

MINISTRY OF EDUCATION
AND TRAINING

VIETNAM ACADEMY
OF SCIENCE AND TECHNOLOGY

GRADUATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Nguyễn Văn Tú

MULTI-COMMODITY FLOW MODEL
FOR SOME FLEET ASSIGNMENT PROBLEMS

MASTER THESIS IN APPLIED MATHEMATICS

Hanoi, 2023

MINISTRY OF EDUCATION
ANDTRAINING

VIETNAM ACADEMY

OF SCIENCE AND TECHNOLOGY

GRADUATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

NguyenVan Tu

MULTI-COMMODITY FLOW MODEL

FOR SOME FLEET ASSIGNMENT PROBLEMS

MATER THESIS IN APPLIED MATHEMATICS

Code:8 46 01 12

ADVISORS:

1. Dr. Lé Xuan Thanh

2. Assoc. Prof. Dr. Bui Van Dinh

Le Xian chool

Hanoi, 2023

BỘ GIÁO DỤC
VÀ ĐÀO TẠO

VIỆN HÀN LÂM KHOA HỌC
VÀ CÔNG NGHỆ VIỆT NAM

 HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ

Nguyễn Văn Tú

MÔ HÌNH LUỒNG ĐA NGUỒN CHO MỘT SỐ

BÀI TOÁN LẬP LỊCH BAY CHO ĐỘI BAY

LUẬN VĂN THẠC SĨ TOÁN ỨNG DỤNG
Mã số: 8 46 01 12

 NGƯỜI HƯỚNG DẪN KHOA HỌC

 1. TS. Lê Xuân Thanh
 2. PGS. TS. Bùi Văn Định

Hà Nội - 2023

Commitment

This thesis is done bymy own study under the supervision of Dr. LeXuan
Thanh and Assoc. Prof. Dr. Bui Van Dinh. It has not been defensed in any
council and has not been published on any media. The results as well as the
ideas of other authors are all specifically cited. I take full responsibility for
my commitment.

Hanoi, September 2023

Nguyen Van Tu

Acknowledgements

want to express my heartfelt gratitude to my advisors, Dr. Le Xuan
Thanh, and Assoc. Prof. Dr. Bui Van Dinh, for their unwavering support,
guidance, and expertise throughout my journey of completing my math the-
sis. Without their invaluable mentorship, this research would not have been
possible. am also gratefulfor their patience, encouragement, and the count-
less hours they dedicated to reviewing and providing feedback on my work.
Their insights and constructive criticism have been instrumental
the quality and direction of this thesis.

in shaping

[sincerely thank the lecturers whotaught and guided me during my master
program at the Institute of Mathematics aswell as Graduate University of
Science and Technology, Vietnam Academy of Science and Technology. I also
want to acknowledge my family and friends for their continuous encourage-
ment and support during this challenging yet rewarding academic endeavor.
Their belief in mehas been a constant source of motivation.

Finally, extend my gratitude to all the participants, sources of reference,
and institutions that contributed to the data and resources used in this re-
search. This thesis is the result of months of dedicationand hard work, and it
would nothave been possible without the collective support and collaboration
of all those mentioned above. Thank you for being a part of this journey.

Hanoi, September 2023

Nguyen Van Tu

iii

Contents

Introduction 1

1 Basic fleet assignment model 5
1.1 Problem statement . 5
1.2 Basic fleet assignment model 8

1.2.1 Time-expanded multi-commodity network 8
1.2.2 Model description . 11

1.3 Numerical experiments . 15

2 Wait-and-see fleet assignment 36
2.1 Problem statement . 36
2.2 Wait-and-see recovery robustness 37
2.3 Formulation . 39
2.4 Numerical experiments . 43

Conclusions 49

Bibliography 51

1

Introduction

In the field of Operational Research, there is a stream of researches con-
cerning problems on scheduling for aviation operations. This is because of the
reality and wide range of applications of these problems. The main problems
in this stream can be classified as follows.
• Flight network design problem is to determine between which airports an

airline should establish flight routes.
• Flight trajectory problem is to determine the path of an aircraft on each

flight leg (i.e., the longitude, latitude, and altitude of each point on the
flight path).

• Fleet design problem is to determine the number of airplanes and their
types to satisfy the forecasted traveling demand of passengers.

• Flight scheduling problem is to determine the number of flights on each
flight leg, the departure and arrival times of each flight on each flight leg
during a given time period (day, week, month, quarter, season, etc.).

• Fleet assignment problem is to schedule the airplanes in airline fleets to
perform flights with predetermined departure and arrival times.

• Aircraft routing problem is to determine the sequence of flight legs that
each airplane will fly during a given time period.

• Crew management is to schedule the crews to serve the flights.
The fleet assignment problem plays a central role in the aviation manage-

ment, as its solution is used as input data for other problems such as aircraft
routing, crew management, and as a reference for many operations such as
scheduling for logistics staffs and airplane maintenance, etc. The solution to
this problem is a schedule for the fleets in the airline, which is built for a spe-
cific time period (weekly, monthly, quarterly, etc.) and is used as a reference
for conducting airline operations throughout that period.

2

Because of the importance of the fleet assignment problem in the aviation
management, a number of studies have focused on this problem. In [1] the
authors present a survey on such studies. An exact solution method for the
fleet assignment problem is to use mixed integer programming approach. In
this direction, Abara in [2] proposes the first mixed integer programming for-
mulation for the problem. A drawback of this formulation is that its size
increases exponentially with respect to the number of flights. Hence, in prac-
tice, Abara’s formulation can only solve the problems of limited size. In fact,
this formulation was applied to a case study of American Airlines in 1990’s,
with 4 fleets to fly about 400 flights connecting 60 airports. Another mixed
integer programming formulation for the fleet assignment problem is proposed
by Hane et al. in [3]. The key idea in constructing the formulation in that pa-
per is to see the flights as a time-expanded multi-commodity network and to
view each assigned airplane type as a flow in this network. This formulation
overcomes the drawback of Abara’s one, since it can solve practical problems
with up to 11 fleets, 2500 flights between 150 airports within 1 hour on a
PC IBM RS/6000 Model 320. The formulation proposed in [3] is then used
in many related research papers on the topic of fleet assignment. Hence, it
becomes a basic formulation for the fleet assignment problem, and is often
cited with the name “Basic Fleet Assignment Model” (BFAM for short). We
will focus our study on this model in Chapter 1 of this thesis.

Due to the fact that delays and disruptions are unavoidable in airline op-
erations, many research papers consider the fleet assignment problem in the
context of data uncertainty. Their common approach is to construct a robust
fleet assignment so that incurred cost will be reduced once operational delays
or disruptions happen.

The paper of Rexing et al. [4] is the first one considering the fleet assign-
ment problem under uncertainty. In this paper, the departure and arrival
times of flights are subjected to interval uncertainty. The motivation of con-
sidering this problem comes from the observation that changing the flights’
departure times can sometime reduce the total number of used airplanes,
hence the total related cost is also reduced. The problem goal is to determine
not only which airplane type flies which flight but also the departure time
for each flight within its given time window, and the objective is to mini-
mize the total number of used airplanes. To achieve that goal and objective,
the authors construct a variant of BFAM in which the underlying idea is to
discretize the given time window of departure time of each flight. By the

3

discretization, one obtains copies for each flight arc in the network, each copy
corresponds to a discretized departure time. Exactly one among the copies
of a flight arc is chosen to have a flow pass through, meaning that the flight
will depart at the time corresponding to the chosen copy. Combining that
idea with the construction of BFAM, the authors of [4] come up with a mixed
integer programming formulation for their considered problem.

To construct a robust fleet assignment against the affection of flight de-
lays and disruptions, in [5] the authors exploit a special structure of flight
networks of airlines. Nowaday, most airlines design their flight networks in
hub-and-spoke style. With this structure, each flight network has some hub
stations together with some spoke ones. Hub stations are the main airports
at that there are connections to most airports in the network. Spoke sta-
tions are the small airports at that there are only connections to hub sta-
tions, and a few connections to other spoke ones. The key idea in [5] is to
partition the set of flights into hub-connection strings and spoke-connection
strings. A hub-connection string means a string of flights that initiates at a
hub station, passes several spoke ones, and then stops at some hub station. A
spoke-connection string consists of a string of flights that connects only spoke
stations. An upper bound on the number of flights in each hub-connection
string as well as in each spoke-connection one is imposed so that the fleet
assignment contains many cycles of few flights. Consequently, a disruption
in a cycle of flights only has an impact on the cycle, thus the incurred cost
is reduced. The partition of flights with constraints concerning the upper
bound can be modeled as an integer programming, and hence can be done
efficiently by using commercial solvers. In [6] a similar problem is studied.
However, the authors there observe that the fewer airplanes are assigned to
fly between spoke airports, the easier re-assignment can be done to replace
canceled flights. Motivated from this observation, they impose an additional
constraint to BFAM, which limits the number of airplanes used to fly between
spoke airports.

All of the papers [4, 5, 6] mentioned above deal with data uncertainty in the
fleet assignment problem, and they all focus on constructing such an assign-
ment in sense of strict robustness. In means that, in those papers, a solution
is made before any realization of data, delays, or disruptions. In Chapter 2 of
this thesis, we consider the fleet assignment problem under uncertainty in a
different context, where we focus on finding a new fleet assignment after the
realization of data. More precisely, we are given a scheduled fleet assignment

4

constructed from a flight schedule and a set of airplanes. During operation
in practice, delays and disruptions may happen and lead to an updated flight
schedule, and sometime an updated set of available airplanes. The changes in
input data may make the scheduled fleet assignment unusable, and therefore
a new one needs to be constructed adapting the new circumstance. The cost
of recovering from the scheduled fleet assignment to the new one, in some
sense, should be minimized. We aim to construct such a new fleet assignment
whose recovery cost is the number of differences with the scheduled one. By
minimizing this number, we also reduce the cost incurred by related opera-
tions. Since we aim to find a new fleet assignment after the realization of the
uncertain data, we call this problem wait-and-see fleet assignment for con-
venience. As a solution approach, we propose a mixed integer programming
formulation for the problem. In our proposed formulation, the constraints of
the problem are modeled similarly to BFAM, while the recovery cost in the
objective function is the number of changes from the scheduled assignment to
the new assignment solution.

As we have discussed, after this introduction part, the thesis contains two
main chapters, each studies a specific problem of fleet assignment. Namely,
in Chapter 1 we focus on the deterministic version of the fleet assignment
problem and present in detail the construction of BFAM introduced in [3]. In
Chapter 2 we study the wait-and-see fleet assignment problem and present
our mixed integer programming formulation for the problem. We close this
thesis with a conclusion part.

Our contributions in this thesis consist of the followings. In Chapter 1 we
give a detail explanation for the construction of BFAM which is introduced
in [3], provide a simple example for the model, and provide ZIMPL code as
well as a numerical instance for implementing and experimenting the model.
In Chapter 2 we provide ZIMPL code and some numerical instances for im-
plementing and experimenting athe mixed integer programming formulation
for the wait-and-see fleet assignment problem.

Chapter 1

Basic fleet assignment model

This chapter presents our study on the basic fleet assignment model (BFAM)
introduced in [3]. The precise description of the fleet assignment problem is
presented in Section 1.1. Section 1.2 gives the detail construction of BFAM.
Section 1.3 presents our numerical experiments to evaluate the performance
of this model.

1.1 Problem statement

Before each season, each airline often constructs a fleet assignment for a
specific time period, and then use the assignment repeatedly in the whole
season. For example, such an assignment can be scheduled for a sample week
and then used for every week in the season. Roughly speaking, the fleet
assignment problem is to determine which airplane type in the airline’s fleets
should be assigned to fly which flight in the sample time period. To construct
such an assignment, one needs the input data not only about the flights in the
sample time period but also about the airline’s fleets. The input data about
the flights include the following information.

• The set A of airports in the flight network of the airline. For each airport
a ∈ A, one may take into account the maximum number sa of airplanes
that can stay in the airport at the same time.

• The set D of flight legs in the network of the airline. Each flight leg can
be represented by an ordered pair of airport (a, b) ∈ A× A, in which a is
the departure airport and b is the arrival airport.

• The set L of flights in the considered time period. Each flight in L is an

5

6

ordered tuple ℓ = ((a, ta), (b, tb)) in which (a, b) ∈ D, ta is the departure
time, and tb is the arrival time of the flight.

• A list L of required throughs (so-called one-stop flights). More precisely,
each element in L is an ordered pair (ℓ1, ℓ2) ∈ L × L in which the flight
ℓ1 is connected with its successive flight ℓ2 (i.e., the arrival airport of ℓ1
must be the departure airport of ℓ2, and these two flights must be served
by the same airplane).

The input data about the airline’s fleets include the following information.

• The set F of available fleets (i.e. airplane types) of the airline. Each fleet
f ∈ F consists of nf airplanes of the same type.

• For each fleet f ∈ F , a set Df ⊂ D is given in advance. This set consists
of the flight legs that can be served by airplanes in the fleet f . This
information come from the fact the airplanes of different types have dif-
ferent passenger capacities, different flight ranges, . . . and therefore each
airplane type is suitable to serve some specific flight legs. For example,
an airplane with short range cannot be assigned to serve flights of long
distances.

Example 1.1. Assume that an airline has two fleets: one with Airbus 321
airplanes (denoted A321), and the other with Airbus 330 airplanes (denoted
A330). The flight network of the airline has three airports with the corre-
sponding IATA codes DAD, HAN, and HCM. In this case, the set of airports
is A = {DAD,HAN,HCM}, and the set of fleets is F = {A321, A330}.

No Departure Arrival Departure Arrival Airbus Airbus
airport airport time time 321 330

1 HAN DAD 07h00 08h20 A321
2 HAN DAD 09h00 10h20 A321
3 DAD HAN 15h00 16h20 A321
4 DAD HCM 08h40 10h20 A321
5 DAD HCM 14h00 15h30 A321
6 HCM DAD 09h00 10h30 A321
7 HCM HAN 18h00 20h10 A321 A330
8 HAN HCM 10h00 12h10 A321 A330

Table 1.1: The daily flight schedule of the airline
and the compatibility of fleets with flights in Example 1.1.

