
MẪU GÁY/ BÌA LUẬN VĂN CÓ IN CHỮ NHŨ VÀNG (Khổ 210 x 297 mm)

MINISTRY OF EDUCATION

AND TRAINING

VIETNAM ACADEMY

OF SCIENCE AND TECHNOLOGY

GRADUATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Đinh Hồng Quang

ALTERNATING PROJECTION METHOD FOR

FINDING A COMMON POINT OF CONVEX SETS

AND APPLICATIONS

MASTER THESIS IN APPLIED MATHEMATICS

Hanoi, 2023

MẪU TRANG BÌA PHỤ LUẬN VĂN

BỘ GIÁO DỤC

VÀ ĐÀO TẠO

VIỆN HÀN LÂM KHOA HỌC

VÀ CÔNG NGHỆ VIỆT NAM

 HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ

Đinh Hồng Quang

PHƯƠNG PHÁP CHIẾU LUÂN PHIÊN

TÌM ĐIỂM CHUNG CỦA CÁC TẬP LỒI

VÀ ỨNG DỤNG

LUẬN VĂN THẠC SĨ TOÁN ỨNG DỤNG
Mã số: 8 46 01 12

 NGƯỜI HƯỚNG DẪN KHOA HỌC :

 1. TS. Lê Xuân Thanh

 2. PGS. TS. Bùi Văn Định

Hà Nội - 2023

iii

Contents

Introduction 1

1 Preliminaries 4
1.1 Convex sets . 4
1.2 Projection onto closed convex sets 5
1.3 Projection onto subspaces . 8
1.4 Projection onto intersection of hyperplanes 11

2 Alternating projection methods 16
2.1 Basic version . 16
2.2 Some simple variants . 20

2.2.1 Periodic projection algorithm 20
2.2.2 Averaged projection algorithm 24
2.2.3 Relaxed projection algorithm 28

3 Some selected applications 36
3.1 Dividing a string into equal thirds 36

3.1.1 Problem statement and algorithm 36
3.1.2 Convergence analysis . 38

3.2 Completing positive semi-definite matrices 44
3.2.1 Problem statement and reformulation 45
3.2.2 Solution approach . 47
3.2.3 Numerical experiments 56

Conclusions 60

Bibliography 61

1

Introduction

It is well known that Convex Optimization is a fundamental class in Global
Optimization. A general form of convex optimization problems is the following

min f(x),

s.t. x ∈ ∩m
i=1Ci,

in which C1, . . . , Cm are convex subsets of an inner product space X and
f : X → R is a convex function. Given such a convex optimization problem,
its feasibility is the first issue one may deal with. Stating equivalently, it is
important to know whether the convex subsets C1, . . . , Cm have a common
point or not.

Alternating projection is a computational method to obtain the answer for
the above question. The method is not only able to give a yes-no answer
but also figures out a common point of the convex subsets in case of the yes
answer. It dates back to 1950 for the first proposal of this method by von
Neumann in [1], which based on his Princeton lectures on operator theory
in 1935. In Chapter 13 of that book, von Neumann considers the setting in
which X is a real Hilbert space, m = 2, and C1, C2 are two closed subspaces
of X. The idea of von Neumann to find a point in C1 ∩ C2 is described in
Theorem 13.7 [1], which can be equivalently restated as follows.

Given a closed subspace C of X, and PC is the orthogonal projection onto C,
define two sequences (xn)n≥0, (yn)n≥0 of points in X by choosing an arbitrary
point x0 ∈ X and letting

x1 = PC1
(x0), x2 = PC2

(x1), x3 = PC1(x2), x4 = PC2
(x3), . . .

y0 = x0, y1 = PC2
(y0), y2 = PC1

(y1), y3 = PC2
(y2), y4 = PC1

(y3), . . .

In words, the sequence (xn)n≥0 is obtained by starting at x0 and alternately
projecting onto C1 and C2, in which the first projection is onto C1, while the
sequence (yn)n≥0 is obtained by also starting at x0 and alternately projecting

2

onto C2 and C1, but the first projection is onto C2. Then both sequences
(xn)n≥0, (yn)n≥0 converge strongly to the same point x∗ = PC1∩C2

(x0), which
is the projection of x0 onto the intersection of the two subspaces.

A direction of extending von Neumann’s projection method is to consider
the similar setting where X is a real Hilbert space, but for m ≥ 2 closed sub-
spaces C1, . . . , Cm of X. In this setting, the projection method is generalized
as follows. Let (in)n≥1 be a sequence whose elements take values in {1, . . . ,m}.
Let x0 be an arbitrary point in X, and (xn)n≥0 a sequence defined by

xn = PCin
(xn−1) ∀n ≥ 1.

A survey on major results relating to the conditions for convergence of such
sequence (xn)n≥0 is given in Section 1.2 [2]. Here is a brief summary of these
results.

• Práger in 1960 proved that, when X is a finite dimensional space, the
sequence (xn) converges strongly.

• Halperin in 1962 proved the strong convergence of (xn) when the sequence
(in) is periodic.

• Amemiya and Ando in 1965 proved that we always have weak convergence
of (xn).

• Paszkiewicz in 2012 constructed an example with m = 5 closed subspaces
in an infinite-dimensional Hilbert space, together with a starting point
x0 as well as a sequence (in), for which (xn) does not converge strongly.

• Kopecká and Müller in 2014 improved the construction of Paszkiewicz in
2012 to m = 3.

• Kopecká and Paszkiewicz in 2017 made a further refinement by showing
that for any infinite-dimensional Hilbert space X we can construct m = 3

closed subspaces such that for any starting point x0 there is a sequence
(in) for which (xn) does not converge strongly.

Another direction of extending von Neumann’s alternating projection method
is to consider the similar setting in which X is a real Hilbert space, but
C1, . . . , Cm are closed convex subsets of X rather than closed subspaces. In
this direction, Bregman in [3] proved that, if (in) is periodic, then the obtained
sequence (xn) converges weakly to a common point of C1, . . . , Cm (provided
that these convex subsets have non-empty intersection). In general, we do

3

not have strong convergence of (xn) in this setting due to a counter-example
of Hundal in [4]. There, Hundal constructed m = 2 closed convex subsets C1

and C2 intersecting only at a single point, for which the sequence (xn) does
not converge strongly to that point.

In this thesis, however, we focus on the alternating projection method
in the simple setting where X is a finite dimensional Euclidean space and
C1, . . . , Cm are closed convex subsets of X. In Chapter 1 we recall some pre-
liminaries about convex sets, projection onto closed convex sets, projection
onto subspaces, and projection onto intersection of hyperplanes. In Chapter
2, we first present a proof from [5] for the convergence of the method in the
simplest case where m = 2. Then we present some variants of the alternating
projection method, including periodic projection method, averaged projection
method, and relaxed projection method. As methods for solving a fundamen-
tal problem in Convex Optimization, it is not surprising that the alternating
projection methods are applied to solve many practical problems. Chapter 3 is
devoted to discussing some interesting applications of the methods. Namely,
we present the uses of the alternating projection methods in dividing a string
into equal thirds and completing positive semi-definite matrices. We close the
thesis by summary and remarks in conclusion part.

It is worth noting that the thesis does not contain any new results. Our
main contributions in this thesis include the followings.

• We give the detail proofs for results stated in Section 1.3 and Section 1.4,
which can be considered as exercises in Linear Algebra.

• We give the detail statements for the algorithms in Section 2.2 and detail
proofs for their convergence, that are just mentioned briefly in the main
reference [5].

• We give the detail analysis on the convergence of the algorithm in Section
3.1, which is mentioned shortly in the reference [11]. In addition, we
provide a MATLAB script for experimenting the algorithm.

• We give the detail explanation and proofs for the results concerning the
application in Section 3.2, that are briefly mentioned in the main refer-
ence [5]. Additionally, we provide a MATLAB script for performing the
algorithm in the section.

Chapter 1

Preliminaries

In this chapter, we present some preliminaries that will be used in the
sequel chapters. Namely, in Section 1.1 we recall some basic preliminaries on
convex sets, in Section 1.2 we recall the definition and some useful properties of
the projection onto closed convex sets, while Section 1.3 and Section 1.4 are
respectively devoted to presenting some important preliminaries about the
projection onto subspaces and projection onto intersection of finitely many
hyperplanes. We emphasize that the results without citation in this chapter
are not new, they are just simple exercises in Linear Algebra.

Throughout this chapter, X is a finite dimensional Euclidean space equipped
with an inner product ⟨·, ·⟩ and its induced norm ∥ ·∥. As well-known in linear
algebra, we say that two vectors x, y ∈ X are orthogonal (and denote x ⊥ y) if
⟨x, y⟩ = 0. A vector x ∈ X is called orthogonal to a subset A ⊂ X (and denote
x ⊥ A) if x ⊥ y for any y ∈ A. The orthogonal complement of a subspace A of
X is denoted by A⊥.

1.1 Convex sets

As a well-known concept (see e.g. Definition 4.8 [6]), a subset C ⊂ X is
convex if for any x, y ∈ C we have λx + (1 − λ)y ∈ C for all λ ∈ [0, 1]. The
following proposition gives some trivial properties of convex sets, which will
be used in sequel.

Proposition 1.1. The convexity is preserved under finite intersection oper-
ator and finite Cartesian product.

Proof. Firstly, we show that the intersection of a finite number of convex sets
inX is also convex. Indeed, let C1, . . . , Cm be convex sets inX, and A = ∩m

i=1Ci.

4

5

Take x, y ∈ A and λ ∈ [0, 1]. Then for each i = 1, . . . ,m we have x, y ∈ Ci, and
since Ci is convex, we have λx+ (1− λ)y ∈ Ci. So λx+ (1− λ)y ∈ ∩m

i=1Ci = A,
i.e. A is convex.

Secondly, we show that the Cartesian product of a finite number of convex
sets in X is also convex. Indeed, let C1, . . . , Cm be convex sets in X, and
B = C1 × . . . × Cm. Let x = (x1, . . . , xm) and y = (y1, . . . , ym) be two points in
B, and λ ∈ [0, 1]. For each i = 1, . . . ,m, since xi, yi ∈ Ci and by convexity of
Ci, we have λxi + (1− λ)yi ∈ Ci. Thus

λx+ (1− λ)y = (λx1 + (1− λ)y1, . . . , λxm + (1− λ)ym) ∈ C1 × . . .× Cm = B,

which proves the convexity of B.

1.2 Projection onto closed convex sets

To define the projection of a point onto a closed convex set, we have the
following characterization.

Theorem 1.2. (see Theorem 6.1 [6]) Let C ⊂ X be a nonempty closed convex
set and x ∈ X. A point x∗ minimizes ∥x− ·∥ over C if and only if x∗ ∈ C and

⟨x− x∗, y − x∗⟩ ≤ 0 ∀y ∈ C. (1.1)

Furthermore, such x∗ exists uniquely.

Proof. Sufficiency. Assume that x∗ is a minimizer of ∥x − ·∥ over C. Since
(1.1) obviously holds with y = x∗, we consider an arbitrary y ∈ C\{x∗}. Let
α ∈ (0, 1). Since C is convex and x∗, y ∈ C, we have

x∗ + α(y − x∗) = αy + (1− α)x∗ ∈ C.

By the optimality of x∗, we must have

∥x− x∗∥2 ≤ ∥x− (x∗ + α(y − x∗))∥2

≤ ∥x− x∗∥2 + α2∥y − x∗∥2 − 2α⟨x− x∗, y − x∗⟩,

which implies
⟨x− x∗, y − x∗⟩ ≤ α

2
∥x− x∗∥2.

Since this inequality holds for arbitrary α ∈ (0, 1), by letting α → 0+ we obtain

⟨x− x∗, y − x∗⟩ ≤ 0.

6

Hence we have (1.1).
Necessity. Let x∗ ∈ C satisfying (1.1). For any z ∈ C such that z ̸= x∗, we

have ∥x∗ − z∥ > 0 and ⟨x− x∗, z − x∗⟩ ≤ 0, therefore

∥x− z∥2 − ∥x− x∗∥2 = ∥(x− x∗) + (x∗ − z)∥2 − ∥x− x∗∥2

= ∥x∗ − z∥2 + 2⟨x− x∗, x∗ − z⟩
> 0.

So ∥x− z∥ > ∥x− x∗∥, proving that x∗ is a minimizer of ∥x− ·∥ over C.
Existence. Firstly, we prove that the function f(y) = ∥x− y∥ is continuous

with respect to y ∈ Rn. Indeed, let y0 is an arbitrary point in Rn, and {yn}n∈N
a sequence of points in Rn converging to y0, i.e., ∥yn − y0∥ → 0 as n → ∞.
Since for all n ∈ N we have

∥yn − y0∥ = ∥(x− y0)− (x− yn)∥
≥ |∥x− y0∥ − ∥x− yn∥|
= |f(y0)− f(yn)| ≥ 0,

it follows that f(yn) → f(y0) as n → ∞. This means that f is continuous at
y0, and since y0 is arbitrarily chosen in Rn, it follows that f is continuous on
Rn. Let y∗ be an arbitrary point in C, and define

C∗ = {y ∈ C | ∥x− y∥ ≤ ∥x− y∗∥}.

Obviously C∗ is closed and bounded subset of C, therefore C∗ is compact.
Furthermore, for any y ̸∈ C∗ we have ∥x− y∥ > ∥x− y∗∥, therefore

min
y∈C

∥x− y∥ = min
y∈C∗

∥x− y∥ = min
y∈C∗

f(y).

Since f is continuous and C∗ is compact, by Bolzano-Weierstrass theorem in
analysis, f reaches its minimum on C∗ at some x∗ ∈ C∗. It means that

∥x− x∗∥ = min
y∈C∗

∥x− y∥ = min
y∈C

∥x− y∥,

so the existence of x∗ has been proved.
Uniqueness. Assume that y∗ and z∗ are minimizers of ∥x − ·∥ over C. By

the optimality of y∗ and choosing y = z∗ in (1.1), we have

⟨x− y∗, z∗ − y∗⟩ ≤ 0.

