
MINISTRY OF EDUCATION VIETNAM ACADEMY

AND TRAINING OF SCIENCE AND TECHNOLOGY

GRADUATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

————————————

DUONG XUAN HIEP

LEARNING MODELS FROM DATA WITH

APPLICATIONS TO RIVER WATER QUALITY MODELS

MASTER THESIS IN APPLIED MATHEMATICS

Hanoi - 2023

CamScanner

https://v3.camscanner.com/user/download
XuanHiep
Rectangle

CamScanner

https://v3.camscanner.com/user/download
XuanHiep
Rectangle

XuanHiep
Highlight

CamScanner

https://v3.camscanner.com/user/download
XuanHiep
Rectangle

iii

CONTENTS

Commiment i

Acknowledgements ii

List of Abbreviations and Symbols v

List of Figures vi

List of Tables vii

INTRODUCTION 1

Motivation . 1

Thesis’s structure . 3

1 PRELIMINARIES 5

1.1 Ill-posed problems . 5

1.2 Some results in function spaces . 5

1.3 Soft shrinkage operators . 7

2 LEARNING MODELS FROM DATA 12

2.1 Learning models from experimental data 12

2.2 Learning models via sparse optimization 13

2.3 The challenges of learning models from data and sparse optimization . 15

3 LEARNING CONSTANT PARAMETERS IN THE BOD-DOMODEL

WITH l1-WEIGHTED REGULARIZATION 16

3.1 The solution of the BOD-DO model with constant parameters 16

3.2 Learning the BOD-DO model by l1-weighted regularization 21

3.3 The well-posedness and convergence of learning the BOD-DO model by

l1-weighted regularization . 23

iv

4 SIMULATION AND NUMERICAL ALGORITHMS 31

4.1 Two-step Lax–Friedrichs method . 31

4.2 Data generation . 34

4.3 Nesterov’s accelerated method . 34

5 NUMERICAL EXAMPLES 47

CONCLUSIONS 62

THE AUTHOR’S PUBLICATION RELATED TO THE THESIS 63

BIBLIOGRAPHY 64

v

List of Abbreviations and Symbols

Rn The n-dimensional Euclidean space

L2(0, T) The space of measurable, squared integrable function in (0, T)

∥x∥X Norm of x in the normed space X

∥x∥ Norm of x in the Euclidean space

⟨x, y⟩X Inner product of x, y in Hilbert space X

⟨x, y⟩, x · y Inner product of x, y in Euclidean space

∥M∥ Norm of matrix M

∂f(x) Subgradient of f at x

Sω,p(·) The shrinkage function

Sω,p(·) The soft shrinkage operators

γ(δ) ∼ δ limδ→0 γ(δ)/δ = c > 0

[a]+ Maximum of real number a and 0

[a] Integer part of real number a

BOD Biochemical oxygen demand

DO Disolved oxygen

PDEs Partial differential equations

vi

List of Figures

5.1 Grid mesh of Example 5.1. 48

5.2 Example 5.1: Exact solution (top) and approximate solution (bottom)

of the BOD-DO model. 48

5.3 Example 5.1: The misfit and error between the exact and numerical

solutions. 49

5.4 Example 5.1: Objective functions with k = 2 and 1% noise. 50

5.5 Example 5.1: The convergence of parameters α and β by using l1-

weighted regularization and l1-regularization with k = 2 and 1% noise. 51

5.6 Example 5.1: The error between the recovered parameters α, β and the

exact ones by using l1-weighted regularization (top) and l1-regularization

(bottom) with k = 2 and 1% noise. 53

5.7 Example 5.2: Exact solution (top) and approximate solution (bottom)

of the BOD-DO model. 56

5.8 Example 5.2: The misfit and error between the exact and numerical

solutions. 57

5.9 Example 5.2: Objective functions with k = 2 and 1% noise. 58

5.10 Example 5.2: The convergence of parameters α and β by using l1-

weighted regularization with k = 2 and 1% noise. 59

5.11 Example 5.2: The error between the recovered parameters α, β and the

and exact ones by using l1-weighted regularization with k = 2 and 1%

noise. 60

vii

List of Tables

5.1 Example 5.1: The recovered parameters α using l1-weighted regulariza-

tion with k = 2 and 1% noise. 52

5.2 Example 5.1: The recovered parameters β using l1-weighted regulariza-

tion with k = 2 and 1% noise. 52

5.3 Example 5.1: The recovered parameters α using l1-regularization with

k = 2 and 1% noise. 52

5.4 Example 5.1: The recovered parameters β using l1-regularization with

k = 2 and 1% noise. 52

5.5 Example 5.1: The recovered parameters with different input data using

l1-weighted regularization with 1% noise. 53

5.6 Example 5.1: The recovered parameters with different input data using

l1-regularization with ε = 1% noise. 54

5.7 Example 5.1: The recovered parameters with different input data using

l1-weighted regularization with 5% noise. 54

5.8 Example 5.1: The recovered parameters with different input data using

l1-regularization with 5% noise. 54

5.9 Example 5.1: The recovered parameters with different input data using

l1-weighted regularization with 10% noise. 55

5.10 Example 5.1: The recovered parameters with different input data using

l1-regularization with 10% noise. 55

5.11 Example 5.2: The recovered parameters α using l1-weighted regulariza-

tion with k = 2 and 1% noise. 58

5.12 Example 5.2: The recovered parameters β using l1-weighted regulariza-

tion with k = 2 and 1% noise. 58

5.13 Example 5.2: The recovered parameters with different input data using

l1-weighted regularization with 1% noise. 60

5.14 Example 5.2: The recovered parameters with different input data using

l1-weighted regularization with 5% noise. 60

viii

5.15 Example 5.2: The recovered parameters with different input data using

l1-weighted regularization with 10% noise. 61

1

INTRODUCTION

Motivation

The light of proliferation of machine learning and data science have provided a revo-

lution to analyse and understand the physical phenomena in nature underline complex

data and extract patterns in vast multimodal data. However, although there is a rapid

development in statisical tools to understand the data that derives from probability

and statistics, distilling physical relationships of dynamic processes from big data is

still standing in fundamental progresses. Moreover, the abundance of data together

with the elusiveness of physical laws and governing equations are truly problematic for

climate science, finance, epidemiology, and neuroscience. This leads to an limitation

on the ability of data science models to deduce the dynamics and makes this data over

the scenario of sample and construction. Therefore, discovering governing equations

from data is a central task of scientists and engineers in various fields.

In recent years, environmental pollution has received the great attention of author-

ities, residents and scientists. The population explosion together with global warming

significantly accelerate serious depression in living environment such as the decline of

water quality especially in lakes and rivers. The human overactive in agricultural,

industrial and daily activities results to contaminate the river water partially and com-

pletely. This leads to the study of water quality, mathematical modelling of water

quality is the one among such a research.

Since the 19th century, people used aerobic biology to treat the waste water from

daily activities. In 1930s, American scientists and engineers [1] have mainly employed

it as a crucial technique to investigate and eliminate ordinary water contamination.

To estimate water quality, the Biochemical Oxygen Demand (BOD) and Dissolved

Oxygen (DO) index are usually used. BOD plays a significant role to measure the

degradation of biological organics and the consumed oxygen in the degradable process of

microbes. Furthermore, DO indicator is also a important parameter in chemical aspect

to consolidate the healthy of water organisms and underwater creatures. In normal

condition or unpolluted water, DO rates above the discharge will be near saturation

[2, Lecture 19]. The higher DO indicator is, the higher biolocial diversity and the

lower number of dead fish. As a result, the authorities and environmental scientists

recommend the DO concentration in water is not smaller than 5.0 mg/L most of the

2

time and 4.0 mg/L at all times, see [3, p.221].

CH2O
BOD

+O2
DO

bacteria−−−−−→ CO2 +H2O.

The first paper that considers the dissolved oxygen was published by Streeter and

Phelps in 1925 when they conducted their research in Ohio River, see [1]. In this

paper, Streeter and Phelps demonstrated the decrease of DO indicator which relates to

the downstream distance because the dissolved organic BOD degenerates in this area.

They also developed a mathematical model to present the phenomenon which was

widely known as the Streeter-Phelps equation. In this model, biodegradable organic

matter is taken into consideration by the BOD parameter, which is defined as the

quantity of oxygen consumed from a unit volume of water by microorganisms during a

specified period of time. The other process is the re-aeration oxygen across the water

surface due to the turbulent motion of water and to molecular diffusion. It reduces

the “oxygen deficit” of water, which is defined as the difference between the saturation

oxygen content and the actual dissolved oxygen level. This model consists a set of

dynamic equations governing the evolution of the BOD and DO. The BOD-DO model

without diffusion process is given by
∂b

∂t
+ v(x, t)

∂b

∂x
= −k1(x, t)b+ s1(x, t) in (0, X)× (0, T], (1)

∂d

∂t
+ v(x, t)

∂d

∂x
= k1(x, t)b− k2(x, t)d+ s2(x, t) in (0, X)× (0, T], (2)

together with initial and boundary conditions

b(x, 0) = b0(x) d(x, 0) = d0(x) on (0, X), (3)

b(0, t) = b1(t), d(0, t) = d1(t) on (0, T], (4)

where X > 0 is the length of river, T > 0 is the observational time, b(x, t) represents

the BOD concentration and d(x, t) is the DO deficit in the water at time t and position

x, respectively. Meanwhile, v is the velocity in the river, k1 is the de-oxygenation rate

(BOD decay rate) and k2 is the re-aeration coefficient (the re-aeration rate), s1 is the

source of the BOD concentration and s2 = k1ds, where ds is the saturation value of d.

However, when we use the model (1)−(4) to approximate other models, the meaning

of the parameters is no longer available. To apply this model, it requires to estimate

v, k1, k2, s1 and s2. There are two basic problems of water quality modelling

1. The first one is the direct problem. This means that given the parameters v,

k1, k2, s1, s2 as well as intial and boundary conditions, we solve numerically

the model (1)−(4). There are various numerical algorithms to solve the direct

problem such as the upwind scheme, forward time centered space scheme, Lax-

Friedrichs’ scheme, Leapfrog scheme, Lax-Wendroff scheme,. . .[4], two-step Lax-

Friedrichs’scheme [5].

3

2. The second one is the inverse problem. It means that given b and d in the whole

domain or in some part of the domain, we have to recover the parameters v, k1, k2,

s1 and s2 in the model (1)−(4). These types of coefficents/source identification

problems have recently been renamed as “learning models” or “learning partial

differential equations/systems”, see [6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

In this thesis, we investigate the inverse problem of identifying the parameters of the

BOD-DO model (1)−(4). By assuming that we known the data which approximates the

solution (b, d) of the model in [0, X]×[0, T], we want to recover the constant parameters

of the BOD-DO model. To this task, the model is rewritten in a general form in which

the unknown coefficients to satisfy linear systems. Unfortunately, in this circumstance,

these systems are typically over-determined ones. To deal with this situation, we apply

l1-weighted regularization to achieve the target parameters. Furthermore, to solve the

optimization problems arising from l1-weighted regularization we apply some efficient

algorithms such as Nesterov’s accelerated algorithm [16, 17].

Thesis’s structure

Apart from the introduction and conclusion chapter, the thesis is organized as

follow:

� Chapter 1 presents some basic definitions on inverse problems and ill-posed prob-

lems. Then, we recall some fundamental results in function spaces and optimiza-

tion which are necessary to prove some results in the thesis. The soft shrinkage

operators are also reconsidered in Euclidean space. Some properties about soft

shrinkage operators are proven in the detail.

� Chapter 2 introduces a background of learning the partial differential equations

from data. In this chapter, we represent an example of nonlinear dynamical system

in constructing the underlying system from data by using sparse representation

and some challenges in learning models via data and sparse optimization.

� Chapter 3 is the mainly theoretical results in the thesis. We firstly establish the ex-

act solution of BOD-DO model in constant parameters case. Then, the BOD-DO

model (1)−(4) is readjusted into a general form in which the unknown coefficients

to satisfy linear systems and l1-weighted regularization is added in the optimiza-

tion problem for learning unknown parameters. In this chapter, the well-posedness

and convergence of learning BOD-DO model by l1-weighted regularization is also

proven under some assumptions.

� Chapter 4 is devoted for the simulation and numerical algorithms. In this chapter,

4

we apply the two-step Lax-Friedrichs method to solve the BOD-DOmodel in which

the solution is used as the data for the inverse problem. After adding noise into

the data, we analyse the convergence of Nesterov’s accelerated method to find the

unknown parameters.

� Chapter 5 presents some numerical experiments in learning BOD-DO model by l1-

weighted regularization and l1-regularization. The numerical examples confirm the

accuracy of our algorithm to solve the forward problem and restore the parameters

of a given BOD-DO model.

5

Chapter 1

PRELIMINARIES

1.1 Ill-posed problems

In his lecture [18] published in the year 1923, Hadamard assumed that a mathe-

matical model for a physical problem has to be well-posed in the sense that

1. There exists a solution of the problem (existence).

2. There is at most one solution of the problem (uniqueness).

3. The solution depends on continuously on the data (stability).

Definition 1.1. (Well-posedness, see [19]) Let X and Y be normed spaces, K : X → Y

a (linear or nonlinear) mapping. The equation Kx = y is called well-posed if the

following holds

1. Existence: For every y ∈ Y there is (at least one) x ∈ X such that Kx = y.

2. Uniqueness: For every y ∈ Y there is at most one x ∈ X with Kx = y.

3. Stability: The solution x depends continuously on y, that is, for every sequence

(xn) ⊂ X with Kxn → Kx (n→∞), it follows that xn → x (n→∞).

Definition 1.2. (Ill-posedness, see [19]) Equations for which (at least) one of these

properties does not hold are called ill-posed.

1.2 Some results in function spaces

Definition 1.3. (See [20])

1. The Euclidean norm (l2-norm) of vector x = (x1, x2, . . . , xn) ∈ Rn defined by

∥x∥ =
(n∑

i=1

x2i

)1/2
.

2. The sum-norm (l1-norm) of vector x = (x1, x2, . . . , xn) ∈ Rn defined by

∥x∥1 =
n∑

i=1

|xi|.

6

3. The norm of m× n matrix A = (aij) (aij ∈ R, 1 ≤ i ≤ m, 1 ≤ j ≤ n) defined by

∥A∥ =
(m∑

i=1

n∑
j=1

a2ij

)1/2
.

Theorem 1.4. (Weierstrass theorem, see [21, p.37]) Let f : M → R be a functional

on the compact nonempty subset M of a normed space. Then, f has a minimum and

a maximum on M .

Definition 1.5. (See [22, Definition 32.11]) Let f : X → R = R ∪ {±∞} be a

functional in real Banach space X. The functional f∗ in dual space X∗ of X is called

a subgradient of f at point x if and only iff(x) ̸= ±∞,f(y) ≥ f(x) + ⟨f∗, y − x⟩X , ∀x ∈ X,

The set of all subgradients of f at x is called the subdifferential ∂f(x) at x.

Theorem 1.6. (See [22, Proposition 32.13]) Let f : X → R be a convex functional

on the real Banach space X and f is Gâteaux-differentiable at x ∈ X with derivative

f ′(x). Then, ∂f(x) = {f ′(x)}.

Theorem 1.7. (Minimum principle, see [22, Proposition 32.14]) Let f : X → (−∞,+∞]

be a functional on the real Banach space X with f ̸≡ +∞. Then x is a solution of the

minimum problem

min
x∈X

f(x),

if and only if

0 ∈ ∂f(x).

Theorem 1.8. (See [23, Theorem 4] and [22, Proposition 32.17]) Let f : X →
(−∞,+∞] be convex and lower semicontinuous on the real Banach space X and

f ̸≡ +∞. Then, the subgradient ∂f : X → 2X
∗
is maximal monotone.

Theorem 1.9. (Regularization, see [22, Corollary 32.30]) Let X be a real reflexive

Banach space with dual space X∗, C be a nonempty closed convex subset of X and

let J : X → X∗ be a duality map of space X. Assume that X and X∗ are strictly

convex and the mapping A : C → 2X
∗
is maximal monotone. Then, for each α > 0,

the inverse operator

(A+ αJ)−1 : X∗ → X

is single-valued, demicontinuous and maximal monotone.

In the following, we recal some fundamental notations and inequalities which is

used in the next chapter. The more details could be found in [24].

7

Definition 1.10. (See [24, Definition, p.301]) Let X be a real Banach space with

norm ∥·∥ and let 1 ≤ p ≤ ∞. Then, the Lp(0, T ;X) consists of all strongly measurable

function u : [0, T]→ X, i.e.,

Lp(0, T ;X) := {u : [0, T]→ X : u strongly measurable, ∥u∥Lp(0,T ;X) <∞},

where

∥u∥Lp(0,T ;X) :=

(∫ T

0

∥u(t)∥p dt
)1/p

,

for 1 ≤ p <∞ and

∥u∥L∞(0,T ;X) := ess sup
0≤t≤T

∥u(t)∥ <∞.

Remark 1.11. In this thesis, we briefly denote Lp(0, T ;Rn) by Lp(0, T).

Theorem 1.12. (Hölder’s inequality, see [24, p.706]) Let U ∈ Rn be an open subset

of Rn. Assume that 1 ≤ p, q ≤ ∞ and
1

p
+

1

q
= 1. Then if u ∈ Lp(U), v ∈ Lq(U), we

have ∫
U

|uv|dx ≤ ∥u∥Lp(U) ∥v∥Lq(U) .

1.3 Soft shrinkage operators

To deal with sparsity constraints, soft shrinkage operators are usually used in prat-

ical experiments. At first, they were introduced and investigated by [25] for linear

inverse problems. After that, these operators are manipulated for gradient methods in

nonlinear inverse problems, see [26, 27, 28, 16]. In this thesis, we only consider the soft

shrinkage operators in real spaces for the application in Chapter 4.

