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Introduction

1. Overview of research situation and the ne-
cessity of the research

Numerous problems in the fields of mechanics, physics, biology, environ-
ment, etc. are reduced to boundary value problems for high order nonlinear
ordinary differential equations (ODE), integro-differential equations (IDE) and
functional differential equations (FDE). The study of qualitative aspects of
these problems such as the existence, uniqueness and properties of solutions,
and the methods for finding the solutions always are of interests of mathemati-
cians and engineers. One can find exact solutions of the problems in a very small
number of special cases. In general, one needs to seek their approximations by
approximate methods, mainly numerical methods.

Among higher order equations, fourth order ones have been widely studied on
both qualitative and quantitative aspects because of their various applications.
Some doctoral theses on nonlinear fourth order boundary value problems have
been successfully defended in Vietnam recently, such as those of Ngo Thi Kim
Quy (2017) and Nguyen Thanh Huong (2019).

Besides the fourth order equations, third order ones have also received atten-
tion from researchers because they are the mathematical models of numerous
problems in chemical engineering, heat conduction, astrophysics, etc... Con-
cerning the not fully or fully third order differential equations

u′′′(t) = f(t, u(t), u′(t), u′′(t)), 0 < t < 1 (1)

with different boundary conditions, there have been many studies on qualita-
tive aspects such as those of Li & Li (2017), Yao & Feng (2002), Feng (2008),
Hopkin & Kosmatov (2007), Bai (2008), Sun et al. (2014),... By different
methods like the lower and upper solutions method, Schauder’s and Krasnosel-
skii’s fixed point theorems, etc... they have established the existence, positivity
and monotony of solutions under complicated conditions that are hard to verify.
Moreover, no examples of solutions are shown although the sufficient conditions
are satisfied and the verification of them is difficult. Some other authors such
as Pandey (2016, 2017), Al-Said & Noor (2007), Danaf (2008), Khan & Sultana
(2012), Lv & Gao (2017), He (2020) under the assumptions that the problems
have unique solution have proposed solution methods like the use of difference
method for the derivatives, polynomial or non-polynomial splines, method of
series,...

Therefore, it is of great necessity to study sufficient conditions that are easy
to verify for the existence and uniqueness of solutions of boundary value prob-
lems for nonlinear third order differential equations. Also, it is no less important
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to construct efficient numerical methods for finding the solutions of these prob-
lems.

Recently, third and fourth order nonlinear equations with integral boundary
conditions have gathered plenty of interest among researchers. Some results
have been achieved on the existence of solutions like those of Boucherif et al.
(2009), Guo et al. (2012), Wang (2015), Benaicha et al. (2016), Li et al.
(2013),etc... Integro-differential equations and functional differential equations
have also received increasing attention. Fascinating results on the existence and
methods for finding solutions have been obtained by Aruchnan et al. (2015),
Chen et al. (2015), Lakestania et al. (2010), Tahernezhad (2020), Wang (2020),
Bica et al. (2016), Khuri & Sayfy (2018), Hou (2021),... Sufficient conditions
for these results were often complicated and difficult to verify. Therefore, the
proposal of a unified approach to these problems on both qualitative and quan-
titative aspects under easy-to-verify conditions is of great need.

Motivated by the above facts, in this thesis we shall study the topic: ”The
existence, uniqueness and iterative methods for some nonlinear boundary value
problems of ordinary differential equations”.

2. Objectives of the research

The aim of the thesis is to study the existence, uniqueness of solutions and
solution methods for some BVPs for high order nonlinear differential, integro-
differential and functional differential equations.

3. Contents and approach of the research

The thesis intends to study the following contents:

Content 1 The existence, uniqueness of solutions and iterative methods for
some BVPs for third order nonlinear differential equations.

Content 2 The existence, uniqueness of solutions and iterative methods for
some problems for third and fourth order nonlinear differential equations with
integral boundary conditions.

Content 3 The existence, uniqueness of solutions and iterative methods for
some BVPs for integro-differential and functional differential equations.

We shall approach to the above contents from both theoretical and practi-
cal points of view, which are the study of qualitative aspects of the existence
solutions and construction of numerical methods for finding the solutions. The
methodology through all the thesis is to the reduction of BVPs to operator
equations in appropriate spaces, use Banach fixed point theorem for establish-
ing the existence and uniqueness of solutions and for proving the convergence
of continuous iterative methods, then construct discrete realizations of these
methods.
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4. Structure of the thesis

Except for ”Introduction”, ”Conclusions” and ”References”, the thesis con-
tains 4 chapters. In Chapter 1 we recall some auxiliary knowledges. The results
of the thesis are presented in Chapters 2, 3 and 4. Namely,

1. Chapter 2 presents the results on the existence, uniqueness of solutions and
positive solutions for third order nonlinear BVPs and the construction of
numerical methods for finding the solutions.

2. Chapter 3 is devoted to the study of the existence, uniqueness of solutions
and construction of iterative methods for finding the solutions for nonlin-
ear third and fourth order differential equations with integral boundary
conditions.

3. Chapter 4 presents the results on the existence, uniqueness of solutions and
construction of numerical methods for finding the solutions of nonlinear
integro-differential equations and functional differential equations.

5. The achievements of the thesis

The thesis achieves the following results:

(i) The establishment of theorems on the existence, uniqueness of solutions
and positive solutions for third order nonlinear boundary value problems
and the construction of numerical methods for finding the solutions.

(ii) The establishment of the existence, uniqueness of solutions and construc-
tion of iterative methods for finding the solutions for nonlinear third and
fourth order differential equations with integral boundary conditions.

