

1

Introduction

The central problem studied in this thesis is the maximum antichain prob-
lem, which is stated shortly as follows: “Given a partially ordered set S of
finite cardinality, find a subset A ⊆ S having as many elements as possible
such that any two distinct elements of A are incomparable”. This problem has
an intuitive statement in the language of graph theory as follows: “Given a
simple directed acyclic graph G, find a vertex subset A in G having as many
vertices as possible such that there is no directed path connecting any two
distinct vertices of A”.

In 1950, Robert Palmer Dilworth - an American mathematician - stated a
theorem in [1] about the size of a solution to the maximum antichain problem.
The theorem was then named after Dilworth. Later, in 1956, George Bernard
Dantzig and Alan Jerome Hoffman - two other American mathematicians -
gave a proof for this theorem in [2]. Their proof bases on the well-known linear
programming duality. In 1963, Micha Asher Perles - an Israeli mathematician
- gave another proof in [3] for the theorem, which uses an elegant induction
technique. In Chapter 1 of this thesis, we will focus on the statement of
Dilworth’s theorem as well as the two mentioned proofs for this theorem.

Dilworth’s theorem gives the base line for constructing a polynomial time
algorithm to solve the maximum antichain problem. Such an algorithm can
be traced from the proof of Corollary 14.7b in [4]. This result plays an im-
portant role in studying applications of maximum antichain problem. Such
an interesting application has been studied by Hiroshi Nagamochi in [5]. The
paper considers a cop-robber guarding game played on an undirected graph,
in which the robber region is a cycle, and the objective is to find a strategy
with minimum number of cops to guard the vertices outside the robber re-
gion. By constructing an auxiliary graph, Nagamochi showed that the size
of a maximum antichain in the auxiliary graph is the best lower bound for
the optimal number of cops in the game. It is worth noting that, with some
further technical arguments, Nagamochi proved in the same paper that such

2

the lower bound equals the optimal number of cops. In Chapter 2, we will
present the description of the cop-robber guarding game problem and the de-
tail proof of the result of Nagamochi on the best lower bound for the optimal
objective value of the problem.

The contents of this thesis are organized in two chapters as discussed above.
The thesis is closed with a summary in the conclusion part. It is worth noting
that the main results in this thesis are not new. Our main contributions in
the thesis consist of the followings.

• We give the detail proof for the graph version of Dilworth’s theorem in
Section 1.2. As far as we known, this theorem’s version is stated and
proved very briefly in Chapter 14 of [4]. In Section 1.2 we translate the
proof of Dantzig and Hoffman in [2], which is for the poset version of the
theorem, to the proof for the graph version.

• In Section 1.3 we translate the induction proof of Perles [3], which is for
the poset version of Dilworth’s theorem, to a detail proof for the graph
version of the theorem.

• We explain in detail the construction of Nagamochi in [5] for the problem
studied in Chapter 2, and provide an example that is different from the
one in [5].

Chapter 1

Dilworth’s theorem

The research object in the center of this chapter is Dilworth’s theorem,
which is an important result on the maximum antichain problem. We recall
in Section 1.1 some preliminaries and give detail statements for two equivalent
versions of the maximum antichain problem as well as Dilworth’s theorem.
Section 1.2 and Section 1.3 respectively present two proofs for the theorem:
one of Dantzig and Hoffmann in [2], the other of Perles in [3].

1.1 Theorem statement

Both the maximum antichain problem and Dilworth’s theorem have two
versions: one for posets and the other for acyclic simple digraphs. In this
section, we first give the detail statements for their poset version, then present
their graphical version.

1.1.1 Poset version

In the sequel, X is a finite set.

Definition 1.1. (Binary relation, see e.g. [6], Chapter 3). A binary relation
on X is a subset of X ×X.

Let E ⊆ X × X. A binary relation on X defined by the subset E can be
seen as a mapping R : X ×X → {0, 1} in which

R(x, y) =

{
1 if (x, y) ∈ E,
0 if (x, y) ̸∈ E.

We also write xRy to indicate that R(x, y) = 1.

3

4

Definition 1.2. (Partial order, see e.g. [4], Chapter 14). A partial order on
X is a binary relation 4 on X satisfying the following properties:

(i) Reflexivity: a 4 a for every a ∈ X;
(ii) Antisymmetry: For all a, b ∈ X, if a 4 b and b 4 a, then a = b;
(iii) Transitivity: For all a, b, c ∈ X, if a 4 b and b 4 c, then a 4 c.

If a 4 b, we say that a precedes b according to the relation 4. For a, b ∈ X,
we say that they are comparable if either a 4 b or b 4 a. The term ‘partial’
indicates that not every pair of elements in X needs to be comparable. We
write a ≺ b if a 4 b and a ̸= b.

Definition 1.3. (Poset, see e.g. [4], Chapter 14). The set X is called a
partially ordered set, or poset for short, if it is equipped by a partial order 4.

Example 1.4. Consider the set X = {1, 2, 3, 4, 5, 6, 7} and the subset E ⊂
X ×X given by

E = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (1, 2),
(1, 3), (3, 2), (2, 4), (1, 4), (4, 7), (1, 7), (2, 7), (3, 4),

(3, 5), (1, 5), (5, 7), (3, 7), (3, 6), (1, 6), (6, 7)}.

By checking exhaustively the reflexivity, antisymmetry, and transitivity prop-
erties described in Definition 1.2, the binary relation 4 defined by the set E is
a partial order, and hence the set X together with this relation 4 is a poset.

Definition 1.5. (Chains and antichains in posets, see e.g. [4], Chapter 14).
Let (X,4) be a poset.

(i) A chain in X is a subset C ⊆ X such that for any pair a, b ∈ C we have
either a 4 b or b 4 a.

(ii) An antichain in X is a subset A ⊆ X such that for all a, b ∈ A we have
a ̸≺ b and b ̸≺ a. The size of an antichain A is the number |A| of its elements.

(iii) A maximum antichain in X is an antichain of maximum size.

Roughly speaking, a chain in X is a subset whose elements are pairwise
comparable, while an antichain in X is a subset in which the elements are
pairwise non-comparable. As an illustration, for the poset (X,4) in Exam-
ple 1.4, the set {1, 3, 5, 7} is a chain since 1 ≺ 3 ≺ 5 ≺ 7. This is because
{(1, 3), (1, 5), (1, 7), (3, 5), (3, 7), (5, 7)} ⊂ E. Also in this example we have {2, 5}
is an antichain since (2, 5) ̸∈ E and (5, 2) ̸∈ E, i.e., 2 ̸≺ 5 and 5 ̸≺ 2. This
antichain has size 2 since it consists of two elements. By similar arguments,

5

{2, 5, 6} is also an antichain in the example. This antichain has size 3, and in
fact it is a maximum antichain of the poset (X,4).

The poset version of the maximum antichain problem reads as follows.

“Let (X,4) be a poset. Find a maximum antichain with respected to
the order 4 in X.”

Dilworth states in [1] a theorem about the size of a maximum antichain in
a poset. For the statement of the theorem, we need the following additional
concept.

Definition 1.6. (see [4], Chapter 14). Let (X,4) be a poset, Y ⊆ X, and C
a collection of chains in the poset. We say that C covers Y if each element in
Y belongs to a chain in C.

We again take the poset (X,4) in Example 1.4 to illustrate this concept.
There, let us consider the collection C consisting of two chains {1, 2, 4} and
{1, 3, 5, 7}. This collection obviously covers the set Y = {2, 5}, since the former
(resp., the latter) element in Y belongs to the former (resp., the latter) chain
in C.

It is now ready to state Dilworth’s theorem.

Theorem 1.7. (Dilworth’s theorem for posets). Let (X,4) be a poset. Then
the minimum number of chains covering X equals the size of a maximum
antichain in this poset.

1.1.2 Graphical version

It is more intuitive for us when representing the concepts and results in the
previous subsection in terms of graphs. Throughout this thesis, by graphs we
mean simple ones, i.e., (i) there is no edge or arc whose endpoints are the same
vertex and (ii) there are no pair of edges or arcs sharing common endpoints.

Given a poset (X,4), we construct a directed graph G associated with this
poset as follows.

• The vertex set of G consists of elements of X.

• For any pair of distinct vertices a, b in G, a directed arc (a, b) is formed if
a ≺ b and there does not exist a vertex c ∈ X\{a, b} such that a ≺ c ≺ b.

As an illustration, the graph associated with the poset in Example 1.4 is
shown in Figure 1.1. In this way of construction, two distinct elements u and

6

v are comparable in the sense that u ≺ v if there is a directed path from u to
v in G. Indeed, let u− i1− i2− . . .− ik−v be such a path. Since (u, i1) is an arc
of G, we have u ≺ i1. Similarly, we have i1 ≺ i2 ≺ . . . ≺ ik ≺ v. By transitivity
of the partial order 4, we have u ≺ v. In addition, it is clear that the graph
G constructed in this way is acyclic. Indeed, assume the contrary that there
exists a cycle v1− v2− . . .− vk − v1 in G with vk ̸= v1. Since v1− v2− . . .− vk is
a path, we have v1 4 vk. Since (vk, v1) is an arc in the cycle, we have vk 4 v1.
Thus, by antisymmetry of the partial relation 4, we have v1 = vk, which
contradicts our setting that vk ̸= v1. This contradiction proves the acyclic
property of G.

1

2

3

4

5

6

7

Figure 1.1: The graph associated with the poset in Example 1.4.

1

2

3

4

5

6

7

Figure 1.2: A directed acyclic graph that induces a partial order.

Conversely, given a directed acyclic graph G, we can construct a poset
(X,4) associated with G as follows.

• The set X consists of the vertices of G.

• Each element of X is comparable to itself with respect to the relation 4.

• Two distinct elements a, b ∈ X are comparable in the sense that a ≺ b if
there is a directed path from a to b in G.

7

In this way of construction, the relation 4 is in fact a partial order. This
comes from the following arguments.

• This relation is reflexive, since each element of X is comparable to itself
with respect to 4.

• This relation is antisymmetric, since the graph G is acyclic. Indeed, let
a, b ∈ X be such that a 4 b and b 4 a. If a ̸= b, then there exists a directed
path P from a to b (since a 4 b) and there exists a directed path P ′ from
b to a (since b 4 a). The concatenation of P and P ′ form a cycle going
through a and b, which contradicts the acyclic property of G. Therefore
we must have a = b, which proves the antisymmetry of 4.

• This relation is transitive. Indeed, let a, b, c ∈ X be pairwise distinct
satisfying a 4 b and b 4 c. Since a 4 b, there exists a directed path P1

from a to b in G. Similarly, since b 4 c, there exists a directed path P2

from b to c in G. The concatenation of P1 and P2 is a directed path from
a to c, which means a 4 c. This proves the transitivity of 4.

As an illustration, the graph in Figure 1.2 induces the poset in Example 1.4.
By the correspondence between posets and their associated directed acyclic
graphs as we have discussed, for each concept and result concerning posets
we have a corresponding version in terms of graphs.

Definition 1.8. (Chains and antichains in directed acyclic graphs, see e.g.
[4], Chapter 14). Let G be a directed acyclic graph.

(i) A chain in G is a directed path in this graph. If there is a chain from
a vertex u to a vertex v in G, then the chain is also called a u-v-path, and we
say that v is reachable from u, or u is reachable to v.

(ii) An antichain in G is a subset A of the vertex set of G such that there is
no chain between any pair of distinct vertices in G. The size of an antichain
A is the number |A| of its elements.

(iii) A maximum antichain in G is an antichain A of maximum size.