Definition 1.13. (Shrinkage function, see [26, 25]) Let Sω,p : R → R be a function

defined by

Sω,p(x) =

sgn(x)
[
|x| − ω

]
+
, p = 1,

G−1
ω,p(x), 1 < p ≤ 2,

(1.1)

where

Gω,p(x) = x+ ωp sgn(x)|x|p−1 and
[
|x| − ω

]
+
= max(|x| − ω, 0).

Then, Sω,p is called “shrinkage function”.

Definition 1.14. (Soft shrinkage operators, see [25, 29]) Let ω = {ωi}Ni=1 with ωi > 0

for all i. The soft shrinkage operators Sω,p : RN → RN are defined by

Sω,p(x) =
(
Sω1,p(x1), Sω2,p(x2), . . . , SωN ,p(xN)

)
, (1.2)

where x = (x1, x2, . . . , xN) ∈ RN and Sωk,p is a shrinkage function which is defined by

(1.1).

8

Next, we have some properties of the soft shrinkage operators which are briefly

indicated in [25, Lemma 2.2].

Lemma 1.15. (Nonexpansion, see [25]) The soft shrinkage operators Sω,p which are

defined by (1.2) are non-expansive, i.e.

∥Sω,p(x)− Sω,p(y)∥ ≤ ∥x− y∥, ∀x, y ∈ RN .

Proof. We will prove this result by dividing into two cases:

1. The case p > 1: Consider the functional Gτ,p : R→ R (τ, p > 0) is given by

Gτ,p(t) = t+ τp sgn(t)|t|p−1.

For all t0 > 0, we have

lim
t→t0

Gτ,p(t)−Gτ,p(t0)

t− t0
= lim

t→t0

(t− t0) + τp(tp−1 − tp−1
0)

t− t0
= lim

t→t0

(
1 + τp(tp−2 + tp−1t0 + . . .+ tp−2

0)
)

= 1 + τp(p− 1)tp−2
0 .

This means that Gτ,p is differentiable in (0,+∞).

Moreover, Gτ,p is an odd function. Then, it is also differentiable in (−∞, 0).
At the point 0, this follows that

lim
t→0+

Gτ,p(t)−Gτ,p(0)

t− 0
= lim

t→0+

t+ τptp−1

t
= 1,

lim
t→0−

Gτ,p(t)−Gτ,p(0)

t− 0
= lim

t→0−

t− τp(−t)p−1

t
= 1.

Hence, Gτ,p is a smooth function in R with its derivative defined by

G
′

τ,p(t) =


1 + τp(p− 1)tp−2, if t > 0,

1, if t = 0,

1 + τp(p− 1)(−t)p−2, if t < 0.

From the derivative of Gτ,p, it follows that for each τ, p > 0,

G
′

τ,p(t) ≥ 1, ∀t ∈ R.

Return to the lemma 1.15. Let u = Sω,p(x) and v = Sω,p(y).
By (1.2), for all i ∈ {1, 2, . . . , N} we have

ui = Sωi,p(xi) and vi = Sωi,p(yi).

By (1.1), they are equivalent to

xi = Gωi,p(ui) and yi = Gωi,p(vi).

By the mean value theorem, for all ui, vi ∈ R, there exist ηi between ui and vi

such that

Gωi,p(ui)−Gωi,p(vi) = G
′

ωi,p(ηi)(ui − vi).

9

According to above evaluation, G
′

ωi,p is uniformly bounded from below by 1, we

get

|Gωi,p(ui)−Gωi,p(vi)| = |G
′

ωi,p(ηi)||ui − vi| ≥ |ui − vi|, ∀i ∈ {1, 2, . . . , N}.

This means that for all i ∈ {1, 2, . . . , N}, we have the following inequality

|Sωi,p(xi)− Sωi,p(yi)| = |ui − vi| ≤ |Gωi,p(ui)−Gωi,p(vi)| = |xi − yi|.

As a result,

∥Sω,p(x)− Sω,p(y)∥2 =
N∑
i=1

|Sωi,p(xi)− Sωi,p(yi)|2 ≤
N∑
i=1

|xi − yi|2 = ∥x− y∥2.

Then, for p > 1 we have

∥Sω,p(x)− Sω,p(y)∥ ≤ ∥x− y∥, ∀x, y ∈ RN .

2. The case p = 1: For τ > 0 by (1.1), we have

Sτ,1(t) = sgn(t)
[
|x| − ω

]
+
=


t− τ, if t ≥ τ,

0, if − τ < t < τ,

t+ τ, if t ≤ −τ.

Without loss of generality, we may assume that t1 < t2 for all t1, t2 ∈ R. We will

prove that

|Sτ,1(t1)− Sτ,1(t2)| ≤ |t1 − t2|.

If t1 < t2 ≤ −τ or τ ≤ t1 < t2, we have

|Sτ,1(t1)− Sτ,1(t2)| = |t1 − t2|.

If t1 ≤ −τ < t2 < τ , it yields

t1 − t2 < t1 + τ and t1 + τ < t2 − t1.

Then,

|Sτ,1(t1)− Sτ,1(t2)| = |t1 + τ | < |t1 − t2|.

If t1 ≤ −τ < τ ≤ t2, we have

t1 + τ ≤ 0 and − (t2 − τ) ≤ 0.

It follows that

t1 − t2 + 2τ ≤ 0.

Then,

|Sτ,1(t1)− Sτ,1(t2)| = |t1 − t2 + 2τ | = t2 − t1 − 2τ < t2 − t2 = |t1 − t2|.

If −τ < t1 < t2 < τ , we have

0 = |Sτ,1(t1)− Sτ,1(t2)| < |t1 − t2|.

10

If −τ < t1 < τ ≤ t2, it gives

|Sτ,1(t1)− Sτ,1(t2)| = | − (t2 − τ)| = t2 − τ < t2 − t1 = |t1 − t2|.

Thus, we always have the following inequality

|Sτ,1(t1)− Sτ,1(t2)| ≤ |t1 − t2|, ∀t1, t2 ∈ R.

By (1.2), it follows that

∥Sω,1(x)− Sω,1(y)∥ ≤ ∥x− y∥, ∀x, y ∈ RN .

The next lemma is crucial to prove the convergence of the Algorithm 4.2 in Chapter

4.

Lemma 1.16. Let {xn}, {yn} and {zn} be sequences in RN and {αn} be a positive

sequence such that

xn = Sαnω,p(y
n − αnzn).

Assume that

lim
n→∞

xn = lim
n→∞

yn = x∗, lim
n→∞

zn = z∗ and lim
n→∞

αn = α∗ > 0.

Then,

x∗ = Sα∗ω,p(x
∗ − α∗z∗).

Proof. We seperate the proof into two cases.

1. For p > 1, by the assumption, we have

lim
n→∞

xni = lim
n→∞

yni = x∗i , lim
n→∞

zni = z∗i , ∀i ∈ {1, 2, . . . , N}.

Following (1.1) and (1.2), it yields

xni + αnωip sgn(x
n
i)|xni |p−1 = yni − αnzni , ∀i ∈ {1, 2, . . . , N}.

Letting n→∞, we get

x∗i + α∗ωip sgn(x
∗
i)|x∗i |p−1 = x∗i − α∗z∗i , ∀i ∈ {1, 2, . . . , N}.

Hence,

x∗ = Sα∗ω,p(x
∗ − α∗z∗).

2. For p = 1, the assumption leads

xni = sgn(yni − αnzni)max(|yni − αnzni | − αnωi, 0), ∀i ∈ {1, 2, . . . , N}. (1.3)

Define

Γ1 = {i : |x∗i − α∗z∗i | − α∗ωi > 0},

Γ2 = {i : |x∗i − α∗z∗i | − α∗ωi < 0},

Γ3 = {i : |x∗i − α∗z∗i | − α∗ωi = 0}.

11

Recall that

lim
n→∞

(yni − αnzni) = x∗i − α∗z∗i , lim
n→∞

|yni − αnzni | − αnωi = |x∗i − α∗z∗i | − α∗ωi.

If i ∈ Γ1,for n large enough we have

sgn(yni − αnzni) = sgn(x∗i − α∗z∗i) and |yni − αnzni | − αnωi > 0.

It deduces from (1.3) that

x∗i = sgn(x∗i − α∗z∗i)max(|x∗i − α∗z∗i | − α∗ωi, 0) = Sα∗ωi,1(x
∗
i − α∗

i z
∗
i), ∀i ∈ Γ1.

If i ∈ Γ2, we have |yni − αnzni | − αnωi < 0 when n is large enough. From (1.3), it

yields xni = 0 when n is large enough. This gives x∗i = 0 and implies

x∗i = Sα∗ωi,1(x
∗
i − α∗z∗i), ∀i ∈ Γ2.

If i ∈ Γ3, sgn(y
n
i −αnzni) = sgn(x∗i −α∗z∗i) = 1 when n is large enough. Moreover,

lim
n→∞

(|yni − αnzni | − αnωi) = |x∗i − α∗z∗i | − α∗ωi = 0.

It yields

x∗i = lim
n→∞

xni = lim
n→∞

[sgn(yni − αnzni)max(|yni − αnzni | − αnωi, 0)] = 0.

Hence,

x∗i = Sα∗ωi,1(x
∗
i − α∗z∗i), ∀i ∈ Γ3.

In summary, we have

x∗i = Sα∗ωi,1(x
∗
i − α∗z∗i), ∀i ∈ Γ1 ∪ Γ2 ∪ Γ3,

which is equivalent to

x∗ = Sα∗ω,1(x
∗ − α∗z∗).

Remark 1.17. In the rest of this thesis, we succinctly denote Sω,1 by Sω.

12

Chapter 2

LEARNING MODELS FROM DATA

In this chapter, we discuss the general background of determining the governing

equations from the data which is dramatically developed and researched in recent

years based on the proliferation of machine learning and data science.

2.1 Learning models from experimental data

The history of modeling dynamical systems from observational data experienced

a prolonged and fruitful history and resulted in powerful techniques for system iden-

tification, with a rich history going back at least as far as the time of Kepler and

Newton and the discovery of the laws of planetary motion [6]. A number of meth-

ods have beyonded the original purposes for understanding the complexity of flexible

structures, such as the Hubble space telescope or the international space station. The

resulting models have been widely applied in nearly every branch of engineering and

applied mathematics, most notably for model-based feedback control. Nevertheless, to

identify the model system, we need more assumptions on the form of the model and

most of them often result in linear dynamics with their restricted effectiveness to small

amplitude transient perturbations around a fixed point of the dynamics.

Learning partial differential equations/systems is a newly developed research direc-

tion in mathematics and applications since it can provide fundamental models in the

physical and life sciences. Partial differential equations/systems also model complex

behaviors in the social sciences, for example conservation laws for traffic flow, systems

of equations for population dynamics, epidemic models and financial markets. The

original discoveries of these equations/systems typically required a grasp of mathemat-

ics, an understanding of theory, and supportive evidence from experimental data. Any

model is performed based on the data and the functions of the process under consid-

eration if they are known. Data are abundant in many branches of science. Therefore,

extracting governing equations from data is a central challenge in many diverse areas

of science and engineering. The new approach to learn the underline behaviour of

physical laws from experimental data is resulted from [30, 31]. According to [32, 33],

system identification can be separated into two different categories:

13

1. Methods that are accurately reflected observed dynamics using black box functions

(neural networks).

2. Methods that recover closed forms and expression of the dynamics by ordinary

differential equations (ODEs) and partial differential equations (PDEs).

The first one is aimed at algorithmic models which need not reflecting the true mech-

anisms but are accurate in prediction. The second type of methods may assume a

specific model for the data with known mechanisms. The advantages of the second

approach include:

1. PDE-based models rely on well-established physical principles.

2. The number of parameters to be estimated in PDE-based models is usually much

smaller than in neural network-based models. This reduces the need for a huge

amount of sampling data.

For these reasons, researchers are currently considering the second approach in learning

some models in which they study some theoretical aspects of learning PDE-based

models using sparse optimization techniques. Learning PDE-based models has recently

been attracted the attention of researchers (see [6, 7, 8, 9, 10, 11, 12, 13, 14]), this is

an approach to modelling real life processes based on physical rules (PDEs) and data

collected during the cause. To our knowledge, the first papers in this direction were

published in about 2015 and mostly devoted to processes in fluid dynamics. There no

research has been done in Vietnam.

2.2 Learning models via sparse optimization

A typical method in data-driven modeling based on PDE-models is the use of the

observation of the state along the time and its derivative with respect to time to form a

regression problem. For many systems of interest, the PDEs consist of only a few deriva-

tives, making it sparse in the space of possible functions. The resulting sparse model

identification inherently balances model complexity with accuracy, avoiding overfitting

the model to data. Recently, some authors have proposed to use sparse optimization

method to identify the parameters of the underlying PDEs in [6, 7, 11, 12, 14, 15].

Let considering an example, see [7], about the nonlinear dynamical system

d

dt
x(t) = ẋ(t) = f(x(t)). (2.1)

The vector x(t) = [x1(t) x2(t) · · · xn(t)]
T ∈ Rn represents the state of the system

at time t, and the nonlinear function f(x(t)) represents the dynamic constraints that

define the equations of motion of the system. To determine the function f from data,

14

we collect a time-history of the state x(t) and either measure the derivative ẋ(t) or

approximate it numerically from x. The data is sampled at several times t1, t2, . . . , tm

and arranged into two large matrices:

X =


xT (t1)

xT (t2)
...

xT (tm)

 =


x1 (t1) x2 (t1) · · · xn (t1)

x1 (t2) x2 (t2) · · · xn (t2)
...

...
. . .

...

x1 (tm) x2 (tm) · · · xn (tm)

 ,

Ẋ =


ẋT (t1)

ẋT (t2)
...

ẋT (tm)

 =


ẋ1 (t1) ẋ2 (t1) · · · ẋn (t1)

ẋ1 (t2) ẋ2 (t2) · · · ẋn (t2)
...

...
. . .

...

ẋ1 (tm) ẋ2 (tm) · · · ẋn (tm)

 .
Next, an augmented library Θ(X) is constructed from possible nonlinear functions

of the columns of X. For example, Θ(X) may consist of constant, polynomial and

trigonometric terms, i.e.,

Θ(X) =

 | | | | | | |
1 X XP2 XP3 · · · sin(X) cos(X) sin(2X) cos(2X) · · ·
| | | | | | |

 .
Here, higher polynomials are denoted as XP2 ,XP3 , etc. For example, XP2 denotes the

quadratic nonlinearities in the state variable x, given by:

XP2 =


x21 (t1) x1 (t1)x2 (t1) · · · x22 (t1) x2 (t1)x3 (t1) · · · x2n (t1)

x21 (t2) x1 (t2)x2 (t2) · · · x22 (t2) x2 (t2)x3 (t2) · · · x2n (t2)
...

...
. . .

...
...

. . .
...

x21 (tm) x1 (tm)x2 (tm) · · · x22 (tm) x2 (tm)x3 (tm) · · · x2n (tm)

 .
Each column ofΘ(X) represents a possible function for the right hand side of (2.1). We

may construct a sparse regression problem to determine the sparse vectors of coefficients

Ξ = [ξ1 ξ2 · · · ξn].

Ẋ = Θ(x)Ξ.

Each column ξk of Ξ represents a sparse vector of coefficients determining which terms

areactive in the right hand side for one of the row equations ẋk = fk(x) in (2.1), i.e.,

ẋk = fk(x) = Θ(xT)ξk. (2.2)

A model will provide an accurate model fit in (2.2) with as few terms as possible in Ξ.

To overcome the over-determined system, we use the l1-regularized sparse regression:

ξk = argminξ′
k

∥∥ẋk −Θ(xT)ξ′k
∥∥+ λ

∥∥ξ′k∥∥1 .
Here, ∥·∥ is the Euclidean norm and ∥·∥1 is the l1-norm.

15

2.3 The challenges of learning models from data and sparse
optimization

As noted above, the PDEs describing the processes consist of only a few derivatives,

making it sparse in the space of possible functions. However, if data are collected from

a numerical discretization or from experimental measurements on a spatial grid, the

state dimension may be extremely large. Hence, the sparse regression problems are

computationally challenging. One of the ways to overcome this difficulty is to approx-

imate the large problems by low-rank approximation using dimensionality reduction

techniques, such as the proper orthogonal decomposition (see [34, 35, 36]). Further,

the following questions are the main challenges in the sparse regression framework for

identifying the PDE-based models:

1. How much and which kinds of data do we need for the model identification problem

to uniquely solvable?

2. How do we efficiently solve the discretized model?

3. How do we solve the nonlinear optimization problem resulting from the regression

problem?

4. How do we choose regularization parameters in the regression problem to obtain

accurate models or to overcome the overfitting problem?

Therefore, research in these problems is desired.

16

Chapter 3

LEARNING CONSTANT PARAMETERS IN THE BOD-DO
MODEL WITH l1-WEIGHTED REGULARIZATION

In this chapter, we establish the exact solution for BOD-DO system (1)−(4) for the
case of constant parameters. We then apply l1-weighted regularization technique for

learning BOD-DO systems.