(iii) The establishment of the existence, uniqueness of solutions and construc-
tion of numerical methods for finding the solutions of fourth order integro-
differential equations and of third order functional differential equations.

The obtained results of the thesis are published in the six papers [AL1]-[AL6]
(see ”List of the works of the author related to the thesis”).
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Chapter 1

Preliminaries

This chapter contains essential preliminary knowledges for the next chapters,
taken from the books of Zeidler (1986), Melnikov et al. (2012), Burden and
Faires (2011). The chapter includes:

1. Schauder’s and Banach’s fixed-point theorems.

2. Green’s functions.

3. Some quadrature formulas.
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Chapter 2

Existence results and an iterative
method for two-point third order
nonlinear BVPs

In this chapter, we investigate the existence, uniqueness of solution and the
iterative methods on continuous level as well as discrete level for solving some
two-point boundary value problems for nonlinear fully third-order differential
equations.

2.1 Existence results and a continuous itera-
tive method for third order nonlinear BVPs

Consider the boundary value problem

u′′′(t) = f(t, u(t), u′(t), u′′(t)), 0 < t < 1

B1[u] = B2[u] = B3[u] = 0,
(2.1)

where B1[u], B2[u], B3[u] are the boundary condition operators

B1[u] = α1u(0) + β1u
′(0) + γ1u

′′(0),

B2[u] = α2u(0) + β2u
′(0) + γ2u

′′(0),

B3[u] = α3u(1) + β3u
′(1) + γ3u

′′(1),

(2.2)

satisfying

rank

(
α1 β1 γ1 0 0 0
α2 β2 γ2 0 0 0
0 0 0 α3 β3 γ3

)
= 3.

Denote by G(t, s) the Green’s function of the corresponding homogeneous prob-
lem of (2.1), by G1(t, s), G2(t, s) the first and second derivatives with respect
to t of G(t, s), G0(t, s) = G(t, s) and

Mi = max
0≤t≤1

∫ 1

0
|Gi(t, s)|ds, i = 0, 1, 2. (2.3)

For each M > 0, introduce the domain

DM = {(t, x, y, z)| 0 ≤ t ≤ 1, |x| ≤M0M, |y| ≤M1M, |z| ≤M2M}.
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Theorem 2.1.2 (Existence of solutions). Suppose that there exists a number
M > 0 such that the function f(t, x, y, z) is continuous and bounded by M in
the domain DM , i.e.,

|f(t, x, y, z)| ≤M (2.4)

for any (t, x, y, z) ∈ DM .
Then, the problem (2.1) has a solution u(t) satisfying

|u(t)| ≤M0M, |u′(t)| ≤M1M, |u′′(t)| ≤M2M for any 0 ≤ t ≤ 1. (2.5)

This theorem can be proved by reducing the problem (2.1) to the operator
equation Aϕ = ϕ, where the operator A is defined by

(Aϕ)(t) = f(t, u(t), u′(t), u′′(t)), (2.6)

where u(t) is a solution of the problem

u′′′(t) = ϕ(t), 0 < t < 1

B1[u] = B2[u] = B3[u] = 0.
(2.7)

Suppose that G(x, t) and G1(x, t) are of constant signs in the square Q = [0, 1]2.
For a function H(x, t) defined and having a constant sign in Q we define

σ(H) = sign(H(t, s)) =

{
1, if H(t, s) ≥ 0,
−1, if H(t, s) < 0.

In order to investigate the existence of positive solutions of the problem (2.1)
we introduce the notations

D+
M = {(t, x, y, z)| 0 ≤ t ≤ 1, 0 ≤ x ≤M0M,

0 ≤ σ(G)σ(G1)y ≤M1M, |z| ≤M2M},
SM = {ϕ ∈ C[0, 1]| 0 ≤ σ(G)ϕ ≤M}.

Theorem 2.1.3 (Existence of positive solution). Suppose that there exists a
number M > 0 such that the function f(t, x, y, z) is continuous and

0 ≤ σ(G)f(t, x, y, z) ≤M (2.8)

for any (t, x, y, z) ∈ D+
M . Then, the problem (2.1) has a monotone nonnegative

solution u(t) satisfying

0 ≤ u(t) ≤M0M, 0 ≤ σ(G)σ(G1)u
′(t) ≤M1M, |u′′(t)| ≤M2M. (2.9)

Theorem 2.1.4 (Existence and uniqueness of solution). Assume that there
exist numbers M,L0, L1, L2 ≥ 0 such that

|f(t, x, y, z)| ≤M,

|f(t, x2, y2, z2) − f(t, x1, y1, z1)| ≤ L0|x2 − x1| + L1|y2 − y1| + L2|z2 − z1|
(2.10)

for any (t, x, y, z), (t, xi, yi, zi) ∈ DM (i = 1, 2) and

q := L0M0 + L1M1 + L2M2 < 1. (2.11)

Then, the problem (2.1) has a unique solution u(t) such that |u(t)| ≤ M0M,
|u′(t)| ≤M1M, |u′′(t)| ≤M2M for any 0 ≤ t ≤ 1.
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Consider the following iterative method for solving the problem (2.1):

1. Given an initial approximation ϕ0 ∈ B[0,M ], say

ϕ0(t) = 0. (2.12)

2. Knowing ϕk (k = 0, 1, ...), compute

uk(t) =

∫ 1

0
G(t, s)ϕk(s) ds, yk(t) =

∫ 1

0
G1(t, s)ϕk(s) ds,

zk(t) =

∫ 1

0
G2(t, s)ϕk(s) ds.

(2.13)

3. Update the new approximation

ϕk+1(t) = f(t, uk(t), yk(t), zk(t)). (2.14)

Set

pk =
qk

1− q
‖ϕ1 − ϕ0‖. (2.15)

Theorem 2.1.6 (Convergence). Under the assumptions of Theorem 2.1.4 the
above iterative method converges and there hold the estimates

‖uk − u‖ ≤M0pk, ‖u′k − u′‖ ≤M1pk, ‖u′′k − u′′‖ ≤M2pk, (2.16)

where u is the exact solution of the problem (2.1), and M0,M1,M2 are given by
(2.3).

