proof of Lemma it is known that (¢, u;(t), w,(t),u/(t)) € Dyr. There-
fore, by the Lipschitz condition (H2) for f we have

Dy = [f(tua(t), uy(t), uy(t) — f(& ui(t), uy(t), wi(t)]
< Lo|ua(t) — uq (t)| + Lijub(t) — uh (t)] + Lalul(t) — uf(t)].

Since uy(t) — uy(t) is the solution of the problem (3.1.6)-(3.1.7) with the right-
hand sides ¢o(t) — 1 (t) and as — oy, we have

(3.1.25)

|ug — ur]| < Myllpz — 1] + [az — aa,
Uy — Uy || S M1||P2 — ¥1 Qo — (1, 1.
sy — ]| < My | + 2| \ (3.1.26)

" "

[ug — ui|| < Mallgz — 1| + 2[as — aal.
As for the element w = (p,a)” € B we use the norm

[wl|s = max([|¢ll, klaf) (k= 1),

from (3.1.25)), (3.1.26]) we obtain

1 2
D1 S Lo <M0 + E) ||w2 — w1||5 + L1 (M1 + E) sz — U)1||B

2
L (M2 i —) s — wi]ls

k (3.1.27)
1 2 2
< (Lo (Mo + E) + Ly (M1 + E) + Lo <M2 + E)) |way — w15
= g2|lw2 — w5,
where ¢, is defined by ((3.1.24)).
Now consider )
Dy = k| / g(s)(uz(s) — ul(s))ds|.
0
By analogy with the estimate (3.1.20)) it is easy to have
DQ S (k'CQM(] -+ CQ)”U}Q - ’leB = q1|]w2 — leB- (3128)

From (3.1.27)) and (3.1.28) we obtain

|Awy — Awr || < max{q, ¢2}||wa — w5

In view of condition (H3) the operator A is a contraction operator in B[0, M].
The theorem is proved. ]

Theorem 3.1.4 (Existence and uniqueness of positive solution). If in Theorem

replace Dy, by Dj, and the condition (H1) by the condition (3.1.23)) then

the problem (3.1.1)-(3.1.2)) has a unique nonnegative solution u(t) € C?3|0,1].
Besides, if f(¢,0,0,0) # 0 then this solution is positive.
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3.1.3. Iterative method

Suppose all the conditions of Theorem are met. Then the problem (13.1.1))-
(3.1.2) has a unique solution. To find it, consider the following iterative method:

1. Given wg = (o, )’ € B[0, M], for example,

oolt) = £(4,0,0,0), ap=0. (3.1.20)

2. Knowing ¢,(t) and a,(t) (n =0,1,...), compute
un(t) = / LGt $)on(s)ds + ot (3.1.30)
yn(t) = /1 G1(t, 8)on(s)ds + 2at, (3.1.31)
zp(t) = /1 Ga(t, s)on(s)ds + 2au,. (3.1.32)

3. Update

P (t) = [t un(t), yn(t), zn(t)), (3.1.33)
Qi1 = /0 g(8)un(s)ds. (3.1.34)

Theorem 3.1.5. Under the assumptions of Theorem the above iterative
method converges, and for the approximate solution w,(t) and its derivatives
there hold the estimates

[t — ull < (Mo + %) Pnd, (3.1.35)
I =l < (M4 ) (3.1.36)
! — || < (M2 + %) pud, (3.1.37)

where p,, = 1‘1—_"@{, d = ||w; —wo|p, w1 = (¢1,01)7.

Proof. In fact, the above iterative method is the successive iterative method for
finding the fixed point of operator A. Therefore, it converges with the rate of
geometric progression and there holds the estimate

n

||w1 - wOHB - pnd7

4q
Jan = wlls < -

where w,, —w = (p, — p,a, — ).
From the definition of the norm in B and the above estimate it follows

lpn =l < lJwn = wlls < pnd,

1 1
n < - n < - nd
law = all < llwn = wlls < +p

Now, the estimates (3.1.35))-(3.1.37)) are easily obtained if taking into account
the representations (3.1.11))-(3.1.13)), (3.1.30)-(3.1.32)), the estimates of the type
(3.1.15) and the above estimates. ]
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To numerically realize the iterative method (3.1.29))-(3.1.34]) we cover the inter-
val [0,1] by the uniform grid w, = {t; = ih, h = 1/N,i = 0,1,..., N} and use the
trapezium formula for computing definite integrals. In all examples in the next sec-
tion the numerical computations will be performed on the grid with h = 0.01 until
max {||¢n — @n1]], klan — a1} < 107*, where k will be defined for each particular
example.

3.1.4. Examples

Consider some examples for confirming the validity of the obtained theoretical re-
sults and the efficiency of the proposed iterative method.

Example 3.1.1 (Example with exact solution). Consider the problem (3.1.1])-

B-1.2) with

3 2
F= = -1 (%@2 - %>) _

is the exact solution of the problem.
For the given ¢(s), simple calculations give Cy = 38, C, = 28. Therefore, with
k = 2 we obtain ¢; = 0.9503 < 1. For this £ it is possible to choose M = 0.6 such

that —M < f(t,x) <0 for
1
(t,2) e DY, ={(t,z) |0<t <1, 0<z < (My+ 5)M = 0.5247M }.

Indeed,

1, 1/1,., BN\ _1 , 1 )
0< —f(t,l‘) = §—|—$ — g <—(t ——)) < 54‘1‘ < §+(0.5247M) < M.
Thus, M must satisfy 0.2753M2 — M + 0.5 < 0. The direct calculation of the left
side for M = 0.6 gives the value = —0.0670. So, the choice of M is justified.
Further, for f(t,z) we have the Lipshitz coefficient with respect to = in D},
Lo = 0.3148. Consequently, ¢» = Lo (Mo + 3) = 0.1652, and ¢ = 0.9503. Besides,
f(t,0) # 0. Therefore, by Theorem [3.1.4] the problem has a unique positive
solution. It is the above exact solution.

The computation shows that the iterative method ([3.1.29)-((3.1.34)) converges
and the error of the 46th iteration compared with the exact solution is 1.1458¢ —

04.

Example 3.1.2 (Example 4.1 in [47]). Consider the boundary value problem

u"(t) = —uPe", 0<t<l1,



/
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Figure 3.1: The graph of the approximate solution in Example |3.1.3

In this example

ft,z,y,2) = —z%e”, g(s) = st

So,

! 1 ! 1
Co = / g(s)ds =—-, Cy= / s?g(s)ds = =.
0 5 0 7

Choose k = 2 in the definition of the norm of the space B (3.1.4) and in the
definition of D}, by (3.1.21)). Then ¢ = kCoMy + Cy = 0.1527. For M = 0.4 it is

possible to verify that —M < f(t,z) <0 in D}, |3L| < 0.5721 in Dj;. Therefore,

Ly=0.5721, qo = Lo (My+ 1) = 0.3002.

Hence, by Theorem [3.1.4] the problem has a unique nonnegative solution. This
solution should be u(t) = 0 because u(t) = 0 solves the problem. The numerical
experiments by the iterative method in Section |3.1.3| confirm this conclusion.

Remark that, in [47] the authors concluded that the problem has at least one positive
solution. From our result above, it is clear that their conclusion is not valid.

Example 3.1.3. Consider Example [3.1.2] with the nonlinear term f = —(1+u?).
Clearly, @ — —o0 as u — +0 and u — +oo. Thus, neither Theorem 3.1 nor
Theorem 3.2 in [47] are applicable, so the existence of positive solution is not
guaranteed.

Now apply our method. Choose M =2k =3, then

1
Dy, ={(t,x)|0<t <1, ogxg(M0+E)M:0.7160}.

In D}, we have

1
q1 = ]CO()M() + 02 = 01577, o = LO <M0 + g) = 0.5127.
Hence, by Theorem [3.1.4] the problem has a unique nonnegative solution. Due
to f(t,0) # 0, this solution is positive. The graph of the approximate solution

obtained with the given accuracy 10~* after 4 iterations by the iterative method
is depicted on Figure (3.1}
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Figure 3.2: The graph of the approximate solution in Example (3.1.4]

Example 3.1.4. Consider Example [3.1.2| with the nonlinear term
2 1 : / 1 "
f=—(ue"+ gsm(u )+ gcos(u )+ 1).
In this example

1 1
flt,z,y,2) = —(z%" + R sin(y) + 3 cos(z) + 1).
Choose M = 1.7,k = 4. It is possible to verify that in D}, we have —M < f <0,
and the Lipschitz coefficients of f are

1 1
Lo=1.8378, L=<, Ly=-.
0 ) 1 57 2 8
Therefore,
q1 = 0-1626, go — 0.7618.

Hence, by Theorem [3.1.4] the problem has a unique positive solution. The graph
of the approximate solution obtained with the given accuracy 10~* after 6 iter-
ations by the iterative method is depicted on Figure [3.2]

3.1.5. Conclusion

In this section, we have proposed a novel method to study the fully third order
differential equation with integral boundary conditions. It is based on the reduction of
the boundary value problems to fixed point problem for appropriate operator defined
on a space of mixed pairs of functions and numbers. By this way, we have established
the existence, uniqueness and positivity of solution of the problem under easily verified
conditions. Another important result is that, we have proposed an effective iterative
method for finding the solution. The theoretical results have been demonstrated on
some examples including an example with exact solution and other examples where
the exact solutions are not known. Especially, we have shown that the conclusion on
the existence of positive solutions for an example considered before by other authors,
is not valid.

The proposed method can be applied to problems with other integral boundary
conditions for the third and higher order differential equations. This is the subject of
our researches in the future.
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3.2. Existence results and iterative method for fully fourth
order nonlinear integral boundary value problems

3.2.1. Introduction

In this section, we consider the boundary value problem

u"(t) = ftu(t), ' (¢),u"(t),v"(t), 0<t<1, (3.2.1)

u'(0) =u"(0) =4'(1) =0, u(0) = /0 g(s)u(s)ds, (3.2.2)

where f:[0,1] x R* - R™, g:[0,1] — R" are continuous functions.

This problem is a natural generalization of the problem recently considered in [48],
where instead of the fully nonlinear term it was f(u(t)). In the above-mentioned paper,
by employing the Krasnosel’skii’s fixed point theorem on cones, the authors established
the existence of at least one positive solution.

In the paper [AL5|, by the method developed in [11}13,/14,85, 86,8890, 91| we
establish the existence, uniqueness and positivity of solution and propose an iterative
method on both continuous and discrete levels for finding the solution. We also give
error analysis of the discrete approximate solution. Five examples, among them an
example with exact solution and two examples taken from 48|, demonstrate the validity
of the obtained theoretical results and the efficiency of the iterative method.