3.1 The solution of the BOD-DO model with constant param-
eters

In this paragraph, we establish the exact solution of the BOD-DO system with

constant parameters. The BOD-DO model with initial and boundary conditions is

given by (1)−(4) with the constant parameters v, k1, k2, s1, s2 has the form

∂b

∂t
+ v

∂b

∂x
= −k1b+ s1 in (0, X)× (0, T], (3.1)

∂d

∂t
+ v

∂d

∂x
= k1b− k2d+ s2 in (0, X)× (0, T], (3.2)

b(x, 0) = b0(x), d(x, 0) = d0(x) on (0, X), (3.3)

b(0, t) = b1(t), d(0, t) = d1(t) on (0, T]. (3.4)

Theorem 3.1. Let v, k1, k2, s1, s2 be real constants and v > 0. Assume that b0, d0, b1, d1

are continuous functions, b0(0) = b1(0) and d0(0) = d1(0). Then, system (3.1)−(3.4)
has a unique solution that is given by

(i) For x− vt ∈ [0, X],

b(x, t) =
s1
k1

+ e−k1t

[
− s1
k1

+ b0(x− vt)
]

d(x, t) =



s1 + s2
k1

+ e−k1t

[
d0(x− vt)−

s1 + s2
k1

+
(
− s1 + k1b0(x− vt)

)
t

]
,

if k1 = k2,

s1 + s2
k2

+
e−k1t

k2 − k1
(
− s1 + k1b0(x− vt)

)
+ e−k2t

[
d0(x− vt)

−s1 + s2
k2

+
1

k1 − k2
(
− s1 + k1b0(x− vt)

)]
, if k1 ̸= k2.

17

(ii) For t− x

v
∈ [0, T],

b(x, t) =
s1
k1

+ e
−k1x

v

[
− s1
k1

+ b1

(
t− x

v

)]

d(x, t) =



s1 + s2
k1

+ e
−k1x

v

[
d1

(
t− x

v

)
− s1 + s2

k1

+

(
− s1 + k1b1

(
t− x

v

))
x

v

]
, if k1 = k2,

s1 + s2
k2

+
e

−k1x

v

k2 − k1

(
− s1 + k1b1

(
t− x

v

))
+ e

−k2x

v

[
d1

(
t− x

v

)
−s1 + s2

k1
+

1

k1 − k2

(
− s1 + k1b1

(
t− x

v

))]
, if k1 ̸= k2.

Proof. - First, we consider the initial-boundary problem
∂b

∂t
+ v

∂b

∂x
= −k1b+ s1 in (0, X)× (0, T),

b(x, 0) = b0(x) for x ∈ [0, X],

b(0, t) = b1(t) for t ∈ [0, T].

(3.5)

Let z(s) = b(x+ vs, t+ s) (s ∈ R). Then from the first equation of (3.5) it follows that

∂b(x+ vs, t+ s)

∂(t+ s)
+ v

∂b(x+ vs, t+ s)

∂(x+ vs)
= −k1b(x+ vs, t+ s) + s1,

and so
∂z(s)

∂s
+ k1z(s) = s1.

Multiplying above equation by ek1s we have that

∂(ek1sz(s))

∂s
= ek1s

∂z(s)

∂s
+ k1e

k1sz(s) = ek1ss1.

It yields

ek1sz(s) =

∫
ek1ss1ds+ c1 =

1

k1
ek1ss1 + c,

then

z(s) =
s1
k1

+ ce−k1s,

or

b(x+ vs, t+ s) =
s1
k1

+ ce−k1s, s ∈ R. (3.6)

From the second condition of (3.5) and (3.6), letting s = −t we get

b0(x− vt) = b(x− vt, 0) = s1
k1

+ cek1t, x− vt ∈ [0, X].

Then

c = e−k1t

[
− s1
k1

+ b0(x− vt)
]
.

From (3.6) letting s = 0, we conclude that

b(x, t) =
s1
k1

+ e−k1t

[
− s1
k1

+ b0(x− vt)
]
, x− vt ∈ [0, X].

18

From the third condition of (3.5) and (3.6), letting s =
−x
v

we get

b1

(
t− x

v

)
= b

(
0, t− x

v

)
=
s1
k1

+ ce
−k1x

v , t− x

v
∈ [0, T].

Then

c = e
−k1x

v

[
− s1
k1

+ b1

(
t− x

v

)]
.

From (3.6) letting s = 0, we conclude that

b(x, t) =
s1
k1

+ e
−k1x

v

[
− s1
k1

+ b1

(
t− x

v

)]
, t− x

v
∈ [0, T].

Hence,

b(x, t) =


s1
k1

+ e−k1t

[
− s1
k1

+ b0(x− vt)
]
, if x− vt ∈ [0, X],

s1
k1

+ e
−k1x

v

[
− s1
k1

+ b1

(
t− x

v

)]
, if t− x

v
∈ [0, T].

Now, we consider the initial-boundary problem in DO model
∂d

∂t
+ v

∂d

∂x
= k1b− k2d+ s2 in (0, X)× (0, T),

d(x, 0) = d0(x) for x ∈ [0, X],

d(0, t) = d1(t) for t ∈ [0, T].

(3.7)

Let u(s) = d(x+vs, t+ s) (s ∈ R). Then it follows from the first equation of (3.7) that

∂d(x+ vs, t+ s)

∂(t+ s)
+ v

∂d(x+ vs, t+ s)

∂(x+ vs)
= k1b(x+ vs, t+ s)− k2d(x+ vs, t+ s) + s2,

and so
∂u(s)

∂s
+ k2u(s) = k1z(s) + s2.

Multiplying the above equation by ek2s we have that

∂(ek2su(s))

∂s
= ek2s

∂u(s)

∂s
+ k2e

k2su(s) = ek2sk1z(s) + ek2ss2

It yields

ek2su(s) =

∫
[ek2sk1z(s) + ek2ss2]ds+m1 =

∫
ek2sk1z(s)ds+

s2
k2
ek2s +m2.

Then

u(s) = e−k2s

∫
ek2sk1z(s)ds+

s2
k2

+m2e
−k2s. (3.8)

For this equation we consider two cases:

+ Case 1: For x− vt ∈ [0, X], according to (3.6) and taking into account that

c = e−k1t

[
− s1
k1

+ b0(x− vt)
]
,

we have

k1z(s) = s1 + e−k1(t+s)
[
− s1 + k1b0(x− vt)

]
.

19

Substituting the last to (3.8), we get

u(s) = e−k2s

∫
ek2s
[
s1 + e−k1(t+s)

(
− s1 + k1b0(x− vt)

)]
ds+

s2
k2

+m2e
−k2s

= e−k2s

[
s1

∫
ek2sds+ e−k1t

(
− s1 + k1b0(x− vt)

) ∫
e(k2−k1)sds

]
+
s2
k2

+m2e
−k2s

=



e−k2s

[
s1e

k2s

k2
+ e−k1t

(
− s1 + k1b0(x− vt)

)
s+m3

]
+
s2
k2

+m2e
−k2s,

if k1 = k2,

e−k2s

[
s1e

k2s

k2
+ e−k1t

(
− s1 + k1b0(x− vt)

)e(k2−k1)s

k2 − k1
+m3

]
+
s2
k2

+m2e
−k2s, if k1 ̸= k2.

=


s1 + s2
k1

+ e−k1(t+s)
(
− s1 + k1b0(x− vt)

)
s+me−k1s, if k1 = k2,

s1 + s2
k2

+
e−k1(t+s)

k2 − k1
(
− s1 + k1b0(x− vt)

)
+m′e−k2s, if k1 ̸= k2.

or

d(x+vs, t+s) =


s1 + s2
k1

+ e−k1(t+s)
(
− s1 + k1b0(x− vt)

)
s+me−k1s, if k1 = k2,

s1 + s2
k2

+
e−k1(t+s)

k2 − k1
(
− s1 + k1b0(x− vt)

)
+m′e−k2s, if k1 ̸= k2.

(3.9)

� From (3.9) letting s = −t we get

d0(x−vt) = d(x−vt, 0) =



s1 + s2
k1

+
(
− s1 + k1b0(x− vt)

)
(−t) +mek1t,

if k1 = k2,

s1 + s2
k2

+
1

k2 − k1
(
− s1 + k1b0(x− vt)

)
+m′ek2t,

if k1 ̸= k2.

It follows that

m = e−k1t

[
d0(x− vt)−

s1 + s2
k1

+
(
− s1 + k1b0(x− vt)

)
t

]
,

and

m′ = e−k2t

[
d0(x− vt)−

s1 + s2
k2

+
1

k1 − k2
(
− s1 + k1b0(x− vt)

)]
.

20

� Letting s = 0 in (3.9), we get

d(x, t) =



s1 + s2
k1

+ e−k1t

[
d0(x− vt)−

s1 + s2
k1

+
(
− s1 + k1b0(x− vt)

)
t

]
,

if k1 = k2,

s1 + s2
k2

+
e−k1t

k2 − k1
(
− s1 + k1b0(x− vt)

)
+ e−k2t

[
d0(x− vt)−

s1 + s2
k2

+
1

k1 − k2
(
− s1 + k1b0(x− vt)

)]
, if k1 ̸= k2.

+Case 2: For t− x

v
∈ [0, T] according to (3.6) and

c = e
−k1x

v

[
− s1
k1

+ b1

(
t− x

v

)]
,

we have

k1z(s) = s1 + e−k1(
x
v
+s)

[
− s1 + k1b1

(
t− x

v

)]
.

Substituting the last to (3.8), we get

u(s) = e−k2s

∫
ek2s
[
s1 + e−k1(

x
v
+s)

(
− s1 + k1b1

(
t− x

v

))]
ds+

s2
k2

+ n2e
−k2s

= e−k2s

[
s1

∫
ek2sds+ e−k1

x
v

(
− s1 + k1b1

(
t− x

v

))∫
e(k2−k1)sds

]
+
s2
k2

+ n2e
−k2s

=



e−k2s

[
s1e

k2s

k2
+ e−k1

x
v

(
− s1 + k1b1

(
t− x

v

))
s+ n3

]
+
s2
k2

+ n2e
−k2s,

if k1 = k2,

e−k2s

[
s1e

k2s

k2
+ e−k1

x
v

(
− s1 + k1b1

(
t− x

v

))
e(k2−k1)s

k2 − k1
+ n3

]
+
s2
k2

+ n2e
−k2s, if k1 ̸= k2.

=


s1 + s2
k1

+ e−k1(
x
v
+s)

(
− s1 + k1b1

(
t− x

v

))
s+ ne−k1s, if k1 = k2,

s1 + s2
k2

+
e−k1(

x
v
+s)

k2 − k1

(
− s1 + k1b1

(
t− x

v

))
+ n′e−k2s, if k1 ̸= k2.

or

d(x+vs, t+s) =


s1 + s2
k1

+ e−k1(
x
v
+s)

(
− s1 + k1b1

(
t− x

v

))
s+ ne−k1s, if k1 = k2,

s1 + s2
k2

+
e−k1(

x
v
+s)

k2 − k1

(
− s1 + k1b1

(
t− x

v

))
+ n′e−k2s, if k1 ̸= k2.

(3.10)

21

� Letting s =
−x
v

in (3.10), we get

d1

(
t−x
v

)
= d

(
0, t−x

v

)
=



s1 + s2
k1

+

(
− s1 + k1b1

(
t− x

v

))
−x
v

+ ne
k1x

v ,

if k1 = k2,

s1 + s2
k2

+
1

k2 − k1

(
− s1 + k1b1

(
t− x

v

))
+n′e

k2x

v , if k1 ̸= k2.

It follows that

n = e
−k1x

v

[
d1

(
t− x

v

)
− s1 + s2

k1
+

(
− s1 + k1b1

(
t− x

v

))
x

v

]
,

and

n′ = e
−k2x

v

[
d1

(
t− x

v

)
− s1 + s2

k1
+

1

k1 − k2

(
− s1 + k1b1

(
t− x

v

))]
.

� From (3.10) letting s = 0, we get

d(x, t) =



s1 + s2
k1

+ e
−k1x

v

[
d1

(
t− x

v

)
− s1 + s2

k1

+

(
− s1 + k1b1

(
t− x

v

))
x

v

]
, if k1 = k2,

s1 + s2
k2

+
e

−k1x

v

k2 − k1

(
− s1 + k1b1

(
t− x

v

))
+ e

−k2x

v

[
d1

(
t− x

v

)
− s1 + s2

k1
+

1

k1 − k2

(
− s1 + k1b1

(
t− x

v

))]
, if k1 ̸= k2.

3.2 Learning the BOD-DO model by l1-weighted regulariza-
tion

We suppose that the general model for a BOD-DO water quality model has the

form
∂b

∂t
= α1 + α2b+ α3d+ α4

∂b

∂x
+ α5

∂d

∂x
,

∂d

∂t
= β1 + β2b+ β3d+ β4

∂b

∂x
+ β5

∂d

∂x
.

This system can be rewritten by the product of (b, d, bx, dx)-dependent terms with fixed

coefficients

bt = [1 b d bx dx]α, (3.11)

dt = [1 b d bx dx]β, (3.12)

where α = [α1 α2 α3 α4 α5]
T and β = [β1 β2 β3 β4 β5]

T .

These equations hold at all points (x, t) in the domain (0, X) × (0, T). Each of

22

(b, d, bx, dx)-dependent terms in system (3.11)−(3.12) represents a potential feature

that decribes the intrinsic dynamics of data. The feature vectors f1(t), f2(t), f3(t),

f4(t), f5(t) are defined by

f1(t) =

 |1
|

 , f2(t) =
 |b(t)
|

 , f3(t) =
 |d(t)
|

 , f4(t) =
 |
bx(t)

|

 , f5(t) =
 |
dx(t)

|

 ,
where each time-stepping feature vector is the vectorization of the term in system

(3.11)−(3.12). Each component of the feature vector fi(t) is the evaluation of the

corresponding term from system (3.11)−(3.12) at a pre-determined point in space, i.e.

f1(t) =


1

|
1

|
1

 , f2(t) =


b(x1, t)

|
b(xj , t)

|
b(xn, t)

 , f3(t) =


d(x1, t)

|
d(xj , t)

|
d(xn, t)

 ,

f4(t) =


bx(x1, t)

|
bx(xj , t)

|
bx(xn, t)

 , f5(t) =


dx(x1, t)

|
dx(xj , t)

|
dx(xn, t)

 .
The collection of feature vectors defines the feature matrix F (t) = [fi(t)],

F (t) = [f1(t) f2(t) f3(t) f4(t) f5(t)].

Set

V1(t) =

 |
bt(t)

|

 , V2(t) =

 |
dt(t)

|

 .
Then for t ≥ 0, the following system of equations holds[

V1(t)|V2(t)
]
= F (t)

[
α|β
]
. (3.13)

Here, Vi(t) and F (t) are known while the coefficient vectors α, β are unknown.

In partical scenario, the exact data of solution (b, d) is unknown. The system (3.13)

may not produce a unique solution (α, β) beacause we only measure the noisy data

(bδ, dδ). Then, V1(t), V2(t) and F (t) are only approximated by V δ
1 (t), V

δ
2 (t) and F

δ(t).

As a result, the problem (3.13) is ill-posed. To carry out this situation, we use the

l1-weighted regularization and solve the following minimization problem

min
α,β∈R5

{∫ T

0

∥∥V δ
1 (t)− F δ(t)α

∥∥2 dt+∫ T

0

∥∥V δ
2 (t)− F δ(t)β

∥∥2 dt+γ1Φ1(α)+γ2Φ2(β)

}
.

(3.14)

23

where the norm ∥·∥ here is the Euclidean norm space in Rn and γ1, γ2 > 0 are regu-

larization parameters and

Φ1(α) =

5∑
j=1

ω1
j |αj |, Φ2(β) =

5∑
j=1

ω2
j |βj |, (3.15)

with ω1
j , ω

2
j ≥ ω0 > 0 being weighted numbers.

Note that if ω1
j , ω

2
j = 1 for all j then it is called l1-regularization, otherwise it is called

l1-weighted regularization. The choice of weighted numbers is very important. They

affect the quality of recovered parameters and depend on a priori information on the

solution of the model. We remark that with only one data set we could successfully

recover the parameters in the BOD-DO model if the weights are set suitably. We will

illustrate and analysis the effect of choosing the weights in Chapter 5.

3.3 The well-posedness and convergence of learning the BOD-
DO model by l1-weighted regularization

In the following, we will investigate the well-posedness problem (3.14) and the con-

vergence of its solution to system (3.13). To this end, we need the following assumption:

Assumption 3.2. Suppose that V1, V2 and F in problem (3.13) belong to L2(0, T). Let

V δ
1 , V

δ
2 and F δ in L2(0, T) be, respectively, the noisy data of V1, V2 and F satisfying∫ T

0

∥∥V δ
1 (t)− V1(t)

∥∥2 dt < δ,

∫ T

0

∥∥V δ
2 (t)− V2(t)

∥∥2 dt < δ,

∫ T

0

∥∥F δ(t)− F (t)
∥∥2 dt < δ,

(3.16)

where δ > 0 is a known noise level.

To overcome the ill-posedness, stable numerical techniques are required, among

them Tikhonov and sparse regularization are the most well-known. There are a number

of works to deal with problem (3.14) such as [37, 38, 39].

Theorem 3.3. Let Jδ
1 : R5 → R be defined by

Jδ
1 (α) =

∫ T

0

∥∥V δ
1 (t)− F δ(t)α

∥∥2 dt. (3.17)

Then the functional Jδ
1 is continuous and convex. Moreover, the derivative of Jδ

1 is

continuous.