To illustrate the theoretical results, we consider the problem (2.1) with some
particular cases of boundary conditions. Problems with such boundary condi-
tions have been considered by Yao & Feng (2002), Feng & Liu (2005), Hopkins
& Kosmatov (2007), Li & Li ((2017), Bai (2008). Applying our approach to the
examples taken from these papers often yield superior qualitative results, such
as the establishment of the existence and uniqueness of solution while these
authors achieved the existence only, and better solution estimates.

2.2 Numerical methods for third order nonlin-
ear BVPs

In this section, we propose iterative methods on discrete level of second- and
third-order accuracy for the problem

u(3)(t) = f(t, u(t), u′(t), u′′(t)), 0 < t < 1,

u(0) = 0, u′(0) = 0, u′(1) = 0.
(2.17)

This is a special case of the problem (2.1). The iterative method on contin-
uous level has been described in the previous section. In order to construct
the corresponding discrete iterative methods, we cover the interval [0, 1] by
the uniform grid ω̄h = {ti = ih, h = 1/N, i = 0, 1, ..., N} and denote by
Φk(t), Uk(t), Yk(t), Zk(t) the grid functions defined on the grid ω̄h and approxi-
mating the functions ϕk(t), uk(t), yk(t), zk(t) on this grid, respectively.

First, consider the following discrete iterative method, named Method 1:
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1. Given
Φ0(ti) = f(ti, 0, 0, 0), i = 0, ..., N. (2.18)

2. Knowing Φk(ti), k = 0, 1, ...; i = 0, ..., N, compute approximately the
integrals (2.13) by the trapezoidal rule

Uk(ti) =
N∑
j=0

hρjG0(ti, tj)Φk(tj), Yk(ti) =
N∑
j=0

hρjG1(ti, tj)Φk(tj),

Zk(ti) =
N∑
j=0

hρjG
∗
2(ti, tj)Φk(tj), i = 0, ..., N,

(2.19)

where

ρj =

{
1/2, j = 0, N
1, j = 1, 2, ..., N − 1

, G∗2(t, s) =


s, 0 ≤ s < t ≤ 1,
s− 1/2, s = t,
s− 1, 0 ≤ t < s ≤ 1.

(2.20)

3. Update
Φk+1(ti) = f(ti, Uk(ti), Yk(ti), Zk(ti)). (2.21)

Theorem 2.2.6 (Error estimates). For the approximate solution of the problem
(2.17) obtained by the discrete iterative method (2.18)-(2.21) on ω̄h we have the
estimates

‖Uk − u‖ ≤M0pk +O(h2), ‖Yk − u′‖ ≤M1pk +O(h2),

‖Zk − u′′‖ ≤M2pk +O(h2),

where M0 = 1
12 ,M1 = 1

8 ,M2 = 1
2, and pk is defined by (2.15).

Method 2:
The steps of this method are the same as of Method 1 with an essential
difference in Step 2 and now the number of grid points is even N = 2n, namely:
2’: Knowing Φk(ti), k = 0, 1, ...; i = 0, ..., N, compute approximately the
integrals by the modified Simpson rule

Uk(ti) = F (G0(ti, .)Φk(.)), Yk(ti) = F (G1(ti, .)Φk(.)), Zk(ti) = F (G∗2(ti, .)Φk(.)),

where

F (Gl(ti, .)Φk(.)) =


∑N

j=0 hρjGl(ti, tj)Φk(tj) +
h

6

(
Gl(ti, ti−1)Φk(ti−1)

−2Gl(ti, ti)Φk(ti) +Gl(ti, ti+1)Φk(ti+1)
)

if i is odd ,∑N
j=0 hρjGl(ti, tj)Φk(tj) if i is even , l = 0, 1; i = 0, 1, ..., N.

ρj =


1/3, j = 0, N
4/3, j = 1, 3, ..., N − 1
2/3, j = 2, 4, ..., N − 2,

F (G∗2(ti, .)Φk(.)) is computed in the same way as F (Gl(ti, .)Φk(.)) above, where
Gl is replaced by G∗2 defined by (2.20).
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Theorem 2.2.9 (Error estimates). Assume that f(t, x, y, z) has all continuous
partial derivatives up to fourth order in DM . Then for the approximate solution
of the problem (2.17) obtained by Method 2 on ω̄h we have the estimates

‖Uk − u‖ ≤M0pk +O(h3), ‖Yk − u′‖ ≤M1pk +O(h3),

‖Zk − u′′‖ ≤M2pk +O(h3).