To illustrate, for the graph in Figure 1.1, {2, 5} is an antichain (since there is
no directed path from vertex 2 to vertex 5 and vice versa). Similarly, each set
{2, 6}, {4, 5}, {4, 6}, {5, 6} is also an antichain in this graph. These antichains
are of size 2. The sets {2, 5, 6} and {4, 5, 6} are also antichains of the same size
3, and they are maximum antichains in the graph. Hence, this example shows
that the maximum antichain in a directed acyclic graph can be non-unique.

8

Definition 1.9. (see [4], Chapter 14). Let G be a directed acyclic graph, B a
subset of the vertex set of G, and P a set of paths in G.

(i) We say that P covers B if each vertex in B belongs to a path in P. In
this case we also say that P is a path covering of B. The number of paths in
P, denoted |P|, is called the size of the path covering P.

(ii) We say that P is a minimum path covering of B if it covers B and for
any path covering P ′ of B we have |P ′| ≥ |P|.

(iii) We say that P is a path covering of G if it covers the vertex set of this
graph.

Roughly speaking, P is a minimum path covering of B if it has minimum
size among the path coverings of B. For example, in the graph in Figure 1.2,
the set P consisting of two paths 1− 2− 4 and 1− 3− 5− 7 covers B = {2, 5}
but does not cover B′ = {2, 5, 6} (since the vertex 6 does not belong to any
path in P). Since there is no path from vertex 2 to vertex 5 and vice versa,
the path covering P is also a minimum path covering of B = {2, 5}.

The maximum antichain problem can be now stated in terms of graphs as
follows.

“Find a maximum antichain in a given directed acyclic graph G.”

The following theorem restates Theorem 1.7 in the language of graph theory.

Theorem 1.10. (Dilworth’s theorem for acyclic digraphs). Let G be a directed
acyclic graph. Then the size of a minimum path covering of G equals the size
of a maximum antichain in G.

Given a directed acyclic graph G and (V,4) the poset associated with G,
by applying Theorem 1.7 to the poset (V,4), we can view Theorem 1.10 as a
corollary of the poset version of Dilworth’s theorem. However, for intuition
purpose, in the next two sections we will present two direct proofs for the
graphical version of Dilworth’s theorem (Theorem 1.10) using the language
of graph theory.

1.2 First proof

Dantzig and Hoffman in [2] give a proof for the poset version of Dilworth’s
theorem based on the well-known linear programming duality. Following their
proof, in this section we present a detail proof for the graphical version of
Dilworth’s theorem. It is worth noting that some concepts and results in this

9

section are introduced without citation, they are just technical concepts and
results that are used for the convenience of translating the proof of Dantzig
and Hoffman for poset version to the one for graph version.

To prove Theorem 1.10 on a given directed acyclic graph G, the following
three problems are concerned.

• (P1) Find a minimum path covering of G.

• (P2) Find a minimum vertex-disjoint path covering of G in its transitive
closure G.

• (P3) Find a maximum antichain in G.

The proof we are going to show in this section can be sketched into three
following steps.

• Step 1: Show that (P1) is equivalent to (P2).

• Step 2: Formulate (P2) as a linear program.

• Step 3: Show that the dual of (P2) gives an optimal solution for (P3).

We will discuss these steps respectively in the following three subsections.

1.2.1 Transitive closure graph

Let V be the vertex set and E the arc set of the given directed acyclic
graph G. We construct a directed graph G associated with G as follows.

• The vertex set of G is also the vertex set V of G.

• For any pair of distinct vertices u, v ∈ V , we establish a directed arc (u, v)

in G if there is a directed path from u to v in G.

Let E be the arc set of G. This arc set has the following property.

Proposition 1.11. Let u, v, w ∈ V be pairwise distinct. If (u, v) ∈ E and
(v, w) ∈ E, then (u,w) ∈ E.

Proof. By construction of G, since (u, v) ∈ E, there is a directed path P1 from
u to v in G. Similarly, since (v, w) ∈ E, there is a directed path P2 from v to
w in G. Let P be the concatenation of P1 and P2 at v, then P is a directed
path from u to w. Then (u,w) is an arc in G.

The above proposition means that the transitivity between arcs holds in G,
although this property might not hold for the original graph G. Therefore, we

10

call G the transitive closure of G. As an illustration, the graph in Figure 1.3
is the transitive closure of the one in Figure 1.2, in which the dashed arcs are
not in the original graph. The following proposition shows that an important
property of G is preserved in its transitive closure.

1

2

3

4

5

6

7

Figure 1.3: The transitive closure graph of the one in Figure 1.2.

Proposition 1.12. The transitive closure graph G is also directed acyclic.

Proof. By construction, E consists of directed arcs, hence G is directed.
Assume the contrary that there exists a cycle v1 − v2 − . . .− vk − v1 in G. For
each i = 1, . . . , k − 1, since (vi, vi+1) is an arc in G, there exists a path Pi from
vi to vi+1 in the original graph G. Lastly, since (vk, v1) is an arc in G, there
is a path Pk from vk to v1 in G. By consecutively concatenating P1, . . . , Pk we
obtain a cycle P in G going through v1, . . . , vk and back to v1. The existence of
the cycle P contradicts the acyclic property of G. This contradiction implies
that G is acyclic.

For the discussion in the sequel, we need the following concepts.

Definition 1.13. (i) A path covering P of G is called improper if there is a
path P ∈ P such that each vertex of P belongs also to another path in P.

(ii) A path covering of G is called proper if it is not improper.
(iii) A path covering P of G is called vertex-disjoint if the paths in P are

pairwise vertex-disjoint (i.e., there is no common vertex between any pair of
paths in P).

(iv) A path consisting of a single vertex is called a degenerated path.

If P is an improper path covering of G, then by definition there exists a
path P ∈ P whose vertices are covered by the other paths in P. In this case we
can remove the path P from P and obtain a path covering P ′ = P\{P} that

11

still covers the vertex set of G. Therefore, without loss of generality, we can
assume that all path coverings under our consideration are proper.
Furthermore, it is worth noting that every minimum path covering must be
proper.

The following lemma is important for proving the main result in this sub-
section.
Lemma 1.14. Let P be a path covering of G. Then there exists a vertex-
disjoint path covering P of G having the same size as P.

If P consists of only one path P , then we simply take P = {P}. Therefore
we only need to consider the case that |P| ≥ 2. We will prove this lemma by
giving an algorithm to construct P from P. The key idea of this algorithm
is to add each path of P into P until an intersection by vertex appears, then
going through a transitive closure arc to avoid the intersection vertex on the
current path. Here, we say that two paths intersect if they have a common
vertex, and such vertex is called an intersection one. The precise description
of the algorithm is given below.

Algorithm 1 Construct a vertex-disjoint path covering of G from a given path covering of G
1: Input: A path covering P = {P1, . . . , Pp} of G with p ≥ 2.
2: Output: A vertex-disjoint path covering P of G such that |P| = |P|.
3: for i = 1, . . . , p− 1 do
4: if Pi has only one vertex, say v, that is not in the sequel paths Pi+1, . . . , Pp then
5: Pi := {v}
6: else
7: Let vi1, . . . , v

i
ℓi

be the vertices in Pi (respectively appear in the direction of Pi) that are
not in the sequel paths Pi+1, . . . , Pp.

8: Let Pi be the path vi1 − vi2 − . . .− viℓi .
9: end if

10: end for
11: P p := Pp.
12: P := {P1, . . . , Pp}.

Since P is proper, each path in P must have at least one non-intersection
vertex. Therefore, the if-else clause from line 4 to line 13 in Algorithm 1 is
executable. The existence of the path in line 11 of the algorithm is guaranteed
by the structure of the transitive closure graph G. Note that, if for some
i ∈ {1, . . . , p} the path Pi has no intersection vertex, then Pi coincides Pi. The
following example illustrates the above algorithm.
Example 1.15. Let us again consider the graph G in Figure 1.2. For this
graph we have a path covering P = {P1, P2, P3} in which P1 is the arc 6−7, P2

12

is the path 1− 3− 5, and P3 is the path 3− 2− 4. These paths are respectively
illustrated by red, blue, and green paths in Figure 1.4. Following Algorithm
1, the path P1 has no intersection vertex, so we take P1 := P1. The path P2

has vertex 3 belonging to the sequel path P3, so we will avoid this vertex.
From the begin to the end of the path P2, vertex 1 and vertex 5 respectively
appear as the ones that are not in the sequel path P3. Therefore, line 8 of the
algorithm gives us P2 consisting of the arc connecting from vertex 1 to vertex
5. Then, line 11 of the algorithm gives us P3 := P3. We obtain P = {P1, P2, P3}
as a vertex-disjoint path covering of the transitive closure graph of G. Note
that the path P2 consists of arc (1, 5) which is not in the original graph G.
The paths in P are illustrated respectively by red, blue, and green paths in
Figure 1.5.

1

2

3

4

5

6

7

Figure 1.4: A path cover consists of red, blue, green paths for the one in Figure 1.2.

1

2

3

4

5

6

7

Figure 1.5: The vertex-disjoint path covering obtained by applying Algorithm 1
on the path covering in Figure 1.4.

We now give a detail proof for Lemma 1.14.
Proof of Lemma 1.14. By Algorithm 1, each path Pi in P is processed

once, sequentially in its order in the path covering. If there is no intersection
vertex in Pi, then no action is done after scanning this path, i.e., Pi = Pi.
Otherwise, after processing, the path Pi only consists of the vertices of Pi that

13

do not belong to the processed paths, and the intersection vertices of Pi are
taken into account for the non-processed paths in P. Thus, after processing
all paths in P, we obtain P1, . . . , Pp as vertex-disjoint paths. The collection
P = {P1, . . . , Pp} hence has the the same size as the path covering P.

On the other hand, all vertices of the paths in P are scanned, and each
vertex belongs to exactly one path Pi. Since P is a path covering of G, the
vertex set of G is also covered by the paths in P. So P is a vertex-disjoint
path covering of G.

The following lemma shows that the reverse direction of Lemma 1.14 is
also true.

Lemma 1.16. If there is a vertex-disjoint path covering P of G, then there
exists a proper path covering P of G having the same size as P.

Proof. We construct the path covering P of G from the path covering P of
G as follows. Firstly, we assign P := P. Then, for each path P in P, if there
exists an arc (u, v) ∈ E\E (i.e., an arc in G but not in G), then we replace
this arc by a path from u to v in G. This can be done since it adapts the
construction of arcs in G.

Following the above construction, from the path covering P = {P1, . . . , Pp}
of G we obtain a collection P = {P1, . . . , Pp} in which each path Pi in P is
obtained by modifying the corresponding path Pi in P. For each i = 1, . . . , p,
the vertex set V (Pi) of the path Pi contains the vertex set V (Pi) of the path
Pi. Thus we have

p∪
i=1

V (Pi) ⊃
p∪

i=1

V (Pi) = V. (1.1)

The equality in (1.1) is because that P covers the vertex set of G. The first
union in (1.1) is the vertex set of all paths in P. Thus P also covers the vertex
set of G. In addition, the arc set in each path Pi of P are all in E (the arc set
of G). Therefore, P is a path covering of G.

Since the paths P1, . . . , Pp are vertex-disjoint and V (Pi) ⊂ V (Pi) for each
i = 1, . . . , p, each path Pi in P always has at least one vertex that does not
belong to another path in P. Hence P is proper.

The following theorem is the main result in this subsection.

Theorem 1.17. The following two problems are equivalent (in the sense
that they have the same optimal objective value and there is an one-to-one
correspondence between their optimal solutions).

14

(P1) Find a minimum path covering of G.
(P2) Find a minimum vertex-disjoint path covering of G.