Proof. (i) First, we prove that the functional Jδ
1 is continuous. Indeed, suppose that

the sequence {αn}n∈N ⊂ R5 converges to α in R5. Using Hölder’s inequality, we

24

have

|Jδ
1 (α

n)− Jδ
1 (α)| =

∫ T

0

∥∥V δ
1 (t)− F δ(t)αn

∥∥2 dt− ∫ T

0

∥∥V δ
1 (t)− F δ(t)α

∥∥2 dt
=

∫ T

0

F δ(t)(αn − α) ·
(
F δ(t)αn + F δ(t)α− 2V δ(t)

)
dt

≤
(∫ T

0

∥∥F δ(t)(αn − α)
∥∥2 dt)1/2.(∫ T

0

∥∥F δ(t)αn + F δ(t)α− 2V δ(t)
∥∥2 dt)1/2. (3.18)

By the definition of matrix norm, it implies that∫ T

0

∥∥F δ(t)(αn − α)
∥∥2 dt ≤ ∫ T

0

∥∥F δ(t)
∥∥2 ∥αn − α∥2 dt

≤ ∥αn − α∥2
∫ T

0

∥∥F δ(t)
∥∥2 dt→ 0 as n→∞. (3.19)

By using the Cauchy-Schwartz inequality, the second term of the right-side in

inequality (3.18) is estimated as follows∫ T

0

∥∥F δ(t)αn + F δ(t)α− 2V δ(t)
∥∥2 dt

≤ 9

(∫ T

0

∥∥F δ(t)αn
∥∥2 dt+ ∫ T

0

∥∥F δ(t)α
∥∥2 dt+ 4

∫ T

0

∥∥V δ(t)
∥∥2 dt)

≤ 9

(
∥αn∥2

∫ T

0

∥∥F δ(t)
∥∥2 dt+ ∥α∥2 ∫ T

0

∥∥F δ(t)
∥∥2 dt+ 4

∫ T

0

∥∥V δ(t)
∥∥2 dt)

≤M. (3.20)

From (3.18)−(3.20), it follows that

|Jδ
1 (α

n)− Jδ
1 (α)| → 0 as n→∞.

Thus the functional Jδ
1 is continuous.

(ii) We can see that Jδ
1 (·) is differentiable and its derivative is defined by

(Jδ
1)

′(α) = 2

∫ T

0

(
F δ(t)α− V δ

1 (t)

)
· F δ(t)dt.

Then for all ϑ ∈ R5, it yields

(Jδ
1)

′(α)ϑ = 2

∫ T

0

(
F δ(t)α− V δ

1 (t)

)
· F δ(t)ϑdt

= 2

(
α

∫ T

0

F δ(t) · F δ(t)ϑdt−
∫ T

0

V δ
1 (t) · F δ(t)ϑdt

)
.

This implies that the second derivative of Jδ
1 (·) is given by

(Jδ
1)

′′(α)(ϑ, η) = 2

∫ T

0

F δ(t)ϑ · F δ(t)ηdt.

25

Therefore,

(Jδ
1)

′′(α)(ϑ, ϑ) = 2

∫ T

0

F δ(t)ϑ · F δ(t)ϑdt ≥ 0, ∀ϑ ∈ R5.

This means that the function Jδ
1 (·) is convex on R5.

(iii) Suppose that there exists a sequence {αn}n∈N ⊂ R5 converges to α ∈ R5. Then∥∥(Jδ
1)

′(αn)− (Jδ
1)

′(α)
∥∥ = 2

∥∥∥∥∥
∫ T

0

F δ(t)(αn − α) · F δ(t)dt

∥∥∥∥∥
≤ 2 ∥αn − α∥

∫ T

0

∥∥F δ(t)
∥∥2 dt→ 0 as n→∞.

Hence, (Jδ
1)

′ is continuous on R5.

Remark 3.4. From Theorem 3.3, we also have the continuity and convexity of the

functional Jδ
2 : R5 → R be defined by

Jδ
2 (β) =

∫ T

0

∥∥V δ
2 (t)− F δ(t)β

∥∥2 dt.
Futhermore, (Jδ

2)
′ is continuous on R5.

In the following, we consider some properties of the function Φi in (3.15). The first

property is obvious and the second one is a special case as p = 1 in [40, Remark 3].

For convenience, we recall it with the detailed proof.

Theorem 3.5. The functions Φi : R5 → R (i = 1, 2) defined by (3.15) have the

following properties

(1) Φi is non-negative, convex and continuous (i = 1, 2).

(2) There exists a positive constant C such that

Φi(ϑ) ≥ C ∥ϑ∥ , ∀ϑ ∈ R5 and i = 1, 2,

where ∥·∥ is the Euclidean norm in R5. This implies that Φi is coercive, i.e.,

Φi(ϑ)→∞ as ∥ϑ∥ → ∞.

Proof. It is trivial that Φi(i = 1, 2) are non-negative by their definition. Furthermore,

since |x| is convex and continuous, so is Φi.

Since

Φi(ϑ) ≥ ω0

5∑
j=1

|ϑj | ≥ ω0

√√√√ 5∑
j=1

ϑ2j = ω0∥ϑ∥,

it is coercive.

Theorem 3.6. (Existence) Problem (3.14) has at least one solution.

26

Proof. Since the function Jδ
1 , J

δ
2 ,Φ1 and Φ2 are convex and continuous on R5, they

are lower semi-continuous in R5. It implies the objective funtion of Problem (3.14)

is convex and lower semi-continuous on R10. Futhermore, the objective function is

also coercive by Theorem 3.5. As a results, Problem (3.14) has at least one solution

[41].

In Theorem 2.1, we have proven that problem (3.14) has at least one solution, but

the solution may not unique as the functions Jδ
1 and Jδ

2 are convex but may not strongly

convex

Theorem 3.7. (Stability) For a fixed regularization γ1, γ2 > 0. If the sequence {V n
1 }, {V n

2 }
and {Fn} converge to V δ

1 , V
δ
2 and F δ in L2(0, T), respectively and

(αn, βn) ∈ argmin
α,β∈R5

{Jn
1 (α) + Jn

2 (β) + γ1Φ1(α) + γ2Φ2(β)},

then there exist a subsequence {(αnk , βnk)} of {(αn, βn)} and a minimizer (αδ
γ1,γ2 , β

δ
γ1,γ2)

of (3.14) such that ∥∥(αnk , βnk)− (αδ
γ1,γ2 , β

δ
γ1,γ2)

∥∥→ 0.

In addition, if the minimizer (αδ
γ1,γ2 , β

δ
γ1,γ2) is unique, then the sequence {(αn, βn)}

converges to (αδ
γ1,γ2 , β

δ
γ1,γ2).

Proof. By the definition of αn and βn

Jn
1 (α

n) + Jn
2 (β

n) + γ1Φ1(α
n) + γ2Φ2(β

n)

=

∫ T

0

∥V n
1 (t)− Fn(t)αn∥2 dt+

∫ T

0

∥V n
2 (t)− Fn(t)βn∥2 dt+ γ1Φ1(α

n) + γ2Φ2(β
n)

≤
∫ T

0

∥V n
1 (t)− Fn(t)α∥2 dt+

∫ T

0

∥V n
2 (t)− Fn(t)β∥2 dt+ γ1Φ1(α) + γ2Φ2(β)

≤C
(∫ T

0

∥∥V n
1 (t)− V δ

1 (t)
∥∥2 dt+ ∥∥V δ

1

∥∥2
L2(0,T)

+ ∥α∥2
∫ T

0

∥∥F δ(t)
∥∥2 dt

+ ∥α∥2
∫ T

0

∥∥Fn(t)− F δ(t)
∥∥2 dt+ ∫ T

0

∥∥V n
2 (t)− V δ

2 (t)
∥∥2 dt+ ∥∥V δ

2

∥∥2
L2(0,T)

+ ∥β∥2
∫ T

0

∥∥F δ(t)
∥∥2 dt+ ∥β∥2 ∫ T

0

∥∥Fn(t)− F δ(t)
∥∥2 dt)+ γ1Φ1(α) + γ2Φ2(β).

(3.21)

Since the sequence {V n
1 }, {V n

2 } and {Fn} converge to V δ
1 , V

δ
2 and F δ in L2(0, T), the

sequences {Φ(αn)} and {Φ(βn)} are bounded. According to Theorem 3.5, the sequence

{αn} and {βn} are also bounded in R5. Hence, there exits subsequences {αnk} of {αn}
and {βnk} of {βn} such that {αnk} and {βnk} converge to αδ

γ1,γ2 and β
δ
γ1,γ2 , respectively.

In addition, since Jδ
1 (·), Jδ

2 (·), Φ1(·) and Φ2(·) are continuous on R5, we have

Jδ
1 (α

δ
γ1,γ2) = lim inf

k
Jδ
1 (α

nk), Jδ
2 (β

δ
γ1,γ2) = lim inf

k
Jδ
2 (β

nk) (3.22)

27

and

Φ1(α
δ
γ1,γ2) = lim inf

k
Φ1(α

nk), Φ2(β
δ
γ1,γ2) = lim inf

k
Φ2(β

nk). (3.23)

Furthermore,

Jδ
1 (α

nk) = Jnk

1 (αnk) +

[∫ T

0

(
V δ
1 (t) + V nk

1 (t)
)
·
(
V δ
1 (t)− V nk

1 (t)
)
dt

−
∫ T

0

αnk

(
F δ(t) + Fnk(t)

)
·
(
V δ
1 (t)− V nk

1 (t)
)
dt

+

∫ T

0

αnk

(
V δ
1 (t) + V nk

1 (t)
)
·
(
Fnk(t)− F δ(t)

)
dt

−
∫ T

0

∥αnk∥2
(
F δ(t)− Fnk(t)

)
·
(
F δ(t) + Fnk(t)

)
dt

]
. (3.24)

Since V nk

1 → V δ
1 and Fnk → F δ in L2(0, T), the term in brackets on the right-hand

side of (3.24) goes to zero when k tends to ∞. Therefore, we get

lim inf
k

Jnk

1 (αnk) = lim inf
k

Jδ
1 (α

nk) , lim sup
k

Jnk

1 (αnk) = lim sup
k

Jδ
1 (α

nk). (3.25)

Similarly, we have

lim inf
k

Jnk

2 (βnk) = lim inf
k

Jδ
2 (β

nk) , lim sup
k

Jnk

2 (βnk) = lim sup
k

Jδ
2 (β

nk). (3.26)

From (3.22), (3.23), (3.25) and (3.26), we obtain

Jδ
1 (α

δ
γ1,γ2) + Jδ

2 (β
δ
γ1,γ2) + γ1Φ1(α

δ
γ1,γ2) + γ2Φ2(β

δ
γ1,γ2)

=lim inf
k

Jδ
1 (α

nk) + lim inf
k

Jδ
2 (β

nk) + γ1lim inf
k

Φ1(α
nk) + γ2lim inf

k
Φ2(β

nk)

=lim inf
k

Jnk

1 (αnk) + lim inf
k

Jnk

2 (βnk) + γ1lim inf
k

Φ1(α
nk) + γ2lim inf

k
Φ2(β

nk)

≤lim inf
k

(
Jnk

1 (αnk) + Jnk

2 (βnk) + γ1Φ1(α
nk) + γ2Φ2(β

nk)

)
≤lim sup

k

(
Jnk

1 (αnk) + Jnk

2 (βnk) + γ1Φ1(α
nk) + γ2Φ2(β

nk)

)
≤lim sup

k
Jnk

1 (αnk) + lim sup
k

Jnk

2 (βnk) + γ1lim sup
k

Φ1(α
nk) + γ2lim sup

k
Φ2(β

nk)

=lim sup
k

Jδ
1 (α

nk) + lim sup
k

Jδ
2 (β

nk) + γ1lim sup
k

Φ1(α
nk) + γ2lim sup

k
Φ2(β

nk)

=Jδ
1 (α) + Jδ

2 (β) + γ1Φ1(α) + γ2Φ2(β), ∀α, β ∈ R5. (3.27)

This means that (αδ
γ1,γ2 , β

δ
γ1,γ2) is a minimizer of (3.14).

In addition we have∥∥αnk − αδ
γ1,γ2

∥∥→ 0 and
∥∥βnk − βδγ1,γ2

∥∥→ 0, as k →∞.

Thus, ∥∥(αnk , βnk)− (αδ
γ1,γ2 , β

δ
γ1,γ2)

∥∥→ 0, as k →∞.

In the cases the minimizer (αδ
γ1,γ2 , β

δ
γ1,γ2) is unique, the convergence of the original

sequence {(αnk , βnk)} to (αδ
γ1,γ2 , β

δ
γ1,γ2) follows by a subsequence argument.

28

Lemma 3.8. The set

Π(V) = {(α, β) ∈ R5 ×R5 : F (t)
[
α|β
]
=
[
V1(t)|V2(t)

]
= V (t)}

is non-empty, closed and convex. Then, there exists a solution (α+, β+) of the problem

min
(α,β)∈Π(V)

{Φ1(α) + Φ2(β)},

which is called a Φ1,Φ2-minimizing solution of problem (3.13).

Proof. It is trivial that Π(V) is nonempty and convex by the definition of set Π(V) and

the assumption of problem. Suppose that the sequence {(αn, βn)} ⊂ Π(V) converges

to (α, β) in R5 ×R5. We prove that (α, β) ∈ Π(V). Note that F ∈ L2(0, T), we have

0 ≤
∫ T

0

∥∥∥V (t)− F (t)
[
α|β
]∥∥∥2 dt = ∫ T

0

∥∥∥F (t) [αn − α|βn − β
]∥∥∥2 dt

≤ C

(
∥αn − α∥2 + ∥βn − β∥2

)∫ T

0

∥F (t)∥2 dt→ 0.

Then,

V (t) = F (t)
[
α|β
]
.

Hence, Π(V) is closed in R5 ×R5.

According to Theorem 3.5, Φ1(·) and Φ2(·) are continuous and weakly coercive

over nonempty, closed convex set Π(V) then it yields that Φ1(·) + Φ2(·) has a global

minimum point over Π(V), see [42, Theorem 2.32], [43, Proposition 1.2].

In the following theorem, the notation γ(δ) ∼ δ means that there exists a constant

c > 0 such that limδ→0 γ(δ)/δ = c.

Theorem 3.9. (Convergence) Suppose that the operator equation

F (t)
[
α|β
]
=
[
V1(t)|V2(t)

]
has a solution in R5 ×R5 and γ1, γ2 : R+ → R+ satisfy

γ1(δ) ∼ δ and γ2(δ) ∼ δ.

Let δn → 0, ∥V n
1 (t)− V1(t)∥2L2(0,T) ≤ δn, ∥V n

2 (t)− V2(t)∥2L2(0,T) ≤ δn and ∥Fn(t)− F (t)∥2L2(0,T) ≤
δn. Moreover, let γ1,n = γ1(δn), γ2,n = γ2(δn) and

(αn, βn) ∈ argmin
α,β∈R5

{Jn
1 (α) + Jn

2 (β) + γ1,nΦ1(α) + γ2,nΦ2(β)}.

Then, there exist a Φ1,Φ2-minimizing solution (α+, β+) of F (t)
[
α|β
]
=
[
V1(t)|V2(t)

]
and a subsequence of {(αn, βn)} which converges to (α+, β+) on R5 ×R5.

29

Proof. We note that

min
α∈R5

{
Jn
1 (α) + γ1,nΦ1(α)

}
+ min

β∈R5

{
Jn
2 (β) + γ2,nΦ2(β)

}
≤ min

(α,β)∈R5×R5

{
Jn
1 (α) + Jn

2 (β) + γ1,nΦ1(α) + γ2,nΦ2(β)
}
.

Following Theorem 3.6, each problem in the left-hand side has its minimal solution.

Thus, from the definition of (αn, βn) it deduces that

αn ∈ argmin
α∈R5

{Jn
1 (α)+γ1,nΦ1(α)} and βn ∈ argmin

β∈R5

{Jn
2 (β)+γ2,nΦ2(β)}. (3.28)

Let (α̃, β̃) ∈ R5 ×R5 be a solution of F (t)
[
α|β
]
=
[
V1(t)|V2(t)

]
.

By the definition of (αn, βn) and above statement, it implies that

Jn
1 (α

n) + γ1,nΦ1(α
n) ≤ Jn

1 (α̃) + γ1,nΦ1(α̃), (3.29)

and

Jn
2 (β

n) + γ2,nΦ2(β
n) ≤ Jn

2 (β̃) + γ2,nΦ2(β̃). (3.30)

Here,

Jn
1 (α̃) =

∫ T

0

∥V n
1 (t)− Fn(t)α̃∥2 dt

≤ C1

(∫ T

0

∥V n
1 (t)− V1(t)∥2 dt+

∫ T

0

∥V1(t)− F (t)α̃∥2 dt

+

∫ T

0

∥F (t)α̃− Fn(t)α̃∥2 dt
)

≤ C1δn.

Similarly, we have Jn
2 (β̃) ≤ C2δn.

From above estimate, (3.29) and (3.30), it follows that

Jn
1 (α

n) + γ1,nΦ1(α
n) ≤ C1δn + γ1,nΦ1(α̃), (3.31)

and

Jn
2 (β

n) + γ2,nΦ2(β
n) ≤ C2δn + γ2,nΦ2(β̃). (3.32)

In particular, when δn → 0, γ1,n ∼ δn and γ2,n ∼ δn, we deduce that

Jn
1 (α

n)→ 0 , lim
n

Φ1(α
n) = lim sup

n
Φ1(α

n) ≤ Φ1(α̃), (3.33)

and

Jn
2 (β

n)→ 0 , lim
n

Φ2(β
n) = lim sup

n
Φ2(β

n) ≤ Φ2(β̃). (3.34)

It implies that {Φ1(α
n)} and {Φ2(β

n)} are bounded. Thus, {γ1Φ1(α
n) + γ2Φ2(β

n)} is
bounded. Futhermore, γ1Φ1(·) + γ2Φ2(·) is coercive, {(αn, βn)} is bounded, too. This
leads to the existence of a subsequence {(αnk , βnk)} of {(αn, βn)} such that (αnk , βnk)

converges to (α+, β+).