By the way we would like to say that for numerical solution of two point nonlinear
BVPs for fourth order equations there are many methods, which can be divided into
three types. The first type includes methods for constructing discrete systems corre-
sponding to BVPs, for example, [92,93,94,(95]. In these papers, the authors studied
the convergence of the discrete systems without any analysis of errors arising in solving
the discrete systems. To the second type of methods there are related the methods
of construction of iterative methods on continuous level without attention to how to
realize continuous problems at each iteration and error arising at each iteration, see,
e.g. |1,96,97] and [11,13}/14,85,[86,,88,90,91]. The third type includes analytical methods
such as the Adomian decomposition method [98]|, the variational iteration method [99],
the reproducing kernel method [100], when the solution is sought in series form. Spec-
tral methods also belong to the third type since the exact solution of the problems
is expressed in series representation by basis functions. For finding the coefficients
of the representation it is needed to solve nonlinear systems of algebraic solutions.
At present spectral methods [101] are widely used for solving BVPs for ODE, PDE,
integral equations including nonlinear Volterra integral equations [102], [103].

It should be said that in all the types of methods, the total error of the actually
obtained approximate numerical solution has not been addressed. In our opinion, the
problem of total error in numerical solution of nonlinear BVPs must be investigated
because the total error gives useful information for balancing discretization error and
error of iterative process. Once this problem was considered in [12] when at each
iteration it was required to solve two second order BVPs and compute an integral.
In the present paper we propose an iterative method at continuous level, its discrete
analog and make analysis of the total error of the approximate discrete solution for the
BVP with integral boundary condition.
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3.2.2. Existence results

To investigate the problem , we associate it with an operator equation
as follows.

First, we denote the space of pairs w = (p, u)*, where ¢ € C[0,1],u € R, by B,
i.e., set B=C|0,1] x R, and equip it with the norm

lwlls = max({lel], r|ul), (3.2.3)

where 7 is a number, » > 1 and ||¢|| = maxo<i<1 |©(t)|.
Further, define the operator A acting on elements w € B by the formula

_ ([ [tu(t),u (t),u (t),u"(1))
Aw = ( fo S)u(s)ds ) : (3.2.4)
where u(t) is the solution of the problem
u"(t) = p(t), 0<t<1, (3.2.5)
u'(0) =u"(0) =4/(1) =0, u(0) = p. (3.2.6)

Obviously, due to the continuity of the functions f and g we have Aw € B. It is easy
to verify the following

Lemma 3.2.1. If w = (¢, )7 is a fixed point of the operator A in the space B,
i.e., w is a solution of the operator equation

Aw=w (3.2.7)
in B, then the function u(t) defined from the problem (3.2.5)), (3.2.6]) solves the

orlglnal problem (3.2.1)), 13 2.2).

Conversely, if u(t) is a solution of (3.2.1)), (3.2.2), then the pair (p, 1), where
o(t) = ft,u(t),w'(t),u" (1), u" (1)), (3.2.8)

04:/0 g(s)u(s)ds, (3.2.9)

is a solution of the operator equation (3.2.7)).

Thus, by this lemma, the problem (3.2.1]), (3.2.2)) is reduced to the fixed point
problem for A.
Now, we study the properties of A. For this purpose, notice that the problem

(3.2.5)), (3.2.6)) has a unique solution representable in the form

/ Go(t,s)p(s)ds +p, 0<t<I1, (3.2.10)

where Gy(t,s) is the Green function of the operator u””(t) = 0 associated with the
homogeneous boundary conditions

U (3.2.11)
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Differentiating both sides of (3.2.10]) gives

1
u'(t) = / Gi(t, s)p(s)ds, (3.2.12)
0
1
u'(t) = / Gs(t, s)p(s)ds, (3.2.13)
0
1
() = / Gt ) (s)ds, (3.2.14)
0
where
G(ts)—l —t*(1—s)4+(t—s)? 0<s<t<l, (3.2.15)
I LTC R L 0<t<s<l, -
—t(1 — s)? — <s<t<l1
Goft,s) = 4 1 5)2 TlE=-s), Osss<t<l, (3.2.16)
—t(1 — s)?, 0<t<s<l.
—(1-s)+1, 0<s<t<1
Golt,s) = | e L Oss<isl, (3.2.17)
—(1—1s)% 0<t<s<l1
It is easily seen that
GO(tas) S O, Gl(tas) S Oa
in Q@ =[0,1]% and
1
My = gg&xl/o |Go(t, s)|ds = 0.0139,
1
M, = max/ G4 (L, 8)|ds = 0.0247,
PEtEJo (3.2.18)

1
M, = max/ |G (t, s)|ds < 0.1883
0

0<t<1

1
M = maX/ |Gs(t, s)|ds = 1.3333.
0

0<t<1

Therefore, from (3.2.10)), (3.2.12))-(3.2.14)) and (3.2.18)) we obtain the following esti-
mates for the solution of the problem (3.2.5), (3.2.6)):

lull < Mollpll + |ul, ([« < Millell,

(3.2.19)
[l < Malll], [lu"|| < Msl|gl|-
For any number M > 0, define the domain
Dy = {(t,u,y,v,2) |0<t <1, |u| < (My+ )M,

|y| S MlM, |U| S MQM, |Z| S M3M}
From now on suppose that the function f(t,u,y,v, z) is continuous in D,;. Denote
1
Co = / g(s)ds > 0. (3.2.21)
0

Lemma 3.2.2. Under the assumption that

|f(t,u,y,0,2)] < M in Dy (3.2.22)
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and the condition
e C(](?”MO + 1) S 1, (3223)

where Cj is defined by (3.2.21)), holds, the operator A defined by ({3.2.4)) maps
the closed ball B[0, M] in B into itself.

Proof. Let w = (p, )" € B[0, M]. Then |Jo|| < M and |u| < 2.
Consider the problem (3.2.5)), (3.2.6). From the estimates (3.2.19) for its
solution u(t) and the derivatives we obtain

1
Jull < (Mw;) M, < MM, (] < MoM, [ < MM,

Therefore, (t,u,u’,u”,u") € D). Hence, by the assumption (3.2.22) we have
|f @t ut), ' (t),u" (1), u"(t)| < M.

Next, there hold the estimates

1
r / g(s)u(s)ds| < rl|lu||Co < rCo(My + %) =Co(rMy+1) =M < M. (3.2.24)
0

Therefore,
| Awl|s < M.

Lemma 3.2.3. The operator A is a compact operator in B0, M].

Proof. The compactness of A follows from the compactness of the integral oper-
ators (3.2.10)), (3.2.12))-(3.2.14]), the continuity of the function f(¢,z,y,v,z) and

the compactness of the integral operator fol g(s)u(s)ds. ]

Theorem 3.2.1. Suppose the conditions of Lemma [3.2.2] are satisfied. Then

the problem (3.2.1]), (3.2.2]) has a solution.

Proof. By Lemma, and Lemma [3.2.3] the operator A is a compact operator
mapping the closed ball B[0, M] in the Banach space B into itself. Therefore,
according to the Schauder fixed point theorem, the operator A has a fixed point
in B[0, M]. This fixed point generates a solution of the problem (3.2.1)), (3.2.2]).

O

In order to establish positivity of solution of (3.2.1]), (3.2.2)), introduce the domain

D ={t,u,y,v,2) | 0<t <1, 0<u< (Mo—i-%)M,

3.2.25
0<y< MM, o] < MM, 2| < Mpary, 02

and the strip in B
Syu={w= (o))" | —M<p<0,0<ru< M} (3.2.26)

Theorem 3.2.2 (Positivity of solution). Suppose the function f(t,u,y,v,z) is
continuous and
—M < f(t,u,y,v,2) <0 in D}, (3.2.27)

and the condition ([3.2.23)) is satisfied. Then the problem (3.2.1)), (3.2.2) has a
nonnegative solution. Besides, if f(¢,0,0,0,0) £ 0 in (0,1) then the solution is
positive.
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Proof. 1t is easy to verify that under the conditions of the theorem, the operator
A maps Sy into itself.

Indeed, for any w € Sy, w = (¢, )7, —M < ¢ < 0,0 < ru < M. Since Gy(t,s) <0
for 0 <t,s<1,(:=0,1) from (3.2.10)), (3.2.12)), (3.2.13)) we have

0<u(t) < (Mo+1)M, 0<u'(t) < MM, |u"(t)| < MoM, |u" ()| < MM
for any 0 < ¢ < 1. Therefore, for the solution u(t) of , we have
(t,ut), ' (t),u"(t),u" (t)) € Dy,
and by the condition (3.2.27)
—M < f(t,u(t), ' (t),u"(t),u" (t)) <O0.

Taking into account (3.2.24)) we have

1
0< r/ g(s)u(s)ds < Co(rMy+ 1)M < M.
0

Hence, (f(t,u(t),u/'(t), " (t),u"(t)), fol g(s)u(s)ds)T € Sy, i.e. A: Sy — Su.

Also, as was shown above, A is a compact operator in S, due to this A has a fixed
point in Sy, which generates a solution of the problem (3.2.1)), (3.2.2)). This solu-
tion is nonnegative with its first derivative. Due to the condition f(¢,0,0,0,0) Z 0
in (0,1) the function u(¢) = 0 cannot be the solution of the problem. It implies
that the solution must be positive. O

Theorem 3.2.3 (Existence and uniqueness). Suppose that there exist numbers
M >0, Ly, Ly, Ly, L3 >0 such that

L |f(t,u,y,v,2)| < M, V(t,u,y,v,2) € Dy.

2. |f(t, ug, Y2, v2, 29) — f(t,ur, 91,01, 21)| < Lolue — wi| + Li|y2 — y1| + Lao|va — vy | +
L3|22 - Zl|a v(tauivyi7via Z’L) € DM7 1= 172

3. ¢ :=max{q, ¢} <1, where ¢ = rCoM, + Cy (see (3.2.23))) and

g2 = Lo(My + %) + LiMy + LoyMs + L3z Ms.

Then the problem has a unique solution u € C*[0, 1].

Proof. To prove the theorem, it suffices to show that the operator A defined by
is a contractive mapping from the closed ball B[0, M| in B into itself.
Indeed, under the conditions 1) and 3) by Lemma [3.2.2] the operator A maps
B[0, M] into itself.

Now, we show that A is a contraction map.

Let w; = (¢;, )" € B[O, M]. We have

Awy — Awy = ( F (8, ua(t), wa(8), w (1), ug'(£)) — f(E wa(t), i (0), wf (8), (1)) )
Jo 9(5)(ua(s) — ua(s))ds :
where w;(t), (i =1,2) is the solution of the problem

{ W) = @i(t), 0<t<l
uj(0) =} (0) = uj(1) = 0, u;(0) = ps.