Proof. Let P be an optimal solution of (P1) and let p = |P|. By applying
Algorithm 1 we obtain a vertex-disjoint path covering P of G with |P| = p.
Assume that G has another path covering P ′ with |P ′| < p. Then, by the
construction in the proof of Lemma 1.16, we obtain a proper path covering
P ′ of G with |P ′| = |P ′| < p. The existence of P ′ contradicts the optimality
of P. Thus, P is a minimum vertex-disjoint path covering of G, i.e., it is an
optimal solution to (P2), and p is also the optimal objective value of (P2).

Conversely, let Q be an optimal solution of (P2) and q = |Q|. By the
construction in the proof of Lemma 1.16, we obtain a proper path covering
Q of G with |Q| = q. Assume that G has another path covering Q′ with
|Q′| < q. Then, by applying Algorithm 1, we obtain a path covering Q′ of
G with |Q′| < q. This means that Q is not a minimum path covering of G,
contradicting the optimality of Q. Hence there is no path covering of G whose
size is strictly less than |Q|, so Q is an optimal solution of (P1) and h is also
the optimal value of (P1).

By Theorem 1.17, instead of considering the problem of finding a minimum
path covering of G, we can now focus on the equivalent problem of finding a
vertex disjoint path covering of the transitive closure graph G. In the next
subsection, we will formulate the latter problem as a linear program.

1.2.2 Minimum path covering as primal program

We are given the directed acyclic graph G = (V,E) whose vertex set V con-
sists of n vertices named v1, . . . , vn, and the transitive closure graph G = (V,E)

of G. Our aim is to find a vertex-disjoint path covering of G of minimum size.
This subsection presents the construction of a linear programming formula-
tion for this problem. This formulation is based an embedding of G in a
network N constructed as follows.

• The vertex set VN of N is formed by adding a vertex v0 to the vertex set
V of G, i.e., VN = {v0, v1, . . . , vn}.

• For each i = 1, . . . , n, we connect the vertex v0 to the vertex vi by an arc
(v0, vi). These arcs are called forward arcs.

• For each i = 1, . . . , n, we connect the vertex vi to the vertex v0 by an arc
(vi, v0). These arcs are called backward arcs.

15

• We add a loop (v0, v0), i.e. a directed arc starting from v0 and going back
to this vertex.

• For the loop (v0, v0) we associate a cost c00 = 1, while for each of the other
arcs in the network we associate a cost 0.

The arc set of the network N is

EN = E ∪ {(v0, vi), (vi, v0) | i = 1, . . . , n} ∪ {(v0, v0)}.

For convenience, we denote E∗N the set of arcs in the network without the
loop (v0, v0). Hence, each arc (vi, vj) in E∗N is associated with a cost cij = 0.
Figure 1.6 illustrates the network N constructed from the transitive closure
graph G in Figure 1.3. There, the vertices are represented by their indices,
the forward arcs are in red color, and the backward arcs are in blue color.

1

2

3

4

5

6

7

0

Figure 1.6: The network constructed from the graph in Figure 1.3.

Imagine that the vertex v0 has a number of flow units and we would like to
pump them into the network, then collect them again at v0. Except for the
loop (v0, v0), each arc in the network can carry at most one flow unit, but no
fraction is allowed. It means that whenever a flow unit comes to the starting
vertex of an arc in G, either the whole flow unit is traversed through the arc
or no unit at all. In principle, we can send n flow units in total to G through

16

the n forward arcs. Therefore, we assume that at the beginning the vertex v0
keeps n flow units.

A flow in the network N is a way of distributing and traversing the flow
units in this network. The key idea here is to use the trace of each flow
unit traversed in G as a path in a vertex-disjoint path covering of this graph.
More precisely, assume that from v0 we pump p ≤ n flow units into G. For
each i = 1, . . . , p, the ith flow unit is first sent from v0 to a vertex vi1 ∈ V

through the forward arc (v0, v
i
1). Then, the flow unit traverses along a path

Pi = vi1− . . .−viℓi in G, in which ℓi is the number of vertices in this path. From
viℓi the flow unit is collected back to v0 through the backward arc (viℓi , v0). In
this way, the flow of the p flow units gives us a collection P = {P1, . . . , Pp} of
paths in G. To have P as a vertex-disjoint path covering of G, each vertex of
G must be visited by exactly one flow unit. Since p flow units have been sent
into G, there are n − p flow units remaining at the vertex v0. As a technical
action, we pump all of these n − p flow units into the loop (v0, v0), so they
are back to v0. For illustration, the path covering in Figure 1.5 corresponds
to the flow illustrated by red, blue, green, and purple cycles in Figure 1.7, in
which the loop in purple color has 4 flow units and each of the other cycle
traverses 1 flow unit.

1

2

3

4

5

6

7

0

Figure 1.7: The flow corresponds to the path covering in Figure 1.6.

17

Now, by seeing how many flow units traversed in the loop (v0, v0), we can
know the size of the path covering P. That is the reason why we assign a cost
c00 = 1 to the loop (v0, v0) and a cost of 0 to the other arcs in the network.
Let us introduce a non-negative integer variable x00 to indicate the number
of flow units traversed through the loop (v0, v0), and for each arc (vi, vj) ∈ E∗N
a binary variable

xij =

{
1 if there is a flow unit traversed through the arc (vi, vj),
0 otherwise.

Using these variables, the flow value in this network is

c00x00 +
∑

(vi,vj)∈E∗N

cijxij = x00,

and therefore, the size of the corresponding path covering P is n− x00. Since
we aim to find a minimum path covering, our objective is

minimize (n− x00),

or equivalently
maximize x00.

Since each vertex in G is visited by exactly one flow unit, we must have∑
j∈{0,...,n}:
(vi,vj)∈E∗N

xij = 1, ∀i = 1, . . . , n, (1.2)

∑
i∈{0,...,n}:
(vi,vj)∈E∗N

xij = 1, ∀j = 1, . . . , n. (1.3)

Constraints (1.2) ensure that there is exactly one flow unit going out of each
vertex in G. Constraints (1.3) mean that there is exactly one flow unit coming
to each vertex in G. For the additional vertex v0 we must impose

n∑
j=0

x0j = n, (1.4)

n∑
i=0

xi0 = n. (1.5)

18

Constraint (1.4) ensures that the vertex v0 sends n flow units in total to the
network, and constraint (1.5) ensures that this vertex collects all of the n

flow units. As a summary, we obtain the following integer program for the
problem (P2) of finding a minimum vertex-disjoint path covering of G.

(MinPCIP) max x00

s.t. (1.2)− (1.5)

x00 ∈ Z+

xij ∈ {0, 1} ∀i, j ∈ {0, . . . , n} : (vi, vj) ∈ E∗N .

Consider the following linear relaxation of the above integer program (see [2]).

(MinPCLP) max x00

s.t. (1.2)− (1.5)

xij ≥ 0 ∀i, j ∈ {0, . . . , n} : (vi, vj) ∈ EN .

We have the following observation on this linear program.

Lemma 1.18. The linear program (MinPCLP) is feasible and its optimal
objective value is finite.

Proof. On one hand, let x∗ be the vector defined as follows:

x∗i0 = 1, ∀i = 1, . . . , n,

x∗0j = 1, ∀j = 1, . . . , n,

x∗00 = 0,

x∗ij = 0, ∀i, j = 1, . . . , n : (vi, vj) ∈ E∗N .

This vector has non-negative components and satisfies (1.2)-(1.5), therefore
it is a feasible solution to (MinPCLP). So the linear program (MinPCLP) is
feasible.

On the other hand, it follows from the non-negativity of variables and (1.2)
that

0 ≤ xij ≤ 1, ∀i = 1, . . . , n, j = 0, . . . , n : (vi, vj) ∈ E∗N .

Similarly, from the non-negativity of variables and (1.3) we have

0 ≤ xij ≤ 1, ∀j = 1, . . . , n, i = 0, . . . , n : (vi, vj) ∈ E∗N .

Lastly, the non-negativity of variables and (1.4)-(1.5) implies

0 ≤ x00 ≤ n.

19

So all variables in (MinPCLP) is bounded. Since the feasible set of this pro-
gram is bounded, the maximum in its objective is finite.

We will show furthermore that (MinPCLP) is equivalent to another lin-
ear program whose constraints have a better structure to exploit. For the
construction of the latter program, let Ẽ := (V × V)\EN . By this setting,
(vi, vj) ∈ Ẽ if there is no directed path from vi to vj in the original graph G.
In this manner, we call each arc in Ẽ an fictitious arc. We would like to take
these fictitious arcs into account of the new program. However, since they are
fictitious, we must impose that no flow unit is transferred through any arc
in Ẽ. Following these ideas, for each fictitious arc (vi, vj) ∈ Ẽ we introduce a
non-negative variable xij and assign a cost cij = −∞. We come up with the
following linear program (see [2]).

(PathCoverLP) max

n∑
i,j=0

cijxij (1.6)

s.t.

n∑
j=0

xij = 1, ∀i = 1, . . . , n, (1.7)

n∑
i=0

xij = 1, ∀j = 1, . . . , n, (1.8)

n∑
j=0

x0j = n, (1.9)

n∑
i=0

xi0 = n, (1.10)

xij ≥ 0, ∀i, j = 0, . . . , n. (1.11)

Since the costs associated to the arcs of our network are given by

cij =


1 if i = j = 0,
0 if (vi, vj) ∈ E∗N ,
−∞ if (vi, vj) ∈ Ẽ,

the objective function in (1.6) is equal to

x00 +
∑

(vi,vj)∈Ẽ

cijxij .

20

Since we aim to maximize this objective function on non-negative variables,
the use of cij = −∞ for fictitious arcs (vi, vj) ∈ Ẽ is just an alternative way
to impose that the corresponding variables must be 0. This is the key idea
to prove the equivalence between the two linear programs (MinPCLP) and
(PathCoverLP). To be precise, we first start with the following observation.

Lemma 1.19. (see [2]) The optimal objective value of (PathCoverLP) does
not exceed the one of (MinPCLP).

Proof. We have already known from Lemma 1.18 that the optimal objective
value of (MinPCLP) exists finitely. In case that (PathCoverLP) is infeasi-
ble, its optimal objective value is −∞, which is clearly less than the one of
(MinPCLP). It is left to consider the case that (PathCoverLP) is feasible.

Let x be an optimal solution of (PathCoverLP). If xij > 0 for some indices
i, j such that (vi, vj) ∈ Ẽ, then for that pair of indices we have cij = −∞ and
therefore cijxij = −∞. Consequently, the objective value of (PathCoverLP) at
x is −∞, which is again clearly less than the one of (MinPCLP). So now we
only need to focus on the case in which xij = 0 for all i, j such that (vi, vj) ∈ Ẽ.

Let xEN ∈ R|EN | be defined by setting xEN

ij = xij for each (vi, vj) ∈ EN , then
we have immediately that all components of xEN are non-negative. Since x

satisfies (1.7), for each i = 1, . . . , n we have

1 =

n∑
j=0

xij =
∑

j∈{0,...,n}:
(vi,vj)∈E∗N

xij +
∑

j∈{0,...,n}:
(vi,vj)∈Ẽ

xij =
∑

j∈{0,...,n}:
(vi,vj)∈E∗N

xij =
∑

j∈{0,...,n}:
(vi,vj)∈E∗N

xEN

ij ,

which means that xEN satisfies (1.2). Similarly, from the fact that x satisfies
(1.8), we deduce that xEN satisfies (1.3). Furthermore, for each i, j = 0, . . . , n

we have (v0, vj) ̸∈ E and (vi, v0) ̸∈ E, hence it follows that

xEN

0j = x0j , ∀j = 0, . . . , n,

xEN

i0 = xi0, ∀i = 0, . . . , n.

