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INTRODUCTION

1. The rational of the study

For the goal of understanding the characteristics and predicting the spread of malicious code

on network systems and inspired by similarities with disease infections in biological populations,

the research direction uses differential equation models to model and analyze the spread of ma-

licious code on the network has recently received a lot of attentions. It is a fact that signal

transmission processes on the network always depend significantly on the characteristics of en-

vironment, structure, and properties of the conducting materials. In addition, the propagation

mechanism of malware programs is to take advantage of signal transmission between network

nodes to replicate, spread and cause the spread of malicious code on the network. During a

long history of development, fractional calculus and fractional dynamical systems described by

fractional differential equations have been shown a great ability to model and fit data better

than integer-order models. For example, V.D. Djordjev́ıc et al (2003), M. Di Paola et al (2011),

N.H. Can et al (2020). Therefore, there are a number of recent studies that have applied frac-

tional dynamic systems to establish epidemic models and predict the spread of malicious code

on network systems such as J. Huo and H. Zhao (2016), J. Singh et al. (2018), J.R. Graef et

al. (2020), Y. Chen et al. (2021), X. Fu and J. Wang (2022).

Traffic regulation systems, environmental and ecological monitoring, information systems

or biological networks, etc. . . . are often better described by heterogeneous complex network

models. Recently, many researchers have used mathematical models based on complex network

structures as an effective tool to study the mechanism of malware spread on the network,

predicting the evolution and impact of such malware programs on network systems. In classic

models, authors often ignore the factor of network-size and assume that all nodes in network are

well-mixed and, therefore, the rate of contact causing infection are the same for whole network,

i.e., roles of all nodes in the network are similar. This assumption makes our study simpler and

easier to handle, but it is not reasonable when in reality, many types of complex networks such

as the Internet, Facebook, Instagram, sensor networks and biological networks, etc., always have

very large number of nodes, and the interaction capabilities of different nodes in the network

are obviously not the same. Therefore, for more realistic descriptions and evaluations, we need

to consider the heterogeneity in contact of complex networks when establishing mathematical

models of malware propagation on the network. The research of R. Pastor-Satorras and A.

Vespignani (2001) is known as a pioneering work for studying mathematical models of malware

propagation on complex heterogeneous networks. In particular, this work proposes a network-

based SIS malware propagation model and presents a detailed study of basic epidemiological

characteristics and numerical solution results for the proposed model. With the motivation

from this research, many studies on malware propagation models based on complex networks
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were conducted and a lot of noticeable results were obtained such as C.H. Li et al. (2014),

Y. Zan et al. (2014), S. Huang et al. (2017), H.F. Huo et al. (2019), C. Li and A.M. Yousef

(2019), K. Li et al. (2019), S. Hosseini and A. Zandvakili (2022), etc.

On the other hand, lack of information about parameters and input data due to calculation

errors, limitations of measuring equipment or complicated and unnecessary precise measurement

and calculation is a problem often encountered in practice. In addition, because the environment

of transmission processes always contains elements of uncertainty, we need to take into account

quantities representing uncertainty when establishing models, solving and interpreting problems

in natural environments. Since then, the research direction combining fuzzy set theory, fuzzy

logic or fuzzy analysis in the study of modeling the processes of malware spread on the network

appeared and had noticeable results. For example, the studies on malware propagation models

described by differential equations with fuzzy parameters: E. Massad et al. (2008), P.K. Mondal

et al (2015), S.K. Nandi et al (2018), S. Adak and S. Jana (2022). The novelty of these work is to

consider the speed of spreading malicious code, the malicious code handling function contains

fuzzy parameters and build the concepts of fuzzy expected value of infection compartment,

fuzzy basic reproduction number. However, these documents only introduced a general malware

propagation models with fuzzy parameters or initial conditions, detailed analytical properties

and epidemiological characteristics of the proposed malware propagation models have not been

properly developed and discussed. In particular, there are currently not many studies on

malware propagation models that accept fuzzy-valued expression. Another research direction

on malware propagation models has combined large-scale differential systems and fuzzy set

theory - fuzzy logic as Zan et al. (2014), Hosseini and Zandvakili (2022). These studies used

fuzzy-rule bases to establish the interaction mechanism between compartments and determine

the model’s parameters.

Motivated by aforesaid, PhD student realize the prospect of development of the research

direction on modeling the spread of malware propagation on wireless sensor networks based on

differential equations models. Additionally, in order to better describe malware propagation in

the real-world scenario with uncertainties in parameters and data, malware propagation mod-

els with fuzzy parameters or fuzzy rule-based malware propagation models are also shown to

be a topic of scientific and practical significance. Furthermore, through the overall research

process, the PhD student also realized that because the wireless sensor network has a com-

plex and heterogeneous network structure, there is a great potential of studying the malware

propagation on wireless sensor networks based on the use of network-based differential systems,

that combined with fuzzy set theory and fractional calculus. These research ideas were initially

implemented in the doctoral thesis with the expectation of contributing to studies on modeling

and qualitative properties of malware spreading processes on wireless sensor networks.
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2. The aim, object and scope of the study

2.1. The aim of the study

The thesis studies some mathematical models describing the spread of malware programs

on a complex heterogeneous networks (wireless sensor network). The three main goals of the

thesis include:

� Propose some mathematical models describing the spread of malware programs on complex

heterogeneous networks.