The daily flight schedule and the compatibility of fleets with flights are
given in Table 1.1. The first and the fourth flights are components of an

7

one-stop flight. The last two columns of the table tell us which flight can be
served by which airplane type. It follows from this schedule that:

• the set of flight legs in the network is

D = {(HAN,DAD), (DAD,HAN), (DAD,HCM),

(HCM,DAD), (HAN,HCM), (HCM,HAN)},

• the set of flight legs that can be served by fleet Airbus 321 is DA321 = D,
while the set of flight legs that can be served by fleet Airbus 330 is

DA330 = {(HAN,HCM), (HCM,HAN)},

• the set of flights is

L = {((HAN, 07h00), (DAD, 08h20)), ((HAN, 09h00), (DAD, 10h20)),

((DAD, 15h00), (HAN, 16h20)), ((DAD, 08h40), (HCM, 10h20)),

((DAD, 14h00), (HCM, 15h30)), ((HCM, 09h00), (DAD, 10h30)),

((HCM, 18h00), (HAN, 20h10)), ((HAN, 10h00), (HCM, 12h10))},

• the set of require throughs consists of a single element

L = {(((HAN, 07h00), (DAD, 08h20)), ((DAD, 08h40), (HCM, 10h20)))}.

One may be given the values of cfℓ and rfℓ (with f ∈ F and ℓ ∈ L) in which
cfℓ is the cost of assigning an airplane of type f to serve a flight ℓ ∈ L, and rfℓ
is the revenue of such assignment. These values are often obtained from the
past statistic of the airline. A valid fleet assignment must satisfy the following
constraints.

(C1) Each flight is served by exactly one airplane in some fleet.

(C2) The number of used airplanes in each fleet does not exceed the fleet size.

(C3) Right before and right after each flight event (take off or landing) in
the considered time period, the number of airplanes in each fleet at each
airport must be the same.

(C4) The two concerning flights in each required through must be served by
the same fleet.

8

The feasibility version of the fleet assignment problem asks whether such a
valid solution exists. If this is possible, we may consider an optimization ver-
sion of the fleet assignment problem, which asks to find a feasible assignment
that optimizes one of the following objectives.

(O1) Minimize the total cost of the assignment.

(O2) Maximize the total revenue of the assignment.

(O3) Minimize the number of used airplanes.

1.2 Basic fleet assignment model

The basic fleet assignment model (BFAM) is introduced in [3] to solve the
fleet assignment problem under the deterministic setting of input data. The
underlying idea in this model is to view the assigned flights in the fleet as-
signment solution as the flows in a time-expanded multi-commodity network.
We recall the detail construction of the network in Section 1.2.1 before going
to the description of BFAM in Section 1.2.2.

1.2.1 Time-expanded multi-commodity network

As presented in the previous section, a flight ℓ ∈ L is determined by its
departure airport, arrival airport, departure time, and arrival time. To serve
this flight, we need to assign with it an airplane from some fleet f ∈ F . Note
that, after landing on the arrival airport of the flight, the airplane needs some
additional time for operations such as cleaning, refueling, handling passenger
baggages, or receiving more passengers in case of one-stop flight, etc. It means
that the airplane needs the additional time after the arrival time of the flight
before ready to take off for the next flight. This additional time depends on
the airplane type and the airport since larger airplanes and busier airports
require more time. We will use the term “ready time” to indicate the time
at which the arriving flight is ready to take off. Hence, if we plan to assign
an airplane from fleet f to a flight ℓ, then we replace the arrival time of the
flight by the corresponding ready time.

It is worth noting that different flights on the same flight leg can be served
by the airplanes of the same fleet. To distinguish such flights, in the time-
expanded multi-commodity network, each pair of fleet-airport (f, a) ∈ F ×A is
assigned with a time line whose length represents the time period of the fleet

9

assignment result. Assume that an airplane of type f ∈ F can be assigned to
serve a flight ℓ = ((a, ta), (b, tb)), which departs at time ta from airport a and
ready in the arrival airport b at time tb. The departure event of this flight
is represented by a node (f, a, ta) corresponding to the departure time ta on
the time line (f, a). Similarly, the arrival event of this flight is represented
by a node (f, b, tb) corresponding to the ready time tb on the time line (f, b).
Then, the directed arc from the departure node (f, a, ta) to the arrival node
(f, b, tb) represents the possibility of assigning an airplane of type f to serve
the flight ℓ = ((a, ta), (b, tb)). This arc transfers a flow unit if this possibility
becomes true, otherwise no flow unit passes through the arc. We will use the
term flyable arcs to indicate such arcs connecting the nodes on different time
lines.

We need further constructions to complete the network. As we have defined
above, each node on a time line represents either a possible departure event or
a possible ready event of a flight. On each time line, each node is connected
to its successive node by a directed arc. To be precise, consider (f, a, t1) and
(f, a, t2), in which t1 < t2, as two nodes corresponding to two consecutive
events on the time line (f, a). A directed arc is made from the former node to
the latter one. The flow value of this arc represents the number of airplanes
of type f that are in the ready status on the airport a during the time period
from t1 to t2. Furthermore, for each time line (f, a) ∈ F × A, we connect its
last node to its first node by a directed arc. The flow value of this arc equals
the number of airplanes in fleet f that are ready on the airport a after the
considered assignment time period. Since this arc makes the time line a cycle,
the assignment solution can be used as a periodical schedule. We will use the
term ground arcs to indicate the constructed arcs connecting the nodes on
the same time line.

With the above network construction, a fleet assignment solution can be
imagined as the circulation of flow units in the network. The flow conversation
at every node in the network ensures the balance constraints (C3) and hence
forces the airplanes to circulate through the network of flights. The following
example illustrates the construction of the time-expanded multi-commodity
network for the data instance given in Example 1.1.

Example 1.2. Consider the data instance given in Example 1.1. Assume
that, except for the one-stop flight that needs 20 minutes in between, any
flight served by Airbus 321 fleet (resp., Airbus 330 fleet) needs 30 minutes
(resp., 40 minutes) to be ready after their arrivals. The last column of Table

10

1.2 gives us the precise ready time after each flight in the flight schedule if it
is served by fleet Airbus 321. Since the flights on the legs (HAN,HCM) and
(HCM,HAN) can be served by fleet Airbus 330, Table 1.3 gives us the ready
time after each flight on these legs if it is served by this fleet.

No Departure Arrival Departure Arrival Ready
airport airport time time time

1 HAN DAD 07h00 08h20 08h40
2 HAN DAD 09h00 10h20 10h50
3 DAD HAN 15h00 16h20 16h50
4 DAD HCM 08h40 10h20 10h50
5 DAD HCM 14h00 15h30 16h00
6 HCM DAD 09h00 10h30 11h00
7 HCM HAN 18h00 20h10 20h40
8 HAN HCM 10h00 12h10 12h40

Table 1.2: The daily flight schedule of the airline in Example 1.1
with ready time in case of using fleet Airbus 321.

No Departure Arrival Departure Arrival Ready
airport airport time time time

1 HCM HAN 18h00 20h10 20h50
2 HAN HCM 10h00 12h10 12h50

Table 1.3: The daily flight schedule of the airline in Example 1.1
with ready time in case of using fleet Airbus 330.

A321-HAN A321-DAD A321-HCM

07h00

09h00

10h00

16h50

20h40

08h40

10h50

11h00

14h00

15h00

09h00

10h50

12h40

16h00

18h00

Figure 1.1: The component of the time-expanded multi-commodity network
corresponding to the fleet Airbus 321.

11

We first construct the time lines concerning the fleet Airbus 321. These
time lines correspond to airports DAD, HAN, HCM and respectively denoted
A321-DAD, A321-HAN, A321-HCM. On each of these time lines, we put
the nodes corresponding to the departure events and ready events of related
flights. For instance, node A321-HAN-07h00 corresponds to the departure
event of the first flight in the schedule if it is served by fleet Airbus 321. Each
flight, if served by fleet Airbus 321, is represented by a directed arc connecting
its departure node and its ready node. For example, the second flight in Table
1.2 is represented by a directed arc from node A321-HAN-09h00 (on the time
line A321-HAN) to node A321-DAD-10h50 (on the time line A321-DAD).
On each of the time lines we are considering, each node is connected to its
successive node by a directed arc, and the last node is connected to the first
node also by a directed arc. Figure 1.1 illustrates the component of the time-
expanded multi-commodity network corresponding to the fleet Airbus 321.
Similarly, we obtain the component corresponding to the fleet Airbus 330
as illustrated in Figure 1.2. The time-expanded multi-commodity network
consists of these two components.

A330-HAN A330-HCM

10h00

20h50

12h50

18h00

Figure 1.2: The component of the time-expanded multi-commodity network
corresponding to the fleet Airbus 330.

1.2.2 Model description

A fleet assignment is a solution of assigning which fleet to serve which flight
so that constraints (C1)-(C4) are satisfied. We can imagine the assignment of
an airplane of fleet f to serve a flight ℓ as a flow unit transferred through the

12

corresponding arc in the time-expanded multi-commodity network. In this
manner, the whole fleet assignment solution can be viewed as the distribution
and transfer of flow units in the network, regarding constraints (C1)-(C4).
BFAM formulates the problem of determining such flows as a mixed integer
programming formulation. In this subsection we describe this formulation in
detail.

Let N be the set of nodes in the network. For each f ∈ F , let N∗
f be the

set of the last nodes on the time lines assigned with the fleet f . The set of
arcs in the network is partitioned into two disjoint subsets: ground arcs and
flyable arcs. Following the construction of the network, a ground arc is the one
whose nodes are on the same time line, while a flyable arc connects nodes on
different time lines. Each flyable arc has the form ((f, a, ta), (f, b, tb)) ∈ N ×N

which corresponds to the possibility of assigning an airplane of fleet f to serve
the flight from airport a with departure time ta to airport b with ready time
tb. A flow unit transferred through this flyable arc means that the assignment
is done. The flow value transferred through each ground arc on a time line
(f, a) refers to the number of airplanes of fleet f in the ready status on airport
a between the time of the events corresponding to its nodes. Let Lp be the
set of flyable arcs in the network, and Lr the set of arcs in required throughs
(one-stop flights).

Example 1.3. For the time-expanded multi-commodity network in Example
1.2, the set N∗ of the last nodes in the time lines is

N∗ = NA321 ∪NA330,

in which

NA321 = {(A321, HAN, 20h40), (A321, DAD, 15h00), (A321, HCM, 18h00)},
NA330 = {(A330, HAN, 20h50), (A330, HCM, 18h00)}.

The flyable arcs in the network are the ones of blue color in Figure 1.1 and
Figure 1.2, while the ground arcs are black ones. The set of arcs concerning
the required through in the network is

Lr = {(((A321, HAN, 07h00), (A321, HAN, 08h40)),

((A321, HAN, 08h40), (A321, HCM, 10h50)))}.

13

Following the described manner, BFAM uses the following variables:

xfai,fbj :=

{
1 if a flow unit transfers through arc ((f, a, i), (f, b, j)),
0 otherwise,

(1.1)

y−fai := flow value of the ground arc coming to node (f, a, i) ∈ N, (1.2)
y+fai := flow value of the ground arc going out of node (f, a, i) ∈ N. (1.3)

Using these variables, constraints (C1) can be formulated as follows.∑
f∈F

xfai,fbj′ = 1 ∀((a, i), (b, j)) ∈ L. (1.4)

Here (f, b, j′) is the ready node corresponding to the flight ((a, i), (b, j)) ∈ L in
case this flight is served by fleet f . This ensures that each flight is assigned
to be served by exactly one fleet. Constraints (C2) can be modeled by∑

(f,a,i)∈N∗
f

y+fai ≤ nf ∀f ∈ F. (1.5)

Here, the left hand side equals the total number of airplanes in fleet f on all
airports at the end of the scheduled time period. This value is also equal to
the number of airplanes in fleet f . Recall that nf is the number of available
airplanes in fleet f . Hence, (1.5) ensure that, for each fleet, the number of
used airplanes does not exceed the fleet size.

Constraints (C3) ensure the flow conservation at every node of the network.
They can be formulated as follows.∑

a,i

xfai,fbj + y−fbj =
∑
a,i

xfbj,fai + y+fbj ∀(f, b, j) ∈ N. (1.6)

The left hand side of the above equality is the total flow units coming to the
node (f, b, j) ∈ N , i.e., the total number of airplanes of type f at airport b

right before time j. The right hand side of the above equality is the total flow
units going out of the node (f, b, j) ∈ N , i.e., the total number of airplanes of
type f at airport b right after the time j. Therefore, the equality (1.6) ensures
the flow conservation at node (f, b, j).

Constraints (C4) impose that the component flights in each required through
muse be served by the same fleet. Each required through is represented by
an ordered pair of flyable arcs ((f, a, i), (f, b, j)) and ((f, b, j), (f, c, k)) in the
time-expanded multi-commodity network, in which f is any fleet that can be

14

serve the required through, ((a, i), (b, j)) is the first flight and ((b, j), (c, k)) is
the second flight of the required through. Hence, constraints (C4) can be
represented as follows.

xfai,fbj = xfbj,fck ∀(((f, a, i), (f, b, j)), ((f, b, j), (f, c, k))) ∈ Lr. (1.7)

The original version of BFAM considers the objective (O1) which aims
to minimize the total cost of the fleet assignment. For this objective, each
flyable arc ((f, a, i), (f, b, j)) in the network has a cost cfai,fbj representing the
expected cost to serve the flight ((a, i), (b, j)) by fleet f . This objective can be
expressed by

min
∑

((f,a,i),(f,b,j))∈Lp

cfai,fbjxfai,fbj . (1.8)

Here we recall that Lp is the set of flyable arcs in the network. For a recap,
BFAM reads as follows.

(BFAM) min
∑

((f,a,i),(f,b,j))∈Lp

cfai,fbjxfai,fbj

subject to
∑
f∈F

xfai,fbj′ = 1 ∀((a, i), (b, j)) ∈ L∑
(f,a,i)∈N∗

f

y+fai ≤ nf ∀f ∈ F

∑
a,i

xfai,fbj + y−fbj =
∑
a,i

xfbj,fai + y+fbj ∀(f, b, j) ∈ N

xfai,fbj = xfbj,fck

∀(((f, a, i), (f, b, j)),((f, b, j), (f, c, k))) ∈ Lr

xfai,fbj ∈ {0, 1} ∀((f, a, i), (f, b, j)) ∈ Lp

(1.9)
y+fbj ≥ 0 ∀(f, b, j) ∈ N (1.10)
y−fbj ≥ 0 ∀(f, b, j) ∈ N. (1.11)

Note that in (BFAM) the y-variables are nonnegative real numbers. However,
the constrains (1.6) together with x-variable domain (1.9) guarantee that the
y-variables are nonnegative integers.

