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1

Introduction

Overview of research situation and the necessity of the re-
search

Numerous problems in the fields of mechanics, physics, biology, environment, etc.
are reduced to boundary value problems for high order nonlinear ordinary differential
equations (ODE), integro-differential equations (IDE) and functional differential equa-
tions (FDE). The study of qualitative aspects of these problems such as the existence,
uniqueness and properties of solutions, and the methods for finding the solutions al-
ways are of interests of mathematicians and engineers. One can find exact solutions
of the problems in a very small number of special cases. In general, one needs to
seek their approximations by approximate methods, mainly numerical methods. Be-
low we review some important topics in the above field of nonlinear boundary value
problems. An important note is that this thesis studies the boundary value problems
not at resonance, of which the corresponding homogeneous problems have trivial solu-
tion only. Therefore only boundary value problems not at resonance will be mentioned.

a) Existence of solutions and numerical methods for two-point third order
nonlinear boundary value problems

High order differential equations, especially third order and fourth order differen-
tial equations describe many problems of mechanics, physics and engineering such as
bending of beams, heat conduction, underground water flow, thermoelasticity, plasma
physics and so on [1–4]. The study of qualitative aspects and solution methods for
linear problems, when the equations and boundary conditions are linear, is basically
resolved. In recent years, ones draw a great attention to nonlinear differential equa-
tions. There are numerous researches on the existence and solution methods for fourth
order nonlinear boundary value problems. It is worthy to mention some typical works
concerning the existence of solutions and positive solutions, the multiplicity of solu-
tions, and analytical and numerical methods for finding solutions [5–10]. Among the
contributions to the study of fourth order nonlinear boundary value problems, there
are some results of Vietnamese authors (see [11–14]).

Concerning the not fully or fully third order differential equations

u′′′(t) = f(t, u(t), u′(t), u′′(t)), 0 < t < 1 (0.0.1)

there are also many researches. A lot of works studied the existence, uniqueness and
positivity of solutions of the problems subject to different boundary conditions. The
methods for investigating qualitative aspects of the problems are diverse, among them
the monotone technique or method of lower and upper solutions [7, 15–19], the Leray-
Schauder continuation principle [20], the fixed point theory on cones [21], etc. It
should be said that the above works need an essential assumption that the function
f(t, x, y, z) : [0, 1]×R3 → R satisfies a Nagumo-type condition [22], or linear growth in
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x, y, z at infinity [20], or some complicated conditions, for example, monotone increase
in each of x and y [23], or one-sided Lipschitz condition in x for f = f(t, x) [19] and
in x, y for f = f(t, x, y) [17]. Sun et al. in [24] investigated the existence of monotone
positive solution of the BVP for the simple case f = f(u(t)) under difficult to be
verified conditions.

Differently from the above approaches to the third order boundary value problems,
very recently Kelevedjiev and Todorov [25] using barrier strips type conditions gave suf-
ficient conditions guaranteeing positive or non-negative, monotone, convex or concave
solutions.

It should be said that in the mentioned works, no examples of solutions are shown
although the sufficient conditions are satisfied and the verification of them is difficult.
Therefore, it is desired to overcome the above shortcoming, namely, to construct easily
verified sufficient conditions and show examples when these conditions are satisfied and
solutions in these examples.

For solving third order linear and nonlinear boundary value problems for the equa-
tion (0.0.1) having in mind that the problems under consideration have solutions,
there is a great number of methods including analytical and numerical methods. Be-
low we briefly review these methods via some typical works. First we mention some
works involving analytical methods. Specifically, in [26] the authors proposed an it-
erative method based on embedding Green’s functions into well-known fixed point
iterations, including Picard’s and Krasnoselskii–Mann’s schemes. The uniform con-
vergence is proved but the method is very difficult to realize because it requires to
compute integrals of the product the Green function associated the problem and the
function f(t, un(t), u′n(t), u′′n(t)) at each iteration. In [27, 28] the Adomian decompo-
sition method and its modification are used. Recently, in 2020, He [29] suggests a
simple yet effective way to the third-order ordinary differential equations by the Taylor
series technique. In general, for solving the BVPs for nonlinear third order equations
numerical methods are widely used. Namely, Al Said et al. [30] solved a third order
two point BVP by the use of cubic splines. Noor et al. [31] constructed method of
second order accuracy based on quartic splines. Other authors [32, 33] generated finite
difference schemes using fourth degree B-spline and quintic polynomial spline for this
problem subject to other boundary conditions. El-Danaf [34] constructed a new spline
method based on quartic nonpolynomial spline functions that has a polynomial part
and a trigonometric part to develop numerical methods for a linear differential equa-
tion. Recently, in 2016 Pandey [35] solved the problem for the case f = f(t, u) by the
use of quartic polynomial splines. He proved that the convergence of the method is at
least O(h2) for the linear case f = f(t). In the following year, the same author in [36]
proposed two difference schemes for the general case f = f(t, u(t), u′(t), u′′(t)) and also
obtained the second order accuracy for the linear case. In 2019, Chaurasia et al. [37]
used exponential amalgamation of cubic splines to design a new numerical method of
second-order accuracy. It should be emphasized that all of above mentioned authors
only drew attention to the construction of the discrete analogue of the equation (0.0.1)
associated with some boundary conditions and estimated the error of the obtained solu-
tion assuming that the nonlinear system of algebraic equations can be solved by known
iterative methods. But the errors arising in the last iterative methods were not taken
into account.

Motivated by the above facts we wish to construct iterative numerical methods
of competitive accuracy or more accurate compared with some existing methods, and
importantly, to obtain the total error resulting from the error of iterative process at
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continuous level and the error of discretization of continuous problems at each iteration.

b) Boundary value problems with integral boundary conditions
In recent years, boundary value problems for nonlinear differential equations involving
boundary conditions of integral type have attracted attention from many researchers.
They constitute an interesting and important class of problems because they arise in
many applied fields such as heat conduction, chemical engineering, underground water
flow, thermoelasticity, plasma physics and so on. It is worth to mention some works
concerning the problems with integral boundary conditions for second order equations
such as [38–43]. There are also many papers devoted to the third order and fourth
order equations with integral boundary conditions.

Below we mention some works concerning the third order nonlinear equations. The
first work we would mention, is of Boucherif et al. [44] in 2009. It is about the problem

u′′′(t) = f(t, u(t), u′(t), u′′(t)), 0 < t < 1,

u(0) = 0,

u′(0)− au′′(0) =

∫ 1

0

h1(u(s), u′(s))ds,

u′(1) + bu′′(1) =

∫ 1

0

h2(u(s), u′(s))ds,

where a, b are positive real numbers, f, h1, h2 are continuous functions. Based on a
priori bounds and a fixed point theorem for a sum of two operators, one a compact
operator and the other a contraction, the authors proved the existence of solutions to
the problem under complicated conditions on the functions f, h1, h2. Independently
from the above work, Sun and Li [24] in 2010 considered the problem

u′′′(t) + f(t, u(t), u′(t)) = 0, 0 < t < 1,

u(0) = u′(0) = 0, u′(1) =

∫ 1

0

g(t)u′(t)dt.

By the use of the Krasnoselskii’s fixed point theorem, some sufficient conditions are
obtained for the existence and nonexistence of monotone positive solutions to the above
mentioned problem.

Next, in 2012 Guo, Liu and Liang [45] studied the boundary value problem with
second derivative

u′′′(t) + f(t, u(t), u′′(t)) = 0, 0 < t < 1,

u(0) = u′′(0) = 0, u(1) =

∫ 1

0

g(t)u(t)dt.

They established sufficient conditions for the existence of positive solutions by using
the fixed point index theory in a cone and spectral radius of a linear operator. It is a
regret that no examples of the functions f and g satisfying the conditions of existence
were given.

In another paper, in 2013 Guo and Yang [46] considered a problem with other
boundary conditions, namely, the problem

u′′′(t) = f(t, u(t), u′(t)), 0 < t < 1,

u(0) = u′′(0) = 0, u(1) =

∫ 1

0

g(t)u(t)dt.
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Based on the Krasnoselskii fixed-point theorem on cone, the authors obtained the
existence of positive solutions of the problem under very complicated and artificial
conditions including the growth of the function f(t, x, y).

In 2018, Guendouz et al. [47] studied the problem

u′′′(t) + f(u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = 0, u(1) =

∫ 1

0

g(t)u(t)dt.

By applying the Krasnoselskii’s fixed point theorem on cones they obtained the ex-
istence results of positive solutions of the problem. This technique was used also by
Benaicha and Haddouchi in [48] for an integral boundary problem for a fourth order
nonlinear equation.

Many authors also studied fourth order differential equations with integral boundary
conditions (see [48–58]). Below we mention only some typical works. First it is worthy
to mention the work of Zhang and Ge [58], where they studied the problem

u(4)(t) = w(t)f(t, u(t), u′′(t)), 0 < t < 1,

u(0) =

∫ 1

0

g(s)u(s)ds, u(1) = 0,

u′′(0) =

∫ 1

0

h(s)u′′(s)ds, u′′(1) = 0,

where w may be singular at t = 0 and/or t = 1, f ∈ C([0, 1] × R+ × R−,R+), and
g, h ∈ L1[0, 1] are nonnegative. Using the fixed point theorem of cone expansion and
compression of norm type, the authors established the existence and nonexistence of
positive solutions.

In 2013, Li et al. [54] studied the fully nonlinear fourth-order problem

u(4)(t) = f(t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],

u(0) = u′(1) = u′′′(1) = 0, u′′(0) =

∫ 1

0

h(s, u(s), u′(s), u′′(s))ds,

where the functions f ∈ C([0, 1]×R4,R), h ∈ C([0, 1]×R3,R) are continuous. By using
a fixed point theorem for a sum of two operators, one is completely continuous and
the other is a nonlinear contraction, the existence of solutions and monotone positive
solutions were established.

Later, in 2015, Lv et al. [55] considered the above problem, which is a simplified
form of the problem in [54]

u(4)(t) = f(t, u(t), u′(t), u′′(t)), t ∈ [0, 1],

u(0) = u′(1) = u′′′(1) = 0, u′′(0) =

∫ 1

0

g(s)u′′(s)ds,

where f ∈ C([0, 1] × R+ × R+ × R−,R+), g ∈ C([0, 1],R+). Using the fixed point
theorem of cone expansion and compression of norm type, they obtained the existence
and nonexistence of concave monotone positive solutions.

It should be emphasized that in all mentioned above works of integral boundary
value problems the authors could only show examples of the nonlinear terms satisfying
required sufficient conditions, but no exact solutions are shown. Moreover, the known
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results are of purely theoretical character concerning the existence of solutions but not
methods for finding solutions.

Therefore, it is needed to give conditions for existence of solutions, to show exam-
ples with solutions, and importantly, to construct methods for finding the solutions for
integral boundary value problems.

c) Boundary value problems for integro-differential equations
Integro-differential equations describe many phenomena in mechanics, physics, hy-
dromechanics, chemistry, biology, etc. In general, it is impossible to find the exact
solutions of the problems involving these equations, especially when they are nonlin-
ear. Hence, a lot of analytical approximation methods and numerical methods have
been developed for solving these equations (see [59, 61–69]).

Below, we mention some works concerning the solution methods for integro-differential
equations. The first noteworthy one is a recent work of Tahernezhad and Jalilian in
2020 [65], where the authors considered the second order linear problem

u′′(x) + p(x)u′(x) + q(x)u(x) = f(x) +

∫ b

a

k(x, t)u(t)dt, a < x < b,

u(a) = α, u(b) = β,

where p(x), q(x), k(x, t) are sufficiently smooth functions.
Using the exponential spline functions, the authors constructed the numerical so-

lution of the problem and proved that the approximate solution has accuracy O(h2),
where h is the grid size on the computed domain. Before [65] there are interesting
works of Chen et al. [60, 69], where the authors used a multiscale Galerkin method
for constructing an approximate solution of the above second order problem, for which
the convergence rate of the method is two.

Except for the second order integro-differential equations, recently many authors
have been interested in integro-differential equations of fourth order appearing in many
applications. We first mention the work of Singh and Wazwaz [63]. In this work, the
authors developed a technique based on the Adomian decomposition method with
the Green’s function for designing a series solution of the nonlinear Voltera equation
involving the Dirichlet boundary conditions

u(4)(x) = g(x) +

∫ x

0

k(x, t)f(u(t))dt, 0 < x < b,

u(0) = α1, u
′(0) = α2, u(b) = α3, u

′(b) = α4.

Under some conditions the authors proved that the series solution converges as a geo-
metric progression.

For the linear Fredholm integro-differential equation [59]

u(4)(x) + αu′′(x) + βu(x)−
∫ b

a

K(x, t)u(t)dt = f(x), a < x < b,

subject to the above Dirichlet boundary conditions, the difference method and the
trapezoidal rule are used to design the corresponding linear system of algebraic equa-
tions. A new variant called the Modified Arithmetic Mean iterative method is proposed
for solving the latter system, but the error estimate of the method is not obtained.
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The boundary value problem for the nonlinear integro-differential equation

u(4)(x)− εu′′(x)− 2

π

(∫ π

0

|u′(t)|2dt
)
u′′(x) = p(x), 0 < x < π,

u(0) = 0, u(π) = 0, u′′(0) = 0, u′′(π) = 0

was considered in [12, 68], where the authors constructed approximate solutions by the
iterative and spectral methods, respectively. Recently, Dang and Nguyen [11] studied
the existence and uniqueness of solution and constructed iterative method for finding
the solution for the IDE

u(4)(x)−M
(∫ L

0

|u′(t)|2dt
)
u′′(x) = f(x, u, u′, u′′, u′′′), 0 < x < L,

u(0) = 0, u(L) = 0, u′′(0) = 0, u′′(L) = 0,

where M = M(y) ≥ 0 is a continuous function.
Only three years ago, Wang [66] considered the problem

u(4)(x) = f(x, u(x),

∫ 1

0

k(x, t)u(t)dt), 0 < x < 1,

u(0) = 0, u(1) = 0, u′′(0) = 0, u′′(1) = 0.

(0.0.2)

This problem can be seen as a generalization of the linear fourth order problem

u(4)(x) +Mu(x)−N
∫ 1

0

k(x, t)u(t)dt) = p(x), 0 < x < 1,

u(0) = 0, u(1) = 0, u′′(0) = 0, u′′(1) = 0,

where M,N are constants, p ∈ C[0, 1]. This linear problem arises from the models for
suspension bridges [70, 71], quantum theory [72].

Using the monotone method with a variant of the maximum principle, Wang con-
structed the sequences of functions, which converge to the extremal solutions of the
problem (0.0.2).

From the above reviewed works we see that some integro-differential equations,
linear and nonlinear, are studied by different methods. The development of a uni-
fied method for investigating both the qualitative and quantitative aspects of extended
integro-differential equations is necessary and is of great interest.

d) Boundary value problems for functional differential equations
Functional differential equations have a wide range of applications in sciences and
engineering [73]. So, for the last decades they have been extensively studied. There
are a lot of works concerning the numerical solution of both initial and boundary value
problems for them. There are many solution methods including collocation method
[74], iterative methods [75, 76], neural networks [77, 78], and so on. Below we mention
some typical results.

First it is worthy to mention the work of Reutskiy in 2015 [74]. In this work, the
author considered the linear functional differential equation with proportional delay

u(n) =
J∑
j=0

n−1∑
k=0

pjk(x)u(k)(αjx) + f(x), x ∈ [0, T ]
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subject to initial or boundary conditions. Here αj are constants (0 < αj < 1). The
author proposed a method, where the initial equation is replaced by an approximate
equation which has an exact analytic solution with a set of free parameters. These free
parameters are determined by the use of the collocation procedure. Several examples
show the efficiency of the method but theoretically, no error estimates are obtained.

In 2016 Bica et al. [75] considered the problem

u(2p)(t) = f(t, u(t), u(ϕ(t))), t ∈ [a, b],

u(i)(a) = ai, u
(i)(b) = bi, i = 0, p− 1

(0.0.3)

where ϕ : [a, b] → R, a ≤ ϕ(t) ≤ b,∀t ∈ [a, b]. To solve this problem, the authors
constructed successive approximations for the equivalent integral equation by using
cubic spline interpolation at each iterative step. For this reason, the authors called
the method as the iterated splines method. The authors obtained an error estimate
for the approximate solution under very strong conditions and some misunderstanding
of smoothness of Green functions. This mistake was corrected in the corrigendum [79]
after 5 years from the appearance of [75]. Remark that although in [75] the method
was constructed for the general function ϕ(t) but in all numerical examples only the
particular case ϕ(t) = αt was considered and the conditions of convergence were not
verified. Moreover, it is a regret that in all examples the Lipschitz conditions for the
function f(s, u, v) are not satisfied in unbounded domains as required in the conditions
(ii) and (iv) [75, page 131].

In 2018, Khuri and Sayfy [76] proposed an iterative method based on Green’s func-
tion for functional differential equations of arbitrary orders. However, the scope of
application of the method is very limited due to the difficulty in calculation of integrals
at each iteration.

For solving functional differential equations, beside analytical and numerical meth-
ods, in recent years computational intelligence algorithms also are used (see [77, 78]),
where feed-forward artificial neural networks are applied. These algorithms in essence
are heuristic, therefore no errors estimates are obtained and for achieving the same
accuracy as some numerical methods they require large computational efforts .

The further investigation of the existence of solutions for functional differential
equations and effective methods for solving them has a great significance. It is why
this topic will be one of the tasks of our thesis.



8

Objectives and contents of the research

The aim of the thesis is to study the existence, uniqueness of solutions and solution
methods for some BVPs for high order nonlinear differential, integro-differential and
functional differential equations. Specifically, the thesis intends to study the following
contents:

Content 1 The existence, uniqueness of solutions and iterative methods for some
BVPs for third order nonlinear differential equations.

Content 2 The existence, uniqueness of solutions and iterative methods for some
problems for third and fourth order nonlinear differential equations with integral bound-
ary conditions.

Content 3 The existence, uniqueness of solutions and iterative methods for some
BVPs for integro-differential and functional differential equations.

Approach and the research method

We shall approach to the above contents from both theoretical and practical points
of view, which are the study of qualitative aspects of the existence solutions and con-
struction of numerical methods for finding the solutions. The methodology throughout
the thesis is the reduction of BVPs to operator equations in appropriate spaces, the
use of fixed point theorems for establishing the existence and uniqueness of solutions
and for proving the convergence of iterative methods.

The achievements of the thesis

The thesis achieves the following results:
Result 1 The establishment of theorems on the existence, uniqueness of solutions and
positive solutions for third order nonlinear BVPs and the construction of numerical
methods for finding the solutions.
These results are published in the two papers [AL1] and [AL2]. Specifically,
- in [AL1] we propose a unified approach to investigate boundary value problems
(BVPs) for fully third order differential equations. It is based on the reduction of BVPs
to operator equations for the nonlinear terms but not for the functions to be sought
as some authors did. By this approach we have established the existence, uniqueness,
positivity and monotony of solutions and the convergence of the iterative method for
approximating the solutions under some easily verified conditions in bounded domains.
These conditions are much simpler and weaker than those of other authors for studying
solvability of the problems before by using different methods. Many examples illustrate
the obtained theoretical results.
- in [AL2] we establish the existence and uniqueness of solution and propose simple
iterative methods on both continuous and discrete levels for a fully third order BVP.
We prove that the discrete methods are of second order and third order of accuracy
due to the use of appropriate formulas for numerical integration and obtain estimate
for total error.
Result 2 The establishment of the existence, uniqueness of solutions and construction
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of iterative methods for finding the solutions for nonlinear third and fourth order dif-
ferential equations with integral boundary conditions. These results are published in
the two papers [AL3] and [AL5]. Specifically,
- The work [AL3] is devoted to third order differential equations.
- The work [AL5] concerns fourth order differential equations.
Result 3 The establishment of the existence, uniqueness of solutions and construction
of numerical methods for finding the solutions of nonlinear integro-differential equa-
tions. The results are published in [AL6].
Result 4 The establishment of the existence, uniqueness of solutions and construc-
tion of numerical methods for finding the solutions of nonlinear functional differential
equations. The results are published in [AL4].

The obtained results of the thesis are published in the six papers [AL1]-[AL6] (see
"List of the works of the author related to the thesis").

Structure of the thesis

Except for "Introduction", "Conclusions" and "References", the thesis contains 4
chapters. In Chapter 1 we recall some auxiliary knowledges. The results of the thesis
are presented in Chapters 2, 3 and 4. Namely,

1. Chapter 2 presents the results on the existence, uniqueness of solutions and pos-
itive solutions for third order nonlinear BVPs and the construction of numerical
methods for finding the solutions.

2. Chapter 3 is devoted to the study of the existence, uniqueness of solutions and
construction of iterative methods for finding the solutions for nonlinear third and
fourth order differential equations with integral boundary conditions.

3. Chapter 4 presents the results on the existence, uniqueness of solutions and con-
struction of numerical methods for finding the solutions of nonlinear integro-
differential equations and functional differential equations.
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Chapter 1
Preliminaries

In this chapter we recall some preliminaries on fixed point theorems, Green’s func-
tions and quadrature formulas which will be used in the next chapters.

1.1. Some fixed point theorems

1.1.1. Schauder Fixed-Point Theorem

The material of this subsection is taken from [80].

Theorem 1.1.1 (Brouwer Fixed-Point Theorem (1912)). Suppose that U is a
nonempty, convex, compact subset of RN , where N ≥ 1, and that f : U → U is a
continuous mapping. Then f has a fixed point.

A typical example of the Brouwer Fixed-Point Theorem is proof of the existence of
solutions of system of nonlinear algebraic equations.

Remark that Brouwer Fixed-Point Theorem is applicable only to continuous map-
pings in finite dimensional spaces. A generalization of the theorem to infinite dimen-
sional spaces is the Schauder fixed-point theorem.

Definition 1.1.1. Let X and Y be Banach spaces, and T : D(T ) ⊆ X → Y be
an operator. T is called compact if and only if:
(i) T is continuous;
(ii) T maps bounded sets into relatively compact sets.

Compact operators play a central role in nonlinear functional analysis. Their im-
portance stems from the fact that many results on continuous operators on RN carry
over to Banach spaces when "continuous" is replaced by "compact".

Typical examples of compact operators on infinite-dimensional Banach spaces are
integral operators with sufficiently regular integrands. Set

(Tx)(t) =

b∫
a

K(t, s, x(s))ds,

(Sx)(t) =

t∫
a

K(t, s, x(s))ds, ∀t ∈ [a, b].

Suppose
K : [a, b]× [a, b]× [−R,R]→ K,
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where −∞ < a < b < +∞, 0 < R <∞ and K = R,C. Denote

U = {x ∈ C([a, b],K) : ‖x‖ ≤ R},

where ‖x‖ = maxa≤s≤b and C([a, b],K) is the space of continuous maps x : [a, b]→ K.
Then the integral operators T and S map U into C([a, b],K) and are compact.

Theorem 1.1.2 (Schauder Fixed-Point Theorem (1930)). Let U be a nonempty,
closed, bounded, convex subset of a Banach space X, and suppose T : U → U is
a compact operator. Then T has a fixed point.
Corollary 1.1.3 (Alternate Version of the Schauder Fixed-Point Theorem). Let
U be a nonempty, compact, convex subset of a Banach space X, and suppose
that T : U → U is a continuous operator. Then T has a fixed point.

The corollary is the direct translation of the Brouwer fixed-point theorem to Banach
spaces. The first verison (Theorem 1.1.2) is more frequently used in applications, in
which case U is often chosen to be a ball.

1.1.2. Banach Fixed-Point Theorem

We shall determine under which conditions the fixed-point equation

x = Tx, x ∈M (1.1.1)

can be solved using successive approximations

xn+1 = Txn, n = 0, 1, 2, ..., x0 ∈M.

The answer is given in the following theorem.

Theorem 1.1.4 (Banach Fixed-Point Theorem (1922) [80]). Assume that
(i) we are given an operator T : M ⊂ X →M ;
(ii) M is a closed nonempty set in a complete metric space (X, d);
(iii T is q-contractive, that is,

d(Tx, Ty) < qd(x, y) (1.1.2)

for all x, y ∈M and for a fixed q, 0 < q < 1.
Then it follows the conclusions:
(a) Existence and uniqueness: Equation (1.1.1) has exactly one solution, that
is, T has exactly one fixed point on M ;
(b) Convergence of the iteration: The sequence xn+1 = Txn of successive approx-
imations converges to the solution, x, for an arbitrary choice of initial point x0

in M ;
(c) Error estimates: For all n = 0, 1, 2, ... we have the a priori error estimate

d(xn, x) ≤ qn

1− q
d(x0, x1).

and the a posteriori error estimate

d(xn+1, x) ≤ q

1− q
d(xn, xn+1).

(d) Rate of convergence: For all n = 0, 1, 2, ... we have

d(xn+1, x) ≤ qd(xn, x).

Banach Fixed-Point Theorem has many important applications in the qualitative
study as well as in approximate solution of nonlinear equations, systems of linear or
nonlinear equations, integral equations, differential equations,...
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1.2. Green’s functions

Green’s functions play an important role in the study of existence and uniqueness
of boundary value problems for ordinary differential equations.

Consider the linear homogeneous boundary-value problem

L[y(x)] ≡ p0(x)
dny

dxn
+ p1(x)

dn−1y

dxn−1
+ ...+ pn(x)y = 0, (1.2.1)

Mi(y(a), y(b)) ≡
n−1∑
k=0

(
αik
dky(a)

dxk
+ βik

dky(b)

dxk

)
= 0, i = 1, ..., n, (1.2.2)

where pi(x), i = 0, ..., n are continuous functions on (a, b), p0(x) 6= 0 in all points in
(a, b) and (αik)

2 + (βik)
2 6= 0.

Definition 1.2.1. [83] The function G(x, t) is said to be the Green’s function for
the boundary value problem (1.2.1)-(1.2.2) if, as a function of its first variable
x, it meets the following defining criteria, for any t ∈ (a, b):
(i) On both intervals [a, t) and (t, b], G(x, t) is a continuous function having
continuous derivatives up to n-th order and satisfies the governing equation in
(1.2.1) on (a, t) and (t, b), that is:

L[G(x, t)] = 0, x ∈ (a, t); L[G(x, t)] = 0, x ∈ (t, b).

(ii) G(x, t) satisfies the boundary conditions in (1.2.2), that is

Mi(G(a, t), G(b, t)) = 0, i = 1, ..., n.

(iii) For x = t, G(x, t) and all its derivatives up to (n− 2) are continuous

lim
x→t+

∂kG(x, t)

∂xk
− lim

x→t−

∂kG(x, t)

∂xk
= 0, k = 0, ..., n− 2.

(iv) The (n− 1)th derivative of G(x, t) is discontinuous when x = t, providing

lim
x→t+

∂n−1G(x, t)

∂xn−1
− lim

x→t−

∂n−1G(x, t)

∂xn−1
= − 1

p0(t)
.

The following theorem specifies the conditions for existence and uniqueness of the
Green’s function.

Theorem 1.2.1. [83] If the homogeneous boundary-value problem (1.2.1)-(1.2.2)
has only a trivial solution, then there exists a unique Green’s function associated
with the problem.

Consider the linear nonhomogeneous equation

L[y(x)] ≡ p0(x)
dny

dxn
+ p1(x)

dn−1y

dxn−1
+ ...+ pn(x)y = −f(x), (1.2.3)

subject to the homogeneous boundary conditions

Mi(y(a), y(b)) ≡
n−1∑
k=0

(
αik
dky(a)

dxk
+ βik

dky(b)

dxk

)
= 0, i = 1, ...n, (1.2.4)

where pj(x) and the right-hand side term f(x) in (1.2.3) are continous functions,
with p0(x) 6= 0 on (a, b) and Mi represent linearly independent forms with constant
coefficients.

The following theorem establishes the link between the uniqueness of the solution
of (1.2.3)-(1.2.4) and the corresponding homogeneous problem.
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Theorem 1.2.2. [83] If the homogeneous boundary-value problem correspond-
ing to (1.2.3)-(1.2.4) has only the trivial solution, then the problem (1.2.3)-(1.2.4)
has a unique solution in the form

y(x) =

∫ b

a

G(x, t)f(t)dt,

where G(x, t) is the Green’s function of the corresponding homogeneous problem.

Let us consider some Green’s functions that will later be used in the thesis.

Example 1.2.1. Consider the problem{
u′′′(x) = ϕ(x), 0 < x < 1,
u(0) = u′(0) = u′(1) = 0.

(1.2.5)

The corresponding Green’s function is of the form

G(x, t) =

{
A1 + A2x+ A3x

2, 0 ≤ x ≤ t ≤ 1

B1 +B2(1− x) +B3(1− x)2, 0 ≤ t ≤ x ≤ 1,
(1.2.6)

where A1, A2, A3 and B1, B2, B3 are the functions of t. G(x, t) satisfies the condi-
tion (i). Because G(x, t) must satisfy the homogeneous boundary conditions in
(ii), it follows that

A1 = A2 = B2 = 0.

Therefore

G(x, t) =

{
A3x

2, 0 ≤ x ≤ t ≤ 1

B1 +B3(1− x)2, 0 ≤ t ≤ x ≤ 1.
(1.2.7)

The condition (iii) leads to{
B1 +B3(1− t)2 = A3t

2

−B3(1− t) = A3t.
(1.2.8)

From the condition (iv) we have

B3 − A3 = −1/2. (1.2.9)

We can find A3, B1, B3 by solving (1.2.8) and (1.2.9). It follows that

A3 = − t
2

+
1

2
, B1 = −t

2

2
+
t

2
, B3 = − t

2
.

Substitute into (1.2.7) we obtain the Green’s function

G(x, t) =

{
x2(t− 1)/2, 0 ≤ x ≤ t ≤ 1,

t(x2 − 2x+ t)/2, 0 ≤ t ≤ x ≤ 1.
(1.2.10)

The solution of the problem (1.2.5) can be represented in the form

u(x) = −
∫ 1

0

G(x, t)ϕ(t)dt.
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Therefore, the solution of the problem with nonhomogeneous boundary condi-
tions {

u′′′(x) = ϕ(x), 0 < x < 1,
u(0) = c1, u

′(0) = c2, u
′(1) = c3

has the form
u(x) = −

∫ 1

0

G(x, t)ϕ(t)dt+ P2(x)

where P2(x) = c3−c2
2
x2 + c2x+ c1 is the polynomial of second degree satisfying the

boundary conditions P2(0) = c1, P
′
2(0) = c2, P

′
2(1) = c3.