So by (1.9) we have

1 =

n∑
j=0

x0j =

n∑
j=0

xEN

0j ,

which means that xEN satisfies (1.4). Similarly, from the fact that x sat-
isfies (1.10), we deduce that xEN satisfies (1.5). To summarize, xEN has

21

non-negative components and satisfies (1.2)-(1.5), therefore xEN is a feasible
solution to (MinPCLP).

Since x is an optimal solution of (PathCoverLP), the optimal objective value
of this program is

x00 +
∑

(vi,vj)∈Ẽ

cijxij = x00 = xEN

00 ,

which is the objective value of (MinPCLP) at xEN . As we have shown above,
xEN is a feasible solution to (MinPCLP), so the objective value of (MinPCLP)

at xEN does not exceed the optimal objective value of this program. Therefore,
the optimal objective value of (PathCoverLP) is at most the one of (MinPCLP).

The reverse direction of Lemma 1.19 also holds true, as shown in the next
lemma.

Lemma 1.20. (see [2]) The linear programs (MinPCLP) and (PathCoverLP)

are equivalent (in the sense that they have the same optimal objective value
and there is an one-to-one correspondence between their optimal solutions).

Proof. Let xEN be an optimal solution of (MinPCLP), then all components
of xEN are non-negative. By Lemma 1.18 the existence of xEN is guaranteed.
Let x be defined as follows.

xij =

{
xEN

ij if (vi, vj) ∈ EN ,
0 if (vi, vj) ∈ Ẽ.

Since all components of xEN are non-negative, so are components of x. By
construction of our network, the arcs (v0, vj) and (vi, v0) (for i, j = 0, . . . , n) are
non-fictitious, i.e., they are not in Ẽ. Thus we have

x0j = xEN

0j , ∀j = 0, . . . , n, (1.12)
xi0 = xEN

i0 , ∀i = 0, . . . , n. (1.13)

Since xEN is an optimal solution of (MinPCLP), it satisfies constraints (1.4)
and (1.5). So we have

n∑
j=0

xEN

0j = n (1.14)

n∑
i=0

xEN

i0 = n. (1.15)

22

By (1.12)-(1.15) we obtain
n∑

j=0

x0j = n,

n∑
i=0

xi0 = n.

In other words, x satisfies (1.9)-(1.10). Additionally, for each i = 1, . . . , n we
have

n∑
j=0

xij =
∑

j∈{0,...,n}:
(vi,vj)∈E∗N

xij +
∑

j∈{0,...,n}:
(vi,vj)∈Ẽ

xij =
∑

j∈{0,...,n}:
(vi,vj)∈E∗N

xij =
∑

j∈{0,...,n}:
(vi,vj)∈E∗N

xEN

ij = 1,

which means that x satisfies (1.7). The second and the third equalities above
are due to the definition of x, while the last equality is due to the fact that
xEN satisfies (1.2) as it is an optimal solution of (MinPCLP). Similarly, we
also obtain that x satisfies (1.8).

We have shown that x has non-negative components and satisfies (1.7)-
(1.10). Thus x is a feasible solution to (PathCoverLP). Note that the objective
value of (PathCoverLP) at x is

x00 +
∑

(vi,vj)∈Ẽ

cijxij = x00 = xEN

00 ,

which is the same as the optimal objective value of (MinPCLP). This, together
with the fact that the optimal objective value of (PathCoverLP) does not
exceed the one of (MinPCLP) as proved in Lemma 1.19, implies that x is in
fact an optimal solution of (PathCoverLP). Hence, the two linear programs
have the same optimal objective value, and the correspondence between xEN

and x completes the proof of this lemma.
Thanks to Lemma 1.20, the following proposition gives the key result in

this subsection.

Proposition 1.21. (see [2]) The linear program (MinPCLP) admits an in-
tegral optimal solution, i.e. an optimal solution whose all components are
integer.

Proof. In form of (1.6)-(1.11), (PathCoverLP) is a transportation problem
(cf. [7], Section I.3.5). The right hand sides of constraints (1.7)-(1.10) are

23

integers, therefore this program has an integral optimal solution (see e.g. [7],
Corollary 5.2). Let x be such a solution of (PathCoverLP). Following the
proofs of Lemma 1.19 and Lemma 1.20, the vector xEN ∈ R|EN | defined by

xEN

ij = xij ∀(vi, vj) ∈ EN

is an optimal solution of (MinPCLP). Since the components of xEN are also
components of x, they are all integers. Thus, (MinPCLP) admits xEN as an
integral optimal solution.

By Proposition 1.21, instead of solving the integer program (MinPCIP) we
just need to solve to optimality the linear relaxation (MinPCLP). Any integral
solution to (MinPCLP) is a feasible solution to (MinPCIP), which encodes a
vertex-disjoint path covering of G. Hence, any integral optimal solution to
(MinPCLP) encodes a minimum vertex-disjoint path covering of G.

1.2.3 Maximum antichain as dual program

It has been shown from the previous subsection that the linear program
(MinPCLP), which reads as

(MinPCLP) max x00

s.t.
∑

j∈{0,...,n}:
(vi,vj)∈E∗N

xij = 1, ∀i = 1, . . . , n (1.2)

∑
i∈{0,...,n}:
(vi,vj)∈E∗N

xij = 1, ∀j = 1, . . . , n, (1.3)

n∑
j=0

x0j = n, (1.4)

n∑
i=0

xi0 = n, (1.5)

xij ≥ 0, ∀i, j ∈ {0, . . . , n} : (vi, vj) ∈ EN ,

admits an integral optimal solution which encodes a minimum vertex-disjoint
path covering of G. The optimal value of this program is n− p in which p is
the size of the optimal path covering. The dual to this program (see [2]) is

(DualPCLP) min

n∑
i=1

ui+

n∑
j=1

wj + n(u0 + w0), (1.16)

24

s.t. u0 + w0 ≥ 1, (1.17)
ui + w0 ≥ 0, ∀i = 1, . . . , n, (1.18)
u0 + wj ≥ 0, ∀j = 1, . . . , n, (1.19)
ui + wj ≥ 0, ∀i, j > 0 : (vi, vj) ∈ E∗N , (1.20)
ui, wj ∈ R, ∀i, j = 0, . . . , n. (1.21)

In this dual program, u0 and w0 are respectively the dual variables correspond-
ing to constraints (1.4) and (1.5), while ui and wj (with i, j ∈ {1, . . . , n}) are
respectively the dual variables corresponding to constraints (1.2) and (1.3).

The first observation on (DualPCLP) is given in the following proposition.

Proposition 1.22. (see [2]) The optimal objective value of (DualPCLP) equals
the one of (MinPCLP).

Proof. As shown in the previous subsection, the linear program (MinPCLP)

is feasible and has finite optimal objective value. Thus, the claim in this
proposition follows from the well-known strong duality theorem in linear pro-
gramming.

As proved in Proposition 1.21, the primal program (MinPCLP) admits an
integral optimal objective value. The following proposition gives a similar
result for the dual program (DualPCLP).

Proposition 1.23. (see [2]) The dual program (DualPCLP) admits an integral
optimal solution.

Proof. In order to obtain a contradiction, assume that all optimal solutions to
(DualPCLP) are non-integral. Among these optimal solutions, let us consider
one with the fewest number of non-integers among the values of u0, . . . , un
and w0, . . . , wn. Since we aim to minimize the objective function (1.16) and
the right hand sides of constraints (1.17)-(1.20) are integers, there must be at
least one non-integer in u0, . . . , un and at least one non-integer in w0, . . . , wn.
Let

ε = min{ui − ⌊ui⌋ | i = 0, . . . , n such that ui is not integer}.
Here, ⌊ui⌋ is the largest integer that is smaller than or equal to ui. Let us
define a new solution (u′0, . . . , u

′
n, w

′
0, . . . , w

′
n) to (DualPCLP) as follows:

u′i =

{
ui − ε if ui is non-integer,
ui if ui is integer,

25

w′j =

{
wj + ε if wj is non-integer,
wj if vj is integer.

If u′i = ui−ε and w′j = wj+ε participate in a constraint among (1.17)-(1.20)
for some i, j ∈ {0, . . . , n}, then we have u′i+w′j = ui+wj and hence they satisfy
that constraint. If u′i = ui and w′j = wj + ε participate in a constraint among
(1.17)-(1.20) for some i, j ∈ {0, . . . , n}, then we have u′i + w′j = ui + wj + ε >

ui + wj, and hence they also satisfy that constraint.
It is left to check for i, j ∈ {0, . . . , n} such that u′i = ui − ε and w′j = wj. In

such case, we are given non-integer ui and integer wj with ui + wj ≥ cij for
cij ∈ Z. More precisely, in the setting of (DualPCLP) we have cij = 0 except
for c00 = 1. It follows that ⌊ui⌋+ wj ≥ cij. Now, by definition of ε we have

u′i + w′j = ui − ε+ wj ≥ ui − (ui − ⌊ui⌋) + wj = ⌊ui⌋+ wj ≥ cij .

Hence, in this case u′i and w′j also satisfy the constraints of (DualPCLP).
The above arguments show that (u′0, . . . , u′n, w′0, . . . , w′n) is a feasible solution

to (DualPCLP). Together with our assumption that (u0, . . . , un, w0, . . . , wn) is
an optimal solution of (DualPCLP), this fact gives us

n∑
i=1

u′i +

n∑
j=1

w′j + n(u′0 + w′0) ≥
n∑

i=1

ui +

n∑
j=1

wj + n(u0 + w0). (1.22)

Note that, by the choice of ε, the former solution has at least one more integral
(u-)component, or equivalently, at least one less non-integral component, than
the latter solution. Therefore, if these two solutions have the same objective
value, then the existence of the former solution contradicts our assumption
that the latter one is the solution with the fewest number of non-integers. So
these two solutions must have different objective values. Keeping (1.22) in
mind, it follows that

n∑
i=1

u′i +

n∑
j=1

w′j + n(u′0 + w′0) >

n∑
i=1

ui +

n∑
j=1

wj + n(u0 + w0).

By definition of variables u′ and v′, this inequality implies
|{ui ∈ {u1, . . . , un} : ui is non-integer}|+ nδu0

< |{wj ∈ {w1, . . . , wn} : vj is non-integer}|+ nδw0 , (1.23)
in which

δu0 =

{
1 if u0 is non-integer,
0 if u0 is integer,

26

δw0 =

{
1 if w0 is non-integer,
0 if w0 is integer.

Consider another solution (u0, . . . , un, w0, . . . , wn) defined as follows:

ui =

{
ui + δ if ui is non-integer,
ui if ui is integer,

wj =

{
wj − δ if wj is non-integer,
wj if wj is integer,

in which

δ = min{wj − ⌊wj⌋ | j = 0, . . . , n such that wj is not integer}.

By the same arguments as applied for u′ and w′ above, (u0, . . . , un, w0, . . . , wn)

is also a feasible solution to (DualPCLP). However, by construction of u and
w, it follows from (1.23) that

n∑
i=1

ui +

n∑
j=1

wj + n(u0 + w0) <

n∑
i=1

ui +

n∑
j=1

wj + n(u0 + w0).

This inequality contradicts the optimality of (u0, . . . , un, w0, . . . , wn). This con-
tradiction implies that all optimal solution to (DualPCLP) are integral.