Similarly, by the optimality of z∗ and choosing y = y∗ in (1.1), we have

⟨x− z∗, y∗ − z∗⟩ = ⟨z∗ − x, z∗ − y∗⟩ ≤ 0.

7

Adding side by side the two above inequalities, we obtain

0 ≥ ⟨x− y∗, z∗ − y∗⟩+ ⟨z∗ − x, z∗ − y∗⟩ = ∥z∗ − y∗∥2 ≥ 0.

Thus, we have y∗ = z∗.

Thanks to the uniqueness of x∗ in Theorem 1.2, we can define the projection
of a point x ∈ X onto a nonempty closed convex set C ⊂ X to be the point
argminy∈C ∥x−y∥, denoted by PC(x). The condition (1.1) gives us a variational
characterization of the projection:

⟨x− PC(x), y − PC(x)⟩ ≤ 0 ∀y ∈ C. (1.2)

Figure 1.1 illustrates the characterization in R2 with the usual inner product.
It convinces us that for any y ∈ C, the angle θ between the vectors x− PC(x)

and y − PC(x) must be obtuse. Since cos θ ≤ 0, we have

⟨x− PC(x), y − PC(x)⟩ = ∥x− PC(x)∥∥y − PC(x)∥ cos θ ≤ 0.

x
y

C
x∗

θ

Figure 1.1: Projecting a point onto a closed convex set in R2.

Thanks to the optimality of x∗ in Theorem 1.2, we can define the distance
from a point x ∈ X to a closed convex set C ⊂ X by

dist(x,C) := ∥x− PC(x)∥.

Concerning projection onto closed convex sets, the following Pythagoras type
assertion is useful when proving the convergence of alternating projection
algorithms. Figure 1.2 helps us to have an intuition on this result.

Lemma 1.3. (see Theorem V.1.1 [7]) Let C be a closed convex set in X,
x ∈ C, and x ∈ X. Then we have

∥x− x∥2 ≥ ∥x− PC(x)∥2 + ∥PC(x)− x∥2.

8

Proof. By Theorem 1.2 we have

⟨x− PC(x), x− PC(x)⟩ ≤ 0.

Therefore, we obtain

∥x− x∥2 = ∥x− PC(x) + PC(x)− x∥2

= ∥x− PC(x)∥2 + ∥PC(x)− x∥2 + 2⟨x− PC(x), PC(x)− x⟩
≥ ∥x− PC(x)∥2 + ∥PC(x)− x∥2.

as desired.
x

x

C

PC(x)

Figure 1.2: Illustration of Pythagoras type assertion in Lemma 1.3.

1.3 Projection onto subspaces

This section aims to characterize the projection onto subspaces of X. In
this section, x is an arbitrary point in X and C is a subspace of X. Since
C is a subspace of the finite dimensional Euclidean space X, it is closed
and convex, and therefore, thanks to Theorem 1.2, PC(x) exists uniquely.
Similar to the variational characterization (1.2), the following lemma gives us
a characterization of the projection point on a subspace.
Lemma 1.4. For any c ∈ C we have

⟨x− PC(x), c⟩ = 0.

Proof. By Theorem 1.2, for any c ∈ C we have

⟨x− PC(x), c− PC(x)⟩ ≤ 0,

9

or equivalently

⟨x− PC(x), c⟩ ≤ ⟨x− PC(x), PC(x)⟩ =: α. (1.3)

Since x and C are specified, α is a constant. Since C is a subspace, we have
λc ∈ C for any λ ∈ R. Since (1.3) holds for any c ∈ C, it also holds for λc, i.e.,
for any λ ∈ R we have

λ⟨x− PC(x), c⟩ = ⟨x− PC(x), λc⟩ ≤ α.

Since the above inequality holds for all λ ∈ R, we must have α = 0 and
⟨x− PC(x), c⟩ = 0. In particular, we obtain the claim of the lemma.

The following proposition gives us a characterization of the projection map-
ping onto a subspace.

Proposition 1.5. Provided that C is a subspace of X, the projection mapping
PC is a linear transformation which is idempotent and self-adjoint.

Proof. The statement of the proposition means that we have to establish the
following claims.

Claim 1: PC is a linear transformation.
Claim 2: PC is idempotent, i.e., P 2

C = PC .
Claim 3: PC is self-adjoint, i.e., ⟨x, PC(y)⟩ = ⟨PC(x), y⟩ for any x, y ∈ X.
To prove Claim 1, we need to show that

PC(x+ y) = PC(x) + PC(y) ∀x, y ∈ X, (1.4)
PC(λx) = λPC(x) ∀λ ∈ R, x ∈ X. (1.5)

Indeed, for any x, y ∈ X we have

x = x− PC(x) + PC(x), y = y − PC(y) + PC(y).

By definition, PC(x) ∈ C and PC(y) ∈ C. Thanks to Lemma 1.4 we have
x− PC(x) ∈ C⊥ and y − PC(y) ∈ C⊥. Since C and C⊥ are subspaces of X, we
have

x− PC(x) + y − PC(y) ∈ C⊥, PC(x) + PC(y) ∈ C.

These facts, together with x + y = (x− PC(x) + y − PC(y)) + (PC(x) + PC(y)),
lead to (1.4). In addition, since x − PC(x) ∈ C⊥ and C⊥ is a subspace of X,
for any λ ∈ R we have

λ (x− PC(x)) ∈ C⊥. (1.6)

10

Similarly, since PC(x) ∈ C and C is a subspace of X, for any λ ∈ R we have

λPC(x) ∈ C. (1.7)

From (1.6), (1.7), and the fact that λx = λ (x− PC(x)) + λPC(x), we have
PC(λx) = λPC(x), which proves (1.5).

Claim 2 is obvious. Indeed, since PC(x) ∈ C for any x ∈ X, we have
P 2
C(x) = PC(PC(x)) = PC(x), which means that P 2

C = PC .
To prove Claim 3, we note that for any x, y ∈ C we have PC(x) ∈ C and

PC(y) ∈ C. By Lemma 1.4 we have

⟨x− PC(x), PC(y)⟩ = 0 and ⟨y − PC(y), PC(x)⟩ = 0.

Consequently, we obtain

⟨x, PC(y)⟩ = ⟨PC(x), y⟩ = ⟨PC(x), PC(y)⟩,

which is the proof for Claim 3.

It is important to know that the converse of the above proposition is also
true in the following sense.

Proposition 1.6. If f : X → X is a linear transformation that is idempotent
and self-adjoint, then it coincides the projection mapping onto

range(f) := {y ∈ X | y = f(x) for some x ∈ X}.

Proof. Let U := range(f) and W = ker(f) := {x ∈ X | f(x) = 0}. We first
show that X = U ⊕W , i.e., U ∩W = {0} and any x ∈ X can be represented
as the sum of a vector in U with a vector in W . Indeed, let z ∈ U ∩W . Since
z ∈ W , we have

f(z) = 0. (1.8)
Since z ∈ U , we have z = f(y) for some y ∈ X. Therefore we obtain

f(z) = f(f(y)) = f2(y) = f(y) = z. (1.9)

The third equality above is due to the idempotent property of f . By (1.8)
and (1.9), we obtain z = 0. Hence U ∩ W = {0}. Furthermore, any x ∈ X

admits the following representation:

x = f(x) + (x− f(x)) ∈ U +W,

11

in which f(x) ∈ U and x − f(x) ∈ W . The former inclusion is due to the
definition of the set U , while the latter inclusion follows from

f(x− f(x)) = f(x)− f2(x) = f(x)− f(x) = 0.

Here, the first equality is due to the linearity of f , while the second equality
is due to the idempotent property of f . Thus, we have completed the proof
for X = U ⊕W .

We will show furthermore that the above direct sum is indeed an orthogonal
one, i.e., X = U ⊕⊥W . Indeed, take arbitrary vectors x ∈ U and y ∈ W . Since
x ∈ U , there exists z ∈ U such that x = f(z). Since y ∈ W , we have f(y) = 0.
Therefore, using self-adjoint property of f , we have

⟨x, y⟩ = ⟨f(z), y⟩ = ⟨z, f(y)⟩ = ⟨z,0⟩ = 0.

Since x and y are chosen arbitrarily in U and W respectively, it follows that
U ⊥ W . Thus X = U ⊕⊥ W .

The orthogonal direct sum X = U ⊕⊥ W means that f is the orthogonal
projection on the subspace U , as claimed in the proposition.

1.4 Projection onto intersection of hyperplanes

This section aims to give an explicit formula for the projection of a point
onto the intersection of a finite number of hyperplanes. Throughout this
section, let x be a given point in the Euclidean space X and let C ⊂ X defined
by

C := {x ∈ X | ⟨ai, x⟩ = αi, i = 1, . . . ,m}, (1.10)
where a1, . . . , am ∈ X and α1, . . . , αm ∈ R are given. If for each i = 1, . . . ,m we
define

Hi = {x ∈ X | ⟨ai, x⟩ = αi},

then Hi(i = 1, . . . ,m) are hyperplanes in X, and therefore

C = ∩m
i=1Hi

is in fact the intersection of these hyperplanes. The following proposition
shows that it makes sense to consider the projection PC(x).

Proposition 1.7. The set C defined in (1.10) is closed and convex.

12

Proof. Convexity. We first show that the set H1 = {x ∈ X | ⟨a1, x⟩ = α1} is
convex. Indeed, let x1, x2 ∈ H1, λ ∈ [0, 1], and let y := λx1 + (1 − λ)x2. Since
x1 ∈ H1, we have ⟨a1, x⟩ = α1. Similarly, since x2 ∈ H1, we have ⟨a1, x2⟩ = α1.
Then we have

⟨a1, y⟩ = ⟨a1, λx1 + (1− λ)x2⟩
= λ⟨a1, x1⟩+ (1− λ)⟨a1, x2⟩
= λα1 + (1− λ)α1

= α1.

So y is also in H1 by definition, which means that H1 is convex. By similar
arguments, we also have Hi is convex for each i = 2, . . . ,m. Therefore, thanks
to Proposition 1.1, C = ∩m

i=1Hi is convex.
Closedness. Let us first revise the set H1 defined above. Consider the

following mapping:

g1 : X → R
x 7→ ⟨a1, x⟩.

Since the inner product is continuous with respect to each of its components,
g1 is continuous. Therefore, the set

H1 = {x ∈ X | ⟨a1, x⟩ = α1} = g−1
1 ({α1})

is closed, since it is the preimage of the closed set {α1} via the continuous
mapping g1. Similarly, the set Hi(i = 2, . . . ,m) are also closed. Thus we have

C = ∩m
i=1Hi

is closed, since it is intersection of closed sets.

For the computation of PC(x), we introduce the following two sets.

C0 = {x ∈ X | ⟨ai, x⟩ = 0, i = 1, . . . ,m},
C† = span(a1, . . . , am).

In words, C† is the subspace of X spanned by a1, . . . , am, while C0 is the set
of vectors x ∈ X that are orthogonal to each of a1, . . . , am, i.e., x ⊥ ai for all
i = 1, . . . ,m. The following properties of these sets will be useful in computing
the projection PC(x).

13

Proposition 1.8. (i) The set C defined in (1.10) is affine.
(ii) The set C0 is the subspace of X which is parallel to the set C in the

sense that C0 = C − {y} for any fixed y ∈ C.
(iii) (C0)⊥ = C†.

Proof. (i) Let x1, x2 ∈ C, λ ∈ R, and y = λx1 + (1 − λ)x2. Since x1 ∈ C, we
have

⟨ai, x1⟩ = αi ∀i = 1, . . . ,m.

Similarly, since x2 ∈ C, we have

⟨ai, x2⟩ = αi ∀i = 1, . . . ,m.

Therefore, for each i = 1, . . . ,m we obtain

⟨ai, y⟩ = ⟨ai, λx1 + (1− λ)x2⟩
= λ⟨ai, x1⟩+ (1− λ)⟨ai, x2⟩
= λαi + (1− λ)αi

= αi.

Hence y ∈ C by definition, which means that C is affine.
(ii) Firstly, we show that C0 is a subspace of X. Indeed, let x1, x2 ∈ C0,

λ1, λ2 ∈ R, and let y = λ1x1 + λ2x2. Since x1, x2 ∈ C0, by definition we have

⟨ai, x1⟩ = 0, ∀i = 1, . . . ,m,

⟨ai, x2⟩ = 0, ∀i = 1, . . . ,m.

Therefore, for each i = 1, . . . ,m we obtain

⟨ai, y⟩ = ⟨ai, λ1x1 + λ2x2⟩ = λ1⟨ai, x1⟩+ λ2⟨ai, x2⟩ = λ1 · 0 + λ2 · 0 = 0,

which means that y ∈ C0. This proves that C0 is a subspace of X.
Secondly, we prove C0 = C−{y} by showing C−{y} ⊆ C0 and C0 ⊆ C−{y}.

To show the former inclusion, apart from the fixed y ∈ C, let x be an arbitrary
vector in C. Since both x, y are in C, by definition we have

⟨ai, x⟩ = αi, ∀i = 1, . . . ,m,

⟨ai, y⟩ = αi, ∀i = 1, . . . ,m.

So for each i = 1, . . . ,m we obtain

⟨ai, x− y⟩ = ⟨ai, x⟩ − ⟨ai, y⟩ = αi − αi = 0.

14

Hence x− y ∈ C0. Since x is chosen arbitrarily in C, we have C − {y} ⊆ C0.
To show the inverse inclusion C0 ⊆ C − {y}, for any z ∈ C0 let x = y + z.

Then z = x− y. Furthermore, since y ∈ C and z ∈ C0, by definition we have

⟨ai, y⟩ = αi, ∀i = 1, . . . ,m,

⟨ai, z⟩ = 0, ∀i = 1, . . . ,m.

So for each i = 1, . . . ,m we obtain

⟨ai, x⟩ = ⟨ai, y + z⟩ = ⟨ai, y⟩+ ⟨ai, z⟩ = αi + 0 = αi.

Hence x ∈ C, and consequently, z = x − y ∈ C − {y}. Since z is chosen
arbitrarily in C0, we obtain C0 ⊆ C − {y} as desired.

(iii) For each i = 1, . . . ,m, let

H0
i = {x ∈ X | ⟨ai, x⟩ = 0}.