30

From (3.33), we deduce that

J1(α
nk) =

∫ T

0

∥V1(t)− F (t)αnk∥2 dt

≤ C3

(∫ T

0

∥∥V1(t)− V nk

1 (t)
∥∥2 dt+ ∫ T

0

∥∥V nk

1 (t)− Fnk(t)αnk
∥∥2 dt

+

∫ T

0

∥F (t)αnk − Fnk(t)αnk∥2 dt
)

≤ C3

(
δ2n + Jnk

1 (αnk) + C
′

3δ
2
n

)
→ 0 (k →∞).

It is similar to see from (3.34) that J2(α
nk)→ 0 as k →∞.

Since J1(·) and J2(·) are continuous, we have

J1(α
+) = lim

k
J1(α

nk) = 0 and J2(β
+) = lim

k
J2(β

nk) = 0.

It implies that F (t)(α+) = V1(t) and F (t)(β+) = V2(t) or (α+, β+) is a solution

of F (t)
[
α|β
]

=
[
V1(t)|V2(t)

]
. Since Φ1(·),Φ2(·) are convex and continuous on R5

(Theorem 3.5), (3.33), (3.34) we get

Φ1(α
+) = lim

k
Φ1(α

nk) ≤ Φ1(α̃) and Φ2(β
+) = lim

k
Φ2(β

nk) ≤ Φ2(β̃).

Hence,

γ1Φ1(α
+) + γ2Φ2(β

+) ≤ γ1Φ1(α̃) + γ2Φ2(β̃), ∀(α̃, β̃) ∈ Π(V).

It implies that (α+, β+) is a Φ1,Φ2-minimizing solution.

Moreover, we have that {αnk} and {βnk} converge to α+, β+. Then, we obtain∥∥(αnk , βnk)− (α+, β+)
∥∥→ 0.

In the case the minimizer (α+, β+) is unique, the original sequence {(αn, βn)} converges
to (α+, β+) as a subsequence argument.

THIS CHAPTER WAS WRITTEN BASED ON THE PAPER

[15] Hao D.N., Hiep D.X., Muoi P.Q., 2023, Learning river water quality models by

l1-weighted regularization. Published in IMA Journal of Applied Mathematics.

31

Chapter 4

SIMULATION AND NUMERICAL ALGORITHMS

To generate data, we have to solve system (3.1)−(3.4). In doing so we shall use

the two-step Lax-Friedrichs method. After having generated data, we shall apply the

method in Chapter 3 to verify the theory.

4.1 Two-step Lax–Friedrichs method

There are many available algorithms for solving the direct problem (3.1)−(3.4), such
as the upwind scheme, forward time centered space scheme, Lax-Friedrichs algorithm,

Leapfrog scheme, Lax-Wendroff scheme,... [4] or two-step Lax-Friedrichs scheme [5].

Among them, the two-step Lax-Friedrichs algorithm is a simple one and has the con-

vergence rate of the second order. Thus, we use the two-step Lax-Friedrichs algorithm

mentioned in [5]. Let us consider the BOD-DO system (3.1)−(3.4):
∂b

∂t
+ v

∂b

∂x
= −k1b+ s1 in (0, X)× (0, T],

∂d

∂t
+ v

∂d

∂x
= k1b− k2d+ s2 in (0, X)× (0, T],

b(x, 0) = b0(x), d(x, 0) = d0(x) on (0, X),

b(0, t) = b1(t), d(0, t) = d1(t) on (0, T].

Setting

u(x, t) =

[
b(x, t)

d(x, t)

]
and F (x, t, u, ux) =

[
−k1b(x, t)− vbx(x, t) + s1(x, t)

k1b(x, t)− k2d(x, t)− vdx(x, t) + s2(x, t)

]
,

the BOD-DO system could be rewritten by

ut(x, t) = F (x, t, u, ux), (4.1)

u(0, t) = [b(0, t), d(0, t)],

u(x, 0) = [b(x, 0), d(x, 0)].

The data are simulated from a grid mesh with n+1 timesteps t0, t1, t2, . . . , tn and m+1

grid points x0, x1, x2, . . . , xm and constants increments ∆t, ∆x, respectively. Here, we

set t0 = 0, tn = T , x0 = 0, xm = X

For i ∈ {1, 2, . . . ,m−1} and j ∈ {1, 2, . . . , n}, by using a second-order Taylor expansion

32

around (xi +∆x, tj) and (xi, tj) by a half in space, we get

u(xi +∆x, tj) = u

(
xi +

∆x

2
, tj

)
+ ux

(
xi +

∆x

2
, tj

)
∆x

2
+

1

2
uxx

(
xi +

∆x

2
, tj

)
∆x2

4

+O(∆x3),

u(xi, tj) = u

(
xi+

∆x

2
, tj

)
−ux

(
xi+

∆x

2
, tj

)
∆x

2
+
1

2
uxx

(
xi+

∆x

2
, tj

)
∆x2

4
+O(∆x3).

Subtracting the two expressions with note that xi ±∆x = xi±1 and xi ±
∆x

2
= xi± 1

2

we get

u(xi+1, tj)− u(xi, tj) = ux(xi+ 1
2
, tj)∆x+O(∆x3),

Thus

ux(xi+ 1
2
, tj) =

u(xi+1, tj)− u(xi, tj)
∆x

+O(∆x3). (4.2)

Similarly, using a first-order Taylor expansion around (xi, tj) we have

u(xi +∆x, tj) = u

(
xi +

∆x

2
, tj

)
+ ux

(
xi +

∆x

2
, tj

)
∆x

2
+O(∆x2),

u(xi, tj) = u

(
xi +

∆x

2
, tj

)
− ux

(
xi +

∆x

2
, tj

)
∆x

2
+O(∆x2).

Adding side by side two expressions, we get

u(xi+1, tj) + u(xi, tj) = 2u(xi+ 1
2
, tj) +O(∆x2).

Thus

u(xi+ 1
2
, tj) =

1

2
[u(xi+1, tj) + u(xi, tj)] +O(∆x2). (4.3)

From (4.1), (4.2) and (4.3), we have

u
(
xi+ 1

2
, tj+ 1

2

)
− u
(
xi+ 1

2
, tj
)

∆t

2

= F

(
xi+ 1

2
, tj , u(xi+ 1

2
, tj), ux(xi+ 1

2
, tj)

)
.

Thus

u
(
xi+ 1

2
, tj+ 1

2

)
=
u(xi+1, tj) + u(xi, tj)

2

+ F

(
xi+ 1

2
, tj ,

u(xi+1, tj) + u(xi, tj)

2
,
u(xi+1, tj)− u(xi, tj)

∆x

)
∆t

2
. (4.4)

Analogously, we have

u(xi, tj+1)− u(xi, tj+ 1
2
)

∆t

2

= F

(
xi, tj+ 1

2
, u(xi, tj+ 1

2
), ux(xi, tj+ 1

2
)

)
.

33

Thus

u(xi, tj+1) = u(xi, tj+ 1
2
) + F

(
xi, tj+ 1

2
, u(xi, tj+ 1

2
), ux(xi, tj+ 1

2
)

)
∆t

2

=
u(xi+ 1

2
, tj+ 1

2
) + u(xi− 1

2
, tj+ 1

2
)

2
+

F

(
xi, tj+ 1

2
,
u(xi+ 1

2
, tj+ 1

2
) + u(xi− 1

2
, tj+ 1

2
)

2
,
u(xi+ 1

2
, tj+ 1

2
)− u(xi− 1

2
, tj+ 1

2
)

∆x

)
∆t

2

(4.5)

Hence, we arrive at the two-step Lax-Friedrich method.

Algorithm 4.1 Two-step Lax-Friedrich method

Input: Endpoint X, maximum time T , m + 1 spatial points, n + 1 temporal points,

initial condition u0i =
[
b0i d0i

]T
, boundary condition uj0 =

[
bj0 dj0

]T
.

1: Set ∆x =
X

m
,∆t =

T

n
.

2: for j = 0, 1, 2, . . . , n− 1 do

3: for i = 0, 1, 2, . . . ,m− 1 do

4: uj
i+ 1

2

←
uji+1 + uji

2

5: (ux)
j

i+ 1
2

←
uji+1 − u

j
i

∆x

6: u
j+ 1

2

i+ 1
2

← uj
i+ 1

2

+
∆t

2
F j

i+ 1
2

7: end for

8: for i = 1, 2, . . . ,m− 1 do

9: u
j+ 1

2

i ←
u
j+ 1

2

i+ 1
2

+ u
j+ 1

2

i− 1
2

2

10: (ux)
j+ 1

2

i ←
u
j+ 1

2

i+ 1
2

− uj+
1
2

i− 1
2

∆x

11: uj+1
i = u

j+ 1
2

i +
∆t

2
F

j+ 1
2

i

12: end for

13: ujm = 2ujm−1 − u
j
m−2

14: bji = (uji)1, d
j
i = (uji)2

15: end for

Output: bji = b(xi, tj), d
j
i = d(xi, tj), ∀(i, j) ∈ {0, 1, 2, . . . ,m} × {0, 1, 2, . . . , n}.

Remark 4.1. According to [5], Algorithm 4.1 converges if∣∣∣∣v∆t∆x

∣∣∣∣ ≤ 1,

with the truncation error O(∆t2,∆x2).

34

4.2 Data generation

After obtaining approximate BOD-DO solution b, d by the two-step Lax-Friedrich

method (Algorithm 4.1), we create the new feature matrix b feature and d feature from b

and d by eliminating some nodes in spatial and temporal domain.

For instance, we will get data at x1, x1+k, x1+2k, . . . , x1+l1k of the spatial set {xi}mi=0

which correspond to t1, t1+k, t1+2k, . . . , t1+l2k of the temporal set {tj}nj=0 with k > 0

and l1 =
[
m

k

]
, l2 =

[
n

k

]
([x] denotes the integer part of real number x). From the new

feature data matrix b feature and d feature, we will add ε% observation noise into these

matrices such that

b′feature = b feature +
R1

∥R1∥
ε% , d′feature = d feature +

R2

∥R2∥
ε%, (4.6)

where R1, R2 are random matrices which have same size with b feature and d feature,

respectively. Note that (4.6) is necessary for the convergence of problem (3.14) by the

condition in Assumption 3.2.

Next, the feature matrices bx, dx, bt and dt are directly computed by b′feature and

d′feature based on the finite difference method and the linear extrapolation to construct

the feature matrix F (t) and the vector V1(t), V2(t) in (3.13).

4.3 Nesterov’s accelerated method

Consider the uniform partition of [0, T] with the mesh point

ti = ih,

where h =
T

M
is the small enough stepsize, Problem (3.14) is approximated by

min
α,β∈R5

{
T

M

M∑
i=1

(∥∥V δ
1 (ti)− F δ(ti)α

∥∥2+∥∥V δ
2 (ti)− F δ(ti)β

∥∥2)+γ1Φ1(α)+γ2Φ2(β)

}
.

(4.7)

The solution (α∗, β∗) of Problem (4.7) is equivalent to

α∗ ∈ argmin
α∈R5

{
T

M

M∑
i=1

∥∥V δ
1 (ti)− F δ(ti)α

∥∥2 + γ1Φ1(α)

}
,

and

β∗ ∈ argmin
β∈R5

{
T

M

M∑
i=1

∥∥V δ
1 (ti)− F δ(ti)β

∥∥2 + γ2Φ2(β)

}
.

In the remain of this section, we only concern about solving Problem (4.7).

This means that our task is to solve minimization problems which have the form

min
u∈R5

Θ(u) := G(u) + Ψ(u), (4.8)

35

with

G(u) =
T

M

M∑
i=1

∥∥V δ
l (ti)− F

δ(ti)u
∥∥2 and Ψ(u) = γΦl(u) = γ

5∑
k=1

ωk|uk| (l = 1, 2).

In particular, G is convex, differentiable (Theorem 3.3) and Ψ is convex and continuous

(Theorem 3.5) on R5. Therefore, the problem (4.8) has at least one solution.

The problem (4.8) is investigated in numerous previous articles based on the gradient

method in signal and image processing, see [44, 26, 27, 16]. One of the motivated ideas

in this research is originated from [17] in which Problem (4.8) was replaced by the

quadratic approximate functional of Θ(v) at a given point u

min
v∈R5

Θs(v, u) := G(u) +
〈
G′(u), v − u

〉
+
s

2
∥v − u∥2 +Ψ(v). (4.9)

Compared to problem (4.8), the functional Θsn(·, un) is strictly convex and it has a

unique solution that makes us to find its minimizers easily. In addition, the minimizers

un+1 = argmin
v∈R5

Θsn(v, u
n) converges to a minimizer of Problem (4.8).

Lemma 4.2. Given a fixed u ∈ R5 and s, γ > 0, the functional Θs(v, u) has a unique

minimizer. Moreover, the unique solution of Problem (4.9) is S γω
s

(
u− 1

s
G′(u)

)
, where

S γω
s

is defined by (1.2) and ω = {ωk}5k=1 with ωk > 0 for all k ∈ {1, 2, . . . , 5}.

Proof. The proof of this lemma is similar to that of Lemma 2.1 in [16].

The funtional Θs in (4.9) can be rewritten by

Θs(v, u) = G(u)− 1

2s
∥G′(u)∥2 + s

[
1

2

(
∥v − u∥2 + 2

1

s
⟨G′(u), v − u⟩+ 1

s2
∥G′(u)∥2

)
+

1

s
Ψ(v)

]
= G(u)− 1

2s
∥G′(u)∥2 + s

(
1

2

∥∥∥v − u+ 1

s
G′(u)

∥∥∥2 + 1

s
Ψ(v)

)
.

For each fixed u ∈ R5 and s > 0, Problem (4.9) is equivalent to

min
v∈R5

(
1

2

∥∥∥v − (u− 1

s
G′(u)

)∥∥∥2 + 1

s
Ψ(v)

)
. (4.10)

From Theorem 3.5, it follows that for each s > 0 and w ∈ R5 the functional

v 7→ 1

2
∥v − w∥2 + 1

s
Ψ(v)

is strictly convex, bounded below and continuous on R5. Hence, it has a unique

solution. Therefore, Problem (4.9) has a unique minimizer.

Since G is convex and differentiable then according to Theorem 1.6 and Theorem 1.7,

the necessary and sufficient condition for the solution u of Problem (4.9) is

0 ∈ ∂Θs(u, u) = G′(u) + s(u− u) + ∂Ψ(u).

It implies that

u− 1

s
G′(u) ∈ u+ 1

s
∂Ψ(u) =

(
I +

1

s
∂Ψ
)
(u).

From Theorem 1.8, ∂Ψ is maximal monotone. Then, it follows from Theorem 1.9 that

36

the inverse operator
(
I +

1

s
∂Ψ
)−1

is single-valued. Hence, we have

u =
(
I +

1

s
∂Ψ
)−1(

u− 1

s
G′(u)

)
. (4.11)

Consider the functional ψ : R→ R is defined by

ψ(x) = |x|, x ∈ R.

It is well-known (see [45, Example 16.15]) that

∂ψ(x) =


{1}, if x > 0,

[−1, 1], if x = 0,

{−1}, if x < 0.

For all α > 0, it follows

(
I +

1

s
α∂ψ

)
(x) =


{x+ s−1α}, if x > 0,

[−s−1α, s−1α], if x = 0,

{x− s−1α}, if x < 0.

In addition, from (1.1) as p = 1, we have

Sα
s
(x) =


x− s−1α, if x− s−1α > 0,

0, if − s−1α ≤ x ≤ s−1α,

x+ s−1α, if x+ s−1α < 0.

It yields

(
I +

1

s
α∂ψ

)(
Sα

s
(x)
)
=


x, if x− s−1α > 0

[−s−1α, s−1α], if − s−1α ≤ x ≤ s−1α,

x, if x+ s−1α < 0.

It implies that(
I +

1

s
α∂ψ

)(
Sα

s
(x)
)
= x or

(
I +

1

s
α∂ψ

)−1

(x) = Sα
s
(x).

Thus, (4.11) has the form

u = S γω
s

(
u− 1

s
G′(u)

)
.

Lemma 4.3. Given a positive arbitrary number β and ω = {ωk}5k=1. Then, u∗ is a

minimizer of Θ defined in (4.8) if and only if u∗ = Sβω(u∗ − βG′(u∗)).

Proof. By Theorem 1.7 and Theorem 1.6, u∗ is a solution of (4.8) if and only if

0 ∈ ∂Θ(u∗) = G′(u∗) + ∂Ψ(u∗).

Then,

−G′(u∗) ∈ ∂Ψ(u∗).

37

Multiplying with β > 0 and adding u∗ into both sides, we get

u∗ − βG′(u∗) ∈ u∗ + β∂Ψ(u∗) = (I + ∂Ψ)(u∗).

Following Theorem 1.9 and the proof of Lemma 4.2, the inverse operator
(
I+

1

s
∂Ψ
)−1

is single-valued and

u∗ = (I + ∂Ψ)−1(u∗ − βG′(u∗)) = Sβω(u∗ − βG′(u∗)).

Denote the minimizer of (4.10) in the proof of Lemma 4.2 by

Hs(u) = argmin
v∈R5

Θs(v, u) = argmin
v∈R5

(
1

2

∥∥∥v − (u− 1

s
G′(u)

)∥∥∥2 + 1

s
Ψ(v)

)
. (4.12)

Lemma 4.4. Let u ∈ R5 and s > 0 be such that

Θ(Hs(u)) ≤ Θs(Hs(u), u), (4.13)

Then, for all v ∈ R5 we have

Θ(v)−Θ(Hs(u)) ≥
s

2
∥Hs(u)− u∥2 + s⟨Hs(u)− u, u− v⟩.