Example 1.2.2. Consider the problem{
u(4)(x) = ϕ(x), 0 < x < 1,
u(0) = u′′(0) = u(1) = u′′(1) = 0.

(1.2.11)

The corresponding Green’s function is of the form

G(x, t) =

{
A1 + A2x+ A3x

2 + A4x
3, 0 ≤ x ≤ t ≤ 1

B1 +B2(1− x) +B3(1− x)2 +B4(1− x)3, 0 ≤ t ≤ x ≤ 1,

(1.2.12)
where A1, A2, A3, A4 and B1, B2, B3, B4 are the functions of t. G(x, t) satisfies the
condition (i). Because G(x, t) must satisfy the homogeneous boundary conditions
in (ii), it follows that

A1 = A3 = B1 = B3 = 0.

Therefore

G(x, t) =

{
A2x+ A4x

3, 0 ≤ x ≤ t ≤ 1

B2(1− x) +B4(1− x)3, 0 ≤ t ≤ x ≤ 1.
(1.2.13)

The condition (iii) leads to
B2(1− t) +B4(1− t)3 = A2t+ A4t

3

−B2 − 3B4(1− t)2 = A2 + 3A4t
2

6B4(1− t) = 6A4t.
(1.2.14)

From the condition (iv) we have

B4 + A4 = −1/6. (1.2.15)

We can find A4, B1, B2, B4 by solving (1.2.14) and (1.2.15). It follows that

A2 =
t3

6
− t2

2
+
t

3
, A4 =

t

6
− 1

6
,

B2 = −t
3

6
+
t

6
, B4 = − t

6
.

Substitute into (1.2.13) we obtain the Green’s function

G(x, t) =

{
t(x− 1)(t2 − 2x+ x2)/6, 0 ≤ t ≤ x ≤ 1,

x(t− 1)(t2 − 2t+ x2)/6, 0 ≤ x ≤ t ≤ 1.
(1.2.16)
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The solution of the problem (1.2.11) can be represented in the form

u(x) = −
∫ 1

0

G(x, t)ϕ(t)dt.

Therefore, the solution of the problem with nonhomogeneous boundary condi-
tions {

u(4)(x) = ϕ(x), 0 < x < 1,
u(0) = c1, u

′′(0) = c2, u(1) = c3, u
′′(1) = c4

has the form
u(x) = −

∫ 1

0

G(x, t)ϕ(t)dt+ P3(x)

where P3(x) = c4−c2
6
x3+ c2

2
x2+

(
c3 − c1 − c2

3
− c4

6

)
x+c1 is the polynomial of third de-

gree satisfying the boundary conditions P3(0) = c1, P
′′
3 (0) = c2, P3(1) = c3, P

′′
3 (1) =

c4.

1.3. Some quadrature formulas

The material of this section is taken from [84]).
For numerically approximating the definite integral

∫ b
a
f(x)dx, two of the most

commonly used quadrature formulas are the Trapezoidal rule and Simpson’s rule.
Trapezoidal rule:

Let f ∈ C2[a, b], h = b− a. Then there exists a point ξ ∈ (a, b) such that∫ b

a

f(x)dx =
h

2
[f(a) + f(b)]− 1

12
h3f ′′(ξ).

To improve the accuracy of the approximation, divide the interval [a, b] into n subinter-
vals then apply the Trapezoidal rule on each subinterval. This leads to the Composite
Trapezoidal rule.

Theorem 1.3.1. Let f ∈ C2[a, b], h = (b − a)/n, and xj = a + jh, for each
j = 0, 1, ..., n. There exists a µ ∈ (a, b) for which the Composite Trapezoidal rule
for n subintervals can be written with its error term as∫ b

a

f(x)dx =
h

2

[
f(a) + 2

n−1∑
j=1

f(xj) + f(b)
]
− b− a

12
h2f ′′(µ).

Briefly, ∫ b

a

f(x)dx =
h

2

[
f(a) + 2

n−1∑
j=1

f(xj) + f(b)
]

+O(h2).

Simpson’s rule:
Let f ∈ C4[a, b], xj = a+ jh for j = 0, 1, 2. Then there exists a ξ ∈ (a, b) such that∫ b

a

f(x)dx =
h

3
[f(x0) + 4f(x1) + f(x2)]− h5

90
f (4)(ξ).

To improve the accuracy of the approximation, divide the interval [a, b] into n subin-
tervals where n is an even number then apply Simpson’s rule on each consecutive pair
of subintervals. This leads to the Composite Simpson’s rule.
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Theorem 1.3.2. Let f ∈ C4[a, b], n be even, n = 2m,h = (b−a)/n, and xj = a+jh,
for each j = 0, 1, ..., n. There exists a µ ∈ (a, b) for which the Composite Simpson’s
rule for n subintervals can be written with its error term as∫ b

a

f(x)dx =
h

3

[
f(a) + 2

m−1∑
j=1

f(x2j) + 4
m∑
j=1

f(x2j−1) + f(b)
]
− b− a

180
h4f (4)(µ).

Briefly,∫ b

a

f(x)dx =
h

3

[
f(a) + 2

m−1∑
j=1

f(x2j) + 4
m∑
j=1

f(x2j−1) + f(b)
]

+O(h4).
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Chapter 2
The existence, uniqueness of a solution and an
iterative method for two-point third order
nonlinear BVPs

2.1. Existence results and a continuous iterative method
for third order nonlinear BVPs

2.1.1. Introduction

In this section, we suggest a unified efficient method to study the existence and
approximate solutions of BVPs for the nonlinear third order differential equation

u′′′(t) = f(t, u(t), u′(t), u′′(t)), 0 < t < 1 (2.1.1)

subject to general boundary conditions

B1[u] = α1u(0) + β1u
′(0) + γ1u

′′(0) = 0,

B2[u] = α2u(0) + β2u
′(0) + γ2u

′′(0) = 0,

B3[u] = α3u(1) + β3u
′(1) + γ3u

′′(1) = 0,

(2.1.2)

and

B1[u] = α1u(0) + β1u
′(0) + γ1u

′′(0) = 0,

B2[u] = α2u(1) + β2u
′(1) + γ2u

′′(1) = 0,

B3[u] = α3u(1) + β3u
′(1) + γ3u

′′(1) = 0,

(2.1.3)

such that

Rank

α1 β1 γ1 0 0 0
α2 β2 γ2 0 0 0
0 0 0 α3 β3 γ3

 = 3.

The boundary conditions (2.1.2) are the general case of those considered in [16, 17, 19,
20, 23], and (2.1.3) are the general case of those in [16, 22]. Notice that the boundary
conditions of the form (2.1.3) can be transformed to those of the form (2.1.2) if
changing t = 1− s.

To study the problem (2.1.1)-(2.1.2) as well as the problem (2.1.1)-(2.1.3), we
use a novel approach based on reducing them to operator equations for the nonlinear
terms rather than the functions to be sought. This approach was used to some BVPs
for fourth nonlinear equations in previous works [11, 13, 14, 86, 87]. Here, by using this
approach we have established the qualitative aspects such as the existence, uniqueness,
positivity and monotonicity of solutions and the convergence of the iterative method for
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finding approximate solutions of the problems (2.1.1)-(2.1.2) under some conditions
which are easily verified in bounded domains. These conditions are much simpler and
weaker than those in the works of other authors for studying solvability of particular
cases of the problems before by using different methods. Many examples illustrate the
obtained theoretical results.

2.1.2. Existence results

Since the problem (2.1.1)-(2.1.2) and the problem (2.1.1), (2.1.3) are completely
similar, we consider only the first one.

For convenience we rewrite the problem (2.1.1)-(2.1.2) in the form

u′′′(t) = f(t, u(t), u′(t), u′′(t)), 0 < t < 1

B1[u] = B2[u] = B3[u] = 0,
(2.1.4)

where B1[u], B2[u], B3[u] are defined by (2.1.2). We shall associate this problem with
an operator equation as follows.
Consider the nonlinear operator A defined on functions ϕ(x) ∈ C[0, 1] by the formula

(Aϕ)(t) = f(t, u(t), u′(t), u′′(t)), (2.1.5)

where u(t) is the solution of the problem

u′′′(t) = ϕ(t), 0 < t < 1

B1[u] = B2[u] = B3[u] = 0
(2.1.6)

provided that it has unique solution. It is not hard to verify the following:

Proposition 2.1.1. If u(t) is a solution of the boundary value problem (2.1.4)
then the function

ϕ(t) = f(t, u(t), u′(t), u′′(t))

is a fixed point of the operator A defined above by (2.1.5), (2.1.6). Conversely,
if the function ϕ(t) is a fixed point of the operator A, i.e., ϕ(t) is a solution of
the operator equation

Aϕ = ϕ, (2.1.7)

then the function u(t) determined from the boundary value problem (2.1.6) solves
the problem (2.1.4).

Therefore, the solution of the BVP (2.1.4) is reduced to finding the fixed point of
the operator A.

Now return to the problem (2.1.6). Assume that its Green’s function is G(t, s).
Then the unique solution of the problem may be represented in the form

u(t) =

∫ 1

0

G(t, s)ϕ(s)ds. (2.1.8)

By differentiation of both sides of the above formula we obtain

u′(t) =

∫ 1

0

G1(t, s)ϕ(s)ds, u′′(t) =

∫ 1

0

G2(t, s)ϕ(s)ds, (2.1.9)
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where the function G1(t, s) = G′t(t, s) is continuous in the domain Q = [0, 1]2 and
G2(t, s) = G′′tt(t, s) is continuous in Q except for the line t = s.
Next, let

max
0≤t≤1

∫ 1

0

|G(t, s)|ds = M0

max
0≤t≤1

∫ 1

0

|G1(t, s)|ds = M1, max
0≤t≤1

∫ 1

0

|G2(t, s)|ds = M2.

(2.1.10)

Further, for each fixed real number M > 0 we define the domain

DM = {(t, x, y, z)| 0 ≤ t ≤ 1, |x| ≤M0M, |y| ≤M1M, |z| ≤M2M},

and by B[O,M ] we denote the closed ball of radius M with center 0 in the space of
functions continuous in [0, 1]

B[O,M ] = {ϕ ∈ C[0, 1]| ‖ϕ‖ ≤M},

where
‖ϕ‖ = max

0≤t≤1
|ϕ(t)|.

Theorem 2.1.2 (Existence of solutions). Assume that there is a number M > 0
such that the function f(t, x, y, z) is continuous in the domain DM and

|f(t, x, y, z)| ≤M (2.1.11)

∀(t, x, y, z) ∈ DM .
Then, the problem (2.1.4) has a solution u(t) satisfying the estimates

|u(t)| ≤M0M, |u′(t)| ≤M1M, |u′′(t)| ≤M2M ∀0 ≤ t ≤ 1. (2.1.12)

Proof. In view of Proposition 2.1.1, we shall show that the operator A associated
with the problem (2.1.4) has a fixed point. To this end, it is easy to verify
that A : B[0,M ]→ B[0,M ]. Further, from the compactness of integral operators
(2.1.8), (2.1.9) for ϕ ∈ C[0, 1] [88, Sec. 31] and the continuity of the function
f(t, x, y, z) it follows that A is a compact operator in the Banach space C[0, 1].
By the Schauder Fixed Point Theorem [80] A has a fixed point in B[0,M ]. This
fixed point generates the solution of the original problem. The estimates (2.1.12)
hold due to the equalities (2.1.8), (2.1.9) and (2.1.10).

Now assume that the Green’s function G(x, t) and its derivative G1(x, t) have con-
stant signs in the domain Q = [0, 1]2. Let us adopt the following convention:
For a function H(x, t) defined and having a constant sign in Q we define

σ(H) = sign(H(t, s)) =

{
1, if H(t, s) ≥ 0,
−1, if H(t, s) < 0.

To establish the existence of positive solutions of the problem (2.1.1)-(2.1.2) we
denote

D+
M = {(t, x, y, z)| 0 ≤ t ≤ 1, 0 ≤ x ≤M0M,

0 ≤ σ(G)σ(G1)y ≤M1M, |z| ≤M2M}

and
SM = {ϕ ∈ C[0, 1]| 0 ≤ σ(G)ϕ ≤M}.
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Theorem 2.1.3 (Existence of positive solution). Assume that there is a number
M > 0 such that the function f(t, x, y, z) is continuous and

0 ≤ σ(G)f(t, x, y, z) ≤M ∀(t, x, y, z) ∈ D+
M . (2.1.13)

Then, the problem (2.1.1),(2.1.2) possesses a monotone nonnegative solution u(t)
which satisfies the estimates

0 ≤ u(t) ≤M0M, 0 ≤ σ(G)σ(G1)u′(t) ≤M1M, |u′′(t)| ≤M2M. (2.1.14)

Furthermore, if σ(G)σ(G1) = 1 then the problem has a nonnegative and in-
creasing solution, and vice versa, if σ(G)σ(G1) = −1 then the problem has a
nonnegative and decreasing solution.

Moreover, the solution is positive if f(t, 0, 0, 0) 6≡ 0 for t ∈ (0, 1).

Proof. By replacing DM by D+
M , B[0,M ] by SM and the condition (2.1.11) by

(2.1.13) in the proof of the existence of solution in Theorem 2.1.2, we obtain
the existence of monotone nonnegative solution. From the estimates (2.1.14), if
σ(G)σ(G1) = 1 then u′(t) ≥ 0, which means an increasing solution, and vice versa,
if σ(G)σ(G1) = −1 then the solution is decreasing. Besides, if f(t, 0, 0, 0) 6≡ 0 for
t ∈ (0, 1) then u = 0 is not the solution of the problem. Thus, the solution must
be positive.

Theorem 2.1.4 (Existence and uniqueness of solution). Suppose that there
exists a number M ≥ 0 such that

|f(t, x, y, z)| ≤M,

and the function f(t, x, y, z) satisfies Lipschitz condition with Lipschitz coeffi-
cients L0, L1, L2, that is, there exist L0, L1, L2 ≥ 0 such that

|f(t, x2, y2, z2) − f(t, x1, y1, z1)| ≤ L0|x2 − x1| + L1|y2 − y1| + L2|z2 − z1| (2.1.15)

for any (t, x, y, z), (t, xi, yi, zi) ∈ DM (i = 1, 2) and

q := L0M0 + L1M1 + L2M2 < 1. (2.1.16)

Then, the problem (2.1.1),(2.1.2) has unique solution u(t) satisfying |u(t)| ≤
M0M, |u′(t)| ≤M1M, |u′′(t)| ≤M2M for any 0 ≤ t ≤ 1.

Proof. Under the conditions of the theorem, it is easy to verify that the op-
erator A associated with the problem (2.1.1)-(2.1.2) is a contraction operator
A : B[0,M ] → B[0,M ]. By using the contraction principle, A has a unique
fixed point in B[O,M ], which generates a unique solution u(t) of the problem
(2.1.1),(2.1.2).
Similarly as in Theorem 2.1.2, we obtain the estimates for u(t), u′(t), u′′(t). There-
fore, the theorem is proved.

Similarly, we obtain the existence and uniqueness of positive solution of the problem
(2.1.1)-(2.1.2).

Theorem 2.1.5 (Existence and uniqueness of positive solution). Suppose that
the conditions of Theorem 2.1.3 are met in the domain D+

M . Moreover, suppose
that there are numbers L0, L1, L2 ≥ 0 such that the function f(t, x, y, z) satisfies
the Lipschitz conditions (2.1.15), (2.1.16). Then, the problem (2.1.1),(2.1.2)
has a unique monotone nonnegative solution u(t) satisfying (2.1.14). Besides, if
f(t, 0, 0, 0) 6≡ 0 for t ∈ (0, 1) then the solution is positive.
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Remark 2.1.1. Based on the sign of G2(t, s), from the representation (2.1.9) for
u′′(t) we can conclude of the convexity or concavity of solutions of the problem
(2.1.4).

2.1.3. Iterative method

Consider the following iterative method for solving the problem (2.1.1), (2.1.2):

1. Given an initial approximation ϕ0 ∈ B[0,M ], say

ϕ0(t) = 0. (2.1.17)

2. Knowing ϕk (k = 0, 1, ...) compute

uk(t) =

∫ 1

0

G(t, s)ϕk(s) ds, (2.1.18)

yk(t) = u′k(t), zk(t) = u′′k(t), (2.1.19)

or equivalently,

yk(t) =

∫ 1

0

G1(t, s)ϕk(s) ds,

zk(t) =

∫ 1

0

G2(t, s)ϕk(s) ds.

(2.1.20)

3. Compute the new approximation

ϕk+1(t) = f(t, uk(t), yk(t), zk(t)). (2.1.21)

Put

pk =
qk

1− q
‖ϕ1 − ϕ0‖.

Theorem 2.1.6 (Convergence). Suppose that the conditions of Theorem 2.1.4
are met, then the above iterative method converges and there hold the estimates

‖uk − u‖ ≤M0pk, ‖u′k − u′‖ ≤M1pk, ‖u′′k − u′′‖ ≤M2pk, (2.1.22)

where u is the exact solution of the problem (2.1.1), (2.1.2), and M0,M1,M2 are
defined by (2.1.10).

Proof. Indeed, the iterative method above is the successive method for finding
the fixed point of the operator A associated with the problem (2.1.1)-(2.1.2).
Therefore, it converges and there holds the estimate

‖ϕk − ϕ‖ ≤ pk, (2.1.23)

where ϕ is the fixed point of A. Having in mind the representations (2.1.8),
(2.1.9), (2.1.18), (2.1.20) and the formulas (2.1.10), from the above estimate we
obtain the estimates (2.1.22). Thus, the theorem is proved.
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In many problems when the Green’s function and its derivatives have constant sign
and the nonlinear term f(t, x, y, z) is monotone in variables x, y, z we can establish the
monotonicity of the sequence of approximations uk(t). We consider a particular case
below, which will be met in some examples in the next section.

Theorem 2.1.7 (Monotonicity). Consider the problem (2.1.1)-(2.1.2), where
the Green’s function G(t, s) and its derivative G1(t, s) are nonpositive in the
domain Q = [0, 1]2, the function f = f(t, x, y) ≤ 0 is decreasing in x, y for x, y ≥ 0.
Then the sequence of iterations uk(t) computed by the above iterative process is
increasing, that is

0 = u0(t) ≤ u1(t) ≤ ... ≤ uk(t) ≤ ..., t ∈ [0, 1]. (2.1.24)

Proof. Indeed, beginning from ϕ0 = 0 by the iterative process (2.1.17)-(2.1.21)
we obtain u0 = 0, y0 = 0. Because f = f(t, x, y) ≤ 0 we have ϕ1 = f(t, 0, 0) ≤ 0.
Hence, u1(t) =

∫ 1

0
G(t, s)ϕ1(s)ds ≥ 0 due to G(t, s) ≤ 0. Similarly, y1(t) ≥ 0.

Thus, we have u1 ≥ u0, y1 ≥ y0. Due to the decrease of f(t, x, y) in x, y we
have ϕ2(t) = f(t, u1, y1) ≤ f(t, u0, y0) = ϕ1(t). Therefore, from the formulas for
computing u2(t), y2(t) it follows that u2 ≥ u1, y2 ≥ y1. Repeating the above
argument we obtain (2.1.24). The theorem is proved.

2.1.4. Some particular cases and examples

In order to illustrate the theoretical results obtained in the previous section, we
consider some particular cases studied by other authors using various methods. In nu-
merical realization of the proposed iterative method, the definite integrals are computed
using the trapezoidal rule with second order accuracy. In all examples, computations
are carried out on the uniform grid with gridsize h = 0.01 on the interval [0, 1] until
achieving ‖ϕk − ϕk−1‖ ≤ 10−6. The number of iterations performed will be indicated.

Through the particular cases together with examples it will be clear of the effi-
ciency of the proposed unified approach to BVPs for nonlinear third order differential
equations by the reduction of them to operator equations for the nonlinear terms.

2.1.4.1. Case 1.

Consider the problem

u(3)(t) = f(t, u(t), u′(t), u′′(t)), 0 < t < 1,

u(0) = u′(0) = u′(1) = 0

which is the generalization of the problem considered in [19]. There, by using the lower
and upper solutions method and the fixed point theorem on cones the authors obtained
several results of solution and positive solution. For the case f = f(t, u(t), u′(t)) in [17],
the authors also established existence results by using the upper and lower solutions
method and a new variant of maximum principle. It should be emphasized that the
results of these two mentioned works are purely existence and the uniqueness is not
established.

The Green’s function associated with the considered problem is

G(t, s) =


s

2
(t2 − 2t+ s), 0 ≤ s ≤ t ≤ 1,

t2

2
(s− 1), 0 ≤ t ≤ s ≤ 1.
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Taking derivative of G(t, s) we obtain

G1(t, s) =

{
s(t− 1), 0 ≤ s ≤ t ≤ 1,
t(s− 1), 0 ≤ t ≤ s ≤ 1,

G2(t, s) =

{
s, 0 ≤ s ≤ t ≤ 1,
s− 1, 0 ≤ t ≤ s ≤ 1.

It is obvious that
G(t, s) ≤ 0, G1(t, s) ≤ 0, 0 ≤ t, s ≤ 1

and we have

M0 = max
0≤t≤1

∫ 1

0

|G(t, s)| ds =
1

12
, M1 = max

0≤t≤1

∫ 1

0

|G1(t, s)| ds =
1

8
,

M2 = max
0≤t≤1

∫ 1

0

G2(t, s) ds =
1

2
.

Example 2.1.1 (Example 7 in [19]). Consider the problem

u(3)(t) = −eu(t), 0 < t < 1,

u(0) = u′(0) = u′(1) = 0.
(2.1.25)

The authors [19] by using the method of lower and upper solutions and the
fixed point theorem on cones showed that the above problem has a solution
u(t) satisfying ‖u‖ ≤ 1, u(t) > 0 for t ∈ (0, 1) and u(t) is an increasing function.
Here, using the theoretical results obtained in the previous section we obtain
the results which are stronger than the above results.

Indeed, for the problem (2.1.25) f = f(t, x) = −ex. In the domain

D+
M =

{
(t, x)| 0 ≤ t ≤ 1, 0 ≤ x ≤ M

12

}
there hold −eM/12 ≤ f(t, x) ≤ 0. Therefore, selecting M = 1.1 we have −M ≤
f(t, x) ≤ 0. Further, in D+

M the function f(t, x) satisfies the Lipschitz condition
with L0 = eM/12 = 1.096. Thus, q = L0/12 = 0.0913. By Theorem 2.1.5 the
problem has a unique monotone positive solution u(t) satisfying the estimates

0 ≤ u(t) ≤ M

12
=

1.1

12
= 0.0917, 0 ≤ u′(t) ≤ M

8
=

1.1

8
= 0.1357,

|u′′(t)| ≤ M

2
=

1.1

2
= 0.55.

These results are clearly better than those in [19].
The numerical solution of the problem obtained by the iterative method

(2.1.17)-(2.1.21) after 5 iterations is depicted in Figure 2.1. From this figure,
it is clear that the solution is monotone, positive and is bounded by 0.0917 as
shown above by the theory.

Example 2.1.2 (Example 8 in [19]). Consider the problem

u(3)(t) = −5u3(t) + 4u(t) + 3

u2(t) + 1
, 0 < t < 1,

u(0) = u′(0) = u′(1) = 0.

(2.1.26)
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Figure 2.1: Approximate solution in Example 2.1.1
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Figure 2.2: Approximate solution in Example 2.1.2

The authors in [19] showed that the problem has an increasing solution u(t) > 0
for t ∈ (0, 1). Analogously as in Example 4.1.1 we obtained that the problem
(2.1.26) has a unique monotone positive solution u(t) satisfying

0 ≤ u(t) ≤ 0.3417, 0 ≤ u′(t) ≤ 0.5125, |u′′(t)| ≤ 2.05.

The numerical solution of the problem obtained by the iterative method (2.1.17)-
(2.1.21) after 8 iterations is depicted in Figure 2.2. From this figure, it is clear
that the solution is monotone, positive and is bounded by 0.3417 as shown above
by the theory.

Example 2.1.3 (Example 4.2 in [17]). Consider the problem

u(3)(t) = −eu(t) − eu′(t), 0 < t < 1,

u(0) = u′(0) = u′(1) = 0.

By the use of the method of lower and upper solutions and a new variant of
maximum principle, the authors in [17] proved that the above problem has a
solution u(t) satisfying ‖u‖ ≤ 1, u(t) > 0 for t ∈ (0, 1) and u(t) is an increasing
function. Here, choosing M = 2.7, according to Theorem 2.1.5 we conclude that
the problem has a unique monotone positive solution u(t) satisfying the estimates

0 ≤ u(t) ≤ 0.2250, 0 ≤ u′(t) ≤ 0.3375, |u′′(t)| ≤ 1.350.

The numerical solution of the problem computed by the proposed iterative
method (2.1.17)-(2.1.21) after 9 iterations is given in Figure 2.3. From this figure,
it is clear that the solution is monotone, positive and is bounded by 0.2250 in
agreement with the theory.
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Figure 2.3: Approximate solution in Example 2.1.3

Remark 2.1.2. In the above examples, it can be seen that all the conditions of
Theorem 2.1.7 are met. Thus, the sequences of approximations are increasing.
Numerical results also confirm this fact.

2.1.4.2. Case 2.

Consider the problem

u(3)(t) = f(t, u(t), u′(t), u′′(t)), 0 < t < 1,

u(0) = u′(0) = u′′(1) = 0.
(2.1.27)

In [20] the authors assumed that the function f(t, x, y, z) defined on [0, 1]×R3 → R is
Lp-Caratheodory, and there exist functions α, β, γ, δ ∈ Lp[0, 1], p ≥ 1, such that

|f(t, x, y, z) ≤ α(t)x+ β(t)y + γ(t)z + δ(t)|, t ∈ (0, 1)

and
A0‖α‖p + A1‖β‖p + ‖γ‖p < 1,

where A0, A1 are some constants depending on p. Under these conditions, by using
Leray-Schauder continuation principle, the authors proved that the problem has at
least one solution. But no examples are given for illustrating the theoretical conclusion.

Here, under the assumption that the function f(t, x, y, z) is continuous, we establish
the existence and uniqueness of solution by Theorem 2.1.5. For the problem (2.1.27)
the Green’s function is

G(t, s) =


−st+

s2

2
, 0 ≤ s ≤ t ≤ 1,

−t
2

2
, 0 ≤ t ≤ s ≤ 1.

Its first and second derivatives are

G1(t, s) =

{
−s, 0 ≤ s ≤ t ≤ 1,
−t, 0 ≤ t ≤ s ≤ 1,

G2(t, s) =

{
0, 0 ≤ s ≤ t ≤ 1,
−1, 0 ≤ t ≤ s ≤ 1.

It is easily seen that

G(t, s) ≤ 0, G1(t, s) ≤ 0, 0 ≤ t, s ≤ 1
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Figure 2.4: Approximate solution in Example 2.1.4

and

M0 = max
0≤t≤1

∫ 1

0

|G(t, s)| ds =
1

3
, M1 = max

0≤t≤1

∫ 1

0

|G1(t, s)| ds =
1

2
,

M2 = max
0≤t≤1

∫ 1

0

|G2(t, s)| ds = 1.

Example 2.1.4. Consider the following problem

u′′′(t) = − 1

36

(
u′(t)

)2
+

1

24
u(t)u′′(t) +

1

4
t2 − 6, 0 ≤ t ≤ 1,

u(0) = u′(0) = u′′(1) = 0.
(2.1.28)

For the problem
f(t, x, y, z) = − 1

36
y2 +

1

24
xz +

1

4
t2 − 6.

It can be verified that with M = 7.5, L1 = 0.3125, L2 = 0.2083, L3 = 0.1042.
So, all the conditions of Theorem 2.1.5 are met, and the problem (2.1.28) has
a unique positive solution satisfying the estimates 0 ≤ u(t) ≤ 2.5, 0 ≤ u′(t) ≤
3.75, |u′′(t)| ≤ 7.5.

The numerical solution of the problem computed by the iterative method
(2.1.17)-(2.1.21) after 5 iterations is given in Figure 2.4. From this figure it is
clear that the solution is bounded by 2.5 in agreement with the theory.

It is interesting that the problem (2.1.28) has the exact solution u(t) = −t3 + 3t2.
This solution satisfies the exact estimates 0 ≤ u(t) ≤ 2, 0 ≤ u′(t) ≤ 3, 0 ≤

u′′(t) ≤ 6 for 0 ≤ t ≤ 1, which are better than the theoretical estimates above. On
the grid with the gridsize h = 0.01 the maximal absolute error of the obtained
approximate solution compared with the exact solution is 3.7665e− 04.

2.1.4.3. Case 3.

Consider the problem

u(3)(t) = f(t, u(t), u′(t), u′′(t)), 0 < t < 1,

u(0) = u′(1) = u′′(1) = 0.
(2.1.29)

Under the conditions similar to those in the previous case, the authors in [20] estab-
lished the existence of a solution of the problem without illustrative examples. Very
recently, in [22], by using the fixed point index theory on cones, the authors studied
the existence of positive solutions of the problem (2.1.29) under conditions on the
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growth of the function f(t, x, y, z) as |x|+ |y|+ |z| tends to zero and infinity, including
a Nagumo-type condition on y and z.

Here, under the assumption that the function f(t, x, y, z) is continuous, we can
obtain the existence results by the above theorems. For the problem (2.1.29) the
Green’s function is

G(t, s) =


s2

2
, 0 ≤ s ≤ t ≤ 1,

st− t2

2
, 0 ≤ t ≤ s ≤ 1.

Its first and second derivatives are

G1(t, s) =

{
0, 0 ≤ s ≤ t ≤ 1,
s− t, 0 ≤ t ≤ s ≤ 1,

G2(t, s) =

{
0, 0 ≤ s ≤ t ≤ 1,
−1, 0 ≤ t ≤ s ≤ 1.

It is easy to verify that

G(t, s) ≥ 0, G1(t, s) ≥ 0, 0 ≤ t, s ≤ 1

and we obtain
M0 =

1

6
, M1 =

1

2
, M2 = 1.

Example 2.1.5. Consider the problem

u′′′(t) =
1

18

(
u′(t)

)2 − 1

12
u(t)u′′(t) +

1

2
t+

11

2
, 0 ≤ t ≤ 1,

u(0) = u′(1) = u′′(1) = 0.
(2.1.30)

In this example
f(t, x, y, z) =

1

18
y2 − 1

12
xz +

1

2
t+

11

2
.