By some slight modifications on (BFAM), we can model the objectives
(O2) and (O3). Indeed, the objective (O2), which aims to maximize the total

15

expected revenue of the fleet assignment, can be modeled as

max
∑

(f,a,i),(f,b,j)∈Lp

rfai,fbjxfai,fbj . (1.12)

Here we recall that rfai,fbj is the expected revenue of the flight ((a, i), (b, j))

if it is served by fleet f . The objective (O3), which aims to minimize the
number of used airplanes, can be modeled as

min
∑
f∈F

∑
(f,a,i)∈N∗

y+fai. (1.13)

The inner sum in (1.13) is the total flow values of all arcs going out of the last
nodes in the time lines associated with a fleet f . By the meaning of variables
y+, this sum is nothing but the total airplanes in fleet f that are ready after
the last events of the considered time period. Thus, the objective value in
(1.13) is the number of used airplanes in all fleets.

1.3 Numerical experiments

To see how BFAM performs, we created an instance of the fleet assignment
problem that consisting of 75 flights in one day between 3 airports with 3
fleets. The data of the problem instance are saved in 5 separated excel files
as follows.

• Airports.xlsx. This file contains information about the airports in the
problem instance. Except for the header line, each line of the file includes
the following information: airport name, IATA code of the airport, ca-
pacity of the airport (i.e., the number of airplanes that can stay in the
airport at the same time).

• FleetComponent.xlsx. This file contains information about the fleets in
the problem instance. Except for the header line, each line of the file
includes the following information: name of fleet (or airplane type), car-
dinality of the fleet (i.e., the number of airplanes in the fleet).

• FlightLegs.xlsx. This file contains information about the flight legs in
the flight network of the problem instance. Except for the header line,
each line of the file includes the following information: departure airport,
arrival airport, IATA code of the flight leg.

16

• Flights.xlsx. This file contains information about the flights of the prob-
lem instance. Except for the header line, each line of the file includes the
following information: flight code, IATA code of the flight leg, departure
data and departure time, flight duration. The departure date is given as
an integer which is the order of the date if we start counting from the
first day of the considered time period.

• AssignmentData.xlsx. This file contains information about assigning each
fleet to each flight of the problem instance. Except for the header line,
each line of the file includes the information of a flight as described in the
file Flights.xlsx, an airplane type that can be assigned to that flight, du-
ration of the short maintenance after the flight, the cost and the revenue
of the assignment. The values of assignment costs and expected revenues
are randomly generated.

We implemented the (BFAM) formulations corresponding to objectives
(O1)-(O3) by using ZIMPL 3.5.3 (see [7]), and then used GUROBI 9.1 (see
https://www.gurobi.com/) as a mixed integer programming solver. For the
use of our ZIMPL code, we need to save the input data in the excel files of
the data sets in text files. Namely, the information in the excel files men-
tioned above are respectively saved in text files Airports.txt, FleetCompo-
nent.txt, Flights.txt, and AssignmentData.txt. Furthermore, from the input
data about the arrival time of each flight and the length of maintenance du-
ration after each flight, we computed the ready time of each flight and then
add the information about the ready time in a data column of file Assign-
mentData.txt. Additionally, to establish the ground arcs in the (BFAM)
formulations, we saved the information about the departure and ready times
of all flyable arcs into a text file named TimelineEvents.txt. The information
in this file are arranged in lexicographical order of timeline first, then the time
corresponding to each node on these timelines. The excel files of the tested
instance are available on

https://github.com/lxthanh86/FleetAssignment.
The corresponding text files are respectively given below.

File Airports.txt of the tested instance.
1 # File data of airports
2 # IATAcode Capacity
3 DAD 22
4 HAN 47
5 SGN 104

17

File FleetComponent.txt of the tested instance.
1 # File data of fleet component
2 # TypeDenote NumberOfAircrafts
3 01 52
4 02 15
5 03 14

File Flights.txt of the tested instance.
1 # File data of flights
2 # DepartureAirport ArrivalAirport DepartureDate DepartureTime
3 HAN DAD 001_06h00
4 HAN DAD 001_09h00
5 HAN DAD 001_12h00
6 HAN DAD 001_13h00
7 HAN DAD 001_16h00
8 HAN DAD 001_17h00
9 HAN DAD 001_18h00

10 HAN DAD 001_20h00
11 HAN SGN 001_06h00
12 HAN SGN 001_07h00
13 HAN SGN 001_08h00
14 HAN SGN 001_09h00
15 HAN SGN 001_10h00
16 HAN SGN 001_11h00
17 HAN SGN 001_12h00
18 HAN SGN 001_13h00
19 HAN SGN 001_14h00
20 HAN SGN 001_15h00
21 HAN SGN 001_16h00
22 HAN SGN 001_17h00
23 HAN SGN 001_18h00
24 HAN SGN 001_19h00
25 HAN SGN 001_20h00
26 HAN SGN 001_21h00
27 HAN SGN 001_22h00
28 DAD HAN 001_06h00
29 DAD HAN 001_08h00
30 DAD HAN 001_11h00
31 DAD HAN 001_14h00
32 DAD HAN 001_15h00
33 DAD HAN 001_18h00
34 DAD HAN 001_19h00
35 DAD HAN 001_20h00
36 DAD SGN 001_08h00
37 DAD SGN 001_09h00
38 DAD SGN 001_10h00
39 DAD SGN 001_11h00
40 DAD SGN 001_12h00
41 DAD SGN 001_13h00
42 DAD SGN 001_14h00
43 DAD SGN 001_15h00
44 DAD SGN 001_17h00

18

45 DAD SGN 001_18h00
46 DAD SGN 001_19h00
47 DAD SGN 001_20h00
48 SGN HAN 001_06h00
49 SGN HAN 001_07h00
50 SGN HAN 001_08h00
51 SGN HAN 001_09h00
52 SGN HAN 001_10h00
53 SGN HAN 001_11h00
54 SGN HAN 001_12h00
55 SGN HAN 001_13h00
56 SGN HAN 001_14h00
57 SGN HAN 001_15h00
58 SGN HAN 001_16h00
59 SGN HAN 001_17h00
60 SGN HAN 001_18h00
61 SGN HAN 001_19h00
62 SGN HAN 001_20h00
63 SGN HAN 001_21h00
64 SGN HAN 001_22h00
65 SGN DAD 001_06h00
66 SGN DAD 001_09h00
67 SGN DAD 001_10h00
68 SGN DAD 001_11h00
69 SGN DAD 001_12h00
70 SGN DAD 001_13h00
71 SGN DAD 001_14h00
72 SGN DAD 001_15h00
73 SGN DAD 001_16h00
74 SGN DAD 001_17h00
75 SGN DAD 001_18h00
76 SGN DAD 001_20h00

File Flights.txt of the tested instance.
1 # File data all related information about flights and assignment options
2 # 1.DEP_AIR 2.DEP_DATE 3.DEP_TIME 4.ARR_AIR 5.ARR_DATE 6.ARR_TIME

7.AIR_TYPE 8.READY_DATE 9.READY_TIME 10.COST 11.REVENUE
3 HAN 001_06h00 DAD 001_07h20 01 001_08h05 8233 13468
4 HAN 001_09h00 DAD 001_10h20 01 001_11h05 4084 16650
5 HAN 001_12h00 DAD 001_13h20 01 001_14h05 9176 17067
6 HAN 001_13h00 DAD 001_14h20 01 001_15h05 9698 11096
7 HAN 001_16h00 DAD 001_17h20 01 001_18h05 6812 10174
8 HAN 001_17h00 DAD 001_18h20 01 001_19h05 8979 17545
9 HAN 001_18h00 DAD 001_19h20 01 001_20h05 8171 19721

10 HAN 001_20h00 DAD 001_21h20 01 001_22h05 8057 6219
11 HAN 001_06h00 SGN 001_08h15 01 001_09h00 5707 6639
12 HAN 001_07h00 SGN 001_09h15 01 001_10h00 9879 11619
13 HAN 001_08h00 SGN 001_10h15 01 001_11h00 6460 11779
14 HAN 001_09h00 SGN 001_11h15 01 001_12h00 5116 14167
15 HAN 001_10h00 SGN 001_12h15 01 001_13h00 8712 11305
16 HAN 001_11h00 SGN 001_13h15 01 001_14h00 6571 7371
17 HAN 001_12h00 SGN 001_14h15 01 001_15h00 4135 13607

19

18 HAN 001_13h00 SGN 001_15h15 01 001_16h00 7082 12482
19 HAN 001_14h00 SGN 001_16h15 01 001_17h00 5463 19708
20 HAN 001_15h00 SGN 001_17h15 01 001_18h00 4934 12642
21 HAN 001_16h00 SGN 001_18h15 01 001_19h00 9632 15163
22 HAN 001_17h00 SGN 001_19h15 01 001_20h00 6758 16552
23 HAN 001_18h00 SGN 001_20h15 01 001_21h00 4443 7476
24 HAN 001_19h00 SGN 001_21h15 01 001_22h00 7942 13616
25 HAN 001_20h00 SGN 001_22h15 01 001_23h00 6725 10998
26 HAN 001_21h00 SGN 001_23h15 01 002_00h00 4537 16608
27 HAN 001_22h00 SGN 002_00h15 01 002_01h00 5978 7336
28 DAD 001_06h00 HAN 001_07h20 01 001_08h05 6663 9821
29 DAD 001_08h00 HAN 001_09h20 01 001_10h05 5540 7258
30 DAD 001_11h00 HAN 001_12h20 01 001_13h05 5411 12727
31 DAD 001_14h00 HAN 001_15h20 01 001_16h05 5236 18104
32 DAD 001_15h00 HAN 001_16h20 01 001_17h05 7258 7129
33 DAD 001_18h00 HAN 001_19h20 01 001_20h05 9541 14683
34 DAD 001_19h00 HAN 001_20h20 01 001_21h05 9963 7826
35 DAD 001_20h00 HAN 001_21h20 01 001_22h05 7230 11690
36 DAD 001_08h00 SGN 001_09h30 01 001_10h15 9981 10757
37 DAD 001_09h00 SGN 001_10h30 01 001_11h15 6537 13605
38 DAD 001_10h00 SGN 001_11h30 01 001_12h15 5366 14669
39 DAD 001_11h00 SGN 001_12h30 01 001_13h15 5815 10100
40 DAD 001_12h00 SGN 001_13h30 01 001_14h15 6181 18264
41 DAD 001_13h00 SGN 001_14h30 01 001_15h15 7684 16950
42 DAD 001_14h00 SGN 001_15h30 01 001_16h15 4395 6861
43 DAD 001_15h00 SGN 001_16h30 01 001_17h15 4692 8433
44 DAD 001_17h00 SGN 001_18h30 01 001_19h15 5300 12552
45 DAD 001_18h00 SGN 001_19h30 01 001_20h15 8476 7239
46 DAD 001_19h00 SGN 001_20h30 01 001_21h15 6412 9854
47 DAD 001_20h00 SGN 001_21h30 01 001_22h15 8407 9880
48 SGN 001_06h00 HAN 001_08h10 01 001_08h55 7876 10870
49 SGN 001_07h00 HAN 001_09h10 01 001_09h55 9756 13588
50 SGN 001_08h00 HAN 001_10h10 01 001_10h55 6375 9941
51 SGN 001_09h00 HAN 001_11h10 01 001_11h55 7345 18729
52 SGN 001_10h00 HAN 001_12h10 01 001_12h55 8537 15807
53 SGN 001_11h00 HAN 001_13h10 01 001_13h55 8707 6703
54 SGN 001_12h00 HAN 001_14h10 01 001_14h55 9837 17260
55 SGN 001_13h00 HAN 001_15h10 01 001_15h55 4738 19359
56 SGN 001_14h00 HAN 001_16h10 01 001_16h55 5006 8299
57 SGN 001_15h00 HAN 001_17h10 01 001_17h55 7858 17888
58 SGN 001_16h00 HAN 001_18h10 01 001_18h55 5941 16792
59 SGN 001_17h00 HAN 001_19h10 01 001_19h55 7663 11242
60 SGN 001_18h00 HAN 001_20h10 01 001_20h55 7103 10624
61 SGN 001_19h00 HAN 001_21h10 01 001_21h55 6082 6035
62 SGN 001_20h00 HAN 001_22h10 01 001_22h55 6429 17362
63 SGN 001_21h00 HAN 001_23h10 01 001_23h55 6036 15948
64 SGN 001_22h00 HAN 002_00h10 01 002_00h55 9738 9404
65 SGN 001_06h00 DAD 001_07h20 01 001_08h05 7593 18636
66 SGN 001_09h00 DAD 001_10h20 01 001_11h05 6633 16640
67 SGN 001_10h00 DAD 001_11h20 01 001_12h05 5622 14137
68 SGN 001_11h00 DAD 001_12h20 01 001_13h05 7914 18605
69 SGN 001_12h00 DAD 001_13h20 01 001_14h05 6952 16773
70 SGN 001_13h00 DAD 001_14h20 01 001_15h05 6479 8137
71 SGN 001_14h00 DAD 001_15h20 01 001_16h05 7027 8563

20

72 SGN 001_15h00 DAD 001_16h20 01 001_17h05 5732 16536
73 SGN 001_16h00 DAD 001_17h20 01 001_18h05 4061 8123
74 SGN 001_17h00 DAD 001_18h20 01 001_19h05 7489 16212
75 SGN 001_18h00 DAD 001_19h20 01 001_20h05 8701 17076
76 SGN 001_20h00 DAD 001_21h20 01 001_22h05 7384 8850
77 HAN 001_06h00 DAD 001_07h20 02 001_08h05 7477 10054
78 HAN 001_09h00 DAD 001_10h20 02 001_11h05 8887 15927
79 HAN 001_12h00 DAD 001_13h20 02 001_14h05 6241 19468
80 HAN 001_13h00 DAD 001_14h20 02 001_15h05 7149 16740
81 HAN 001_16h00 DAD 001_17h20 02 001_18h05 7736 15070
82 HAN 001_17h00 DAD 001_18h20 02 001_19h05 7535 19806
83 HAN 001_18h00 DAD 001_19h20 02 001_20h05 5463 13474
84 HAN 001_20h00 DAD 001_21h20 02 001_22h05 7451 7400
85 HAN 001_06h00 SGN 001_08h15 02 001_09h00 5774 11348
86 HAN 001_07h00 SGN 001_09h15 02 001_10h00 5669 8246
87 HAN 001_08h00 SGN 001_10h15 02 001_11h00 8277 10567
88 HAN 001_09h00 SGN 001_11h15 02 001_12h00 4484 12412
89 HAN 001_10h00 SGN 001_12h15 02 001_13h00 5738 18872
90 HAN 001_11h00 SGN 001_13h15 02 001_14h00 7366 15723
91 HAN 001_12h00 SGN 001_14h15 02 001_15h00 9497 12024
92 HAN 001_13h00 SGN 001_15h15 02 001_16h00 6121 11668
93 HAN 001_14h00 SGN 001_16h15 02 001_17h00 4365 11464
94 HAN 001_15h00 SGN 001_17h15 02 001_18h00 5543 14803
95 HAN 001_16h00 SGN 001_18h15 02 001_19h00 7037 11466
96 HAN 001_17h00 SGN 001_19h15 02 001_20h00 7577 17659
97 HAN 001_18h00 SGN 001_20h15 02 001_21h00 5990 7795
98 HAN 001_19h00 SGN 001_21h15 02 001_22h00 8965 7146
99 HAN 001_20h00 SGN 001_22h15 02 001_23h00 4900 15862