For confirming the efficiency of the above discrete iterative methods, we
conduct numerical experiments on some examples of the problems where exact
solutions are either known or unknown. Below is a notable example:
Example 2.2.1. (Pandey 2016) Consider the problem

u′′′(x) = x4u(x)− u2(x) + g(x), 0 < x < 1,

u(0) = 0, u′(0) = −1, u′(1) = sin(1),
(2.22)

where g(x) = −3 sin(x) − cos(x)(x − 1) − x4(x − 1) sin(x) + (x − 1)2 sin2(x).
The exact solution is u∗(x) = (x− 1) sin(x). The iterative process is continued
until ‖Φk+1 − Φk‖ ≤ TOL, TOL is a given tolerance. Results of the iterative
methods are given in Table 2.1 below. Here N + 1 is the number of grid points,

Table 2.1: Convergence in Example 2.2.1 with TOL = 10−10

N K Errortrap Order ErrorSimp Order

8 7 9.9235e-04 9.7222e-04

16 7 2.4732e-04 2.0045 1.3187e-04 2.8822

32 7 6.1782e-05 2.0011 1.6896e-05 2.9643

64 7 1.5443e-05 2.0003 2.1301e-06 2.9877

128 7 3.8605e-06 2.0001 2.6774e-07 2.9923

256 7 9.6511e-07 2.0000 3.3544e-08 2.9965

512 7 2.4128e-07 2.0000 4.1977e-09 2.9984

K is the number of iterations, Errortrap, ErrorSimp are errors ‖UK − u∗‖ of
Method 1 and Method 2, Order is the order of convergence calculated by

Order = log2

‖UN/2
K − u∗‖
‖UN

K − u∗‖
,

the superscripts N/2 and N of UK mean that UK is computed on the grid with
the corresponding number of grid points.

Pandey used iteration method to solve nonlinear system of equations arising
after discretization of the problem by finite difference method. The iteration
process is continued until ‖Uk+1 − Uk‖ ≤ 10−10. The number of iterations was
not reported. The accuracy for some different N is given in Table 2.2.

Table 2.2: Pandey’s results in Example 2.2.1

N 8 16 32 64

Error 0.11921225e-01 0.33391170e-02 0.87742222e-03 0.23732412e-03

It is clear that our discrete methods give better results than that of Pandey.
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Chapter 3

Existence results and an iterative
method for some nonlinear ODEs with
integral boundary conditions

3.1 Existence results and an iterative method
for fully third order nonlinear integral BVPs

Consider the boundary value problem

u′′′(t) = f(t, u(t), u′(t), u′′(t)), 0 < t < 1, (3.1)

u(0) = u′(0) = 0, u(1) =

∫ 1

0
g(s)u(s)ds, (3.2)

where f : [0, 1]× R3 → R+, g : [0, 1]→ R+.
Similarly to the problems in the previous chapter, we reduce the problem

(3.1)-(3.2) to an operator equation and then study the resulting equation. De-
note by B the space of pairs w = (ϕ, α)T , where ϕ ∈ C[0, 1], α ∈ R, and equip
it with the norm

‖w‖B = max(‖ϕ‖, k|α|), (3.3)

where ‖ϕ‖ = max0≤t≤1 |ϕ(t)|, k is a number, k ≥ 1.
Define the operator A : B → B by

Aw =

(
f(t, u(t), u′(t), u′′(t)∫ 1

0 g(s)u(s)ds

)
, (3.4)

where u(t) is the solution of the problem

u′′′(t) = ϕ(t), 0 < t < 1, (3.5)

u(0) = u′(0) = 0, u(1) = α. (3.6)

Thus, the problem (3.1)-(3.2) is reduced to the fixed point problem for A.
Denote byG0(t, s) the Green’s function of the corresponding homogeneous prob-
lem of (3.5)-(3.6), by G1(t, s), G2(t, s) its first and second derivative with respect
to t, and

Mi = max
0≤t≤1

∫ 1

0
|Gi(t, s)|ds, i = 0, 1, 2.
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We have M0 = 2
81 ,M1 = 1

18 ,M2 = 2
3 . For any M > 0 define the domain

DM = {(t, x, y, z) | 0 ≤ t ≤ 1, |x| ≤ (M0 +
1

k
)M,

|y| ≤ (M1 +
2

k
)M, |z| ≤ (M2 +

2

k
)M}.

(3.7)

Next, denote

C0 =

∫ 1

0
g(s)ds, C2 =

∫ 1

0
s2g(s)ds. (3.8)

Theorem 3.1.1 (Existence of solution). Suppose that the function f(t, x, y, z)
is continuous and bounded by M in DM , that is,

|f(t, x, y, z)| ≤M in DM (3.9)

and
q1 := kC0M0 + C2 ≤ 1. (3.10)

Then, the problem (3.1)-(3.2) has a solution.

Theorem 3.1.3 (Existence and uniqueness). Suppose that there exist numbers
M > 0, L0, L1, L2 ≥ 0 such that

(H1) |f(t, x, y, z)| ≤M, ∀(t, x, y, z) ∈ DM .

(H2) |f(t, x2, y2, z2) − f(t, x1, y1, z1)| ≤ L0|x2 − x1| + L1|y2 − y1| + L2|z2 −
z1|, ∀(t, xi, yi, zi) ∈ DM , i = 1, 2.

(H3) q := max{q1, q2} < 1, where q1 = kC0M0 + C2 was defined as in (3.10)
and

q2 = L0(M0 +
1

k
) + L1(M1 +

2

k
) + L2(M2 +

2

k
). (3.11)

Then, the problem (3.1)-(3.2) has a unique solution u ∈ C3[0, 1].

The conditions for the existence and uniqueness of positive solution are also
established in this section.

Iterative method:

1. Given w0 = (ϕ0, α0)
T ∈ B[0,M ], say,

ϕ0(t) = f(t, 0, 0, 0), α0 = 0.