It can be verified that with M = 8, L1 =
2

3
, L2 =

4

9
, L3 =

1

9
, and the conditions

of Theorem 2.1.5 are satisfied. Thus, the problem (2.1.30) has a unique positive,
increasing solution that satisfies the estimates 0 ≤ u(t) ≤ 4

3
, 0 ≤ u′(t) ≤ 4, −8 ≤

u′′(t) ≤ 0.
The numerical solution of the problem obtained by the iterative method

(2.1.17)-(2.1.21) after 6 iterations is given in Figure 2.5. From this figure, it is
clear that the solution is monotone, positive and is bounded by 4/3 in agreement
with the above theory.

It can be verified that u(t) = t3− 3t2 + 3t is the exact solution of the problem
(2.1.30). This solution is positive, increasing and satisfies the exact estimates
0 ≤ u(t) ≤ 1, 0 ≤ u′(t) ≤ 3, −6 ≤ u′′(t) ≤ 0 for 0 ≤ t ≤ 1, which are better
than the theoretical estimates above. On the grid with the gridsize h = 0.01 the
maximal error of the obtained approximate solution compared with the exact
solution is 3.6256e− 04.
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Figure 2.5: Approximate solution in Example 2.1.5

2.1.4.4. Case 4.

Consider the problem

u(3)(t) = f(t, u(t), u′(t), u′′(t)), 0 < t < 1,

u(0) = u′′(0) = u′(1) = 0.
(2.1.31)

By the use of the method of lower and upper solutions and Schauder fixed theorem
on cones, the author in [23] obtained the existence of a solution under complicated
conditions on the nonlinear term.

For the problem (2.1.31) the Green’s function is

G(t, s) =

 t2

2
− t+

s2

2
, 0 ≤ s ≤ t ≤ 1,

t(s− 1), 0 ≤ t ≤ s ≤ 1.

Its first and second derivatives are

G1(t, s) =

{
t− 1, 0 ≤ s ≤ t ≤ 1,
s− 1, 0 ≤ t ≤ s ≤ 1,

G2(t, s) =

{
1, 0 ≤ s ≤ t ≤ 1,
0, 0 ≤ t ≤ s ≤ 1.

Clearly,
G(t, s) ≤ 0, G1(t, s) ≤ 0, 0 ≤ t, s ≤ 1.

We have
M0 =

1

3
, M1 =

1

2
, M2 = 1.

By using theorems in the previous section, we can obtain the results on the existence
of solution of the problem (2.1.31).

Example 2.1.6 (Example 3.5 in [23]).

u(3)(t) = −1

4

[
t+ eu(t) + (u′(t))2 + u′′(t)

]
, 0 < t < 1,

u(0) = u′′(0) = u′(1) = 0.
(2.1.32)

Define

D+
M =

{
(t, x, y, z)| 0 ≤ t ≤ 1, 0 ≤ x ≤ M

3
, 0 ≤ y ≤ M

2
, |z| ≤M

}
.
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Figure 2.6: Approximate solution in Example 2.1.6

Selecting M = 0.835 we have

−M ≤ f(t, x, y, z) = −1

4

[
t+ ex + y2 + z

]
≤ 0.

It is easy to calculate the Lipschitz coefficients of f(t, x, y, z):

L0 =
1

4
eM/3 = 0.3302, L1 =

M

4
= 0.2087, L2 = 1.

Thus, q = L0/3 + L1/2 + L2 = 0.4851 < 1. By Theorem 2.1.5 the problem has a
unique monotone positive solution u(t) satisfying

0 ≤ u(t) ≤M/3 = 0.2783, 0 ≤ u′(t) ≤M/2 = 0.5, |u′′(t)| ≤ 1.

In [23], the author could only prove that the problem has a positive solution.
The numerical solution obtained by the iterative method (2.1.17)-(2.1.21) after
5 iterations is given in Figure 2.6. From this figure, it is clear that the solution
is monotone, positive and is bounded by 0.2783 in agreement with the theory.

2.1.4.5. Case 5.

Consider the problem

u(3)(t) = f(t, u(t), u′(t), u′′(t)), 0 < t < 1,

u(0) = u′(1) = u′′(1) = 0.
(2.1.33)

In [22], by using the fixed point index theory in cones, the authors obtained the exis-
tence of positive solution under conditions which are very complicated and posed on
the growth of the function f including a Nagumo-type condition.

For the problem (2.1.33) the Green’s function is

G(t, s) =


s2

2
, 0 ≤ s ≤ t ≤ 1,

st− t2

2
, 0 ≤ t ≤ s ≤ 1.

Its first and second derivatives are

G1(t, s) =

{
0, 0 ≤ s ≤ t ≤ 1,
s− t, 0 ≤ t ≤ s ≤ 1,
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G2(t, s) =

{
0, 0 ≤ s ≤ t ≤ 1,
−1, 0 ≤ t ≤ s ≤ 1.

It can be verified that

G(t, s) ≥ 0, G1(t, s) ≥ 0, G2(t, s) ≤ 0, 0 ≤ t, s ≤ 1

and
M0 =

1

6
, M1 =

1

2
, M2 = 1.

Due to the above properties of the Green’s function, by the theorems in the previous
section we can obtain the results on the existence of solution of the problem (2.1.33).

Example 2.1.7. Consider the following problem

u′′′(t) =
1

18

(
u′(t)

)2 − 1

12
u(t)u′′(t) +

1

2
t+

11

2
, 0 ≤ t ≤ 1,

u(0) = u′(1) = u′′(1) = 0.
(2.1.34)

In this problem
f(t, x, y, z) =

1

18
y2 − 1

12
xz +

1

2
t+

11

2
,

f(t, 0, 0, 0) =
1

2
t+

11

2
> 0 ∀t ∈ [0, 1].

It is possible to verify that with M = 8 all the conditions of Theorem 2.1.4 are
met. Therefore, the problem has a unique positive increasing solution which
satisfies 0 ≤ u(t) ≤ 4

3
, 0 ≤ u′(t) ≤ 4, |u′′(t)| ≤ 8.

Notice that the problem has the exact solution u(t) = t3 − 3t2 + 3t. It is
positive, increasing and satisfies the exact estimates 0 ≤ u(t) ≤ 1, 0 ≤ u′(t) ≤
3, −6 ≤ u′′(t) ≤ 0 for 0 ≤ t ≤ 1, which are better than the theoretical estimates
above.

Example 2.1.8. Consider the problem

u′′′(t) = u3(t) + u(t)(u′(t))2 + u(t)(u′′(t))2, 0 ≤ t ≤ 1,

u(0) = u′(1) = u′′(1) = 0.
(2.1.35)

In this problem
f(t, x, y, z) = x3 + xy2 + xz2.

It is possible to verify that with 0 < M ≤
√

108
23

Theorem 2.1.5 guarantees that
the problem (2.1.35) has a unique nonnegative monotone solution. Since u(t) ≡ 0
is a nonnegative solution of the problem, we come to the conclusion that the
problem cannot have positive solution, which is contrary to that in [22]. Thus,
we believe that there must be some error in their results.

2.1.5. Conclusion

In this section, we have proposed a unified efficient approach to investigate fully
nonlinear third order differential equation subject to general two-point linear boundary
conditions. The approach is based on the reduction of boundary value problems to fixed
point problems of nonlinear operators for the nonlinear terms of the equation but not
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for the function to be sought. In result, we have obtained the existence, uniqueness,
positivity and monotonicity of solution under the conditions which are simpler and
easier to verify than those of other authors. The applicability and advantages of the
proposed approach are illustrated on some examples taken from the papers of other
authors, where our approach yields better results.

The proposed approach is applicable to other boundary value problems for the
third order and higher orders nonlinear differential equations. This is the subject of
our researches in the future.

2.2. Numerical methods for a third order nonlinear BVP

2.2.1. Introduction

In the previous section, we have established the existence and uniqueness of solu-
tions and the convergence of an iterative method on continuous level for the fully third
order differential equations subject to general two-point linear boundary conditions.
We also have shown some particular cases and examples for illustrating the obtained
theoretical results. In this section, we will discuss numerical realization of the proposed
iterative method. The investigation will be done for a case, namely, for Case 1 in the
previous section. So, we consider the BVP

u(3)(t) = f(t, u(t), u′(t), u′′(t)), 0 < t < 1,

u(0) = 0, u′(0) = 0, u′(1) = 0.
(2.2.1)

In order to be easily tracked we recall some results concerning the existence of solutions
of the above problem. The Green’s function of the problem, and its first and second
derivatives are

G0(t, s) =


s

2
(t2 − 2t+ s), 0 ≤ s ≤ t ≤ 1,

t2

2
(s− 1), 0 ≤ t ≤ s ≤ 1.

G1(t, s) = G′t(t, s) =

{
s(t− 1), 0 ≤ s ≤ t ≤ 1,
t(s− 1), 0 ≤ t ≤ s ≤ 1,

G2(t, s) = G′′tt(t, s)

{
s, 0 ≤ s ≤ t ≤ 1,
s− 1, 0 ≤ t ≤ s ≤ 1.

(2.2.2)

We have G0(t, s) ≤ 0, G1(t, s) ≤ 0 in Q = [0, 1]2 and

M0 = max
0≤t≤1

∫ 1

0

|G(t, s)| ds =
1

12
, M1 = max

0≤t≤1

∫ 1

0

|G1(t, s)| ds =
1

8
,

M2 = max
0≤t≤1

∫ 1

0

|G2(t, s)| ds =
1

2
.

(2.2.3)

For each real number M > 0 we denote

DM = {(t, x, y, z)| 0 ≤ t ≤ 1, |x| ≤M0M, |y| ≤M1M, |z| ≤M2M},

Theorem 2.2.1 (Existence and uniqueness of solution). Suppose that there
exists a number M ≥ 0 such that

|f(t, x, y, z)| ≤M,
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and the function f(t, x, y, z) satisfies Lipschitz condition with Lipschitz coeffi-
cients L0, L1, L2, that is, there exist L0, L1, L2 ≥ 0 such that

|f(t, x2, y2, z2) − f(t, x1, y1, z1)| ≤ L0|x2 − x1| + L1|y2 − y1| + L2|z2 − z1| (2.2.4)

for any (t, x, y, z), (t, xi, yi, zi) ∈ DM (i = 1, 2) and

q := L0M0 + L1M1 + L2M2 < 1.

Then, the problem (2.2.1) has a unique solution u(t) satisfying |u(t)| ≤ M0M,
|u′(t)| ≤M1M, |u′′(t)| ≤M2M for any 0 ≤ t ≤ 1.

Below we recall the iterative method on continuous level for the problem:

1. Given a starting approximation

ϕ0(t) = f(t, 0, 0, 0). (2.2.5)

2. Knowing the k−th approximation ϕk(t) (k = 0, 1, ...) compute

uk(t) =

∫ 1

0

G0(t, s)ϕk(s)ds,

yk(t) =

∫ 1

0

G1(t, s)ϕk(s)ds,

zk(t) =

∫ 1

0

G2(t, s)ϕk(s)ds.

(2.2.6)

3. Compute the new approximation

ϕk+1(t) = f(t, uk(t), yk(t), zk(t)). (2.2.7)

Set

pk =
qk

1− q
, d = ‖ϕ1 − ϕ0‖. (2.2.8)

Theorem 2.2.2 (Convergence). If the conditions of Theorem 2.2.1 are satisfied
then the above iterative method converges and there hold the estimates

‖uk − u‖ ≤M0pkd, ‖u′k − u′‖ ≤M1pkd, ‖u′′k − u′′‖ ≤M2pkd,

where u is the exact solution of the problem (2.2.1) and M0,M1,M2 are defined
by (2.2.3).

Remark 2.2.1. Consider the problem with nonhomogeneous boundary condi-
tions

u(3)(t) = f(t, u(t), u′(t), u′′(t)), 0 < t < 1,

u(0) = c1, u
′(0) = c2, u

′(1) = c3.
(2.2.9)

Let P2(t) be the polynomial of second degree satisfying the conditions

P2(0) = c1, P
′
2(0) = c2, P

′
2(1) = c3.
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It is easy to see that
P2(t) =

c3 − c2

2
t2 + c2t+ c1.

Set
u(t) = v(t) + P2(t),

F (t, v(t), v′(t), v′′(t)) = f(t, v(t) + P2(t), v′(t) + P ′2(t), v′′(t) + P ′′2 (t).

Then the problem (2.2.9) is transformed to the problem

v(3)(t) = F (t, v(t), v′(t), v′′(t)), 0 < t < 1,

v(0) = 0, v′(0) = 0, v′(1) = 0.
(2.2.10)

So, we can apply the existence results to this problem. It is worthy to say that
the iterative method applied to (2.2.10) becomes the following iterative method

1. Given a starting approximation

ϕ0(t) = f(t, P2(t), P ′2(t), P ′′2 (t)). (2.2.11)

2. Knowing ϕk(t) (k = 0, 1, ...) compute

uk(t) =

∫ 1

0

G0(t, s)ϕk(s)ds+ P2(t),

yk(t) =

∫ 1

0

G1(t, s)ϕk(s)ds+ P ′2(t),

zk(t) =

∫ 1

0

G2(t, s)ϕk(s)ds+ P ′′2 (t).

(2.2.12)

3. Compute the new approximation

ϕk+1(t) = f(t, uk(t), yk(t), zk(t)). (2.2.13)

2.2.2. Discrete iterative method 1

To numerically realize the above iterative method we design the corresponding dis-
crete iterative methods. To this end, we consider the uniform grid ω̄h = {ti = ih, h =
1/N, i = 0, 1, ..., N} on the interval [0, 1] and by Φk(t), Uk(t), Yk(t), Zk(t) denote the grid
functions defined on this grid and approximate the functions ϕk(t), uk(t), yk(t), zk(t) on
this grid, respectively.

First, consider the following method, called Method 1:

1. Given a starting approximation

Φ0(ti) = f(ti, 0, 0, 0), i = 0, ..., N. (2.2.14)

2. Knowing the kth approximation Φk(ti), k = 0, 1, ...; i = 0, ..., N, compute ap-
proximately the definite integrals (2.2.6) by the trapezoidal rule

Uk(ti) =
N∑
j=0

hρjG0(ti, tj)Φk(tj),

Yk(ti) =
N∑
j=0

hρjG1(ti, tj)Φk(tj),

Zk(ti) =
N∑
j=0

hρjG
∗
2(ti, tj)Φk(tj), i = 0, ..., N,

(2.2.15)
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where ρj are the weights

ρj =

{
1/2, j = 0, N

1, j = 1, 2, ..., N − 1

and

G∗2(t, s) =


s, 0 ≤ s < t ≤ 1,

s− 1/2, s = t,

s− 1, 0 ≤ t < s ≤ 1.

(2.2.16)

3. Compute new approximation

Φk+1(ti) = f(ti, Uk(ti), Yk(ti), Zk(ti)). (2.2.17)

To obtain the error estimates of the method, we need some following auxiliary results.

Proposition 2.2.3. Suppose that the function f(t, x, y, z) and its partial deriva-
tives up to second order are continuous in the domain DM . Then the functions
uk(t), yk(t), zk(t), k = 0, 1, ... generated by the continuous iterative method (2.2.5)-
(2.2.7), we have zk(t) ∈ C3[0, 1], yk(t) ∈ C4[0, 1], uk(t) ∈ C5[0, 1].

Proof. The proposition will be proved by induction. For k = 0, by the assumption
on the function f we have ϕ0(t) ∈ C2[0, 1] because ϕ0(t) = f(t, 0, 0, 0). In view of
the expression (2.2.2) of G2(t, s) we have

z0(t) =

∫ 1

0

G2(t, s)ϕ0(s)ds =

∫ t

0

sϕ0(s)ds−
∫ 1

t

(s− 1)ϕ0(s)ds.

It is easy to see that z′0(t) = ϕ0(t). Hence, z0(t) ∈ C3[0, 1]. This implies y0(t) ∈
C4[0, 1], u0(t) ∈ C5[0, 1].

Now, assume that zk(t) ∈ C3[0, 1], yk(t) ∈ C4[0, 1], uk(t) ∈ C5[0, 1]. Then,
since ϕk+1(t) = f(t, uk(t), yk(t), zk(t)) and the function f by the assumption has
continuous derivative in all variables up to second order, it follows that ϕk+1(t) ∈
C2[0, 1]. Repeating the same argument as for ϕ0(t) above we obtain that zk+1(t) ∈
C3[0, 1], yk+1(t) ∈ C4[0, 1], uk+1(t) ∈ C5[0, 1]. Thus, the proposition is proved.
Proposition 2.2.4. For arbitrary function ϕ(t) ∈ C2[0, 1] we have∫ 1

0

Gn(ti, s)ϕ(s)ds =
N∑
j=0

hρjGn(ti, tj)ϕ(tj) +O(h2), (n = 0, 1) (2.2.18)

∫ 1

0

G2(ti, s)ϕ(s)ds =
N∑
j=0

hρjG
∗
2(ti, tj)ϕ(tj) +O(h2). (2.2.19)

Proof. In cases n = 0 and n = 1, because the functions Gn(ti, s) are continuous at
s = ti and are polynomials in s in the intervals [0, ti] and [ti, 1] we have∫ 1

0

Gn(ti, s)ϕ(s)ds =

∫ ti

0

Gn(ti, s)ϕ(s)ds+

∫ 1

ti

Gn(ti, s)ϕ(s)ds

= h
(

1
2
Gn(ti, t0)ϕ(t0) +Gn(ti, t1)ϕ(t1) + ...+Gn(ti, ti−1)ϕ(ti−1) + 1

2
G2(ti, ti)ϕ(ti)

)
+ h
(

1
2
Gn(ti, ti)ϕ(ti) +Gn(ti, ti+1)ϕ(ti+1) + ...+Gn(ti, tN−1)ϕ(tN−1)

+ 1
2
Gn(ti, tN)ϕ(tN)

)
+O(h2)

=
N∑
j=0

hρjGn(ti, tj)ϕ(tj) +O(h2) (n = 0, 1).
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Therefore, the estimate (2.2.18) is obtained. The estimate (2.2.19) is established
with the help of the following result, which is easy to prove.
Lemma 2.2.1. Let p(t) be a function having continuous derivatives up to second
order in the interval [0, 1] except for the point ti, 0 < ti < 1, where it has a jump.
Then ∫ 1

0

p(t)dt =
N∑
j=0

hρjp(j) +O(h2), (2.2.20)

where pj = p(tj), j 6= i, pi = 1
2
(p−i + p+

i ) with p−i = limt→ti−0 p(t), p+
i = limt→ti+0 p(t).

Proposition 2.2.5. Under the assumption of Proposition 2.2.3, for any k =
0, 1, ... we have

‖Φk − ϕk‖ = O(h2), (2.2.21)

‖Uk − uk‖ = O(h2), ‖Yk − yk‖ = O(h2), ‖Zk − zk‖ = O(h2), (2.2.22)

where ‖.‖ = ‖.‖C(ω̄h) is the max-norm of the grid functions on ω̄h.

Proof. The proposition is proved by induction. For k = 0 we have ‖Φ0−ϕ0‖ = 0.
Next, by the first equation in (2.2.6) and Proposition 2.2.4 we have

u0(ti) =

∫ 1

0

G0(ti, s)ϕ0(s)ds =
N∑
j=0

hρjG0(ti, tj)ϕ0(tj) +O(h2), i = 0, ..., N.

(2.2.23)
On the other hand, taking into account the first equation in (2.2.15) we have

U0(ti) =
N∑
j=0

hρjG0(ti, tj)ϕ0(tj). (2.2.24)

Therefore, |U0(ti)− u0(ti)| = O(h2). It implies that ‖U0 − u0‖ = O(h2).
Analogously, we have

‖Y0 − y0‖ = O(h2), ‖Z0 − z0‖ = O(h2). (2.2.25)

Now assume that (2.2.21) and (2.2.22) hold for k ≥ 0. We shall prove that they
hold for k + 1.
Indeed, by the Lipschitz condition of the function f and the estimates (2.2.22)
it is easy to get the estimate

‖Φk+1 − ϕk+1‖ = O(h2). (2.2.26)

From the first equation in (2.2.6) by Proposition 2.2.4 we obtain

uk+1(ti) =

∫ 1

0

G0(ti, s)ϕk+1(s)ds =
N∑
j=0

hρjG0(ti, tj)ϕk+1(tj) +O(h2).

On the other hand, by the first formula in (2.2.15) we get

Uk+1(ti) =
N∑
j=0

hρjG0(ti, tj)Φk+1(tj).
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From the above equalities, we obtain the estimate

‖Uk+1 − uk+1‖ = O(h2).

Analogously, we have

‖Yk+1 − yk+1‖ = O(h2), ‖Zk+1 − zk+1‖ = O(h2).

Thus, the proof of the proposition is completed.

Combining Proposition 2.2.5 and Theorem 2.2.2 yields the following theorem.

Theorem 2.2.6. For the approximate solution of the problem (2.2.1) obtained
by the discrete iterative method (2.2.14)-(2.2.17) on the uniform grid ω̄h we have
the estimates

‖Uk − u‖ ≤M0pkd+O(h2), ‖Yk − u′‖ ≤M1pkd+O(h2), ‖Zk − u′′‖ ≤M2pkd+O(h2),

where M0,M1,M2 are given by (2.2.3) and pk, d are given by (2.2.8).
Remark 1. The discrete iterative process (2.2.14)-(2.2.17) is performed until ‖Φk+1−
Φk‖ ≤ TOL, where TOL is a given tolerance. From Theorem 2.2.6 it can be seen that
the accuracy of the discrete approximate solution depends on both the number q de-
fined in Theorem 2.2.1, which determines the number of iterations of the continuous
iterative method and the gridsize h. The number q describes the nature of the BVP,
therefore, it is necessary to choose an appropriate h consistent with q as the choice of
very small h does not increase the accuracy of the approximate discrete solution.

2.2.3. Discrete iterative method 2

Consider another discrete iterative method, named Method 2 for realizing the
continuous iterative method (2.2.5)-(2.2.7). The steps of this method are the same as
of Method 1 with an essential difference in Step 2 and it is now for the even number
of grid points, N = 2n. Namely,

2’. Knowing Φk(ti), k = 0, 1, ...; i = 0, ..., N, compute approximately the definite
integrals (2.2.6) by the modified Simpson rule

Uk(ti) = F (G0(ti, .)Φk(.)),

Yk(ti) = F (G1(ti, .)Φk(.)),

Zk(ti) = F (G∗2(ti, .)Φk(.)),

where

F (Gl(ti, .)Φk(.)) =



∑N
j=0 hρjGl(ti, tj)Φk(tj) if i is even∑N
j=0 hρjGl(ti, tj)Φk(tj) +

h

6

(
Gl(ti, ti−1)Φk(ti−1)− 2Gl(ti, ti)Φk(ti)

+Gl(ti, ti+1)Φk(ti+1)
)

if i is odd,
l = 0, 1; i = 0, 1, 2, ..., N.

ρj are the weights of the Simpson rule

ρj =


1/3, j = 0, N

4/3, j = 1, 3, ..., N − 1

2/3, j = 2, 4, ..., N − 2,

F (G∗2(ti, .)Φk(.)) is computed in the same way as F (Gl(ti, .)Φk(.)) above, where Gl is
replaced by G∗2 defined by (2.2.16).
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Proposition 2.2.7. Suppose that the function f(t, x, y, z) has all continuous
partial derivatives up to fourth order in the domain DM . Then for the functions
uk(t), yk(t), zk(t), ϕk+1(t), k = 0, 1, ..., constructed by the iterative method (2.2.5)-
(2.2.7) we have zk(t) ∈ C5[0, 1], yk(t) ∈ C6[0, 1], uk(t) ∈ C7[0, 1], ϕk+1(t) ∈ C4[0, 1].

Proposition 2.2.8. For arbitrary ϕ(t) ∈ C4[0, 1] there hold∫ 1

0

Gl(ti, s)ϕ(s)ds = F (Gl(ti, .)ϕ(.)) +O(h3), (l = 0, 1) (2.2.27)

∫ 1

0

G2(ti, s)ϕ(s)ds = F (G∗2(ti, .)ϕ(.)) +O(h3). (2.2.28)

Proof. Recall that the interval [0, 1] is divided into N = 2n subintervals by the
points ti = ih, h = 1/N . In each subinterval [0, ti] and [ti, 1] the functions Gl(ti, s)
are polynomials. Hence, if i is even, i = 2m then we represent∫ 1

0

Gl(ti, s)ϕ(s)ds =

∫ t2m

0

Gl(ti, s)ϕ(s)ds +

∫ 1

t2m

Gl(ti, s)ϕ(s)ds.

Applying the Simpson rule to each integral in the right-hand side we get∫ 1

0

Gl(ti, s)ϕ(s)ds = F (Gl(ti, .)ϕ(.)) +O(h4)

since ϕ(t) ∈ C4[0, 1].
Now consider the case i = 2m+ 1. We have

I =

∫ 1

0

Gl(ti, s)ϕ(s)ds =

∫ t2m

0

Gl(ti, s)ϕ(s)ds+

∫ t2m+1

t2m

Gl(ti, s)ϕ(s)ds

+

∫ t2m+2

t2m+1

Gl(ti, s)ϕ(s)ds+

∫ 1

t2m+2

Gl(ti, s)ϕ(s)ds.

(2.2.29)

For simplicity we denote
fj = Gl(ti, sj)ϕ(sj)

Applying the Simpson rule to the first and the fourth integrals in the right-hand
side (2.2.29) and the trapezoidal rule to the second and the third integrals, we
obtain

I =
h

3
[f0 + 4(f1 + f3 + ...+ f2m−1) + 2(f2 + f4 + ...+ f2m−2) + f2m] +O(h4)

+
h

2
(f2m + f2m+1) +O(h3) +

h

2
(f2m+1 + f2m+2) +O(h3)

+
h

3
[f2m+2 + 4(f2m+3 + f2m+5 + ...+ f2n−1) + 2(f2m+4 + f2m+6 + ...+ f2n−2) + f2n] +O(h4)

=
h

3
[f0 + 4(f1 + f3 + ...+ f2n−1) + 2(f2 + f4 + ...+ f2n−2) + f2n]

+
h

6
(f2m − 2f2m+1 + f2m+2) +O(h3)

= F (Gl(ti, .)ϕ(.)) +O(h3).

Therefore, in both cases of i, even or odd, we have the estimate (2.2.27).
The estimate (2.2.28) is obtained similarly as (2.2.27) if noticing that

2G∗2(ti, ti) = G−2 (ti, ti) +G+
2 (ti, ti),

where G±2 (ti, ti) = lims→ti±0G2(ti, s).
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Theorem 2.2.9. Under the assumptions of Proposition 2.2.7, for the approxi-
mate solution of the problem (2.2.1) obtained by Method 2 on the uniform grid
ω̄h we have the error estimates

‖Uk − u‖ ≤M0pkd+O(h3), ‖Yk − u′‖ ≤M1pkd+O(h3),

‖Zk − u′′‖ ≤M2pkd+O(h3).

Remark 2.2.2. For solving the nonhomogeneous problem (2.2.9) we can con-
struct discrete iterative methods like to those for solving the homogeneous prob-
lem (2.2.1).

2.2.4. Examples

To confirm the validity of the obtained theoretical results and the efficiency of the
proposed iterative method, we consider some examples. The exact solutions are either
known or not known.

Example 2.2.1 (Problem 2 in [35]). Consider the problem

u′′′(x) = x4u(x)− u2(x) + g(x), 0 < x < 1,

u(0) = 0, u′(0) = −1, u′(1) = sin(1),
(2.2.30)

where g(x) = −3 sin(x)− (x− 1) cos(x)−x4(x− 1) sin(x) + (x− 1)2 sin2(x). It is easy
to verify that the exact solution of the problem is u∗(x) = (x− 1) sin(x).

To apply the above theoretical results for homogeneous problems, we replace
u(x) = v(x) + P (x), where P (x) =

1

2
(1 + sin(1))x2 − x is the polynomial of second

degree satisfying the boundary conditions in (2.2.30). Then the original non-
homogeneous problem for u(x) is transformed to the following homogeneous
problem for v(x):

v′′′(x) = x4v(x)− v2(x)− 2P (x)v(x) + x4P (x)− P 2(x) + g(x), 0 < x < 1,

v(0) = 0, v′(0) = 0, v′(1) = 0,
(2.2.31)

In order to apply Theorem 2.2.1, we need to determine the number M . For the
right-hand side function

f(x, v) = −v2(x) + x4v(x)− 2P (x)v(x) + x4P (x)− P 2(x) + g(x)

in the domain DM = {(x, v)| 0 ≤ t ≤ 1, |v| ≤M0M}, where M0 = 1
12

we have

|f | ≤ |v|2 + |v|+ 2|P (x)||v|+ |x4P (x)|+ |P (x)|2 + |g(x)|

≤ (
M

12
)2 + (1 + 2 ∗ 0.2715)

M

12
+ 0.1 + 0.27152 + 4.12

<
M2

144
+

1.55M

12
+ 4.3.

Here we use the estimates

|P (x)| ≤ 0.2715, |x4P (x)| ≤ 0.1, x ∈ [0, 1],

that are easily obtained. Besides, for estimating |g(x)| we use the estimates

|(x− 1) sin(x)| ≤ 0.2401, |x4(x− 1) sin(x)| ≤ 0.0596, x ∈ [0, 1].
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It is easy to prove that for M = 6 we have M2

144
+ 1.55M

12
+ 4.3 < M . It follows

that |f(x, v)| ≤ M in DM . Furthermore, in DM the function f(x, v) satisfies the
Lipschitz condition in v with the Lipschitz coefficient L0 = 2.543. It implies
that q = 0.2119. Therefore, all assumptions of Theorem 2.2.1 are met, and the
problem has a unique solution, and the iterative method converges. The results
of the numerical experiments with two different tolerances are reported in Tables
2.1- 2.3.