100 HAN 001_21h00 SGN 001_23h15 02 002_00h00 6411 12466
101 HAN 001_22h00 SGN 002_00h15 02 002_01h00 7539 8378
102 DAD 001_06h00 HAN 001_07h20 02 001_08h05 9236 16510
103 DAD 001_08h00 HAN 001_09h20 02 001_10h05 4185 10518
104 DAD 001_11h00 HAN 001_12h20 02 001_13h05 5527 10768
105 DAD 001_14h00 HAN 001_15h20 02 001_16h05 7532 16569
106 DAD 001_15h00 HAN 001_16h20 02 001_17h05 7806 11740
107 DAD 001_18h00 HAN 001_19h20 02 001_20h05 6086 8089
108 DAD 001_19h00 HAN 001_20h20 02 001_21h05 4173 10835
109 DAD 001_20h00 HAN 001_21h20 02 001_22h05 9084 17567
110 DAD 001_08h00 SGN 001_09h30 02 001_10h15 6971 11781
111 DAD 001_09h00 SGN 001_10h30 02 001_11h15 8888 13573
112 DAD 001_10h00 SGN 001_11h30 02 001_12h15 6939 15532
113 DAD 001_11h00 SGN 001_12h30 02 001_13h15 4902 13418
114 DAD 001_12h00 SGN 001_13h30 02 001_14h15 6868 8669
115 DAD 001_13h00 SGN 001_14h30 02 001_15h15 4970 17309
116 DAD 001_14h00 SGN 001_15h30 02 001_16h15 8759 11314
117 DAD 001_15h00 SGN 001_16h30 02 001_17h15 4288 16008
118 DAD 001_17h00 SGN 001_18h30 02 001_19h15 8478 16533
119 DAD 001_18h00 SGN 001_19h30 02 001_20h15 7808 15983
120 DAD 001_19h00 SGN 001_20h30 02 001_21h15 9913 17237
121 DAD 001_20h00 SGN 001_21h30 02 001_22h15 6139 12068
122 SGN 001_06h00 HAN 001_08h10 02 001_08h55 4626 8595
123 SGN 001_07h00 HAN 001_09h10 02 001_09h55 6966 19622
124 SGN 001_08h00 HAN 001_10h10 02 001_10h55 7020 7942
125 SGN 001_09h00 HAN 001_11h10 02 001_11h55 7944 12176

21

126 SGN 001_10h00 HAN 001_12h10 02 001_12h55 6982 8176
127 SGN 001_11h00 HAN 001_13h10 02 001_13h55 7108 16599
128 SGN 001_12h00 HAN 001_14h10 02 001_14h55 8049 18672
129 SGN 001_13h00 HAN 001_15h10 02 001_15h55 8784 15748
130 SGN 001_14h00 HAN 001_16h10 02 001_16h55 7058 11685
131 SGN 001_15h00 HAN 001_17h10 02 001_17h55 6988 8629
132 SGN 001_16h00 HAN 001_18h10 02 001_18h55 5308 12258
133 SGN 001_17h00 HAN 001_19h10 02 001_19h55 6337 18049
134 SGN 001_18h00 HAN 001_20h10 02 001_20h55 9211 9627
135 SGN 001_19h00 HAN 001_21h10 02 001_21h55 8454 17773
136 SGN 001_20h00 HAN 001_22h10 02 001_22h55 8451 12127
137 SGN 001_21h00 HAN 001_23h10 02 001_23h55 5874 17183
138 SGN 001_22h00 HAN 002_00h10 02 002_00h55 9640 7600
139 SGN 001_06h00 DAD 001_07h20 02 001_08h05 7449 9432
140 SGN 001_09h00 DAD 001_10h20 02 001_11h05 5474 11300
141 SGN 001_10h00 DAD 001_11h20 02 001_12h05 5258 7102
142 SGN 001_11h00 DAD 001_12h20 02 001_13h05 5389 19299
143 SGN 001_12h00 DAD 001_13h20 02 001_14h05 9010 11356
144 SGN 001_13h00 DAD 001_14h20 02 001_15h05 7719 7391
145 SGN 001_14h00 DAD 001_15h20 02 001_16h05 9949 12599
146 SGN 001_15h00 DAD 001_16h20 02 001_17h05 9348 17507
147 SGN 001_16h00 DAD 001_17h20 02 001_18h05 6264 8634
148 SGN 001_17h00 DAD 001_18h20 02 001_19h05 4870 9609
149 SGN 001_18h00 DAD 001_19h20 02 001_20h05 5996 12313
150 SGN 001_20h00 DAD 001_21h20 02 001_22h05 5245 11105
151 HAN 001_06h00 DAD 001_07h20 03 001_08h05 5811 16847
152 HAN 001_09h00 DAD 001_10h20 03 001_11h05 4272 11796
153 HAN 001_12h00 DAD 001_13h20 03 001_14h05 9229 6787
154 HAN 001_13h00 DAD 001_14h20 03 001_15h05 4321 14295
155 HAN 001_16h00 DAD 001_17h20 03 001_18h05 5583 9911
156 HAN 001_17h00 DAD 001_18h20 03 001_19h05 9466 9176
157 HAN 001_18h00 DAD 001_19h20 03 001_20h05 4638 19992
158 HAN 001_20h00 DAD 001_21h20 03 001_22h05 4618 17185
159 HAN 001_06h00 SGN 001_08h15 03 001_09h00 5806 19280
160 HAN 001_07h00 SGN 001_09h15 03 001_10h00 4977 15052
161 HAN 001_08h00 SGN 001_10h15 03 001_11h00 7799 8906
162 HAN 001_09h00 SGN 001_11h15 03 001_12h00 9435 9659
163 HAN 001_10h00 SGN 001_12h15 03 001_13h00 7791 14787
164 HAN 001_11h00 SGN 001_13h15 03 001_14h00 9483 17688
165 HAN 001_12h00 SGN 001_14h15 03 001_15h00 8068 13034
166 HAN 001_13h00 SGN 001_15h15 03 001_16h00 5618 6778
167 HAN 001_14h00 SGN 001_16h15 03 001_17h00 6190 12859
168 HAN 001_15h00 SGN 001_17h15 03 001_18h00 7252 8188
169 HAN 001_16h00 SGN 001_18h15 03 001_19h00 4644 16976
170 HAN 001_17h00 SGN 001_19h15 03 001_20h00 4112 8945
171 HAN 001_18h00 SGN 001_20h15 03 001_21h00 4001 13515
172 HAN 001_19h00 SGN 001_21h15 03 001_22h00 5151 15505
173 HAN 001_20h00 SGN 001_22h15 03 001_23h00 9573 13423
174 HAN 001_21h00 SGN 001_23h15 03 002_00h00 6953 8906
175 HAN 001_22h00 SGN 002_00h15 03 002_01h00 9566 7371
176 DAD 001_06h00 HAN 001_07h20 03 001_08h05 5637 15431
177 DAD 001_08h00 HAN 001_09h20 03 001_10h05 8741 10161
178 DAD 001_11h00 HAN 001_12h20 03 001_13h05 4269 12754
179 DAD 001_14h00 HAN 001_15h20 03 001_16h05 9568 10634

22

180 DAD 001_15h00 HAN 001_16h20 03 001_17h05 9763 7604
181 DAD 001_18h00 HAN 001_19h20 03 001_20h05 6880 9071
182 DAD 001_19h00 HAN 001_20h20 03 001_21h05 7286 18922
183 DAD 001_20h00 HAN 001_21h20 03 001_22h05 8035 16107
184 DAD 001_08h00 SGN 001_09h30 03 001_10h15 8172 8507
185 DAD 001_09h00 SGN 001_10h30 03 001_11h15 6565 13127
186 DAD 001_10h00 SGN 001_11h30 03 001_12h15 9320 11187
187 DAD 001_11h00 SGN 001_12h30 03 001_13h15 5339 14183
188 DAD 001_12h00 SGN 001_13h30 03 001_14h15 8105 16464
189 DAD 001_13h00 SGN 001_14h30 03 001_15h15 5215 19395
190 DAD 001_14h00 SGN 001_15h30 03 001_16h15 6781 7673
191 DAD 001_15h00 SGN 001_16h30 03 001_17h15 7198 13854
192 DAD 001_17h00 SGN 001_18h30 03 001_19h15 6393 18644
193 DAD 001_18h00 SGN 001_19h30 03 001_20h15 4094 12036
194 DAD 001_19h00 SGN 001_20h30 03 001_21h15 8177 11846
195 DAD 001_20h00 SGN 001_21h30 03 001_22h15 9670 7701
196 SGN 001_06h00 HAN 001_08h10 03 001_08h55 4466 12059
197 SGN 001_07h00 HAN 001_09h10 03 001_09h55 5307 11306
198 SGN 001_08h00 HAN 001_10h10 03 001_10h55 7104 19516
199 SGN 001_09h00 HAN 001_11h10 03 001_11h55 8158 6902
200 SGN 001_10h00 HAN 001_12h10 03 001_12h55 5342 10566
201 SGN 001_11h00 HAN 001_13h10 03 001_13h55 8804 10553
202 SGN 001_12h00 HAN 001_14h10 03 001_14h55 9255 11833
203 SGN 001_13h00 HAN 001_15h10 03 001_15h55 6410 6228
204 SGN 001_14h00 HAN 001_16h10 03 001_16h55 4636 9866
205 SGN 001_15h00 HAN 001_17h10 03 001_17h55 9380 11219
206 SGN 001_16h00 HAN 001_18h10 03 001_18h55 5416 18298
207 SGN 001_17h00 HAN 001_19h10 03 001_19h55 7516 19042
208 SGN 001_18h00 HAN 001_20h10 03 001_20h55 5557 8501
209 SGN 001_19h00 HAN 001_21h10 03 001_21h55 5671 15842
210 SGN 001_20h00 HAN 001_22h10 03 001_22h55 4467 11749
211 SGN 001_21h00 HAN 001_23h10 03 001_23h55 4910 14302
212 SGN 001_22h00 HAN 002_00h10 03 002_00h55 9906 14862
213 SGN 001_06h00 DAD 001_07h20 03 001_08h05 9161 7049
214 SGN 001_09h00 DAD 001_10h20 03 001_11h05 6383 13372
215 SGN 001_10h00 DAD 001_11h20 03 001_12h05 9373 7560
216 SGN 001_11h00 DAD 001_12h20 03 001_13h05 9077 12177
217 SGN 001_12h00 DAD 001_13h20 03 001_14h05 5173 10566
218 SGN 001_13h00 DAD 001_14h20 03 001_15h05 5230 15695
219 SGN 001_14h00 DAD 001_15h20 03 001_16h05 4024 11962
220 SGN 001_15h00 DAD 001_16h20 03 001_17h05 5061 7523
221 SGN 001_16h00 DAD 001_17h20 03 001_18h05 9878 18210
222 SGN 001_17h00 DAD 001_18h20 03 001_19h05 4169 17591
223 SGN 001_18h00 DAD 001_19h20 03 001_20h05 7331 17247
224 SGN 001_20h00 DAD 001_21h20 03 001_22h05 7441 10818

File TimelineEvents.txt of the tested instance.
1 # File data events on timelines in the model
2 # No. Airport AircraftType EventDate_EventTime
3 1 DAD 01 001_06h00
4 2 DAD 01 001_08h00
5 3 DAD 01 001_08h05

23

6 4 DAD 01 001_09h00
7 5 DAD 01 001_10h00
8 6 DAD 01 001_11h00
9 7 DAD 01 001_11h05

10 8 DAD 01 001_12h00
11 9 DAD 01 001_12h05
12 10 DAD 01 001_13h00
13 11 DAD 01 001_13h05
14 12 DAD 01 001_14h00
15 13 DAD 01 001_14h05
16 14 DAD 01 001_15h00
17 15 DAD 01 001_15h05
18 16 DAD 01 001_16h05
19 17 DAD 01 001_17h00
20 18 DAD 01 001_17h05
21 19 DAD 01 001_18h00
22 20 DAD 01 001_18h05
23 21 DAD 01 001_19h00
24 22 DAD 01 001_19h05
25 23 DAD 01 001_20h00
26 24 DAD 01 001_20h05
27 25 DAD 01 001_22h05
28 26 DAD 02 001_06h00
29 27 DAD 02 001_08h00
30 28 DAD 02 001_08h05
31 29 DAD 02 001_09h00
32 30 DAD 02 001_10h00
33 31 DAD 02 001_11h00
34 32 DAD 02 001_11h05
35 33 DAD 02 001_12h00
36 34 DAD 02 001_12h05
37 35 DAD 02 001_13h00
38 36 DAD 02 001_13h05
39 37 DAD 02 001_14h00
40 38 DAD 02 001_14h05
41 39 DAD 02 001_15h00
42 40 DAD 02 001_15h05
43 41 DAD 02 001_16h05
44 42 DAD 02 001_17h00
45 43 DAD 02 001_17h05
46 44 DAD 02 001_18h00
47 45 DAD 02 001_18h05
48 46 DAD 02 001_19h00
49 47 DAD 02 001_19h05
50 48 DAD 02 001_20h00
51 49 DAD 02 001_20h05
52 50 DAD 02 001_22h05
53 51 DAD 03 001_06h00
54 52 DAD 03 001_08h00
55 53 DAD 03 001_08h05
56 54 DAD 03 001_09h00
57 55 DAD 03 001_10h00
58 56 DAD 03 001_11h00
59 57 DAD 03 001_11h05