2. Knowing ϕn(t) and αn(t) (n = 0, 1, ...), compute

un(t) =

∫ 1

0
G(t, s)ϕn(s)ds+ αnt

2, yn(t) =

∫ 1

0
G1(t, s)ϕn(s)ds+ 2αnt,

zn(t) =

∫ 1

0
G2(t, s)ϕn(s)ds+ 2αn.

3. Update

ϕn+1(t) = f(t, un(t), yn(t), zn(t)), αn+1 =

∫ 1

0
g(s)un(s)ds.
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Theorem 3.1.5. Under the assumptions of Theorem 3.1.3 the above iterative
method converges, and for the approximate solution un(t) and its derivatives
there hold the estimates

‖un − u‖ ≤
(
M0 +

1

k

)
pnd, ‖u(i)

n − u(i)‖ ≤
(
Mi +

2

k

)
pnd, i = 1, 2,

where pn = qn

1−q , d = ‖w1 − w0‖B, w1 = (ϕ1, α1)
T .

Many examples of problems where exact solutions are either known or un-
known are given in order to confirm the validity of the obtained theoretical
results and the efficiency of the proposed iterative method. Below is an exam-
ple where exact solution is unknown.
Example 3.1.4. Consider the problem

u′′′(t) = −(u2eu +
1

5
sin(u′) +

1

8
cos(u′′) + 1), 0 < t < 1,

u(0) = u′(0) = 0, u(1) =

∫ 1

0
s4u(s)ds.

With M = 1.7, k = 4, it can be verified that the conditions for the existence
and uniqueness of solution are satisfied. This solution is found using the above
iterative method after 6 iterations until the difference between two successive
iterations is less than 10−4.

3.2 Existence results and an iterative method
for a fully fourth order nonlinear integral
BVP

Consider the problem

u′′′′(t) = f(t, u(t), u′(t), u′′(t), u′′′(t)), 0 < t < 1, (3.12)

u′(0) = u′′(0) = u′(1) = 0, u(0) =

∫ 1

0
g(s)u(s)ds, (3.13)

where f : [0, 1]× R4 → R+, g : [0, 1]→ R+ are continuous functions.
As in the previous section, consider the space B = C[0, 1] × R of pairs

w = (ϕ, µ)T , ϕ ∈ C[0, 1], µ ∈ R, and equip it with the norm

‖w‖B = max(‖ϕ‖, r|µ|), r ≥ 1 (3.14)

and define the operator A by

Aw =

(
f(t, u(t), u′(t), u′′(t), u′′′(t))∫ 1

0 g(s)u(s)ds

)
, (3.15)

where u(t) is the solution of the problem

u′′′′(t) = ϕ(t), 0 < t < 1, (3.16)

u′(0) = u′′(0) = u′(1) = 0, u(0) = µ. (3.17)
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Denote byG0(t, s) the Green’s function of the corresponding homogeneous prob-
lem and by Gi(t, s), i = 1, 2, 3 its first, second and third derivatives with respect
to t, and

Mi = max
0≤t≤1

∫ 1

0
|Gi(t, s)|ds, i = 0, 1, 2, 3.

It is easy to verify that M0 = 0.0139,M1 = 0.0247,M2 ≤ 0.1883,M3 = 1.3333.
Also, we define

DM = {(t, u, y, v, z) | 0 ≤ t ≤ 1, |u| ≤ (M0 + 1
r)M,

|y| ≤M1M, |v| ≤M2M, |z| ≤M3M}
(3.18)

and denote

C0 =

∫ 1

0
g(s)ds > 0. (3.19)

Theorem 3.2.3 (Existence and uniqueness). Suppose that there exist numbers
M > 0, L0, L1, L2, L3 ≥ 0 such that

1. |f(t, u, y, v, z)| ≤M, ∀(t, u, y, v, z) ∈ DM .

2. |f(t, u2, y2, v2, z2)− f(t, u1, y1, v1, z1)| ≤ L0|u2 − u1|+ L1|y2 − y1|+ L2|v2 −
v1|+ L3|z2 − z1|, ∀(t, ui, yi, vi, zi) ∈ DM , i = 1, 2.

3. q := max{q1, q2} < 1, where q1 = rC0M0 + C0 and

q2 = L0(M0 + 1
r) + L1M1 + L2M2 + L3M3.

Then the problem has a unique solution u ∈ C4[0, 1].

The existence and uniqueness of positive solution are also established.
Iterative method on continuous level:

1. Given
ϕ0(t) = f(t, 0, 0, 0, 0), µ0 = 0 (3.20)

2. Knowing ϕk(t) and µk (k = 0, 1, ...) compute

uk(t) =

∫ 1

0
G0(t, s)ϕk(s)ds+ µk, yk(t) =

∫ 1

0
G1(t, s)ϕk(s)ds,

vk(t) =

∫ 1

0
G2(t, s)ϕk(s)ds, zk(t) =

∫ 1

0
G3(t, s)ϕk(s)ds,

(3.21)

3. Update

ϕk+1(t) = f(t, uk(t), yk(t), vk(t), zk(t)), µk+1 =

∫ 1

0
g(s)uk(s)ds. (3.22)
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Theorem 3.2.5 (Convergence). The iterative method (3.20)-(3.22) converges
and for the approximate solution uk(t) there hold estimates

‖uk − u‖ ≤
(
M0 +

1

r

)
pkd, ‖u′k − u′‖ ≤M1pkd,

‖u′′k − u′′‖ ≤M2pkd, ‖u′′′k − u′′′‖ ≤M3pkd.

where u is the exact solution of the problem (3.12)-(3.13), pk = qk

1−q , d = ‖w1 −
w0‖B and r is the number available in (3.14).