Table 2.1: The convergence in Example 2.2.1 for TOL = 10−4

N K Errortrap Order ErrorSimp Order
8 3 9.9153e-04 9.7143e-04
16 3 2.4646e-04 2.0083 1.3101e-04 2.8905
32 3 6.0906e-05 2.0167 1.6020e-05 3.0317
64 3 1.4563e-05 2.0643 1.2587e-06 3.6696
128 3 2.9796e-06 2.2891 8.8553e-07 0.5073
256 3 4.3187e-07 2.7865 8.8165e-07 0.0063

Table 2.2: The convergence in Example 2.2.1 for TOL = 10−6

N K Errortrap Order ErrorSimp Order
8 4 9.99237e-04 9.7223e-04
16 4 2.4734e-04 2.0044 1.3189e-04 2.8820
32 4 6.1802e-05 2.0008 1.6915e-05 2.9629
64 4 1.5462e-05 1.9989 2.1492e-06 2.9765
128 4 3.8797e-06 1.9947 2.8688e-07 2.9053
256 4 9.8437e-07 1.9787 5.2749e-08 2.4439
512 4 2.6054e-07 1.9177 2.3446e-08 1.1698
1024 4 7.9583e-08 1.7110 1.9786e-08 0.2448

Table 2.3: The convergence in Example 2.2.1 for TOL = 10−10

N K Errortrap Order ErrorSimp Order
8 7 9.9235e-04 9.7222e-04
16 7 2.4732e-04 2.0045 1.3187e-04 2.8822
32 7 6.1782e-05 2.0011 1.6896e-05 2.9643
64 7 1.5443e-05 2.0003 2.1301e-06 2.9877
128 7 3.8605e-06 2.0001 2.6774e-07 2.9923
256 7 9.6511e-07 2.0000 3.3544e-08 2.9965
512 7 2.4128e-07 2.0000 4.1977e-09 2.9984
1024 7 6.0319e-08 2.0000 5.2483e-10 2.9997

In these tables, N and K are the numbers of grid points and iterations,
Errortrap, ErrorSimp are the errors ‖UK − u∗‖ when using Method 1 and Method
2, respectively, Order is the order of convergence determined by

Order = log2

‖UN/2
K − u∗‖
‖UN

K − u∗‖
.

Here, the superscripts N/2 and N of UK are the number of grid points used to
compute UK on the grid.
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From the above tables, it can be seen that for each tolerance the number of
iterations is constant and the errors of the approximate solution decrease with
the rate (or order) close to 2 for Method 1 and close to 3 for Method 2 until
they no longer can be improved. We can explain this as follows. The total
error of the actual approximate solution consists of two terms: the error of the
iterative method on continuous level and the error of numerical integration at
each iteration. When these errors are balanced, the further increase of number
of grid points N (or equivalently, the decrease of grid size h) cannot in general
improve the accuracy of approximate solution.

Notice that in [35] the author used Newton-Raphson iteration method to
solve nonlinear system of equations arising after discretization of the differential
problem. The iteration process is continued until the maximum difference be-
tween two successive iterations , i.e., ‖Uk+1−Uk‖ is less than 10−10. The number
of iterations for achieving this tolerance is not reported. The accuracy for some
different N is reported in Table 2.4 (see [35, Table 2]).

Table 2.4: The results in [35] for the problem in Example 2.2.1

N 8 16 32 64
Error 0.11921225e-01 0.33391170e-02 0.87742222e-03 0.23732412e-03

From the above tables, it is clear that our method yields much better accuracy.

Example 2.2.2 (Problem 2 in [36]). Consider the problem

u′′′(x) = −xu′′(x)− 6x2 + 3x− 6, 0 < x < 1,

u(0) = 0, u′(0) = 0, u′(1) = 0.

It is easy to show that with M = 18, L0 = L1 = 0, L2 = 1, q = 0.5, the conditions
of Theorem 2.2.1 are met, thus the problem has a unique solution. This solu-
tion is u(x) = x2(3

2
− x). The results of the numerical experiments with different

tolerances are reported in Tables 2.5, 2.6 and 2.7.

Table 2.5: The convergence in Example 2.2.2 for TOL = 10−4

N K Errortrap Order ErrorSimp Order
8 6 0.0078 9.7662e-04
16 6 0.0020 2.0000 1.2215e-04 2.9991
32 6 4.8837e-04 1.9998 1.5345e-05 2.9929
64 6 1.2216e-04 1.9992 1.9936e-06 2.9443
128 6 3.0604e-05 1.9969 3.2471e-07 2.6181
256 6 7.7157e-06 1.9878 1.1612e-07 1.4835

In [36] the author used Gauss-Seidel iteration method to solve linear system
of equations arisen after discretization of the differential problem. The iteration
process is continued until the maximum difference between two successive itera-
tions ‖Uk+1−Uk‖ < 10−10. The results for some different N are reported in Table
2.8.
From the above tables, it is clear that our method yields better accuracy and
requires less computational work.
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Table 2.6: The convergence in Example 2.2.2 for TOL = 10−6

N K Errortrap Order ErrorSimp Order
8 8 0.0078 9.7662e-04
16 6 0.0020 2.0000 1.2215e-04 2.9991
32 6 4.8837e-04 1.9998 1.5345e-05 2.9929
64 6 1.2216e-04 1.9992 1.9936e-06 2.9443
128 6 3.0604e-05 1.9969 3.2471e-07 2.6181
256 6 7.7157e-06 1.9878 1.1612e-07 1.4835
512 6 1.9937e-06 1.9524 9.0051e-08 0.3868
1024 6 5.6316e-07 1.8238 8.6794e-08 0.0532

Table 2.7: The convergence in Example 2.2.2 for TOL = 10−10

N K Errortrap ErrorSimp N K Errortrap ErrorSimp
8 11 0.0078 2.0650e-13 64 11 1.2207e-04 2.5890e-13
16 11 0.0020 2.6790e-13 128 11 3.0518e-05 2.5790e-13
32 11 4.8828e-04 2.6279e-13 256 11 7.6294e-06 2.5802e-13

Table 2.8: The results in [36] for the problem in Example 2.2.2

N 128 256 512 1024
Error 0.30696392e-4 0.61094761(-5) 0.14379621e-5 0.41723251e-6
Iter 53 5 3 4

Example 2.2.3. Consider the problem for fully third order differential equation

u′′′(x) = −eu(x) − eu′(x) − 1

10
(u′′(x))2, 0 < x < 1,

u(0) = 0, u′(0) = 0, u′(1) = 0.
(2.2.32)

The exact solution is not known. It is easy to show that with M = 3, L0 =
1.284, L1 = 1.455, L2 = 0.3 and q = 0.4389 the conditions of Theorem 2.2.1 are met.
Thus, the problem has a unique solution and the iterative process converges.

Table 2.9: The convergence in Example 2.2.3 for TOL = 10−10

N 8 16 32 64 128 256
K 15 15 15 15 15 15

The numerical solution of the problem is depicted in Figure 2.7.
In [17] the authors could only obtain the existence but not the uniqueness

of a solution to the equation u′′′(x) = −eu(x) subject to the boundary conditions
as in (2.2.32), and later, in [19] the authors also could only establish a similar
result for the equation u′′′(x) = −eu(x) − eu′(x).

Remark 2.2.3 (Convergence of the iterative method). It should be emphasized
that Theorem 2.2.1 only provides sufficient conditions for the existence and
uniqueness of a solution to the problem (2.2.1) and Theorem 2.2.2 gives the
convergence rate of the iterative method for finding the solution. When these
conditions are not met, the iterative method may or may not converge. To
illustrate this remark, we give some examples below.
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Figure 2.7: Approximate solution in Example 2.2.3.

First, consider the problem

u′′′(x) = −eu(x) − eu′(x) − (u′′(x))2, 0 < x < 1,

u(0) = 0, u′(0) = 0, u′(1) = 0.

Here, the right-hand side function is f(x, u, y, z) = −eu − ey − z2. In the domain

DM =

{
(x, u, y, z)| 0 ≤ x ≤ 1, |u| ≤ M

12
, |y| ≤ M

8
, |z| ≤ M

2

}
we have

g(M) := max
(x,u,y,z)∈DM

|f(x, u, y, z)| = eM/12 + eM/8 +
(M

2

)2
.

It is easy to show that g(M) ≥ M + 1.4019 > M for any M > 0. Hence, there
does not exist M > such that |f(x, u, y, z)| ≤ M ∀(x, u, y, z) ∈ DM . Therefore,
Theorem 2.2.1 cannot guarantee the existence and uniqueness of a solution and
the convergence of the iterative method. Nevertheless, for TOL = 10−10 the
iterative method converges after 23 iterations.

Next, an example when the conditions of Theorem 2.2.1 are not satisfied and
the iterative method does not converge is for the equation

u′′′(x) = −eu(x) − eu′(x) − (u′′(x))2 + 5u′′(x) + 10, 0 < x < 1.

2.2.5. On some extensions of the problem

2.2.5.1. The problem on large intervals

First consider the problem (2.2.1) on the interval [0, T ], i.e., the problem

u(3)(t) = f(t, u(t), u′(t), u′′(t)), 0 < t < T,

u(0) = 0, u′(0) = 0, u′(T ) = 0.
(2.2.33)

For this problem, it is easy to verify that the Green’s function is

G0(t, s) =


s

2
(
t2

T
− 2t+ s), 0 ≤ s ≤ t ≤ T,

t2

2
(
s

T
− 1), 0 ≤ t ≤ s ≤ T.
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The first and second derivatives of this function with respect to t are

G1(t, s) =

 s(
t

T
− 1), 0 ≤ s ≤ t ≤ T,

t(
s

T
− 1), 0 ≤ t ≤ s ≤ T,

G2(t, s) =


s

T
, 0 ≤ s ≤ t ≤ T,

s

T
− 1, 0 ≤ t ≤ s ≤ T.

It is easy to see that G0(t, s) ≤ 0, G1(t, s) ≤ 0 in Q = [0, 1]2 and

M0 = max
0≤t≤T

∫ T

0

|G(t, s)| ds =
T 3

12
, M1 = max

0≤t≤T

∫ T

0

|G1(t, s)| ds =
T 2

8
,

M2 = max
0≤t≤T

∫ T

0

|G2(t, s)| ds =
T

2
.

(2.2.34)

Clearly, the numbersMi (i = 0, 1, 2) increase with the increase of T . Therefore, the do-
mainDM becomes more extended. This implies that the Lipschitz coefficients L0, L1, L2

of the function f(t, x, y, z) with respect to x, y, z do not decrease, and accordingly, the
number q = L0M0 +L1M1 +L2M2 increases. This leads to narrowing the scope of ap-
plicability of Theorem 2.2.1 on the existence and uniqueness of solution and Theorem
2.2.2 on the convergence of the iterative method.

For demonstrating the above remark we consider some examples.

Example 2.2.4. Consider the problem on [0, T ] for the equation of Example
2.2.2, namely, the problem

u′′′(x) = −xu′′(x)− 6x2 + 3x− 6, 0 < x < T,

u(0) = 0, u′(0) = 0, u′(T ) = 0.

Below are the results of convergence for Discrete iterative method 2 with n = 256
for some T :

Table 2.10: The convergence in Example 2.2.4 for TOL = 10−6

T 1 2 3 4 5
K 8 18 82 2009 no convergence

Here K is the number of iterations for achieving the given tolerance TOL. Notice
that from T = 2 the conditions of Theorem 2.2.1 are not satisfied but only
from T = 5 the iterative method diverges. From Table 2.10 clearly that the
convergence of the iterative method depends on the width of the interval, where
the problem is considered.

Example 2.2.5. Consider the problem

u′′′(x) = −1

6
e−u

2

+ e−(u′′)2 , 0 < x < T,

u(0) = 0, u′(0) = 0, u′(T ) = 0.

For this example the right-hand side function is f = f(x, u, y, z) = −1
6
e−u

2
+e−(z)2.

In any domain

DM =

{
(x, u, y, z)| 0 ≤ x ≤ T, |u| ≤ T 3

12
M, |y| ≤ T 2

8
M, |z| ≤ T

2
M

}
,
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we always have |f | ≤ 7
6
. Therefore, in Theorem 2.2.1 we take M = 7

6
. The

Lipschitz coefficients of the function f are L0 = 0.1430, L1 = 0, L2 = 0.8579. So,
q = 0.1430 T 3

12
+ 0.8579 T

2
= 0.0119 T 3 + 0.4289 T . Clearly, for large values of T not

all conditions of Theorem 2.2.1 are satisfied, and it is expected that the iterative
method will diverge for large T . But it is interesting that this does not occur.
Below are the results of the convergence of the iterative method for n = 200.

Table 2.11: The convergence in Example 2.2.5 for TOL = 10−6

T 1 3 5 10 15 20 40 100
K 6 12 13 16 18 20 27 37

The approximate solution for T = 100 is depicted in Figure 2.8.
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Figure 2.8: Approximate solution in Example 2.2.5.

2.2.5.2. The problem for unbounded nonlinear terms

For the problem with unbounded nonlinear terms (right-hand sides) f(t, u, y, z)
caused by singular points, of course, Theorem 2.2.1 cannot work, and Theorem 2.2.2
cannot ensure the convergence of the iterative method. But it is interesting that in
some special cases the discrete iterative methods still converge. Below we report some
nonlinear terms f(t, u, y, z) for which the iterative method converge:

(i)
u2√
|t− π

4
|

+ ey + 1, (ii)
u2

|t− π
4
|

+ ey + z2 + 1, (iii)
u2

|t−
√

2
4
|

+ ey + z2 + 1.

Notice that in the above three functions the singular points are irrational points,
therefore, when using the discrete methods on the grids with rational points then the
denominators always are not zero. For this reason the computations can be performed.

When we use the uniform grids with the number of grid points n = 2k, k = 3, 4, 5, ...,

the iterative methods also converge for f =
u2√
|t− 1

3
|

+ ey + 1. This is due to the fact

that i/2k 6= 1/3 for any i and k.
Above we only made some remarks on the problem (2.2.1) when the nonlinear term

is unbounded. In the future we will study this issue deeply.
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2.2.6. Conclusion

In this section, first we proved the existence and uniqueness of a solution for a
boundary value problem for fully third order differential equations. Next, to find this
solution we proposed iterative methods at both continuous and discrete levels. The
numerical implementation of the discrete iterative methods is very simple. It is based
on the popular trapezoidal rule of second order accuracy and a modified Simpson
rule of third order accuracy for numerical integration. One of the important results in
analysis of the proposed numerical methods is that we obtained an estimate for the total
error of the actually obtained approximate solution. This total error depends on the
number of iterations performed and the discretization parameter, namely, the gridsize.
The validity of the theoretical results and the efficiency of the iterative methods are
illustrated on examples. In addition, we made some remarks on the iterative method
for two extensions of the problem to large intervals and to the case when the nonlinear
terms are unbounded due to interior singular points. In the future we will deeply study
these issues.

The method for investigating the existence and uniqueness of solution and the
iterative schemes for finding solution in this section can be applied to other third order
nonlinear boundary value problems, and in general, for higher order nonlinear boundary
value problems.

2.3. Chapter conclusion

In this chapter, we have successfully proposed a novel unified method for study-
ing third order nonlinear boundary value problems. It is based on the reduction of
boundary value problems to operator equation for nonlinear term (or right-hand side)
of the differential equations. This is the essential difference from the existing methods
of some other authors. Due to the reduction of boundary value problems to operator
equations we have established the existence and uniqueness of solutions of third order
differential equation associated with many linear boundary conditions. Besides, we
have constructed iterative methods on continuous level and on discrete level for finding
the solution. The total error estimate of actual numerical solution was obtained, and
many numerical examples supported the theoretical results.

It should be emphasized that by the proposed unified method we have obtained
some results which are better than those of other authors, and this method is applicable
to other boundary value problems. Besides, the approach for constructing numerical
methods for boundary value problems here is completely novel because it is based on
the discretization of the corresponding iterative method on continuous level, meanwhile
other authors directly approximate differential equations.

The results of this chapter were published in the Scopus paper [AL1] and in the
SCIE paper [AL2].
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Chapter 3
The existence, uniqueness of a solution and an
iterative method for some nonlinear ODEs with
integral boundary conditions

3.1. Existence results and an iterative method for fully
third order nonlinear integral boundary value prob-
lems

3.1.1. Introduction

In this section, we consider the boundary value problem

u′′′(t) = f(t, u(t), u′(t), u′′(t)), 0 < t < 1, (3.1.1)

u(0) = u′(0) = 0, u(1) =

∫ 1

0

g(s)u(s)ds, (3.1.2)

where f ∈ C([0, 1]× R3,R+), g ∈ C([0, 1],R+).
A particular case of this problem, namely, the problem

u′′′(t) + f(u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = 0, u(1) =

∫ 1

0

g(t)u(t)dt
(3.1.3)

was studied recently by Guendouz et al. in [47]. There, by using Krasnoselskii’s fixed
point theorem on cones they obtained the existence results of positive solutions of the
problem. This technique was used also by Benaicha and Haddouchi in [48] for a fourth
order nonlinear boundary problem involving integral conditions.

It should be emphasized that in all of the above-mentioned works the authors
only could (even could not) show examples of the nonlinear terms satisfying required
sufficient conditions, but no exact solutions were shown. Moreover, the known results
are of purely theoretical characteristics concerning the existence of solutions but not
solution methods.

Here, by the method of reducing BVPs to operator equation for nonlinear terms
developed in [13, 14, 86, 89] we obtain the existence, uniqueness and positivity of
solution and propose an iterative method for finding the solution. Several examples
demonstrate the validity of the theoretical results obtained and the efficiency of the
iterative method. Especially, one example of exact solution of the problem is designed
so that the functions f and g satisfy all the required conditions.
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3.1.2. Existence and uniqueness of solution

To study the problem (3.1.1)-(3.1.2) we reduce it to an operator equation as follows.
First, we introduce the space B = C[0, 1] × R of all pairs w = (ϕ, α)T , where

ϕ ∈ C[0, 1], α ∈ R and equip it with the norm

‖w‖B = max(‖ϕ‖, r|α|), (3.1.4)

where ‖ϕ‖ = max0≤t≤1 |ϕ(t)|, r is a real number, r ≥ 1. The constant r will play a
significant role in the conditions for the existence and uniqueness of solution and will
be selected later in each particular case.

Next we define the operator A : B → B by the equation

Aw =

(
f(t, u(t), u′(t), u′′(t)∫ 1

0
g(t)u(t)dt

)
, (3.1.5)

where u(t) is the solution of the problem

u′′′(t) = ϕ(t), 0 < t < 1, (3.1.6)
u(0) = u′(0) = 0, u(1) = α. (3.1.7)

It is easy to verify the following lemma.

Lemma 3.1.1. If w = (ϕ, α)T is a fixed point of the operator A in the space B,
that is, w is a solution of the operator equation

Aw = w (3.1.8)

in B, then the function u(t) defined from the problem (3.1.6)-(3.1.7) is a solution
of the original problem (3.1.1)-(3.1.2).
Conversely, if u(t) is a solution of (3.1.1)-(3.1.2), then the pair (ϕ, α)T , where

ϕ(t) = f(t, u(t), u′(t), u′′(t)), (3.1.9)

α =

∫ 1

0

g(t)u(t)dt, (3.1.10)

is a solution of the operator equation (3.1.8).

Thus, by this lemma, the problem (3.1.1)-(3.1.2) is reduced to the fixed point
problem for A.

Remark that the above operator A, which is defined on pairs of functions ϕ(t), t ∈
[0, 1] and boundary values α of u(t) at t = 1, is similar to the mixed boundary-domain
operator introduced in [90] for studying biharmonic type equation.

Now, we study the properties of A. For this purpose, notice that the problem
(3.1.6)-(3.1.7) has a unique solution representable in the form

u(t) =

∫ 1

0

G0(t, s)ϕ(s)ds+ αt2, 0 < t < 1, (3.1.11)

where

G0(t, s) =

{
−1

2
s(1− t)(2t− ts− s), 0 ≤ s ≤ t ≤ 1

−1
2
(1− s)2t2, 0 ≤ t ≤ s ≤ 1



48

is the Green’s function of the operator u′′′(t) associated with the homogeneous boundary
conditions u(0) = u′(0) = u(1) = 0.

Taking the derivative of both sides of (3.1.11) yields

u′(t) =

∫ 1

0

G1(t, s)ϕ(s)ds+ 2αt, (3.1.12)

u′′(t) =

∫ 1

0

G2(t, s)ϕ(s)ds+ 2α, (3.1.13)

where G1(t, s) and G1(t, s) are the first and second derivatives of G(t, s) with respect
to t:

G1(t, s) =

{
−s(st− 2t+ 1), 0 ≤ s ≤ t ≤ 1,

−(1− s)2t, 0 ≤ t ≤ s ≤ 1,

G2(t, s) =

{
−s(s− 2), 0 ≤ s ≤ t ≤ 1,

−(1− s)2, 0 ≤ t ≤ s ≤ 1.

It is easy to see that G0(t, s) ≤ 0 in Q = [0, 1]2, and

M0 = max
0≤t≤1

∫ 1

0

|G0(t, s)|ds =
2

81
,

M1 = max
0≤t≤1

∫ 1

0

|G1(t, s)|ds =
1

18
,

M2 = max
0≤t≤1

∫ 1

0

|G2(t, s)|ds =
2

3
.

(3.1.14)

Therefore, from (3.1.11), (3.1.12), (3.1.13) and (3.1.14) we obtain

‖u‖ ≤M0‖ϕ‖+ |α|,
‖u′‖ ≤M1‖ϕ‖+ 2|α|,
‖u′′‖ ≤M2‖ϕ‖+ 2|α|.

(3.1.15)

Now for any real number M > 0 define the domain

DM = {(t, x, y, z) | 0 ≤ t ≤ 1, |x| ≤ (M0 +
1

r
)M,

|y| ≤ (M1 +
2

r
)M, |z| ≤ (M2 +

2

r
)M}.

(3.1.16)

Next, denote

C0 =

∫ 1

0

g(t)dt, C2 =

∫ 1

0

t2g(t)dt. (3.1.17)

Lemma 3.1.2. Suppose that the function f(t, x, y, z) is continuous in DM , and

|f(t, x, y, z)| ≤M in DM (3.1.18)

and
q1 := rC0M0 + C2 ≤ 1. (3.1.19)

Then the operator A defined by (3.1.5) maps B[0,M ] ∈ B into itself.
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Proof. Take any w = (ϕ, α)T ∈ B[0,M ]. Then ‖ϕ‖ ≤ M and |α| ≤ M/r. Let u(t)
be the solution of the problem (3.1.6)-(3.1.7). Then from the estimates (3.1.15)
for the solution u(t) and its derivatives we obtain

‖u‖ ≤
(
M0 +

1

r

)
M, ‖u′‖ ≤

(
M1 +

2

r

)
M, ‖u′′‖ ≤

(
M2 +

2

r

)
M.

Therefore, (t, u(t), u′(t), u′′(t)) ∈ DM . Hence, by the assumption (3.1.18) we have

|f(t, u(t), u′(t), u′′(t))| ≤M.

Now estimate J := k|
∫ 1

0
g(t)u(t)dt|. In view of the representation (3.1.11) we

obtain

J ≤r
∫ 1

0

g(t)

∣∣∣∣∫ 1

0

G0(t, y)ϕ(y)dy

∣∣∣∣ dt+ r|α|
∫ 1

0

g(t)t2dt

≤ rC0M0M + C2M = (rC0M0 + C2)M ≤M.

(3.1.20)

The above inequalities are valid due to (3.1.14), (3.1.17) and the assumption
(3.1.19).

Therefore, by the definition of the norm in the space B we have

‖Aw‖B ≤M,

which means that the operator A maps the closed ball B[0,M ] in B into itself.
The lemma is proved.

Lemma 3.1.3. The operator A is a compact operator in B[0,M ].

Proof. Indeed, the compactness of A follows from the compactness of the integral
operators (3.1.11), (3.1.12), (3.1.13) for the function ϕ, the continuity of the
function f(t, x, y, z) and the compactness of the integral operator

∫ 1

0
g(t)u(t)dt for

the function u.

Theorem 3.1.1 (Existence of solution). Suppose the conditions of Lemma 3.1.2
are met. Then the problem (3.1.1)-(3.1.2) has a solution.

Proof. By Lemma 3.1.2 and Lemma 3.1.3, the operator A is a compact operator
in the Banach space B mapping the closed ball B[0,M ] into itself. Therefore,
by the Schauder fixed point theorem, it has a fixed point in B[0,M ]. This fixed
point corresponds to a solution of the problem (3.1.1)-(3.1.2).

To establish the existence of positive solutions of (3.1.1)-(3.1.2) we introduce the
domain

D+
M = {(t, x, y, z) | 0 ≤ t ≤ 1, 0 ≤ x ≤ (M0 +

1

r
)M,

|y| ≤ (M1 +
2

r
)M, |z| ≤ (M2 +

2

r
)M},

(3.1.21)

in the space [0, 1]× R3 and the domain

SM = {w = (ϕ, α)T | −M ≤ ϕ ≤ 0, 0 ≤ rα ≤M} (3.1.22)

in the space B.
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Theorem 3.1.2 (Positivity of solution). Assume that the function f(t, x, y, z) is
continuous and

−M ≤ f(t, x, y, z) ≤ 0 in D+
M . (3.1.23)

In addition, the condition (3.1.19) is satisfied. Then the problem (3.1.1)-(3.1.2)
has a non-negative solution. Moreover, if f(t, 0, 0, 0) 6≡ 0 then this solution is
positive.

Proof. First, notice that under the assumptions of the theorem, the operator A
maps SM into itself. Indeed, for any w = (ϕ, α)T ∈ SM , −M ≤ ϕ ≤ 0, 0 ≤ rα ≤M .
Since G0(t, s) ≤ 0, from (3.1.11), (3.1.12), (3.1.13) we have

0 ≤ u(t) ≤ (M0 +
1

r
)M, |u′(t)| ≤ (M1 +

2

r
)M, |u′′(t)| ≤ (M2 +

2

r
)M, 0 ≤ t ≤ 1.

So, for the solution u(t) of (3.1.6)-(3.1.7) we have (t, u(t), u′(t), u′′(t)) ∈ D+
M , and

by the assumption (3.1.23) we obtain

−M ≤ f(t, u(t), u′(t), u′′(t)) ≤ 0.

As in the proof of Theorem 3.1.1 we also have the estimate

0 ≤ r

∫ 1

0

g(t)u(t)dt ≤M.

Hence,
(
f(t, u(t), u′(t), u′′(t)),

∫ 1

0
g(t)u(t)dt

)T ∈ SM , that is, A : SM → SM .
As was shown above, A is a compact operator in S. Therefore, A has a fixed
point in SM , which generates a solution of the problem (3.1.1)-(3.1.2). This
solution is nonnegative. Moreover, if f(t, 0, 0, 0) 6≡ 0 then u(t) ≡ 0 cannot be the
solution. Therefore, the solution is positive.

Theorem 3.1.3 (Existence and uniqueness). Suppose that there exist numbers
M > 0, L0, L1, L2 ≥ 0 such that

(H1) |f(t, x, y, z)| ≤M, ∀(t, x, y, z) ∈ DM .

(H2) |f(t, x2, y2, z2)−f(t, x1, y1, z1)| ≤ L0|x2−x1|+L1|y2−y1|+L2|z2−z1|, ∀(t, xi, yi, zi) ∈
DM , i = 1, 2.

(H3) q := max{q1, q2} < 1, where q1 = rC0M0 +C2 as was defined by (3.1.19) and

q2 = L0(M0 +
1

r
) + L1(M1 +

2

r
) + L2(M2 +

2

r
). (3.1.24)

Then the problem (3.1.1)-(3.1.2) has a unique solution u ∈ C3[0, 1].

Proof. To prove the theorem, it suffices to show that the operator A defined by
(3.1.5) is a contraction map from B[0,M ] ∈ B into itself. Indeed, under the
assumption (H1) and the condition q1 < 1 in the assumption (H2), by Lemma
3.1.2 the operator A maps B[0,M ] into itself.

Now, we show that A is a contraction map.
Let wi = (ϕi, αi)

T ∈ B[0,M ]. We have

Aw2 − Aw1 =

(
f(t, u2(t), u′2(t), u′′2(t)− f(t, u1(t), u′1(t), u′′1(t)∫ 1

0
g(t)(u2(t)− u1(t))ds

)
,
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where ui(t) (i = 1, 2) is the solution of the problem{
u′′′i (t) = ϕi(t), 0 < t < 1

ui(0) = u′i(0) = 0, ui(1) = αi.

From the proof of Lemma 3.1.2 it is known that (t, ui(t), u
′
i(t), u

′′
i (t)) ∈ DM . There-

fore, by the Lipschitz condition (H2) for f we have

D1 : = |f(t, u2(t), u′2(t), u′′2(t)− f(t, u1(t), u′1(t), u′′1(t)|
≤ L0|u2(t)− u1(t)|+ L1|u′2(t)− u′1(t)|+ L2|u′′2(t)− u′′1(t)|.

(3.1.25)

Since u2(t) − u1(t) is the solution of the problem (3.1.6)-(3.1.7) with the right-
hand sides ϕ2(t)− ϕ1(t) and α2 − α1, we have

‖u2 − u1‖ ≤M0‖ϕ2 − ϕ1‖+ |α2 − α1|,
‖u′2 − u′1‖ ≤M1‖ϕ2 − ϕ1‖+ 2|α2 − α1|,
‖u′′2 − u′′1‖ ≤M2‖ϕ2 − ϕ1‖+ 2|α2 − α1|.

(3.1.26)

As for the element w = (ϕ, α)T ∈ B we use the norm

‖w‖B = max(‖ϕ‖, r|α|) (r ≥ 1),

from (3.1.25), (3.1.26) we obtain

D1 ≤ L0

(
M0 +

1

r

)
‖w2 − w1‖B + L1

(
M1 +

2

r

)
‖w2 − w1‖B

+ L2

(
M2 +

2

r

)
‖w2 − w1‖B

≤
(
L0

(
M0 +

1

r

)
+ L1

(
M1 +

2

r

)
+ L2

(
M2 +

2

r

))
‖w2 − w1‖B

= q2‖w2 − w1‖B,

(3.1.27)

where q2 is defined by (3.1.24).
Now consider

D2 := r
∣∣ ∫ 1

0

g(t)(u2(t)− u1(t))dt
∣∣.

By analogy with the estimate (3.1.20) it is easy to have

D2 ≤ (rC0M0 + C2)‖w2 − w1‖B = q1‖w2 − w1‖B. (3.1.28)

From (3.1.27) and (3.1.28) we obtain

‖Aw2 − Aw1‖B ≤ max{q1, q2}‖w2 − w1‖B.

In view of condition (H3) the operator A is a contraction operator in B[0,M ].
The theorem is proved.