24

60 58 DAD 03 001_12h00
61 59 DAD 03 001_12h05
62 60 DAD 03 001_13h00
63 61 DAD 03 001_13h05
64 62 DAD 03 001_14h00
65 63 DAD 03 001_14h05
66 64 DAD 03 001_15h00
67 65 DAD 03 001_15h05
68 66 DAD 03 001_16h05
69 67 DAD 03 001_17h00
70 68 DAD 03 001_17h05
71 69 DAD 03 001_18h00
72 70 DAD 03 001_18h05
73 71 DAD 03 001_19h00
74 72 DAD 03 001_19h05
75 73 DAD 03 001_20h00
76 74 DAD 03 001_20h05
77 75 DAD 03 001_22h05
78 76 HAN 01 001_06h00
79 77 HAN 01 001_07h00
80 78 HAN 01 001_08h00
81 79 HAN 01 001_08h05
82 80 HAN 01 001_08h55
83 81 HAN 01 001_09h00
84 82 HAN 01 001_09h55
85 83 HAN 01 001_10h00
86 84 HAN 01 001_10h05
87 85 HAN 01 001_10h55
88 86 HAN 01 001_11h00
89 87 HAN 01 001_11h55
90 88 HAN 01 001_12h00
91 89 HAN 01 001_12h55
92 90 HAN 01 001_13h00
93 91 HAN 01 001_13h05
94 92 HAN 01 001_13h55
95 93 HAN 01 001_14h00
96 94 HAN 01 001_14h55
97 95 HAN 01 001_15h00
98 96 HAN 01 001_15h55
99 97 HAN 01 001_16h00

100 98 HAN 01 001_16h05
101 99 HAN 01 001_16h55
102 100 HAN 01 001_17h00
103 101 HAN 01 001_17h05
104 102 HAN 01 001_17h55
105 103 HAN 01 001_18h00
106 104 HAN 01 001_18h55
107 105 HAN 01 001_19h00
108 106 HAN 01 001_19h55
109 107 HAN 01 001_20h00
110 108 HAN 01 001_20h05
111 109 HAN 01 001_20h55
112 110 HAN 01 001_21h00
113 111 HAN 01 001_21h05

25

114 112 HAN 01 001_21h55
115 113 HAN 01 001_22h00
116 114 HAN 01 001_22h05
117 115 HAN 01 001_22h55
118 116 HAN 01 001_23h55
119 117 HAN 01 002_00h55
120 118 HAN 02 001_06h00
121 119 HAN 02 001_07h00
122 120 HAN 02 001_08h00
123 121 HAN 02 001_08h05
124 122 HAN 02 001_08h55
125 123 HAN 02 001_09h00
126 124 HAN 02 001_09h55
127 125 HAN 02 001_10h00
128 126 HAN 02 001_10h05
129 127 HAN 02 001_10h55
130 128 HAN 02 001_11h00
131 129 HAN 02 001_11h55
132 130 HAN 02 001_12h00
133 131 HAN 02 001_12h55
134 132 HAN 02 001_13h00
135 133 HAN 02 001_13h05
136 134 HAN 02 001_13h55
137 135 HAN 02 001_14h00
138 136 HAN 02 001_14h55
139 137 HAN 02 001_15h00
140 138 HAN 02 001_15h55
141 139 HAN 02 001_16h00
142 140 HAN 02 001_16h05
143 141 HAN 02 001_16h55
144 142 HAN 02 001_17h00
145 143 HAN 02 001_17h05
146 144 HAN 02 001_17h55
147 145 HAN 02 001_18h00
148 146 HAN 02 001_18h55
149 147 HAN 02 001_19h00
150 148 HAN 02 001_19h55
151 149 HAN 02 001_20h00
152 150 HAN 02 001_20h05
153 151 HAN 02 001_20h55
154 152 HAN 02 001_21h00
155 153 HAN 02 001_21h05
156 154 HAN 02 001_21h55
157 155 HAN 02 001_22h00
158 156 HAN 02 001_22h05
159 157 HAN 02 001_22h55
160 158 HAN 02 001_23h55
161 159 HAN 02 002_00h55
162 160 HAN 03 001_06h00
163 161 HAN 03 001_07h00
164 162 HAN 03 001_08h00
165 163 HAN 03 001_08h05
166 164 HAN 03 001_08h55
167 165 HAN 03 001_09h00

26

168 166 HAN 03 001_09h55
169 167 HAN 03 001_10h00
170 168 HAN 03 001_10h05
171 169 HAN 03 001_10h55
172 170 HAN 03 001_11h00
173 171 HAN 03 001_11h55
174 172 HAN 03 001_12h00
175 173 HAN 03 001_12h55
176 174 HAN 03 001_13h00
177 175 HAN 03 001_13h05
178 176 HAN 03 001_13h55
179 177 HAN 03 001_14h00
180 178 HAN 03 001_14h55
181 179 HAN 03 001_15h00
182 180 HAN 03 001_15h55
183 181 HAN 03 001_16h00
184 182 HAN 03 001_16h05
185 183 HAN 03 001_16h55
186 184 HAN 03 001_17h00
187 185 HAN 03 001_17h05
188 186 HAN 03 001_17h55
189 187 HAN 03 001_18h00
190 188 HAN 03 001_18h55
191 189 HAN 03 001_19h00
192 190 HAN 03 001_19h55
193 191 HAN 03 001_20h00
194 192 HAN 03 001_20h05
195 193 HAN 03 001_20h55
196 194 HAN 03 001_21h00
197 195 HAN 03 001_21h05
198 196 HAN 03 001_21h55
199 197 HAN 03 001_22h00
200 198 HAN 03 001_22h05
201 199 HAN 03 001_22h55
202 200 HAN 03 001_23h55
203 201 HAN 03 002_00h55
204 202 SGN 01 001_06h00
205 203 SGN 01 001_07h00
206 204 SGN 01 001_08h00
207 205 SGN 01 001_09h00
208 206 SGN 01 001_10h00
209 207 SGN 01 001_10h15
210 208 SGN 01 001_11h00
211 209 SGN 01 001_11h15
212 210 SGN 01 001_12h00
213 211 SGN 01 001_12h15
214 212 SGN 01 001_13h00
215 213 SGN 01 001_13h15
216 214 SGN 01 001_14h00
217 215 SGN 01 001_14h15
218 216 SGN 01 001_15h00
219 217 SGN 01 001_15h15
220 218 SGN 01 001_16h00
221 219 SGN 01 001_16h15

27

222 220 SGN 01 001_17h00
223 221 SGN 01 001_17h15
224 222 SGN 01 001_18h00
225 223 SGN 01 001_19h00
226 224 SGN 01 001_19h15
227 225 SGN 01 001_20h00
228 226 SGN 01 001_20h15
229 227 SGN 01 001_21h00
230 228 SGN 01 001_21h15
231 229 SGN 01 001_22h00
232 230 SGN 01 001_22h15
233 231 SGN 01 001_23h00
234 232 SGN 01 002_00h00
235 233 SGN 01 002_01h00
236 234 SGN 02 001_06h00
237 235 SGN 02 001_07h00
238 236 SGN 02 001_08h00
239 237 SGN 02 001_09h00
240 238 SGN 02 001_10h00
241 239 SGN 02 001_10h15
242 240 SGN 02 001_11h00
243 241 SGN 02 001_11h15
244 242 SGN 02 001_12h00
245 243 SGN 02 001_12h15
246 244 SGN 02 001_13h00
247 245 SGN 02 001_13h15
248 246 SGN 02 001_14h00
249 247 SGN 02 001_14h15
250 248 SGN 02 001_15h00
251 249 SGN 02 001_15h15
252 250 SGN 02 001_16h00
253 251 SGN 02 001_16h15
254 252 SGN 02 001_17h00
255 253 SGN 02 001_17h15
256 254 SGN 02 001_18h00
257 255 SGN 02 001_19h00
258 256 SGN 02 001_19h15
259 257 SGN 02 001_20h00
260 258 SGN 02 001_20h15
261 259 SGN 02 001_21h00
262 260 SGN 02 001_21h15
263 261 SGN 02 001_22h00
264 262 SGN 02 001_22h15
265 263 SGN 02 001_23h00
266 264 SGN 02 002_00h00
267 265 SGN 02 002_01h00
268 266 SGN 03 001_06h00
269 267 SGN 03 001_07h00
270 268 SGN 03 001_08h00
271 269 SGN 03 001_09h00
272 270 SGN 03 001_10h00
273 271 SGN 03 001_10h15
274 272 SGN 03 001_11h00
275 273 SGN 03 001_11h15

28

276 274 SGN 03 001_12h00
277 275 SGN 03 001_12h15
278 276 SGN 03 001_13h00
279 277 SGN 03 001_13h15
280 278 SGN 03 001_14h00
281 279 SGN 03 001_14h15
282 280 SGN 03 001_15h00
283 281 SGN 03 001_15h15
284 282 SGN 03 001_16h00
285 283 SGN 03 001_16h15
286 284 SGN 03 001_17h00
287 285 SGN 03 001_17h15
288 286 SGN 03 001_18h00
289 287 SGN 03 001_19h00
290 288 SGN 03 001_19h15
291 289 SGN 03 001_20h00
292 290 SGN 03 001_20h15
293 291 SGN 03 001_21h00
294 292 SGN 03 001_21h15
295 293 SGN 03 001_22h00
296 294 SGN 03 001_22h15
297 295 SGN 03 001_23h00
298 296 SGN 03 002_00h00
299 297 SGN 03 002_01h00

Our ZIMPL code for (BFAM) with objective (O1) of minimizing the total
assignment cost is given below.

ZIMPL code for (BFAM) with objective (O1).
1 # This is a ZIMPL model file for Fleet Assignment Problem
2 # based on time-expanded multi-commodity flight network.
3 # Objective: Minimize the cost of assigned solution.
4

5 # Input files
6 param fileAirports := "Airports.txt";
7 param fileFleet := "FleetComponent.txt";
8 param fileFlights := "Flights.txt";
9 param fileEvents := "TimelineEvents.txt";

10 param fileAllInfo := "AssignmentData.txt";
11

12 # Information about airports
13 set Airports := {read fileAirports as "<1s>" comment "#"};
14 param AirportCapacity[Airports] := read fileAirports as "<1s> 2n" comment "#";
15

16 # Information about fleet
17 set AircraftTypes := {read fileFleet as "<1s>" comment "#"};
18 param nAircraftsOfType[AircraftTypes] := read fileFleet
19 as "<1s> 2n" comment "#";
20

21 ## CONSTRUCTION OF THE TIME-EXPANDED MULTI-COMMODITY NETWORK
22

23 # The set of all nodes together with their increasing order with respect to

29

24 # event time. Each member of this set has 4 components:
25 # order, airport, aircraft type, and date_time of event
26 set NodesWithOrder := {read fileEvents as "<1n, 2s, 3s, 4s>" comment "#"};
27

28 # Set of all nodes of the network (without their order)
29 # Each node has 3 components: airport, aircraft type, data_time of event
30 set Nodes := proj(NodesWithOrder , <2, 3, 4>);
31

32 # Set of forward ground arcs on the timelines associated with airports
33 set OrderedFGAs := {<i, aB, atB, tB, j, aE, atE, tE>
34 in NodesWithOrder * NodesWithOrder
35 with j == i + 1 and aB == aE and atB == atE};
36 set ForwardGroundArcs := proj(OrderedFGAs , <2,3,4,6,7,8>);
37

38 # Sets of the first nodes and the last nodes on timelines
39 set FirstAndLastOrderedNodes := {<i, aB, atB, tB, j, aE, atE, tE> in

NodesWithOrder * NodesWithOrder with i == 1 and j == card(NodesWithOrder)};
40 set TimelineBridges := {<i, aB, atB, tB, j, aE, atE, tE>
41 in NodesWithOrder * NodesWithOrder
42 with j == i + 1 and (aB != aE or atB != atE)};
43 set FirstNodes := proj(TimelineBridges , <6, 7, 8>)
44 + proj(FirstAndLastOrderedNodes , <2, 3, 4>);
45 set LastNodes := proj(TimelineBridges , <2, 3, 4>)
46 + proj(FirstAndLastOrderedNodes , <6, 7, 8>);
47

48 # # Set of backward ground arcs on the timelines associated with airports
49 set BackwardGroundArcs := {<aB, atB, tB, aE, atE, tE> in LastNodes * FirstNodes

with aB == aE and atB == atE};
50

51 # Set of ground arcs
52 set GroundArcs := ForwardGroundArcs + BackwardGroundArcs;
53

54 # Set of flight arcs in the network
55 set DataForAssign := {read fileAllInfo as "<1s, 2s, 3s, 4s, 5s, 6s, 7n, 8n>"

comment "#"};
56 set DepartReadyFlights := proj(DataForAssign , <1,2,3,5,6>);
57 set FlightArcs := {<aB, atB, tB, aE, atE, tE> in Nodes * Nodes with
58 <aB, tB, aE, atB, tE> in DepartReadyFlights and atE == atB};
59

60 # Cost of each assignment
61 param Cost[FlightArcs] := read fileAllInfo as "<1s, 5s, 2s, 3s, 5s, 6s> 7n"

comment "#";
62

63 # Set of active flights (ones with possible assignments)
64 set RawFlights := {read fileFlights as "<1s, 2s, 3s>" comment "#"};
65 set ActiveFlights := RawFlights inter proj(FlightArcs , <1, 4, 3>);
66

67 ## VARIABLES
68 var x[FlightArcs] binary;
69 var y[GroundArcs] >= 0;
70

71 ## MODELING OBJECTIVE
72 # Objective: Minimize the cost of assigned solution
73 minimize TotalCost: sum <aB, atB, tB, aE, atE, tE> in FlightArcs

30

74 with <aB, aE, tB> in FlightsActive:
75 Cost[aB,atB,tB,aE,atE,tE] * x[aB,atB,tB,aE,atE,tE];
76

77 ## MODELING CONSTRAINTS
78

79 # Exactly one aircraft type is assigned to each active flight
80 subto AssignToActiveFlights:
81 fora l l <aB, aE, tB> in ActiveFlights do
82 sum <aB1, atB, tB1, aE1, atE, tE> in FlightArcs with aB1 == aB
83 and tB1 == tB and aE1 == aE: x[aB1, atB, tB1, aE1, atE, tE] == 1;
84

85 # For each aircraft type, the number of used aircrafts is at most the number of
available aircrafts

86 subto FleetCapacity:
87 fora l l <at> in AircraftTypes do
88 sum <aB, atB, tB, aE, atE, tE> in BackwardGroundArcs
89 with atB == at: y[aB, atB, tB, aE, atE, tE]
90 <= nAircraftsOfType[at];
91

92 # Flow conversation at each node
93 subto FlowConversation:
94 fora l l <a, at, t> in Nodes do
95 sum <a_fin,at_fin,t_fin> in Nodes with <a_fin,at_fin,t_fin,a,at,t>
96 in FlightArcs: x[a_fin, at_fin, t_fin, a, at, t]
97 + sum <a_gin,at_gin,t_gin> in Nodes with <a_gin,at_gin,t_gin,a,at,t>
98 in GroundArcs: y[a_gin, at_gin, t_gin, a, at, t]
99 == sum <a_fout,at_fout,t_fout> in Nodes

100 with <a,at,t,a_fout,at_fout,t_fout> in FlightArcs:
101 x[a, at, t, a_fout, at_fout, t_fout]
102 + sum <a_gout,at_gout,t_gout> in Nodes
103 with <a,at,t,a_gout,at_gout,t_gout> in GroundArcs:
104 y[a, at, t, a_gout, at_gout, t_gout];

Our ZIMPL code for (BFAM) with objective (O2) of maximizing the total
assignment revenue is the same as the above code, except for the lines 59-60
and the lines 71-74. Precisely, the code is given below.