Iterative method on discrete level:
Denote by Φk(t), Uk(t), Yk(t), Vk(t), Zk(t) the grid functions defined on the uni-
form grid ω̄h = {ti = ih, h = 1/N, i = 0, 1, ..., N} approximating the functions
ϕk(t), uk(t), yk(t), vk(t), zk(t) and denote by µ̂k the approximation of µk. Con-
sider the discrete iterative method:

1. Given
Φ0(ti) = f(ti, 0, 0, 0, 0), i = 0, ..., N ; µ̂0 = 0

2. Knowing Φk(ti), i = 0, ..., N and µ̂k (k = 0, 1, ...) compute approximately
the integrals (3.21) by trapezoidal rule

Uk(ti) =
N∑
j=0

hρjG0(ti, tj)Φk(tj) + µ̂k, Yk(ti) =
N∑
j=0

hρjG1(ti, tj)Φk(tj),

Vk(ti) =
N∑
j=0

hρjG2(ti, tj)Φk(tj), Zk(ti) =
N∑
j=0

hρjG
∗
3(ti, tj)Φk(tj), i = 0, ..., N,

where ρ0 = ρN = 1/2; ρj = 1, j = 1, ..., N − 1 and

G∗3(t, s) =


−(1− s)2 + 1, 0 ≤ s < t ≤ 1,
−(1− s)2 + 1/2, s = t,
−(1− s)2, 0 ≤ t < s ≤ 1.

3. Update

Φk+1(ti) = f(ti, Uk(ti), Yk(ti), Vk(ti), Zk(ti)), µ̂k+1 =
N∑
j=0

hρjg(tj)Uk(tj).

Theorem 3.2.9 (Error estimates). Assume that the conditions in Theorem
3.2.3 are satisfied. Assume also that f(t, u, y, v, z) has continuous derivatives
up to second order and g(s) ∈ C2[0, 1]. Then, for the approximate solution of
the problem (3.12), (3.13) obtained by the discrete iterative method on uniform
grid with grid size h there hold the estimates

‖Uk − u‖ ≤
(
M0 +

1

r

)
pkd+O(h2), ‖Yk − u′‖ ≤M1pkd+O(h2),

‖Vk − u′′‖ ≤M2pkd+O(h2), ‖Zk − u′′′‖ ≤M3pkd+O(h2).

(3.23)
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Figure 3.1: Graph of the approximate solution in Example 3.2.1

Many examples of problems where exact solutions are either known or un-
known are given in order to confirm the validity of the obtained theoretical
results and the efficiency of the proposed iterative method. Below is a notable
example.
Example 3.2.3. (Benaicha &Haddouchi, 2016) Consider the problem

u′′′′(t) = −
√

(1 + u)− sinu, 0 < t < 1,

u′(0) = u′′(0) = u′(1) = 0, u(0) =

∫ 1

0
su(s)ds.

By using the above theoretical results, the problem can be proved to have unique
positive solution, while Benaicha &Haddouchi could only show the existence of
a positive solution. The approximate positive solution found by the above
discrete method is depicted in Figure 3.1.
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Chapter 4

Existence results and iterative methods
for integro-differential and functional
differential equations

4.1 Existence results and an iterative method
for an integro-differential equation

In this section, we consider the problem

u(4)(x) = f(x, u(x), u′(x),

∫ 1

0
k(x, t)u(t)dt),

u(0) = 0, u(1) = 0, u′′(0) = 0, u′′(1) = 0,

(4.1)

where f(x, u, v, z) and k(x, t) are continuous functions.
Using the same methodology as in previous chapters, we introduce the operator
A defined in the space C[0, 1] by

(Aϕ)(x) = f(x, u(x), u′(x),

∫ 1

0
k(x, t)u(t)dt), (4.2)

where u(x) is the solution of the problem

u′′′′ = ϕ(x), 0 < x < 1,

u(0) = u′′(0) = u(1) = u′′(1) = 0.
(4.3)

It can be verified that the study of the problem (4.3) can be reduced to the
study of the fixed point of operator A. Denote by G0(t, s) the Green’s function
of the corresponding homogeneous problem and by G1(t, s) its first derivative
with respect to t. Denote

Mi = max
0≤x≤1

∫ 1

0
|Gi(x, s)|ds, i = 0, 1, M2 = max

0≤x≤1

∫ 1

0
|k(x, s)|ds (4.4)

and define the domain

DM = {(x, u, v, z) | 0 ≤ x ≤ 1, |u| ≤M0M, |v| ≤M1M, |z| ≤M0M2M}.
Theorem 4.1.1 (Existence and uniqueness). Suppose that the function k(x, t)
is continuous in the square [0, 1] × [0, 1] and there exist numbers M > 0,
L0, L1, L2 ≥ 0 such that:
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(i) f(x, u, v, z) is continuous in DM and |f(x, u, v, z)| ≤M , ∀(x, u, v, z) ∈ DM .

(ii) |f(x2, u2, v2, z2)− f(x1, u1, v1, z1)| ≤ L0|u2− u1|+L1|v2− v1|+L2|z2− z1|,
∀(xi, ui, vi, zi) ∈ DM , i = 1, 2.

(iii) q = L0M0 + L1M1 + L2M0M2 < 1.

Then the problem (4.1) has a unique solution u ∈ C4[0, 1] satisfying |u(x)| ≤
M0M, |u′(x)| ≤M1M for any 0 ≤ x ≤ 1.

In order to study positive solutions of the problem, introduce the domain

D+
M = {(x, u, v, z) | 0 ≤ x ≤ 1, 0 ≤ u ≤M0M,

|v| ≤M1M, |z| ≤M0M2M}.
(4.5)

and denote
SM = {ϕ ∈ C[0, 1], 0 ≤ ϕ(x) ≤M}.