Proof. By the definition of Hs(u) in (4.12), there exists ψ′ ∈ ∂Ψ(Hs(u)) such that

G′(u) + s(Hs(u)− u) + ψ′ = 0,

It follows that

ψ′ = −G′(u)− s(Hs(u)− u). (4.14)

Futhermore, since G is convex, by the definition of subgradient we get

G(v) ≥ G(u) + ⟨G′(u), v − u⟩,

Ψ(v) ≥ Ψ(Hs(u)) + ⟨ψ′, v −Hs(u)⟩.

Summing two above inequalities and replacing (4.14) into this, it yields

G(v) + Ψ(v) ≥ G(u) + Ψ(Hs(u)) + ⟨G′(u), Hs(u)− u⟩+ s⟨u−Hs(u), v −Hs(u)⟩

Thus,

Θ(v)−Θs(Hs(u), u) ≥ −
s

2
∥Hs(u)− u∥2 + s⟨Hs(u)− u,Hs(u)− v⟩.

Hence

Θ(v)−Θs(Hs(u), u) ≥
s

2
∥Hs(u)− u∥2 + s⟨Hs(u)− u, u− v⟩. (4.15)

From (4.13), we get

Θ(v)−Θ(Hs(u)) ≥ Θ(v)−Θs(Hs(u), u). (4.16)

From (4.15) and (4.16), we arrive at the assertion of the lemma.

Lemma 4.5. Let {un} be a sequence given by the gradient-type iteration

un+1 = Hsn(u
n) = S γω

sn

(
un − 1

sn
G′(un)

)
, (4.17)

38

where {sn} be a positive sequence that satisfies sn ∈ [s, s] (s > s > 0) and

Θ(un+1) ≤ Θsn(u
n+1, un).

Then, the sequence {Θ(un)} decreases monotonically and lim
n→∞

∥∥un+1 − un
∥∥ = 0. In

addition, the sequence {un} is bounded.

Proof. The proof of this lemma is adopted from [44, Lemma 2.3].

By the assumption and the definition of un+1, it follows that

Θ(un+1) ≤ Θsn(u
n+1, un) ≤ Θsn(u

n, un) = Θ(un).

This implies that {Θ(un)} is a motonomically decreasing sequence.

Applying Lemma 4.4 with v = u = uk and s = sk for each k ∈ {0, 1, . . . , n}, we get

Θ(uk)−Θ(uk+1) ≥ sk
2

∥∥uk+1 − uk
∥∥2 .

It follows that
2

s
(Θ(uk)−Θ(uk+1)) ≥ 2

sk
(Θ(uk)−Θ(uk+1)) ≥

∥∥uk+1 − uk
∥∥2 .

Summing these above inequalities over k = 0, 1, · · · , n, we obtain

2

s
(Θ(u0)−Θ(un+1)) ≥

n∑
k=0

∥∥uk+1 − uk
∥∥2 , ∀n.

One infers that the series

∞∑
k=0

∥∥uk+1 − uk
∥∥2 converges. Thus, lim

n→∞

∥∥un+1 − un
∥∥ =

0. Since the functional Θ is coercive by Theorem 3.5 and the sequence {Θ(un)} is

monotonically decreasing, it leads to the boundedness of the sequence {un}.

Theorem 4.6. Let {un} be a sequence that given in Lemma 4.5. Then, there exists a

subsequence {unk} of {un} such that {unk} converges to a stationary point u∗ of Θ.

Proof. By Lemma 4.5, the sequence {un} is bounded, then there exists a subsequence

{unk} of {un} such that {unk} converges to u∗ in R5. Moreover, it follows from Lemma

4.5 that

lim
k→∞

unk+1 = u∗.

From (4.17), we have

unk+1 = S γω
snk

(
unk − 1

snk

G′(unk)
)
.

According to Theorem 3.3, G′ is continuous. Choosing a positive sequence {sn} such
that there exists a subsequence {snk} of {sn} converges to s∗ ∈ [s, s], we get

lim
k→∞

unk = u∗ , lim
k→∞

G′(unk) = G′(u∗) , lim
k→∞

snk = s∗.

It follows from Lemma 1.16 that

u∗ = S γω
s∗

(
u∗ − 1

s∗
G′(u∗)

)
.

By Lemma 4.3, u∗ is a stationary point of Θ.

39

Theorem 4.7. Let {un} and {sn} be sequences defined in Lemma 4.5 and u∗ is a

minimizer of Θ. Then, we get

Θ(un)−Θ(u∗) ≤
s
∥∥u0 − u∗∥∥2

2n
, ∀n ≥ 1.

Proof. The proof of this theorem is adopted from [44, Lemma 3.1] and [28, Theorem

3.12]. By the definition of uk+1 and Lemma 4.4, for all k ≥ 0,
2

sk
(Θ(u∗)−Θ(uk+1)) ≥

∥∥uk+1 − uk
∥∥2 + 2⟨uk+1 − uk, uk − u∗⟩

=
∥∥uk+1 − u∗

∥∥2 − ∥∥uk − u∗∥∥2 .
In fact, we have Θ(u∗)−Θ(uk+1) ≤ 0 (by Lemma 4.5) and s ≤ sk ≤ s. Then, it yields

2

s
(Θ(u∗)−Θ(uk+1)) ≥ 2

sk
(Θ(u∗)−Θ(uk+1)) ≥

∥∥uk+1 − u∗
∥∥2 − ∥∥uk − u∗∥∥2 .

Summing these above inequatilies over k = 0, 1, . . . , n− 1, we obtain

2

s

(
nΘ(u∗)−

n−1∑
k=0

Θ(uk+1)

)
≥ ∥un − u∗∥2 −

∥∥u0 − u∗∥∥2 . (4.18)

By Lemma 4.4 and the definition of uk+1, we also have
2

sk
(Θ(uk)−Θ(uk+1)) ≥

∥∥uk+1 − uk
∥∥2 , ∀k ≥ 0.

Similarly, the fact that {Θ(uk)} is a decreasing sequence (by Lemma 4.5) and sk ∈ [s, s]

yields
2

s
(Θ(uk)−Θ(uk+1)) ≥ 2

sk
(Θ(uk)−Θ(uk+1)) ≥

∥∥uk+1 − uk
∥∥2 , ∀k ≥ 0.

Then,
2

s
(kΘ(uk)− kΘ(uk+1)) ≥ k

∥∥uk+1 − uk
∥∥2 , ∀k ≥ 0.

Summing these above inequalities over k = 0, 1, · · · , n− 1 we obtain

2

s

n−1∑
k=0

(
kΘ(uk)− kΘ(uk+1)

)
≥

n−1∑
k=0

k
∥∥uk+1 − uk

∥∥2 .
Note that

n−1∑
k=0

(
kΘ(uk)− kΘ(uk+1)

)
=

n−1∑
k=0

(
kΘ(uk)− (k + 1)Θ(uk+1) + Θ(uk+1)

)
= −nΘ(un) +

n−1∑
k=0

Θ(uk+1).

It follows that

2

s

(
− nΘ(un) +

n−1∑
k=0

Θ(uk+1)

)
≥

n−1∑
k=0

k
∥∥uk+1 − uk

∥∥2 .
Then,

2

s

(
− nΘ(un) +

n−1∑
k=0

Θ(uk+1)

)
≥ s

s

n−1∑
k=0

k
∥∥uk+1 − uk

∥∥2 . (4.19)

40

Summing (4.18) and (4.19), we get

2n

s

(
Θ(u∗)−Θ(un)

)
≥ ∥un − u∗∥2−

∥∥u0 − u∗∥∥2+s
s

n−1∑
k=0

k
∥∥uk+1 − uk

∥∥2 ≥ −∥∥u0 − u∗∥∥2 .
Therefore,

Θ(un)−Θ(u∗) ≤
s
∥∥u0 − u∗∥∥2

2n
, ∀n ≥ 1.

Next, we present Nesterov’s accelerated algorithm that was firstly introduced in

[17]. This algorithm used gradient-type methods achieves the great convergent rate

O
(

1

n2

)
in convex cases.

Algorithm 4.2 Nesterov’s accelerated method

Input: Initial value u0 ∈ R5, A0 = 0, v0 = u0, η ∈ (1,∞), s0 ∈ [s, s]

and φ0(u) =
1

2

∥∥u− u0∥∥2.
1: for n = 0, 1, 2, . . . do

2: repeat

3: an+1 ←
1 +
√
1 + 2Ansn
sn

.

4: yn ← Anu
n + an+1v

n

An + an+1
.

5: un+1 ← S γω
sn

(
yn − 1

sn
G′(yn)

)
.

6: if
∥∥G′(un+1)−G′(yn)

∥∥2 > sn⟨G′(un+1)−G′(yn), un+1 − yn⟩ then
7: sn ← snη

8: end if

9: until
∥∥G′(un+1)−G′(yn)

∥∥2 ≤ sn⟨G′(un+1)−G′(yn), un+1 − yn⟩ or sn /∈ [s, s].

10: An+1 ← An + an+1.

11: vn+1 ← argmin
u∈R5

φn+1(u) with

φn+1(u) = φn(u) + an+1

(
G(un+1) + ⟨G′(un+1), u− un+1⟩+ γΦ(u)

)
.

12: sn+1 ← P[s,s]

∥∥G′(un+1)−G′(yn)
∥∥2

⟨G′(un+1)−G′(yn), un+1 − yn⟩
.

13: end for

Output: u = limun.

Remark 4.8. In Algorithm 4.2, we use the Barzilai-Borwein rule to choose the step

size sn that is indicated in [46], i.e., sn satisfies

sn = max

(
s,min

(
s,

∥∥G′(un+1)−G′(yn)
∥∥2

⟨G′(un+1)−G′(yn), un+1 − yn⟩

))
.

41

Remark 4.9. The stepsize sn in Algorithm 4.2 is to belong to [s, s] in the cases the

Lipschitz constant LG of the derivative of the functional G is unknown. However, if

LG is known, s and s would be satisfied s ≤ ηLG ≤ s, η > 0, see [28].

Lemma 4.10. The solution vn of the functional φn in Step 11 of Algorithm 4.2 is

defined by

vn = SγAnω

(
u0 −

n∑
k=1

akG
′(uk)

)
, (n > 0).

Proof. From Algorithm 4.2, we have

φn(u) =
1

2

∥∥u− u0∥∥2 + n∑
k=1

ak

(
G(uk) + ⟨G′(uk), u− uk⟩

)
+ γ

n∑
k=1

akΦ(u).

Similar to Lemma 4.2, the functional φn is convex because it is the sum of convex

functionals and by Theorem 1.7 ([22, Proposition 31.14]), the necessary and sufficient

condition for vn be a minimizer of φn is

0 ∈ ∂φn(v
n) = (vn − u0) +

n∑
k=1

akG
′(uk) + γ

n∑
k=1

ak∂Φ(v
n).

This follows that

u0 −
n∑

k=1

akG
′(uk) ∈ vn + γ

n∑
k=1

ak∂Φ(v
n) = (I + γAn∂Φ)(v

n).

Similarly, γAn∂Φ is maximal monotone by Theorem 1.8 and by Theorem 1.9 the op-

erator (I + γAn∂Φ) is invertible. Furthermore, its inverse is single-valued. Thus, we

deduce that

vn = (I + γAn∂Φ)
−1

(
u0 −

n∑
k=1

akG
′(uk)

)
.

Following the proof in Lemma 4.2, we also have

(I + γAn∂Φ)
−1

(
u0 −

n∑
k=1

akG
′(uk)

)
= SγAnω

(
u0 −

n∑
k=1

akG
′(uk)

)
.

Hence, the proof is completed.

Lemma 4.11. The functional φn (n ≥ 0) defined in Step 11 of Algorithm 4.2 is a

1-strongly convex functional.

Proof. By [47, Theorem 5.24], we need only to prove that

φn(v) ≥ φn(u) + ⟨ξ, v − u⟩+
1

2
∥v − u∥2 , ∀u, v ∈ R5, ξ ∈ ∂φn(u).

42

This is equivalent to

1

2

∥∥v − u0∥∥2 + n∑
k=1

ak

(
G(uk) + ⟨G′(uk), v − uk⟩

)
+ γAnΦ(v)

≥ 1

2

∥∥u− u0∥∥2 + n∑
k=1

ak

(
G(uk) + ⟨G′(uk), u− uk⟩

)
+ γAnΦ(u)

+ ⟨v − u0 +
n∑

k=1

akG
′(uk) + γAnν, v − u⟩+

1

2
∥v − u∥2 , where ν ∈ ∂Φ(u).

By simple calculation, it is reduced to
1

2

∥∥v − u0∥∥2 + γAnΦ(v) ≥
1

2

∥∥u− u0∥∥2 + γAnΦ(u) + ⟨v − u0, v − u⟩

+ γAn⟨ν, v − u⟩+
1

2
∥v − u∥2 , where ν ∈ ∂Φ(u).

The above inequality is true by the definition of ∂Φ(u) and the fact that
1

2

∥∥v − u0∥∥2 = 1

2

∥∥u− u0∥∥2 + ⟨v − u0, v − u⟩+ 1

2
∥v − u∥2 .

Next, we will prove that the Algorithm 4.2 satisfies the following relations:

R1
n : AnΘ(un) ≤ φ∗

n ≡ min
u∈R5

φn(u), (4.20)

R2
n : φn(u) ≤ AnΘ(u) +

1

2

∥∥u− u0∥∥2 ,∀u ∈ R5. (4.21)

Lemma 4.12. The sequence {un}, {An} and {φn} generated by Algorithm 4.2 satisfy

the relations (4.20) and (4.21).

Proof. We will prove this Lemma by induction. First, the relations (4.20) and (4.21)

are true by the initial setting of Algorithm 4.2. Assume that the relations (4.20) and

(4.21) are valid for some n ≥ 0.

1. By the hypothesis of the induction and the definition of φn in Step 11 of Algorithm

4.2, it follows

φn+1(u) ≤ AnΘ(u)+
1

2

∥∥u− u0∥∥2+an+1

(
G(un+1)+⟨G′(un+1), u−un+1⟩+γΦ(u)

)
.

Since G is convex and differentiable, we have

G(u) ≥ G(un+1) + ⟨G′(un+1), u− un+1⟩, ∀u ∈ R5.

It yields

φn+1(u) ≤ AnΘ(u) +
1

2

∥∥u− u0∥∥2 + an+1(G(u) + γΦ(u))

= (An + an+1)Θ(u) +
1

2

∥∥u− u0∥∥2
= An+1Θ(u) +

1

2

∥∥u− u0∥∥2 .
Thus, the relation (4.21) is true for n+ 1.

43

2. According to Lemma 4.10, φn is a 1−strongly convex function and vn is a unique

minimizer of φn. Then by the property of strongly convex functions, see [47,

Theorem 5.25], and the inducted hypothesis, we have

φn(u) ≥ φ∗
n +

1

2
∥u− vn∥2 ≥ AnΘ(un) +

1

2
∥u− vn∥2 , ∀u ∈ R5. (4.22)

By the definition of φ∗
n+1 in (4.20) and (4.22), we have

φ∗
n+1 = min

u∈R5

{
φn(u) + an+1

(
G(un+1) + ⟨G′(un+1), u− un+1⟩+ γΦ(u)

)}
≥ min

u∈R5

{
AnΘ(un) +

1

2
∥u− vn∥2 + an+1

(
G(un+1)

+ ⟨G′(un+1), u− un+1⟩+ γΦ(u)
)}
.

For all u ∈ R5, there exists νn+1 ∈ ∂Φ(un+1) such that

Φ(u) ≥ Φ(un+1) + ⟨νn+1, u− un+1⟩.

Define the notation Θ′(·) by

Θ′(u) = G′(u) + γν, ν ∈ ∂Φ(u).

By the convexity of the functional Θ, we have

Θ(un) ≥ Θ(un+1) + ⟨Θ′(un+1), un − un+1⟩.

Using these estimate, we get

φ∗
n+1 ≥ min

u∈R5

{
An(Θ(un+1) + ⟨Θ′(un+1), un − un+1⟩) + 1

2
∥u− vn∥2

+ an+1

(
G(un+1) + ⟨G′(un+1), u− un+1⟩+ γΦ(un+1) + ⟨νn+1, u− un+1⟩

)}
= min

u∈R5

{
(An + an+1)Θ(un+1) +

1

2
∥u− vn∥2 + An⟨Θ′(un+1), u

n − un+1⟩

+ an+1⟨Θ′(un+1), u− un+1⟩
}
.

Due to the Step 4 in Algorithm 4.2, this follows that

φ∗
n+1 ≥ min

u∈R5

{
An+1Θ(un+1) +

1

2
∥u− vn∥2 + an+1⟨Θ′(un+1), u− un+1⟩

+ ⟨Θ′(un+1), An+1y
n − an+1v

n − Anu
n+1⟩

}
= min

u∈R5

{
An+1Θ(un+1) +

1

2
∥u− vn∥2 + an+1⟨Θ′(un+1), u− vn⟩

+ An+1⟨Θ′(un+1), yn − un+1⟩
}
.

(4.23)

The minimizer of the right hand side (4.23) attains at

u = vn − an+1Θ
′(un+1).

44

Then,

φ∗
n+1 ≥ An+1Θ(un+1) +

a2n+1

2

∥∥Θ′(un+1)
∥∥2 − a2n+1

∥∥Θ′(un+1)
∥∥2

+ An+1⟨Θ′(un+1), yn − un+1⟩

= An+1Θ(un+1)−
a2n+1

2

∥∥Θ′(un+1)
∥∥2 + An+1⟨Θ′(un+1), yn − un+1⟩.

(4.24)

Since un+1 is the minimizer of Θsn(·, yn), we have

0 ∈ ∂Θsn(u
n+1, yn) = G′(yn) + sn(u

n+1 − yn) + ∂Ψ(un+1).

It implies that there exists ξn+1 ∈ ∂Φ(un+1) satisfies

G′(yn) + sn(u
n+1 − yn) + γξn+1 = 0.