)
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In the proof of Lemma it is known that (¢, u;(t),u;(t),u!(t),u (t)) € Du.
Therefore, by the condition 2) for f we have

Ey = |f(t, u2(t)v ug(t)v ug(t>’ U’/Qﬂ(t)) - f(tv Uy (t)v ull (t)a ulll(t)’ ullﬂ(t))l

< Lolua(t) = ur(£)] + Lafus(f) — v ()] + Lafuz (t) — ui (t)] (3.2.28)
+ Lalug (1) — uy'(t)].

Since us(t) — uy(t) is the solution of the problem (3.2.5)), (3.2.6)) with the right-
hand sides ¢o(t) — p1(t) and py — p1, we have

|ug — ur]| < Mollpa — o1 + |p2 — pal,
|uhy — ui || < Miyllws — @l
1 "

|uy —ui]| < Mallpa — w1,
g — uf'|] < Msl|lwa — 1]

(3.2.29)

As for the element w = (p, u)T € B we use the norm

[wlls = max({[e]l, rul)  (r=1),

then in view of the above fact, from ([3.2.28)), (3.2.29) we obtain

Ey < (Lo (Mo + %) + Ly My + Ly My + L3M3) |wy — w18 (3.2.30)
= @2||wz — wr[5.
Now consider .
E, = /0 g(s)(uz(s) —uy(s))ds.
We have .
Pl < [ gluals) = w()lds.

In analogy with the estimate (3.2.24]) we have
1
|B2| < Co(Mo + —)[wz — w5

Therefore
’I“|E2| S Co(?”MO + 1)”11)2 — IU1||[5 = (]1||’(U2 — @U1||3. (3231)

From (3.2.30) and (3.2.31)) we obtain

|Awy — Awn || < max{q, ¢2}||w2 — w15

In view of condition 3) the operator A is a contraction operator in B[0, M]. The
theorem is proved. O

Analogously as the above theorem, it is easy to prove the following

Theorem 3.2.4 (Existence and uniqueness of positive solution). If in Theo-
rem replace Dy; by D, and the condition 1) by the condition ({3.2.27))
then the problem has a unique nonnegative solution u(t) € C*[0,1]. Besides, if
f(£,0,0,0,0) # 0 in (0,1) then the solution is positive.
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3.2.3. Iterative method on continuous level
Consider the following iterative method

1. Given
@O(t) = f(tv 07 07 07 O)a Ho = 0 (3232)

2. Knowing ¢ (t) and py (k= 0,1,...) compute
1
u(t) = / Golt, 3)p()ds + e,
0

yk(t):/o G1(t, s)pr(s)ds,

1 (3.2.33)
uelt) = / Galt, )i (s)ds,
24(t) = / Ga(t, 3)pn(s)ds,
3. Update
prar(t) = F(t (), ys(t), vi(t), ().
(3.2.34)

M1 = /01 g(s)ug(s)ds.

This iterative method indeed is the successive iterative method for finding the fixed
point of operator A. Therefore, it converges with the rate of geometric progression and
there holds the estimate

k
= wlls < - I[lwr = wolls = prd,
where wy, —w = (@ — ¢, . — )" and
k
Pr = 15, d = [lwr — wo|s. (3.2.35)

From the definition of the norm in B it follows
k

ok — | < 1 w1 — wol|s = prd,
—q
1 ¢" 1
e — ] < = |wi — wo|ls = —prd.
rl—gq r

These estimates imply the following result of the convergence of the iterative method

(3.2-32)-(3.2.34).

Theorem 3.2.5. The iterative method (3.2.32))-(3.2.34) converges and for the
approximate solution wuy(t) there hold estimates

1
o =l = (30 1) . ) < i,

|up —u"|| < Mappd, |luy —u"|| < Mspyd.

where u is the exact solution of the problem (3.2.1))-(3.2.2), p; and d are defined
by (3.2.35)), and r is the number available in ([3.2.3)).
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3.2.4. Discrete iterative method

To numerically realize the above iterative method we construct corresponding dis-
crete iterative method. For this purpose cover the interval [0, 1] by the uniform grid
wp, = {tl = Zh, h = 1/N,Z = 0, 1, ,N} and denote by (I)k(t),Uk<t),Yk(t>,Vk(t),Zk(t)
the grid functions, which are defined on the grid @, and approximate the functions
ok (t), uk(t), yr(t), vi(t), zx(t) on this grid. We also denote by (i) the approximation of

M-
Consider now the following discrete iterative method.

1. Given

2. Knowing ®x(t;), ¢ = 0,...,N and ji (k = 0,1,...) compute approximately the
definite integrals (3.2.33|) by trapezium formulas

N
Ur(t:) = > hp;Golti, ;) ®k(t;) + fux,

=0
N
Yi(t) =D hpiGa(ti, t;)®x(ty),
. (3.2.37)
Vi(t:) = hpiGalti, t;)®x(t)),
=0
N
Zk(tl) = thng(ti,tj)(I)k(tj), 1= O, ceey N,
=0
where p; is the weight of the trapezium formula
1/2, j=0,N
P = .
1,j=12..,N-1
and
—(1—-9)2?4+1, 0<s<t<]1,
Gi(t,s) =< —(1—5)2+1/2, s=t,
—(1—s)?, 0<t<s<Ll
3. Update
pr1(ti) = [t Up(ta), Ya(t), Vi(ts), Zi(ti),
(3.2.38)

N
fikir =Y hpig(t)Us(t)).
=0

In order to get the error estimates for the approximate solution for u(t) and its deriva-
tives on the grid we need some following auxiliary results.

Proposition 3.2.6. Assume that the function f(¢,u,y,v,2) has all continuous
partial derivatives up to second order in the domain D,;. Then for the functions
ug(t), yr (), vi(t), z(t),k = 0,1, ... constructed by the iterative method (3.2.32)-
there hold z(t) € C3[0,1], vi(t) € C*0,1], yr(t) € C°[0,1], ux(t) € C°[0,1].
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Proof. We prove the proposition by induction. For £ = 0, by the assumption on
the function f we have ¢q(t) € C?0,1] since ¢o(t) = f(¢,0,0,0,0). Taking into
account the expression ((3.2.17)) of the function Gs5(t, s) we have

wo(t) = / Galt, s)po(s)ds — / (1= 8 + Ugo(s)ds — / (1 - ) gols)ds.

By direct differentiation of the integrals in the right-hand side, it is easy to see
that 2{(t) = po(t). Therefore, z(t) € C?[0,1]. It implies vo(t) € C*0,1], yo(t) €
C5[0,1], uo(t) € C90,1].

Now suppose z(t) € C30,1], ve(t) € C*0,1], yi(t) € C°[0,1], ux(t) € CY0,1].
Then, because ¢i1(t) = f(t, up(t), yr(t), vi(t), 2zx(t)) and the functions f by the
assumption has continuous derivative in all variables up to order 2, it follows
that ¢, 1(t) € C?[0,1]. Repeating the same argument as for ¢ (t) above we obtain
that 2,1 (t) € C3[0,1], vpy1(t) € CH0,1], yry1(t) € C?[0,1], ugy1(t) € C°[0,1]. Thus,
the proposition is proved. ]

Proposition 3.2.7. For any function o(t) € C?[0, 1] there hold the estimates

1
/ Gn(ti, s)p(s)ds = Z hp;Gn(ti t))o(t;) + O(R?), (n=0,1,2), (3.2.39)
0

/0 Gs(ts, s)e(s)ds = Z hp; G5 (ti, t)e(t;) + O(h?). (3.2.40)

Proof. For n = 0 the above estimate is obvious in view of the error estimate
of the trapezium formula because the function Gy(t,s) defined by have
continuous derivatives up to second order.

In the case n = 1,2, although the functions G,(¢, s), G5(t, s) have not partial
derivatives in respect to ¢t continuous up to second order, they are continuous
for any 0 < t,s < 1. Due to this continuity the trapezium formulas also have
second order accuracy. Indeed, we have for n = 1,2

/G (ti, s)p ds—/ Gn(ti, s)p(s)ds + G (ti,s)p(s)ds

h(3Gn < )SO(to)+G (tz,tl)som)+---+Gn<ti,ti71>w(ti,1>+%Gn(ti,tnw(a))
(%G (ti) + Gulti, tiv1)p(tiva) + .. + Gu(ti, tn—1)p(ty-1)

G (L, )( N)) +0()

w(tit)o(t;) + O(R?).

MZ N |—=

Thus7 the estimate (3.2.39)) is established. The estimate ((3.2.40]) is obtained

using the following result, which is easily proved.

Lemma 3.2.4. Let p(t) be a function having continuous derivatives up to second
order in the interval [0, 1] except for the point 0 < ¢; < 1, where it has a jump.
Denote lim; ;, op(t) = p; , lim;, o p(t) = pi, pi = %(p; +p). Then

/lp(t)dt = hpip; + O(h?), (3.2.41)

J=0

where p; = p(t;),J # i.
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]

Proposition 3.2.8. Under the assumption of Proposition|3.2.6/and the assump-
tion that the function g(s) € C?[0,1], for any k = 0,1, ... there hold the estimates

[Pk — @il = O(h?), | — pi| = O(h?), (3.2.42)

Uk = well = O(R?), [IYr — will = O(h?),

3.2.43
IV = vell = O(h?), 1|2k — 2]l = O(h?). ( )
where |.|| = [|.||c(@,) is the max-norm of function on the grid wy,.

Proof. We prove the proposition by induction. For & = 0 we have immediately
|Pr—pkll = 0, |f—pr| = 0. Next, by the first equation in (3.2.33]) and Proposition
we have

ug(t;) = /O Go(ti, s)po(s)ds + po = Z hp;Go(tis t)po(ts) + O(h?) (3.2.44)

for any i =0, ..., N since py = 0. On the other hand, in view of the first equation

in (3.2.37) and (3.2.36]) we have

Up(t;) = ihijo(ti,tj)goo(tj) (3.2.45)

=0

Therefore, |Uy(t;) — uo(t;)| = O(h?). Consequently, ||Uy — ugl| = O(h?).
Similarly, we have

1Yo = woll = O(h%), Vo — woll = O(h?), [ Zo = 2|l = O(h?). (3.2.46)

Now suppose that (3.2.42) and (3.2.43)) are valid for £ > 0. We shall show that
these estimates are valid for k& + 1.

Indeed, we have
N
pers — i = Y hpg(ty) (un(ty) = Ui(ty)) + O(h?),
j=0

Due to the estimate ||Uy — ui|| = O(h?) from the above estimate it follows that
|1 — fia| = O(h?). (3.2.47)

Next, by the Lipschitz condition of the function f and the estimates (3.2.42)
and (3.2.43)) it is easy to obtain the estimate ||®;.; — pir11]| = O(h?*). Having in
mind this estimate and (3.2.47)) we obtain the estimate

Uk 1 — upia || = O(R?).
Similarly, we obtain
Vi1 = gl = O(B?), [Viyr — v || = O(R?), [ Zi11 — 2k || = O(h?).