Theorem 4.1.2 (Positivity of solution). Suppose that the function k(x, t) is
continuous in the square [0, 1]×[0, 1] and there exist numbers M > 0, L0, L1, L2 ≥
0 such that:

(i) f(x, u, v, z) is continuous in D+
M and 0 ≤ f(x, u, v, z) ≤ M, ∀(x, u, v, z) ∈

D+
M and f(x, 0, 0, 0) 6≡ 0.

(ii) |f(x2, u2, v2, z2)− f(x1, u1, v1, z1)| ≤ L0|u2− u1|+L1|v2− v1|+L2|z2− z1|,
∀(xi, ui, vi, zi) ∈ D+

M , i = 1, 2.

(iii) q = L0M0 + L1M1 + L2M0M2 < 1.

Then the problem (4.1) has a unique positive solution u ∈ C4[0, 1] satisfying
0 ≤ u(x) ≤M0M, |u′(x)| ≤M1M for any 0 ≤ x ≤ 1.

Iterative method

1. Given
ϕ0(x) = f(x, 0, 0, 0). (4.6)

2. Knowing ϕm(x) (m = 0, 1, ...), compute

um(x) =

∫ 1

0
G0(x, t)ϕm(t)dt, vm(x) =

∫ 1

0
G1(x, t)ϕm(t)dt,

zm(x) =

∫ 1

0
k(x, t)um(t)dt.

(4.7)

3. Update

ϕm+1(x) = f(x, um(x), vm(x), zm(x)). (4.8)

Theorem 4.1.3 (Convergence). Under the assumptions of Theorem 4.1.1, the
iterative method (4.6)-(4.8) converges and there hold the estimates

‖um − u‖ ≤M0pmd, ‖u′m − u′‖ ≤M1pmd,

where u is the exact solution of the problem (4.1), pm = qm

1−q , d = ‖ϕ1 − ϕ0‖..
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Discrete iterative method

Denote by Φm(x), Um(x), Vm(x), Zm(x) the grid functions on the uniform grid
ω̄h = {xi = ih, h = 1/N, i = 0, 1, ..., N} approximating the functions ϕm(x),
um(x), vm(x), zm(x). Consider the following discrete iterative method:

1. Given
Φ0(xi) = f(xi, 0, 0, 0), i = 0, ..., N. (4.9)

2. Knowing Φm(xi), m = 0, 1, ...; i = 0, ..., N,, compute approximately the
integrals (4.7) by trapezoidal rule

Um(xi) =
N∑
j=0

hρjG0(xi, xj)Φm(xj), Vm(xi) =
N∑
j=0

hρjG1(xi, xj)Φm(xj),

Zm(xi) =
N∑
j=0

hρjk(xi, xj)Um(xj), i = 0, ..., N,

(4.10)

where ρj are the weights of trapezoidal rule.

3. Update
Φm+1(xi) = f(xi, Um(xi), Vm(xi), Zm(xi)). (4.11)

Theorem 4.1.7 (Error estimates). Under the assumptions of Theorem 4.1.1
and f(t, u, v, z) and k(x, t) have all continuous partial derivatives up to second
order. Then the approximate solution of the problem (4.1) is obtained using the
above discrete iterative method on uniform grid with grid size h and there hold
the estimates

‖Um − u‖ ≤M0pmd+O(h2), ‖Vm − u′‖ ≤M2pmd+O(h2). (4.12)

Many examples are given in order to confirm the validity of the obtained the-
oretical results and the efficiency of the proposed iterative method. Below is a
notable example.
Example 4.1.2. Consider the problem (Wang, 2020)

u(4)(x) = sin(πx)[(2− u2(x))

∫ 1

0
tu(t)dt+ 1], x ∈ (0, 1)

u(0) = 0, u(1) = 0, u′′(0) = 0, u′′(1) = 0.

(4.13)

By applying the above theoretical results, it can be proved that the problem
has a unique solution |u(x)| ≤ 0.0143, |u′(x)| ≤ 0.0458 and on the grid with
grid size h = 0.01 and stopping criterion ‖Φm − Φm−1‖ ≤ 10−10 the solution is
found after 7 iterations.

It is worth emphasizing that by the monotone method Wang could only prove
the convergence of the iterative sequences to extremal solutions of the problem
but not the existence and uniqueness of solution.
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4.2 Existence results and an iterative method
for functional differential equations

In this section, we consider the problem

u′′′ = f(t, u(t), u(ϕ(t))), t ∈ [0, a]

B1[u] = b1, B2[u] = b2, B3[u] = b3,
(4.14)

where ϕ(t) is a continuous function mapping [0, a] into itself, B1[u], B2[u], B3[u]
are the boundary condition operators defined in (2.2).
In the space C[a, b] define the operator A by

(Aψ)(t) = f(t, u(t), u(ϕ(t))), (4.15)

where u(t) is the solution of the problem

u′′′(t) = ψ(t), 0 < t < a

B1[u] = b1, B2[u] = b2, B3[u] = b3,
(4.16)

Denote by G(t, s) the Green’s function of the corresponding homogeneous prob-
lem of the problem (4.16),

M0 = max
0≤t≤a

∫ a

0
|G(t, s)|ds. (4.17)

and g(t) is the polynomial of second degree satisfying the boundary conditions

B1[g] = b1, B2[g] = b2, B3[g] = b3, (4.18)

DM =
{

(t, u, v) | 0 ≤ t ≤ a; |u| ≤ ‖g‖+M0M ; |v| ≤ ‖g‖+M0M
}
, (4.19)

Theorem 4.2.2 (Existence and uniqueness). Suppose that:

(i) ϕ(t) is a continuous map from [0, a] into [0, a].