Theorem 3.1.4 (Existence and uniqueness of positive solution). If in Theorem
3.1.3 replace DM by D+

M and the condition (H1) by the condition (3.1.23) then
the problem (3.1.1)-(3.1.2) has a unique nonnegative solution u(t) ∈ C3[0, 1].
Besides, if f(t, 0, 0, 0) 6≡ 0 then this solution is positive.
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3.1.3. Iterative method

Assume that all the conditions of Theorem 3.1.3 are met. Then the problem (3.1.1)-
(3.1.2) has a unique solution. To find it, consider the following iterative method:

1. Given w0 = (ϕ0, α0)T ∈ B[0,M ], for example,

ϕ0(t) = f(t, 0, 0, 0), α0 = 0. (3.1.29)

2. Knowing ϕn(t) and αn (n = 0, 1, ...), compute

un(t) =

∫ 1

0

G(t, s)ϕn(s)ds+ αnt
2, (3.1.30)

yn(t) =

∫ 1

0

G1(t, s)ϕn(s)ds+ 2αnt, (3.1.31)

zn(t) =

∫ 1

0

G2(t, s)ϕn(s)ds+ 2αn. (3.1.32)

3. Compute the new approximations

ϕn+1(t) = f(t, un(t), yn(t), zn(t)), (3.1.33)

αn+1 =

∫ 1

0

g(t)un(t)dt. (3.1.34)

Theorem 3.1.5. Under the assumptions of Theorem 3.1.3 the above iterative
method converges, and for the approximate solution un(t) and its derivatives
u′n(t), u′′n(t) there hold the estimates

‖un − u‖ ≤
(
M0 +

1

r

)
pnd, (3.1.35)

‖u′n − u′‖ ≤
(
M1 +

2

r

)
pnd, (3.1.36)

‖u′′n − u′′‖ ≤
(
M2 +

2

r

)
pnd, (3.1.37)

where pn = qn

1−q , d = ‖w1 − w0‖B, w1 = (ϕ1, α1)T .

Proof. Notice that the above iterative method is a realization of the successive
approximation method for finding the fixed point of operator A. Indeed, let
wn = (ϕn(t), αn)T be known. Then the next approximation is wn+1 = Awn, where
wn+1 = (ϕn+1(t), αn+1)T and

Awn =

(
f(t, un(t), u′n(t), u′′n(t)∫ 1

0
g(t)un(t)dt

)
.

In componentwise form we have the formulas (3.1.33) and (3.1.34). In the above
formulas un(t) is is to be found from the problem

u′′′n (t) = ϕn(t), 0 < t < 1,

un(0) = u′n(0) = 0, un(1) = αn.
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Therefore, it is computed by the formula (3.1.30). Its derivatives u′n+1(t) =
yn+1(t), u′′n+1(t) = zn+1(t) are computed by the formulas (3.1.31), (3.1.32), respec-
tively.
Thus, the iterative method (3.1.30)-(3.1.34) indeed is successive approximation
method for finding the fixed point of operator A. Therefore, it converges with
the rate of geometric progression and there holds the estimate

‖wn − w‖B ≤
qn

1− q
‖w1 − w0‖B = pnd,

where wn − w = (ϕn − ϕ, αn − α)T .
From the definition of the norm in B and the above estimate it follows

‖ϕn − ϕ‖ ≤ ‖wn − w‖B ≤ pnd,

‖αn − α‖ ≤
1

r
‖wn − w‖B ≤

1

r
pnd.

Now, the estimates (3.1.35)-(3.1.37) are easily obtained if taking into account
the representations (3.1.11)-(3.1.13), (3.1.30)-(3.1.32), the estimates of the type
(3.1.15) and the above estimates.

To numerically realize the iterative method (3.1.29)-(3.1.34) we cover the inter-
val [0, 1] by the uniform grid ωh = {ti = ih, h = 1/N, i = 0, 1, ..., N} and use the
trapezoidal rule for computing integrals. In all examples in the next section the
numerical computations will be performed on the uniform grid with h = 0.01 until
max

{
‖ϕn − ϕn−1‖, r|αn − αn−1|

}
≤ 10−4, where r will be defined for each particular

example.

3.1.4. Examples

In order to demonstrate the validity of the obtained theoretical results and the
efficiency of the proposed iterative method, in this section we consider some examples.

Example 3.1.1 (Example with exact solution). Consider the problem (3.1.1)-
(3.1.2) with

f = f(t, u) = −1

2
+

1

3

(
1

6
(t2 − t3

2
)

)2

− u2,

g(s) =
56

9
s4.

It is easy to verify that the positive function

u(t) =
1

6

(
t2 − t3

2

)
, 0 ≤ t ≤ 1

is the exact solution of the problem.
For the given g(s), simple calculations give C0 = 56

45
, C2 = 56

63
. Therefore, with

r = 2 we obtain q1 = 0.9503 < 1. For this r it is possible to choose M = 0.6 such
that −M ≤ f(t, x) ≤ 0 for

(t, x) ∈ D+
M =

{
(t, x) | 0 ≤ t ≤ 1, 0 ≤ x ≤ (M0 +

1

2
)M = 0.5247M

}
.
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Indeed,

0 ≤ −f(t, x) =
1

2
+ x2 − 1

3

(
1

6
(t2 − t3

2
)

)2

≤ 1

2
+ x2 ≤ 1

2
+ (0.5247M)2 ≤M.

Thus, M must satisfy 0.2753M2 −M + 0.5 ≤ 0. The direct calculation of the left
side for M = 0.6 gives the value = −0.0670. So, the choice of M is justified.
Further, for f(t, x) we have the Lipshitz coefficient with respect to x in D+

M ,
L0 = 0.3148. Consequently, q2 = L0

(
M0 + 1

2

)
= 0.1652, and q = 0.9503. Besides,

f(t, 0) 6≡ 0. Therefore, by Theorem 3.1.4, the problem has a unique positive
solution. It is the above exact solution.

The computation shows that the iterative method (3.1.29)-(3.1.34) converges
and the error of the 46th iteration compared with the exact solution is 1.1458e−
04.

Example 3.1.2 (Example 4.1 in [47]). Consider the boundary value problem

u′′′(t) = −u2eu, 0 < t < 1,

u(0) = 0, u′(0) = 0, u(1) =

∫ 1

0

s4u(s)ds.

In this example
f(t, x, y, z) = −x2ex, g(s) = s4.

So,

C0 =

∫ 1

0

g(s)ds =
1

5
, C2 =

∫ 1

0

s2g(s)ds =
1

7
.

Choose r = 2 in the definition of the norm of the space B (3.1.4) and in the
definition of D+

M by (3.1.21). Then q1 = rC0M0 + C2 = 0.1527. For M = 0.4 it is
possible to verify that −M ≤ f(t, x) ≤ 0 in D+

M ,
∣∣∂f
∂x

∣∣ ≤ 0.5721 in D+
M . Therefore,

L0 = 0.5721, q2 = L0

(
M0 + 1

r

)
= 0.3002.

Hence, by Theorem 3.1.4 the problem has a unique nonnegative solution. This
solution should be u(t) ≡ 0 because u(t) ≡ 0 solves the problem. The numerical
experiments by the iterative method in Section 3.1.3 confirm this conclusion.

Remark that, in [47] the authors concluded that the problem has at least one
positive solution. From our result above, it is clear that their conclusion is not
valid.

Example 3.1.3. Consider Example 3.1.2 with the nonlinear term f = −(1+u2).

Clearly, f(u)
u
→ −∞ as u → +0 and u → +∞. Thus, neither Theorem 3.1 nor

Theorem 3.2 in [47] are applicable, so the existence of positive solution is not
guaranteed.
Now apply our method. Choose M = 2, r = 3, then

D+
M = {(t, x) | 0 ≤ t ≤ 1, 0 ≤ x ≤ (M0 +

1

r
)M = 0.7160}.

In D+
M we have

−M ≤ f ≤ 0, |f ′u| ≤ 1.4321 = L0,

q1 = rC0M0 + C2 = 0.1577, q2 = L0

(
M0 +

1

3

)
= 0.5127.
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Figure 3.1: Approximate solution in Example 3.1.3.

Hence, by Theorem 3.1.4, the problem has a unique nonnegative solution. Due
to f(t, 0) 6= 0, this solution is positive. The graph of the approximate solution
obtained with the given accuracy 10−4 after 4 iterations by the iterative method
is depicted on Figure 3.1.

Example 3.1.4. Consider Example 3.1.2 with the nonlinear term

f = −(u2eu +
1

5
sin(u′) +

1

8
cos(u′′) + 1).

In this example

f(t, x, y, z) = −(x2ex +
1

5
sin(y) +

1

8
cos(z) + 1).

Choose M = 1.7, r = 4. It is possible to verify that in D+
M we have −M ≤ f ≤ 0,

and the Lipschitz coefficients of f are

L0 = 1.8378, L1 =
1

5
, L2 =

1

8
.

Therefore,
q1 = 0.1626, q2 = 0.7618.

Hence, by Theorem 3.1.4, the problem has a unique positive solution. The graph
of the approximate solution obtained with the given accuracy 10−4 after 6 iter-
ations by the iterative method is depicted on Figure 3.2.

3.1.5. Conclusion

In this section, we have proposed a novel method to study the fully third order
differential equation with integral boundary conditions. It is based on the reduction of
the boundary value problems to fixed point problem for appropriate operator defined
on a space of mixed pairs of functions and numbers. This is the approach successfully
used by ourselves before for nonlinear third, fourth and sixth orders two-point boundary
value problems. By this approach, we have established the existence, uniqueness and
positivity of solution of the problem under the conditions which are easily verified.
Moreover, we have proposed an effective solution method and given the convergence
analysis for it. The theoretical results have been demonstrated on some examples
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Figure 3.2: Approximate solution in Example 3.1.4.

including an example with exact solution and other examples where the exact solutions
are not known. Especially, we have shown that the conclusion on the existence of
positive solutions for an example considered before by other authors, is not valid.

The proposed method can be applied to problems with other integral boundary
conditions for the third and higher order differential equations. This is the subject of
our research in the future.

3.2. Existence results and an iterative method for a fully
fourth order nonlinear integral boundary value prob-
lem

3.2.1. Introduction

In this section, we consider the boundary value problem

u(4)(t) = f(t, u(t), u′(t), u′′(t), u′′′(t)), 0 < t < 1, (3.2.1)

u′(0) = u′′(0) = u′(1) = 0, u(0) =

∫ 1

0

g(t)u(t)dt, (3.2.2)

where f ∈ C([0, 1]× R4,R+), g ∈ C([0, 1],R+) are given functions.
The simplest particular case of the above problem, when the nonlinear term is

f(u(t)), was considered recently in [48]. In that paper by employing the Krasnosel’skii’s
fixed point theorem on cones, the authors proved that the problem has at least one
positive solution.

In the paper [AL5], by the method developed in [11, 13, 14, 86, 87, 89, 91, 92]
we obtain the results of the existence, uniqueness and positivity of solution and the
convergence of an iterative method on both continuous and discrete levels for finding
the solution. We also give error analysis of the discrete approximate solution. Five
examples, among them an example with exact solution and two examples taken from
[48], demonstrate the validity of the obtained theoretical results and the efficiency of
the iterative method.

It should be said that for numerical solution of two-point nonlinear BVPs for fourth
order differential equations there are many methods, which can be divided into three
types. The first type includes methods for constructing discrete systems corresponding
to BVPs, for example, [93–96]. In these papers, the authors studied the convergence
of the discrete systems without any analysis of errors arising in solving the discrete
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systems. To the second type of methods there are related the methods of construction
of iterative methods on continuous level without attention to how to realize continuous
problems at each iteration and error arising at each iteration, see, e.g. [1, 97, 98] and
[11, 13, 14, 86, 87, 89, 91, 92]. The third type includes analytical methods such as
the Adomian decomposition method [99], the variational iteration method [100], the
reproducing kernel method [101], when the solution is sought in series form. Spectral
methods also belong to the third type since the exact solution of the problems is
expressed in series representation by basis functions. For finding the coefficients of
the representation it is needed to solve nonlinear systems of algebraic solutions. At
present spectral methods [102] are widely used for solving BVPs for ODE, PDE, integral
equations including nonlinear Volterra integral equations [103], [104].

It should be said that in all methods, the estimate of total error of the actually
obtained approximate numerical solution has not been addressed. In our opinion, the
problem of total error in numerical solution of nonlinear BVPs must be investigated
because the total error gives useful information for balancing discretization error and
error of iterative process. So, in this section we propose an iterative method at contin-
uous level, its discrete analog and make analysis of the total error of the approximate
discrete solution for the BVP with integral boundary condition.

3.2.2. Existence results

To study the problem (3.2.1), (3.2.2) we associate it with an operator equation.
First, we introduce the space B = B = C[0, 1] × R of pairs w = (ϕ, µ)T , where

ϕ ∈ C[0, 1], µ ∈ R and equip it with the norm

‖w‖B = max(‖ϕ‖, r|µ|), (3.2.3)

where r is a real number, r ≥ 1 and ‖ϕ‖ = max0≤t≤1 |ϕ(t)|.
Next, we define the operator A acting on elements w ∈ B by the formula

Aw =

(
f(t, u(t), u′(t), u′′(t), u′′′(t))∫ 1

0
g(s)u(s)ds

)
, (3.2.4)

where u(t) is the solution of the problem

u(4)(t) = ϕ(t), 0 < t < 1, (3.2.5)
u′(0) = u′′(0) = u′(1) = 0, u(0) = µ. (3.2.6)

Obviously, due to the continuity of the functions f and g we have Aw ∈ B. It is easy
to verify the following

Lemma 3.2.1. If w = (ϕ, µ)T is a fixed point of the operator A in the space B,
that is,

Aw = w (3.2.7)
in B, then the function u(t) found from the problem (3.2.5)-(3.2.6) solves the
original problem (3.2.1), (3.2.2).
Conversely, if u(t) is a solution of (3.2.1), (3.2.2), then the pair (ϕ, µ), where

ϕ(t) = f(t, u(t), u′(t), u′′(t), u′′′(t)), (3.2.8)

α =

∫ 1

0

g(s)u(s)ds, (3.2.9)

is a solution of the operator equation (3.2.7).
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Thus, by this lemma, the solution of problem (3.2.1), (3.2.2) is reduced to finding
the fixed point problem for A.

Now, we consider the properties of A. To this end, notice that the problem (3.2.5),
(3.2.6) has a unique solution which can be represented in the form

u(t) =

∫ 1

0

G0(t, s)ϕ(s)ds+ µ, 0 < t < 1, (3.2.10)

where G0(t, s) is the Green’s function of the operator u(4)(t) = 0 involving the homo-
geneous boundary conditions u(0) = u′(0) = u′′(0) = u′(1). It is not hard to find it in
the form

G0(t, s) =
1

6

{
−t3(1− s)2 + (t− s)3, 0 ≤ s ≤ t ≤ 1

−t3(1− s)2, 0 ≤ t ≤ s ≤ 1.
(3.2.11)

Differentiating both sides of (3.2.10) gives

u′(t) =

∫ 1

0

G1(t, s)ϕ(s)ds, (3.2.12)

u′′(t) =

∫ 1

0

G2(t, s)ϕ(s)ds, (3.2.13)

u′′′(t) =

∫ 1

0

G3(t, s)ϕ(s)ds, (3.2.14)

where

G1(t, s) =
1

2

{
−t2(1− s)2 + (t− s)2, 0 ≤ s ≤ t ≤ 1,

−t2(1− s)2, 0 ≤ t ≤ s ≤ 1,
(3.2.15)

G2(t, s) =

{
−t(1− s)2 + (t− s), 0 ≤ s ≤ t ≤ 1,

−t(1− s)2, 0 ≤ t ≤ s ≤ 1.
(3.2.16)

G3(t, s) =

{
−(1− s)2 + 1, 0 ≤ s < t ≤ 1,

−(1− s)2, 0 ≤ t < s ≤ 1.
(3.2.17)

It is easily seen that
G0(t, s) ≤ 0, G1(t, s) ≤ 0,

in Q = [0, 1]2, and

M0 = max
0≤t≤1

∫ 1

0

|G0(t, s)|ds = 0.0139,

M1 = max
0≤t≤1

∫ 1

0

|G1(t, s)|ds = 0.0247,

M2 = max
0≤t≤1

∫ 1

0

|G2(t, s)|ds ≤ 0.1883,

M3 = max
0≤t≤1

∫ 1

0

|G3(t, s)|ds = 1.3333.

(3.2.18)

Therefore, from (3.2.10), (3.2.12)-(3.2.14) and (3.2.18) we obtain the following esti-
mates for the solution of the problem (3.2.5), (3.2.6):

‖u‖ ≤M0‖ϕ‖+ |µ|, ‖u′‖ ≤M1‖ϕ‖,
‖u′′‖ ≤M2‖ϕ‖, ‖u′′′‖ ≤M3‖ϕ‖.

(3.2.19)
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For any real number M > 0, we define the domain

DM = {(t, u, y, v, z) | 0 ≤ t ≤ 1, |u| ≤ (M0 + 1
r
)M,

|y| ≤M1M, |v| ≤M2M, |z| ≤M3M}.
(3.2.20)

From now on suppose that the function f(t, u, y, v, z) is continuous in DM .
Denote

C0 =

∫ 1

0

g(t)dt > 0. (3.2.21)

Lemma 3.2.2. Assume that

|f(t, u, y, v, z)| ≤M in DM (3.2.22)

and
q1 := C0(rM0 + 1) ≤ 1, (3.2.23)

where C0 is defined by (3.2.21). Then, the operator A defined by (3.2.4) maps
the closed ball B[0,M ] in B into itself.

Proof. Take w = (ϕ, µ)T ∈ B[0,M ]. Then ‖ϕ‖ ≤M and |µ| ≤ M
r
.

Return to the problem (3.2.5), (3.2.6). From the estimates (3.2.19) we obtain

‖u‖ ≤
(
M0 +

1

r

)
M, ‖u′‖ ≤M1M, ‖u′′‖ ≤M2M, ‖u′′′‖ ≤M3M.

Hence, (t, u, u′, u′′, u′′′) ∈ DM and, due to (3.2.22) we have

|f(t, u(t), u′(t), u′′(t), u′′′(t))| ≤M, t ∈ [0, 1].

Next, we have the estimates

r

∣∣∣∣∫ 1

0

g(t)u(t)dt

∣∣∣∣ ≤ r‖u‖C0 ≤ rC0(M0 +
1

r
) = C0(rM0 + 1) = q1M ≤M. (3.2.24)

Therefore,
‖Aw‖B ≤M.

Lemma 3.2.3. The operator A is a compact operator in B[0,M ].

Proof. The compactness of A follows from the compactness of the integral opera-
tors (3.2.10), (3.2.12)-(3.2.14) of ϕ(s), the continuity of the function f(t, x, y, v, z)

and the compactness of the integral operator
∫ 1

0
g(t)u(t)dt of u(t).

Theorem 3.2.1. Under the conditions of Lemma 3.2.2 the problem (3.2.1),
(3.2.2) has a solution.

Proof. By Lemma 3.2.2 and Lemma 3.2.3, the operator A is a compact operator
mapping B[0,M ] ⊂ B into itself. Therefore, by the Schauder fixed point theorem,
the operator A has a fixed point in B[0,M ]. This fixed point corresponds to a
solution of the problem (3.2.1), (3.2.2).
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In order to study the positivity of solution of (3.2.1), (3.2.2), we introduce the
domain

D+
M = {(t, u, y, v, z) | 0 ≤ t ≤ 1, 0 ≤ u ≤ (M0 + 1

r
)M,

0 ≤ y ≤M1M, |v| ≤M2M, |z| ≤M3M},
(3.2.25)

in the space [0, 1]× R3 and the domain

SM = {w = (ϕ, µ)T | −M ≤ ϕ ≤ 0, 0 ≤ rµ ≤M} (3.2.26)

in the space B.

Theorem 3.2.2 (Positivity of solution). Assume that the function f(t, u, y, v, z)
is continuous and

−M ≤ f(t, u, y, v, z) ≤ 0 in D+
M , (3.2.27)

and there holds the condition (3.2.23). Then the problem (3.2.1), (3.2.2) has a
nonnegative solution. In addition, if f(t, 0, 0, 0, 0) 6≡ 0 in (0, 1) then the solution
is positive.

Proof. First, notice that under the assumptions of the theorem, the operator A
maps SM into itself.
Indeed, let w ∈ SM , w = (ϕ, µ)T ,−M ≤ ϕ ≤ 0, 0 ≤ rµ ≤ M . Because Gi(t, s) ≤ 0
for 0 ≤ t, s ≤ 1, (i = 0, 1) from (3.2.10), (3.2.12), (3.2.13) we have

0 ≤ u(t) ≤ (M0 + 1
r
)M, 0 ≤ u′(t) ≤M1M, |u′′(t)| ≤M2M, |u′′′(t)| ≤M3M 0 ≤ t ≤ 1.

Therefore, for the solution u(t) of (3.2.5), (3.2.6) we have

(t, u(t), u′(t), u′′(t), u′′′(t)) ∈ D+
M ,

and by the assumption (3.2.27)

−M ≤ f(t, u(t), u′(t), u′′(t), u′′′(t)) ≤ 0.

In view of (3.2.24) we have

0 ≤ r

∫ 1

0

g(s)u(s)ds ≤ C0(rM0 + 1)M ≤M.

Hence, (f(t, u(t), u′(t), u′′(t), u′′′(t)),
∫ 1

0
g(t)u(t)dt)T ∈ SM , i.e. A : SM → SM . Be-

sides, as was shown above, A is a compact operator in SM . Due to this A has
a fixed point in SM , which generates a solution of the problem (3.2.1), (3.2.2).
This solution is nonnegative with its first derivative. Since f(t, 0, 0, 0, 0) 6≡ 0 in
(0, 1) the function u(t) ≡ 0 cannot be the solution of the problem. Therefore,
this solution should be positive.

Theorem 3.2.3 (Existence and uniqueness). Assume that there exist numbers
M > 0, L0, L1, L2, L3 ≥ 0 such that

1. |f(t, u, y, v, z)| ≤M, ∀(t, u, y, v, z) ∈ DM .

2. |f(t, u2, y2, v2, z2)− f(t, u1, y1, v1, z1)| ≤ L0|u2 − u1|+ L1|y2 − y1|+ L2|v2 − v1|+
L3|z2 − z1|, ∀(t, ui, yi, vi, zi) ∈ DM , i = 1, 2.
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3. q := max{q1, q2} < 1, where q1 = rC0M0 + C0 (see (3.2.23)) and

q2 = L0(M0 + 1
r
) + L1M1 + L2M2 + L3M3.

Then the problem (3.2.1)-(3.2.2) has a unique solution u ∈ C4[0, 1].

Proof. According to Lemma 3.2.1, the theorem will be proved if we show that
the operator A defined by (3.2.4) is a contraction mapping from the closed ball
B[0,M ] in B into itself.
In fact, under the assumptions 1) and 3), by Lemma 3.2.2, the operator A maps
B[0,M ] into itself.

It remains to show that A is a contraction map.
Take wi = (ϕi, µi)

T ∈ B[0,M ], i = 1, 2. We have

Aw2 − Aw1 =

(
f(t, u2(t), u′2(t), u′′2(t), u′′′2 (t))− f(t, u1(t), u′1(t), u′′1(t), u′′′1 (t))∫ 1

0
g(s)(u2(s)− u1(s))ds

)
,

where ui(t), (i = 1, 2) solves the problem{
u

(4)
i (t) = ϕi(t), 0 < t < 1

u′i(0) = u′′i (0) = u′i(1) = 0, ui(0) = µi.

In the proof of Lemma 3.2.2 it was shown that (t, ui(t), u
′
i(t), u

′′
i (t), u

′′′
i (t)) ∈ DM .

Therefore, by the assumption 2) for f we have

E1 : = |f(t, u2(t), u′2(t), u′′2(t), u′′′2 (t))− f(t, u1(t), u′1(t), u′′1(t), u′′′1 (t))|
≤ L0|u2(t)− u1(t)|+ L1|u′2(t)− u′1(t)|+ L2|u′′2(t)− u′′1(t)|
+ L3|u′′′2 (t)− u′′′1 (t)|.

(3.2.28)

Since u2(t) − u1(t) is the solution of the problem (3.2.5), (3.2.6) with the right-
hand sides ϕ2(t)− ϕ1(t) and µ2 − µ1, we have

‖u2 − u1‖ ≤M0‖ϕ2 − ϕ1‖+ |µ2 − µ1|,
‖u′2 − u′1‖ ≤M1‖ϕ2 − ϕ1‖,
‖u′′2 − u′′1‖ ≤M2‖ϕ2 − ϕ1‖,
‖u′′′2 − u′′′1 ‖ ≤M3‖ϕ2 − ϕ1‖.

(3.2.29)

From the above estimates and (3.2.28) we obtain

E1 ≤
(
L0

(
M0 +

1

r

)
+ L1M1 + L2M2 + L3M3

)
‖w2 − w1‖B

= q2‖w2 − w1‖B
(3.2.30)

if taking into account the definition of the norm in the space B.
Now consider

E2 :=

∫ 1

0

g(s)(u2(s)− u1(s))ds.

We have
|E2| ≤

∫ 1

0

g(s)|u2(s)− u1(s)|ds.
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In analogy with the estimate (3.2.24) we have

|E2| ≤ C0(M0 +
1

r
)‖w2 − w1‖B.

Therefore
r|E2| ≤ C0(rM0 + 1)‖w2 − w1‖B = q1‖w2 − w1‖B. (3.2.31)

From (3.2.30) and (3.2.31) we obtain

‖Aw2 − Aw1‖B ≤ max{q1, q2}‖w2 − w1‖B.

In view of the assumption 3) the operator A is a contraction operator in B[0,M ].
This completes the proof of theorem.

Analogously as the above theorem, it is easy to prove the following result.

Theorem 3.2.4 (Existence and uniqueness of positive solution). If in Theorem
3.2.3 replace DM by D+

M and the assumption 1) by the assumption (3.2.27) then
the problem has a unique nonnegative solution u(t) ∈ C4[0, 1]. Moreover, if
f(t, 0, 0, 0, 0) 6≡ 0 in (0, 1) then the solution is positive.

3.2.3. Iterative method on continuous level

To solve the problem (3.2.1)- (3.2.2) we propose the following iterative method:

1. Given an initial approximation

ϕ0(t) = f(t, 0, 0, 0, 0), µ0 = 0. (3.2.32)

2. Knowing ϕk(t) and µk (k = 0, 1, ...) compute

uk(t) =

∫ 1

0

G0(t, s)ϕk(s)ds+ µk,

yk(t) =

∫ 1

0

G1(t, s)ϕk(s)ds,

vk(t) =

∫ 1

0

G2(t, s)ϕk(s)ds,

zk(t) =

∫ 1

0

G3(t, s)ϕk(s)ds.

(3.2.33)

3. Compute new approximation

ϕk+1(t) = f(t, uk(t), yk(t), vk(t), zk(t)),

µk+1 =

∫ 1

0

g(s)uk(s)ds.
(3.2.34)

As in the previous subsection, it is easy to show that the above iterative method indeed
is a realization of the successive approximation method for finding the fixed point of
operator A. Therefore, it converges as a geometric progression and we have the estimate

‖wk − w‖B ≤
qk

1− q
‖w1 − w0‖B = pkd,
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where wk − w = (ϕk − ϕ, µk − µ)T and

pk = qk

1−q , d = ‖w1 − w0‖B. (3.2.35)

The above estimate can be written in the componentwise form as follows:

‖ϕk − ϕ‖ ≤
qk

1− q
‖w1 − w0‖B = pkd,

|µk − µ| ≤
1

r

qk

1− q
‖w1 − w0‖B =

1

r
pkd.

These estimates imply the following result of the convergence of the iterative method
(3.2.32)-(3.2.34).

Theorem 3.2.5. The iterative method (3.2.32)-(3.2.34) converges and for the
approximate solution uk(t) there hold error estimates

‖uk − u‖ ≤
(
M0 +

1

r

)
pkd, ‖u′k − u′‖ ≤M1pkd,

‖u′′k − u′′‖ ≤M2pkd, ‖u′′′k − u′′′‖ ≤M3pkd

where u is the exact solution of the problem (3.2.1)-(3.2.2), pk and d are defined
by (3.2.35), and r is the number available in (3.2.3) for defining the norm of the
space B.

3.2.4. Discrete iterative method

To compute numerical solution of the problem (3.2.1)-(3.2.2) we construct discrete
iterative method corresponding to the above iterative method on continuous level. To
this end we cover the interval [0, 1] by the uniform grid ω̄h = {ti = ih, h = 1/N, i =
0, 1, ..., N} and denote by Φk(t), Uk(t), Yk(t), Vk(t), Zk(t) the grid functions, which are
defined on the grid ω̄h and approximate the functions ϕk(t), uk(t), yk(t), vk(t), zk(t) on
this grid. Also, we denote the approximation of µk by µ̂k.

Consider now the following discrete iterative method.

1. Given a starting approximation

Φ0(ti) = f(ti, 0, 0, 0, 0), i = 0, ..., N ; µ̂0 = 0 (3.2.36)

2. Knowing Φk(ti), i = 0, ..., N and µ̂k (k = 0, 1, ...) as kth approximation compute
approximately the definite integrals (3.2.33) by the trapezoidal rule

Uk(ti) =
N∑
j=0

hρjG0(ti, tj)Φk(tj) + µ̂k,

Yk(ti) =
N∑
j=0

hρjG1(ti, tj)Φk(tj),

Vk(ti) =
N∑
j=0

hρjG2(ti, tj)Φk(tj),

Zk(ti) =
N∑
j=0

hρjG
∗
3(ti, tj)Φk(tj), i = 0, ..., N,

(3.2.37)
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where ρj is the weight of the trapezoidal rule

ρj =

{
1/2, j = 0, N

1, j = 1, 2, ..., N − 1

and

G∗3(t, s) =


−(1− s)2 + 1, 0 ≤ s < t ≤ 1,

−(1− s)2 + 1/2, s = t,

−(1− s)2, 0 ≤ t < s ≤ 1.

3. Compute the new approximation

Φk+1(ti) = f(ti, Uk(ti), Yk(ti), Vk(ti), Zk(ti)),

µ̂k+1 =
N∑
j=0

hρjg(tj)Uk(tj).
(3.2.38)

To obtain error estimates for the discrete approximate solution for u(t) and its deriva-
tives we need some following auxiliary results.