Then, on one hand we have (H0
i)

⊥ = span(ai) for each i = 1, . . . ,m, and on the
other hand we have C0 = ∩i=1,...,mH0

i . Therefore, we obtain

(C0)⊥ = (∩i=1,...,mH0
i)

⊥

= (H0
1)

⊥ + . . .+ (H0
m)⊥

= span(a1) + . . .+ span(am)

= span(a1, . . . , am)

= C†.

We are now ready to state the main result in this subsection.
Theorem 1.9. The projection PC(x) of a given point x ∈ X onto the set C

defined by (1.10) is given by

PC(x) = x−
m∑
i=1

βiai,

in which the coefficients β1, . . . , βm are found from
⟨a1, a1⟩ ⟨a1, a2⟩ . . . ⟨a1, am⟩
⟨a2, a1⟩ ⟨a2, a2⟩ . . . ⟨a2, am⟩

...
...

⟨am, a1⟩ ⟨am, a2⟩ . . . ⟨am, am⟩



β1
β2
...
βm

 =


⟨a1, x⟩ − α1

⟨a2, x⟩ − α2
...

⟨am, x⟩ − αm

 . (1.11)

15

Proof. We first prove that the vector x− PC(x) is orthogonal to C0. Indeed,
let y be any vector in C. By Theorem 1.2, we have

⟨x− PC(x), y − PC(x)⟩ ≤ 0. (1.12)

Recall from Proposition 1.8 (i) that C is an affine set. Since y and PC(x) are
both in the affine set C, their affine combinations

{λPC(x) + (1− λ)y | λ ∈ R}

are also in C. By choosing λ = 2, we obtain

z := 2PC(x)− y ∈ C.

Again, by Theorem 1.2 we have

0 ≥ ⟨x−PC(x), z−PC(x)⟩ = ⟨x−PC(x), 2PC(x)−y−PC(x)⟩ = ⟨x−PC(x), PC(x)−y⟩.

This inequality, together with (1.12), leads to

⟨x− PC(x), y − PC(x)⟩ = 0.

Since y and PC(x) are both in C, it follows from Proposition 1.8 (ii) that the
vector y − PC(x) is in C0. Since y is chosen arbitrarily in C, it follows from
the above equality that x− PC(x) is orthogonal to C0.

Since (x− PC(x)) ⊥ C0, by Proposition 1.8 (iii) we have

x− PC(x) ∈ (C0)⊥ = C† = span(a1, . . . , am).

Therefore, there exists β1, . . . , βm ∈ R such that

x− PC(x) = β1a1 + . . .+ βmam. (1.13)

For each i = 1, . . . ,m, by taking the inner product of both sides of (1.13) with
ai we have

⟨ai, x− PC(x)⟩ = ⟨ai, β1a1 + . . .+ βmam⟩,

or equivalently

⟨ai, a1⟩β1 + . . .+ ⟨ai, am⟩βm = ⟨ai, x⟩ − ⟨ai, PC(x)⟩.

Note that ⟨ai, PC(x)⟩ = αi due to the fact that PC(x) ∈ C and due to the
definition of C. So we have

⟨ai, a1⟩β1 + . . .+ ⟨ai, am⟩βm = ⟨ai, x⟩ − αi, ∀i = 1, . . . ,m,

that are written in matrix form exactly as (1.11). This fact, together with
(1.13), verifies the statement of this theorem.

Chapter 2

Alternating projection methods

Throughout this chapter, X is a finite dimensional Euclidean space equipped
with an inner product ⟨·, ·⟩ and its induced norm ∥ · ∥. In Section 2.1, we de-
scribe the basic version of the alternating projection algorithm for finding a
common point of two closed convex sets in X and show a proof for the con-
vergence of this algorithm. In Section 2.2 we present some simple variants of
this algorithm, including periodic projection algorithm (Section 2.2.1), aver-
aged projection algorithm (Section 2.2.2), and relaxed projection algorithm
(Section 2.2.3).

2.1 Basic version

In this section, we study the simplest version of alternating projection
method which is applied to find a common point of two closed convex subsets
of the universal space X. The contents of this section are based on Section 1
and Section 2 of [5]. The method is described as follows.

Algorithm 1 Basic alternating projection algorithm
Input: Two closed convex subsets C1 and C2 of X such that C1 ∩ C2 ̸= ∅.
Output: A common point of C1 and C2.

1: Take an arbitrary point a ∈ X.
2: x0 = PC1

(a).
3: for k = 0, 1, 2, . . . do
4: yk = PC2

(xk)
5: xk+1 = PC1

(yk)
6: end for

The following theorem proves the convergence of Algorithm 1. Figure 2.1
illustrates an example of Algorithm 1 for two closed convex sets in R2.

16

17

C1

C2

a

x0
y0

x1 y1
x∗

Figure 2.1: Illustration of Algorithm 1 in R2.

Theorem 2.1. (see [5]) Provided that C1∩C2 ̸= ∅, both sequences (xk)k≥0 and
(yk)k≥0 generated by Algorithm 1 converge to a common point of C1 and C2.

Proof. Let x be any point in C1 ∩ C2. For convenience, we establish the
following claims.

Claim 1: Each projection brings the point closer to x (this is so-called
Fejér property).

Claim 2: The sequence (xk)k≥0 has an accumulation point x∗ ∈ C1.
Claim 3: The point x∗ in Claim 2 also belongs to C2.
To prove Claim 1, we first show that yk is closer to x than xk, i.e.

∥xk − x∥ ≥ ∥yk − x∥. (2.1)

Indeed, by applying Lemma 1.3 to the points xk ∈ X, yk = PC2
(xk), x ∈ C2,

we obtain
∥xk − x∥2 ≥ ∥xk − yk∥2 + ∥yk − x∥2,

or equivalently
∥xk − x∥2 − ∥xk − yk∥2 ≥ ∥yk − x∥2, (2.2)

which implies (2.1). To complete the proof of Claim 1, we furthermore show
that xk+1 is closer to x than yk, i.e.

∥yk − x∥ ≥ ∥xk+1 − x∥. (2.3)

18

Indeed, by applying Lemma 1.3 to the points yk ∈ X, xk+1 = PC1
(yk), x ∈ C1,

we have
∥yk − x∥2 ≥ ∥yk − xk+1∥2 + ∥xk+1 − x∥2,

or equivalently,

∥yk − x∥2 − ∥yk − xk+1∥2 ≥ ∥xk+1 − x∥2, (2.4)

which implies (2.3).
To prove Claim 2, we note that

∥xk − x∥ ≥ ∥yk − x∥ ≥ ∥xk+1 − x∥, (2.5)

by (2.1) and (2.3). In particular we have

∥xk − x∥ ≤ ∥x0 − x∥, ∀k = 0, 1, 2, . . . ,

which means that (xk)k≥0 is bounded. Since the underlying space X is finitely
dimensional, it follows that the sequence (xk)k≥0 has an accumulation point
x∗. Note that all xk’s are in C1 and C1 is closed, so we have x∗ ∈ C1. Thus
Claim 2 is proved.

We now prove Claim 3. It follows from (2.5) that the sequence

∥x0 − x∥, ∥y0 − x∥, ∥x1 − x∥, ∥y1 − x∥, . . . , ∥xk − x∥, ∥yk − x∥, . . .

is decreasing. Obviously all elements in this sequence are non-negative, i.e.
this sequence is bounded below by 0. Hence it is convergent. We conclude
from this fact and (2.2), (2.4) that

∥xk − yk∥ → 0 and ∥yk − xk+1∥ → 0. (2.6)

Since yk = PC2
(xk), we have

dist(xk, C2) = ∥xk − yk∥,

which, together with (2.6), implies

dist(xk, C2) → 0. (2.7)

By Claim 2, (xk)k≥0 has a subsequence converging to x∗. This fact, together
with (2.7) and closedness of C2, leads to x∗ ∈ C2. This is what we state in
Claim 3.

Now we are ready to prove the theorem. By Claim 2 and Claim 3 we
have x∗ ∈ C1 ∩ C2. Since x is taken arbitrarily in C1 ∩ C2, we can choose

19

x = x∗. Then, as stated in the beginning of the proof for Claim 3, we have
that both (∥xk − x∗∥)k≥0 and (∥yk − x∗∥)k≥0 converge to the same limit. Since
a subsequence of (xk)k≥0 converges to x∗, (∥xk − x∗∥)k≥0 has a subsequence
converging to 0. Since the whole sequence (∥xk − x∗∥)k≥0 is convergent, it
follows that

∥xk − x∗∥ → 0 and ∥yk − x∗∥ → 0.

So xk → x∗ and yk → x∗, i.e., both (xk)k≥0 and (yk)k≥0 converge to the point
x∗ ∈ C1 ∩ C2.

Remark 2.2. We do not claim that Algorithm 1 returns a common point of
C1 and C2 after a finite number of iterations. Generally, we can only claim (as
stated in Theorem 2.1) that the algorithm produces sequences (xk)k≥0 ⊂ C1

and (yk)k≥0 ⊂ C2 converging to a common point of these two sets. However, if
two consecutive projection points coincide, say xk = yk for some k ∈ N, then
they belong to C1 ∩ C2 since xk ∈ C1 and yk ∈ C2. In this case, the sequel
projection points also coincide with xk, so we can terminate the algorithm at
iteration k. An example for this case is given in the next remark.

C1

C2

a = (0, 1)

x0

y0 = x∗
PC1∩C2(a)

(1,1)

(2,0)

(2, -2)(0, -2)

(1, -1)

Figure 2.2: Illustration for Remark 2.2 and Remark 2.3.

Remark 2.3. The point x∗ specified in the proof of Theorem 2.1 needs not
to be PC1∩C2

(a). An example to illustrate this fact is given in Figure 2.2. In
this example, X = R2 with the usual inner product. The set C1 is the square
whose vertices are (0, 0), (1, 1), (2, 0), (1,−1), and the set C2 is the square whose
vertices are (0, 0), (2, 0), (2,−2), (0,−2). The intersection C1 ∩ C2 is then the
triangular whose vertices are (0, 0), (2, 0), (1,−1). The starting point a is taken
as (0, 1). Applying Algorithm 1 to this example, with simple calculations we

20

obtain x0 = (0.5, 0.5), y0 = (0.5, 0) ∈ C1 ∩ C2, and then xk = yk = y0 for all
k ≥ 1. Thus, x∗ = (0.5, 0). However, the projection of the starting point a on
C1 ∩ C2 is (0, 0), which clearly differs from x∗.

In relation with the fact stated in Remark 2.3, we have the following propo-
sition. It can be considered as an immediate consequence of the result by von
Neumann in Theorem 13.7 [1], which states that the proposition still holds
true in the setting where X is Hilbert space.

Proposition 2.4. Let C1 and C2 be two closed subspaces of X such that
C1 ∩ C2 ̸= ∅. Then both sequences (xk)k≥0, (yk)k≥0 generated by Algorithm 1
converge to PC1∩C2

(a).

2.2 Some simple variants

2.2.1 Periodic projection algorithm

The idea of periodic projection algorithm was first proposed by Halperin
in [8] to find a common point of m ≥ 2 closed subspaces in Hilbert space.
This variant is so-called sequential projection or cyclic projection algorithm.
In [5] the authors shortly mention that this variant of the basic alternating
projection algorithm also works when finding a common point of m ≥ 2 closed
convex sets in the finite dimensional Euclidean space X. In the latter setting,
the variant can be described more precisely as follows.

Algorithm 2 Periodic projection algorithm
Input: m closed convex subsets C1, . . . , Cm of X such that ∩m

i=1Ci ̸= ∅.
Output: A point in ∩m

i=1Ci.
1: Take an arbitrary point a ∈ X.
2: x1

0 = PC1(a).
3: for i = 2, . . . ,m do
4: xi

0 = PCi
(xi−1

0)
5: end for
6: for k = 0, 1, 2, . . . do
7: x1

k+1 = PC1
(xm

k).
8: for i = 2, . . . ,m do
9: xi

k+1 = PCi(x
i−1
k+1)

10: end for
11: end for

Roughly speaking, the periodic alternating projection algorithm starts at
an arbitrary point in X, and projecting on C1, then C2, . . ., then Cm, and

21

repeating the cycle of m projections. In the description of this algorithm
(Algorithm 2), for each projection point xik, its superscript corresponds to the
index of the convex set where it belongs to, while its subscript corresponds
to the iteration in which it is generated. Figure 2.3 illustrates an example of
Algorithm 2 for three convex sets in R2.

C1

C2
C3

a x10

x20
x30 ≡ x11

Figure 2.3: Illustration of Algorithm 2 in case of three non-empty intersection convex sets in R2.

The convergence of Algorithm 2 is stated in the following theorem, which
is analogous to Theorem 2.1.
Theorem 2.5. (see [5]) The sequences (x1k)k≥0, . . ., (xmk)k≥0 generated by
Algorithm 2 converge to a common point of the sets C1, . . . , Cm.
Proof. For simplicity and clarity, we give the proof in case m = 3. The proof
in case m ≥ 4 can be done similarly. This proof is analogous to the proof of
Theorem 2.1.

Let x be any point in C := C1 ∩C2 ∩C3. We establish the following claims.
Claim 1: The projection points satisfy Fejér property, i.e., each projection

brings the point closer to x.
Claim 2: The sequence (x1k)k≥0 has an accumulation point x∗ ∈ C1.
Claim 3: The point x∗ in Claim 2 is also in C2 and C3.
Proving Claim 1 means that we have to show the followings.
• The projection point x2k is closer to x than x1k, i.e.

∥x2k − x∥ ≤ ∥x1k − x∥. (2.8)

• The projection point x3k is closer to x than x2k, i.e.
∥x3k − x∥ ≤ ∥x2k − x∥. (2.9)

22

• The projection point x1k+1 is closer to x than x3k, i.e.