We now show a specific integral optimal solution to (DualPCLP). For that,
we start with an arbitrary integral optimal solution (u0, . . . , un, w0, . . . , wn) of
this program. Following the above proof of feasibility of (u′0, . . . , u′n, w′0, . . . , w′n),
we can add a constant to each of u0, . . . , un and then subtract the same con-
stant from each of w0, . . . , wn without violating (1.17)-(1.20) or changing the
objective value (1.16). By choosing w0 for such constant, we can assume that
w0 = 0. Then, constraint (1.17) implies that u0 ≥ 1. If u0 > 1, we can subtract
an amount of ε = u0 − 1 from u0 and then add the same amount ε to each of
w1, . . . , wn. This preserves (1.17)-(1.20) and also preserves the objective value
(1.16). So we can assume u0 = 1. Then, constraints (1.19) implies that

wj ≥ −1 ∀j = 1, . . . , n. (1.24)

Since w0 = 0, constraints (1.18) implies that

ui ≥ 0 ∀i = 1, . . . , n. (1.25)

27

Since we aim to minimize the objective (1.16), by (1.25) and (1.20) we can
impose

wj ≤ 0 ∀j = 1, . . . , n. (1.26)
Similarly, by (1.24), (1.20), and the desire to minimize (1.16), we can impose

ui ≤ 1 ∀i = 1, . . . , n. (1.27)

By (1.25), (1.27), and the integrality of u-components, we can set value 0
to some elements in u1, . . . , un and set value 1 to the others. Similarly, by
(1.24), (1.26), and the integrality of w-components, we can set value 0 to
some elements in w1, . . . , wn and set value -1 to the others.

Let us define
A = {vj ∈ V | wj = −1}

and
A∗ = {vi ∈ V | ∃ vj ∈ A : (vi, vj) ∈ E∗N}.

In words, A is the set of vertices in the transitive closure graph G whose
corresponding w-variables obtain value -1, and A∗ is the set of vertices in G

that are reachable to a vertex in A. It follows from the definition of A and A∗

that A\(A ∩ A∗) is an antichain in G. Therefore, if we let q be the size of a
maximum antichain in G, then we have

|A\(A ∩ A∗)| ≤ q. (1.28)

By (1.20) and our desire of minimizing (1.16), A∗ is exactly the set of vertices
in G whose corresponding u-variables equals 1, i.e.,

A∗ = {vi ∈ V | ui = 1}.

Hence, the objective value (1.16) at the solution we are considering is
n∑

i=1

ui +

n∑
j=1

wj + n(u0 + w0) =
∑
vi∈A∗

ui +
∑
vj∈A

wj + n(1 + 0) = |A∗| − |A|+ n.

By Proposition 1.22 and keeping in mind that the solution we are considering
is an optimal solution to (DualPCLP), it follows that

|A∗| − |A|+ n = n− p ⇔ p = |A| − |A∗|,

in which p is the size of a minimum vertex-disjoint path covering of G. Let q

be the size of a maximum antichain in G. Then we have

p = |A| − |A∗| ≤ |A| − |A ∩ A∗| ≤ |A\(A ∩ A∗)| ≤ q.

28

The last inequality above is due to (1.28). To prove Theorem 1.10, i.e., to
prove p = q, it is left to show the reverse inequality p ≥ q.

It is obvious to see that p ≥ q. Indeed, let B be a maximum antichain in
G, then we have B ⊆ V and |B| = q. Let P be an arbitrary path covering of
G. Since B ⊆ V , the path covering P also covers B. If |P| < q = |b|, then by
Dirichlet principle there must exist two distinct vertices u, v ∈ B belonging
to a same path in P, and consequently, either u is reachable from v or v is
reachable from u. This contradicts the fact that B is an antichain. This
contradiction implies that |P| ≥ q. Since this inequality holds for arbitrary
path covering P of V , it also holds when P is a minimum path covering of V .
In that case we have |P| = p, hence p ≥ q as desired.

1.3 Second proof

Perles in [3] gives an induction proof for Dilworth’s theorem. Originally,
his proof is for the poset version of the theorem. Following the proof of Perles,
in this section we present in detail a proof for the graph version of Dilworth’s
theorem.

Let G be a directed acyclic graph and V the vertex set of G. Let p be the
size of a minimum path covering of V and q the size of a maximum antichain
in G. The graph version of Dilworth’s theorem (Theorem 1.10) states that
p = q, which is what we need to prove in this section. By the same arguments
as in the last paragraph of the previous subsection, we have p ≥ q. It is left
to show that p ≤ q.

In the following we will prove p ≤ q by induction on |V |. This inequality is
obvious in case |V | = 1, since in this case G has only one vertex and therefore
p = q = 1. Let k > 1 be an integer. We make the induction assumption that
the inequality p ≤ q holds for all directed acyclic graphs having at most k− 1

vertices. Consider the case that G has k vertices. For any maximum antichain
A in G, let

A← := {u ∈ V | u is reachable to a vertex in A} ⊂ V,

A→ := {u ∈ V | u is reachable from a vertex in A} ⊂ V.

We have the following two claims.
Claim 1: A← ∪ A→ = V . Indeed, assume the contrary that there exists a

vertex u∗ ∈ V \(A← ∪ A→). Since u∗ ̸∈ A←, from u∗ we cannot reach to any
vertex in A. On the other hand, since u∗ ̸∈ A→, there is no vertex in A that

29

can reach to u∗. Consequently, A∗ = A∪ {u∗} is also an antichain in G, which
has size |A∗| = |A| + 1 > |A|. This contradicts the assumption that A is a
maximum antichain in G. This contradiction implies that A← ∪ A→ = V .

Claim 2: A← ∩A→ = A. Indeed, since A is an antichain, each vertex in A

is only reachable to and from itself, i.e., A ⊂ A← and A ⊂ A→. Consequently,
we have A ⊂ A← ∩ A→. To show the inverse inclusion A← ∩ A→ ⊂ A, let u be
an arbitrary vertex in A← ∩ A→. Since u ∈ A←, from u we can reach to some
vertex v in A by some u-v-path. Since u ∈ A→, we can reach to u from some
vertex w in A by some w-u-path. Concatenating these two paths at u, we
obtain a path from w ∈ A to v ∈ A. Since A is an antichain and G is acyclic,
this happens only when u = v = w, and in this case we have u ∈ A due to the
fact that both v and w are in A. Since u is chosen arbitrarily in A← ∩A→, we
deduce that A← ∩ A→ ⊂ A.

For the sets A← and A→ constructed above, only two following cases can
happen (note that these two cases are mutually exclusive).

• Case 1: there exists a maximum antichain A in G such that A← (V

and A→ (V .

• Case 2: for any maximum antichain A in G we have either A← = V or
A→ = V .

Let us show p ≤ q in Case 1. In this case we have |A←| < |V | = k since
A← (V . According to our induction assumption, we can cover A← by a
path covering PA← consisting of q paths. Furthermore, since A← ∩ A→ = A,
we have A ⊂ A←, hence these q paths also cover A. Since A is an antichain
with |A| = q, each vertex u ∈ A must belong to exactly one path Pu in the
path covering PA←. By similar arguments for A→, we can cover A→ by a path
covering PA→ consisting of q paths, in which each vertex u ∈ A must belong
to exactly one path P ′u of this path covering. Then, for each u ∈ A, Pu ∪ P ′u
forms a path in G going through u. Again, since A is an antichain, the set
PA = {Pu ∪ P ′u | u ∈ A} consists of |A| = q paths. Since PA← = {Pu | u ∈ A}
covers A←, PA→ = {P ′u | u ∈ A} covers A→, and additionally A← ∪ A→ = V ,
the set PA constructed above is a path covering of V with |PA| = q. Let P
be a minimum path covering of V . Due to the minimum size of P, we have
p = |P| ≤ |PA| = q.

It is left to show p ≤ q in Case 2. In this case, for any antichain A of size q

(i.e., a maximum antichain in G), we have either A← = V or A→ = V . We say
that a vertex u ∈ V is a minimal vertex if there is no vertex in G reachable

30

to u. Similarly, we say that a vertex u ∈ V is a maximal vertex if there is
no vertex in G reachable from u. Note that A← ∩ A→ = A, so if A← = V ,
then A→ = A (i.e. from each vertex in A we cannot reach other vertices in
G, or in other words the antichain A is the set of all maximal vertices in G).
Similarly, if A→ = V , then A← = A (i.e. we cannot reach to any vertex in A

from other vertices in G, or in other words the antichain A is the set of all
minimum vertices in G). For a recap, each antichain A of size q is either the
set of all maximal vertices or the set of all minimal vertices in G. Thus, if we
choose u as a minimal vertex in G, then from u we can reach to a maximal
vertex v in G (since G is acyclic), and furthermore each antichain of size q in
G must contain either u or v. As a consequence, each maximum antichain in
the graph G[V \{u, v}] induced by the vertex set V \{u, v} has size q − 1. Let
P∗ be a minimum path covering of V \{u, v}. By our induction assumption,
we have |P∗| ≤ q − 1. By adding the u-v-path mentioned above to the path
covering P∗, we obtain a path covering P that covers V with |P| ≤ q. Recall
that p is the size of a minimum path covering of V , and P constructed above
is a (not necessarily minimum) path covering of V , so p ≤ |P|. Therefore we
have p ≤ |P| ≤ q, which closes the proof.

Chapter 2

An application in cob-robber
guarding game

This chapter presents an application of the maximum antichain problem
in studying a cop-robber guarding game. In Section 2.1 we describe the game
and state the problem under our consideration. In Section 2.2 we present
a detail construction to model this problem as a path covering problem. In
Section 2.3, by apply Dilworth’s theorem, a lower bound on the optimal value
of our considered problem is given. The contents of this chapter are written
on the basis of the paper [5].

2.1 Problem statement

We first present a detail description of the cop-robber guarding game stud-
ied in this chapter. The game is played on a simple undirected graph G whose
vertex set is named by V and edge set is named by E. The vertex set V is
finite and partitioned into two disjoint non-empty subsets C = {c0, . . . , c|C|−1}
and R = V \C = {r0, . . . , r|R|−1}. The protected region is the subgraph G[C]

of G induced by the vertex set C. The subgraph G[R] of G induced by the
vertex set R is called the robber region. We consider the case that the robber
region is a cycle. It means that, throughout this chapter, the robber region
G[R] is the cycle r0 − r1 − . . .− r|R|−1 − r0.

The game is played by two players: the cop player and the robber player.
The latter player has a unique pawn called the robber pawn, or robber for
short. The former player has nc pawns called the cop pawns, or cops for
short. Here, nc is a positive integer.

The two players play in alternating turns. For the ease of our description,

31

32

the turns are counted from 0. In the first turn (i.e., turn 0), the cop player
places the robber on a vertex of the robber region G[R]. In the next turn, the
cop player places his nc cops on vertices of the protected region G[C]. On a
vertex in the protected region, the cop player can place more than one cop.
By this initial setting, the robber player plays in the even turns, while the
cop player plays in the odd turns. By a round we mean a turn of the robber
player and the subsequent turn of the cop player. More precisely, round i ∈ N
consists of turn 2i (of the robber player) and turn 2i+ 1 (of the cop player).

In each even turn, the robber player can either keep the robber at its
current position or move it to a neighboring vertex. In each odd turn, the
cop player can determine the movement of the nc cops, in which each cop
can either stay at its current vertex or move to a neighboring vertex within
the protected region. It means that no cop is allowed to move to a vertex in
the robber region. Therefore, we sometime call the protected region by cop
region.

At any turn, both players know the positions of the cops and the robber
in the graph. It at some turn of the robber player, the robber can move to
a vertex in the cop region on which there is no cop, then we say that the
robber successfully attacks the protected region and the robber player wins
the game. If the robber moves to a vertex in the protected region on which
at least one cop is currently staying, then we say that the robber is caught.
In this sense, whenever a cop stays on a vertex in the protected region, we
say that the cop guards the vertex. The cop player wins the game if he can
prevent the protected region from the attack of the robber, i.e., if he can make
sure that the robber player cannot win the game.

A strategy of the robber player is understood as a way that he moves the
robber in his turns. Similarly, a strategy of the cop player is understood as a
way that he moves the cops in his turns. We are now ready to state shortly
our interested problem in the cop-robber guarding game: Find a strategy for
the cop player with minimum number of used cops so that he wins the game.