Thus, by induction we have proved the proposition. ]
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Now combining Proposition [3.2.8 and Theorem results in the following theo-
rem.

Theorem 3.2.9. For the approximate solution of the problem (3.2.1)), (3.2.2)
obtained by the discrete iterative method on the uniform grid with grid size h
there hold the estimates

1
Up —ul| < [ Mo+ = ) prd + O(h2), ||[Ys — /|| < Mypyd + O(R?
=0l < (Mot )+ 00, o=l < M £0U) 5 1

Vi — || < Maprd + O(R?), || Z — u”'|| < Mappd + O(h?).
Proof. The first above estimate is easily obtained if representing
Ur(ts) — u(ts) = (ur(ts) — u(ts)) + (Ui(ts) — up(ts))
and using the first estimate in Theorem and the first estimate in (3.2.43).

The remaining estimates are obtained in the same way. Thus, the theorem is
proved. ]

3.2.5. Examples

Consider some examples for confirming the validity of the obtained theoretical re-
sults and the efficiency of the proposed discrete iterative method ([3.2.36))-(3.2.38)).
In all examples we perform the process until max{|| P11 — Pill, |1 — x|} < TOL,
where T'OL is a given tolerance.

Example 3.2.1 (Example with exact solution). Consider the problem with

1 1
f:f@mz—w+—ﬁ——@+ﬁ—§w2

) 56 4
g(s) = 4s*.
It is possible to verify that the positive function

5 3
t) ==+t — "t
u(t) 5 + 4t
is the exact solution of the problem.
) ﬁFor the given g(s) we have Cy = folg(s) ds = 3. Taking r = 4, M = 18.2 we
efine

1
Dy = {(tu) [0t <1, 0 < u < (My+ )M = 48030},

In D}, we have —M < f <0, |f/] < 1.9212 = L,. After simple calculations we
obtain ¢; = 0.8445, ¢ = 0.5070. Therefore, ¢ = 0.8445 < 1. Hence, by Theorem
3.2.4] the problem has a unique positive solution. It is the above exact solution.
Meanwhile, it is easy to see that neither Theorem 3.1 nor Theorem 3.2 in [48| are
applicable, so the existence of positive solution is not guaranteed by the authors
of that paper. Below are the results of the numerical experiments with different
tolerances.

In the above tables N is the number of grid points, K is the number of
iterations and Error = |Ux — u]|.
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Table 3.1: The convergence in Example for TOL = 107*

N K Error N K Error

30 34 0.0065 500 34 3.9522e-04
50 34 0.0021 1000 34 3.9461e-04
100 34 3.9522e-04 1500 34 3.9413e-04
200 34 3.9522e-04 2000 34 3.9534e-04

Table 3.2: The convergence in Example for TOL = 1075

N K Error N K Error
30 44 0.0069 300 44 2.8711e-05
50 44 0.0025 500 44 1.6429e-05
100 44 5.8244e-04 1000 44 3.4294e-05
200 44 1.1519e-04 2000 44 3.8906e-05

Table 3.3: The convergence in Example for TOL = 1076

N K Error N K Error
50 54 0.0050 1000 54 2.6122e-06
100 54 6.1906e-04 2000 54 3.4403e-06
200 54 3.9533e-04 3000 54 3.4403e-06
500 54 3.9522e-04 4000 54 3.7370e-06

Remark 3.2.1. From the tables we observe that for each tolerance the number
of iterations is constant and the approximate solution reaches the tolerance when
h? (h = 1/N) is the same order as the tolerance. The further increase of number
of grid points does not increase the accuracy of approximate solution.
This phenomenon can be explained as follows:

From Theorem it is seen that the error of the actual solution, i.e., the
discrete solution, consists of two terms. The first term (M, + 1/r)prd is the
error of the iterative method at continuous level (see Theorem and the
second term O(h?) is the error of discretization at each iteration. The first term
depends on the iteration number k by the formula p, = ¢*/(1 — ¢), where ¢ is
determined by the nature of the boundary value problem (see Theorem [3.2.3).
So, it is desired to choose appropriate h consistent with ¢ because the choice
of very small h does not increase the accuracy of approximate discrete solution.
Indeed, suppose h* is consistent with ¢ in the sense that the quantities O((h*)?)
and (Mo + 1/r)pgd for some K are the same as TOL. Then for any h < h* the
accuracy almost remains the same. Theoretically, the number of iterations K is
the minimal natural number £ satisfying the inequality (Mg + 1/r)ppd < TOL.

Example 3.2.2 (Example 4.1 in [48]). Consider the boundary value problem
u”'(t) = —utle ™+ 1), 0<t<l,

W (0) = w(0) = w/(1) = 0, u(0) = /0 $2u(s)ds.

In this example
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Choose M = 0.4,r = 3 and define
Dy ={tu)|0<t<1, 0<u<(M+1)M},
where M, = 0.0139 as was computed in ([3.2.18). Then it is easy to verify that
—M < f(t,u) <0in D},

0 .
and \a—f| < 1.622 =: Ly in Dj;. Therefore, ¢ = rCoMy + Cy = 0.3472, ¢ =
u

Lo(My + 1) = 0.5633, and due to this 0 < ¢ < 1. By Theorem [3.2.4] the problem
has a unique nonnegative solution. Since the function u(¢) = 0 is a solution of
the problem, we conclude that the unique solution of the problem is this trivial
solution. The computational experiment supports this theoretical conclusion.
Remark that in [48] the authors established that the problem has a positive
solution. So, their result is not correct.

Example 3.2.3 (Example 4.2 in [48]). Consider the boundary value problem

u"(t) = —y/(1+u) —sinu, 0<t<]1,
1
u'(0) = u"(0) = /(1) =0, u(0) = / su(s)ds.
0
In this example

f=ft,u)=—/(1+4u)—sinu, g(s)=s.

! 1
CO:/O sds:i.

Choosing » = 3 and M sufficiently large, for example, M = 3, we have —M <
f(t,u) <0 in Dj;, where

So,

1
T

In this domain we can take the Lipschitz coefficient Ly = 1.5. Therefore, ¢, =
g2 = 0.5209 and then ¢ = 0.5209 < 1. Moreover, f(¢,0) = —1 # 0. Hence, by
Theorem the problem has a unique positive solution. Remark that in [48]
the authors could only conclude the existence of at least one positive solution.

The numerical computations show that the iterative method described in
Section converges fast. As in Example [3.2.1] the number of iterations for
achieving a given tolerance is independent of the grid size. Table reports the
number of iterations in dependence on TOL.

Table 3.4: The convergence in Example

TOL 1074 1075 10-¢ 1078
K 12 16 19 26

The graph of the approximate solution for N = 100 and TOL = 107* is
depicted in Figure [3.3]
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Figure 3.3: The graph of the approximate solution in Example [3.2.3

Example 3.2.4. Consider Example with

f=-1+u?.

Then _fu(“) — 400 as u — +0 and u — +oo. Thus, neither Theorem 3.1 or
Theorem 3.2 in [48| are satisfied, so the existence of positive solution is not
guaranteed.

Now apply our theory: Choose M = 2,r = 3, then

1
Dy ={(tu)]0<t<1, 0<u< (My+-)M =0.6944}.
T

In D}, we have —M < f <0, |f/] < 1.3888 = L,. After simple calculations we
obtain ¢ = 0.3472, ¢, = 0.4822. Hence, by Theorem [3.2.3] the problem has a
unique nonnegative solution. Due to f(¢,0) # 0,u(t) # 0, it is a positive solution.
The performed numerical experiments also show that the number of iterations
for achieving a given tolerance is independent of the grid size. Table [3.5 reports
the number of iterations in dependence on TOL.

Table 3.5: The convergence in Example

TOL 1074 1075 1076 1078
K 7 9 12 16

The graph of the approximate solution for N = 100 and TOL = 10~* is de-
picted in Figure [3.4]

Example 3.2.5. Consider the problem (3.2.1))-(3.2.2)) with
ft,u,y,v,2) = —(V1+u+siny + %cosv +sinz), g(s) = s.

It is possible to verify that all the conditions of Theorem are satisfied. So,
the problem has a unique positive solution.

The results on the convergence of the iterative method for this example is
given in Table [3.6]

The approximate solution obtained on the grid with the number of nodes
N =100 and TOL = 10~* is depicted on Figure [3.5
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Table 3.6: The convergence in Example [3.2.5]

TOL 1074 107° 10°¢ 1078
K 11 14 18 25

3.2.6. Conclusion

In this section, we have established the existence, uniqueness and positivity of
solution of a fully fourth order nonlinear integral boundary value problem. The idea
of the method used is to reduce the problem to a fixed point problem for an operator
defined on pairs of functions and numbers. It is a further development of the method
applied by ourselves before for other types of boundary conditions. We also study an
iterative method for solving the problem at continuous level. After that we propose a
discrete scheme for realizing the continuous iterative method. Our contribution also
includes the analysis of total error of the approximate discrete solution, which consists
of the error of the continuous iterative method and the error of discretization at each
iteration. Many examples demonstrate the validity of the obtained theoretical results
and efficiency of the iterative method.

The method used in this paper can be applied to other BVPs of higher order and
with other boundary conditions including nonlinear boundary conditions. This is the
subject of our researches in the future.
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Chapter 4

Existence results and iterative method for
integro-differential and functional differential
equations

4.1. Existence results and iterative method for integro-
differential equation

4.1.1. Introduction

In this section we consider the problem

uP(z) = f(x,u(x),u’(x),/o k(x, t)u(t)dt), (4.1.1)
u(0) =0, u(1) =0, «"(0) =0, u"(1) =0,

where the function f(x,u,v, z) and k(z,t) are assumed to be continuous. This problem
is an extension of the problem

Y (@) = f(x,y(o) / Bz, Oy(t)dt), 0 < x < 1,

y(0) =0, y(1) =0, y"(0) =0, y"(1) =0

considered recently by Wang in [66], where by using the monotone method and a
maximum principle, he constructed the sequences of functions, which converge to the
extremal solutions of the problem. Remark that the presence of an extra u’' in the
right hand side function of does not allow to use the argument in |66 to study
the existence of solutions of the problem. Here, using the method developed in our
previous papers [11,13}[14}85,(86,88,(90] we establish the existence and uniqueness of
the solution and propose an iterative method at both continuous and discrete levels
for finding the solution. The second order convergence of the method is proved. The
theoretical results are illustrated by some examples.

(4.1.2)

4.1.2. Existence results

Using the methodology in |11}|13}|14}[85,[86,[88,|90] we introduce the operator A
defined in the space of continuous functions C[0, 1] by the formula
1

(AQ)(x) = f(z, ulx), v/(z), / k(. Dyu(t)dt), (4.1.3)

0
where u(x) is the solution of the boundary value problem

"

u" = p(x), 0 <z <1,

w(0) = u"(0) = u(1) = u"(1) = 0. (4.1.4)
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It is easy to verify the following lemma.