Proposition 3.2.6. Assume that the function f(t, u, y, v, z) has all continuous
partial derivatives up to order 2 in the domain DM . Then for the functions
uk(t), yk(t), vk(t), zk(t), k = 0, 1, ... generated by the iterative method (3.2.32)-
(3.2.34) there hold zk(t) ∈ C3[0, 1], vk(t) ∈ C4[0, 1], yk(t) ∈ C5[0, 1], uk(t) ∈ C6[0, 1].

Proof. The proposition will be proved by induction. For k = 0, by the assumption
on the function f we have ϕ0(t) ∈ C2[0, 1] because ϕ0(t) = f(t, 0, 0, 0, 0). In view
of the expression (3.2.17) of G3(t, s) we have

z0(t) =

∫ 1

0

G3(t, s)ϕ0(s)ds =

∫ t

0

[−(1− s)2 + 1]ϕ0(s)ds−
∫ 1

t

(1− s)2ϕ0(s)ds.

The direct differentiation of the integrals in the right-hand side yields z′0(t) =
ϕ0(t). Hence, z0(t) ∈ C3[0, 1]. It implies v0(t) ∈ C4[0, 1], y0(t) ∈ C5[0, 1], u0(t) ∈
C6[0, 1].

Next, assume that zk(t) ∈ C3[0, 1], vk(t) ∈ C4[0, 1], yk(t) ∈ C5[0, 1], uk(t) ∈
C6[0, 1]. Then, since ϕk+1(t) = f(t, uk(t), yk(t), vk(t), zk(t)) and by the assumption
the function f has continuous derivatives in all variables up to order 2, it follows
that ϕk+1(t) ∈ C2[0, 1]. Repeating the same argument as for ϕ0(t) above we obtain
that zk+1(t) ∈ C3[0, 1], vk+1(t) ∈ C4[0, 1], yk+1(t) ∈ C5[0, 1], uk+1(t) ∈ C6[0, 1]. Thus,
the proposition is proved.

Proposition 3.2.7. For arbitrary function ϕ(t) ∈ C2[0, 1] we have the estimates∫ 1

0

Gn(ti, s)ϕ(s)ds =
N∑
j=0

hρjGn(ti, tj)ϕ(tj) +O(h2), (n = 0, 1, 2), (3.2.39)

∫ 1

0

G3(ti, s)ϕ(s)ds =
N∑
j=0

hρjG
∗
3(ti, tj)ϕ(tj) +O(h2). (3.2.40)
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Proof. In the case n = 0 the estimate (3.2.39) is obvious in view of the error
estimate of the trapezoidal rule since the function G0(t, s) defined by (3.2.11)
have continuous derivatives up to order 2.

In the cases n = 1, 2, although the functions G1(t, s), G2(t, s) have not con-
tinuous second partial derivatives with respect to t, they are continuous for
any 0 ≤ t, s ≤ 1. Due to this continuity, applying the trapezoidal rule to each
subinterval [0, ti] and [ti, 1] we have∫ 1

0

Gn(ti, s)ϕ(s)ds =

∫ ti

0

Gn(ti, s)ϕ(s)ds+

∫ 1

ti

Gn(ti, s)ϕ(s)ds

= h
(

1
2
Gn(ti, t0)ϕ(t0) +Gn(ti, t1)ϕ(t1) + ...+Gn(ti, ti−1)ϕ(ti−1) + 1

2
Gn(ti, ti)ϕ(ti)

)
+O(h2) + h

(
1
2
Gn(ti, ti)ϕ(ti) +Gn(ti, ti+1)ϕ(ti+1) + ...+Gn(ti, tN−1)ϕ(tN−1)

+ 1
2
Gn(ti, tN)ϕ(tN)

)
+O(h2)

=
N∑
j=0

hρjGn(ti, tj)ϕ(tj) +O(h2).

Thus, the estimate (3.2.39) is proved. The estimate (3.2.40) is obtained by the
use of the following result, which is easily proved.
Lemma 3.2.4. Let p(t) be a function having continuous derivatives up to second
order in the interval [0, 1] except for the point 0 < ti < 1, where it has a jump.
Denote limt→ti±0 p(t) = p±i , and pi = 1

2
(p−i + p+

i ). Then

∫ 1

0

p(t)dt =
N∑
j=0

hρjpj +O(h2), (3.2.41)

where pj = p(tj) for j 6= i.

Proposition 3.2.8. Let the assumption of Proposition 3.2.6 be satisfied, and
additionally assume that the function g(s) ∈ C2[0, 1]. Then for any k = 0, 1, ... we
have the estimates

‖Φk − ϕk‖ = O(h2), |µ̂k − µk| = O(h2), (3.2.42)

‖Uk − uk‖ = O(h2), ‖Yk − yk‖ = O(h2),

‖Vk − vk‖ = O(h2), ‖Zk − zk‖ = O(h2)
(3.2.43)

where ‖.‖ = ‖.‖C(ω̄h) is the max-norm of function on the grid ω̄h.

Proof. We prove the proposition by induction. For k = 0 we have immediately
‖Φk − ϕk‖ = 0, |µ̂k − µk| = 0. Further, by the first equation in (3.2.33) and
Proposition 3.2.7 we have

u0(ti) =

∫ 1

0

G0(ti, s)ϕ0(s)ds+ µ0 =
N∑
j=0

hρjG0(ti, tj)ϕ0(tj) +O(h2), i = 0, ..., N

(3.2.44)
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because µ0 = 0. On the other hand, due to the first equation in (3.2.37) and
(3.2.36) we have

U0(ti) =
N∑
j=0

hρjG0(ti, tj)ϕ0(tj). (3.2.45)

Hence, |U0(ti)− u0(ti)| = O(h2). Consequently, ‖U0 − u0‖ = O(h2).
Analogously, we have

‖Y0 − y0‖ = O(h2), ‖V0 − v0‖ = O(h2), ‖Z0 − z0‖ = O(h2). (3.2.46)

Now suppose that (3.2.42) and (3.2.43) are true for k ≥ 0. We will show that
these estimates are true for k + 1.
Indeed, we have

µk+1 − µ̂k+1 =
N∑
j=0

hρjg(tj)
(
uk(tj)− Uk(tj)

)
+O(h2).

In view of the estimate ‖Uk−uk‖ = O(h2) from the above estimate it follows that

|µk+1 − µ̂k+1| = O(h2). (3.2.47)

Next, by the Lipschitz condition of the function f and the estimates (3.2.42)
and (3.2.43) it is easy to obtain the estimate ‖Φk+1 − ϕk+1‖ = O(h2). Having in
mind this estimate and (3.2.47) we obtain the estimate

‖Uk+1 − uk+1‖ = O(h2).

Similarly, we obtain

‖Yk+1 − yk+1‖ = O(h2), ‖Vk+1 − vk+1‖ = O(h2), ‖Zk+1 − zk+1‖ = O(h2).

Thus, the proposition is proved.

Combining Proposition 3.2.8 and Theorem 3.2.5 we obtain the following theorem.

Theorem 3.2.9. For the approximate solution of the problem (3.2.1), (3.2.2)
obtained by the discrete iterative method (3.2.36)-(3.2.38) on the uniform grid
ω̄h there hold the estimates

‖Uk − u‖ ≤
(
M0 +

1

r

)
pkd+O(h2), ‖Yk − u′‖ ≤M1pkd+O(h2),

‖Vk − u′′‖ ≤M2pkd+O(h2), ‖Zk − u′′′‖ ≤M3pkd+O(h2).

(3.2.48)

Proof. The first above estimate is easily obtained if representing

Uk(ti)− u(ti) = (uk(ti)− u(ti)) + (Uk(ti)− uk(ti))

and using the first estimate in Theorem 3.2.5 and the first estimate in (3.2.43).
The remaining estimates are obtained in the same way. Thus, the theorem is
proved.
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3.2.5. Examples

To confirm the validity of the obtained theoretical results and the efficiency of the
proposed discrete iterative method (3.2.36)-(3.2.38) below we consider some examples.
In all examples the iterative process will be performed until max{‖Φk+1−Φk‖, | ˆµk+1−
µ̂k|} ≤ TOL, where TOL is a given tolerance.

Example 3.2.1 (Example with exact solution). Consider the problem with the
right-hand side

f = f(t, u) = −18− 1

5
(
5

6
+ t3 − 3

4
t4)2 +

1

5
u2

g(t) = 4t4.

It is possible to verify that the positive function

u(t) =
5

6
+ t3 − 3

4
t4

is the exact solution of the problem.
For the given g(t) we have C0 =

∫ 1

0
g(t) dt = 4

5
. Taking r = 4,M = 18.2 we

define
D+
M = {(t, u) | 0 ≤ t ≤ 1, 0 ≤ u ≤ (M0 +

1

r
)M = 4.8030}.

In D+
M we have −M ≤ f ≤ 0, |f ′u| ≤ 1.9212 = L0. After simple calculations we

obtain q1 = 0.8445, q2 = 0.5070. Therefore, q = 0.8445 < 1. Hence, by Theorem
3.2.4, the problem has a unique positive solution. It is the above exact solution.
Meanwhile, it is easy to verify that neither Theorem 3.1 nor Theorem 3.2 in
[48] are applicable, therefore, by this paper the existence of positive solution is
not guaranteed. Below we report the results of the numerical experiments for
different tolerances (see Tables 3.1-3.3).

Table 3.1: The convergence in Example 3.2.1 for TOL = 10−4

N K Error N K Error
30 34 0.0065 500 34 3.9522e-04
50 34 0.0021 1000 34 3.9461e-04
100 34 3.9522e-04 1500 34 3.9413e-04
200 34 3.9522e-04 2000 34 3.9534e-04

Table 3.2: The convergence in Example 3.2.1 for TOL = 10−5

N K Error N K Error
30 44 0.0069 300 44 2.8711e-05
50 44 0.0025 500 44 1.6429e-05
100 44 5.8244e-04 1000 44 3.4294e-05
200 44 1.1519e-04 2000 44 3.8906e-05

In the tables N is the number of grid points, K is the number of iterations
performed and Error = ‖UK − u‖.
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Table 3.3: The convergence in Example 3.2.1 for TOL = 10−6

N K Error N K Error
50 54 0.0050 1000 54 2.6122e-06
100 54 6.1906e-04 2000 54 3.4403e-06
200 54 3.9533e-04 3000 54 3.4403e-06
500 54 3.9522e-04 4000 54 3.7370e-06

Remark 3.2.1. From the tables we see that for each tolerance the number
of iterations is constant and the approximate solution reaches the accuracy
O(h2) (h = 1/N) as the tolerance. The further increase of number of grid points
does not improve the accuracy of approximate solution.

We can explain this phenomenon as follows:
From Theorem 3.2.9 it is seen that the error of the actual solution, i.e., the
discrete solution, consists of two terms. The first term (M0 + 1/r)pkd is the
error of the iterative method at continuous level (see Theorem 3.2.5) and the
second term O(h2) is the error of discretization at each iteration. The first
term depends on the iteration number k by the formula pk = qk/(1 − q), where
q depends on the nature of the boundary value problem (see Theorem 3.2.3).
Therefore, it is desired to choose suitable h consistent with q because the choice
of very small h does not improve the accuracy of approximate discrete solution.
Indeed, suppose h∗ is consistent with q in the sense that the quantities O((h∗)2)
and (M0 + 1/r)pKd for some K are the same as TOL. Then for any h < h∗ the
accuracy almost remains the same. Theoretically, the number of iterations K is
the minimal natural number k satisfying the inequality (M0 + 1/r)pkd ≤ TOL.

Example 3.2.2 (Example 4.1 in [48]). Consider the boundary value problem

u(4)(t) = −u2(e−u + 1), 0 < t < 1,

u′(0) = u′′(0) = u′(1) = 0, u(0) =

∫ 1

0

t2u(t)dt.

In this example
f = f(t, u) = −u2(e−u + 1), g(t) = t2.

So
C0 =

∫ 1

0

s2ds =
1

3
.

Choosing M = 0.4 and r = 3, we define

D+
M = {(t, u) | 0 ≤ t ≤ 1, 0 ≤ u ≤ (M0 + 1)M},

where M0 = 0.0139 as was computed in (3.2.18). Then it is easy to verify that

−M ≤ f(t, u) ≤ 0 in D+
M

and |∂f
∂u
| ≤ 1.622 =: L0 in D+

M . Therefore, q1 = rC0M0 + C0 = 0.3472, q2 =

L0(M0 + 1
r
) = 0.5633, and due to this 0 < q < 1. By Theorem 3.2.4, the problem

has a unique nonnegative solution. Since the function u(t) ≡ 0 is a solution of
the problem, we conclude that the unique solution of the problem is this trivial
solution. The computational experiment supports this theoretical conclusion.
Remark that in [48] the authors proved that the problem has a positive solution.
Hence, we can conclude that their result is not correct.
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Example 3.2.3 (Example 4.2 in [48]). Consider the boundary value problem

u(4)(t) = −
√

(1 + u)− sinu, 0 < t < 1,

u′(0) = u′′(0) = u′(1) = 0, u(0) =

∫ 1

0

tu(t)dt.

In this example

f = f(t, u) = −
√

(1 + u)− sinu, g(t) = t.

So,

C0 =

∫ 1

0

tdt =
1

2
.

Choosing r = 3 and M = 3, we have −M ≤ f(t, u) ≤ 0 in D+
M , where

D+
M = {(t, u) | 0 ≤ t ≤ 1, 0 ≤ u ≤ (M0 +

1

r
)M}.

In this domain we can take the Lipschitz coefficient L0 = 1.5. Therefore, q1 =
q2 = 0.5209 and then q = 0.5209 < 1. Moreover, f(t, 0) = −1 6= 0. Hence, by
Theorem 3.2.4 the problem has a unique positive solution. Remark that in [48]
the authors could only conclude the existence of at least one positive solution.

The numerical computations show that the iterative method described in
Section 3.2.3 converges fast. As in Example 3.2.1, the number of iterations for
achieving a given tolerance is independent of the grid size. Table 3.4 reports the
number of iterations in dependence on TOL.

Table 3.4: The convergence in Example 3.2.3

TOL 10−4 10−5 10−6 10−8

K 12 16 19 26

The graph of the approximate solution for N = 100 and TOL = 10−4 is
depicted in Figure 3.3.

Example 3.2.4. Consider Example 3.2.2 with

f = −(1 + u2).

Then −f(u)
u
→ +∞ as u → +0 and u → +∞. Thus, neither Theorem 3.1 or

Theorem 3.2 in [48] are satisfied, so the existence of positive solution is not
guaranteed.
Now apply our theory: Choose M = 2, r = 3, then

D+
M = {(t, u) | 0 ≤ t ≤ 1, 0 ≤ u ≤ (M0 +

1

r
)M = 0.6944}.

In D+
M we have −M ≤ f ≤ 0, |f ′u| ≤ 1.3888 = L0. After simple calculations we

obtain q1 = 0.3472, q2 = 0.4822. Hence, by Theorem 3.2.3, the problem has a
unique nonnegative solution. Due to f(t, 0) 6= 0, u(t) 6≡ 0, it is a positive solution.
The performed numerical experiments also show that the number of iterations



70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

Figure 3.3: Approximate solution in Example 3.2.3.
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Figure 3.4: Approximate solution in Example 3.2.4.



71

Table 3.5: The convergence in Example 3.2.4

TOL 10−4 10−5 10−6 10−8

K 7 9 12 16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

Figure 3.5: Approximate solution in Example 3.2.5.

for achieving a given tolerance is independent of the grid size. Table 3.5 reports
the number of iterations in dependence on TOL.

The graph of the approximate solution for N = 100 and TOL = 10−4 is de-
picted in Figure 3.4.

Example 3.2.5. Consider the problem (3.2.1)-(3.2.2) with

f(t, u, y, v, z) = −(
√

1 + u+ sin y +
1

3
cos v + sin z), g(s) = s.

It is possible to verify that all the conditions of Theorem 3.2.4 are satisfied. So,
the problem has a unique positive solution.

The results on the convergence of the iterative method for this example is
presented in Table 3.6.

Table 3.6: The convergence in Example 3.2.5

TOL 10−4 10−5 10−6 10−8

K 11 14 18 25

The approximate solution obtained on the grid with the number of nodes
N = 100 and TOL = 10−4 is depicted on Figure 3.5.

3.2.6. Conclusion

In this section, we have proved the existence, uniqueness and positivity of solution
of a fully fourth order nonlinear differential equation involving integral boundary con-
ditions. These results are obtained due to the reduction of the problem to a fixed point
problem for an operator acting on pairs of functions and numbers. This idea also was
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used to study third order nonlinear integral boundary value problem in the previous
section. It is a further development of the methodology applied by ourselves before
for two-point nonlinear boundary value problems. Ensuring that the integral bound-
ary value problem has a unique solution we proposed an iterative method to find the
solution at continuous level. After that we design a discrete scheme as the realization
of the continuous iterative method. We also made the analysis of total error of the
approximate discrete solution, which results from the error of the continuous iterative
method and the error of discretization at each iteration. Several examples confirm
the validity of the obtained theoretical results and efficiency of the proposed iterative
method.

The methodology used in this paper can be applied to other higher order nonlin-
ear differential equations involving integral boundary conditions including nonlinear
boundary conditions. This is the subject of our research in the future.

3.3. Sketch of the method for treating other integral bound-
ary value problems

In the previous sections 3.1 and 3.2 we considered some integral boundary value
problems for nonlinear third and fourth order differential equations. For these prob-
lems we obtained the results of qualitative aspects such as the existence, uniqueness
and positivity of solutions. More importantly, we proposed iterative methods on both
continuous and discrete levels. This quantitative aspect of boundary value problems
involving integral conditions, to our best knowledge, has not been studied in the liter-
ature.

Following the methodology used in the previous sections, in this section we sketch
the method for treating some other problems involving boundary conditions of integral
type. As in the whole thesis, we denote the Green’s function of the problems by G(t, s),
its first, second and third derivatives with respect to t by G1(t, s), G2(t, s) and G3(t, s).

Problem 1 (see [24])

u′′′(t) = f(t, u(t), u′(t), u′′(t)) = 0, 0 < t < 1,

u(0) = u′(0) = 0, u′(1) =

∫ 1

0

g(t)u′(t)dt.
(3.3.1)

As mentioned in Introduction of the Thesis, some sufficient conditions for the existence
and nonexistence of monotone positive solutions are obtained for a particular case of
the problem when f = f(t, u(t), u′(t)).
Here, similarly as done in Section 3.1 we set

ϕ(t) = f(t, u(t), u′(t), u′′(t)),

α =

∫ 1

0

g(t)u′(t)dt,

Then the problem (3.3.1) becomes the problem

u′′′(t) = ϕ(t), 0 < t < 1, (3.3.2)
u(0) = u′(0) = 0, u′(1) = α (3.3.3)
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whose solution has the form

u(t) =

∫ 1

0

G(t, s)ϕ(s)ds+
1

2
αt2, 0 < t < 1,

where

G(t, s) =


s

2
(t2 − 2t+ s), 0 ≤ s ≤ t ≤ 1,

t2

2
(s− 1), 0 ≤ t ≤ s ≤ 1.

is the Green’s function of the problem. It suggests us to introduce the operator A in
the space B = C[0, 1]× R as follows

Aw =

(
f(t, u(t), u′(t), u′′(t)∫ 1

0
g(t)u′(t)dt

)
, (3.3.4)

where u(t) is the solution of the problem (3.3.2).
The solution of the problem (3.3.1) leads to the finding of fixed point of A, whose
realization is the following iterative process:

1. Given w0 = (ϕ0, α0)T ∈ B[0,M ], for example,

ϕ0(t) = f(t, 0, 0, 0), α0 = 0.

2. Knowing ϕn(t) and αn (n = 0, 1, ...), compute

un(t) =

∫ 1

0

G(t, s)ϕn(s)ds+
1

2
αnt

2,

yn(t) =

∫ 1

0

G1(t, s)ϕn(s)ds+ αnt,

zn(t) =

∫ 1

0

G2(t, s)ϕn(s)ds+ αn.

3. Update

ϕn+1(t) = f(t, un(t), yn(t), zn(t)),

αn+1 =

∫ 1

0

g(t)yn(t)dt.

Problem 2 (see [45])

u′′′(t) = f(t, u(t), u′(t), u′′(t)) = 0, 0 < t < 1,

u(0) = u′′(0) = 0, u(1) =

∫ 1

0

g(t)u(t)dt.
(3.3.5)

For a particular case of the problem, namely, for the case f(t, u(t), u′′(t)) the authors
in [45] established sufficient conditions for the existence of positive solutions.
By the methodology of Section 3.1 the problem (3.3.5) is reduced to the fixed point
problem for the operator A defined as

Aw =

(
f(t, u(t), u′(t), u′′(t)∫ 1

0
g(t)u(t)dt

)
, (3.3.6)



74

where u(t) is the solution of the problem

u′′′(t) = ϕ(t), 0 < t < 1, (3.3.7)
u(0) = u′′(0) = 0, u(1) = α. (3.3.8)

This solution is represented in the form

u(t) =

∫ 1

0

G(t, s)ϕ(s)ds+ αt, 0 < t < 1,

where
G(t, s) =

1

2

{
(1− t)(s2 − t), 0 ≤ s ≤ t ≤ 1,
−t(1− s)2, 0 ≤ t ≤ s ≤ 1.

The solution of the problem (3.3.5) can be found by the iterative method

1. Given w0 = (ϕ0, α0)T ∈ B[0,M ], for example,

ϕ0(t) = f(t, 0, 0, 0), α0 = 0.

2. Knowing ϕn(t) and αn (n = 0, 1, ...), compute

un(t) =

∫ 1

0

G(t, s)ϕn(s)ds+ αnt,

yn(t) =

∫ 1

0

G1(t, s)ϕn(s)ds+ αn,

zn(t) =

∫ 1

0

G2(t, s)ϕn(s)ds.

3. Update

ϕn+1(t) = f(t, un(t), yn(t), zn(t)),

αn+1 =

∫ 1

0

g(t)un(t)dt.

Problem 3

u′′′(t) = f(t, u(t), u′(t), u′′(t)) = 0, 0 < t < 1,

u(0) = 0, u′(0) =

∫ 1

0

g1(t)u′(t)dt, u′(1) =

∫ 1

0

g2(t)u′(t)dt.
(3.3.9)

This problem is a simplification of the problem considered in [44], where under very
complicated and hard-to-verify conditions Boucherif et al. established the existence
of solutions. In order to treat the above problem we also reduce it to the fixed point
problem for the operator A acting on the elements w = (ϕ(t), α, β)T of the space
B = C[0, 1]× R2

Aw =

 f(t, u(t), u′(t), u′′(t)∫ 1

0
g1(t)u′(t)dt∫ 1

0
g2(t)u′(t)dt

 . (3.3.10)

The successive approximation method for finding the fixed point of A is realized by the
iterative method:
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1. Given w0 = (ϕ0, α0)T ∈ B[0,M ], for example,

ϕ0(t) = f(t, 0, 0, 0), α0 = 0, β0 = 0.

2. Knowing ϕn(t), αn and βn (n = 0, 1, ...), compute

un(t) =

∫ 1

0

G(t, s)ϕn(s)ds+
1

2
(βn − αn)t2 + αnt,

yn(t) =

∫ 1

0

G1(t, s)ϕn(s)ds+ (βn − αn)t+ αn,

zn(t) =

∫ 1

0

G2(t, s)ϕn(s)ds+ (βn − αn).

3. Update

ϕn+1(t) = f(t, un(t), yn(t), zn(t)),

αn+1 =

∫ 1

0

g1(t)yn(t)dt,

βn+1 =

∫ 1

0

g2(t)yn(t)dt.

Problem 4

u(4)(t) = f(t, u(t), u′(t), u′′(t)), t ∈ [0, 1], (3.3.11)

u(0) = u′(1) = u′′′(1) = 0, u′′(0) =

∫ 1

0

g(s)u′′(s)ds. (3.3.12)

In [55] the authors obtained the existence and nonexistence of concave monotone pos-
itive solutions.
In order to study the existence, uniqueness and methods for finding the solution of the
problem following the methodology in Section 3.2 we also introduce the operator A
acting on elements w = (ϕ(t), µ) by the formula

Aw =

(
f(t, u(t), u′(t), u′′(t), u′′′(t))∫ 1

0
g(s)u(s)ds

)
,

where u(t) is the solution of the problem

u(4)(t) = ϕ(t), 0 < t < 1,

u(0) = u′(1) = u′′′(1) = 0, , u′′(0) = µ.

The solution of the problem (3.3.11) will be reduced to the fixed point problem of
A and the realization of the successive approximation method for it is the iterative
method

1. Given an initial approximation

ϕ0(t) = f(t, 0, 0, 0, 0), µ0 = 0
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2. Knowing ϕk(t) and µk (k = 0, 1, ...) compute

uk(t) =

∫ 1

0

G0(t, s)ϕk(s)ds+
1

2
µkt

2 − µkt,

yk(t) =

∫ 1

0

G1(t, s)ϕk(s)ds+ µk(t− 1),

vk(t) =

∫ 1

0

G2(t, s)ϕk(s)ds+ µk,

zk(t) =

∫ 1

0

G3(t, s)ϕk(s)ds.

3. Compute new approximation

ϕk+1(t) = f(t, uk(t), yk(t), vk(t), zk(t)),

µk+1 =

∫ 1

0

g(s)vk(s)ds.

3.4. Chapter conclusion

In this chapter, we study two nonlocal boundary value problems, namely, third or-
der and fourth order nonlinear differential equations with integral boundary conditions.
By the reduction of the problems to operator equation for pairs of the right-hand sides
of the differential equation and integral boundary condition we have established the ex-
istence and uniqueness of solution of the original problems. And more importantly, we
were the first to propose iterative methods on continuous level for finding the solution.
Especially, in the case of fourth order nonlinear differential equations with integral
boundary conditions we have proposed a numerical method based on discretization of
the iterative method at continuous level. The total error estimate of the numerical
solution was obtained. Many numerical examples confirmed the validity of obtained
theoretical results.

The methodology used in this chapter can be applied to nonlinear boundary value
problems of any order with integral boundary conditions.

The results of this chapter were published in two papers [AL3] and [AL5] in SCIE
journals.
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Chapter 4
The existence, uniqueness of a solution and an
iterative method for integro-differential and
functional differential equations

4.1. Existence results and an iterative method for an integro-
differential equation

4.1.1. Introduction

In this section we consider the problem

u(4)(x) = f(x, u(x), u′(x),

∫ 1

0

k(x, t)u(t)dt),

u(0) = 0, u(1) = 0, u′′(0) = 0, u′′(1) = 0,

(4.1.1)

where the function f(x, u, v, z) and k(x, t) are assumed to be continuous. This problem
is an extension of the problem

y(4)(x) = f(x, y(x),

∫ 1

0

k(x, t)y(t)dt), 0 < x < 1,

y(0) = 0, y(1) = 0, y′′(0) = 0, y′′(1) = 0

(4.1.2)

considered recently by Wang in [66], where by using the monotone method and a
maximum principle, he constructed the sequences of functions, which converge to the
extremal solutions of the problem. Remark that the presence of an extra term u′ in
the right-hand side of (4.1.1) does not allow to use the argument in [66] to study the
existence of solutions of the problem. Here, by using the method developed in the
previous works [11, 13, 14, 86, 87, 89, 91] we establish the existence and uniqueness
of a solution and propose an iterative method at both continuous and discrete levels
for finding the solution. The second order convergence of the method is proved. The
theoretical results are illustrated by some examples.

4.1.2. Existence results

Using the methodology in [11, 13, 14, 86, 87, 89, 91] we introduce the operator A
defined in the space of continuous functions C[0, 1] by

(Aϕ)(x) = f(x, u(x), u′(x),

∫ 1

0

k(x, t)u(t)dt), (4.1.3)

where u(x) is the solution of the boundary value problem

u(4) = ϕ(x), 0 < x < 1,

u(0) = u′′(0) = u(1) = u′′(1) = 0.
(4.1.4)
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It is easy to prove the following lemma.

Lemma 4.1.1. If the function u(x) is the solution of the BVP (4.1.1) then the
function

ϕ(x) = f(x, u(x), u′(x),

∫ 1

0

k(x, t)u(t)dt)

satisfies the operator equation (4.1.5). Conversely, if the function ϕ is a fixed
point of the operator A, that is, ϕ is the solution of the operator equation

Aϕ = ϕ, (4.1.5)

where A is defined by (4.1.3)-(4.1.4) then the function u(x) determined from the
BVP (4.1.4) is a solution of the BVP (4.1.1).

Because of this, the study of the original BVP (4.1.1) is reduced to the study of
the operator equation (4.1.5).

Notice that the BVP (4.1.4) has a unique solution representable in the form

u(x) =

∫ 1

0

G0(x, s)ϕ(s)ds, 0 < t < 1, (4.1.6)

where

G0(x, s) =
1

6

{
s(x− 1)(x2 − x+ s2), 0 ≤ s ≤ x ≤ 1

x(s− 1)(s2 − s+ x2), 0 ≤ x ≤ s ≤ 1
(4.1.7)

is the Green’s function of the operator u(4)(t) = 0 associated with the homogeneous
boundary conditions u(0) = u′′(0) = u(1) = u′′(1) = 0.
Taking derivative both sides of (4.1.6) yields

u′(x) =

∫ 1

0

G1(x, s)ϕ(s)ds, (4.1.8)

where

G1(x, s) =
1

6

{
s(3x2 − 6x+ s2 + 2), 0 ≤ s ≤ x ≤ 1,

(s− 1)(3x2 − 2s+ s2), 0 ≤ x ≤ s ≤ 1.
(4.1.9)

Set

M0 = max
0≤x≤1

∫ 1

0

|G0(x, s)|ds,

M1 = max
0≤x≤1

∫ 1

0

|G1(x, s)|ds,

M2 = max
0≤x≤1

∫ 1

0

|k(x, s)|ds.

(4.1.10)

It is easy to verify that

M0 =
5

384
,M1 =

1

24
. (4.1.11)

Now for any positive number M , we define the domain

DM = {(x, u, v, z) | 0 ≤ x ≤ 1, |u| ≤M0M,

|v| ≤M1M, |z| ≤M0M2M},
(4.1.12)
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and by B[0,M ] we denote the closed ball with center 0 and radius M in the space
C[0, 1]

B[0,M ] = {u ∈ C[0, 1] | ‖u‖ ≤M},

where ‖u‖ = max0≤x≤1 |u(x)|.