Before going to the next section, we have a remark that helps to simplify
our consideration. The protected region G[C] can consist of different con-
nected components. If there is such a component that does not have any edge
connected to the robber region, then clearly the robber cannot come to any
vertex in that component. Consequently, the cop player does not need to
place any cop to guard such component. In such situation, we can omit the
connected component without affecting the optimal number of cops as well

33

as the winning strategy of the cop player. Therefore, we can assume that
each connected component of the protected region has at least one
vertex adjacent to the robber region.

Example 2.1. Consider the cop-robber guarding game on the graph G in
Figure 2.1. This graph has 14 vertices that are partitioned into two subsets:
R = {r0, r1, r2, r3} and C = {c0, c1, c2, c3, c4, c5, c6, c7, c8, c9}. The edges of G

are represented as in the figure. The protected region is the subgraph G[C]

illustrated by blue part in the figure. It has 2 connected components, in which
the first component consists of 8 vertices c0, . . . , c7 and the second component
consists of 2 vertices c8, c9. The robber region is the subgraph G[R] illustrated
by red part in the figure. It is a cycle going through 4 vertices of R.

r0 r1

r2r3

c0

c1

c2

c3

c4 c5

c6
c7

c8

c9

Figure 2.1: Graph of the game in Example 2.1
with the protected region consisting of 2 connected components.

The robber player places his unique robber pawn, called the robber, on a
vertex in R to start the game. The cop player place his cop pawns, called
cops, on vertices in C and can move them along the edges within the protected
region G[C]. The robber can move either along the edges of the cycle G[R]

or along any edge connecting a vertex in the robber region to one in the
protected region.

Since the second connected component of the protected region (consisting
of vertices c8, c9) has no edge to any vertex in the robber region, the robber
can not attack this component. Hence we do not need any cop to guard
this component, and can omit the component completely from the graph.

34

r0 r1

r2r3

c0

c1

c2

c3

c4 c5

c6
c7

Figure 2.2: Graph of the game in Example 2.1 after omitting the connected component that is
not adjacent to the robber region.

Figure 2.2 illustrated the graph of the game after removing this connected
component.

From vertex r1, the robber can move to one of the following vertices: r0, r2
in the robber region, c0, c1, c5 in the protected region. Hence, when the robber
stays on vertex r1, there must be at least 3 cops staying on c0, c1, c5. It implies
that the cop player must use at least 3 cops to win the game.

2.2 Modeling

In [5] Nagamochi modeled the problem stated in the previous section as an
optimization problem on an auxiliary graph. In this section, we present the
construction of that model in detail. Section 2.2.1 shows that the cop player
needs to focus only on a special strategy, called cyclic strategy, of the robber
player. Section 2.2.2 shows that the cop player only needs to construct a so-
called periodic strategy to win against the cyclic strategy of the robber player.
On that basis, Section 2.2.3 gives the detail construction of the auxiliary graph
in the model of Nagamochi, and translates our considering problem to a path
covering problem on the auxiliary graph.

35

2.2.1 Cyclic strategy

As mentioned in the previous section, a strategy of the robber player is
understood informally as a way that he moves the robber in his turns. For
the ease of our discussion, we need a formal definition for the concept of
strategy of the robber player. For that, let I be the set of rounds in the game.
The set I can be finite (either when the robber player decides to stop playing
or when the robber is caught, in this case we have I = {0, 1, . . . , |I| − 1}). The
set I can be also infinite (when the robber player decides to continue playing,
in this case we have I = N).
Definition 2.2. (Strategy of the robber player, see [5]). A strategy of the
robber player is a sequence σ = (rji)i∈I of vertices in the robber region G[R],
in which:

• the robber is placed on the vertex rji ∈ R at round i of the game, and
• any two consecutive vertices in the sequence σ are adjacent in the robber

region (i.e., rji and rji+1 are adjacent in G[R]).
For instance, for the game in Example 2.1, σ = (r0, r1, r2, r1, r2, r3, r2) is a

strategy of the robber player.
Recall that G[R] is the cycle r0−r1− . . .−r|R|−1−r0 and the robber can only

move within the robber region before entering the protected region. These
two facts suggest us to consider the following special strategy of the robber
player.

• In the first turn, the robber player places the robber on r0.
• In the next turns, the robber player moves the robber to r1, then r2, . . .,

and keep moving along the cycle G[R] in the same direction.
This strategy is called cyclic strategy and has the following precise formulation.
Definition 2.3. (Cyclic strategy, see [5]). The cyclic strategy of the robber is
the sequence σ∗ = (rji)i∈I in which

ji = i mod |R|. (2.1)
For illustration, for the game in Example 2.1, the cyclic strategy of the

robber player is
σ∗ = (r0, r1, r2, r3, r0, r1, r2, r3, r0, r1, r2, . . .).

It is shown in the next section that the cop player will win the game if he can
find a strategy against the cyclic strategy successfully.

36

2.2.2 Periodic strategy

Similar to the robber, it is understood informally that a strategy of the cop
player is a way of placing the cops in each round of the game. For convenience,
we need a formal definition for this concept. To do that, let us number the
cops from 1 to nc. The positions of these cops in round i of the game can be
encoded by a vector Xi = (ci1, c

i
2, . . . , c

i
nc
), in which cik ∈ C is the vertex where

the kth cop is placed in this round. Note that more than one cop can be
placed on a vertex in the protected region, therefore the vertices ci1, c

i
2, . . . , c

i
nc

are not necessarily pairwise distinct.

Definition 2.4. (Strategy of the cop player, see [5]). A strategy of the cop
player is a sequence π = (Xi)i∈I , in which Xi is the vector of positions of cops
in round i of the game.

To be valid, a strategy of the cop player must adapt the game rules and
the structure of the graph G. More precisely, in a valid strategy

π = (Xi)i∈I = (ci1, c
i
2, . . . , c

i
nc
)i∈I ,

of the cop player, for each i ∈ I and k = 1, . . . , nc, the vertices cik and ci+1
k

are either coincide or adjacent to each other. Indeed, these two vertices are
respectively the positions of the kth cop in round i and i+1. According to the
game rules, in each turn the cop can either stay at his current position or move
to an adjacent vertex in the protected region. The former option corresponds
to the case cik and ci+1

k are coincide, while the latter option corresponds to the
case cik and ci+1

k are adjacent to each other.
The goal of the cop player is to win the game. Therefore, apart from

being valid, his strategy must against the strategy of the robber player in the
following sense.

Definition 2.5. (see [5]). Let σ = (rji)i∈I be a strategy of the robber player.
A strategy π = (Xi)i∈I of the cop player is called against σ if

• it is valid, and

• for each i ∈ I, the position vector Xi contains all vertices in C that are
adjacent to rji.

The latter condition in the above means the following: whenever the robber
stays on the vertex rji ∈ R, each vertex in the protected region that is adjacent
to rji must be guarded by at least one cop. Roughly speaking, a strategy of

37

the cop player against a strategy σ is a way of placing the cops in each round
so that the robber cannot come from any vertex of σ to the protected region
without being caught.

Example 2.6. Consider the strategy σ = (r0, r1, r2, r3) of the robber player in
the guarding game played on the graph in Figure 2.2. With 4 cops, the cop
player has strategy π = (X0, X1, X2, X3) against σ, in which

X0 = (c0, c2, c3, c4),

X1 = (c0, c1, c5, c4),

X2 = (c0, c2, c5, c4),

X3 = (c0, c2, c5, c7).

We illustrate the strategies σ and π in Figure 2.3, in which the positions of
the robber in his turns are represented by circles filled with red color, and the
positions of the cops are represented respectively by circles filled with blue,
green, purple, and orange colors.

The first position of the robber in the strategy σ is at vertex r0, from
which he can attack vertices c2 and c4 in the cop region. By placing 4 cops
on components of X0 (including c2 and c4, see Figure 2.3 (a)), the cop player
prevents the protected region from the attack from position r0 of the robber.

The next round is illustrated in Figure 2.3 (b). In this round, the robber
moves from r0 to r1. The cops on vertices c0 and c4 stay there, while the
cop on c2 moves to c1 and the one on c3 moves to c5. This forms the vector
of positions X1 = (c0, c1, c5, c4). From r1, the robber can attack the vertices
c0, c1, c5 in the cop region. Since these three vertices are included in X1, the
robber cannot move from r1 to the protected region without being caught.

According to the strategy σ, in the third round the robber moves from r1
to r2. According to the strategy π, in this round the cops on vertices c0, c4, c5
stay there, while the one on c1 comes back to c2 to form the vector of positions
X2 = (c0, c2, c5, c4). This is illustrated in Figure 2.3 (c). In this way, the robber
cannot safely move from r2 to vertices c2, c5 in the protected region.

The last round is illustrated in Figure 2.3 (d). There, the robber moves
from r2 to r3, and we need a cop to guard the vertex c7. This can be done easily
by moving the cop from c4 in the previous round to c7, and keep the positions
of the other cops. We obtain the vector of positions X3 = (c0, c2, c5, c7) of the
cops, which guard the protected region safely in this round.

38

r0 r1

r2r3

c0

c1

c2

c3

c4 c5

c6
c7

(a)

r0 r1

r2r3

c0

c1

c2

c3

c4 c5

c6
c7

(b)
r0 r1

r2r3

c0

c1

c2

c3

c4 c5

c6
c7

(c)

r0 r1

r2r3

c0

c1

c2

c3

c4 c5

c6
c7

(d)

Figure 2.3: Illustration of strategy π in Example 2.6.

We now focus on how to find a strategy for the cop player to against the
cyclic strategy σ∗ = (rji)i∈I of the robber player as defined by (2.1). In the
sequel, if not state differently, we only consider the case that I = N.
Definition 2.7. (Periodic strategy of the cop player). Let σ∗ be the cyclic
strategy of the robber. A strategy π = (Xi)i∈I of the cop player is called a
periodic strategy if

• it against the cyclic strategy σ∗, and

39

• there exists a positive integer T such that for every i ∈ I we have Xi is a
permutation of components of Xi mod T |R|.

A periodic strategy with T = 1 is called a compact strategy (of the cop player).

Roughly speaking, in a periodic strategy of the cop player, the cops return
to their positions after each T |R| rounds. In a compact strategy of the cop
player, the cops return to their positions after each time the robber completes
the cycle G[R] of his region.

Example 2.8. Consider again the cop-robber guarding game played on the
graph in Figure 2.2. The cyclic strategy of the robber in this game is

σ∗ = (rji)i∈I

in which ji = i mod |R| = i mod 4. Let

π∗ = (Xi)i∈I

in which Xi = Xi mod 4 and X0, X1, X2, X3 are determined as in Example 2.6.
The strategy π∗ is a compact strategy of the cop player. Indeed, when the
robber moves along the path r0 − r1 − r2 − r3, the cops move respectively
according to the positions encoded by vectors X0, X1, X2, X3. When the robber
moves from r3 to r0 to complete one time of going along the cycle G[R], the
cops on c0 and c2 stay there, while the cops on c5 and c7 respectively move to
c3 and c4. In this way, when the robber completes the cycle G[R] and returns
to r0, the cops also return to their initial positions encoded by X0.

The main result in this subsection is the following lemma. It explains why
the cop player only needs to focus on finding a periodic strategy to against
the cyclic strategy of the robber player.

Lemma 2.9. (see [5], Lemma 2). (i) If the cop player has a valid strategy
with nc cops against the cyclic strategy, then he also has a periodic strategy
with the same number of cops against the cyclic strategy.

(ii) Assume that the cop player has a periodic strategy with nc cops against
the cyclic strategy. Then, for any strategy σ of the robber player, the cop
player can construct a valid strategy with the same number of cops against σ.