∥x1k+1 − x∥ ≤ ∥x3k − x∥. (2.10)

To see (2.8), we apply Lemma 1.3 to the points x1k ∈ X, x2k = PC2
(x1k), and

x ∈ C2 and get
∥x1k − x∥2 ≥ ∥x1k − x2k∥

2 + ∥x2k − x∥2,

or equivalently,
∥x2k − x∥2 ≤ ∥x1k − x∥2 − ∥x1k − x2k∥

2, (2.11)
which implies (2.8). By similar arguments, we obtain

∥x3k − x∥2 ≤ ∥x2k − x∥2 − ∥x2k − x3k∥
2, (2.12)

which implies (2.9), and

∥x1k+1 − x∥2 ≤ ∥x3k − x∥2 − ∥x3k − x1k+1∥
2, (2.13)

which implies (2.10). So we complete the proof for Claim 1.
For the proof of Claim 2, we note from (2.8)-(2.10) that

∥x1k − x∥ ≥ ∥x2k − x∥ ≥ ∥x3k − x∥ ≥ ∥x1k+1 − x∥. (2.14)

Particularly, we have

∥x10 − x∥ ≥ ∥x1k − x∥ ∀k = 0, 1, 2, . . .

So the sequence (x1k)k≥0 is bounded and therefore it has an accumulation point
x∗ (since the underlying space X is finite dimensional). Note that all points
in this sequence are in C1, so we have x∗ ∈ C1 by closedness of C1. This
completes the proof for Claim 2.

To prove Claim 3, we note that by (2.14) the sequence

∥x10 − x∥, ∥x20 − x∥, ∥x30 − x∥, ∥x11 − x∥, ∥x21 − x∥, ∥x31 − x∥, . . .

decreases, hence it is convergent since it is bounded below by 0. By the
convergence of this sequence and (2.11)-(2.13), we have

∥x1k − x2k∥ → 0, ∥x2k − x3k∥ → 0, ∥x3k − x1k+1∥ → 0. (2.15)

Since x2k = PC2
(x1k), we have

dist(x1k, C2) = ∥x1k − x2k∥

23

which, together with (2.15), implies
dist(x1k, C2) → 0. (2.16)

By Claim 2, (x1k)k≥0 has a subsequence (x1ki)i≥0 converging to x∗. Hence, on
one hand, (2.16) implies that x∗ ∈ C2 since C2 is closed. On the other hand,
by (2.15) it follows that the subsequence (x2ki)i≥0 also converges to x∗. Since
x3k = PC3

(x2k), we have
dist(x2k, C3) = ∥x2k − x3k∥,

which, together with (2.15), implies
dist(x2k, C3) → 0. (2.17)

Since (x2k)k≥0 has the subsequence (x2ki)i≥0 converging to x∗ and C3 is closed,
(2.17) implies that x∗ ∈ C3. This completes the proof of Claim 3.

Now we are ready to prove the theorem. By Claim 2 and Claim 3 we get
x∗ ∈ C1 ∩ C2 ∩ C3. Since x is chosen arbitrarily in C1 ∩ C2 ∩ C3, we can take
x = x∗. Then, as shown in the beginning of the proof for Claim 3, all sequences
(∥x1k − x∗∥)k≥0, (∥x2k − x∗∥)k≥0, and (∥x3k − x∗∥)k≥0 converge to the same limit.
Since (x1k)k≥0 has the subsequence (x1ki)i≥0 converging to x∗, (∥x1k − x∗∥)k≥0

has the subsequence (∥x1ki −x∗∥)i≥0 converging to 0. Since the whole sequence
(∥x1k − x∗∥)k≥0 is convergent, we conclude that

∥x1k − x∗∥ → 0.

Recall that the sequences (∥x1k − x∗∥)k≥0, (∥x2k − x∗∥)k≥0, and (∥x3k − x∗∥)k≥0

converge to the same limit, so we have
∥x2k − x∗∥ → 0 and ∥x3k − x∗∥ → 0.

Thus x1k → x∗, x2k → x∗, and x3k → x∗. This proves the theorem, as x∗ has been
shown to be a common point of C1, C2, C3.

Remark 2.6. As stated in the description of Algorithm 2, in each iteration of
this algorithm we sequentially project onto the input convex sets in the order
C1, C2, . . . , Cm. By the equal role of these sets, we can sequentially project onto
them in any order Cσ1, Cσ2, . . ., Cσm, in which (σ1, σ2, . . . , σm) is a permutation
of (1, 2, . . . ,m), provided that this order is the same in every iteration.
Remark 2.7. It is stated in the end of Section 3 in [5] that the order of
projections onto the input convex sets does not need to be periodic. We can
project the current point onto any of the sets the point is not in, provided
that each input convex set is infinitely projected onto.

24

2.2.2 Averaged projection algorithm

The variant presented in this subsection was proposed by Cimmino in [9].
Here we give a detailed discussion on this variant.

The variant also starts with an arbitrary point in the underlying space X,
but then simultaneously projecting on the involved convex sets. The average
of the projection points is then chosen as the starting point for the next
iteration. This variant is described more precisely as follows.

Algorithm 3 Averaged projection algorithm for finding a common point of two closed convex sets
Input: Two closed convex subsets C1 and C2 of X such that C1 ∩ C2 ̸= ∅.
Output: A common point of C1 and C2.

1: Take an arbitrary point a ∈ X.
2: x0 = PC1

(a).
3: y0 = PC2

(a).
4: z0 = (x0 + y0)/2.
5: for k = 0, 1, 2, . . . do
6: xk+1 = PC1(zk)
7: yk+1 = PC2(zk)
8: zk+1 = (xk+1 + yk+1)/2
9: end for

Figure 2.4 illustrates an example of Algorithm 3 for two convex sets in R2.

C1

C2

a

x0

y0

x1

y1

x∗

z0

z1
y2

x2
z2

Figure 2.4: Illustration of Algorithm 3 in case of two non-empty intersection convex sets in R2.

For convenience of proving the convergence of Algorithm 3, we first need
the following proposition. For the statement of the proposition, we equip on

25

the space X2 the usual inner product ⟨·, ·⟩X2 defined by

⟨(x1, x2), (y1, y2)⟩X2 = ⟨x1, y1⟩+ ⟨x2, y2⟩,

in which x1, x2, y1, y2 ∈ X, and the induced norm ∥ · ∥X2 determined by

∥(x1, x2)∥X2 =
√

∥x1∥2 + ∥x2∥2.

Proposition 2.8. Let C = C1 × C2, and u = (u1, u2) ∈ X2. Then we have

PC(u) = (PC1
(u1), PC2

(u2)).

Proof. Since Cartesian product of closed sets is also closed and note that
C1, C2 are closed sets, it follows that C is closed. The convexity of C follows
from the convexity of C1, C2 and Proposition 1.1. So C is a closed convex set
in X2, and therefore PC(u) exists uniquely.

Since C1, C2 are closed convex set, PC1
(u1) and PC2

(u2) exist uniquely. By
definition we have

∥u− PC(u)∥2X2 = min
(x,y)∈C1×C2

∥(u1, u2)− (x, y)∥2X2

= min
(x,y)∈C1×C2

(
∥u1 − x∥2 + ∥u2 − y∥2

)
= min

x∈C1

∥u1 − x∥2 + min
y∈C2

∥u2 − y∥2 (since u1 ∈ C1 and u2 ∈ C2)

= ∥u1 − PC1
(u1)∥2 + ∥u2 − PC2

(u2)∥2.

The last equality holds when x = PC1
(u1) and y = PC2

(u2). So the minimum
in the first equality is achieved at (x, y) = (PC1

(u1), PC2
(u2)), and therefore we

obtain the claim of the proposition.

We furthermore need the following proposition.
Proposition 2.9. Let D = {(x, y) ∈ X2 | x = y} and u = (u1, u2) ∈ X2. Then
D is a closed convex set in X2 and PD(u) = ((u1 + u2)/2, (u1 + u2)/2).
Proof. Let (uk)k≥0 = (uk1, u

k
2)k≥0 be a sequence of points in D converging to

u = (u1, u2). Then we have uk1 → u1 and uk2 → u2 as k tends to infinity. For
every index k, since (uk1, u

k
2) ∈ D, we have uk1 = uk2 by definition of D. Thus

u1 = u2, and therefore u = (u1, u2) ∈ D. So D is closed.
Let v = (v1, v2) and w = (w1, w2) be two points in D, and λ ∈ [0, 1]. Since v

and w are in D, we have v1 = v2 and w1 = w2. So λv1+(1−λ)w1 = λv2+(1−λ)w2,
and consequently

λv + (1− λ)w = (λv1 + (1− λ)w1, λv2 + (1− λ)w2) ∈ D.

26

So D is convex.
Now, for any (x, x) ∈ D we have

∥(u1, u2)− (x, x)∥2X2 = ∥(u1 − x, u2 − x)∥2X2

= ∥u1 − x∥2 + ∥x− u2∥2

≥ 1

2
∥(u1 − x) + (x− u2)∥2 (2.18)

=
1

2
∥u1 − u2∥2.

The equality in (2.18) happens when u1 − x = x − u2, or equivalently, when
x = (u1 + u2)/2. So the distance from u = (u1, u2) to D is

min
(x,x)∈D

∥(u1, u2)− (x, x)∥X2 =

√
2

2
∥u1 − u2∥,

which is attained at x = x∗ = (u1 + u2)/2. Therefore we have

PD(u) = (x∗, x∗) = ((u1 + u2)/2, (u1 + u2)/2).

We are now ready for the proof of the convergence of Algorithm 3, which
is stated in the following theorem.
Theorem 2.10. (see [5]) The three sequences (xk)k≥0, (yk)k≥0, (zk)k≥0 gener-
ated by Algorithm 3 converge to the same point which is in C1 ∩ C2.
Proof. By Proposition 2.8 and Proposition 2.9, the sets C = C1 × C2 and
D = {(x, y) ∈ X2 | x = y} are closed and convex. Note that C1∩C2 ̸= ∅, so any
point of form (x, x) with x ∈ C1 ∩ C2 are in both C and D. Thus C ∩D ̸= ∅.

Let us apply the basic alternating projection algorithm (Algorithm 1) to
these two sets with the starting point (a, a) ∈ X2. The first projection of
this algorithm in this setting is PC(a, a), and by Proposition 2.8 we have
PC(a, a) = (PC1

(a), PC2
(a)) = (x0, y0), in which x0 and y0 are defined in the

description of Algorithm 3. The second projection of this algorithm in this
setting is PD(x0, y0), and by Proposition 2.9 we have

PD(x0, y0) = ((x0 + y0)/2, (x0 + y0)/2) = (z0, z0),

in which z0 is also defined in the description of Algorithm 3. In this way, the
next two projection points are respectively

PC(z0, z0) = (PC1
(z0), PC2

(z0)) = (x1, y1),

27

and
PD(x1, y1) = ((x1 + y1)/2, (x1 + y1)/2) = (z1, z1),

in which x1, y1, z1 are defined in the description of Algorithm 3. Continuing
this process, Algorithm 1 in this setting generates two sequences (xk, yk)k≥0 ⊂
C1 × C2 and (zk, zk)k≥0 ⊂ D, where xk, yk, zk are defined in the description of
Algorithm 3.

Since C ∩D ̸= ∅, Theorem 2.1 certifies that these two sequences converge
to a point (x∗, y∗) ∈ C ×D. Since (x∗, y∗) ∈ C = C1 × C2, we have x∗ ∈ C1 and
y∗ ∈ C2. Since (x∗, y∗) ∈ D, we have x∗ = y∗. So x∗ is also in C2, and therefore
x∗ ∈ C1 ∩ C2. Furthermore, since

(xk, yk) → (x∗, x∗) and (zk, zk) → (x∗, x∗),

we have xk → x∗, yk → x∗, and zk → x∗ as k → +∞. As a conclusion,
x∗ ∈ C1 ∩ C2 is the common limit of the three sequences (xk)k≥0, (yk)k≥0,
(zk)k≥0. This proves the theorem.

Remark 2.11. The idea of Algorithm 3 can be extend to the case of m ≥ 2

closed convex sets, as described in Algorithm 4. Similar to the proof of Theo-
rem 2.10, by applying Algorithm 1 (the basic alternating projection algorithm)
to the two closed convex sets

C = C1 × C2 × . . .× Cm,

D = {(x1, x2, . . . , xm) ∈ Xm | x1 = x2 = . . . = xm},

then applying Theorem 2.1, we can prove that the sequences (x1k)k≥0, (x2k)k≥0,
. . ., (xmk)k≥0, and (zk)k≥0 generated by Algorithm 4 converge to a common
points of C1, C2, . . . , Cm.

Remark 2.12. In each iteration of the averaged versions of alternating projec-
tion algorithm, the number of projections equals the number of input convex
sets. This fact is also true for the basic version and the periodic version of
alternating projection algorithm. However, it is worth noting that the projec-
tions in each iteration of the averaged versions can be computed in parallel,
while for the basic and periodic versions the projections need to be computed
sequentially.

28

Algorithm 4 Averaged projection algorithm for finding a common point of m ≥ 2 closed convex
sets
Input: m closed convex subsets C1, . . . , Cm of X such that ∩m

i=1Ci ̸= ∅.
Output: A point in ∩m

i=1Ci.
1: Take an arbitrary point a ∈ X.
2: for i = 1, . . . ,m do
3: xi

0 = PCi
(a)

4: end for
5: z0 = 1

m

∑m
i=1 x

i
0.

6: for k = 0, 1, 2, . . . do
7: for i = 1, . . . ,m do
8: xi

k+1 = PCi(zk)
9: end for

10: zk+1 = 1
m

∑m
i=1 x

i
k.

11: end for

2.2.3 Relaxed projection algorithm

This variant of the basic alternating projection algorithm is shortly men-
tioned in Section 3 [5]. For simplicity and clarity, we consider the relaxed
projection algorithm applied to find a common point of m = 2 closed convex
sets in the finite dimensional Euclidean space X. It is worth noting that, as
remarked at the end of this subsection, the relaxed projection algorithm can
be applied to the case with m ≥ 3. For the description of the algorithm, we
need the following concept.