Theorem 4.1.1 (Existence and uniqueness). Assume that k(x, t) is a continuous
function in the domain [0, 1]2 and there exist numbers M > 0, L0, L1, L2 ≥ 0 such
that:

(i) f(x, u, v, z) is a continuous function in DM and |f(x, u, v, z)| ≤M , ∀(x, u, v, z) ∈
DM .

(ii) |f(x2, u2, v2, z2) − f(x1, u1, v1, z1)| ≤ L0|u2 − u1| + L1|v2 − v1| + L2|z2 − z1|,
∀(xi, ui, vi, zi) ∈ DM , i = 1, 2.

(iii) q = L0M0 + L1M1 + L2M0M2 < 1.

Then the problem (4.1.1) has a unique solution u ∈ C4[0, 1] satisfying the esti-
mates |u(x)| ≤M0M, |u′(x)| ≤M1M for any 0 ≤ x ≤ 1.

Proof. Under the conditions of the theorem, we shall show that A is a contraction
operator in B[0,M ]. Then the operator equation (4.1.5) has a unique solution
u ∈ C(4)[0, 1] which leads to the existence and uniqueness of solution of the BVP
(4.1.1).

Indeed, take ϕ ∈ B[0,M ]. Then the problem (4.1.4) has a unique solution
of the form (4.1.6). Combining this with (4.1.10) we have |u(x)| ≤ M0‖ϕ‖ for
all x ∈ [0, 1]. Similarly, we obtain ‖u′(x)‖ ≤ M1‖ϕ‖∀x ∈ [0, 1]. Denote by K the
integral operator defined by

(Ku)(x) =

∫ 1

0

k(x, t)u(t)dt.

Then from the last equation in (4.1.10) we obtain |(Ku)(x)| ≤M0M2‖ϕ‖, x ∈ [0, 1].
Therefore, if ϕ ∈ B[0,M ], that is, ‖ϕ‖ ≤M then for any x ∈ [0, 1] we have

|u(x)| ≤M0M, |u′(x)| ≤M1M, |(Ku)(x)| ≤M0M2M.

Thus, (x, u(x), u′(x), (Ku)(x)) ∈ DM . The condition (i) leads to

|f(x, u(x), u′(x), (Ku)(x))| ≤M ∀x ∈ [0, 1].

Therefore, |(Aϕ)(x)| ≤ M, ∀x ∈ [0, 1] and ‖Aϕ‖ ≤ M which means A : B[0,M ] →
B[0,M ].

Next, take ϕ1, ϕ2 ∈ B[0,M ]. From the conditions (ii) and (iii) we have

‖Aϕ2 − Aϕ1‖ ≤ (L0M0 + L1M1 + L2M0M2)‖ϕ2 − ϕ1‖ = q‖ϕ2 − ϕ1‖.

Because q < 1, A is a contraction in B[O,M ]. Thus the proof of the theorem is
completed.

For studying positive solutions of the BVP (4.1.1) we denote

D+
M = {(x, u, v, z) | 0 ≤ x ≤ 1, 0 ≤ u ≤M0M,

|v| ≤M1M, |z| ≤M0M2M},
(4.1.13)

and
SM = {ϕ ∈ C[0, 1], 0 ≤ ϕ(x) ≤M}.
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Theorem 4.1.2 (Positivity of solution). Assume that k(x, t) is a continuous
function in the domain [0, 1]2 and there exist numbers M > 0, L0, L1, L2 ≥ 0
satisfying:

(i) f(x, u, v, z) is a continuous function in D+
M and 0 ≤ f(x, u, v, z) ≤M, ∀(x, u, v, z) ∈

D+
M and f(x, 0, 0, 0) 6≡ 0.

(ii) |f(x2, u2, v2, z2) − f(x1, u1, v1, z1)| ≤ L0|u2 − u1| + L1|v2 − v1| + L2|z2 − z1|,
∀(xi, ui, vi, zi) ∈ D+

M , i = 1, 2.

(iii) q = L0M0 + L1M1 + L2M0M2 < 1.

Then the problem (4.1.1) has a unique positive solution u ∈ C4[0, 1] satisfying
the estimates 0 ≤ u(x) ≤M0M, |u′(x)| ≤M1M for any 0 ≤ x ≤ 1.

Proof. By replacing DM by D+
M , B[0,M ] by SM in the proof of Theorem 4.1.1,

we obtain the existence of a nonnegative solution. Because f(x, 0, 0, 0) 6≡ 0, this
solution must be positive.

4.1.3. Numerical method

Assume that all the assumptions of Theorem 4.1.1 are met. Then the problem
(4.1.1) has a unique solution. To find it, consider the following iterative method:

1. Given an initial approximation

ϕ0(x) = f(x, 0, 0, 0). (4.1.14)

2. Knowing the m−th approximation ϕm(x) (m = 0, 1, ...) compute

um(x) =

∫ 1

0

G0(x, t)ϕm(t)dt,

vm(x) =

∫ 1

0

G1(x, t)ϕm(t)dt,

zm(x) =

∫ 1

0

k(x, t)um(t)dt.

(4.1.15)

3. Compute the new approximation

ϕm+1(x) = f(x, um(x), vm(x), zm(x)). (4.1.16)

This iterative method is in fact the successive approximation method for finding the
fixed point of operator A defined by (4.1.3)-(4.1.4). As shown in the proof of Theorem
4.1.1 the operator A is a contraction mapping in the closed ball B[0,M ]. Therefore,
the iterative method converges and there holds the estimate

‖ϕm − ϕ‖ ≤
qm

1− q
‖ϕ1 − ϕ0‖ = pmd,

where ϕ is the fixed point of A and

pm = qm

1−q , d = ‖ϕ1 − ϕ0‖. (4.1.17)

This fact leads to the following result.
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Theorem 4.1.3 (Convergence). If the conditions of Theorem 4.1.1 are satis-
fied then the iterative method (4.1.14)-(4.1.16) converges and there hold the
estimates for the approximate solution uk(t)

‖um − u‖ ≤M0pmd, ‖u′m − u′‖ ≤M1pmd,

where u is the exact solution of the problem (4.1.1), d and pm are determined by
(4.1.17).

For the numerical realization of the iterative method above, we design a correspond-
ing discrete iterative method. In order to do this, construct the uniform grid ω̄h = {xi =
ih, h = 1/N, i = 0, 1, ..., N} the interval [0, 1], and by Φm(x), Um(x), Vm(x), Zm(x) de-
note the grid functions defined on this grid and approximating the functions ϕm(x),
um(x), vm(x), zm(x).

Consider the following discrete iterative method:

1. Given an initial approximation

Φ0(xi) = f(xi, 0, 0, 0), i = 0, ..., N. (4.1.18)

2. Knowing the m−th approximation Φm(xi), m = 0, 1, ...; i = 0, ..., N,, compute
approximately the definite integrals (4.1.15) by the trapezoidal rule

Um(xi) =
N∑
j=0

hρjG0(xi, xj)Φm(xj),

Vm(xi) =
N∑
j=0

hρjG1(xi, xj)Φm(xj),

Zm(xi) =
N∑
j=0

hρjk(xi, xj)Um(xj), i = 0, ..., N,

(4.1.19)

where ρj is the weight of the trapezoidal rule, that is

ρj =

{
1/2, j = 0, N

1, j = 1, 2, ..., N − 1.

3. Compute the new approximation

Φm+1(xi) = f(xi, Um(xi), Vm(xi), Zm(xi)). (4.1.20)

To obtain the error estimates for the approximate solution for u(t) and its derivatives
on the grid, we need the following auxiliary results.

Proposition 4.1.4. Suppose that the function f(t, u, v, z) has all continuous
partial derivatives up to second order in the domain DM and the kernel function
k(x, t) also has all continuous partial derivatives up to second order in [0, 1]2.
Then for the functions ϕm(x), um(x), vm(x), zm(x),m = 0, 1, ..., constructed by the
iterative method (4.1.14)-(4.1.16) we have ϕm(x) ∈ C2[0, 1], um(x) ∈ C6[0, 1],
vm(x) ∈ C5[0, 1], zm(x) ∈ C2[0, 1].



82

Proof. The proposition will be proved by induction. For k = 0, due to the
condition on the function f we have ϕ0(t) ∈ C2[0, 1] because ϕ0(x) = f(x, 0, 0, 0).
Since

u0(x) =

∫ 1

0

G0(x, t)ϕ0(t)dt

it implies that u0(x) is the solution of the problem

u
(4)
0 (x) = ϕ0(x), x ∈ (0, 1),

u0(0) = u0(1) = u′′0(0) = u′′0(1) = 0.

Thus, u0(x) ∈ C6[0, 1], which leads to v0(x) ∈ C5[0, 1] since v0(x) = u′0(x). Due
to the condition k(x, t) has all continuous derivatives up to second order, the
function z0(x) =

∫ 1

0
k(x, t)u0(t)dt belongs to C2[0, 1].

Now assume ϕm(x) ∈ C2[0, 1], um(x) ∈ C6[0, 1], vm(x) ∈ C5[0, 1], zm(x) ∈
C2[0, 1]. Then, since ϕm+1(x) = f(x, um(x), vm(x), zm(x)) and because the func-
tion f is assumed to have continuous derivative in all variables up to second
order, it follows that ϕm+1(x) ∈ C2[0, 1]. Repeating the same argument as for
ϕ0(x) above we have um+1(x) ∈ C6[0, 1], vm+1(x) ∈ C5[0, 1], zm+1(x) ∈ C2[0, 1]
Therefore, the proof is completed.

Proposition 4.1.5. For any function ϕ(x) ∈ C2[0, 1] there holds the estimate∫ 1

0

Gn(xi, t)ϕ(t)dt =
N∑
j=0

hρjGn(xi, tj)ϕ(tj) +O(h2) (n = 0, 1). (4.1.21)

Proof. This estimate is obvious due to the error estimate of the trapezoidal rule
since Gn(xi, t) (n = 0, 1) are continuous at tj and are polynomials in the intervals
[0, tj] and [tj, 1].

Proposition 4.1.6. Under the conditions of Proposition 4.1.4, for any m =
0, 1, ... there hold the estimates

‖Φm − ϕm‖ = O(h2), ‖Um − um‖ = O(h2), (4.1.22)

‖Vm − vm‖ = O(h2), ‖Zm − zm‖ = O(h2) (4.1.23)

where ‖.‖ = ‖.‖ω̄h
is the max-norm of function on the grid ω̄h.

Proof. The proposition will be proved by induction. For m = 0 we have immedi-
ately ‖Φ0−ϕ0‖ = 0. Next, by the first equation in (4.1.15) and Proposition 4.1.5
we obtain

u0(xi) =

∫ 1

0

G0(xi, t)ϕ0(t)dt =
N∑
j=0

hρjG0(xi, tj)ϕ0(tj) +O(h2) (4.1.24)

for any i = 0, ..., N . On the other hand, taking into account the first equation in
(4.1.19) we obtain

U0(xi) =
N∑
j=0

hρjG0(xi, tj)Φ0(tj). (4.1.25)
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Thus, |U0(ti) − u0(ti)| = O(h2) since Φ0(tj) = ϕ0(tj) = f(tj, 0, 0, 0). Therefore,
‖U0 − u0‖ = O(h2).
Analogeously, we have

‖V0 − v0‖ = O(h2). (4.1.26)
Next, due to the trapezoidal rule we have

z0(xi) =

∫ 1

0

k(xi, t)u0(t)dt =
N∑
j=0

hρjk(xi, tj)u0(tj) +O(h2),

while by the third equation in (4.1.19) we obtain

Z0(xi) =
N∑
j=0

hρjk(xi, tj)U0(tj), i = 0, ..., N.

Thus, ∣∣∣Z0(xi)− z0(xi)
∣∣∣ =

∣∣∣ N∑
j=0

hρjk(xi, tj)(U0(tj)− u0(tj))
∣∣∣+O(h2)

≤
N∑
j=0

hρj|k(xi, tj)||U0(tj)− u0(tj)|+O(h2)

≤ Ch2

N∑
j=0

hρj|k(xi, tj)|+O(h2)

≤ CC1h
2

N∑
j=0

hρj +O(h2) = O(h2)

since |U0(tj)− u0(tj)| ≤ Ch2, |k(xi, tj)| ≤ C1, where C,C1 are some constants.
Now assume that (4.1.22) and (4.1.23) hold for m ≥ 0. We shall prove that

these estimates hold for m+ 1. By the Lipschitz condition of the function f and
the estimates (4.1.22) and (4.1.23), it follows the estimate

‖Φm+1 − ϕm+1‖ = O(h2).

Now from the first equation in (4.1.15) by Proposition 4.1.5 we obtain

um+1(xi) =

∫ 1

0

G0(xi, t)ϕm+1(t)dt =
N∑
j=0

hρjG0(xi, xj)ϕm+1(xj) +O(h2).

On the other hand, by the first formula in (4.1.19) we obtain

Um+1(xi) =
N∑
j=0

hρjG0(xi, xj)Φm+1(xj).

From this equality and the above estimates we have the estimate

‖Um+1 − um+1‖ = O(h2).

Similarly, we have

‖Vm+1 − vm+1‖ = O(h2), ‖Zm+1 − zk+1‖ = O(h2).

Therefore, the proof is completed.
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Combining Proposition 4.1.6 and Theorem 4.1.3 leads to the following result.

Theorem 4.1.7. Suppose that all the assumptions of Theorem 4.1.1 and Propo-
sition 4.1.4 are met. Then, for the approximate solution of the problem (4.1.1)
obtained by the discrete iterative method on the grid ω̄h there hold the estimates

‖Um − u‖ ≤M0pmd+O(h2), ‖Vm − u′‖ ≤M2pmd+O(h2). (4.1.27)

Proof. The first estimate is easily obtained if writing

Um(ti)− u(ti) = (um(ti)− u(ti)) + (Um(ti)− um(ti))

and using the first estimate in Theorem 4.1.3 and the second estimate in (4.1.22).
The second estimate is similarly proved.

4.1.4. Examples

Example 4.1.1. Consider the problem (4.1.1) with

k(x, t) = ex sin(πt), (x, t) ∈ [0, 1]× [0, 1],

f(x, u(x), u′(x),

∫ 1

0

k(x, t)u(t)dt) = u2(x)

∫ 1

0

k(x, t)u(t)dt+ u(x)u′(x)

− 1

2
ex sin2(πx) + π4 sin(πx)− π

2
sin(2πx).

In this case

f(x, u, v, z) = u2z + uv − 1

2
ex sin2(πx) + π4 sin(πx)− π

2
sin(2πx)

and M2 =
2e

π
. It is easy to show that u = sin(πx) is the exact solution of the

problem. In the domain

DM = {(x, u, v, z) | 0 ≤ x ≤ 1, |u| ≤M0M, |u′| ≤M1M, |z| ≤M0M2M}

we have

|f(x, u, v, z)| ≤M3
0M2M

3 +M0M1M
2 + π4 +

π

2
+
e

2
.

It can be verified that if M = 113 then the conditions of Theorem 4.1.1 are
met with L0 = 12.2010, L1 = 1.4714, L2 = 2.1649, q = 0.2690. Thus, the prob-
lem has a unique solution u(x) satisfying the estimates |u(x)| ≤ 1.4714, |u′(x)| ≤
4.7083. These theoretical estimates are somewhat larger than the exact estimates
|u(x)| ≤ 1, |u′(x)| ≤ π.

The numerical results obtained by the discrete iterative method (4.1.18)-
(4.1.20) are reported in Tables 4.1 and 4.2. Here, Error = ‖Um − u‖.

Notice that if the stopping criterion is ‖Φm−Φm−1‖ ≤ 10−10 instead of ‖Um−
u‖ ≤ h2 then better accuracy of the approximate solution are obtained with more
iterations (see Table 4.2).

From Table 4.2 we observe that the accuracy of the approximation is close
to O(h4) even though by the above theory it is O(h2) only.
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Table 4.1: The convergence in Example 4.1.1 for stopping criterion ‖Um−u‖ ≤ h2

N h2 m Error
50 4.0000e-04 2 1.4305e-04
100 1.0000e-04 3 2.8588e-06
150 4.4444e-05 3 2.8599e-06
200 2.5000e-05 3 2.8602e-06
300 1.1111e-05 3 2.8603e-06
400 6.2500e-06 3 2.8603e-06
500 4.0000e-06 3 2.8603e-06
800 1.5625e-06 4 5.7485e-08
1000 1.0000e-06 4 5.7486e-08

Table 4.2: The convergence in Example 4.1.1 for stopping criterion ‖Φm −
Φm−1‖ ≤ 10−10

N h2 m Error
50 4.0000e-04 7 2.2152e-08
100 1.0000e-04 7 1.3831e-09
150 4.4444e-05 7 2.7279e-10
200 2.5000e-05 7 8.5995e-11
300 1.1111e-05 7 1.6618e-11
400 6.2500e-06 7 4.9447e-12
500 4.0000e-06 7 1.7567e-12
800 1.5625e-06 7 1.4588e-13
1000 1.0000e-06 7 3.3318e-13

Example 4.1.2 (Example 4.2 in [66]). Consider the problem

u(4)(x) = sin(πx)[(2− u2(x))

∫ 1

0

tu(t)dt+ 1], x ∈ (0, 1),

u(0) = 0, u(1) = 0, u′′(0) = 0, u′′(1) = 0.

(4.1.28)

This is the problem (4.1.1) with

k(x, t) = sin(πx)t, (x, t) ∈ [0, 1]× [0, 1],

f(x, u(x), u′(x),

∫ 1

0

k(x, t)u(t)dt) = (2− u2(x))

∫ 1

0

sin(πx)tu(t)dt+ sin(πx).

Here, f(x, u, v, z) = (2− u2)z + sin(πx).
It is easy to verify that M2 = max0≤x≤1

∫ 1

0
|k(x, t)|dt = 1

2
. With M0 and M1 in

(4.1.11) we denote

DM =
{

(x, u, v, z) | 0 ≤ x ≤ 1, |u| ≤ 5

384
M, |v| ≤ 1

24
M, |z| ≤ 5

768
M
}
. (4.1.29)

It can be verified that if M = 1.1 then the conditions of Theorem 4.1.1 are met
with L0 = 2.0515e− 04, L1 = 0, L2 = 2, q = 0.0130. Thus, the problem (4.1.28) has
a unique solution satisfying the estimates |u(x)| ≤ 0.0143, |u′(x)| ≤ 0.0458.

Notice that in [66] by the monotone method the author could only prove the
convergence of the iterative sequences to extremal solutions of the problem but
not the existence and uniqueness of solution.
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Using the discrete iterative method (4.1.18)-(4.1.20) on the grid with gridsize
h = 0.01 and the stopping criterion ‖Φm−Φm−1‖ ≤ 10−10, an approximate solution
is found after 7 iterations. Figure 4.1 depicts the graph of this approximate
solution.

0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

0.012

Figure 4.1: Approximate solution in Example 4.1.2.

4.1.5. Conclusion

In this section, we have established the existence and uniqueness of a solution
for a fourth order nonlinear integro-differential equation with the Navier boundary
conditions and proposed an iterative method at both continuous and discrete levels
for finding the solution. The second order of accuracy of the discrete method has
been proved. The validity of the obtained theoretical results and the efficiency of the
iterative method are demonstrated in some examples where the exact solution is either
known or unknown. It must be emphasized that for the example considered in [66], we
have established the existence and uniqueness of solution and found it numerically but
the author could only show the convergence of the iterative sequences constructed by
the monotone method to extremal solutions.

The method used in this section with appropriate modifications can be applied to
nonlinear integro-differential equations of any order with other boundary conditions
and more complicated nonlinear terms. This is the direction of our research in the
future.

4.2. Existence results and an iterative method for func-
tional differential equations

4.2.1. Introduction

In this section, we propose a novel approach to functional differential equations
(FDE), which differs from that of Bica et al. [75] for FDEs of even orders which used
iterated cubic splines. This approach of ours can be applied to FDEs of any orders
with nonlinear terms containing derivatives. For simplicity, we consider the FDE of
the form

u′′′ = f(t, u(t), u(ϕ(t))), t ∈ [0, a] (4.2.1)
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subject to the general boundary conditions

B1[u] = α1u(0) + β1u
′(0) + γ1u

′′(0) = b1,

B2[u] = α2u(0) + β2u
′(0) + γ2u

′′(0) = b2,

B3[u] = α3u(1) + β3u
′(1) + γ3u

′′(1) = b3,

(4.2.2)

or

B1[u] = α1u(0) + β1u
′(0) + γ1u

′′(0) = b1,

B2[u] = α2u(1) + β2u
′(1) + γ2u

′′(1) = b2,

B3[u] = α3u(1) + β3u
′(1) + γ3u

′′(1) = b3,

(4.2.3)

such that

rank

α1 β1 γ1 0 0 0
α2 β2 γ2 0 0 0
0 0 0 α3 β3 γ3

 = 3.

Assume ϕ(t) : [0, a]→ [0, a] is a continuous function.
As a development of the unified approach for fully third order nonlinear differential

equation

u′′′ = f(t, u(t), u′(t), u′′(t))

in the previous works [13, 14], here we establish the existence and uniqueness of solution
of the problem (4.2.1)-(4.2.2) and propose an iterative method for finding the solution
at both continuous and discrete levels. The validity of obtained theoretical results
and the efficiency of the proposed numerical method will be demonstrated in some
examples.

4.2.2. Existence and uniqueness of a solution

Following the approach in [13, 14] (see also [11, 86]) for investigating the problem
(4.2.1)-(4.2.2) we define the nonlinear operator A the space of continuous functions
C[0, a] by

(Aψ)(t) = f(t, u(t), u(ϕ(t))), (4.2.4)
where u(t) is the solution of the problem

u′′′(t) = ψ(t), 0 < t < a

B1[u] = b1, B2[u] = b2, B3[u] = b3,
(4.2.5)

with B1[u], B2[u], B3[u] defined by (4.2.2). It is possible to prove the following propo-
sition.

Proposition 4.2.1. If the function ψ is a fixed point of the operator A, that is,
ψ is the solution of the operator equation

Aψ = ψ, (4.2.6)

where A is defined by (4.2.4)-(4.2.5) then the function u(t) determined from the
BVP (4.2.5) is a solution of the BVP (4.2.1)-(4.2.2). Conversely, if the function
u(x) is the solution of the BVP (4.2.1)-(4.2.2) then the function

ψ(t) = f(t, u(t), u(ϕ(t)))

satisfies the operator equation (4.2.6).
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Now, let G(t, s) be the Green’s function associated to the problem (4.2.5). Then
the solution of the problem can be written as

u(t) = g(t) +

∫ a

0

G(t, s)ψ(s)ds, (4.2.7)

where g(t) is the polynomial of second degree satisfying the boundary conditions

B1[g] = b1, B2[g] = b2, B3[g] = b3. (4.2.8)

Denote
M0 = max

0≤t≤a

∫ a

0

|G(t, s)|ds. (4.2.9)

For any number M > 0, introduce the domain

DM =
{

(t, u, v) | 0 ≤ t ≤ a; |u| ≤ ‖g‖+M0M ; |v| ≤ ‖g‖+M0M
}
, (4.2.10)

where ‖g‖ = max0≤t≤a |g(t)|.
Denote by B[0,M ] the closed ball with center 0 and radius M in the space C[0, a].

Theorem 4.2.2 (Existence and uniqueness). Suppose that:

(i) ϕ(t) is a continuous function that maps [0, a] to [0, a].

(ii) f(t, u, v) is a continuous function and bounded by M in the domain DM ,
that is,

|f(t, u, v)| ≤M ∀(t, u, v) ∈ DM . (4.2.11)

(iii) f(t, u, v) satisfies the Lipschitz conditions in the variables u, v with the
Lipschitz coefficients L1, L2 ≥ 0 in DM , that is,

|f(t, u2, v2)− f(t, u1, v1)| ≤ L1|u2 − u1|+ L2|v2 − v1|
∀(t, ui, vi) ∈ DM (i = 1, 2).

(4.2.12)

(iv)
q := (L1 + L2)M0 < 1. (4.2.13)

Then the problem (4.2.1)-(4.2.2) has a unique solution u(t) ∈ C3[0, a] satisfying
the estimate

|u(t)| ≤ ‖g‖+M0M ∀t ∈ [0, a]. (4.2.14)

Proof. First we prove that the operator A maps B[0,M ] → B[0,M ]. Indeed, for
any ψ ∈ B[0,M ] we have ‖ψ‖ ≤ M . Let u(t) be the solution of the problem
(4.2.5). From (4.2.7) we have

|u(t)| ≤ ‖g‖+M0M ∀t ∈ [0, a]. (4.2.15)

Because 0 ≤ ϕ(t) ≤ a we obtain

|u(ϕ(t)| ≤ ‖g‖+M0M ∀t ∈ [0, a].

Thus, if t ∈ [0, a] then (t, u(t), u(ϕ(t))) ∈ DM . The condition (4.2.11) follows that
|f(t, u(t), u(ϕ(t)))| ≤M ∀t ∈ [0, a]. Due to (4.2.4) we obtain |(Aψ)(t)| ≤M ∀t ∈
[0, a], which means ‖Aψ‖ ≤M or Aψ ∈ B[0,M ].
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Next, we show that A is a contraction mappping in B[0,M ]. Let ψ1, ψ2 ∈ B[0,M ]
and u1(t), u2(t) be the solutions of the problem (4.2.5), respectively. Due to the
condition (4.2.12) we have

|Aψ2 − Aψ1| ≤ L1|u2(t)− u1(t)|+ L2|u2(ϕ(t))− u1(ϕ(t))|. (4.2.16)

Using the representations

ui(t) = g(t) +

∫ a

0

G(t, s)ψi(s)ds, (i = 1, 2)

and (4.2.9) we obtain

|u2(t)− u1(t)| ≤M0‖ψ2 − ψ1‖,
|u2(ϕ(t))− u1(ϕ(t))| ≤M0‖ψ2 − ψ1‖.

Combining the above estimates and (4.2.16), due to the condition (4.2.13) it
follows that

‖Aψ2 − Aψ1‖ ≤ q‖ψ2 − ψ1‖, q < 1.

Therefore, A is a contraction in B[0,M ].
Hence, the operator equation (4.2.6) has a unique solution ψ ∈ B[0,M ]. By

Proposition 4.2.1 the solution of the problem (4.2.5) for this right-hand side ψ(t)
is the solution of the original problem (4.2.1)-(4.2.2).

Remark 4.2.1. Theorem 4.2.2 still holds if replacing the third order equation
(4.2.1) by the higher order equation (0.0.3). Moreover, the assumptions of this
theorem are weaker than the assumptions (i)-(iii) in [75, page 131] since in our
theorem the Lipschitz conditions should be satisfied only in a bounded domain
DM instead of the unbounded one [a, b] × R × R as in [75] and there always is
(L1 + L2)M0 ≤ (L1 + L2)(b− a)MG since M0 ≤ (b− a)MG.

4.2.3. Solution method and its convergence

Consider the following iterative method:

1. Given ψ0 ∈ B[0,M ], say,
ψ0(t) = f(t, 0, 0). (4.2.17)

2. Knowing ψk(t) (k = 0, 1, ...) compute

uk(t) = g(t) +

∫ a

0

G(t, s)ψk(s)ds,

vk(t) = g(ϕ(t)) +

∫ a

0

G(ϕ(t), s)ψk(s)ds.

(4.2.18)

3. Compute the new approximation

ψk+1(t) = f(t, uk(t), vk(t)). (4.2.19)

Denote

pk =
qk

1− q
, d = ‖ψ1 − ψ0‖. (4.2.20)
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Theorem 4.2.3 (Convergence). If the conditions of Theorem 4.2.2 are satisfied
then the above iterative method converges and there holds the estimate

‖uk − u‖ ≤M0pkd,

where u is the exact solution of the problem (4.2.1)-(4.2.2) and M0 is given by
(4.2.9).

This theorem directly follows from the convergence of the successive approximation
method for finding fixed point of the operator A, the representations (4.2.7) and the
first equation in (4.2.18).

For the numerical realization of this iterative method, we design the corresponding
discrete iterative method. To do this, we construct the uniform grid ω̄h = {ti =
ih, h = a/N, i = 0, 1, ..., N} on the interval [0, a] and denote by Φk(t), Uk(t), Vk(t) the
grid functions defined on this grid and approximating the functions ψk(t), uk(t), vk(t),
respectively.

The discrete iterative method is as follows:

1. Given
Ψ0(ti) = f(ti, 0, 0), i = 0, ..., N. (4.2.21)

2. Knowing Ψk(ti), k = 0, 1, ...; i = 0, ..., N, compute approximately the definite
integrals (4.2.18) by the trapezoidal rule

Uk(ti) = g(ti) +
N∑
j=0

hρjG(ti, tj)Ψk(tj),

Vk(ti) = g(ξi) +
N∑
j=0

hρjG(ξi, tj)Ψk(tj), i = 0, ..., N,

(4.2.22)

where ρj are the weights of the trapezoidal rule

ρj =

{
1/2, j = 0, N

1, j = 1, 2, ..., N − 1

and ξi = ϕ(ti).

3. Compute the new approximation

Ψk+1(ti) = f(ti, Uk(ti), Vk(ti)). (4.2.23)

For investigating the convergence of this discrete iterative method, the following aux-
iliary results are needed.

Proposition 4.2.4. If the function f(t, u, v) has all partial derivatives continuous
up to second order and the function ϕ(t) also has continuous derivatives up to
second order then the functions ψk(t), uk(t), vk(t) constructed by the iterative
method (4.2.17)-(4.2.19) also have continuous derivatives up to second order.

This proposition is obvious.



91

Proposition 4.2.5. For any function ψ(t) ∈ C2[0, a] there hold the estimates∫ a

0

G(ti, s)ψ(s)ds =
N∑
j=0

hρjG(ti, sj)ψ(sj) +O(h2), (4.2.24)

∫ a

0

G(ξi, s)ψ(s)ds =
N∑
j=0

hρjG(ξi, sj)ψ(sj) +O(h2), (4.2.25)

where in order to avoid possible confusion we denote sj = tj.

Proof. The validity of (4.2.24) is guaranteed by [14, Proposition 3]. Here we
notice that (4.2.24) is not automatically deduced from the estimate for the com-
posite trapezoidal rule because the function ∂2G(ti,s)

∂s2
has discontinuity at s = ti.