Lemma 4.1.1. If the function ¢ is a fixed point of the operator A, i.e., ¢ is the
solution of the operator equation

Ap = o, (4.1.5)

where A is defined by (4.1.3))-(4.1.4)) then the function u(x) determined from the
BVP (4.1.4) is a solution of the BVP (4.1.1). Conversely, if the function u(z) is
the solution of the BVP (4.1.1]) then the function

o(@) = f(z,u(z), (), / Kz, t)u(t)de)

satisfies the operator equation (4.1.5]).

Due to the above lemma we shall study the original BVP (4.1.1]) via the operator
equation (4.1.5)). Before doing this we notice that the BVP (4.1.4]) has a unique
solution representable in the form

u(x) = /01 Go(z, s)p(s)ds, 0<t <1, (4.1.6)

where

<s<z<l1
e ) (4.1.7)
r(s—1)(s*—s+2a%), 0<zr<s<l1

is the Green’s function of the operator u”(t) = 0 associated with the homogeneous
boundary conditions u(0) = u”(0) = u(1) = " (1) = 0.
Differentiating both sides of (4.1.6)) gives

1
u'(z) = / Gi(x, s)p(s)ds, (4.1.8)
0
where
1 ]s(322—6 242 0<s<z<l1
Gi(ws) = - s(3x x+s*+2), <s<uz<l, (4.1.9)
6 |(s—1)322—2s+s%), 0<zr<s<l.
Set
1
My = 012132(1/0 |Go(z, s)|ds,
1
M; = max |G1(z, s)|ds, (4.1.10)
0<z<L1 0
1
M, — max / (z, 5)|ds.
0<z<1 0
It is easy to obtain
5 1
Mo—@,]\/fl =5 (4.1.11)
Now for any positive number M, we define the domain
Dy ={(z,u,v,2) | 0<z <1, |ul < MM, (4.1.12)

|| < MM, |z| < MoM;yM}.
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As usual, we denote by B0, M] the closed ball centered at 0 with radius M in the
space C0,1], i.e.,

B[O, M] = {u € C0,1] | [[u]| < M},
where ||u|| = maxg<,<i |u(x)|.

Theorem 4.1.1 (Existence and uniqueness). Suppose that the function k(z, t) is
continuous in the square [0, 1] x [0, 1] and there exist numbers M > 0, Lg, Ly, Ly > 0
such that:

(i) The function f(z,u,v,z) is continuous in the domain Dy, and |f(z,u,v,2)| <
M, ¥(z,u,v,2) € Dy

(1) |f(za,ua,ve, 22) — f(z1,ur,v1,21)] < Lolug — wi| + Lilve — vi| + La|ze — 21,
V(a:i,ui,vi,zi) & DM, 7 = 1,2

(iii) q = L()M() + L1 M; + L2MOM2 < 1.

Then the problem (4.1.1)) has a unique solution u € C*[0,1] satisfying |u(x)| <
MM, |u/'(z)| < MM for any 0 <z < 1.

Proof. Under the assumptions of the theorem we shall prove that the operator A
is a contraction mapping in the closed ball B[O, M]. Then the operator equation
has a unique solution u € C®[0,1] and this implies the existence and
uniqueness of solution of the BVP (4.1.1)).
Indeed, take ¢ € B[O, M]. Then the problem (4.1.4) has a unique solution
of the form (4.1.6). From there and (4.1.10) we obtain |u(z)| < Myll¢| for all
€ [0,1]. Analogously, we have ||u/(z)|| < M||¢] for all x € [0,1]. Denote by K
the integral operator defined by

(Ku)(x):/o k(x, t)u(t)dt.

Then from the last equation in (4.1.10) we have the estimate |(Ku)(x)| < MyM,||¢||,
z € [0,1]. Thus, if ¢ € B[O, M|, i.e., ||¢|| < M then for any z € [0, 1] we have

lu(z)] < MM, |u'(x)] < MiM, |(Ku)(z)| < MgMyM.
Therefore, (z,u(z), v (z), (Ku)(x)) € Dy. By the assumption (i) there is
|f (z,u(z), v (x), (Ku)(z))| < M Vxe[0,1].

Hence, |[(Ap)(z)] < M, Vz € [0,1] and ||Ap|| < M. It means that A maps B[O, M|
into itself.

Next, take ¢, 9o € B]O, M]. Using the assumption (i) and (ii7) it is easy to
obtain

A — Apr|| < (LoMo + LMy + LaMoMs)|[2 — @1l = qll2 — -

Since ¢ < 1 the operator A is a contraction in B[O, M]. This completes the proof
of the theorem. ]
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Now, in order to study positive solutions of the BVP (4.1.1)) we introduce the

domain

DY ={(z,u,v,2) | 0< 2 <1, 0<u< MM,

(4.1.13)
|U| S MlMa |Z| S MOMZM}v

and denote
Sy ={p € C[0,1],0 < p(x) < M}.

Theorem 4.1.2 (Positivity of solution). Suppose that the function k(z,t) is
continuous in the square [0, 1] x [0, 1] and there exist numbers M > 0, Lg, Ly, Ly > 0
such that:

(i) The function f(z,u,v, z) is continuous in the domain D}, and 0 < f(z,u,v, z) <
M, ¥(x,u,v,z) € D}, and f(z,0,0,0) # 0.

(i) |f(z2,u2,v9,22) — f(z1,u1,01,21)] < Lolua — wi| + Li|va — v1] 4+ La|ze — 2],
V(:ci,ui,’uz-,zi) € ID]J\%, 1= 1,2

(iii) q = LoMy+ LMy + LoMoMsy < 1.

Then the problem (4.1.1)) has a unique positive solution u € C*[0,1] satisfying
0 <u(z) < MM, |v/(z)] < MiM for any 0 <z < 1.

Proof. Similarly to the proof of Theorem |4.1.1 where instead of D), and B[O; M]
there stand Dj, and Sy, we conclude that the problem has a nonnegative solu-
tion. Due to the condition f(z,0,0,0) % 0, this solution must be positive. ]

4.1.3. Numerical method

In this section we suppose that all the conditions of Theorem are satisfied.
Then the problem (4.1.1)) has a unique solution. For finding this solution consider the

following iterative method:

1. Given

po(x) = f(2,0,0,0). (4.1.14)

2. Knowing g (x) (m = 0,1,...) compute
() = /0 Gl Do)t
vm(x):/ol G1(z,t) o (t)dt, (4.1.15)
() = /0 ket (B)dt.

3. Update

Pmr1(2) = [ (@, um (@), v (), 2m (7)) (4.1.16)
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This iterative method indeed is the successive iterative method for finding the fixed
point of operator A. Therefore, it converges with the rate of geometric progression and
there holds the estimate

qm
lom =l < 77— llvr = woll = Pmd,
—q
where ¢ is the fixed point of the operator A and

qm

Pm = 1=, d = [lor — ol (4.1.17)

This estimate implies the following result of the convergence of the iterative method

(@1.14)-(@1.16).

Theorem 4.1.3. Under the conditions of Theorem [.1.1] the iterative method
(4.1.14)-(4.1.16)) converges and for the approximate solution w(t) there hold
estimates

||Um - UH < MOpmdv ||U:n - U,H < Mlpmda

where u is the exact solution of the problem (4.1.1), p,, and d are defined by
Y

To numerically realize the above iterative method we construct a corresponding
discrete iterative method. For this purpose cover the interval [0, 1] by the uniform grid
wp = {x; =ih, h = 1/N,i = 0,1,..., N} and denote by ®,,(z), Uy (z), Vin(2), Zn(x)
the grid functions, which are defined on the grid @, and approximate the functions
Om (), Up (), Uy (), 2 () on this grid.

Consider now the following discrete iterative method:

1. Given

2. Knowing ®,,(z;), m =0,1,...; i = 0,..., N, compute approximately the definite
integrals (4.1.15]) by the trapezium formulas

Un(x;) = Z hp;iGo(zi, 25) P (;),

=0

Vm(l’z) == thle(Ii,l’j)q)m(l‘j), (4119)

Jj=0

N
Z(:) =Y hpik(wi, ;) Un(5), i =0, .., N,
j=0

where p; is the weight of the trapezium formula, namely

J12,j=0,N
)1, =12 N1

Pj

3. Update
Opi1(xi) = [, Un(2:), Vin(23), Zim(1)). (4.1.20)
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In order to get the error estimates for the approximate solution for u(t) and its deriva-
tives on the grid we need some following auxiliary results.

Proposition 4.1.4. Assume that the function f(¢,u,v,z) has all continuous
partial derivatives up to second order in the domain D,; and the kernel func-
tion k(z,t) also has all continuous partial derivatives up to second order in the
square [0, 1] x [0,1]. Then for the functions ¢,,(z), umn(x), vm(x), 2m(z),m = 0,1, ...,
constructed by the iterative method (4.1.14)-(4.1.16) we have ¢,,(z) € C?[0,1],
up(z) € C%0,1], vu(x) € C°[0,1], 2,(z) € C?[0,1].

Proof. We prove the proposition by induction. For k& = 0, by the assumption
on the function f we have ¢y(t) € C?0,1] since ¢o(z) = f(x,0,0,0). Taking into
account

1
wle) = [ Golat)an(t)i
0
we deduce that the function ug(x) is the solution of the BVP

ug? () = po(x), = € (0,1),
up(0) = up(1) = uy(0) = ug(1) = 0.

Therefore, ug(x) € C°[0,1]. It implies that ve(x) € C®[0, 1] because vy(x) = uy(z).
Since by assumptions k(m t) has all continuous derivatives up to second order,
the function z(z) = [ k(x, t)uo(t)dt belongs to C2[0,1].

Now suppose gpm(x) e C?o, 1] w(x) € CY0,1], vu(z) € C°l0,1], zm(z) €
C?[0,1]. Then, because p,,,1(z) = f(x,um(x),vm(x),zm(x)) and the functions f
by the assumption has continuous derivative in all variables up to order 2, it
follows that ¢,,.1(z) € C?[0,1]. Repeating the same argument as for ¢o(z) above
we obtain that u,1(z) € C%0,1], vymy1(z) € C°[0,1], zpmii(z) € C?0,1] Thus, the
proposition is proved. ]

Proposition 4.1.5. For any function p(z) € C?[0, 1] there holds the estimate

/1G (i, t)p(t)dt = thj (zi,t))p(t;) + O(R*)  (n=0,1). (4.1.21)

Proof. The above estimate is obvious in view of the error estimate of the com-
pound trapezium formula because the functions G,,(x;,t) (n = 0, 1) are continuous
at t; and are polynomials in the intervals [0,¢;] and [¢;, 1]. O

Proposition 4.1.6. Under the assumptions of Proposition [4.1.4] for any m =
0,1, ... there hold the estimates

|Vin — Ul = O(h?), | Zm — 2mll = O(B?). (4.1.23)
where |.|| = ||.||lz, is the max-norm of function on the grid wj,.
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Proof. We prove the proposition by induction. For m = 0 we have immediately

|®o — w0l = 0. Next, by the first equation in (4.1.15) and Proposition we

have

uo(xi):/ Go(xi, t)po(t)dt = th]Gg x5, t5)po(t;) + O(h?) (4.1.24)

7=0

for any ¢ =0,..., N . On the other hand, in view of the first equation in (4.1.19))
we have

N

=0
Therefore, |Uy(t;) — uo(t )| = O(h*) because ®y(t;) = ¢o(t;) = f(t;,0,0,0). Conse-
quently, [|U — uol| = O(k?).