Definition 2.13. (Relaxed projection, see [10]) Let C ⊂ X be a closed convex
set and α ∈ (0, 2). The relaxed projection (with parameter α) of a point x ∈ X

onto C is
RC,α(x) = x+ α(PC(x)− x) = αPC(x) + (1− α)x. (2.19)

By (2.19) we obtain

RC,α(x)− x = α(PC(x)− x), (2.20)
RC,α(x)− PC(x) = (1− α)(x− PC(x)). (2.21)

For convenience, we shortly call RC,α(x) the α-relaxed projection of x onto
C. By definition, when α = 1 we have RC,α(x) = PC(x), i.e., the 1-relaxed
projection is nothing but the usual projection. Figure 2.5 illustrates RC,α(x)

in R2 with α ∈ (0, 1), and Figure 2.6 illustrates RC,α(x) in R2 with α ∈ (1, 2).
Intuitively, in case α ∈ (0, 1) we step only the fraction α from x to PC(x),

while in case α ∈ (1, 2) we go farther than the projection PC(x). Therefore,

29

we also call RC,α(x) an under projection of x onto C when α ∈ (0, 1), and an
over projection of x onto C when α ∈ (1, 2).

C

x

PC(x)

RC,α(x)

Figure 2.5: Under projection.

C

x

PC(x)

RC,α(x)

Figure 2.6: Over projection.

The relaxed projection algorithm for finding a point in the intersection of
m = 2 closed convex sets is described as follows.

Algorithm 5 Relaxed projection algorithm for finding a common point of two closed convex sets
Input: Two closed convex subsets C1 and C2 of X such that C1 ∩ C2 ̸= ∅, and α ∈ (0, 2).
Output: A common point of C1 and C2.

1: Take an arbitrary point a ∈ X.
2: x0 = RC1,α(a).
3: for k = 0, 1, 2, . . . do
4: yk = RC2,α(xk)
5: xk+1 = RC1,α(yk)
6: end for

C1

C2

a

x∗

x0
y0

x1 y1

x2

Figure 2.7: Illustration of
under projection algorithm.

C1

C2

a

x0

y0
x1

Figure 2.8: Illustration of
over projection algorithm.

30

As a remark, Algorithm 5 is the same as Algorithm 1, except that the
projections are replaced by the relaxed projections. When α = 1, Algorithm 5
is exactly Algorithm 1. Figure 2.7 illustrates an example of Algorithm 5 with
α ∈ (0, 1) and Figure 2.8 illustrates an example of Algorithm 5 with α ∈ (1, 2).

To prove the convergence of Algorithm 5, we follow the scheme of proof of
Theorem 2.1 which is for the convergence of the basic alternating projection
algorithm. According to this scheme, the first step to prove Fejér property
of the sequence of points generated by Algorithm 5, i.e., to show that each
relaxed projection brings the point closer to a point in C1 ∩ C2 fixed in ad-
vance. For convenience of presenting the proof for this property, the following
analogous results of Lemma 1.3 are useful.

x

x

C

PC(x)

R(x)

Figure 2.9: Illustration for Lemma 2.14.

Lemma 2.14. (see [10]) Let C ⊂ X be a closed convex set, x ∈ X, x ∈ C, and
α ∈ (0, 1). Then we have

∥x− x∥2 ≥ α2∥x− PC(x)∥2 + ∥RC,α(x)− x∥2.

Proof. Since C and α are specified, for simplicity of presenting this proof, we
denote R(x) := RC,α(x). We first show that

⟨x−R(x), x−R(x)⟩ ≤ 0. (2.22)

Indeed, we have

⟨x−R(x), x−R(x)⟩
= ⟨x−R(x), x− PC(x) + PC(x)−R(x)⟩

31

= ⟨x−R(x), x− PC(x)⟩+ ⟨x−R(x), PC(x)−R(x)⟩
= ⟨α(x− PC(x)), x− PC(x)⟩+ ⟨α(x− PC(x)), (α− 1)(x− PC(x)) (2.23)
= α⟨x− PC(x), x− PC(x)⟩+ α(1− α)∥x− PC(x)∥2. (2.24)

The equality (2.23) is due to (2.20) and (2.21). By (1.2), the inner product
in the first term of (2.24) is non-positive. Since α ∈ (0, 1), the second term of
(2.24) is also non-positive. Hence (2.22) follows, and consequently we have

∥x− x∥2 = ∥x−R(x) +R(x)− x∥2

= ∥x−R(x)∥2 + ∥R(x)− x∥2 + 2⟨x−R(x), R(x)− x⟩
≥ ∥x−R(x)∥2 + ∥R(x)− x∥2

= α2∥x− PC(x)∥2 + ∥R(x)− x∥2,

as desired, where the last equality is due to (2.20).

Lemma 2.15. (see [10]) Let C ⊂ X be a closed convex set, x ∈ X, x ∈ C, and
α ∈ (1, 2). Then we have

∥x− x∥2 ≥
(
1− (1− α)2

)
∥x− PC(x)∥2 + ∥RC,α(x)− x∥2.

Proof. Similar to the proof of the previous lemma, we denote R(x) := RC,α(x)

for simplicity. Keeping (2.21) in mind, we have

∥R(x)− x∥2

= ∥R(x)− PC(x) + PC(x)− x∥2

= ∥R(x)− PC(x)∥2 + ∥PC(x)− x∥2 + 2⟨R(x)− PC(x), PC(x)− x⟩
= (1− α)2∥x− PC(x)∥2 + ∥PC(x)− x∥2 + 2(1− α)⟨x− PC(x), PC(x)− x⟩
= (1− α)2∥x− PC(x)∥2 + ∥PC(x)− x∥2 + 2(α− 1)⟨x− PC(x), x− PC(x)⟩
≤ (1− α)2∥x− PC(x)∥2 + ∥PC(x)− x∥2. (2.25)

The inequality (2.25) is due to α > 1 and (1.2). By Lemma 1.3 we have

∥x− PC(x)∥2 + ∥PC(x)− x∥2 ≤ ∥x− x∥2. (2.26)

Adding side by side (2.25) and (2.26), then subtracting the term ∥PC(x)−x∥2
in both sides, we obtain

∥R(x)− x∥2 + ∥x− PC(x)∥2 ≤ (1− α)2∥x− PC(x)∥2 + ∥x− x∥2,

which is equivalent to the inequality in the statement of this lemma.

32

As a summary of Lemma 2.14 and Lemma 2.15, we have

∥x− x∥2 ≥ β∥x− PC(x)∥2 + ∥RC,α(x)− x∥2, (2.27)

in which

β =

{
α2 if α ∈ (0, 1),
1− (1− α)2 if α ∈ (1, 2).

(2.28)

It is worth noting that β > 0. We are now ready for the proof of convergence
of the relaxed projection algorithm.

Theorem 2.16. (see [5]) The sequences (xk)k≥0 and (yk)k≥0 generated by
Algorithm 5 converge to a common point of C1 and C2.

Proof. In case α = 1, Algorithm 5 is exactly the basic alternating projection
algorithm (Algorithm 1) whose convergence is proved in Theorem 2.1. In the
following we consider α ∈ (0, 2)\{1} = (0, 1) ∪ (1, 2) and follow the scheme of
proof of Theorem 2.1.

Take an arbitrary x ∈ C1 ∩ C2. We will go through the following claims.
Claim 1: Each relaxed projection brings the point closer to x, i.e. the

points generated by Algorithm 5 follow Fejér property.
Claim 2: The sequence (xk)k≥0 has an accumulation point x∗ ∈ C2.
Claim 3: The point x∗ in Claim 2 also belongs to C1.
We first prove Claim 1. Proving this claim means that we have to show

∥xk − x∥ ≥ ∥yk − x∥, (2.29)

i.e., yk is closer to x than xk, and to show

∥yk − x∥ ≥ ∥xk+1 − x∥, (2.30)

i.e., xk+1 is closer to x than yk. Indeed, by applying (2.27) to the set C2 and
the points x ∈ C2, xk ∈ X, yk = RC2,α(xk) we obtain

∥xk − x∥2 ≥ β∥xk − PC2
(xk)∥2 + ∥yk − x∥2,

in which β > 0 is defined by (2.28). This is equivalent to

∥xk − x∥2 − β∥xk − PC2
(xk)∥2 ≥ ∥yk − x∥2, (2.31)

which implies (2.29). Similarly, by applying (2.27) to the set C1 and the points
x ∈ C1, yk ∈ X, xk+1 = RC1,α(yk) we obtain

∥yk − x∥2 ≥ β∥yk − PC1
(yk)∥2 + ∥xk+1 − x∥2,

33

or equivalently

∥yk − x∥2 − β∥yk − PC1
(yk)∥2 ≥ ∥xk+1 − x∥2, (2.32)

which implies (2.30). This completes the proof of Claim 1.
Now we go to Claim 2. By (2.29) and (2.30) we have

∥x0−x∥ ≥ ∥y0−x∥ ≥ ∥x1−x∥ ≥ ∥y1−x∥ ≥ . . . ≥ ∥xk−x∥ ≥ ∥yk−x∥ ≥ . . . (2.33)

On one hand, the sequence in (2.33) is decreasing and all of its elements are
non-negative. Therefore this sequence is convergent. Together with (2.31),
(2.32) and note that β > 0, this fact implies

∥xk − PC2
(xk)∥ → 0 and ∥yk − PC1

(yk)∥ → 0, (2.34)

and hence we have

dist(xk, C2) → 0 and dist(yk, C1) → 0. (2.35)

On the other hand, by (2.33) we have ∥x0 − x∥ ≥ ∥xk − x∥ for all k ≥ 0, i.e.,
(xk)k≥0 is a bounded sequence. Note that the underlying space X is finite
dimensional, therefore this sequence has an accumulation point x∗. This fact,
together with (2.35) and the closedness of C2, leads to x∗ ∈ C2. This proves
Claim 2.

To prove Claim 3, we apply (2.20) to the set C2 and the points xk ∈ X,
yk = RC2,α(xk) and get

yk − xk = α(PC2
(xk)− xk).

Therefore we have
∥yk − xk∥ = α∥PC2

(xk)− xk∥,

which, together with (2.34), leads to

∥yk − xk∥ → 0. (2.36)

By combining (2.36) with the fact that (xk)k≥0 has an accumulation point
x∗, we conclude that (yk)k≥0 also admits x∗ as an accumulation point. This
fact, together with (2.35) and the closedness of C1, implies that x∗ ∈ C1. This
completes the proof of Claim 3.

Having Claim 1 - Claim 3 proved, the convergence of Algorithm 5 can
be shown by the same arguments as in the proof of Theorem 2.1. More
precisely, we have x∗ ∈ C1 ∩ C2 by Claim 2 and Claim 3. Since x is taken

34

arbitrarily in C1 ∩ C2, we can choose x = x∗. Then, from (2.33) we have
that both (∥xk − x∗∥)k≥0 and (∥yk − x∗∥)k≥0 converge to the same limit. Since
a subsequence of (xk)k≥0 converges to x∗, (∥xk − x∗∥)k≥0 has a subsequence
converging to 0. Since the whole sequence (∥xk − x∗∥)k≥0 is convergent, it
follows that

∥xk − x∗∥ → 0 and ∥yk − x∗∥ → 0.

So xk → x∗ and yk → x∗, i.e., both (xk)k≥0 and (yk)k≥0 converge to the point
x∗ ∈ C1 ∩ C2.

Remark 2.17. As the basic alternating projection algorithm (Algorithm 1)
can be extended to the periodic projection algorithm (Algorithm 2), the re-
laxed projection algorithm (Algorithm 5) can also be extended to find an
intersection point of m ≥ 2 closed convex sets (see Algorithm 6 below). The
convergence of Algorithm 6 can be proved using the idea in the proofs of
Theorem 2.5 and Theorem 2.16.

Algorithm 6 Relaxed projection algorithm for finding a common point of m ≥ 2 closed convex
sets.
Input: m closed convex subsets C1, . . . , Cm of X such that ∩m

i=1Ci ̸= ∅, and α ∈ (0, 2).
Output: A point in ∩m

i=1Ci.
1: Take an arbitrary point a ∈ X.
2: x1

0 = RC1,α(a).
3: for i = 2, . . . ,m do
4: xi

0 = RCi,α(x
i−1
0)

5: end for
6: for k = 0, 1, 2, . . . do
7: x1

k+1 = RC1,α(x
m
k).

8: for i = 2, . . . ,m do
9: xi

k+1 = RCi,α(x
i−1
k+1)

10: end for
11: end for

Remark 2.18. We cannot choose α = 0 or α = 2 in Algorithm 5 as well as
Algorithm 6. If we choose α = 0, then RC,α(x) = x for any x ∈ X, i.e., RC,α

is the identical mapping. In this case, every 0-relaxed projection point of the
algorithms coincides the starting point a, hence the algorithms do not give us
an intersection point of the involved convex sets if the starting point is not in
the intersection. If α = 2, the example illustrated in Figure 2.10 shows that
the sequence of 2-relaxed projection points generated by Algorithm 5 is cyclic
(similar example can be constructed for Algorithm 6). In this example, C1

is the x-axis and C2 is the y-axis in R2, while the starting point is chosen as

35

a = (1, 1). The first generated projection points in this case are

x0 = (1,−1), y0 = (−1,−1), x1 = (−1, 1), y1 = (1, 1) = a.

So after each two iterations, the projection point returns to the starting point,
hence the sequence of relaxed projection points in this case does not converge.

C1

C2 a = y1

1-1

-1

1

x0y0

x1

Figure 2.10: Example for Remark 2.18.

Chapter 3

Some selected applications

We have discussed the basic alternating projection algorithm as well as
some simple variants of this algorithm in Chapter 2. In the present chapter,
we show how the algorithms can be applied to solve two interesting problems,
including dividing a string into equal thirds (Section 3.1) and completing
positive semi-definite matrices (Section 3.2).

3.1 Dividing a string into equal thirds

This section is written on the base of the discussion of Don Burkholder
presented in [11].

3.1.1 Problem statement and algorithm

The concerned problem is simply stated as follows.

Given a string of finite length, how to divide it into three parts of
equal length.

In discussions with the authors of [11], Burkholder proposed the following
procedure to solve this problem. In the initial step, we straighten the string
from left to right, and attach two small stickers to two arbitrary positions on
the string. The sticker on the left is called the ‘left sticker’, and the one on
the right is called the ‘right sticker’. We then perform an iterative process, in
which each iteration is made up by executing the following two steps.