Now we prove the estimate (4.2.25). Since 0 ≤ ξi = ϕ(ti) ≤ a, there are
possible two cases:
Case 1: ξi coincides with one node sj of the grid ω̄h, that is, there exists sj ∈ ω̄h
such that ξi = sj. Because the Green’s function G(t, s) as a function of s is
continuous at s = ξi and is a polynomial of s in the intervals [0, ξi] and [ξi, a],
therefore∫ a

0

G(ξi, s)ψ(s)ds =

∫ ξi

0

G(ξi, s)ψ(s)ds+

∫ a

ξi

G(ξi, s)ψ(s)ds

= h
(1

2
G(ξi, s0)ψ(s0) +

j−1∑
m=1

G(ξi, sm)ψ(sm) +
1

2
G(ξi, sj)ψ(sj)

)
+O(h2)

+ h
(1

2
G(ξi, sj)ψ(sj) +

N−1∑
m=j+1

G(ξi, sm)ψ(sm) +
1

2
G(ξi, sN)ψ(sN)

)
+O(h2)

=
N∑
j=0

hρjG(ti, sj)ψ(sj) +O(h2).

Hence, (4.2.25) is proved for Case 1.
Case 2: ξi lies between sl and sl+1, that is, sl < ξi < sl+1 for some l = 0, N − 1. In
this case, we represent∫ a

0

G(ξi, s)ψ(s)ds =

∫ sl

0

F (s)ds+

∫ ξi

sl

F (s)ds+

∫ sl+1

ξi

F (s)ds+

∫ a

sl+1

F (s)ds (4.2.26)

where F (s) = G(ξi, s)ψ(s). Note that F (s) ∈ C2 in [sl, ξi] and [ξi, sl+1]. Applying
the composite trapezoidal rule to the first and the last integrals in the right-hand
side of (4.2.26) we obtain

T1 : =

∫ sl

0

F (s)ds+

∫ a

sl+1

F (s)ds

=
l∑

j=0

ρ
(l−)
j F (sj) +

N∑
j=l+1

ρ
(l+)
j F (sj) +O(h2),

(4.2.27)

where

ρ
(l−)
j =

{
1
2
, j = 0, l

1, 1 < j < l
, ρ

(l+)
j =

{
1
2
, j = l + 1, N

1, l + 1 < j < N.
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To compute the second and the third integrals, we apply the trapezoidal rule

T2 : =

∫ ξi

sl

F (s)ds+

∫ sl+1

ξi

F (s)ds

=
1

2

[
(F (sl) + F (ξi))(ξi − sl) + (F (ξi) + F (sl+1))(sl+1 − ξi)

]
+O(h2).

(4.2.28)

Using the points sl and sl+1 for linearly interpolating F (s) in the point ξi we
obtain

F (ξi) = F (sl)
ξi − sl+1

sl − sl+1

+ F (sl+1)
ξi − sl
sl+1 − sl

+O(h2).

It follows that

F (ξi)(sl+1 − sl) = F (sl)(sl+1 − ξi) + F (sl+1)(ξi − sl) +O(h3). (4.2.29)

T2 can be transformed to

T2 =
1

2

[
F (sl)(ξi − sl) + F (sl+1)(sl+1 − ξi)

]
+ F (ξi)(sl+1 − sl) +O(h2)

Coupled this with (4.2.29) we have

T2 =
1

2
h(F (sl) + F (sl+1)) +O(h3).

Combining this estimate with (4.2.27) and (4.2.26) we obtain∫ a

0

G(ξi, s)ψ(s)ds =
N∑
j=0

hρjG(ξi, sj)ψ(sj) +O(h2).

Therefore, (4.2.25) is proved for Case 2.
The proof of Proposition 4.2.5 is completed.

Remark 4.2.2. If in Proposition 4.2.5 we replace G(ti, s) and G(ξi, s) by |G(ti, s)|
and |G(ξi, s)|, respectively then we also have the similar estimates∫ a

0

|G(ti, s)|ψ(s)ds =
N∑
j=0

hρj|G(ti, sj)|ψ(sj) +O(h2), (4.2.30)

∫ a

0

|G(ξi, s)|ψ(s)ds =
N∑
j=0

hρj|G(ξi, sj)|ψ(sj) +O(h2), (4.2.31)

Proposition 4.2.6. If the conditions of Theorem 4.2.2 are satisfied then there
hold the following estimates

‖Ψk − ψk‖ω̄h
= O(h2), (4.2.32)

‖Uk − uk‖ω̄h
= O(h2), (4.2.33)

where ‖.‖ω̄h
is the max-norm of grid function defined on the grid ω̄h.
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Proof. The proof is done by induction. For k = 0 we have at once ‖Ψ0 − ψ0‖ω̄h

because Ψ0(ti) = f(ti, 0, 0) and also ψ0(ti) = f(ti, 0, 0), i = 0, N . Next, combining
(4.2.18) and Proposition 4.2.5 we obtain

u0(ti) = g(ti) +

∫ a

0

G(ti, s)ψ0(s)ds

= g(ti) +
N∑
j=0

hρjG(ti, sj)ψ0(sj) +O(h2).

By (4.2.22) we also have

U0(ti) = g(ti) +
N∑
j=0

hρjG(ti, sj)Ψ0(sj).

Hence,

|U0(ti)− u0(ti)| = O(h2).

This means ‖U0 − u0‖ω̄h
= O(h2). Therefore, the estimates (4.2.32) and (4.2.33)

hold for k = 0.
Now, assume that these estimates hold for k ≥ 0. We must prove that they

also hold for k + 1. Indeed, from (4.2.19), (4.2.23) and the Lipschitz conditions
for the function f(t, u, v) we obtain

|Ψk+1(ti)− ψk+1(ti)| = |f(ti, Uk(ti), Vk(ti))− f(ti, uk(ti), vk(ti))|
≤ L1|Uk(ti)− uk(ti)|+ L2|Vk(ti)− vk(ti)|.

(4.2.34)

From Proposition 4.2.5 we have

vk(ti) = g(ϕ(ti)) +

∫ a

0

G(ϕ(ti), s)ψk(s)ds

= g(ξi) +
N∑
j=0

hρjG(ξi, sj)ψk(sj) +O(h2).

Due to (4.2.22) we obtain

|Vk(ti)− vk(ti)| = |
N∑
j=0

hρjG(ξi, sj)(Ψk(sj)− ψk(sj))|+O(h2)

≤
N∑
j=0

hρj|G(ξi, sj)|‖Ψk − ψk‖ω̄h
+O(h2).

(4.2.35)

For ψ(s) = 1, the estimate (4.2.31) is equivalent to∫ a

0

|G(ξi, s)|ds =
N∑
j=0

hρj|G(ξi, sj)|+O(h2).

Therefore
N∑
j=0

hρj|G(ξi, sj)| =
∫ a

0

|G(ξi, s)|ds+O(h2)

≤ max
0≤t≤a

∫ 1

0

|G(t, s)|ds+O(h2) = M0 +O(h2).
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Coupling this with (4.2.35) leads to

|Vk(ti)− vk(ti)| ≤ ‖Ψk − ψk‖ω̄h
+O(h2).

Because of the induction hypothesis, we have

‖Vk − vk‖ω̄h
= O(h2). (4.2.36)

Combining the induction hypothesis ‖Uk − uk‖ω̄h
= O(h2) and (4.2.36), from

(4.2.34) it follows that

‖Ψk+1 − ψk+1‖ω̄h
= O(h2). (4.2.37)

To show that
‖Uk+1 − uk+1‖ω̄h

= O(h2), (4.2.38)
we take into account that

|Uk+1(ti)− uk+1(ti)| ≤
N∑
j=0

hρj|G(ti, sj)||Ψk+1(sj)− ψk+1(sj)|+O(h2).

Similarly as above, we shall obtain

|Uk+1(ti)− uk+1(ti)| = O(h2),

which implies (4.2.38).
Therefore, the proposition is proved.

Coupling Proposition 4.2.6 with Theorem 4.2.3 leads to the following result.

Theorem 4.2.7. Under the conditions of Theorem 4.2.2 for the approximate
solution of the problem (4.2.1)-(4.2.2) obtained by the discrete iterative method
(4.2.21)-(4.2.23) there holds the estimate

‖Uk − u‖ω̄h
≤M0pkd+O(h2),

where pk and d are defined by (4.2.20).
Remark 4.2.3. If applying Bica’s method, which uses a cubic spline interpo-
lation procedure at each iteration, to the third order problem then O(h4) con-
vergence cannot be ensured since Corollary 1 in [105, p. 50] is not applicable
because of the properties of the Green’s function for the third order equation.
Remark 4.2.4. For the discrete iterative method (4.2.17) -(4.2.19), O(h2) con-
vergence is obtained. Naturally, one may think of applying Gaussian quadratures
to compute the integrals in (4.2.18). However, this cannot be done due to the
nodes of Gaussian quadratures not coinciding with the grid nodes where the
computation of the solution is done.
Remark 4.2.5. The results in Section 4.2.2 and 4.2.3 are obtained for the
nonlinear third order FDE with nonlinear term f = f(t, u(t), u(ϕ(t))). In similar
fashion, we can obtain similar results of existence and convergence of the iterative
method at continuous level for the general case

f = f(t, u(t), u(ϕ(t)), u′(ϕ1(t)), u′′(ϕ2(t))),

where the functions ϕ(t), ϕ1(t), ϕ2(t) are continuous from [0, a] to [0, a]. However,
in order to numerically realize the iterative method, we must notice that the
second derivative ∂2G(t,s)

∂t2
of the Green’s function has discontinuity at s = t. In

this case, to compute integrals containing ∂G(t,s)
∂t

and ∂2G(t,s)
∂t2

we must use the
formulas constructed in the previous work [14].
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Remark 4.2.6. The iterative method developed in this section for the third
order nonlinear FDE can be applied to nonlinear FDE of any order.

4.2.4. Examples

In the following examples, the iterative method (4.2.21)-(4.2.23) is performed until
‖Ψk − Ψk−1‖ω̄h

≤ 10−10. In the tables of results for the convergence of the iterative
method Error = ‖UK − u‖ω̄h

, K is the number of iterations performed.

Example 4.2.1. Consider the problem

u′′′(t) = et − 1

4
u(t) +

1

4
u2(

t

2
), 0 < t < 1,

u(0) = 1, u′(0) = 1, u′(1) = e.
(4.2.39)

For this problem, the exact solution is u(t) = et and the corresponding Green’s
function is

G(t, s) =


s

2
(t2 − 2t+ s), 0 ≤ s ≤ t ≤ 1,

t2

2
(s− 1), 0 ≤ t ≤ s ≤ 1.

It can be verified that

M0 = max
0≤t≤a

∫ 1

0

|G(t, s)|ds =
1

2
.

The polynomial of second degree satisfying the boundary conditions of the prob-
lem is

g(t) = 1 + t+
e− 1

2
t2.

Thus, ‖g‖ = 2 +
e− 1

2
= 2.7183. In this example f(t, u, v) = et − 1

4
u + 1

4
v2. It is

possible to show that if M = 6.5 then |f(t, u, v)| ≤ M in the domain DM defined
by (4.2.10). Besides, in DM , f(t, u, v) satisfies the Lipschitz conditions in u and
v with Lipschitz coefficients L1 = 1

4
, L2 = 1.7004. Hence, q := (L1 + L2)M0 = 0.16.

Therefore, all the conditions of Theorem 4.2.2 are met, implying that (4.2.39)
has a unique solution. This is the above exact solution.

The results of convergence of the iterative method (4.2.21)-(4.2.23) are re-
ported in Table 4.3. These results support the conclusion that the iterative

Table 4.3: The convergence in Example 4.2.1.

N h2 K Error
50 4.0000e-04 3 6.1899e-05
100 1.0000e-04 3 1.5475e-05
150 4.4444e-05 3 6.877 -06
200 2.5000e-05 3 3.8688e-06
300 1.1111e-05 3 1.7195e-06
400 6.2500e-06 3 9.6721e-07
500 4.0000e-06 3 6.1901e-07
800 1.5625e-06 3 2.4180e-07
1000 1.0000e-06 3 1.5475e-07

method is of O(h2) accuracy.
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Remark 4.2.7. Theorem 4.2.7 gives sufficient conditions for convergence of the
iterative method (4.2.21)-(4.2.23). In the cases when these conditions are not
met, the iterative can still converge to some solution. For example, if f(t, u, v) =
et + u2 + v2 + 1 with the same boundary conditions as in (4.2.39) the iterative
method converges after 15 iterations. And if f(t, u, v) = e2t − u3 + v2 + 5, the
iterative process reaches TOL = 10−10 after 16 iterations. Notice that the number
of iterations does not depend on the grid size as in Example 4.2.1.

Example 4.2.2. Consider the problem

u′′′(t) = sin(u2(t)) + cos(u2(t2)), 0 < t < 1,

u(0) = 0, u′(0) = π, u′(1) = −π.
(4.2.40)

For this problem f(t, u, v) = sin(u2) + cos(v2) and ϕ(t) = t2. It is possible to
show that all the conditions of Theorem 4.2.3 are met, hence the problem has a
unique solution. Also, by Theorem 4.2.7 the iterative method (4.2.21)-(4.2.23)
converges. The computation results show that the iterative method stops after 8
iterations for any number of grid points. The graph of the approximate solution
is depicted in Figure 4.2.
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Figure 4.2: Approximate solution in Example 4.2.2.

Example 4.2.3 (Example 5 in [76]). Consider the problem

u′′′(t) = −1 + 2u2(t/2), 0 < t < π,

u(0) = 0, u′(0) = 1, u(π) = 0.
(4.2.41)

For this problem, the exact solution is u(t) = sin(t), and the corresponding
Green’s function is

G(t, s) =


−t

2(π − s)2

2π2
+

(t− s)2

2
, 0 ≤ s ≤ t ≤ π,

−t
2(π − s)2

2π2
, 0 ≤ t ≤ s ≤ π

and f(t, u, v) = −1 + 2v2.
The results of convergence of the iterative method (4.2.21)-(4.2.23) are re-

ported in Table 4.4. These results also confirm the accuracy O(h2) of the iterative
method.
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Table 4.4: The convergence in Example 4.2.3.

N h2 K Error
50 4.0000e-04 25 1.4455e-04
100 1.0000e-04 25 3.6142e-05
150 4.4444e-05 25 1.6063e-05
200 2.5000e-05 25 9.0345e-06
300 1.1111e-05 25 4.0155e-06
400 6.2500e-06 25 2.2587e-06
500 4.0000e-06 25 1.4456e-06
800 1.5625e-06 25 5.6467e-07
1000 1.0000e-06 25 3.6139e-07

4.2.5. Conclusion

In this section, we have proposed a unified approach to nonlinear functional dif-
ferential equations via boundary value problems for nonlinear third order functional
differential equations as a particular case. The existence and uniqueness of solution
have been established and the convergence of second order of the discrete iterative
method for finding the solution has been proved. The validity of the theoretical re-
sults and the efficiency of the numerical method have been demonstrated in various
examples.

Our approach is applicable to boundary value problems for nonlinear functional
differential equations of any order associated with general linear boundary conditions.
It is also applicable to integro-differential equations.

4.3. Chapter conclusion

This chapter concerns integro-differential and functional differential equations. As
in the previous chapters, we reduce the boundary value problems for these types of
differential equations to suitable operator equations. Due to this we have established
the existence and uniqueness of solutions and proved the convergence of the iterative
method as the successive approximation method for the fixed point of the corresponding
operator equation. Moreover, we have constructed the discrete iterative method which
gives the approximate numerical solutions of the two above mentioned problems with
second-order accuracy. Many numerical examples supported the theoretical results.

We would like to emphasize that our method for boundary value problems of func-
tional differential equations is much simpler than the method of iterated cubic splines
of Bica et al. [75] in the construction as well as in the proof of the convergence. By in-
vestigating the reduced implicit operator equation we have simultaneously established
the existence and uniqueness of solution and the convergence of the iterative method.
This methodology can be applied to boundary value problems for functional differential
equations of any order.

The results of this chapter were published in two papers [AL4] and [AL6] in SCIE
journals.
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General Conclusions

In this thesis, we have successfully studied the existence, uniqueness of solutions
and the iterative methods for solving some nonlinear boundary value problems for some
high order differential equations including integro-differential and functional differential
equations. The main achievements of the thesis include:

1. The establishment of the existence, uniqueness of solutions and positive solutions
for third order nonlinear BVPs and the construction of numerical methods for
finding the solutions; The proposal of discrete iterative methods of second and
third order accuracy for solving third order nonlinear differential equations.

2. The establishment of the existence, uniqueness of solutions and construction of
iterative methods for finding the solutions for nonlinear third and fourth order
differential equations with integral boundary conditions.

3. The establishment of the existence, uniqueness of solutions and construction of
numerical methods for finding the solutions of nonlinear integro-differential and
functional differential equations.

The validity and applicability of the theoretical results and the effectiveness of the
constructed iterative methods have been confirmed by many experimental examples.

The methodology throughout the thesis has been shown to be superior to those of
many other authors due to its simplicity and coherence and can be applied to a wide
range of boundary value problems for differential equations.

A weakness of this methodology is that it is only applicable to problems for differ-
ential equations with non-singular right-hand sides. Therefore, the future goals of the
thesis are:

1. The further development of the above results for the case of singular right-hand
sides and the case of unbounded domains.

2. The construction of iterative methods of higher order accuracy.

3. The study of the problems with nonlinear boundary conditions.
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Appendix: MATLAB codes for some examples

I. Numerical computation in Example 2.2.1:

clear all
for k=3:10

n=2^k % number of grid points
c1=0; c2=-1; c3=sin(1); % u(0)=c1, u'(0)=c2, u'(1)=

c3
% Compute solution of the BVP using modified

Simpson 's rule:
[iter ,t,u,y,z]= bvp3_simp(n,10^( -10),c1,c2,c3);
% Compute solution of the BVP using trapezoidal

rule:
% [iter ,t,u,y,z]= bvp3_trap(n,10^( -10),c1 ,c2,c3);
for i=1:n+1

err(i)=u(i)-ucx(t(i));
end
if k==3

error=chuan(err)
else

error2=chuan(err);
order=log2(error/error2)
error=error2

end
end

function [iter ,t,u,y,z]= bvp3_trap(n,TOL ,c1,c2,c3)
% function for computing solution of the BVP using

trapezoidal rule
h=1/n;
iter =0;
for i=1:n+1

t(i)=(i-1)*h;
s(i)=(i-1)*h;
P_2(i)=(c3 -c2)/2*t(i)^2 + c2*t(i) +c1;
dP_2(i)=(c3 -c2)*t(i)+c2;
ddP_2(i)=(c3-c2);
p0(i)=f(t(i),P_2(i),dP_2(i),ddP_2(i));
ud(i)=ucx(t(i));

end
ssp =1;
while ssp > TOL

iter=iter +1;
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for i=1:n+1
for j=1:n+1

Gp(j)= G(t(i),s(j))*p0(j);
G1p(j)= G1(t(i),s(j))*p0(j);
G2p(j)= G2(t(i),s(j))*p0(j);

end
v(i)=trap(0,1,n,Gp);
y(i)=trap(0,1,n,G1p);
z(i)=trap(0,1,n,G2p);
p(i)=f(t(i),v(i)+P_2(i),y(i)+dP_2(i),z(i)+ddP_2(i))

;
end
ssp=chuan(p-p0);
p0=p;

end
for i=1:n+1

u(i)=v(i)+P_2(i);
end
end

function trap=trap(a,b,n,f)
% numerical integration by trapezoidal rule over [a,b] with

n subintervals
h=(b-a)/n;
S=0;
for j=2:n

S=S+f(j);
end
S=S+(f(1)+f(n+1))/2;
trap=S*h;
end

function [iter ,t,u,y,z]= bvp3_simp(n,TOL ,c1,c2,c3)
% function for computing solution of the BVP using modified

Simpson 's rule
h=1/n;
iter =0;
for i=1:n+1

t(i)=(i-1)*h;
s(i)=(i-1)*h;
P_2(i)=(c3 -c2)/2*t(i)^2 + c2*t(i) +c1;
dP_2(i)=(c3 -c2)*t(i)+c2;
ddP_2(i)=(c3-c2);
p0(i)=f(t(i),P_2(i),dP_2(i),ddP_2(i));
ud(i)=ucx(t(i));

end
ssp =1;
while ssp > TOL

iter=iter +1;
for i=1:n+1
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if rem(i-1,2)==0
for j=1:n+1

Gp(j)= G(t(i),s(j))*p0(j);
G1p(j)= G1(t(i),s(j))*p0(j);
G2p(j)= G2(t(i),s(j))*p0(j);

end
v(i)=simpson(0,1,n,Gp);
y(i)=simpson(0,1,n,G1p);
z(i)=simpson(0,1,n,G2p);
p(i)=f(t(i),v(i)+P_2(i),y(i)+dP_2(i),z(i)+ddP_2(i));

else
for j=1:n+1

Gp(j)= G(t(i),s(j))*p0(j);
G1p(j)= G1(t(i),s(j))*p0(j);
G2p(j)= G2(t(i),s(j))*p0(j);

end
v(i)=simpson(0,1,n,Gp)+h*(Gp(i-1) -2*Gp(i)+Gp(i+1))/6;
y(i)=simpson(0,1,n,G1p)+h*(G1p(i-1) -2*G1p(i)+G1p(i+1)

)/6;
z(i)=simpson(0,1,n,G2p)+h*(G2p(i-1) -2*G2p(i)+G2p(i+1)

)/6;
p(i)=f(t(i),v(i)+P_2(i),y(i)+dP_2(i),z(i)+ddP_2(i));

end
end
ssp=chuan(p-p0);
p0=p;

end
for i=1:n+1

u(i)=v(i)+P_2(i);
end
end

function S=simpson(a,b,n,f)
% numerical integration by Simpson 's rule over [a,b] with n

subintervals
h=(b-a)/n;
S=0;
for k=0:(n/2-1)

S=S+f(2*k+1)+4*f(2*k+2)+f(2*k+3);
end
S=h/3*S;
end

function ucx=ucx(x) % exact solution
ucx=(x-1)*sin(x);
end

function hvp = f(t,u,y,z) % right -hand side function f
hvp= t^4*u-u^2+sin(t)^2*(t-1)^2-cos(t)*(t-1) -3*sin(t)-t^4*(

t-1)*sin(t);
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end

function green = G(t,s) % Green 's function
if s <= t

green= s/2*(t^2-2*t+s);
else

green= t^2/2*(s-1);
end
end

function green1 = G1(t,s) % first derivative of the Green 's
function

if s <= t
green1= s*(t-1);

else
green1= t*(s-1);

end
end

function green2 = G2(t,s) % second derivative of the Green '
s function with the change at jump point t=s

if s < t
green2= s;

elseif s==t
green2= s -1/2;

else
green2= s-1;

end
end

function chuan=chuan(y)
chuan=norm(y,inf);
end

II. Numerical computation in Example 3.2.1:
clear all
n=30 % number of grid points
TOL =10^ -4;
[iter ,t,u,y,v,z]= bvp4_intBC(n,TOL);
K=iter % number of iterations
h=1/n;
for i=1:n+1

x=(i-1)*h;
ud(i)=5/6+x^3 -3/4*x^4; % exact solution
err(i)=u(i)-ud(i);

end
error=chuan(err)

function [iter ,t,u,y,v,z]= bvp4_intBC(n,TOL)
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% function for computing the solution of 4th order BVP with
integral boundary condition

h=1/n;
iter =0;
for i=1:n+1

t(i)=(i-1)*h;
s(i)=(i-1)*h;
p0(i)=f(t(i) ,0.1,0.1,0,0);

end
alpha0 =0.1;
ssp =1; ssa=1;
while ssp > TOL || ssa > TOL

iter=iter +1;
for i=1:n+1

for j=1:n+1
Gp(j)= G(t(i),s(j))*p0(j);
G1p(j)= G1(t(i),s(j))*p0(j);
G2p(j)= G2(t(i),s(j))*p0(j);
G3p(j)= G3(t(i),s(j))*p0(j) ;

end
u(i)=trap(0,1,n,Gp)+alpha0;
y(i)=trap(0,1,n,G1p);
v(i)=trap(0,1,n,G2p);
z(i)=trap(0,1,n,G3p);
p(i)=f(t(i),u(i),y(i),v(i),z(i));
gu(i)=gs(t(i))*u(i);

end
alpha=trap(0,1,n,gu);
ssp=chuan(p-p0);
ssa=abs(alpha -alpha0);
p0=p;
alpha0=alpha;

end
end

function hvp = f(t,u,y,v,z) % right -hand side function f
hvp=-18+u^2/5 -(5/6+t^3 -3/4 *t^4) ^2/5;
end

function g_s=gs(s) % function g(s)
g_s = 4*s^4;
end

function green = G(t,s) % Green 's function
if s <= t

green= -(1/6)*t^3*(1 -s)^2+(t-s)^3/6;
else

green= -(1-s)^2*t^3/6;
end
end
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function green1 = G1(t,s)
if s <= t

green1= (-t^2*(1 -s)^2+(t-s)^2)/2;
else

green1= -t^2*(1-s)^2/2;
end
end

function green2 = G2(t,s)
if s <= t

green2= -t*(1-s)^2+(t-s);
else

green2=-t*(1-s)^2;
end
end

function green3 = G3(t,s)
if s < t

green3= -(1-s)^2+1;
elseif s>t

green3=-(1-s)^2;
else

green3=-(1-s)^2+1/2;
end
end

function trap=trap(a,b,n,f)
h=(b-a)/n;
S=0;
for j=2:n

S=S+f(j);
end
S=S+(f(1)+f(n+1))/2;
trap=S*h;
end

function chuan=chuan(y)
chuan=norm(y,inf);
end

III. Numerical computation in Example 4.1.1:
clear all
for n = [50 100 150 200 300 400 500 800 1000]

n % number of grid points
h=1/n;
h_square = h^2
% [iter ,x,u]= bvp4_2(n,h^2);
[iter ,x,u]=ide4(n,10^( -10));
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m=iter % number of iterations
for i=1:n+1

err(i)=u(i)-ucx(x(i));
end
error=chuan(err)

end

function [iter ,x,u]=ide4(n,TOL)
% function for computing the solution of 4th order IDE
h=1/n;
iter =0;
for i=1:n+1

t(i)=(i-1)*h;
x(i)=(i-1)*h;
p0(i)=f(x(i) ,0,0,0);
ud(i)=ucx(x(i));

end
for i=1:n+1

for j=1:n+1
k(i,j)=ker(x(i),t(j));

end
end
ssp =1;
ssu =1;
while and(ssp > TOL ,iter <1000)

iter=iter +1;
for i=1:n+1

for j=1:n+1
Gp(j)= G(x(i),t(j))*p0(j);
G1p(j)= G1(x(i),t(j))*p0(j);

end
u(i)=trap(0,1,n,Gp);
y(i)=trap(0,1,n,G1p);
err(i)=u(i)-ud(i);

end
ssu=chuan(err);
for i=1:n+1

for j=1:n+1
ku(j)= k(i,j)*u(j);

end
z(i)=trap(0,1,n,ku);

end
for i=1:n+1

p(i)=f(x(i),u(i),y(i),z(i));
end
ssp=chuan(p-p0);
p0=p;

end
for i=1:n+1
err(i)=u(i)-ud(i);
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end
ssu=chuan(err);
end

function ucx=ucx(x) % exact solution
ucx=sin(pi*x);
end

function ker=ker(x,t) % kernel function
ker = exp(x)* sin(pi*t);
end

function hvp=f(x,u,y,z) % right -hand side function
hvp=u^2*z + 2*u*y/2- exp(x)/2*( sin(pi*x))^2 + pi^4*sin(pi*x

) - pi*sin(2*pi*x)/2;
end

function green = G(x,s) % Green 's function
if x <= s

green = x*(s-1)*(s^2-2*s+x^2)/6;
else

green = s*(x-1)*(x^2-2*x+s^2)/6;
end
end

function green1 = G1(x,s)
if x <= s

green1 = (s-1) *(3*x^2-2*s+s^2) /6;
else

green1 = s*(3*x^2-6*x+s^2+2) /6;
end
end

function trap=trap(a,b,n,f)
h=(b-a)/n;
S=0;
for j=2:n

S=S+f(j);
end
S=S+(f(1)+f(n+1))/2;
trap=S*h;
end

function chuan=chuan(y)
chuan=norm(y,inf);
end

IV. Numerical computation in Example 4.2.1:
clear all
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for n = [50 100 150 200 300 400 500 800 1000]
n % number of grid points
c1=1; c2=1; c3=exp(1);
[iter ,t,u,v]=FDE3(n,10^( -10),c1,c2,c3);
h=1/n;
h_square=h*h
iter % number of iterations
for i=1:n+1

err(i)=u(i)-ucx(t(i));
end
error=chuan(err)

end

function [iter ,t,u,v]=FDE3(n,TOL ,c1,c2,c3)
% function for computing the solution of 3rd order FDE
h=1/n;
iter =0;
for i=1:n+1

t(i)=(i-1)*h;
s(i)=(i-1)*h;
xi(i)=phi(t(i));
g(i)=(c3-c2)/2*t(i)^2 + c2*t(i) +c1;
gp(i)=(c3 -c2)/2*xi(i)^2 + c2*xi(i) +c1;
psi0(i)=f(t(i) ,0,0);

end
ssp =1;
while and(ssp > TOL , iter <100)

iter=iter +1;
for i=1:n+1

for j=1:n+1
Gp(j)= G(t(i),s(j))*psi0(j);
G1p(j)= G(xi(i),s(j))*psi0(j);

end
u(i)=trap(0,1,n,Gp)+g(i);
v(i)=trap(0,1,n,G1p)+gp(i);
psi(i)=f(t(i),u(i),v(i));

end
ssp=chuan(psi -psi0);
psi0=psi;

end
end

function ucx=ucx(x) % exact solution
ucx=exp(x);
end

function phi=phi(x)
phi=x/2;
end
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function hvp=f(t,u,v)
hvp=exp(t)-u/4+v^2/4;
end

function green = G(t,s)
if s <= t

green= s/2*(t^2-2*t+s);
else

green= t^2/2*(s-1);
end
end

function trap=trap(a,b,n,f)
h=(b-a)/n;
S=0;
for j=2:n

S=S+f(j);
end
S=S+(f(1)+f(n+1))/2;
trap=S*h;
end

function chuan=chuan(y)
chuan=norm(y,inf);
end