Similarly, we have
1o — woll = O(h2). (4.1.26)

Next, by the trapezium formula we have

zo(.?ci):/o (i, t)ug(t)dt = th] i, t)uo(t;) + O(R?),

7=0

while by the third equation in (4.1.19)) we have
N
Zo(xi) =Y hpik(wi,t))Uo(t;), i =0,...,N.
=0
Therefore,

ZO(:EZ) - ZO xz

—\thj v ) Un(t) — wolt;))| + O(12)

=0

< thﬂ’f @i, t3)|[Uo(t;) = wo(ty)] + O(h?)

< Ch? Z hpjlk(@i,t)| + O(h?)

7=0
N
< CC1h*Y " hpy+ O(h?) = O(h?)
7=0

because |Uy(t;) — uo(t;)| < Ch?, |k(xz4,t;)| < Cy, where C,C; are some constants.
Now suppose that (4.1.22) and (4.1.23) are valid for m > 0. We shall show
that these estimates are valid for m+1. By the Lipschitz condition of the function

f and the estimates (4.1.22)) and (4.1.23) it is easy to obtain the estimate
[Pt — Pmiall = O(hZ)-
Now from the first equation in (4.1.15)) by Proposition we have
Um+1 xz / Go l‘z, )SDmH dt thgGo xm%)@mﬂ(%) + O(h2)
7=0
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On the other hand by the first formula in (4.1.19)) we have

N
Unia(:) =Y hp;Go(ws, ) @1 (25).

=0
From this equality and the above estimates we obtain the estimate
U1 — s || = O(h2)-
Similarly, we obtain
Vi1 = vmia ]l = O(h?), [ Zins1 — 24|l = O(R).
Thus, by induction we have proved the proposition. [

Now combining Proposition [4.1.6| and Theorem [4.1.3| results in the following theo-
rem.

Theorem 4.1.7. Assume that all the conditions of Theorem [4.1.1) and Propo-
sition [4.1.4] are satisfied. Then, for the approximate solution of the problem
(4.1.1)) obtained by the discrete iterative method on the uniform grid with grid
size h there hold the estimates

|Um — ul| < Mopmd + O(h?), ||Vi — /|| € Mappd + O(R?). (4.1.27)
Proof. The first above estimate is easily obtained if representing
Un(ti) = u(ti) = (um(t:) — u(ti)) + (Un(t:) — um(t:))

and using the first estimate in Theorem and the second estimate in (4.1.22)).
The remaining estimate is obtained in the same way. Thus, the theorem is
proved. [

4.1.4. Examples
Example 4.1.1. Consider the problem (4.1.1)) with

k(xz,t) = e"sin(nt), (x,t) € [0,1] x [0, 1],
o) @), [ W Ouwa) =) [k Du@d s @
0 0
L, .o 4 .
— 5e’sin (rx) + 7" sin(mz) — B) sin(27x).
In this case
flz,u,v,2) = u’z +uv — %e”" sin?(rx) + 7 sin(rx) — gsin(%m)

2 . . . . .
and M, = “ Itis possible to verify that the function u = sin(nzx) is the exact

solution of 7tThe problem. In the domain D), defined by

Dy = {(z,u,v,2) |0 <z <1, |u| < MM, |u'| < MM,|z| < MgMyM}
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we have

|f(z,u,v, 2)| < M3EMaM? + MoM, M? + 7* + g + g.

It is possible to verify that for M = 113 all the conditions of Theorem [4.1.1]
are satisfied with Lo = 12.2010,L; = 1.4714,L, = 2.1649,q = 0.2690. There-
fore, the problem has a unique solution wu(z) satisfying the estimates |u(z)| <
1.4714, |u'(z)| < 4.7083. These theoretical estimates are somewhat greater than
the exact estimates |u(x)| < 1, |v/(x)| < 7.

Below we report the numerical results by the discrete iterative method (4.1.18))-
for the problem. In Tables and we use the notation Error =

|Up — u||, where u is the exact solution of the problem.

Table 4.1: The convergence in Example for stopping criterion ||U,, —u|| < h?

N h? m Error
50  4.0000e-04 2 1.4305e-04
100 1.0000e-04 3 2.8588e-06
150 4.4444e-05 3 2.8599e-06
200 2.5000e-05 3 2.8602e-06
300 1.1111e-05 3 2.8603e-06
400 6.2500e-06 3 2.8603e-06
500 4.0000e-06 3 2.8603e-06
800 1.5625e-06 4 5.7485e-08
1000 1.0000e-06 4 5.7486e-08

It is interesting to notice that if taking stopping criterion ||®,, —®,, || < 1071°
instead of ||U,, — u|| < h* then we obtain better accuracy of the approximate
solution with more iterations. See Table 1.2l

Table 4.2: The convergence in Example for stopping criterion ||®,, —

(I)m—l H S 10—10

N h? m Error

50  4.0000e-04 7 2.2152e-08
100 1.0000e-04 7 1.3831e-09
150 4.4444e-05 7 2.7279e-10
200 2.5000e-05 7 8.5995e-11
300 1.1111e-05 7 1.6618e-11
400 6.2500e-06 7 4.9447e-12
500 4.0000e-06 7 1.7567e-12
800 1.5625e-06 7 1.4588e-13
1000 1.0000e-06 7 3.3318e-13

From Table 4.2] we see that the accuracy of the approximate solution is near
O(h*) although by the proved theory it is only O(h?).

Example 4.1.2 (Example 4.2 in [66]). Consider the problem

u (z) = sin(rz)[(2 — v (z)) /0 tu(t)dt + 1],z € (0,1)

u(0) =0, u(1) =0, «"(0) =0, «"(1) = 0.
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This is the problem (4.1.1)) with
k(xz,t) = sin(mx)t, (z,t) €[0,1] x [0, 1],

F(@,ulz), v (x), /O bz, u(t)dt) = (2 — u2(x)) /0 sin(ra)tu(t)dt + sin(rz).

So, f(z,u,v,z) = (2 —u?)z + sin(rz).
It is easy to see that M; = maxg<,<i fol |k(z,t)|dt = 5. Since M, and M, are given

by (4.1.11]) we define
5)

Dur = {(w,u,0,2) |0 <a < 1, Ju| < S%M, v] < 2—14M, ol < M) (4.129)
It is possible to verify that for M = 1.1 all the assumptions of Theorem [4.1.1] are
satisfied with Ly = 2.0515e—04, L; = 0, Ly = 2, ¢ = 0.0130. Therefore, the problem
has a unique solution satisfying |u(z)| < 0.0143, |«'(x)] < 0.0458.

It is worth emphasizing that in [66] by the monotone method the author could
only prove the convergence of the iterative sequences to extremal solutions of
the problem but not the existence and uniqueness of solution.

Using the discrete iterative method (4.1.18)-(4.1.20) on the grid with grid
step h = 0.01 and the stopping criterion [|®,, — ®,, 1|| < 107'° we found an
approximate solution after 7 iterations. The graph of this approximate solution
is depicted in Figure [4.1]
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0.004 / \
/ \
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0.002F /
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o] 0.2 0.4 0.6 0.8 1

Figure 4.1: The graph of the approximate solution in Example [4.1.2]

4.1.5. Conclusion

In this section, we have established the existence and uniqueness of the solution
for a fourth order nonlinear integro-differential equation with the Navier boundary
conditions and proposed an iterative method at both continuous and discrete levels
for finding the solution. The second order of accuracy of the discrete method has
been proved. Some examples, where the exact solution is known and is not known,
demonstrate the validity of the obtained theoretical results and the efficiency of the
iterative method. It should be emphasized that for the example of Wang in [66] we
have established the existence and uniqueness of solution and found it numerically but
Wang could prove only the convergence of the iterative sequences constructed by the
monotone method to extremal solutions.

The method used in this section with appropriate modifications can be applied to
nonlinear integro-differential equations of any order with other boundary conditions
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and more complicated nonlinear terms. This is the direction of our research in the
future.

4.2. Existence results and iterative method for functional
differential equation

4.2.1. Introduction

In this section we propose a new approach to functional differential equations
(FDE), which is different from the approach of Bica et al. [75] in 2016 for functional
differential equations of even orders, where they use iterated cubic splines. Although
our approach can be applied to functional differential equations of any orders with
nonlinear terms containing derivatives but for simplicity we consider the FDE of the
form

u" = ft,u(t),u(e(t))), telo,d (4.2.1)

associated with the general boundary conditions

Bilu] = aqu(0) + S1u/(0) + y1u”(0) = by,
Bs[u] = apu(0) + o’ (0) 4 421" (0) = b, (4.2.2)
Bs[u] = azu(1) + B3u' (1) + y3u” (1) = bs,
Bi[u] = aqu(0) + B14/(0) + y1u”(0) = by,
BQ[’LL] = agu(l) + @2’&/(1) + 'ygu”(l) = bg, (423)
Bs[u] = azu(1) + B3u' (1) + y3u” (1) = bs,

such that

ap B 0 0 0
Rank | as Bs 72 0 0 0] =3.

0 0 0 az B3 73

The function ¢(t) is assumed to be continuous and maps [0, a] into itself.
Developing the unified approach for fully third order nonlinear differential equation

u" = f(t7 u(t)a ul(t)7 uﬂ(t))

in the previous works [13[[14], in this section we establish the existence and uniqueness

of solution of the problem (4.2.1])-(4.2.2)) and propose an iterative method for finding

the solution at both continuous and discrete levels. Some examples demonstrate the
validity of obtained theoretical results and the efficiency of the proposed numerical
method.