ZIMPL code for (BFAM) with objective (O2).
1 # This is a ZIMPL model file for Fleet Assignment Problem
2 # based on time-expanded multi-commodity flight network.
3 # Objective: Maximize the revenue of assigned solution.
4

5 # Input files
6 param fileAirports := "Airports.txt";
7 param fileFleet := "FleetComponent.txt";
8 param fileFlights := "Flights.txt";
9 param fileEvents := "TimelineEvents.txt";

10 param fileAllInfo := "AssignmentData.txt";
11

12 # Information about airports
13 set Airports := {read fileAirports as "<1s>" comment "#"};
14 param AirportCapacity[Airports] := read fileAirports as "<1s> 2n" comment "#";

31

15

16 # Information about fleet
17 set AircraftTypes := {read fileFleet as "<1s>" comment "#"};
18 param nAircraftsOfType[AircraftTypes] := read fileFleet as "<1s> 2n" comment "#

";
19

20 ## CONSTRUCTION OF THE TIME-EXPANDED MULTI-COMMODITY NETWORK
21

22 # The set of all nodes together with their increasing order with respect to
event time

23 # Each member of this set has 4 components: order, airport, aircraft type, and
date_time of event

24 set NodesWithOrder := {read fileEvents as "<1n, 2s, 3s, 4s>" comment "#"};
25

26 # Set of all nodes of the network (without their order)
27 # Each node has 3 components: airport, aircraft type, data_time of event
28 set Nodes := proj(NodesWithOrder , <2, 3, 4>);
29

30 # Set of forward ground arcs on the timelines associated with airports
31 set OrderedFGAs := {<i, aB, atB, tB, j, aE, atE, tE> in NodesWithOrder *

NodesWithOrder with j == i + 1 and aB == aE and atB == atE};
32 set ForwardGroundArcs := proj(OrderedFGAs , <2,3,4,6,7,8>);
33

34 # Sets of the first nodes and the last nodes on timelines
35 set FirstAndLastOrderedNodes := {<i, aB, atB, tB, j, aE, atE, tE> in

NodesWithOrder * NodesWithOrder with i == 1 and j == card(NodesWithOrder)};
36 set TimelineBridges := {<i, aB, atB, tB, j, aE, atE, tE> in NodesWithOrder *

NodesWithOrder with j == i + 1 and (aB != aE or atB != atE)};
37 set FirstNodes := proj(TimelineBridges , <6, 7, 8>) + proj(

FirstAndLastOrderedNodes , <2, 3, 4>);
38 set LastNodes := proj(TimelineBridges , <2, 3, 4>) + proj(

FirstAndLastOrderedNodes , <6, 7, 8>);
39

40 # # Set of backward ground arcs on the timelines associated with airports
41 set BackwardGroundArcs := {<aB, atB, tB, aE, atE, tE> in LastNodes * FirstNodes

with aB == aE and atB == atE};
42

43 # Set of ground arcs
44 set GroundArcs := ForwardGroundArcs + BackwardGroundArcs;
45

46 # Set of flight arcs in the network
47 set DataForAssign := {read fileAllInfo as "<1s, 2s, 3s, 4s, 5s, 6s, 7n, 8n>"

comment "#"};
48 set DepartReadyFlights := proj(DataForAssign , <1,2,3,5,6>);
49 set FlightArcs := {<aB, atB, tB, aE, atE, tE> in Nodes * Nodes with <aB, tB, aE

, atB, tE> in DepartReadyFlights and atE == atB};
50

51 # Revenue of each assignment
52 param Revenue[FlightArcs] := read fileAllInfo as "<1s, 5s, 2s, 3s, 5s, 6s> 8n"

comment "#";
53

54 # Set of active flights (ones with possible assignments)
55 set RawFlights := {read fileFlights as "<1s, 2s, 3s>" comment "#"};
56 set ActiveFlights := RawFlights inter proj(FlightArcs , <1, 4, 3>);

32

57

58 ## VARIABLES
59 var x[FlightArcs] binary;
60 var y[GroundArcs] >= 0;
61

62 ## MODELING OBJECTIVE
63 maximize TotalRevenue: sum <aB, atB, tB, aE, atE, tE> in FlightArcs with <aB,

aE, tB> in FlightsActive: Revenue[aB, atB, tB, aE, atE, tE] * x[aB, atB, tB
, aE, atE, tE];

64

65 ## MODELING CONSTRAINTS
66

67 # Exactly one aircraft type is assigned to each active flight
68 subto AssignToActiveFlights:
69 fora l l <aB, aE, tB> in ActiveFlights do
70 sum <aB1, atB, tB1, aE1, atE, tE> in FlightArcs with aB1 == aB and tB1

== tB and aE1 == aE: x[aB1, atB, tB1, aE1, atE, tE] == 1;
71

72 # For each aircraft type, the number of used aircrafts is at most the number of
available aircrafts

73 subto FleetCapacity:
74 fora l l <at> in AircraftTypes do
75 sum <aB, atB, tB, aE, atE, tE> in BackwardGroundArcs with atB == at

: y[aB, atB, tB, aE, atE, tE] <= nAircraftsOfType[at];
76

77 # Flow conversation at each node
78 subto FlowConversation:
79 fora l l <a, at, t> in Nodes do
80 sum <a_fin, at_fin, t_fin> in Nodes with <a_fin, at_fin, t_fin, a,

at, t> in FlightArcs: x[a_fin, at_fin, t_fin, a, at, t]
81 + sum <a_gin, at_gin, t_gin> in Nodes with <a_gin, at_gin, t_gin, a, at

, t> in GroundArcs: y[a_gin, at_gin, t_gin, a, at, t]
82 == sum <a_fout, at_fout, t_fout> in Nodes with <a, at, t, a_fout, at_fout,

t_fout> in FlightArcs: x[a, at, t, a_fout, at_fout, t_fout]
83 + sum <a_gout, at_gout, t_gout> in Nodes with <a, at, t, a_gout,

at_gout, t_gout> in GroundArcs: y[a, at, t, a_gout, at_gout, t_gout
];

Our ZIMPL code for (BFAM) with objective (O3) of minimizing the num-
ber of used airplanes is the same as the above code, except that the lines
59-60 are removed, and the lines 71-74 are changed. Precisely, the code is
given below.

ZIMPL code for (BFAM) with objective (O3).
1 # This is a ZIMPL model file for Fleet Assignment Problem
2 # based on time-expanded multi-commodity flight network.
3 # Objective: Minimize the number of used aircrafts.
4

5 # Input files
6 param fileAirports := pathToDataFolder + "Airports.txt";
7 param fileFleet := pathToDataFolder + "FleetComponent.txt";

33

8 param fileFlights := pathToDataFolder + "Flights.txt";
9 param fileEvents := pathToDataFolder + "TimelineEvents.txt";

10 param fileAllInfo := pathToDataFolder + "AssignmentData.txt";
11

12 # Information about airports
13 set Airports := {read fileAirports as "<1s>" comment "#"};
14 param AirportCapacity[Airports] := read fileAirports as "<1s> 2n" comment "#";
15

16 # Information about fleet
17 set AircraftTypes := {read fileFleet as "<1s>" comment "#"};
18 param nAircraftsOfType[AircraftTypes] := read fileFleet as "<1s> 2n" comment "#

";
19

20 ## CONSTRUCTION OF THE TIME-EXPANDED MULTI-COMMODITY NETWORK
21

22 # The set of all nodes together with their increasing order with respect to
event time

23 # Each member of this set has 4 components: order, airport, aircraft type, and
date_time of event

24 set NodesWithOrder := {read fileEvents as "<1n, 2s, 3s, 4s>" comment "#"};
25

26 # Set of all nodes of the network (without their order)
27 # Each node has 3 components: airport, aircraft type, data_time of event
28 set Nodes := proj(NodesWithOrder , <2, 3, 4>);
29

30 # Set of forward ground arcs on the timelines associated with airports
31 set OrderedFGAs := {<i, aB, atB, tB, j, aE, atE, tE> in NodesWithOrder *

NodesWithOrder with j == i + 1 and aB == aE and atB == atE};
32 set ForwardGroundArcs := proj(OrderedFGAs , <2,3,4,6,7,8>);
33

34 # Sets of the first nodes and the last nodes on timelines
35 set FirstAndLastOrderedNodes := {<i, aB, atB, tB, j, aE, atE, tE> in

NodesWithOrder * NodesWithOrder with i == 1 and j == card(NodesWithOrder)};
36 set TimelineBridges := {<i, aB, atB, tB, j, aE, atE, tE> in NodesWithOrder *

NodesWithOrder with j == i + 1 and (aB != aE or atB != atE)};
37 set FirstNodes := proj(TimelineBridges , <6, 7, 8>) + proj(

FirstAndLastOrderedNodes , <2, 3, 4>);
38 set LastNodes := proj(TimelineBridges , <2, 3, 4>) + proj(

FirstAndLastOrderedNodes , <6, 7, 8>);
39

40 # # Set of backward ground arcs on the timelines associated with airports
41 set BackwardGroundArcs := {<aB, atB, tB, aE, atE, tE> in LastNodes * FirstNodes

with aB == aE and atB == atE};
42

43 # Set of ground arcs
44 set GroundArcs := ForwardGroundArcs + BackwardGroundArcs;
45

46 # Set of flight arcs in the network
47 set DataForAssign := {read fileAllInfo as "<1s, 2s, 3s, 4s, 5s, 6s, 7n, 8n>"

comment "#"};
48 set DepartReadyFlights := proj(DataForAssign , <1,2,3,5,6>);
49 set FlightArcs := {<aB, atB, tB, aE, atE, tE> in Nodes * Nodes with <aB, tB, aE

, atB, tE> in DepartReadyFlights and atE == atB};
50

34

51 # Set of active flights (ones with possible assignments)
52 set RawFlights := {read fileFlights as "<1s, 2s, 3s>" comment "#"};
53 set ActiveFlights := RawFlights inter proj(FlightArcs , <1, 4, 3>);
54

55 ## VARIABLES
56 var x[FlightArcs] binary;
57 var y[GroundArcs] >= 0;
58

59 ## MODELING OBJECTIVE
60 minimize NumberOfUsedAircrafts: sum <aB, atB, tB, aE, atE, tE> in

BackwardGroundArcs: y[aB, atB, tB, aE, atE, tE];
61

62 ## MODELING CONSTRAINTS
63

64 # Exactly one aircraft type is assigned to each active flight
65 subto AssignToActiveFlights:
66 fora l l <aB, aE, tB> in ActiveFlights do
67 sum <aB1, atB, tB1, aE1, atE, tE> in FlightArcs with aB1 == aB and tB1

== tB and aE1 == aE: x[aB1, atB, tB1, aE1, atE, tE] == 1;
68

69 # For each aircraft type, the number of used aircrafts is at most the number of
available aircrafts

70 subto FleetCapacity:
71 fora l l <at> in AircraftTypes do
72 sum <aB, atB, tB, aE, atE, tE> in BackwardGroundArcs with atB == at

: y[aB, atB, tB, aE, atE, tE] <= nAircraftsOfType[at];
73

74 # Flow conversation at each node
75 subto FlowConversation:
76 fora l l <a, at, t> in Nodes do
77 sum <a_fin, at_fin, t_fin> in Nodes with <a_fin, at_fin, t_fin, a,

at, t> in FlightArcs: x[a_fin, at_fin, t_fin, a, at, t]
78 + sum <a_gin, at_gin, t_gin> in Nodes with <a_gin, at_gin, t_gin, a, at

, t> in GroundArcs: y[a_gin, at_gin, t_gin, a, at, t]
79 == sum <a_fout, at_fout, t_fout> in Nodes with <a, at, t, a_fout, at_fout,

t_fout> in FlightArcs: x[a, at, t, a_fout, at_fout, t_fout]
80 + sum <a_gout, at_gout, t_gout> in Nodes with <a, at, t, a_gout,

at_gout, t_gout> in GroundArcs: y[a, at, t, a_gout, at_gout, t_gout
];

Our experiments were conducted on a computer with the following con-
figurations: Intel(R) Core(TM) i7-6700HQ CPU 2*2.60 GHz, 16 GB RAM,
Windows 10 Operating System. The numerical results are reported in Table
1.4.

Objective # vars # cons Running time
(O1) 519 374 0.02 s
(O2) 519 374 0.02 s
(O3) 519 374 0.02 s

Table 1.4: Numerical results of (BFAM) formulations on the tested instance.

35

With the running times of 0.02 seconds for solving the tested instance of
small size with 75 flights between 3 airports and 3 fleets, we can say that
(BFAM) is efficient in solving the fleet assignment problems. In the future
we will construct larger size instances of the problems and test the model on
these instances to have a better evaluation on the performance of (BFAM).

Chapter 2

Wait-and-see fleet assignment

In this chapter we study the so-called wait-and-see fleet assignment which
has already introduced shortly in Introduction. The detail description of this
problem is presented in Section 2.1. Section 2.2 gives the baseline theory
for the construction of our mixed integer programming formulation for this
problem in Section 2.3. Section 2.4 presents our numerical experiments to
evaluate the performance of this formulation.