Then,

Θ′(un+1) = G′(un+1) + γξn+1 = sn(y
n − un+1) +G′(un+1)−G′(yn).

This implies that

⟨Θ′(un+1), yn−un+1⟩ = sn
∥∥yn − un+1

∥∥2+⟨G′(un+1)−G′(yn), yn−un+1⟩. (4.25)

Moreover, we have∥∥yn − un+1
∥∥2 = 1

s2n

(∥∥sn(yn − un+1) +G′(un+1)−G′(yn)
∥∥2

− 2sn
〈
G′(un+1)−G′(yn), yn − un+1

〉
−
∥∥G′(un+1)−G′(yn)

∥∥2)
=

1

s2n

(∥∥Θ′(un+1)
∥∥2 − 2sn

〈
G′(un+1)−G′(yn), yn − un+1

〉
−
∥∥G′(un+1)−G′(yn)

∥∥2).
Substituting it into (4.25), we get〈

Θ′(un+1), yn − un+1
〉
=

1

sn

∥∥Θ′(un+1)
∥∥2 − 〈G′(un+1)−G′(yn), yn − un+1

〉
− 1

sn

∥∥G′(un+1)−G′(yn)
∥∥2 .

Due to Step 9 in Algorithm 4.2
1

sn

∥∥G′(un+1)−G′(yn)
∥∥2 ≤ 〈G′(yn)−G′(un+1), yn − un+1

〉
.

It implies that 〈
Θ′(un+1), yn − un+1

〉
≥ 1

sn

∥∥Θ′(un+1)
∥∥2 . (4.26)

From (4.24) and (4.26), we get

φ∗
n+1 ≥ An+1Θ(un+1) +

(
An+1

sn
−
a2n+1

2

)∥∥Θ′(un+1)
∥∥2 .

Following Step 3 in Algorithm 4.2, an+1 is the positive solution of the quadratic

equation

a2n+1 −
2

sn
an+1 −

2An

sn
= 0.

45

This leads to
a2n+1

2
=
An + an+1

sn
=
An+1

sn
. (4.27)

We deduce that

φ∗
n+1 ≥ An+1Θ(un+1).

Therefore, the relation (4.20) is also valid for n+ 1.

Lemma 4.13. The positive sequence {An} generated by Algorithm 4.2 satisfies

An ≥
n2

2s
, ∀n ≥ 0.

In addition, if G has a Lipschitz continuous derivative with Lipschitz constant LG, we

have

An ≥
n2

2ηLG
, ∀n ≥ 0,

where η > 0 such that ηLG ≥ sn.

Proof. Following (4.27) in the proof of Lemma 4.11, we have

An+1 =
sn
2
a2n+1 =

sn
2
(An+1 − An)

2 =
sn
2

(
A
1/2
n+1 − A

1/2
n

)2(
A
1/2
n+1 + A

1/2
n

)2
≤ 2sAn+1

(
A
1/2
n+1 − A

1/2
n

)2
.

Thus

A
1/2
n+1 − A

1/2
n ≥ 1√

2s
, ∀n ≥ 0.

Summing these inequalities, we get

A
1/2
n+1 − A

1/2
0 ≥ n+ 1√

2s
, ∀n ≥ 0.

It yields

A
1/2
n+1 ≥

n+ 1√
2s

, ∀n ≥ 0.

Thus, for all n ≥ 0, we have

An ≥
n2

2s
.

The rest of Lemma is directly resulted from the above inequality.

The next theorem is a result of the one in [17, Theorem 6].

Theorem 4.14. Assume that the sequence {un} generated by Algorithm 4.2 converges

to the solution u∗ of problem (4.8). Then the following inequality is satisfied

Θ(un)−Θ(u∗) ≤
s
∥∥u0 − u∗∥∥2

n2
, ∀n ≥ 0.

If G has a Lipschitz continuous derivative with Lipschitz constant LG, we also have

Θ(un)−Θ(u∗) ≤
ηLG

∥∥u0 − u∗∥∥2
n2

, ∀n ≥ 0.

46

Proof. By Lemma 4.12, we have the relations (4.20) and (4.21):

AnΘ(un) ≤ φ∗
n ≡ min

u∈R5
φn(u),

φn(u) ≤ AnΘ(u) +
1

2

∥∥u− u0∥∥2 , ∀u ∈ R5.

In the second relation, choosing u = u∗ and combining with the first relation, we get

AnΘ(un) ≤ AnΘ(u∗) +
1

2

∥∥u∗ − u0∥∥2 , ∀n ≥ 0.

Thus,

Θ(un)−Θ(u∗) ≤
∥∥u∗ − u0∥∥2

2An
, ∀n ≥ 0.

Following Lemma 4.12, we obtain

Θ(un)−Θ(u∗) ≤
s
∥∥u0 − u∗∥∥2

n2
, ∀n ≥ 0.

The remained inequality is a result from above estimate and the second inequality of

Lemma 4.12.

THIS CHAPTER WAS WRITTEN BASED ON THE PAPER

[15] Hao D.N., Hiep D.X., Muoi P.Q., 2023, Learning river water quality models by

l1-weighted regularization. Published in IMA Journal of Applied Mathematics.

47

Chapter 5

NUMERICAL EXAMPLES

In this chapter, we will present some numerical examples illustrating the theoretical

results of Chapter 3 and Chapter 4. All examples were written in Python 3.10.1

software.

Example 5.1. Consider the BOD-DO model

∂b(x, t)

∂t
+ 3

∂b(x, t)

∂x
= −2b(x, t), in (0, 1)× (0, 2),

∂d(x, t)

∂t
+ 3

∂d(x, t)

∂x
= 2b(x, t)− d(x, t), in (0, 1)× (0, 2),

b(x, 0) = d(x, 0) = 0, on (0, 1),

b(0, t) = d(0, t) = sin(2πt), on (0, 2).

In this example, parameter vectors αT , βT are αT = [0,−2, 0,−3, 0] and βT =

[0, 2,−1, 0,−3], respectively. Moreover, the parameters are v = 3, k1 = 2, k2 = 1,

s1 = s2 = 0, the initial conditions are b0 = d0 = 0 and the boundary conditions are

b1 = d1 = sin(2πt).

According to Theorem 3.1, the exact solution to this problem is

b(x, t) =

0 , if x− 3t ∈ [0, 1],

e
−2x
3 sin

[
2π
(
t− x

3

)]
, if t− x

3
∈ [0, 2],

and,

d(x, t) =

0 , if x− 3t ∈ [0, 1],

2e
−2x
3 sin

[
2π
(
t− x

3

)]
+ 2e

−x
3

[
sin
(
2π
(
t− x

3

))]
, if t− x

3
∈ [0, 2].

Figure 5.2 (Top) represents the solution to this example.

Then, we use the two-step Lax-Friedrichs method (Algorithm 4.1) to solve this

problem. First, we divide the spatial domain [0, 1] into 801 uniformly distributed

points {xi}800i=0 with ∆x =
1

800
and equally distribute temporal domain [0, 2] into 4801

points {tj}4800j=0 with ∆t =
2

4800
, see Figure 5.1. In this case,

∣∣∣v∆t
∆x

∣∣∣ = 1. By Remark

4.1 in Chapter 4, the two-step Lax-Friedrichs method (Algorithm 4.1) converges. The

approximate solution for the BOD-DO model in Example 5.1 is illustrated in Figure

5.2 (Bottom).

48

Figure 5.1: Grid mesh of Example 5.1.

Figure 5.2: Example 5.1: Exact solution (top) and approximate solution (bottom) of

the BOD-DO model.

49

It can be seen from Figure 5.3 that the approximate solution well approximate the

exact solution. Indeed, the errors between exact and approximate solutions are not

greater than 0.06% and 0.02%, respectively.

Figure 5.3: Example 5.1: The misfit and error between the exact and numerical solu-

tions.

Next, we collect data of the solution b feature(x, t) and d feature(x, t) from approximate

solution b, d with k = 2 (see Section 4.2) and add 1% noise in the data. Following

Section 4.2, the derivatives of bx, dx, bt and dt are also directly calculated by the finite

difference method and the linear extrapolation to construct the feature matrix F as

well as the feature matrix V .

First, we use l1-weighted regularization for these problems with γ1 = γ2 = 10−1. As

a priori information, we know the form of BOD-DO model, i.e., only parameters s1, s2,

k1, k2, v are possibly nonzero while the other must be zero. Based on this information,

we set ω1
j = 1 for j = 2, 4, ω2

j = 1 for j = 2, 3, 5 (corresponding the parameters which

are possible nonzeros) and set high values for weighted ω1
j = ω2

j = 10 for the others.

We also apply Nesterov’s accelerated method (Algorithm 4.2) for with the initial point

50

[0, 0, 0, 0, 0] for two problems (5.1) and (5.2) in 800 iterations.

min
α∈R5
{G1(α) + γ1Φ1(α)} = min

α∈R5

{
2

2400

2400∑
i=1

(∥∥V δ
1 (ti)− F δ(ti)α

∥∥2 + γ1

5∑
j=1

w1
j |αj |

)}
,

(5.1)

and

min
β∈R5
{G2(β) + γ2Φ2(β)} = min

β∈R5

{
2

2400

2400∑
i=1

(∥∥V δ
2 (ti)− F δ(ti)β

∥∥2 + γ2

5∑
j=1

w2
j |βj |

)}
.

(5.2)

Next, we use l1-regularization to learn the problems (5.1) and (5.2) with ω1
j = ω2

j =

1 for all j. We also set γ1 = γ2 = 10−1. Then, we exploit Nesterov’s accelerated

method (Algorithm 4.2) with the initial point [0, 0, 0, 0, 0] in 800 iterations.

In both cases, the value of G1(α) and G2(β) dramatically decrease to 0 after fewer

than 50 iterations, see Figure 5.4. Hence, the problems (5.1) and (5.2) get their mini-

mizer in l1-weighted regularization and l1-regularization.

Figure 5.4: Example 5.1: Objective functions with k = 2 and 1% noise.

In addition, the recovered processes of parameters by using l1-regularization and l1-

weighted regularization are successful and the convergence of α and β are illustrated in

Figure 5.5. The parameter vector α converges to the solution (α∗)T = [0,−2, 0,−3, 0]
after no more than 200 iterations. Meanwhile, the parameter vector β need more than

300 iterations to obtain its convergence, (β∗)T = [0, 2,−1, 0,−3].

51

Figure 5.5: Example 5.1: The convergence of parameters α and β by using l1-weighted

regularization and l1-regularization with k = 2 and 1% noise.

52

Tables 5.1 and 5.2 represent the error between the recovered parameters α, β and

their exact solutions by using l1-weighted regularization with k = 2 and 1% noise.

α800 0 −2.03642653 0 −3.00516974 0

α∗ 0 −2 0 3 0

Error 0 0.03642653 0 0.00516974 0

Table 5.1: Example 5.1: The recovered parameters α using l1-weighted regularization

with k = 2 and 1% noise.

β800 0 1.99049525 −1.03311082 −0.00082761 −2.99778389
β∗ 0 2 −1 0 −3

Error 0 0.00950475 0.03311082 0.00082762 0.00221611

Table 5.2: Example 5.1: The recovered parameters β using l1-weighted regularization

with k = 2 and 1% noise.

Tables 5.3 and 5.4 represent the error between the recovered parameters α, β and

their exact solutions by using l1-regularization with k = 2 and 1% noise.

α800 0.00169953 −2.01628592 −0.00819491 −2.99847880 −0.00513288
α∗ 0 −2 0 3 0

Error 0.00169953 0.01628592 0.00819492 0.0015212 0.00513288

Table 5.3: Example 5.1: The recovered parameters α using l1-regularization with k = 2

and 1% noise.

β800 0.00211043 1.95032496 −1.00248516 −0.00148607 −2.99763948
β∗ 0 2 −1 0 −3

Error 0.00211043 0.04967504 0.00248516 0.00148608 0.00236052

Table 5.4: Example 5.1: The recovered parameters β using l1-regularization with k = 2

and 1% noise.

From above estimate, we release that l1-weighted regularization recover the param-

eters better than l1-regularization, especially the sparse vector parameters.

The errors between the recovered parameter vectors α, β and the exact parameter

vectors α∗, β∗ by Algorithm 4.2 with l1-weighted regularization and l1-regularization

after 800 iterations are illustrated in Figure 5.6.

53

Figure 5.6: Example 5.1: The error between the recovered parameters α, β and the

exact ones by using l1-weighted regularization (top) and l1-regularization (bottom)

with k = 2 and 1% noise.

Table 5.5 and Table 5.6 show the recovered parameters of BOD-DO model in Exam-

ple 5.1 when choosing collected data with k = 2, k = 5 and k = 10 to create the feature

matrix F , V1 and V2 and exploiting Nesterov’s accelerated method with l1-weighted

regularization, l1-regularization after 800 iterations.

Exact parameters k = 2 k = 5 k = 10

α∗ β∗ α β α β α β

0 0 0 0 0 0 0 0

−2 2 −2.03642 1.99049 −2.06182 1.88249 −2.16183 1.81195

0 −1 0 −1.03311 −0.00038 −1.00524 0 −1.04580
−3 0 −3.00516 −0.00082 −3.00928 0 −3.02205 0

0 −3 0 −2.99778 0 −2.99677 0 −2.99322

Table 5.5: Example 5.1: The recovered parameters with different input data using

l1-weighted regularization with 1% noise.

With 1% observation noise, Tables 5.5 and 5.6 indicate that although with different

input data, the algorithm converges to the exact solution and learning process provides

the reliable information in practical prediction. Moreover, it also points out that the

54

Exact parameters k = 2 k = 5 k = 10

α∗ β∗ α β α β α β

0 0 0.00169 0.00211 0.00430 0.00525 0.00903 0.01146

−2 2 −2.01628 1.95032 −2.04122 1.87515 −2.07794 1.76940

0 −1 −0.00819 −1.00248 −0.01995 −1.00038 −0.04272 −1.02475
−3 0 −2.99847 −0.00148 −2.99482 −0.00128 −2.98836 −0.01516
0 −3 −0.00513 −2.99763 −0.01265 2.99574 −0.02545 −2.98363

Table 5.6: Example 5.1: The recovered parameters with different input data using

l1-regularization with ε = 1% noise.

more input data are collected, the more accurate solutions are received.

The same result is also obtained if we increase the observation noise at 5% (see

Tables 5.7 and 5.8) and 10% (see Tables 5.9 and 5.10). Furthermore, from above

observation, we conclude that l1-weighted regularization recovers the form of the model

better than l1-regularization.

Exact parameters k = 2 k = 5 k = 10

α∗ β∗ α β α β α β

0 0 0 0 0 0 0 0

−2 2 −2.04242 1.89316 −2.07196 1.82582 −2.12490 1.71230

0 −1 −0.00023 −0.96709 0 −0.96632 −0.00243 −0.97412
−3 0 −3.00625 0 −3.00112 0 −3.02122 0

0 −3 0 −2.99766 −0.00303 −2.99599 0 −2.99251

Table 5.7: Example 5.1: The recovered parameters with different input data using

l1-weighted regularization with 5% noise.

Exact parameters k = 2 k = 5 k = 10

α∗ β∗ α β α β α β

0 0 0.00174 0.00161 0.00438 0.00499 0.00901 0.01177

−2 2 −2.01224 1.92222 −2.03795 1.85515 −2.08129 1.78092

0 −1 −0.00891 −0.98355 −0.02160 −0.99608 −0.04089 −1.02989
−3 0 −2.99459 −0.00612 −2.99383 −0.01049 −2.98886 −0.00141
0 −3 −0.00773 −2.99411 −0.01334 −2.98962 −0.02507 −2.99329

Table 5.8: Example 5.1: The recovered parameters with different input data using

l1-regularization with 5% noise.

55

Exact parameters k = 2 k = 5 k = 10

α∗ β∗ α β α β α β

0 0 0 0 0 0 0 0

−2 2 −2.03195 1.90489 −2.07915 1.85972 −2.15614 1.83558

0 −1 0 −0.96888 0 −0.98980 0 −1.06142
−3 0 −3.00504 0 −2.99280 0 −3.01381 0

0 −3 0 −2.99778 −0.00320 −2.99619 −0.02554 −2.99340

Table 5.9: Example 5.1: The recovered parameters with different input data using

l1-weighted regularization with 10% noise.

Exact parameters k = 2 k = 5 k = 10

α∗ β∗ α β α β α β

0 0 0.00194 0.00199 0.00440 0.00525 0.00906 0.01112

−2 2 −1.99544 1.94566 −2.03926 1.87793 −2.07961 1.77782

0 −1 −0.01337 −1.00203 −0.02033 −1.00560 −0.04193 −1.02350
−3 0 −2.98095 −0.00503 −2.99280 −0.00492 −2.98822 −0.01183
0 −3 −0.01691 −2.99494 −0.01400 −2.99334 −0.02554 −2.98603

Table 5.10: Example 5.1: The recovered parameters with different input data using

l1-regularization with 10% noise.

Example 5.2. Consider the BOD-DO model

∂b(x, t)

∂t
+ 2

∂b(x, t)

∂x
= −2b(x, t), in (0, 1)× (0, 3),

∂d(x, t)

∂t
+ 2

∂d(x, t)

∂x
= 2b(x, t)− d(x, t), in (0, 1)× (0, 3),

b(x, 0) = d(x, 0) = 0, on (0, 1),

b(0, t) = d(0, t) = 5(1− e−t), on (0, 3).

In this example, parameter vectors αT , βT are αT = [0,−2, 0,−2, 0] and βT =

[0, 2,−1, 0,−2], respectively. Moreover, the parameters are v = 2, k1 = 2, k2 = 1,

s1 = s2 = 0, the initial conditions are b0 = d0 = 0 and the boundary conditions are

b1 = d1 = 5(1− e−t).