Step 1:

(a) Fold over the right end of the string to touch the left sticker.

36

37

(b) Hold the right end of the string at the left sticker, and slide the
right sticker to the right until it reaches the right end of the
formed loop.

(c) Unfold the string.

Step 2:

(a) Fold over the left end of the string to touch the right sticker.
(b) Hold the left end of the string at the right sticker, and slide the

left sticker to the left until it reaches the left end of the formed
loop.

(c) Unfold the string.

Figure 3.1 illustrates the actions in Step 1, while Figure 3.2 illustrates the
actions in Step 2. In these figures, the notation L stands for the left sticker,
while the notation R stands for the right sticker.

L R

L R

L

L

R

R

u v w

u
v+w
2

v+w
2

Figure 3.1: Illustration of Step 1 of Burkholder’s procedure.

38

L R

RL

RL

L R

u v w

w
u+v
2

u+v
2

Figure 3.2: Illustration of Step 2 of Burkholder’s procedure.

3.1.2 Convergence analysis

Charmingly, the basic alternating projection algorithm can be applied to
give an elegant proof for the convergence and correctness of Burkholder’s
procedure.

Theorem 3.1. (see Section 3.1 [2]) Iteration by iteration in Burkholder’s
procedure, the positions of the left (resp., right) sticker converge to the one
third (resp., two thirds) of the total length of the string.

Proof. To see the connection with the alternating projections, let us consider
the string before performing each step of a sample iteration in Burkholder’s
procedure. Assume that, at the beginning of the procedure, the two stickers
divide the string into three parts whose lengths are u, v, w respectively from
left to right. After performing Step 1, the right sticker is moved to the middle
of the part from the left sticker to the right end of the string, hence the
lengths of the three parts become u, v+w

2 , v+w
2 respectively. If we denote

39

by x = (u, v, w)t the vector of lengths of three parts of the string, then the
application of Step 1 corresponds to the linear transformation

P1(x) =

1 0 0

0 1
2

1
2

0 1
2

1
2

u

v

w

 =

 u
v+w
2

v+w
2

 .

The matrix of this linear transformation is

M1 =

1 0 0

0 1
2

1
2

0 1
2

1
2

 .

Similarly, after performing Step 2, the left sticker is moved to the middle of
the part from the left end of the string to the right sticker, hence the lengths
of the three parts become u+v

2 , u+v
2 , w respectively. Thus the application of

Step 2 corresponds to the linear transformation

P2(x) =

1
2

1
2 0

1
2

1
2 0

0 0 1

u

v

w

 =

u+v
2

u+v
2

w

 .

The matrix of this linear transformation is

M2 =

1
2

1
2 0

1
2

1
2 0

0 0 1

 .

Let C1 = P1(R3) = range(P1). Since P1 is a linear transformation, it is well-
known from linear algebra that C1 is a subspace of R3, hence it is also closed.
Similarly, let C2 = P2(R3) = range(P2), then C2 is also a closed subspace of
R3. Note that M2

1 = M1 = M t
1, i.e., M1 is idempotent and self-adjoint, so by

Proposition 1.6 the corresponding linear transformation P1 is the (orthogonal)
projection mapping onto the subspace C1. Similarly, since M2

2 = M2 = M t
2, the

corresponding linear transformation P2 is the (orthogonal) projection mapping
onto the subspace C2. Therefore, Burkholder’s procedure is nothing but the
basic alternating projection algorithm (Algorithm 1) applied to two closed
subspaces C1 and C2 of R3. By Proposition 2.4, the projection points generated
by the algorithm converge to the projection PC1∩C2

(x) of the starting point
x = (u, v, w)t onto the subspace C1 ∩ C2.

We now find an explicit formula for C1∩C2. Since P1 is the projection onto

40

the closed subspace C1, we have

y = (y1, y2, y3)
t ∈ C1 ⇔ P1(y) = y ⇔

 y1
y2+y3

2
y2+y3

2

 =

y1y2
y3

 ⇔ y2 = y3.

Similarly, since P2 is the projection onto the closed subspace C2, we have

y ∈ C2 ⇔ P2(y) = y ⇔

y1+y2
2

y1+y2
2

y3

 =

y1y2
y3

 ⇔ y1 = y2.

Thus we have

y ∈ C1 ∩ C2 ⇔ P1(y) = P2(y) = y ⇔ y1 = y2 = y3,

and therefore
C1 ∩ C2 = {(a, a, a)t | a ∈ R}. (3.1)

By (3.1) we have

PC1∩C2
(x) = argmina∈R ∥(u, v, w)− (a, a, a)∥.

Note that

∥(u, v, w)− (a, a, a)∥2 = (u− a)2 + (v − a)2 + (w − a)2

= 3a2 − 2(u+ v + w)a+ (u2 + v2 + w2) =: f(a)

is a convex quadratic function on a ∈ R, and that

f ′(a) = 6a− 2(u+ v + w) = 0 ⇔ a =
u+ v + w

3
,

the function f attains its minimum at a = u+v+w
3 . Hence we obtain

PC1∩C2
(x) =

(
u+ v + w

3
,
u+ v + w

3
,
u+ v + w

3

)t

.

It means that the lengths of the three parts of the string divided by the two
stickers converge to u+v+w

3 . Equivalently, the positions of the stickers converge
to one third and two thirds of the total length of string.

We did some numerical experiments to have an intuition on how fast are
convergences of the stickers’ positions. For the experiments, we assume with-
out loss of generality that the total length of the string is 3 meters. Each

41

experiment starts by choosing the initial positions for the two stickers, and
reporting the initial lengths u, v, w of the three parts of the string divided
by the two stickers (from left to right). Given the initial value of (u, v, w), we
performed the iteration process in Burkholder’s procedure until the deviation
of the left sticker from the one third of the string and the deviation of the
right sticker from the two thirds of the string are both less than 10−3 m, i.e.,

d := max {|u− 1|, |u+ v − 2|} ≤ 0.001. (3.2)

We implemented the above procedure in MATLAB R2020a and executed
on a PC Intel(R) Core(TM) i7-6700HQ CPU 2*2.60GHz, RAM 16GB. Our
code is given below. The last line of this code is to print out the following
information: the number of iterations needed to achieve the desired deviation
of the stickers from their desired positions, the values of u, v, w, and the
deviation after terminating the process. The initial values of u, v, w are given
in lines 3-5 of the code and can be changed by users.

1 % Initial lengths of three parts divided by two stickers from left to right
2 % (total length of the string is 3 meters)
3 u = 0.25;
4 v = 0.25;
5 w = 2.5;
6

7 % Initial maximum deviation of the stickers from their desired positions
8 d = max(abs(u - 1), abs(u + v - 2));
9

10 % Perform Burkholder 's procedure until the maximum deviation of the
11 % stickers from their desired positions less than 1mm
12 iter = 0;
13 while d > 0.001
14 % Step 1
15 v = (v + w)/2;
16 w = v;
17 % Step 2
18 u = (u + v)/2;
19 v = u;
20 % Update the deviation value
21 d = max(abs(u - 1), abs(u + v - 2));
22 % Increase the number of iterations
23 iter = iter + 1;
24 end
25

26 % Output after termination
27 fprintf('After %d iterations: u = %f, v = %f, w = %f, d = %f\n', iter, u, v, w,

d);

42

We tested with 4 following different initial values of x = (u, v, w):

x1 = (0.5, 2, 0.5), x2 = (0, 1, 2), x3 = (1.25, 1.75, 0), x4 = (0.25, 0.25, 2.5).

Figure 3.3 shows how the maximum deviation d defined in (3.2) changes with
respect to the number of iterations, according to the 4 above initial values.

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

x1 x2 x3 x4

Figure 3.3: Maximum deviation d with respect to the number of iterations and initial values.

We can do some further analysis to know how many iterations are re-
quired for achieving the desired maximum deviation d. As proved above,
the application of Step 1 in Burkholder’s procedure corresponds to the linear
transformation P1(x) = M1x, while the application of Step 2 in Burkholder’s
procedure corresponds to the linear transformation P2(x) = M2x. Therefore,
the application of n iterations in Burkholder’s procedure corresponds to the
linear transformation

(P2 ◦ P1)
n(x) = (M2M1)

nx = Mnx,

in which

M = M2M1 =

1
2

1
2 0

1
2

1
2 0

0 0 1

1 0 0

0 1
2

1
2

0 1
2

1
2

 =

1
2

1
4

1
4

1
2

1
4

1
4

0 1
2

1
2

 .

43

The well-known diagonalization procedure in linear algebra applied toM gives
us

M = QDQ−1

in which

D =

0 0 0

0 1
4 0

0 0 1

 , Q =

 0 1 1

1 1 1

−1 −2 1

 , Q−1 =

−1 1 0
2
3 −1

3 −1
3

1
3

1
3

1
3

 .

Therefore, we have

Mnx = QDnQ−1x =

 0 1 1

1 1 1

−1 −2 1

0 0 0

0 1
4n 0

0 0 1

−1 1 0
2
3 −1

3 −1
3

1
3

1
3

1
3

u

v

w


=

 2
3

1
4n + 1

3
−1
3

1
4n + 1

3
−1
3

1
4n + 1

3
2
3

1
4n + 1

3
−1
3

1
4n + 1

3
−1
3

1
4n + 1

3
−4
3

1
4n + 1

3
2
3

1
4n + 1

3
2
3

1
4n + 1

3

u

v

w


=

 2
3

1
4nu− 1

3
1
4nv −

1
3

1
4nw + 1

3(u+ v + w)
2
3

1
4nu− 1

3
1
4nv −

1
3

1
4nw + 1

3(u+ v + w)

−4
3

1
4nu+ 2

3
1
4nv +

2
3

1
4nw + 1

3(u+ v + w)

 .

It means that, after n iterations of Burkholder’s procedure, the distance be-
tween the left end of the string and the position of the left sticker is

2

3

1

4n
u− 1

3

1

4n
v − 1

3

1

4n
w +

1

3
(u+ v + w),

and hence the deviation of the position of the left sticker from the one third
of the length of the string is

dℓn =
∣∣∣2
3

1

4n
u− 1

3

1

4n
v − 1

3

1

4n
w
∣∣∣

=
∣∣∣2
3

1

4n
u− 1

3

1

4n
(v + w)

∣∣∣
=
∣∣∣2
3

1

4n
u− 1

3

1

4n
(c− u)

∣∣∣
=

1

4n

∣∣∣u− 1

3
c
∣∣∣ ,

in which c = u+ v+w is the given length of the string. Note that u ∈ [0, c], so
dℓn attains its maximum when u = c, at which we have

max
u∈[0,c]

dℓn =
2

3 · 4n
c.

44

Similarly, after n iterations of Burkholder’s procedure, the distance between
the right end of the string and the position of the right sticker is

−4

3

1

4n
u+

2

3

1

4n
v +

2

3

1

4n
w +

1

3
(u+ v + w),

and hence the deviation of the position of the right sticker from the two thirds
of the length of the string is

drn =
∣∣∣−4

3

1

4n
u+

2

3

1

4n
v +

2

3

1

4n
w
∣∣∣

=
∣∣∣4
3

1

4n
u− 2

3

1

4n
v − 2

3

1

4n
w
∣∣∣

=
∣∣∣4
3

1

4n
u− 2

3

1

4n
(v + w)

∣∣∣
=
∣∣∣4
3

1

4n
u− 2

3

1

4n
(c− u)

∣∣∣
=

2

4n

∣∣∣u− 1

3
c
∣∣∣ ,

which attains its maximum when u = c, at which we have

max
u∈[0,c]

drn =
4

3 · 4n
c.

So the maximum deviation of the stickers from their desired positions after n
iterations of Burkholder’s procedure is

dn = max{dℓn, drn} =
4

3 · 4n
c =

1

3 · 4n−1
c.

If we would like to achieve the maximum deviation of ε > 0, then the number
n of iterations must satisfy

1

3 · 4n−1
c ≤ ε ⇔ n ≥

⌈
log4

4c

3ε

⌉
.

For instance, when c = 3 and ε = 0.001, we must execute at least
⌈
log4

4c
3ε

⌉
= 6

iterations.

3.2 Completing positive semi-definite matrices

This section is written on the base of Section 4 in [5]. Throughout this
section, X is the Euclidean space Sn of symmetric matrices of size n. On the

45

space X we equip the well-known Frobenius inner product which is defined as
follows:

⟨U, V ⟩F = Tr(UV),

in which U, V ∈ X, while Tr(UV) is the trace of the product of U and V . The
induced norm, so-called Frobenius norm, is defined as

∥U∥F =
√

⟨U,U⟩F =
√

Tr(U2) =

√√√√ n∑
i=1

n∑
j=1

u2ij ,

in which U = (uij)n×n. We use notation Sn
+ for the set of positive semi-definite

matrices in Sn. More precisely, U ∈ Sn
+ means that U ∈ Sn and xtUx ≥ 0 for

all x ∈ Rn. We also use the notation U < 0 to mean U ∈ Sn
+ if n is specified

from the context.

3.2.1 Problem statement and reformulation

We are interested in the positive semi-definite matrix completion problem,
which is stated simply as follows.

Consider a matrix Ā ∈ Sn with some entries are fixed and the others
are unspecified. Determine the values of the unspecified entries so
that Ā ∈ Sn

+.

To be precise, since Ā ∈ Sn, i.e. Ā is symmetric, it is sufficient to know
the information of the upper triangular part of Ā in order to complete the
matrix. For that reason, let I ({1, . . . , n} × {1, . . . , n} be the indices of the
fixed entries in the upper triangular part (including the diagonal) of Ā. For
each (i, j) ∈ I, let aij be the given value of the entry on the i-th row and
the j-th column of Ā, and due to the symmetry of Ā, aji = aij is the given
value for the entry on the j-th row and the i-th column of Ā. Our goal is to
determine the values for unspecified entries of Ā, i.e., entries aij with (i, j) ̸∈ I

and (j, i) ̸∈ I, such that Ā is positive semi-definite.