2.1 Problem statement

The fleet assignment problem presented in Chapter 1 aims to construct
a fleet assignment with deterministic data. Such assignment is intended to
be used for a long period of time. However, when operating in practice,
many situations from various reasons can happen. Here are the most common
situations one can experience in real life.

• Due to the bad weather and/or airline traffic control reasons, some flights
are delayed or even canceled.

• Due to mechanical and/or maintenance reasons, the size of some fleet
decreases since some airplanes in the original fleet are not available to
fly. The size of fleet may also increase in case the airline buys some new
airplanes for development purposes.

• Some new flight legs are opened to catch the high transportation demand
of passengers. In this case, new flight schedule associated with the new
legs are also given.

36

37

• Some of current flight legs are closed due to the low transportation de-
mand of passengers. In this case, the flights associated with these legs
are also omitted.

The scheduled fleet assignment may not work anymore in the new situation,
hence there is a need of constructing a new fleet assignment adapting to the
updated input data. The problem under our consideration in this chapter is
to find such a new fleet assignment satisfying the two following criteria.

(W1) It is valid (i.e., it satisfies constraints (C1)-(C4) stated in Section 1.1) in
the setting of the new situtation.

(W2) It has the least difference (i.e. the minimum number of changes) from
the scheduled one.

The former criterion is to ensure that the new fleet assignment works well
under the setting of the new situation. The latter criterion is to reduce the
negative affect of changing from the scheduled assignment to the new one. We
call this problem by wait-and-see fleet assignment, in which the term ‘wait-
and-see’ is to emphasize that the solution of this problem is made after the
realization of data in the new setting.

2.2 Wait-and-see recovery robustness

In this section, we introduce the concept of wait-and-see recovery robust-
ness. This concept has a similar spirit to the recovery-to-feasibility robustness
concept introduced in [8]. Due to the similarity, to better understand our pro-
posed robustness concept, we first review the latter one.

Consider an uncertain optimization problem (Pξ)ξ∈U , which is a parameter-
ized family of optimization problems corresponding to ξ ∈ U ⊂ Rp (for some
p ∈ N):

(Pξ) min f(x, ξ)

s.t. F (x, ξ) ≤ 0

x ∈ X ,

where

• ξ is the parameter vector representing data elements of the problem (Pξ),

• U is the set consisting of considered values of parameter ξ,

38

• x is the decision vector,

• X ⊂ Rn is the variable space (here n is the dimension of the space),

• f(·, ξ) : Rn → R is the objective function corresponding to ξ ∈ U ,

• F (·, ξ) : Rn → Rm (for some m ∈ N) is the function describing the con-
straints of (Pξ) for any fixed ξ ∈ U .

To be precise, the vector inequality F (x, ξ) ≤ 0 in the description of constraints
of (Pξ) means that Fi(x, ξ) ≤ 0 for i = 1, . . . ,m, in which the functions Fi’s
are the components of the vector function F . The set U is called uncertainty
set and its elements are called scenarios. The uncertainty set can be given
by disturbing a so-called nominal scenario. The nominal scenario can also
refer to the most likely value of data vector ξ. The optimization problem (Pξ)

corresponding to the nominal scenario ξ ∈ U is called the nominal problem
of the uncertain optimization problem (Pξ)ξ∈U . An optimal solution to the
nominal problem (Pξ) is called a nominal solution to (Pξ)ξ∈U .

We denote by F(ξ) the feasible set of (Pξ), i.e.

F(ξ) := {x ∈ X | F (x, ξ) ≤ 0}.

Let d : Rn × Rn → R+ be a function that we shall call recovery cost from
now. A recovery-to-feasibility robust solution to (P (ξ))ξ∈U is a solution x to
the following recovery-to-feasibility robust counterpart

(RecFeas(U)) min
x∈X

sup
ξ∈U

d(x,F(ξ)),

where
d(x,F(ξ)) = min

y∈F(ξ)
d(x, y).

This means that we can recover a recovery-to-feasibility robust solution to
be feasible in any scenario minimizing the recovery cost. More precisely,
the recovery-to-feasibility robustness concept composes of the following main
points:
• The robust solution x has to be made before the realization of uncertain

parameter ξ. It does not need to be feasible to any problem in the family
(Pξ)ξ∈U .

• When the parameter ξ becomes realized, one can recover the computed
solution x to obtain a feasible solution y of the corresponding optimization
problem (Pξ).

39

• The recovery cost in the worst case of parameter ξ is minimized.

We now define the concept of wait-and-see recovery robustness. The wait-
and-see recovery robust counterpart of (P (ξ))ξ∈U is the following problem

(WasRec(U)) sup
ξ∈U

min
x∈F(ξ)

d(x,F(ξ)),

The objective of this robust counterpart is to minimize the cost of recovering
a nominal solution to a feasible solution in the worst case of parameter ξ.
This has a similar spirit to the objective of the recovery-to-feasibility robust
counterpart. However, the wait-and-see recovery robustness has the following
key differences from recovery-to-feasibility robustness:

• The feasible set F(ξ) of the nominal problem (Pξ) has to be given before
the realization of uncertain parameter ξ.

• The robust solution x has to be made after the realization of uncertain
parameter ξ. It must be feasible to some problem in the family (Pξ)ξ∈U .

To see the application of wait-and-see recovery robustness concept to the
context of fleet assignment problem, we consider the special case in which U
consists of only two instances {ξ, ξ∗}. In this case, ξ is the nominal instance
of parameter ξ, while ξ∗ is the only possible realization of the parameter.
Furthermore, a feasible solution x ∈ F(ξ) to the nominal problem P (ξ) is
computed beforehand. The wait-and-see recovery robust counterpart in this
situation becomes

min
x∈F(ξ∗)

d(x, x). (2.1)

Any solution to this problem is called a wait-and-see recovery robust solution.
Such solution is determined to be feasible after the uncertain parameter ξ

becomes realized, and has the minimum recovery cost from the given nominal
solution.

2.3 Formulation

As mentioned in Section 1.1 and Section 1.2, in the deterministic setting
of the old situation, the input data of the fleet assignment problem include:

• the set A of airports in the flight network of the airline,

• the set D of flight legs in the network of the airline,

40

• the set L of flights in the considered time period,

• the list L of required throughs,

• the set F of available fleets (i.e. airplane types) of the airline,

• the set Df ⊂ D of the flight legs that can be served by airplanes in each
fleet f ∈ F ,

• the number nf of airplanes of each type f ∈ F ,

• the cost cfℓ to serve each flight ℓ ∈ L by each fleet f ∈ F ,

• the revenue rfℓ obtained by using fleet f ∈ F to serve flight ℓ ∈ L.

For convenience, we denote by

I = {A,D,L,L, F,Df , nf , cfℓ, rfℓ with f ∈ F, ℓ ∈ L}

the input data of the fleet assignment in the deterministic setting of old situ-
ation. The updated input data in the setting of the new situation are denoted
by

Ĩ = {Ã, D̃, L̃, L̃, F̃ , D̃f , ñf , c̃fℓ, r̃fℓ with f ∈ F̃ , ℓ ∈ L̃}.

in which its elements representing the data components in the new setting.
Following the paradigm of constructing the time-expanded multi-commodity

network in Section 1.2.1 and the decription of BFAM formulation in Section
1.2.2, we construct the time-expanded multi-commodity network associated
with the input data I, and let Lp be the set of flyable arcs of this network.
In the manner of (1.1), the scheduled fleet assignment (corresponding to the
old situation) can be encoded by a binary vector x in which

xfai,fbj =

{
1 if the arc ((f, a, i), (f, b, j)) ∈ Lp is used in the assignment,
0 otherwise.

Similarly, we construct the time-expanded multi-commodity network corre-
sponding to the updated data Ĩ. Let Ñ be the set of nodes, L̃p the set of
flyable arcs, and L̃rt the set of arcs in required throughs in this network.
Furthermore, for each fleet f ∈ F̃ , let Ñ∗

f be the set of the last nodes in the
time lines corresponding to the fleet. Using the BFAM formulation on this
network, one can compute a feasible fleet assignment in the setting of the new

41

data Ĩ. More precisely, the formulation uses the following binary variables to
encode such assignment:

zfai,fbj =

{
1 if the arc ((f, a, i), (f, b, j)) ∈ L̃p is used in the assignment,
0 otherwise.

Furthermore, the formulation needs the following additional variables:

u−fai := flow value of the ground arc coming to (f, a, i) ∈ Ñ ,

u+fai := flow value of the ground arc going out of (f, a, i) ∈ Ñ .

A feasible fleet assignment in the setting of the updated data Ĩ is a feasible
solution of the following BFAM formulation.∑

f∈F̃

zfai,fbj′ = 1 ∀((a, i), (b, j)) ∈ L̃ (2.2)

∑
(f,a,i)∈Ñ∗

f

u+fai ≤ ñf ∀f ∈ F̃ (2.3)

∑
a,i

zfai,fbj + u−fbj =
∑
a,i

zfbj,fai + u+fbj ∀(f, b, j) ∈ Ñ (2.4)

zfai,fbj = xfbj,fck ∀(((f, a, i), (f, b, j)), ((f, b, j), (f, c, k))) ∈ L̃rt

(2.5)
zfai,fbj ∈ {0, 1} ∀((f, a, i), (f, b, j)) ∈ L̃p (2.6)

u+fbj ≥ 0 ∀(f, b, j) ∈ Ñ (2.7)
u−fbj ≥ 0 ∀(f, b, j) ∈ Ñ . (2.8)

The objective of the wait-and-see fleet assignment problem is to minimize
the number of changes from the scheduled fleet assignment encoded by x

to the new one encoded by z. Keeping in mind that the vectors x and z

are binary, this cost can be computed by the Hamming distance between
these vectors. Recall from [9] that the Hamming distance between two binary
vectors v, w ∈ {0, 1}m is the number of indices at which the corresponding
components of these vectors are different, and is computed by

m∑
j=1

|vj − wj |.

42

Note that the Hamming distance is defined for two vectors of the same index
set, while our vectors x and z may not satisfy this condition. In order to
use the Hamming distance to compute the objective value of the wait-and-see
fleet assignment problem, we need to add some components to each of the
vectors so that they share the same index set. This can be done as follows.

• For each e ∈ L̃p\Lp, we add component xe to vector x and set xe = 0.

• For each e ∈ Lp\L̃p, we add component ze to vector x and set ze = 0.

This means that any index of z that is not an index of x will be added to
the index set of x, and vice versa. By setting zero value for the additional
components of the vectors, we impose that the assignments corresponding
to the components will not appear in the assignment solutions. Now, the
objective value is explicitly computed as the Hamming distance between the
two updated vectors, i.e.,

d(z, x) =
∑

j∈Lp∪L̃p

|zj − xj |. (2.9)

Since the value of x is given beforehand, this objective value is in fact a func-
tion of z. Furthermore, in form of (2.9), this function is nonlinear. However,
the objective of minimizing this recovery cost function can be linearized as
follows.

min
∑

j∈Lp∪L̃p

vj

s.t. − vj ≤ zj − xj ≤ vj ∀j ∈ Lp ∪ L̃p.

To the end, we come up with the following MIP formulation for the wait-
and-see recovery robust fleet assignment.

(BFAMwas) min
∑

((f,a,i),(f,b,j))∈Lp∪L̃p

vfaj,fbj

s.t. zfaj,fbj − xfaj,fbj ≥ −vfaj,fbj ∀((f, a, i), (f, b, j)) ∈ Lp ∪ L̃p

zfaj,fbj − xfaj,fbj ≤ vfaj,fbj ∀((f, a, i), (f, b, j)) ∈ Lp ∪ L̃p∑
f∈F̃

zfai,fbj′ = 1 ∀((a, i), (b, j)) ∈ L̃

43∑
(f,a,i)∈Ñ∗

f

u+fai ≤ ñf ∀f ∈ F̃

∑
a,i

zfai,fbj + u−fbj =
∑
a,i

zfbj,fai + u+fbj ∀(f, b, j) ∈ Ñ

zfai,fbj = zfbj,fck ∀(((f, a, i), (f, b, j)),

((f, b, j), (f, c, k))) ∈ L̃rt

zfai,fbj = 0 ∀((f, a, i), (f, b, j)) ∈ Lp\L̃p

zfai,fbj ∈ {0, 1} ∀((f, a, i), (f, b, j)) ∈ Lp ∪ L̃p

u+fbj ≥ 0 ∀(f, b, j) ∈ Ñ

u−fbj ≥ 0 ∀(f, b, j) ∈ Ñ .

2.4 Numerical experiments

To evaluate the performance of (BFAMwas), we first created some data sets
for the wait-and-see fleet assignment. As described in the previous section,
the data of a wait-and-see recovery robust fleet assignment problem consist
of a given fleet assignment (scheduled for the old setting) and the updated
collection

Ĩ = {Ã, D̃, L̃, L̃, F̃ , D̃f , ñf , c̃fℓ, r̃fℓ with f ∈ F̃ , ℓ ∈ L̃}

of data in the new situation. To see the data changes from the previous
situation to the new situation, the collection

I = {A,D,L,L, F,Df , nf , cfℓ, rfℓ with f ∈ F, ℓ ∈ L}

of data in the previous situation may be also given. The given scheduled
fleet assignment is constructed in the setting of I. Hence, each instance of
the wait-and-see fleet assignment problem consists of two parts: the new part
corresponds to the new situation, the old part corresponds to the previous
situation.

The new part of each data set corresponding to each wait-and-see fleet as-
signment problem instance consists of 5 excel files named AirportsNew.xlsx,
FleetComponentNew.xlsx, FlightLegsNew.xlsx, FlightsNew.xlsx, and Assign-
mentDataNew.xlsx. The contents and functionalities of these files are respec-
tively similar to the files Airports.xlsx, FleetComponent.xlsx, FlightLegs.xlsx,
Flights.xlsx, and AssignmentData.xlsx as we have described in Section 1.3.

44

Note that in the file AssignmentDataNew.xlsx we do not need to provide the
information about the cost and the revenue of each assignment in the new
situation, since that parameters are not relevant to our objective which aims
to minimize the number of differences between the new assignment with the
scheduled one.