According to Theorem 3.1, the exact solution to this problem is

b(x, t) =

0 , if x− 2t ∈ [0, 1],

5e−x
[
1− e−(t−x

2
)
]

, if t− x

2
∈ [0, 3],

56

Figure 5.7: Example 5.2: Exact solution (top) and approximate solution (bottom) of

the BOD-DO model.

and,

d(x, t) =

0 , if x− 2t ∈ [0, 1],

−10e−x
[
1− e−(t−x

2
)
]
+ 5e−

x
2

[
e−(t−x

2
) − 1

]
, if t− x

3
∈ [0, 3].

Next, we make the same mesh points as the ones in Example 5.1 and apply the

two-step Lax-Friedrichs method (Algorithm 4.1) to obtain the numerical solution to

the BOD-DO model in Example 5.2. Figures 5.7 illustrates the numerical solution by

Algorithm 4.1 for the exact and approximate solutions of the model. From Figure 5.8,

it can be seen that the error between the exact and approximate solutions is not greater

than 0.07%.

Similarity with Example 5.1, we collect data of the solutions b feature(x, t) and the

d feature(x, t) from approximate solutions b, d with k = 2 (see Section 4.2), add 1% noise

in the data and compute the derivatives of bx, dx, bt and dt to make the feature matrix

57

Figure 5.8: Example 5.2: The misfit and error between the exact and numerical solu-

tions.

F as well as the matrix V . This leads to solve two minimization problems

min
α∈R5
{G1(α) + γ1Φ1(α)} = min

α∈R5

{
3

1600

1600∑
i=1

(∥∥V δ
1 (ti)− F δ(ti)α

∥∥2 + γ1

5∑
j=1

w1
j |αj |

)}
,

(5.3)

and

min
β∈R5
{G2(β) + γ2Φ2(β)} = min

β∈R5

{
3

1600

1600∑
i=1

(∥∥V δ
2 (ti)− F δ(ti)β

∥∥2 + γ2

5∑
j=1

w2
j |βj |

)}
.

(5.4)

We set γ1 = γ2 = 10−2. Unlike Example 5.1, l1-regularization does not achieve

the convergence to the minimizer of problems (5.2) and (5.4). Thus, we have to use

l1-weighted regularization for these problems. Because of a priori information, we know

that only parameters s1, s2, k1, k2, v are possibly nonzero while the other must be

58

zero. From this information, we set

ω1
j =

1, for j = 2, 4,

100, otherwise,
and ω2

j =


1000, for j = 1, 4,

10, for j = 2, 3,

200, for j = 5.

Then, we exploit Nesterov’s accelerated method (Algorithm 4.2) for with the initial

point [0, 0, 0, 0, 0] for two problems (5.3) and (5.4) in 500 iterations.

Figure 5.9 shows that it takes more than 200 iterations to achieve the optimal value.

Figure 5.9: Example 5.2: Objective functions with k = 2 and 1% noise.

From Figure 5.10, Tables 5.11 and 5.12, we can see that the parameters are recovered

successfully, i.e., the model (5.3)−(5.4) has been learned successfully.

α800 0 −2.00409935 0.00077286 −2.00479683 0

α∗ 0 −2 0 −2 0

Error 0 0.004099357 0.00077287 0.00479683 0

Table 5.11: Example 5.2: The recovered parameters α using l1-weighted regularization

with k = 2 and 1% noise.

β800 0 1.93016615 −0.95407856 0 −1.94127817
β∗ 0 2 −1 0 −2

Error 0 0.06983385 0.04592144 0 0.05872183

Table 5.12: Example 5.2: The recovered parameters β using l1-weighted regularization

with k = 2 and 1% noise.

The errors between the recovered parameter vectors α, β and the exact parameter

vectors α∗, β∗ by Algorithm 4.2 with l1-weighted regularization after 500 iterations are

illustrated in Figure 5.11.

59

Figure 5.10: Example 5.2: The convergence of parameters α and β by using l1-weighted

regularization with k = 2 and 1% noise.

60

Figure 5.11: Example 5.2: The error between the recovered parameters α, β and the

and exact ones by using l1-weighted regularization with k = 2 and 1% noise.

Table 5.13 shows the recovered parameters of BOD-DO model when we choose

collected data with k = 2, k = 5 and k = 10 to create the feature matrix F , V1 and

V2 by Nesterov’s accelerated method (Algorithm 4.2) with l1-weighted regularization

after 800 iterations. It is similar to Example 5.1, if we have more data, the accuracy

of approximate solution is more improvable.

Exact parameters k = 2 k = 5 k = 10

α∗ β∗ α β α β α β

0 0 0 0 0 0 0 0

−2 2 −2.00409 1.93016 −2.00443 1.87582 −1.99515 1.83560

0 −1 0.00077 −0.95407 0.00207 −0.92844 0.00135 −0.90391
−2 0 −2.00479 0 −2.00597 0 −2.00378 0

0 −2 0 1.94127 0 −1.97346 0 −1.89327

Table 5.13: Example 5.2: The recovered parameters with different input data using

l1-weighted regularization with 1% noise.

Exact parameters k = 2 k = 5 k = 10

α∗ β∗ α β α β α β

0 0 0 0 0 0 0 0

−2 2 −1.99398 1.99662 −2.01226 1.83645 −1.98861 1.86889

0 −1 0.00031 −0.99676 0.00125 −0.89668 −0.00188 −0.91926
−2 0 −1.99718 0 −2.01368 0 −2.00715 0

0 −2 0 −1.99150 0 −1.93755 0 −1.86488

Table 5.14: Example 5.2: The recovered parameters with different input data using

l1-weighted regularization with 5% noise.

The same result is also obtained if we increase the noise at 5% (see Table 5.14) and

61

Exact parameters k = 2 k = 5 k = 10

α∗ β∗ α β α β α β

0 0 0 0 0 0 0 0

−2 2 −1.99563 1.94133 −2.00571 1.83026 −1.98604 1.80944

0 −1 0.00030 −0.96131 0.00161 −0.89476 −0.00184 −0.88721
−2 0 −1.99779 0 −2.00768 0 −2.01261 0

0 −2 0 −1.93156 0 −1.91683 0 −1.91842

Table 5.15: Example 5.2: The recovered parameters with different input data using

l1-weighted regularization with 10% noise.

10% (see Table 5.15). From these tables, we get the higher error if the noise increases

but the model has been learned successfully.

THIS CHAPTER WAS WRITTEN BASED ON THE PAPER

[15] Hao D.N., Hiep D.X., Muoi P.Q., 2023, Learning river water quality models by

l1-weighted regularization. Published in IMA Journal of Applied Mathematics.

62

CONCLUSIONS

In this thesis, we have introduced the learning models from data and investigated

its applications in inverse problem: learning constants parameters in BOD-DO model
∂b

∂t
+ v

∂b

∂x
= −k1b+ s1 in (0, X)× (0, T],

∂d

∂t
+ v

∂d

∂x
= k1b− k2d+ s2 in (0, X)× (0, T],

b(x, 0) = b0(x), d(x, 0) = d0(x) on (0, X),

b(0, t) = b1(t), d(0, t) = d1(t) on (0, T].

First, we establish the exact solution of above model and prove the well-posedness

and convergence in learning the BOD-DO model based on l1-weighted regularization.

Second, we propose the numerical algorithms for the BOD-DO model in the direct

and inverse problem with constant parameters. In the direct problem, we apply the

two-step Lax-Friedrichs method. Then, Nesterov’s accelerated method is applied to

solve the minimization problem to get the unknown parameters in learning BOD-DO

model with l1-weighted regularization.

Finally, we test our algorithms in some examples in Python software with different

noise. These numerical examples result the efficiency of our approach in approximating

the unknown parameters of BOD-DO model. Moreover, the numerical examples also

illustrate that l1-weighted regularization overwhelms l1-regularization in learning and

maintaining the form of BOD-DO model.

There is potential development in future work derive from this thesis. The theo-

rerical analysis in general models, e.g., the BOD-DO model with variable parameters

is still open. The study that involves to determine a source term in this model is also

one of promising work. Moreover, the problem of choosing the weighted parameters in

l1-weighted regularization have not been solved yet.

63

THE AUTHOR’S PUBLICATION RELATED TO THE
THESIS

[1] Hao D.N., Hiep D.X., Muoi P.Q., 2023, Learning river water quality models by

l1-weighted regularization. Published in IMA Journal of Applied Mathematics.

64

BIBLIOGRAPHY

[1] Streeter H.W., Phelps E.B., 1925, A study of the Pollution and Natural Purifica-

tion of the Ohio Rivers, US Public Health Service Bulletin, 146.

[2] Chapra S.C., 1997, Surface Water-Quality Modeling, Waveland Press, Inc.

[3] Schnoor J.L., 1996, Environmental Modeling: Fate and Transport of Pollutants in

Water, Air and Soil, John Wiley & Sons, Inc.

[4] Rezzolla L., 2011, Numerical methods for the solution of partial differential equa-

tions, Lecture Notes for the COMPSTAR School on Computational Astrophysics,

pp. 21–22.

[5] Shamphine L.F., 2005, Two-step Lax-Friedrichs method, Applied Mathematics

Letters, 18(10), pp. 1134–1136.

[6] Brunton S.L., Kutz J.N., 2022, Data-Driven Science and Engineering: Machine

Learning, Dynamical Systems and Control, volume 2nd, Cambridge University

Press.

[7] Brunton S.L., Proctor J.L., Kutz J.N., 2016, Discovering governing equations from

data by sparse identification of nonlinear dynamical systems, Proceedings of the

National Academy of Sciences, 113(15), pp. 3932–3937.

[8] Champion K., Lusch B., Kutz J.N., Brunton S.L., 2019, Data-driven discovery

of coordinates and governing equations, Proceedings of the National Academy of

Sciences, 116(45), pp. 22445–22451.

[9] Kutz J.N., 2013, Data-Driven Modeling and Scientific Computation: Methods for

Complex Systems and Big Data, volume 1st, Oxford University Press.

[10] Mendez M.A., Ianiro A., Noack B.R., Brunton S.L., 2023, Data-Driven Fluid Me-

chanics Combining First Principles and Machine Learning, volume 1st, Cambridge

University Press.

[11] Rudy S.H., Alla A., Brunton S.L., Kutz J.N., 2019, Data-driven identification

of parametric partial differential equations, SIAM Journal on Applied Dynamical

Systems, 18(2), pp. 643–660.

65

[12] Rudy S.H., Brunton S.L., Proctor J.L., Kutz J.N., 2017, Data-driven discovery of

partial differential equations, Science Advances, 3(4), p. e1602614.

[13] Rudy S.H., Kutz J.N., Alla A., Brunton S.L., 2019, Deep learning of dynamics

and signal-noise decomposition with time-stepping constraints, Journal of Com-

putational Physics, 396(1), pp. 483–506.

[14] Schaeffer H., 2017, Learning partial differential equations via data discovery and

sparse optimization, Proceedings of the Royal Society A: Mathematical, Physical

and Engineering Sciences, 473(2197), p. 20160446.

[15] Hao D.N., Hiep D.X., Muoi P.Q., 2023, Learning river water quality models by

l1-weighted regularization, Published in IMA Journal of Applied Mathematics.

[16] Muoi P.Q., Mass P., Hao D.N., Pidcock M., 2016, Descent gradient methods for

nonsmooth minimization problems in ill-posed problems, Journal of Computa-

tional and Applied Mathematics, 298(15), pp. 105–122.

[17] Nesterov Y., 2013, Gradient methods for minimizing composite functions, Mathe-

matical Programming, 140, pp. 125–161.

[18] Hadamard J., 1923, Lectures on the Cauchy problem in Linear Partial Differential

Equations, Yale University Press.

[19] Kirsch A., 2021, An Introduction to the Mathematical Theory of Inverse Problems,

volume 3rd, Springer Nature Switzerland.

[20] Trefethen L.N., Bau III D., 1997, Numerical Linear Algebra, Society for Industrial

and Applied Mathematics.

[21] Zeidler E., 1995, Applied Functional Analysis: Applications to Mathematical

Physics, Springer-Verlag.

[22] Zeidler E., 1990, Nonlinear Functional Analysis and its Applications II/B: Non-

linear Monotone Operators, Springer New York, NY.

[23] Rockafellar R.T., 1966, Characterization of the subdifferentials of convex functions,

Pacific journal of mathematics, 17(3), pp. 497–510.

[24] Evans L.C., 2010, Partial Differential Equations, volume 2nd, American Mathe-

matical Society.

[25] Daubechies I., Defrise M., De Mol C., 2004, An iterative thresholding algorithm

for linear inverse problems with a sparsity constraint, Communications on Pure

and Applied Mathematics, LVII, pp. 1413–1457.

66

[26] Bonesky T., Bredies K., Lorenz D.A., Maass P., 2007, A generalized conditional

gradient method fornonlinear operator equations with sparsity constraints, Inverse

problems, 23(5), pp. 2041–2058.

[27] Bredies K., Lorenz D.A., Maass P., 2009, A generalized conditional gradient

method and its connection to an iterative shrinkage method, Computational Op-

timization and Applications, 42, pp. 173–193.

[28] Lorenz D.A., Mass P., Muoi P.Q., 2012, Gradient descent for Tikhonov function-

als with sparsity constrains: Theory and numerical comparison step size rules,

Electronic Transactions on Numerical Analysis, 39, pp. 437–463.

[29] Muoi P.Q., 2012, Sparsity Constraints and Regularization for Nonlinear Inverse

Problems, PhD thesis, University of Bremen.

[30] Bongard J., Lipson H., 2007, Automated reverse engineering of nonlinear dynam-

ical systems, Proceedings of the National Academy of Sciences, 104(24), pp. 9943–

9948.

[31] Schmidt M., Lipson H., 2009, Distilling free-form natural laws from experimental

data, Science, 324(5923), pp. 81–85.

[32] Breiman L., 2001, Statistical modeling: The two cultures, Statistical science, 16(3),

pp. 199–231.

[33] Crutchfield J.P., McNamara B.S., 1987, Equations of motion from a data series,

Complex Systems, 1, pp. 417–452.

[34] Benner P., Gugercin S., Willcox K., 2015, A survey of projection-based model

reduction methods for parametric dynamical systems, SIAM Review, 57(4), p.

483–531.

[35] Kepler G.M., Tran T.H., Banks H.T., 2000, Reduced order model compensator

control of species transport in a CVD reactor, Optimal Control Applications and

Methods, 21, pp. 143–160.

[36] Kepler G.M., Tran T.H., Banks H.T., 2001, Compensator control for chemical va-

por deposition film growth using reduced-order design models, IEEE Transactions

on Semiconductor Manufacturing, 14(3), pp. 231–241.

[37] Hao D.N., Quyen T.N.T., 2010, Convergence rates for Tikhonov regularization

of coefficient identification problems in Laplace-type equation, Inverse problems,

26(12), p. 125014.

67

[38] Hao D.N., Quyen T.N.T., 2011, Convergence rates for total variation regularization

of coefficient identification problems in elliptic equations I, Inverse problems, 27(7),

p. 075008.

[39] Muoi P.Q., 2015, Reconstructing conductivity coefficients based on sparsity regu-

larization and measured data in electrical impedance tomography, Inverse Prob-

lems in Science and Engineering, 23(8), pp. 1366–1387.

[40] Grasmair M., Haltmier M., Scherzer O., 2008, Sparsity regularization with lp

penalty term, Inverse problems, 24(5), p. 055020.

[41] Ito K., Jin B., Takeuchi T., 2011, Multi-parameter Tikhonov regularization, Meth-

ods and Applications of Analysis, 18, pp. 31–46.

[42] Beck A., 2014, Introduction to Nonlinear Optimization: Theory, Algorithms, and

Applications with MATLAB, Society for Industrial and Applied Mathematics.

[43] Ekaland I., Témam R., 1999, Convex Analysis and Variational Problems, Society

for Industrial and Applied Mathematics.

[44] Beck A., Teboulle M., 2009, A Fast Iterative Shrinkage-Thresholding Algorithm

for Linear Inverse Problems, SIAM Journal on Imaging Science, 2(1), pp. 183–202.

[45] Bauschke H.H., Combettes P.L., 2011, Convex Analysis and Monotone Operator

Theory in Hilbert, Springer New York, NY.

[46] Barzilai J., Borwein J.M., 1988, Two-point step size gradient methods, IMA Jour-

nal of Numerical Analysis, 8(1), pp. 141–148.

[47] Beck A., 2017, First-order Methods in Optimization, Society for Industrial and

Applied Mathematics.

	Commiment
	Acknowledgements
	List of Abbreviations and Symbols
	List of Figures
	List of Tables
	INTRODUCTION
	Motivation
	Thesis's structure

	PRELIMINARIES
	Ill-posed problems
	Some results in function spaces
	Soft shrinkage operators

	LEARNING MODELS FROM DATA
	Learning models from experimental data
	Learning models via sparse optimization
	The challenges of learning models from data and sparse optimization

	LEARNING CONSTANT PARAMETERS IN THE BOD-DO MODEL WITH l1-WEIGHTED REGULARIZATION
	The solution of the BOD-DO model with constant parameters
	Learning the BOD-DO model by l1-weighted regularization
	The well-posedness and convergence of learning the BOD-DO model by l1-weighted regularization

	SIMULATION AND NUMERICAL ALGORITHMS
	Two-step Lax–Friedrichs method
	Data generation
	Nesterov's accelerated method

	NUMERICAL EXAMPLES
	CONCLUSIONS
	THE AUTHOR'S PUBLICATION RELATED TO THE THESIS
	BIBLIOGRAPHY