Example 3.2. To illustrate our arguments in the sequel, we take the following
matrix from Section 4 in [5]:

Ā =


4 3 ? 2

3 4 3 ?

? 3 4 3

2 ? 3 4

 (3.3)

46

as an example, in which the question marks stand for the unspecified entries.
For this example, we have

I = {(1, 1), (1, 2), (1, 4), (2, 2), (2, 3), (3, 3), (3, 4), (4, 4)}.

We first reformulate the stated problem in a form that is convenient for
applying the alternating projection methods. The reformulation bases on the
following two observations.

• In the first observation, let Di be the square matrix of size n whose all
entries are 0 except that the i-th entry on the diagonal equals 1, and
U = (uij) ∈ X. Then we have Di ∈ Sn and Tr(DiU) = uii.

• In the second observation, for 1 ≤ i ̸= j ≤ n, let Mij be the square
matrix of size n whose all entries are 0 except that the entry on the i-
th row and the j-th column, as well as the entry on the j-th row and
i-th column, equals 1. Let U = (uij) ∈ X. Then we have Mij ∈ Sn and
Tr(MijU) = uij + uji.

Now, let i ∈ {1, . . . , n} such that (i, i) ∈ I. Using the first observation, the fact
that aii is the given value for the i-th entry on the diagonal of matrix Ā is
equivalent to the following condition

Tr(DiĀ) = aii.

Similarly, let (i, j) ∈ I with i ̸= j. Using the second observation, the fact that
aij is the given value for the entry on the i-th row and the j-th column of Ā
is equivalent to the following condition

Tr(MijĀ) = aij + aji = 2aij .

Therefore, the positive semi-definite matrix completion problem stated above
can be reformulated as follows.

(PSDcompletion) Find A ∈ Sn such that

A ∈ Sn
+,

Tr(DiA) = aii ∀(i, i) ∈ I,

Tr(MijA) = 2aij ∀(i, j) ∈ I, i ̸= j.

47

Example 3.3. For illustration, the positive semi-definite matrix completion
problem for the matrix Ā in (3.3) can be stated explicitly as follows.

Find A ∈ S4 such that

A ∈ S4
+,

Tr(DiA) = 4 ∀i ∈ {1, 2, 3, 4},
Tr(M12A) = 6,

Tr(M14A) = 4,

Tr(M23A) = 6,

Tr(M34A) = 6,

in which

D1 =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , D2 =


0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 , D3 =


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

 , D4 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

 ,

M12 =


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 ,M14 =


0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

 ,

M23 =


0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

 ,M34 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

 .

In the next subsection, we will show that (PSDcompletion) is in fact a
problem of finding a matrix in the intersection of two closed convex sets in
Sn, hence we can apply alternating projection method to solve this problem.

3.2.2 Solution approach

The (PSDcompletion) problem can be rewritten in the following general
form.

(SDPfeasibility) Find A ∈ Sn such that
A ∈ Sn

+,

48

Tr(UiA) = αi ∀i = 1, . . . ,m,

in which U1, . . . , Um ∈ Sn and α1, . . . , αm ∈ R are given. Indeed, by choosing Ui

to be the matrices Di and Mij, and choosing αi to be the corresponding values
aii and 2aij, (SDPfeasibility) becomes (PSDcompletion). As a remark, in the
language of Frobenius inner product, (SDPfeasibility) is stated as follows.

Find A ∈ Sn such that
A < 0,

⟨Ui, A⟩F = αi ∀i = 1, . . . ,m,

which gives us an intuition that this problem is nothing but the problem
of finding a feasible solution to a semi-definite program. The following two
lemmas exploit special structures of (SDPfeasibility).

Lemma 3.4. (see [5]) The set C1 := Sn
+ is a closed convex subset of Sn.

Proof. The fact Sn
+ (Sn is trivial by definition of these two sets. We will

prove the convexity and closedness of Sn
+.

Convexity. Let U, V ∈ Sn
+ and λ ∈ [0, 1]. Let W = λU + (1 − λ)V . Since U

and V are symmetric, we have

W t = λU t + (1− λ)V t = λU + (1− λ)V = W,

which means that W ∈ Sn. Furthermore, since U and V are positive semi-
definite, for any x ∈ Rn we have

xtUx ≥ 0 and xtV x ≥ 0,

which, together with the facts that λ ≥ 0 and 1− λ ≥ 0, implies

xtWx = xt(λU + (1− λ)V)x = λxtUx+ (1− λ)xtV x ≥ 0.

Hence W < 0, which, together with the fact that W ∈ Sn, leads to W ∈ Sn
+.

This proves the convexity of Sn
+.

Closedness. For each fixed x ∈ Rn, the mapping

fx : Sn → R
U 7→ xtUx

is a linear transformation. Indeed, for U, V ∈ Sn and λ, µ ∈ R we have

fx(λU + µV) = xt(λU + µV)x = λxtUx+ µxtV x = λfx(U) + µfx(V),

49

which means the linearity of fx. Since the space Sn is of finite dimension (in
fact its dimension is n(n+ 1)/2), fx is continuous. Therefore, the set

f−1
x ([0,+∞)) = {U ∈ Sn | xtUx ≥ 0}

is closed, since it is the preimage of the closed set [0,+∞) via the continuous
mapping fx. Consequently, we have

Sn
+ = {U ∈ Sn | xtUx ≥ 0 ∀x ∈ Rn} = ∩x∈Rn{U ∈ Sn | xtUx ≥ 0}

is closed, since it is intersection of closed sets in Sn.

Lemma 3.5. (see [5]) The set C2 := {A ∈ Sn | Tr(UiA) = αi, i = 1, . . . ,m} is a
closed convex set in Sn.
Proof. This lemma can be viewed as an immediate consequence of Proposition
1.7 by taking X = Sn, the inner product is Frobenius one, and ai := Ui for
i = 1, . . . ,m.

With the sets C1, C2 defined respectively in Lemma 3.4 and Lemma 3.5, the
problem (SDPfeasibility) can be reformulated equivalently as the problem of
finding A ∈ C1 ∩ C2. As proved in these two lemmas, C1 and C2 are closed
convex subsets of the space Sn. Therefore, we can apply the basic alternating
projection algorithm (Algorithm 1) to solve this problem. Precisely, in the
current setting, the algorithm reads as follows.

Algorithm 7 Alternating projection algorithm for solving (SDPfeasibility)

Input: Two closed convex subsets C1 and C2 of X = Sn defined in Lemma 3.4 and Lemma 3.5.
Output: A matrix in C1 ∩ C2, if exists.

1: Take an initial matrix A0 ∈ X.
2: V0 = PC1

(A0).
3: for k = 0, 1, 2, . . . do
4: Wk = PC2

(Vk)
5: Vk+1 = PC1(Wk)
6: end for

In the setting of Algorithm 7, Theorem 2.1 verifies that the sequences
(Vk)k≥0 and (Wk)k≥0 generated by this algorithm converge to a matrix A∗ in
C1 ∩ C2 if the intersection is nonempty, in the sense that

∥Vk − A∗∥F → 0 and ∥Wk − A∗∥F → 0.

From computational point of view, there are three issues concerning the
above algorithm.

50

• Issue 1: how to choose the initial matrix A0.

• Issue 2: how to compute the projection of an iterate on C1.

• Issue 3: how to compute the projection of an iterate on C2.

The first issue can be easily solved by simply initialize with A0 = Ā, taking
the unspecified entries as 0. Here, Ā is the matrix in the statement of the
positive semi-definite matrix completion problem. The last issue has been
already solved thanks to Theorem 1.9. Indeed, concerning this issue, we have
the following result.

Proposition 3.6. (see [5]) The projection of the iterate Vk onto the closed
convex set C2 is given by

PC2
(Vk) = Vk −

m∑
i=1

βiUi, (3.4)

in which the coefficients β1, . . . , βm are found form
Tr(U1U1) Tr(U1U2) . . . Tr(U1Um)

Tr(U2U1) Tr(U2U2) . . . Tr(U2Um)
...

...
Tr(UmU1) Tr(UmU2) . . . Tr(UmUm)



β1
β2
...
βm

 =


Tr(U1Vk)− α1

Tr(U2Vk)− α2
...

Tr(UmVk)− αm

 . (3.5)

Proof. This proposition can be viewed as an immediate consequence of
Theorem 1.9 by taking X = Sn, the inner product is Frobenius one, ai := Ui

for i = 1, . . . ,m, the set C := C2, and x := Vk.

The following example continues Example 3.3 and illustrates the above
proposition.

Example 3.7. For the positive semi-definite matrix completion problem which
is reformulated in Example 3.3, we can set U1 := D1, U2 := D2, U3 := D3,
U4 := D4, U5 := M12, U6 := M14, U7 := M23, U8 := M34, α1 = α2 = α3 = α4 := 4,
α5 := 6, α6 := 4, α7 := 6, α8 := 6. So, for Vk = (vij)4×4 ∈ S4 being an iterate of

51

Algorithm 7 applied to this problem, the equation (3.5) becomes

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 2 0 0 0

0 0 0 0 0 2 0 0

0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 2





β1
β2
β3
β4
β5
β6
β7
β8


=



v11 − 4

v22 − 4

v33 − 4

v44 − 4

v21 + v12 − 6

v41 + v14 − 4

v32 + v23 − 6

v43 + v34 − 6


.

Note that v12 = v21, v14 = v41, v23 = v32, v34 = v43 since Vk is symmetric,
therefore this equation has the following unique solution

β1 = v11 − 4, β2 = v22 − 4, β3 = v33 − 4, β4 = v44 − 4,

β5 = v12 − 3, β6 = v14 − 2, β7 = v23 − 3, β8 = v34 − 3.

Therefore, in the setting of the problem in Example 3.3, the formula (3.4) can
be written more explicitly as follows:

PC2
(Vk) = Vk −

8∑
i=1

βiUi

= (vij)4×4 − (v11 − 4)D1 − (v22 − 4)D2 − (v33 − 4)D3 − (v44 − 4)D4

− (v12 − 3)M12 − (v14 − 2)M14 − (v23 − 3)M23 − (v34 − 3)M34

=


v11 v12 v13 v14
v12 v22 v23 v24
v13 v23 v33 v34
v14 v24 v34 v44

−


v11 − 4 v12 − 3 v13 v14 − 2

v12 − 3 v22 − 4 v23 − 3 v24
v13 v23 − 3 v33 − 4 v34 − 3

v14 − 2 v24 v34 − 3 v44 − 4



=


4 3 v13 2

3 4 3 v24
v13 3 4 3

2 v24 3 4

 .

From the above computation, it is worth noting that PC2
(Vk) has the same

entries as the fixed entries of the given matrix Ā. In other words, the projec-
tion onto C2 is extremely easy: we simply set the corresponding fixed entries
of the iterate back to the fixed values of the original matrix Ā.

52

It is left to consider Issue 3 mentioned above. The following two lemmas
will be useful for our discussion on this issue. They can be considered as
simple exercises in Linear Algebra.

Lemma 3.8. Let Z = (zij)n×n ∈ Sn
+. Then all diagonal entries of Z are

non-negative.

Proof. For each i = 1, . . . , n, let xi be the i-th unit vector in Rn. More
precisely, the i-th entry of xi equals 1 while the other entries are 0. Since
Z ∈ Sn

+, we must have xtZx ≥ 0 for all x ∈ Rn. By choosing x = xi, we have

0 ≤ (xi)tZxi = zii.

Therefore, all diagonal entries of Z are non-negative.

Lemma 3.9. Let
Z =

[
Z1 Z3

Zt
3 Z2

]
be a matrix in Sn, in which Z1 ∈ Rℓ×ℓ and Z2 ∈ R(n−ℓ)×(n−ℓ) are symmetric,
Z3 ∈ Rℓ×(n−ℓ) for some ℓ ∈ {1, . . . , n}. Then we have

∥Z∥2F = ∥Z1∥2F + ∥Z2∥2F + 2Tr(Z3Z
t
3).

Proof. In this proof we denote for simplicity by 0 the matrix whose all entries
are 0 and whose size is specified from the context. We have

∥Z∥2F

=

∥∥∥∥[Z1 Z3

Zt
3 Z2

]∥∥∥∥2
F

=

∥∥∥∥[Z1 0

0 0

]
+

[
0 0

0 Z2

]
+

[
0 Z3

Zt
3 0

]∥∥∥∥2
F

=

∥∥∥∥[Z1 0

0 0

]∥∥∥∥2
F

+

∥∥∥∥[0 0

0 Z2

]∥∥∥∥2
F

+

∥∥∥∥[0 Z3

Zt
3 0

]∥∥∥∥2
F

+2

⟨[
Z1 0

0 0

]
,

[
0 0

0 Z2

]⟩
F

+ 2

⟨[
0 0

0 Z2

]
,

[
0 Z3

Zt
3 0

]⟩
F

+ 2

⟨[
0 Z3

Zt
3 0

]
,

[
Z1 0

0 0

]⟩
F

.

Let us compute in detail each term in the last sum. For the first term we have∥∥∥∥[Z1 0

0 0

]∥∥∥∥2
F

= Tr

([
Z1 0

0 0

][
Z1 0

0 0

])
= Tr

([
Z2
1 0

0 0

])
= Tr(Z2

1) = ∥Z1∥2F .

53

Similarly, for the second term we have∥∥∥∥[0 0

0 Z2

]∥∥∥∥2
F

= Tr

([
0 0

0 Z2

][
0 0

0 Z2

])
= Tr

([
0 0

0 Z2
2

])
= Tr(Z2

2) = ∥Z2∥2F .

For the third term we have∥∥∥∥[0 Z3

Zt
3 0

]∥∥∥∥2
F

= Tr

([
0 Z3

Zt
3 0

][
0 Z3

Zt
3 0

])
= Tr

([
Z3Z

t
3 0

0 Zt
3Z3

])
= Tr(Z3Z

t
3) + Tr(Zt

3Z3).

For the fourth term we have⟨[
Z1 0

0 0

]
,

[
0 0

0 Z2

]⟩
F

= Tr

([
Z1 0

0 0

][
0 0

0 Z2

])
= Tr

([
0 0

0 0

])
= 0.