Proof. (i) Recall that the cyclic strategy of the robber player is σ∗ = (rji)i∈I
determined by (2.1). Let π = (Xi)i∈I be a strategy (not necessarily periodic)
of the cop player with nc cops against σ∗. According to the strategies σ∗ and

40

π, in round i of the game, the robber is placed on vertex rji and the cops are
placed on components of Xi = (ci1, c

i
2, . . . , c

i
nc
). We therefore call

αi = (rji , Xi) = (rji , c
i
1, c

i
2, . . . , c

i
nc
)

the state vector of round i.
Since the robber region G[R] has |R| vertices, there are |R| choices for the

first component of the state vector αi. Since the protected region G[C] has
|C| vertices and we can place more than one cop on each of the vertices, there
are |C|nc possible values for the position vector Xi. In total, there are at most
|R||C|nc different values for the state vector αi. Therefore, from round 0 to
round |R||C|nc, there must be two rounds having the same state vector, i.e.,
there exists two integers i1, i2 with 0 ≤ i1 < i2 ≤ |R||C|nc such that αi1 = αi2.

Since the rounds i1 and i2 have the same state vector, the robber has the
same position in these two rounds. According to the cyclic strategy, it means
that from round i1 to round i2 the robber has completed T = i2−i1

|R| times of
going through the whole cycle G[R], in which T obtains a positive integral
value.

Since Xi1 ≡ Xi2, from round i2 the cop player can repeat the strategy
(Xi1 , Xi1+1, . . . , Xi2−1) for each T times that the robber goes through the whole
cycle G[R]. Formally, the cop player can follow a new strategy π′ = (X ′i)i∈I in
which

• X ′i = Xi for i = 0, . . . , i2, and

• X ′i+kT |R| = X ′i for i = i1, . . . , i2 − 1 and k = 1, 2, . . .

In that way, the cop player continues guarding successfully the protected
region as he has done from round i1 to round i2.

Let i′ be the smallest multiplication of |R| satisfying i1 < i′ ≤ i2. As we
have constructed, in the strategy π′, the sequence

(X ′i1 , X
′
i1+1, . . . , X

′
i2−1)

is consecutively repeated from round i1. Thus, the sequence

(X ′i′ , X
′
i′+1, . . . , X

′
i2−1, X

′
i2 , . . . , X

′
i′+T |R|−1) (2.2)

is also consecutively repeated in the strategy π′. Note that by definition of
i′ we have i′ mod |R| = 0, so in round i′ the robber is on the first vertex r0
of the robber region. Hence, by consecutively repeating the sequence (2.2)

41

from round 0, the cop player obtains a periodic strategy π∗ against the cyclic
strategy of the robber player.

(ii) We now assume that the cop player has a periodic strategy π∗ = (X∗i)i∈I
with nc cops against the cyclic strategy σ∗. Let σ be an arbitrary strategy of
the robber player. In the following we will construct a strategy πσ that also
uses nc cops to win against the strategy σ.

We say that the robber moves clockwisely if

• he leaves a vertex rj with 0 ≤ j < |R| − 1 to move to the vertex rj+1, or

• he leaves the vertex r|R|−1 to move to r0.

Similarly, we say that the robber moves counterclockwisely if

• he leaves a vertex rj with 0 < j ≤ |R| − 1 to move to the vertex rj−1, or

• he leaves the vertex r0 to move to r|R|−1.

If the strategy σ of the robber player starts from a vertex rj rather than r0,
then we add the sequence (r0, r1, . . . , rj) before σ. Correspondingly, the cop
player starts his strategy πσ by following the sequence (X∗0 , X

∗
1 , . . . , X

∗
j) in the

first j +1 rounds. In these rounds, the cops guard the protected region safely
because (r0, r1, . . . , rj) is a part of the cyclic strategy σ∗ and the sequence
(X∗0 , X

∗
1 , . . . , X

∗
j) is the corresponding part of the periodic strategy π∗ against

σ∗. Hence, without loss of generality, we can assume that in the strategy σ

the robber starts from the vertex r0.
To win against the strategy σ, the cop player can follow the strategy πσ

constructed as follows.

• In the first round j = 0, when the robber is placed on r0, the cops are
placed on the components of X∗0 .

• Whenever the robber moves clockwisely from rj to rj+1 (for any j in
{0, 1, . . . , |R| − 1}), the cops move from positions encoded in X∗j to the
ones in X∗j+1.

• Whenever the robber moves clockwisely from r|R| to r0, the cops move
from positions encoded in X∗|R| to the ones in X∗0 .

• Whenever the robber moves counterclockwisely from rj to rj−1 (for any j

in {1, . . . , |R|}), the cops move from positions encoded in X∗j to the ones
in X∗j−1.

42

• Whenever the robber moves counterclockwisely from r0 to r|R|, the cops
move from positions encoded in X∗0 to the ones in X∗|R|.

• If in some round the robber stays on his current vertex and does not
move, then the cops also stay on their current vertices.

Since the protected region is undirected, the above movement policy of the
cops are possible. Since π∗ = (X∗i)i∈I wins against σ∗, in each of the above
cases, the vector of positions of the cops prevents the robber from entering
the protected region. Hence πσ wins against the strategy σ of the robber
player.

Thanks to Lemma 2.9, the minimum number of cops that the cop player
needs to ensure his winning is also the minimum number of cops in a periodic
strategy against the cyclic strategy. To this end, what the cop player needs
to do now is to find a periodic strategy using the minimum number of
cops. The next subsection gives us one step closer to find such a strategy.

2.2.3 Auxiliary graph

This subsection presents the construction of a so-called auxiliary graph H,
that helps us having an intuition of movements of cops against the cyclic
strategy of the robber player.

Corresponding to each round i ∈ I, we make a copy (ci0, . . . , c
i
|C|−1) of ver-

tices in the protected region G[C], in which cik is the copy of the vertex ck ∈ C

for k = 0, . . . , |C| − 1. The vertex set of the auxiliary graph H is

VH = {cik | i ∈ I, k = 0, . . . , |C| − 1} (2.3)

consisting of the copies of C in all rounds of the game. The copy corresponding
to round i is called the layer i of the auxiliary graph H. Note that |I| = +∞,
therefore this graph has infinite number of layers and vertices.

In round i of the game, according to the cyclic strategy, the robber is placed
on the vertex rji determined by (2.1). Let Ci

D ⊂ C be the set of vertices in C

that are adjacent to rji. We say that the vertices in Ci
D are endangered, since

they can be attacked by the robber from rji in one turn. In that spirit, for
each ck ∈ Ci

D, we also say that its copy cik in layer i of the auxiliary graph is
endangered.

We now consider an arbitrary cop and intend to represent his strategy by
a directed path so-called cop-path

c0k0 − c1k1 − . . .− ciki − . . . (2.4)

43

going through the layers of the auxiliary graph, in which each layer has exactly
one vertex in this path. The vertex ciki on the layer i belonging to this path
means that the cop is placed on the vertex cki ∈ C in round i. Similarly,
the vertex ci+1

ki+1
on the layer i + 1 belonging to this path means that the cop

is placed on the vertex cki+1
∈ C in round i + 1. By the game rules, there

are only two following possibilities for the cop when turning from round i to
round i+ 1.

• Possibility 1: The cop stays on his current position, i.e., cki ≡ cki+1
. In

this case, ciki and ci+1
ki+1

are two copies of the same vertex in the protected
region, or simply we have ci+1

ki+1
= ci+1

ki
.

• Possibility 2: The cop moves to an adjacent vertex in the protected re-
gion, i.e., cki and cki+1

are adjacent in G[C]. This movement is represented
by the arc from ciki to ci+1

ki+1
in the path (2.4).

To guarantee Possibility 1 for all cops, we need arcs (cik, c
i+1
k) for all indices

k = 0, . . . , |C|−1. To guarantee Possibility 2 for all cops, we need arcs (cij , c
i+1
k)

and (cik, c
i+1
j) for each pair of adjacent vertices cj , ck in G[C]. The arc set AH

of the auxiliary graph H consists of these arcs for every round i ∈ I. More
precisely, we have

AH = {(cik, c
i+1
k) | i ∈ I, k ∈ {0, . . . , |C| − 1}}

∪ {(cij , ci+1
k), (cik, c

i+1
j) | i ∈ I, j, k ∈ {0, . . . , |C| − 1}, {cj , ck} ∈ E(C)}. (2.5)

The following proposition gives us some important properties of the auxil-
iary graph.
Proposition 2.10. The auxiliary graph H with the vertex set VH defined by
(2.3) and the arc set AH defined by (2.5) is an acyclic directed graph, and the
vertices on the same layer of this graph are not reachable to each other.
Proof. The arc set AH certifies that H is a directed graph. By the construc-
tion of AH , each arc in the auxiliary graph starts from a vertex in some layer
h ∈ I and ends at a vertex in the next layer h + 1, and there is no arc in the
reverse direction. Furthermore, there is no arc between vertices on the same
layer. Thus, there does not exist any cycle in the graph, and the same-layer
vertices are not reachable to each other.

By definition, each vertex ck ∈ Ci
D is endangered in round i and therefore

it needs at least one cop to be guarded. In other words, there must be at
least one cop-path (representing the strategy of some cop) going through the

44

copy of the endangered vertex ck in round i, i.e., through the vertex cik in the
layer i of the auxiliary graph. Roughly speaking, it means that the cop-paths
must cover the endangered vertices in the auxiliary graph. Note that each
cop corresponds to one cop-path, and each cop-path represents the strategy
of one cop. Therefore, finding a strategy for the cop player against the cyclic
strategy is equivalent to finding the minimum number of cop-paths
that cover the endangered vertices in the auxiliary graph.

Example 2.11. Figure 2.4 illustrates the subgraph corresponding to the first
7 rounds of the auxiliary graph H for the game in Example 2.1. The vertices
of H are arranged in 8 columns, each column consists of the copies of a vertex
in the protected region. The vertices of H are also arranged in layers, each
layer consists of the copies of all vertices of the protected region in a round.
For simplicity, in Figure 2.4 we do not write down the name of each vertex,
but the name of the layers and columns. The name of each vertex in the
figure is determined by its layer and its column as follows: vertex chk is on the
layer corresponding to the round h and on the column corresponding to the
vertex ck ∈ C.

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

r0

r1

r2

r3

r0

r1

r2

c0 c1 c2 c3 c4 c5 c6 c7

Figure 2.4: The part from round 0 to round 6 of the auxiliary graph for the game in Example 2.1.

45

Consider a round h ∈ I of the game. The vertices in the layer h (resp., layer
h+1) encode the status of the protected region in round h (resp., round h+1).
The arcs from layer h to layer h + 1 represent the possibilities of movements
of the cops as follows.

• For each k = 0, . . . , 7, we establish the arc (chk , c
h+1
k) to ensure that: if a

cop is placed on the vertex ck in round h, then in the next round he can
stay there.

• For each edge {ck, cℓ} in the protected region, we establish the arc (chk , c
h+1
ℓ)

to ensure that: if a cop is placed on the vertex ck in round h, then in
the next round he can move to the vertex cℓ. We also establish the arc
(chℓ , c

h+1
k) to guarantee that: if a cop is placed on the vertex cℓ in round h,

then in the next round he can move to the vertex ck. For instances, since
c4 and c7 are adjacent to each other in the protected region, we establish
the arcs (ch4 , c

h+1
7) and (ch7 , c

h+1
4). Since c4 is not adjacent to c6, we do not

establish the arc from ch4 to ch+1
6 and also do not establish the arc from

ch6 to ch+1
4 .