The old part of each data set corresponding to each wait-and-see fleet as-
signment problem instance contains an excel file named OldAssignment.xlsx,
which saves the scheduled fleet assignment. Each line of this file includes the
information of an assignment: a flight in the previous situation and the aircraft
type assigned to it. For the sake of completeness, we provide the data mate-
rials for constructing the scheduled assignment. These materials are saved in
other separated excel files in the old part. Their contents are almost similar
to the files in the new part, but correspond to the old situation. More pre-
cisely, apart from the file OldAssignment.xlsx, the old part may contain excel
files AirportsOld.xlsx, FleetComponentOld.xlsx, FlightLegsOld.xlsx, Flight-
sOld.xlsx, and AssignmentDataOld.xlsx. These additional excel files have the
same structure as the corresponding files in the new part.

We generated three problem instances named WasFA1, WasFA2, WasFA3.
They are constructed from the public data about the schedule of domestic
flights of Vietnam Airlines in the duration from October 27th, 2019 to March
28th, 2020. Each instance consists of two parts: old and new ones. The
old parts of the tested instances share the same data of 19 domestic airports
and 77 domestic flight legs in Vietnam, 5 fleets and 243 domestic flights of
Vietnam Airlines in a nominal day. Furthermore, they share a list of all
possible assignments between the flights and aircraft types, together with the
cost and the revenue of each of such assignments. Additionally, the old part of
each tested instance includes a scheduled fleet assignment. The assignment in
instance WasFA1 (resp., WasFA2, WasFA3) is the scheduled fleet assignment
which is optimal with respect to the objective of minimizing the number of
used aircrafts (resp., the objective of minimizing the total assignment cost,
the objective of maximizing the total assignment revenue). The new parts of
the tested instances are the same, and they are made from the common data
in the old parts by delaying 5 flights, canceling 6 flights, and restricting fleet
assignability on 3 flight legs. These tested instances are available on

https://github.com/lxthanh86/WasFleetAssignment.
We implemented the proposed formulation by using ZIMPL 3.5.3 (cf. [7]).

The ZIMPL code of the formulation is given in the appendix section at the

45

end of this report. We used GUROBI 9.1 (see https://www.gurobi.com) as
a mixed integer programming solver. All experiments were conducted on a
computer with an Intel(R) Core(TM) i7-6700HQ CPU 2.6 GHz processor and
16 GB of RAM. Our ZIMPL code for (BFAMwas) is given below.

ZIMPL code for (BFAMwas).
1 # This is a ZIMPL model file for Wait-and-see Recovery Robust Fleet Assignment

Problem
2 # based on time-expanded multi-commodity flight network and Hamming recovery

cost.
3

4 # Input files
5 param fileAirports := "AirportsNew.txt";
6 param fileFleet := "FleetComponentNew.txt";
7 param fileFlights := "FlightsNew.txt";
8 param fileEvents := "TimelineEventsNew.txt";
9 param fileAllInfo := "AssignmentDataNew.txt";

10 param fileOldFA := "PreviousSolution.txt";
11

12 # Information about airports
13 set Airports := {read fileAirports as "<1s>" comment "#"};
14 param AirportCapacity[Airports] := read fileAirports as "<1s> 2n" comment "#";
15

16 # Information about fleet
17 set AircraftTypes := {read fileFleet as "<1s>" comment "#"};
18 param nAircraftsOfType[AircraftTypes] := read fileFleet as "<1s> 2n" comment "#

";
19

20 ## CONSTRUCTION OF THE TIME-EXPANDED MULTI-COMMODITY NETWORK
21

22 # The set of all nodes together with their increasing order with respect to
event time

23 # Each member of this set has 4 components: order, airport, aircraft type, and
date_time of event

24 set NodesWithOrder := {read fileEvents as "<1n, 2s, 3s, 4s>" comment "#"};
25

26 # Set of all nodes of the network (without their order)
27 # Each node has 3 components: airport, aircraft type, data_time of event
28 set Nodes := proj(NodesWithOrder , <2, 3, 4>);
29

30 # Set of forward ground arcs on the timelines associated with airports
31 set OrderedFGAs := {<i, aB, atB, tB, j, aE, atE, tE> in NodesWithOrder *

NodesWithOrder with j == i + 1 and aB == aE and atB == atE};
32 set ForwardGroundArcs := proj(OrderedFGAs , <2,3,4,6,7,8>);
33

34 # Sets of the first nodes and the last nodes on timelines
35 set FirstAndLastOrderedNodes := {<i, aB, atB, tB, j, aE, atE, tE> in

NodesWithOrder * NodesWithOrder with i == 1 and j == card(NodesWithOrder)};
36 set TimelineBridges := {<i, aB, atB, tB, j, aE, atE, tE> in NodesWithOrder *

NodesWithOrder with j == i + 1 and (aB != aE or atB != atE)};
37 set FirstNodes := proj(TimelineBridges , <6, 7, 8>) + proj(

FirstAndLastOrderedNodes , <2, 3, 4>);
38 set LastNodes := proj(TimelineBridges , <2, 3, 4>) + proj(

46

FirstAndLastOrderedNodes , <6, 7, 8>);
39

40 # Set of backward ground arcs on the timelines associated with airports
41 set BackwardGroundArcs := {<aB, atB, tB, aE, atE, tE> in LastNodes * FirstNodes

with aB == aE and atB == atE};
42

43 # Set of ground arcs
44 set GroundArcs := ForwardGroundArcs + BackwardGroundArcs;
45

46 # Set of flight arcs in the network
47 set DataForAssign := {read fileAllInfo as "<1s, 2s, 3s, 4s, 5s, 6s, 7n, 8n>"

comment "#"};
48 set DepartReadyFlights := proj(DataForAssign , <1,2,3,5,6>);
49 set FlightArcs := {<aB, atB, tB, aE, atE, tE> in Nodes * Nodes with <aB, tB, aE

, atB, tE> in DepartReadyFlights and atE == atB};
50

51 # Set of active flights (ones with possible assignments)
52 set RawFlights := {read fileFlights as "<1s, 2s, 3s>" comment "#"};
53 set ActiveFlights := RawFlights inter proj(FlightArcs , <1, 4, 3>);
54

55 ## CONSTRUCTION FOR OBJECTIVE FUNCTION
56

57 set OldFASolution := {read fileOldFA as "<1s, 2s, 3s, 4s, 5s, 6s, 7n>" comment
"#"};

58 set OldFlightArcs := proj(OldFASolution , <1,2,3,4,5,6>);
59 param xOld[OldFlightArcs] := read fileOldFA as "<1s, 2s, 3s, 4s, 5s, 6s> 7n"

comment "#";
60

61 ## VARIABLES
62

63 var x[FlightArcs + OldFlightArcs] binary;
64 var y[GroundArcs] >= 0;
65

66 ## MODELING OBJECTIVE
67

68 minimize HammingCost: sum <aB, atB, tB, aE, atE, tE> in OldFlightArcs: vabs(x[
aB, atB, tB, aE, atE, tE] - xOld[aB, atB, tB, aE, atE, tE]) + sum <aB, atB,
tB, aE, atE, tE> in FlightArcs without OldFlightArcs: vabs(x[aB, atB, tB,

aE, atE, tE]);
69

70 ## MODELING CONSTRAINTS
71

72 # Variables of old indices that are no longer used in the new assignment must
be zero

73 subto ZeroOld:
74 fora l l <aB, atB, tB, aE, atE, tE> in OldFlightArcs without FlightArcs do
75 x[aB, atB, tB, aE, atE, tE] == 0;
76

77 # Exactly one aircraft type is assigned to each active flight
78 subto AssignToActiveFlights:
79 fora l l <aB, aE, tB> in ActiveFlights do
80 sum <aB1, atB, tB1, aE1, atE, tE> in FlightArcs with aB1 == aB and tB1

== tB and aE1 == aE: x[aB1, atB, tB1, aE1, atE, tE] == 1;
81

47

82 # For each aircraft type, the number of used aircrafts is at most the number of
available aircrafts

83 subto FleetCapacity:
84 fora l l <at> in AircraftTypes do
85 sum <aB, atB, tB, aE, atE, tE> in BackwardGroundArcs with atB == at

: y[aB, atB, tB, aE, atE, tE] <= nAircraftsOfType[at];
86

87 # Flow conversation at each node
88 subto FlowConversation:
89 fora l l <a, at, t> in Nodes do
90 sum <a_fin, at_fin, t_fin> in Nodes with <a_fin, at_fin, t_fin, a,

at, t> in FlightArcs: x[a_fin, at_fin, t_fin, a, at, t]
91 + sum <a_gin, at_gin, t_gin> in Nodes with <a_gin, at_gin, t_gin, a, at

, t> in GroundArcs: y[a_gin, at_gin, t_gin, a, at, t]
92 == sum <a_fout, at_fout, t_fout> in Nodes with <a, at, t, a_fout, at_fout,

t_fout> in FlightArcs: x[a, at, t, a_fout, at_fout, t_fout]
93 + sum <a_gout, at_gout, t_gout> in Nodes with <a, at, t, a_gout,

at_gout, t_gout> in GroundArcs: y[a, at, t, a_gout, at_gout, t_gout
];

Table 2.1 summarizes some numerical results of testing the basic fleet as-
signment model (BFAM) on the new part of the problem instances (that is,
we did not take into account the information of the previous schedule when
generating the new one). The second and the third columns of the table
respectively give the number of variables and the number of constraints of
the models for each tested instance. The times reported in the table are in
seconds. It can be seen from the last column of Table 2.1 that the Basic Fleet
Assignment Model is very efficient in solving the deterministic fleet assign-
ment problem. For our tested instances, it gives a fleet assignment solution
within one second.

Instances # variables # constraints Modeling time Solving time
WasFA1 3080 2113 51 0.23
WasFA2 3080 2113 51 0.23
WasFA3 3080 2113 51 0.14

Table 2.1: Performance of Basic Fleet Assignment Model on the tested instances.

Table 2.2 reports the numerical results of testing (BFAMwas) on the prob-
lem instances WasFA1, WasFA2, WasFA3. In comparison with Table 2.1, it is
shown in Table 2.2 that our MIP formulation for the wait-and-see fleet assign-
ment uses much more number of variables and constraints than the BFAM
formulation, although the two formulations have similar constraint set. This
is because our MIP formulation for the robust fleet assignment problem needs
more variables and constraints to linearize the objective function, which is

48

nonlinear. However, the last column of Table 2.2 shows that, for our tested
instances, our proposed MIP formulation for the robust problem performs very
well. Therefore, we can conclude the approach of using our MIP formulation
is efficient in solving the wait-and-see fleet assignment.

Instances # variables # constraints Modeling time Solving time
WasFA1 8017 7090 51 0.09
WasFA2 8017 7090 51 0.07
WasFA3 8017 7090 51 0.08

Table 2.2: Performance of formulation (BFAMwas) on the tested instances for the wait-and-see
fleet assignment.

49

Conclusions

In this thesis we studied two fleet assignment problems: one with deter-
ministic setting and the other in data uncertainty context.

The former problem is studied in Chapter 1, in which we aim to determine
which airplane type in the fleets of an airline should be assigned to which flight
in a sample time period, taking separate consideration of three objectives:
minimize the total cost of the assignment, maximize the total revenue of the
assignment, and minimize the number of used airplanes. Following [3], a
time-expanded multi-commodity network is constructed so that the solution
to this problem can be viewed as flows in the network. Thanks to that,
we obtained a mixed integer programming formulation, which is called basic
fleet assignment model (BFAM), for the problem. Numerical experiments on
a small-size problem instance are described in detail in Chapter 1 showed the
validity and efficiency of the formulation.

The latter problem is studied in Chapter 2, in which we aim to construct a
new fleet assignment when the old one is no longer valid due to some changes
in input data. The new fleet assignment is required to have the least number
of changes in comparison with the old one, in order to reduce the induced cost.
We approached this problem with a view from robust optimization paradigm.
We proposed a new robustness concept so-called wait-and-see recovery ro-
bustness. This concept aims to find a solution to an uncertain optimization
problem after the realization ofthe uncertain parameter, so that it can be
recovered from an existed solution with the minimum recovery cost. The un-
certain fleet assignment can be viewed as an application of the wait-and-see
recovery robustness concept. As a solution approach, we constructed a mixed
integer programming formulation for the considered problem. The first key
idea in the formulation construction is to use a basic fleet assignment model
(BFAM) to find a feasible fleet assignment solution in the setting of the new
data. The second key idea is to use the Hamming distance as the recovery cost
in the objective function, which can be easily linearized. Numerical experi-

50

ments on medium-size problem instances showed the validity and efficiency
of our formulation for this problem.

51

Bibliography

[1] H. D. Sherali, E. K. Bish, and X. Zhu. Airline fleet assignment concepts,
models, and algorithms. European Journal of Operational Research, 172:1–
30, 2006.

[2] J. Abara. Applying integer linear programming to the fleet assignment
problem. Interface, 19:20–28, 1989.

[3] C. A. Hane, C. Barnhart, E. L. Johnson, R. E. Marten, G. L. Nemhauser,
and G. Sigismondi. The fleet assignment problem: solving a large-scale
integer program. Mathematical Programming, 70:211–232, 1995.

[4] B. Rexing, C. Barnhart, T. Kniker, A. Jarrah, and N. Krishnamurthy.
Airline fleet assignment with time windows. Transportation Science, 34:1–
20, 2000.

[5] J. M. Rosenberger, E. L. Johnson, and G. L. Nemhauser. A robust fleet-
assignment model with hub isolation and short cycles. Transportation
Science, 38:357–369, 2004.

[6] B. C. Smith and E. L. Johnson. Robust airline fleet assignment: impos-
ing station purity using station decomposition. Transportation Science,
40:497–516, 2006.

[7] T. Koch. Rapid Mathematical Programming. PhD thesis, Technical Uni-
versity Berlin, 2004.

[8] M. Goerigk and A. Schöbel. Recovery-to-optimality: A new two-stage ap-
proach to robustness with an application to aperiodic timetabling. Com-
puter & Operations Research, 52:1–15,2014.

[9] R. W. Hamming. Error-detecting and error-correcting codes. Bell System
Technical Journal, 29(2):147–160, 1950.

	2. TuNV_CD_MasterThesis_AfterDefense
	0. Bìa (thay 3 trang đầu của Final)
	2. TuNV_CD_MasterThesis_AfterDefense
	MINISTRY OF EDUCATION

	0. Bìa (thay 3 trang đầu của Final)
	2. TuNV_CD_MasterThesis_AfterDefense
	2. TuNV_CD_MasterThesis_AfterDefense
	MINISTRY OF EDUCATION
	MINISTRY OF EDUCATION
	TuNV_MasterThesis_AfterDefense