For the fifth term we have⟨[
0 0

0 Z2

]
,

[
0 Z3

Zt
3 0

]⟩
F

= Tr

([
0 0

0 Z2

][
0 Z3

Zt
3 0

])
= Tr

([
0 0

Z2Z
t
3 0

])
= 0.

Similarly, for the sixth term we have⟨[
0 Z3

Zt
3 0

]
,

[
Z1 0

0 0

]⟩
F

= Tr

([
0 Z3

Zt
3 0

][
Z1 0

0 0

])
= Tr

([
0 0

Zt
3Z1 0

])
= 0.

In summary, we obtain
∥Z∥2F = ∥Z1∥2F + ∥Z2∥2F + Tr(Z3Z

t
3) + Tr(Zt

3Z3).

It is a trivial property of trace function that Tr(Z3Z
t
3) = Tr(Zt

3Z3). Thus, in
conclusion, we have

∥Z∥2F = ∥Z1∥2F + ∥Z2∥2F + 2Tr(Z3Z
t
3).

The following proposition gives us an answer for the second issue men-
tioned above. Before stating the proposition, note that Wk is an iterate of
Algorithm 7, so it is a real symmetric matrix. As well-known from linear
algebra, all eigenvalues of Wk are real numbers. Let σ1 ≥ σ2 ≥ . . . ≥ σn
be eigenvalues of Wk. Furthermore, Wk admits an orthogonal diagonalization
Wk = QDQt, in which D = diag(σ1, . . . , σn) is the diagonal matrix whose entries
on its diagonal are eigenvalues of Wk, and Q is an orthogonal matrix whose
columns are normalized eigenvectors q1, . . . , qn respectively corresponding to
these eigenvalues.

54

Proposition 3.10. (see [5]) Let

Wk = QDQt (3.6)

be the orthogonal diagonalization of Wk. Then we have

PC1
(Wk) = PSn

+
(Wk) = QD+Qt, (3.7)

in which D+ is obtained from the diagonal matrix D by replacing negative
entries by 0.

Proof. If all eigenvalues of Wk are non-negative, then on one hand we have Wk

is positive semi-definite, and on the other hand we have D+ = D by definition
of D+. In this case we have Wk ∈ Sn

+ and therefore PSn
+
(Wk) = Wk. This

adapts (3.7), since D+ = D and consequently

QD+Qt = QDQt = Wk = PSn
+
(Wk).

It is left to consider the case that not all eigenvalues of Wk are non-negative.
Let σℓ is the smallest eigenvalue of Wk that is non-negative, then we have
σ1 ≥ σ2 ≥ . . . ≥ σℓ ≥ 0 and 0 > σℓ+1 ≥ . . . ≥ σn. By definition, the projection
point PSn

+
(Wk) is the unique solution to the following problem

min
Y ∈Sn

+

∥Wk − Y ∥F ,

which is equivalent to
min
Y ∈Sn

+

∥Wk − Y ∥2F .

Consider the objective function in the latter problem. Since Q is an orthogonal
matrix, we have QQt = QtQ = En which is the identity matrix of size n, and
therefore we obtain

∥Wk − Y ∥2F = ∥QDQt − Y ∥2F
= ∥QDQt −QQtY QQt∥2F
= ∥Q(D −QtY Q)Qt∥2F
= Tr

(
Q(D −QtY Q)Qt ·Q(D −QtY Q)Qt

)
= Tr

(
Q(D −QtY Q)2Qt

)
= Tr

(
QQt(D −QtY Q)2

)
= Tr

(
(D −QtY Q)2

)
= ∥D −QtY Q∥2F

55

= ∥QtY Q−D∥2F . (3.8)

For convenience, we decompose the diagonal matrix D into blocks as follows:

D =

[
D1 0

0 D2

]
,

in which D1 = diag(σ1, . . . , σℓ) is the diagonal matrix whose entries on its
diagonal are non-negative eigenvalues of Wk, and D2 = diag(σℓ+1, . . . , σn) is
the diagonal matrix whose entries on its diagonal are negative eigenvalues of
Wk. We do the similar decomposition to QtY Q. For the ease of representation,
let B = (bij)n×n = QtY Q. Since Y ∈ Sn

+, so is B. In particular, B is symmetric,
therefore we can decompose B into blocks as follows:

B =

[
B1 B3

Bt
3 B2

]
,

in which B1 ∈ Rℓ×ℓ and B2 ∈ R(n−ℓ)×(n−ℓ) are symmetric, B3 ∈ Rℓ×(n−ℓ). It is
worth to remind that, by Lemma 3.8, the diagonal entries of B1 and B2 are
non-negative.

Return to (3.8), we have

∥Wk − Y ∥2F = ∥QtY Q−D∥2F
= ∥B −D∥2F

=

∥∥∥∥[B1 −D1 B3

Bt
3 B2 −D2

]∥∥∥∥2
F

= ∥B1 −D1∥2F + ∥B2 −D2∥2F + 2Tr(B3B
t
3). (3.9)

The last equality is due to Lemma 3.9. In the last sum above, the first term
is with respect to B1, the second term is with respect to B2, and the last term
is with respect to B3. So we can minimize these terms independently.

Concerning the first term, we have

∥B1 −D1∥2F = Tr
(
(B1 −D1)

2
)
=

ℓ∑
i=1

(bii − σi)
2 +

∑
i,j∈{1,...,ℓ}

i ̸=j

b2ij .

We aim to minimize this term with respect to B1, given the facts that both
D1 = diag(σ1, . . . , σℓ) and B1 have non-negative entries on their diagonals. It
is trivial to see that the minimum is attained when bii = σi for all i = 1, . . . , ℓ

56

and bij = 0 for all i, j ∈ {1, . . . , ℓ} with i ̸= j. Equivalently, the first term
attains its minimum when B1 = D1.

Concerning the second term, we have

∥B2 −D2∥2F = Tr
(
(B2 −D2)

2
)
=

n∑
i=ℓ+1

(bii − σi)
2 +

∑
i,j∈{ℓ+1,...,n}

i̸=j

b2ij .

We aim to minimize this term with respect to B2, given the facts that B2 has
non-negative diagonal entries, and that D2 = diag(σℓ+1, . . . , σn) has negative
entries on its diagonal. It is trivial to see that the minimum is attained when
bii = 0 for all i = ℓ + 1, . . . , n and bij = 0 for all i, j ∈ {ℓ + 1, . . . , n} with i ̸= j.
Equivalently, the second term attains its minimum when B2 = 0.

Concerning the third term, we have

Tr(B3B
t
3) =

∑
i=1,...,ℓ

j=ℓ+1,...,n

b2ij .

So it is trivial to see that the third term attains it minimum when bij = 0 for
all i = 1, . . . , ℓ and j = ℓ+ 1, . . . , n, or in short, when B3 = 0.

Combining the above arguments and (3.9), we conclude that ∥Wk − Y ∥2F
attains its minimum when

QtY Q = B =

[
D1 0

0 0

]
= D+.

The last equality is due to the definition of D+. Equivalently, we have Y =

QD+Qt ∈ Sn
+ minimizes ∥Wk − Y ∥2F , so (3.7) is verified.

3.2.3 Numerical experiments

To see how Algorithm 7 performs, we tested it on the positive semi-definite
matrix completion problem in Example 3.2, which is reformulated in Example
3.3. We implemented this algorithm by using MATLAB R2020a and executed
on a PC Intel(R) Core(TM) i7-6700HQ CPU 2*2.60GHz, RAM 16GB. Our
MATLAB code is given below. In our code, we compute in each iteration the
value

d1k = ∥Wk − Vk+1∥F ,

which is the distance of the iterate Wk to the set C1 = Sn
+, and the value

d2k = ∥Vk −Wk∥F ,

57

which is the distance of the iterate Vk to the set C2 defined in Lemma 3.5.
We terminated the MATLAB program when both distances d1k and d2k are less
than 0.001. The last line of our code is to print out the last iterate before
terminating the program.

1 % (Symmetric) matrix to be completed as a positive semi-definite one.
2 % Zeros stand for unspecified entries.
3 % This matrix is also the initial point to start alternating projections.
4 Abar = [4 3 0 2; 3 4 3 0; 0 3 4 3; 2 0 3 4];
5

6 % Open file to record the computational results
7 fID = fopen('.\PSDcompletion.dat', 'w');
8

9 %% First iteration
10 % Initiate counting the number of iterations
11 iter = 1;
12 % Projection onto the positive semi-definite cone
13 [P, D] = eig(Abar); % Orthogonal diagonalization of iterate Abar
14 Dplus = max(D, 0); % Set nagative eigenvalues to 0
15 Vk = P * Dplus * P'; % Projection point of Abar onto the cone
16 % Projection onto the intersection of hyperplanes
17 Wk = Vk;
18 for i = 1:4
19 for j = 1:4
20 i f Abar(i,j) > 0
21 Wk(i,j) = Abar(i,j);
22 end
23 end
24 end
25 % Distance of each iterate to its corresponding projection set
26 dC1 = norm(Abar - Vk, 'fro');
27 dC2 = norm(Vk - Wk, 'fro');
28 % Print necessary information to file
29 fprintf(fID, '%d %f %f \n', iter, dC1, dC2);
30

31 %% Alternating projections until the maximum distance of iterates
32 %% to their corresponding projection sets is less than 0.001
33 while or(dC1 > 0.001, dC2 > 0.001)
34 % Record the order of current iteration
35 iter = iter + 1;
36 % Projection onto the positive semi-definite cone
37 [P, D] = eig(Wk); % Orthogonal diagonalization of iterate Wk
38 Dplus = max(D, 0); % Set nagative eigenvalues to 0
39 Vk = P * Dplus * P'; % Projection point of Abar onto the cone
40 dC1 = norm(Wk - Vk, 'fro'); % Distance from iterate Wk to the cone
41 % Projection onto the intersection of hyperplanes
42 Wk = Vk;
43 for i = 1:4
44 for j = 1:4
45 i f Abar(i,j) > 0
46 Wk(i,j) = Abar(i,j);
47 end

58

48 end
49 end
50 % Distance from Vk to the intersection of hyperplanes
51 dC2 = norm(Vk - Wk, 'fro');
52 % Print necessary information to file
53 fprintf(fID, '%d %f %f \n', iter, dC1, dC2);
54 end
55

56 %% Print the last iterate before terminating the program
57 Wk

After 30 iterations, our MATLAB program above printed out the following
matrix 

4.0000 3.0000 1.5851 2.0000

3.0000 4.0000 3.0000 1.5851

1.5851 3.0000 4.0000 3.0000

2.0000 1.5851 3.0000 4.0000


which means that all unspecified entries of the original matrix A given in
(3.3) converge to the same value 1.5851. In other words, the above matrix is
a positive semi-definite (approximate) completion of the original matrix A.

To have an intuition on how fast the iterates generated by Algorithm 7
converge to the desired solution, we plot in Figure 3.4 the values of the two
distances d1k and d2k with respect to the number of iterations. It can be seen
from the figure that the distances quickly converge to 0 in an exponential
rate, hence the iterates also converge quickly to the desired solution.

59

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

d
1

k
d

2

k

Figure 3.4: Plot of d1k and d2k with respect to the number of iterations.

60

Conclusions

In this thesis, we have studied the alternating projection method to find
a common point of finitely many closed convex sets in a finite dimensional
Euclidean space. More precisely, in Chapter 1 we recall some preliminaries
about convex sets, projection onto closed convex sets, projection onto sub-
spaces, and projection onto intersection of hyperplanes. In Chapter 2, we
first describe the method in the simplest setting with two closed convex sets,
and present a detailed proof for the convergence of the method in this setting.
Then we describe three variants of the alternating projection method together
with detailed proofs for their convergence, namely:

• periodic projection method to find a common point ofm ≥ 2 closed convex
sets, in which the key idea is to project sequentially and periodically onto
the involved convex sets;

• averaged projection method to find a common point of m = 2 closed
convex sets (which can be generalized for m ≥ 2), in which the key idea
is to project on each involved convex sets and take the average of the
projection points to be the next iterate;

• relaxed projection method to find a common point of m = 2 closed convex
sets (which can also be generalized for m ≥ 2), in which the key idea is
to replace the usual projection by under projection or over projection.

Chapter 3 presents two charming applications of the alternating projection
method. Namely, we present the uses of the alternating projection methods
in dividing a string into equal thirds and completing positive semi-definite
matrices. We also present some numerical experiments for these applications
to see the performance and evaluate the efficiency of the method. It is worth
noting that the variants and applications of the alternating projection method
are not limited to the presented ones in this thesis. Therefore, studying other
variants and applications of this method is in our plans in future.

61

Bibliography

[1] J. von Neumann. Functional Operators, Volume II: The Geometry of
Orthogonal Spaces. Princeton University Press, 1950.

[2] O. Ginat. The Method of Alternating Projections. PhD Dissertation,
University of Oxford, 2018.

[3] L. M. Bregman. The method of successive projection for finding a common
point of convex sets. Soviet Mathematics. Doklady, 162(3):688-692, 1965.

[4] H. S. Hundal. An alternating projection that does not converge in norm.
Nonlinear Analysis: Theory, Methods & Applications, 57(1):35–61, 2004.

[5] S. Boyd and J. Dattorro. Alternating projections. Technical report EE392o,
Stanford University, 2003.

[6] O. Güler. Foundation of Optimization. Springer Science + Business Media,
2010.

[7] A. Auslender. Optimisation: Méthodes Numériques. Mason, Paris, 1976.

[8] I. Halperin. The product of projection operators. Acta Scientiarum Math-
ematicarum, 23(1):96–99, 1962.

[9] G. Cimmino. Calcolo approssimato per le soluzioni dei sistemi di equazioni
lineari. La Ricerca Scientifica, XVI(1):326–333, 1938.

[10] S. D. Fl̊am and J. Zowe. Relaxed outer projections, weighted averages
and convex feasibility. BIT, 30:289–300, 1990.

[11] P. Diaconis, K. Khare, and L. Saloff-Coste. Stochastic alternating pro-
jections. Illinois Journal of Mathematics, 54(3):963-979, 2010.