4.2.2. Existence and uniqueness of solution

Following the approach in [13,/14] (see also [11,[85]) to investigate the problem
(4.2.1))-(4.2.2)) we introduce the nonlinear operator A defined in the space of continuous
functions C|0, a] by the formula:

(AP)(t) = (L, u(t), ulp(1))), (4.2.4)
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where u(t) is the solution of the problem

W) = 9(t), 0<t<a

4.2.5
Bl[u] :blaB2[u] :b27B3[u] :b37 ( )
where Bi[u], By[u], Bs[u] are defined by (4.2.2)). It is easy to verify the following

Proposition 4.2.1. If the function ¢ is a fixed point of the operator A, i.e., ¢
is the solution of the operator equation

Aty = ), (4.2.6)

where A is defined by (4.2.4)-(4.2.5)) then the function u(¢) determined from the
BVP (4.2.5) is a solution of the BVP (4.2.1)-(4.2.2)). Conversely, if the function
u(z) is the solution of the BVP (4.2.1)-(4.2.2) then the function

(t) = ft, ult), u(p(t)))

satisfies the operator equation (4.2.6]).

Now, let G(t,s) be the Green function of the problem (4.2.5). Then the solution
of the problem can be represented in the form

u(t) = g(t) +/ G(t, s)Y(s)ds, (4.2.7)
0
where ¢(t) is the polynomial of second degree satisfying the boundary conditions
Bilg] = b1, Byg] = b2, Bs[g] = bs, (4.2.8)
Denote .
M :&1%’2/0 |G(t,s)|ds. (4.2.9)
For any positive number M define the domain
Dy = {(t,u,v) |0 <t <aslul <|lgll + MoM; |v] < [lg + MOM}7 (4.2.10)
where |[g]] = maxo<i<a [9(t)].

As usual, we denote by B0, M] the closed ball of the radius M centered at 0 in the
space of continuous functions C[0, a.

Theorem 4.2.2. Assume that:
(i) The function ¢(t) is a continuous map from [0,a] to [0, a.

(ii) The function f(¢,u,v) is continuous and bounded by M in the domain Dy,
le.,
|f(t,u,0)] < M V(t,u,v) € Dy (4.2.11)

(iii) The function f(t,u,v) satisfies the Lipschitz conditions in the variables u, v
with the coefficients L;, Ly > 0 in Dy, i.e.,

|f(t, ug,v9) — f(t,ur,v1)] < Lyjug — uy| + Lo|vy — v1]

4.2.12
V(t,ui,vi) € DM (Z = 1,2) ( )
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(iv)

The the problem (4.2.1))-(4.2.2)) has a unique solution u(t) € C?[0,a], satisfying
the estimate

u(t)| < |lgll + MoM ¥t € [0,a]. (4.2.14)

Proof. The proof of the theorem will be done in the following steps:

First we show that the operator A is a mapping B[0, M] — B0, M]. Indeed, for
any ¢ € B[0,M] we have [|¢|| < M. Let u(t) be the solution of the problem
(4.2.5). From (4.2.7) it follows

lu(t)| < ||gll + MoM Vit € [0,a). (4.2.15)
Since 0 < p(t) < a we also have
u(e(t)] < llgll + MMVt € [0, a].

Therefore, if ¢ € [0,a] then (¢, u(t),u(¢(t))) € Dy By the assumption (4.2.11)) we

have |f(t,u(t),u(p(t)))] < M Vt € [0,a]. In view of we have |(Ay)(t)| <
M Vtel0,a]. It means ||Ay| < M or Ay € B[0, M].

Next, we prove that A is a contraction in B[0, M]. Let ;1,19 € B[0,M] and
u1(t), us(t) be the solutions of the problem (4.2.7]), respectively. Then from the

assumption (4.2.12]) we obtain

Aty — Adh| < Lufua(t) — s (8)] + Lolus(p(t)) — us(o(2). (4.2.16)

From the representations
u;(t) = g(t) +/ G(t, s)vi(s)ds, (i=1,2)
0

and (4.2.9)) it is easy to obtain

|us(t) = ur ()] < Mollp2 — 9 ]|,
|ua(p(t)) — ur(p(t))| < Mo[tr2 — |

Combining the above estimates and (4.2.16f), in view of the assumption (4.2.13))
we obtain

| Ay — Athr]| < qlftpa — 1], ¢ < 1.

Thus, A is a contraction mapping in B[0, M].
Therefore, the operator equation (4.2.6) has a unique solution ¢ € B[0, M].
By Proposition the solution of the problem (4.2.5)) for this right-hand side

¥(t) is the solution of the original problem (4.2.1])-(4.2.2)). ]

Remark 4.2.1. Theorem remains valid if replace the third order equation
by the higher order equation . Besides, the conditions of the
theorem are weaker than the conditions (i)-(iii) in |75, page 131] because here
the Lipschitz conditions should be satisfied only in a bounded domain D,, instead
of the unbounded domain [a, b)) x Rx R as in [75] and there always is (L, +Lq) My <
(Ly + Ls2)(b— a) Mg since My < (b— a)Mg.
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4.2.3. Solution method and its convergence

Consider the following iterative method:

1. Given 1y € B0, M], for example,
Po(t) = f(t,0,0). (4.2.17)

2. Knowing ¢ (t) (kK =0,1,...) compute

u(t) = g(t) + / "Gt sy (s)ds,

. (4.2.18)
uelt) = gl(t)) + / G (8). 3)(3)ds.
3. Update
Graa(t) = F(E u (), 0 (8)). (4.2.19)
Set i
pr = ——, d = [l — . (4.2.20)

1—¢q’

Theorem 4.2.3 (Convergence). Under the assumptions of Theorem the
above iterative method converges and there holds the estimate

[ = ul] < Mopyd,

where u is the exact solution of the problem (4.2.1)-(4.2.2)) and M, is given by
@2.9).

This theorem follows straightforward from the convergence of the successive approx-
imation method for finding fixed point of the operator A, the representations
and the first equation in (|4.2.18)).

To numerically realize the above iterative method we construct the corresponding
discrete iterative method. For this purpose, we cover the interval [0,a] by the uni-
form grid w, = {t; = ih, h = a/N,i = 0,1,..., N} and denote by ®(t), Ux(t), Vi(t)
the grid functions, which are defined on the grid w; and approximate the functions
i (t), ug(t), vi(t) on this grid, respectively.

Below we describe the discrete iterative method:

1. Given

2. Knowing Wy (t;), £ = 0,1,...; i = 0,..., N, compute approximately the definite

integrals (4.2.18]) by the trapezoidal rule
N
Uilts) = g(t:) + Y hpiG(ti, ;) Ui(t;),
=0

" (4.2.22)
Vie(t:) = g(&) + Z hp;jG(&, tj)Wk(t;), i =0,..., N,
=0
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where p; are the weights

_J12,5=0N
PiT\1, =12 . N-1

and & = ¢(t;).

3. Update
Wi (ts) = f(Es, U(ti), Vie(ti)- (4.2.23)

Now study the convergence of the above discrete iterative method. For this purpose
we need some auxiliary results.

Proposition 4.2.4. If the function f(¢, u,v) has all partial derivatives continuous
up to second order and the function ¢(¢) also has continuous derivatives up to
second order then the functions y(t), ux(t),vr(t) constructed by the iterative
method (4.2.17)-(4.2.19) also have continuous derivatives up to second order.

This proposition is obvious.

Proposition 4.2.5. For any function () € C?[0,a] there hold the estimates

/a G(t;, s)Y(s)ds = Z hp;G(ti, s;)1(s;) + O(R?), (4.2.24)
/ G(&, 9)(s)ds = Z hp;G (&, 5;)1(s;) + O(h?), (4.2.25)
7=0

where in order to avoid possible confusion we denote s; = ;.

Proof. The validity of (4.2.24]) is guaranteed by [14, Proposition 3|. Here we
notice that (4.2.24]) is not automatically deduced from the estimate for the com-

posite trapezoidal rule because the function %”) has discontinuity at s =t,.
Now we prove the estimate ([£.2.25). Since 0 < & = ¢(t;) < a, there are two

cases.

Case 1: ¢ coincides with one node s; of the grid wj, i.e., there exists s; € w,

such that ¢ = s;. Because the Green function G(t,s) as a function of s, it is

continuous function at s = ¢ and is a polynomial of s in the intervals [0, &;] and

&, a], we have

a &i a
[ ctmas= [" e s [ o s

j—1

= h(50(6 s0)0(0) + 3 Gles s)vlen) + SG(E5,)0(s,)) + 00
(% (&is85)0(s5) + Z G(&,sm)zb(sm)Jr%G(gi’SN)MSN))+O(h2)

Z hp;G(ts, s;)1(s;) + O(h?).
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Thus, (4.2.25)) is proved for Case 1.

Case 2: & lies between s; and s;41, i.e., s < & < 841 for some [ = 0, N — 1. In
this case, we represent

/OQG(fi,8)¢<S)dS = /0 F(s)ds+/:iF(s)ds+/:+l F(s)ds+/8:1 F(s)ds. (4.2.26)

Here, for short we denote F(s) = G(&;,s)¥(s). Note that F(s) € C? in [s;,&]
and [&;, s;41]. Applying the composite trapezoidal rule to the first and the last
integrals in the right-hand side of (4.2.26]) we obtain

s a
Ty : :/ F(s)ds +/ F(s)ds
0 S141

I N (4.2.27)
I- !
=Y A 7F(s) + Y AT Fs) + o),
J=0 J=l+1
where
) 5 =01 () L j=1+1,N
J 1, 1<jyj<l "™ 1, I+1<j<N

For calculating the second and the third integrals in the right-hand side of
(4.2.26) we use the trapezoidal rule

& Si41
Ty : = / F(s)ds +/ F(s)ds
s &

= %[(F(Sl) + F(&))(& = s1) + (F(&) + Fsi1)) (s141 — &)] + O(R?).

Using the points s; and s;;; for linearly interpolating F'(s) in the point & we have

F(&) = F(Sl)& — o F(s141) = 5

S; — Si41 Si+1 — Si

(4.2.28)

+ O(h?).

From here we obtain

F(&) (st = s1) = Fs1)(s101 = &) + Fs1) (& — s1) + O(R). (4.2.29)
Now, transforming T, we have

1

To = S [F(s)(& = s0) + Fsun) (11— 6)] + F(&) (511 — 1) + O(?)

Further, in view of (4.2.29)) it is easy to obtain
1
Ty = Sh(F(st) + Fs141)) + O(h°).

Taking into account the above estimate, (4.2.27) and (4.2.26)) we have
o N
| 660e)ds = 3 ho (6 si)uts,) + O
0 s

Thus, (4.2.25)) is proved for Case 2 and the proof of Proposition is complete.
[
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Remark 4.2.2. If in Proposition replace G(t;,s) and G(&;,s) by |G(t;, s)]
and |G(&;, s)|, respectively then we obtain the analogous estimates

/0 16t ) (s)ds = D oGt i) s5) + O, (4.230)
/0 16l ls)ds = 3 hos|GlE sl (s) + O), (4.231)

Proposition 4.2.6. Under the assumptions of Theorem we have the esti-
mates

0% — il = O(R?), (4.2.32)
|Ur — ugw, = O(h?), (4.2.33)

where ||.||5; is the max-norm of grid function defined on the grid w,.