According to the cyclic strategy, the robber starts from the vertex r0 and
moves clockwisely along the cycle r0 − r1 − r2 − r3 − r0. Thus, from round
i = 0 to round i = 6, the positions of the robber are respectively r0 − r1 − r2 −
r3 − r0 − r1 − r2. As illustrated in Figure 2.4, the position of the robber in
each of these rounds is noted in the corresponding layer. In round i = 0, the
robber is placed on r0, from which he can attack c2 and c4. Thus, in layer
0 of the auxiliary graph, the vertices c02 and c04 are endangered. Similar to
the other positions of the robber, we obtain the endangered vertices that are
highlighted in grey color in Figure 2.4.

The path consisting of blue arcs in Figure 2.4 is the part in the first 7
rounds of a cop-path. This represents the strategy described in Table 2.1 of
a cop in these rounds.

Round 0 1 2 3 4 5 6
Position of the robber r0 r1 r2 r3 r0 r1 r2

Position of the cop c2 c1 c2 c2 c2 c3 c2

Table 2.1: Strategy of the cop corresponding to the blue path in Figure 2.4.

46

2.3 Best lower bound

Following the discussion in the previous section, this section shows that a
good lower bound on the minimum number of cop-paths covering the endan-
gered vertices in the auxiliary graph can be found in polynomial time.

Given q ∈ I, let H[0, q] be the subgraph from round 0 to round q of the
auxiliary graph H. It follows from the construction of VH and AH in (2.3)-
(2.5), the vertex set of H[0, q] is

V [0, q] = {chk | 0 ≤ h ≤ q, 0 ≤ k ≤ |C| − 1},

and the arc set of H[0, q] is

E[0, q] = {(chk , c
h+1
k) | 0 ≤ h ≤ q − 1, 0 ≤ k ≤ |C| − 1}

∪ {(chk , c
h+1
ℓ) | 0 ≤ h ≤ q − 1, 0 ≤ k < ℓ ≤ |C| − 1, {ck, cℓ} ∈ E(C)}

∪ {(chℓ , c
h+1
k) | 0 ≤ h ≤ q − 1, 0 ≤ k < ℓ ≤ |C| − 1, {ck, cℓ} ∈ E(C)},

in which E(C) is the edge set of the protected region G[C]. Let VD[0, q] be the
set of endangered vertices in H[0, q]. From the construction of the auxiliary
graph we have

VD[0, q] = {chk ∈ V [0, q] | 0 ≤ h ≤ q, {rjh , ck} ∈ E(R,C)},

where rjh is determined by (2.1) and E(R,C) is the set of edges joining a
vertex in R with a vertex in C. As an illustration, the graph in Figure 2.4 is
nothing but H[0, 6] for the game in Example 2.1, in which VD[0, 6] are vertices
highlighted in grey.

The subgraph H[0, q] has q+1 layers, each layer has |C| vertices. Hence the
number of vertices of H[0, q] is |V [0, q]| = (q + 1)|C|. Since VD[0, q] ⊂ V [0, q],
there are finitely many endangered vertices in this subgraph. Hence, there
exists a maximum antichain Aq in VD[0, q]. Furthermore, by construction of
the auxiliary graph H, for each k = 0, . . . , |C| − 1 the cop-path

c0k − c1k − . . .− cqk (2.6)

goes through the vertices on the same column in H[0, q], which corresponds to
the vertex ck ∈ C. By definition, any pair of vertices in antichain Aq cannot
belong to the same cop-path in H[0, q]. Thus, each cop-path of form (2.6) can
go through at most one vertex in Aq. Since there are exactly |C| cop-paths of
form (2.6), we deduce that

|Aq| ≤ |C|, ∀q ≥ 0,

47

and hence there exists
a∗ = max

q≥0
|Aq|. (2.7)

We are going to show the following results concerning a∗.

• a∗ is a lower bound on the minimum number of cop-paths covering the
endangered vertices in the auxiliary graph.

• a∗ can be computed in polynomial time.

In fact, by some additional arguments, Nagamochi in [5] proved that a∗ is
exactly the minimum number of cop-paths covering the endangered vertices
in the auxiliary graph. Thus we can say that a∗ is the best lower bound for
the optimal number of cops.

The former result above is stated more precisely in the following lemma.

Lemma 2.12. (see [5], Lemma 3). Let n∗c be the minimum number of cops in
a periodic strategy of the cop player against the cyclic strategy of the robber
player. Then we have n∗c ≥ a∗.
Proof. By (2.7), let q∗ ≥ 0 be such that a∗ = |Aq∗|. Each vertex in Aq∗ must be
on some cop-path, and no pair of vertices in Aq∗ can be on the same cop-path
(since Aq∗ is an antichain). Thus, the number of cop-paths to cover Aq∗ must
be at least |Aq∗|. Since each cop-path corresponds one-to-one with a cop, it
follows that n∗c ≥ |Aq∗ | = a∗.

The latter result above concerns the concept of graph diameter, which is
defined precisely as follows.

Definition 2.13. (see [8], page 14). Given a connected undirected graph G.
(i) The distance between two distinct vertices u, v in G is the length of a

shortest u-v-path.
(ii) A geodesic is a shortest u-v-path for some distinct vertices u, v in G.
(iii) The diameter of G, denoted d(G), is the length of any longest geodesic

of G.
It is worth noting that a shortest path joining two given vertices in a

connected undirected graph can be found in polynomial time by the well-
known Dijkstra’s algorithm (see e.g. [4], Chapter 7). For illustration, in the
protected region G[C] of the game on the graph in Figure 2.2, the distance
between c0 and c5 is 3 since the shortest c0-c5-path is c0 − c2 − c3 − c5 having
length 3, and the diameter of this protected region is 4 since any pair of
vertices in this region can be joined by a path of length at most 4.

48

The following lemma is important to prove that the value of a∗ can be
computed in polynomial time. It shows that a∗ can be determined in a finite
subgraph of the auxiliary graph H, so we do not need to consider the whole
auxiliary graph.

Lemma 2.14. (see [5], Lemma 4). Let d be the maximum value of the di-
ameters of the connected components of G[C]. Then H[0, |R| + d − 2] has an
antichain A with |A| = a∗.

Proof. By (2.7), we can let Q be the set of all values of q such that |Aq| = a∗.
For each q ∈ Q, since each cop-path of form (2.6) can only contain at most
vertex in the antichain Aq, this antichain admits the representation

Aq = {chj

j | j ∈ J},

for some J ⊆ {0, 1, . . . , |C| − 1}. Among such antichains Aq with q ∈ Q, let
A be the antichain having minimum value of

∑
j∈J hj. Since |Aq| = a∗ for

all q ∈ Q, we also have |A| = a∗. It is left to show that A is an antichain in
H[0, |R|+ d− 2].

Indeed, let G′ be a connected component in the protected region G[C].
Since A is chosen such that

∑
j∈J hj is minimized, the component G′ must

contain a vertex cj such that c
hj

j ∈ A and 0 ≤ hj ≤ |R| − 1. By definition of
parameter d, every vertex in G′ can be reached from the vertex cj by a path of
length at most d. In other word, a cop on the vertex cj in round hj can come
to any vertex in G′ after at most d rounds. In the language of the auxiliary
graph, this means the following: from the vertex c

hj

j ∈ A on both layer hj and
column cj, we can reach to the vertex chk on both column corresponding to
a vertex ck ∈ G′ and some layer h satisfying hj < h ≤ hj + d. Furthermore,
from chk we can reach any vertex lying both on a subsequent layer after h and
on the same column ck. Therefore, from c

hj

j we can reach any vertex chk that
is both on a column ck ∈ G′ and on a layer h ≥ hj + d. So any vertex in
the antichain A that is different from the vertex c

hj

j must be on some layer h′

satisfying h′ ≤ hj + d− 1. Since hj ≤ |R| − 1, we have h′ ≤ |R|+ d− 2. To the
end, all vertices of A are on the layers having indices at most |R|+d−2 in the
auxiliary graph. This means that A is an antichain in H[0, |R|+ d− 2].

It is known from Corollary 14.7b [4] that a minimum number of paths cov-
ering the vertex set of a directed acyclic G = (V,A) can be found in O(|V ||A|).
Since this minimum number of paths equals the maximum size of an antichain
in the graph, it follows immediately that a maximum antichain in the digraph

49

can be also found in O(|V ||A|). Keeping this result and the above lemma in
mind, we come up with the following result on complexity of computing a∗.

Theorem 2.15. (see [5]). The value of a∗ is equal to the size of a maximum
antichain in H[0, |R|+d−2], and such an antichain can be determined in time
O((|R|+ d)2|C|(|C|+ |E|)).

Proof. The antichain A constructed in the proof of Lemma 2.14 is a maximum
antichain in H[0, |R|+d−2] and has size |A| = a∗. The subgraph H[0, |R|+d−2]

has |R| + d − 1 layers, each layer has |C| vertices, hence H[0, |R| + d − 2] has
nHV = |C|(|R| + d − 1) vertices. The number of arcs between two consecutive
layers is |C|+2|E(C)|. The arcs in the auxiliary graph only connected vertices
between consecutive layers, therefore the subgraph H[0, |R|+ d− 2] has nHE =

(|C| + 2|E(C)|)(|R| + d − 2) arcs. By applying the Dilworth’s theorem on
H[0, |R|+ d− 2], the maximum antichain A can be found in time

O(nHV (nHV + nHE)) = O(|C|(|R|+ d− 1)(|C|+ 2|E(C)|)(|R|+ d− 2))

= O((|R|+ d)2|C|(|C|+ |E|)).

50

Conclusions

In this thesis, we have studied two topics concerning the maximum an-
tichain problem. The graphical version of this problem aims to find a vertex
subset in a simple directed acyclic graph having as many vertices as possible
such that there is no directed path connecting any two distinct vertices of the
vertex subset.

The first topic, which is studied in Chapter 1, is Dilworth’s theorem. The
theorem states that any maximum antichain in a directed acyclic graph has
the same size as any minimum path covering of the vertex set of the graph.
We have presented two proofs for this theorem. The first proof is adapted
from the one of Dantzig and Hoffman in [2], which bases on the well-known
strong duality theorem in linear programming. The second proof is adapted
from the one of Perles in [3], which used an elegant induction technique.

The second topic, which is studied in Chapter 2, is an application of the
maximum antichain problem in studying a cob-robber guarding game on an
undirected graph. In that game, the robber region induces a cycle, and the
cops need to find a winning strategy using minimum number of cops. We
have presented in detail the construction of Nagamochi in [5] to transform
the problem of finding the minimum number of cops in a winning strategy for
the cop player to the problem of finding a maximum antichain in an auxiliary
graph. This transformation allows us to find the optimal number of cops in a
polynomial time.

51

Bibliography

[1] R. P. Dilworth. A decomposition theorem for partially ordered sets. Annals
of Mathematics, 51, 161–166, 1950.

[2] G. B. Dantzig and A. J. Hoffman. Dilworth’s theorem on partially orders
sets. Pages 207-214 in Linear inequalities and related systems (H. W. Kuhn
and A. W. Tucker eds.), Princeton University Press, 1956.

[3] M. A. Perles. A proof of Dilworth’s decomposition theorem for partially
ordered sets. Israel Journal of Mathematics, 1:105–107, 1963.

[4] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency.
Springer, Berlin, 2003.

[5] H. Nagamochi. Cop-robber guarding game with cycle robber region. Pages
74-84 in Frontiers in Algorithmics (X. Deng, J. E. Hopcroft, and J. Xue
eds.), Springer Berlin Heidelberg, 2009.

[6] H. B. Enderton. Elements of Set Theory. Academic Press, 1977.

[7] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimiza-
tion. John Wiley & Sons, 1988.

[8] F. Harary. Graph Theory. Addison-Wesley, 1969.