(ii) The function f(t, u, v) is continuous and bounded by M in DM , that is

|f(t, u, v)| ≤M ∀(t, u, v) ∈ DM . (4.20)

f(t, u, v) satisfies the Lipschitz conditions in the variables u, v with the
coefficients L1, L2 ≥ 0 in DM , that is

|f(t, u2, v2)− f(t, u1, v1)| ≤ L1|u2 − u1|+ L2|v2 − v1|
∀(t, ui, vi) ∈ DM (i = 1, 2)

(4.21)

(iv)
q := (L1 + L2)M0 < 1. (4.22)

Then the problem (4.14) has a unique solution u(t) ∈ C3[0, a] satisfying

|u(t)| ≤ ‖g‖+M0M ∀t ∈ [0, a]. (4.23)
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Iterative method

1. Given ψ0 ∈ B[0,M ], say

ψ0(t) = f(t, 0, 0). (4.24)

2. Knowing ψk(t) (k = 0, 1, ...), compute

uk(t) = g(t) +

∫ a

0
G(t, s)ψk(s)ds,

vk(t) = g(ϕ(t)) +

∫ a

0
G(ϕ(t), s)ψk(s)ds.

(4.25)

3. Update
ψk+1(t) = f(t, uk(t), vk(t)). (4.26)

Theorem 4.2.3 (Convergence). Under the assumptions of Theorem 4.2.2 the
above iterative method converges and there holds the estimate

‖uk − u‖ ≤M0pkd,

where u is the exact solution of the problem (4.14) and M0 is given by (4.17),
pk = qk/1− q, d = ‖ψ1 − ψ0‖.
Denote by Φk(t), Uk(t), Vk(t) the grid functions on ω̄h approximating the func-
tions ψk(t), uk(t), vk(t) on this grid.

Discrete iterative method:

1. Given
Ψ0(ti) = f(ti, 0, 0), i = 0, ..., N. (4.27)

2. Knowing Ψk(ti), k = 0, 1, ...; i = 0, ..., N, compute

Uk(ti) = g(ti) +
N∑
j=0

hρjG(ti, tj)Ψk(tj),

Vk(ti) = g(ξi) +
N∑
j=0

hρjG(ξi, tj)Ψk(tj), i = 0, ..., N,

(4.28)

where ρj are the weights of trapezoidal rule and ξi = ϕ(ti).

3. Update
Ψk+1(ti) = f(ti, Uk(ti), Vk(ti)). (4.29)

Theorem 4.2.7 (Error estimates). Under the assumptions of Theorem 4.2.2,
for the approximate solution of the problem (4.14) obtained by the iterative
method (4.27)-(4.29) there holds the estimate

‖Uk − u‖ω̄h
≤M0pkd+O(h2).
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Remark 4.2.4. For the discrete iterative method (4.24) -(4.26) we obtained
O(h2) convergence. It is natural to think about the use of Gauss quadrature
formulas to the integrals in (4.25) for higher accuracy but it is impossible be-
cause the nodes of Gauss quadrature formulas do not coincide with the grid
nodes, where the solution of the problem is computed.

Many examples are given in order to confirm the validity of the obtained
theoretical results and the efficiency of the proposed iterative method. Below
is a notable example.
Example 4.2.1. Consider the problem

u′′′(t) = et − 1

4
u(t) +

1

4
u2(

t

2
), 0 < t < 1,

u(0) = 1, u′(0) = 1, u′(1) = e
(4.30)

with the exact solution u(t) = et.
It can be verified that the conditions in Theorem 4.2.3 are satisfied, therefore
the problem has a unique solution. The results of convergence of the discrete
iterative method are given in Table 4.1. Here, N is the number of grid points,

Table 4.1: The convergence in Example 4.2.1

N h2 K Error

50 4.0000e-04 3 6.1899e-05

100 1.0000e-04 3 1.5475e-05

150 4.4444e-05 3 6.877 -06

200 2.5000e-05 3 3.8688e-06

300 1.1111e-05 3 1.7195e-06

400 6.2500e-06 3 9.6721e-07

500 4.0000e-06 3 6.1901e-07

K is the number of iterations performed until ‖Ψk−Ψk−1‖ω̄h
≤ 10−10, Error =

‖UK − u‖ω̄h
.
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GENERAL CONCLUSIONS

In this thesis, we have successfully studied the existence, uniqueness of solutions
and the iterative methods for solving some nonlinear boundary value problems
for some high order differential equations including integro-differential and func-
tional differential equations. The main achievements of the thesis include:

1. The establishment of the existence, uniqueness of solutions and positive
solutions for third order nonlinear BVPs and the construction of numerical
methods for finding the solutions; The proposal of discrete iterative meth-
ods of second and third order accuracy for solving third order nonlinear
differential equations.

2. The establishment of the existence, uniqueness of solutions and construc-
tion of iterative methods for finding the solutions for nonlinear third and
fourth order differential equations with integral boundary conditions.

3. The establishment of the existence, uniqueness of solutions and construc-
tion of numerical methods for finding the solutions of nonlinear integro-
differential and functional differential equations.

The validity and applicability of the theoretical results and the effectiveness of
the constructed iterative methods have been confirmed by many experimental
examples.

The methodology throughout the thesis has been shown to be superior to
those of many other authors due to its simplicity and coherence and can be
applied to a wide range of boundary value problems for differential equations.

A weakness of this methodology is that it is only applicable to problems for
differential equations with non-singular right-hand sides. Therefore, the future
goals of the thesis are:

1. The further development of the above results for the case of singular right-
hand sides and the case of unbounded domains.

2. The construction of iterative methods of higher order accuracy.

3. The study of the problems with nonlinear boundary conditions.
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