Proof. We prove the proposition by induction. For £ = 0 we have at once ||V, —
Yol because Wo(t;) = f(¢;,0,0) and o(t;) = f(¢;,0,0), i = 0, N, too. Next, by

(4.2.18)) and Proposition we have
w(t) = g(t) + [ Gltsss)in(s)ds
0

= g(t:) + Y _ hp;G(ti, 55)t0(s;) + O(h?).

J=0

On the other hand, by (4.2.22) we have

Uo(ti) = g(t:) + Y _ hp;G(ti, ) To(s;).

=0
Therefore,

|Un(ti) = uo(ti)| = O(h?).
It implies ||[Uy — wollw;, = O(h?). Thus, the estimates and are

valid for k£ = 0.

Now, suppose that these estimates are valid for £ > 0. We shall show that
they are valid for k + 1. Indeed, from (4.2.19)), (4.2.23) and the Lipschitz condi-
tions for the function f(t,u,v) we have

[Whi1 (i) — Vi (t)] = [f(ts, Un(ti), Vi) — f (8, un(ts), v (t:))|
< Ly|Uk(ts) — un(ts)| + La|Vi(t:) — vk (t:)]-

(4.2.34)
Now estimate |Vj(t;) — vi(t;)|. We have by Proposition [4.2.5]
nlt) = glelt) + | Glelt), pin(s)is
0

= g(&) + D hpiGl&, 5:)i(s;) + O(R%).

J=0
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In view of (4.2.22)) we have

Vi(ts) — vkt = 1) hpiG (&, 57)(Wr(s;) — ti(s;))| + O(h?)
- (4.2.35)
<N hpi |G (& sV — Vil + O(R?).

0

J
Notice that (4.2.31]) for ¢(s) = 1 gives
a N
|16 s)lds = 3" hoyi6(6i55)| + OU2).
0 s
From here it follows that
N a
> hosl6(6si)| = [ 1606 s)lds +O0)
=0 0
1
< max / |G(t,5)|ds + O(h*) = My + O(h?).
0<t<a J,
Thanks to this estimate, from (4.2.35) we obtain
Vi(ti) = or(t)] < 10k — Yrlla, + O(R?).
So, due to the induction hypothesis it implies
Vi — villw, = O(R?). (4.2.36)

Combining the induction hypothesis ||Ux — uklls;, = O(h?) and (4.2.36), from
(4.2.34) we obtain
A o) (4.2.37)

In order to prove
U1 = ttira|l, = O(R?). (4.2.38)

we take into account that
N
Ua(t) = wna ()] <Y hpi | G(ti, 57)|[Wra (57) — ega (s5)] + O(R?).
=0

Doing the similar argument as above and using the proved estimate (4.2.37)) it
is easy to obtain

Up1(t:) — wesa (£:)] = O(R?),

or (4.2.38]).
Thus, Proposition is proved. [

Now combining Proposition [4.2.6|with Theorem |4.2.3| we obtain the following result.

Theorem 4.2.7. Under the assumptions of Theorem for the approximate
solution of the problem (4.2.1))-(4.2.2)) obtained by the discrete iterative method
(4.2.21)-(4.2.23)) we have the estimate

”Uk - u”ofh < MOpkd + O(h2)7
where p, and d are defined by (4.2.20)).

88




Remark 4.2.3. If to the third order problem apply the Bica’s method which uses
a cubic spline interpolation procedure at each iteration then O(h?') convergence
cannot be ensured because Corollary 1 in [104, p. 50] is not applicable due to
the properties of the Green function for the third order equation.

Remark 4.2.4. For the discrete iterative method (4.2.17)) -(4.2.19)) we obtained
O(h?) convergence. It is natural to think about the use of Gauss quadrature for-
mulas to the integrals in but it is impossible because the nodes of Gauss
quadrature formulas do not coincide with the grid nodes, where the solution of
the problem is computed.

Remark 4.2.5. The results in Section [4.2.2| and [4.2.3| are obtained for the non-
linear third order FDE with nonlinear term f = f(¢,u(t), u(p(t))). Analogously, it
is possible to obtain similar results of existence and convergence of the iterative
method at continuous level for the general case

f=F(tult), u(et), u'(er(1), u"(pa(1))),

where ¢(t), ¢1(t), pa2(t) are continuous functions from [0, a] to [0,a]. But for nu-
merical realization of the iterative method it is needed to take attention that the

second derivative % of the Green function has discontinuity at the line s = t.

In this case for computing integrals containing 29%= and £9¢2) it i needed to
use the formulas constructed in our previous work [14].

Remark 4.2.6. The iterative method developed in this section for the third
order nonlinear FDE can be applied to nonlinear FDE of any order.

4.2.4. Examples

In all numerical examples below we perform the iterative method (|4.2.21))-(4.2.23))
until || Uy, — W1y, < 1071° In the tables of results for the convergence of the iterative
method Error = ||Ux — u|,;,, K is the number of iterations performed.

Example 4.2.1. Consider the following problem

1 1,5,
u"(t) = e’ — Zu(t) + ZUQ(E), 0<t<l,

w0)=1, ' (0)=1, (1) =e

(4.2.39)

with the exact solution u(t) = €. The Green function for the above problem is
Glt,s) =4 2

So, we have

1

1

M, = max/ |G(t,s)|ds = 7
0

0<t<a

The second degree polynomial satisfying the boundary conditions of the problem
1s

~1
g(t):1+t+eTt2.
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Therefore, ||g|| = 2+ GT = 2.7183. In this example f(t,u,v) = €' — fu + 102

It is easy to verify that for M = 6.5 we have |f(¢,u,v)| < M in the domain Dy,

defined by ((4.2.10). Moreover, in this domain the function f(t,u,v) satisfies the
Lipschitz conditions in u and v with the coefficients L; = % and L, = 1.7004.
Therefore, ¢ := (L + Ly)My = 0.16. Thus, all the assumptions of Theorem [4.2.2]
are satisfied. By the theorem, the problem has a unique solution. This
is the above exact solution.

The results of convergence of the iterative method (4.2.21))-(4.2.23) are given

in Table [4.3] From this table we see that the results of computation support the

Table 4.3: The convergence in Example {4.2.1]

N h? K Error

50 4.0000e-04 3 6.1899¢-05
100  1.0000e-04 3 1.5475e-05
150  4.4444e-05 3 6.877 -06
200 2.5000e-05 3 3.8688e-06
300 1.1111e-05 3 1.7195e-06
400 6.2500e-06 3 9.6721e-07
500 4.0000e-06 3 6.1901e-07
800 1.5625e-06 3 6.1901e-07
1000 1.0000e-06 3 1.5475e-07

conclusion that the accuracy of the iterative method is O(h?).

Remark 4.2.7. Theorem gives sufficient conditions for convergence of
the iterative method (4.2.21))-(4.2.23). In the cases when these conditions are
not satisfied the iterative also can converge to some solution. For example, for
the case f(t,u,v) = e’ + u®> + v? + 1 with the same boundary conditions as in
the iterative method converges after 15 iterations. And for the case
f(t,u,v) = e —u’ +0v* + 5 after 16 iterations the iterative process reaches the
TOL = 1071°. Notice that the number of iterations do not depend on the grid
size as in Example 4.2.1]

Example 4.2.2. Consider the following problem

" . 2 2042
u"(t) = sm(zf (1)) + cos,(u (t), 0<t<1, (4.2.40)
w(0) =0, u'(0) =m, u'(1) = —7.
For this problem f(t,u,v) = sin(u?) + cos(v?) and ¢(t) = t2. It is easy to verify
that all the conditions of Theorem are satisfied, therefore the problem has
a unique solution. Also, by Theorem the iterative method (4.2.21))-(4.2.23))
converges. The results of computation show that the iterative method for any
number of grid points stops after 8 iterations. The graph of the approximate
solution is depicted in Figure [4.2]

Example 4.2.3 (Example 5 in [76]). Consider the problem

u”(t) = -1+ 2u*(t/2), 0<t<m,

u(0) =0, ' (0) =1, u(r) = 0. (4.2.41)
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Figure 4.2: The graph of the approximate solution in Example [4.2.2]

which has exact solution u(t) = sin(¢). For this problem the Green function has
the form

t2 _ 2 t — 2
i (7; 25) ( 23)’ 0<s<t<m,
Gl =1 e s
TS g<i<s<a
272

and the function f(t,u,v) = —1 + 20v%
The results of convergence of the iterative method (4.2.21))-(4.2.23)) for this
example are given in Table[d.4] From this table it is seen also that the numerical

Table 4.4: The convergence in Example 4.2.3]

N h? K Error

50 4.0000e-04 25 1.4455e-04
100  1.0000e-04 25 3.6142e-05
150 4.4444e-05 25 1.6063e-05
200 2.5000e-05 25 9.0345e-06
300 1.1111e-05 25 4.0155e-06
400 6.2500e-06 25 2.2587¢-06
500 4.0000e-06 25 1.4456e-06
800 1.5625e-06 25 5.6467¢-07
1000 1.0000e-06 25 3.6139e-07

method has the accuracy O(h?).

4.2.5. Conclusion

In this section, we have proposed a unified approach to nonlinear functional dif-
ferential equations via boundary value problems for nonlinear third order functional
differential equations as a particular case. We have established the existence and
uniqueness of solution and proved the convergence of order two of the discrete itera-
tive method for finding the solution. Some examples demonstrate the validity of the
theoretical results and the efficiency of the numerical method.

The proposed approach can be applied to boundary value problems for nonlinear
functional differential equations of any order associated with general linear boundary
conditions. It also can be applied to integro-differential equations.
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(General Conclusions

In this thesis, we have successfully studied the existence, uniqueness of solutions
and the iterative methods for solving some nonlinear boundary value problems for some
high order differential equations including integro-differential and functional differential
equations. The main achievements of the thesis include:

1. The establishment of the existence, uniqueness of solutions and positive solutions
for third order nonlinear BVPs and the construction of numerical methods for
finding the solutions; The proposal of discrete iterative methods of second and
third order accuracy for solving third order nonlinear differential equations.

2. The establishment of the existence, uniqueness of solutions and construction of
iterative methods for finding the solutions for nonlinear third and fourth order
differential equations with integral boundary conditions.

3. The establishment of the existence, uniqueness of solutions and construction of
numerical methods for finding the solutions of nonlinear integro-differential and
functional differential equations.

The validity and applicability of the theoretical results and the effectiveness of the
constructed iterative methods have been confirmed by many experimental examples.

The future goals of the thesis are:

1. The further development of the above results for the case of singular right-hand
sides and the case of unbounded domains.

2. The construction of iterative methods of higher order accuracy.

3. The study of the problems with nonlinear boundary conditions.
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