� Determine the threshold value for malware propagation R0.

� Study some qualitative properties such as: the unique existence and positivity of solu-

tions to the Cauchy problem for proposed malware propagation models, the existence

of equilibrium points, asymptotic stability, bifurcation analysis and stabilization control

problem.

2.2. The object and scope of the study

The thesis focuses on study some mathematical models describing the spread of malware

programs on complex heterogeneous networks with the following objects and scope of research:

� Mathematical models of malware propagation on complex heterogeneous networks de-

scribed by fractional differential systems with fuzzy parameters or established by fuzzy

logic;

� Qualitative properties such as positivity, malware propagation threshold value, asymptotic

stability and control problem for the proposed malware propagation models.

3. The research contents

The thesis research is aimed at the 3 classes of malware propagation models with the corre-

sponding research contents as follows:

The model 1: Fuzzy fractional SIQR malware propagation model. For this model, the thesis

establish the theoretical foundation of fractional calculus in the sense of Caputo Atangana−Baleanu

for fuzzy-valued functions and studies the existence and representation of integral solutions of

Cauchy problem to fuzzy fractional SIQR malware propagation model.

The model 2: Fractional network-based SE1E2IQR malware propagation model whose trans-

mission function is determined by fuzzy logic. For this model, the thesis studies the existence

and uniqueness of positive solution and asymptotic stability analysis.

The model 3: Controlled fractional network-based SIRS malware propagation model with

saturated treatment function. For this model, the thesis studies the existence and uniqueness
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of positive solution, asymptotic stability analysis and the stabilization problem for the proposed

malware propagation model based on fractional interconnected Takagi-Sugeno fuzzy systems.

4. The research method

The doctoral thesis has combined the tools of fractional calculus, fuzzy analysis and fuzzy

set theory, stability theory for fractional dynamical systems and techniques of matrix analysis

and linear matrix inequality.

5. The obtained results

The thesis studies some qualitative properties of mathematical models describing the spread

of malicious code on wireless sensor networks. The achieved results are as follows:

(i) Study a fractional SIQR malware propagation model with fuzzy data that uses the concepts

of fuzzy fractional Caputo-Atangana-Baneanu derivative (Definition 2.1) and fuzzy frac-

tional Riemann-Liouville Atangana-Baleanu integral (Definition 2.2), prove the existence

and uniqueness of fuzzy integal solutions of the proposed malware propagation model

(Theorem 2.3 and Theorem 2.4) and illustrate the obtained results by some numerical

simulations.

(ii) Study a fractional network-based SE1E2IQR malware propagation model whose transmis-

sion function is determined by fuzzy-rule base and prove some qualitative properties of

the proposed malware propagation model such as the positiveness of solution, evaluation

of basic reproduction number R0 (The formula (3.4), the sensitivity analysis of R0 w.r.t.

parameters, the local and global asymptotic stability of the malware-free equilibrium P0

(Theorem 3.3 and Theorem 3.4) and forward bifurcation analysis at R0 = 1 (Theorem

3.5)

(iii) Study a controlled fractional network-based SIRS malware propagation model with satu-

rated treatment function and its stabilization problem for the proposed malware propaga-

tion model based on fractional interconnected Takagi-Sugeno fuzzy system. The obtained

results consists of the positiveness of solution, evaluation of basic reproduction number R0

(The formula (4.3)), the sensitivity analysis of R0 w.r.t. parameters, the local and global

asymptotic stability of the malware-free equilibrium P0 (Theorem 4.3 and Theorem 4.4),

backward bifurcation analysis at R0 = 1 (Theorem 4.5) and some sufficient conditions in

form LMIs for the stabilizability of the malware-free equilibrium P0 (Theorem 4.6).

6. The structure of the thesis

In addition to the Introduction, Conclusion and References sections, the thesis layout in-

cludes 4 chapters:
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Chapter 1: This is a preparatory knowledge chapter that includes an overview of fractional

derivative and integrals, qualitative theory of fractional differential equations, fuzzy set

theory and analysis of fuzzy-valued functions, Takagi-Sugeno fuzzy system and scale-free

network.

Chapter 2: This chapter studies the uncertain behavior of the fuzzy fractional SIQR mal-

ware propagation model that describes the spread of malware programs across sensor

networks. For this aim, the thesis presents results on fractional derivatives and integrals

in the Atangana-Baleanu sense and applies them in the investigation of Cauchy problem

to fuzzy fractional SIQR malware propagation model that mathematically modelled by

fuzzy fractional differential equations.

Chapter 3: This chapter presents a study on fractional network-based SE1E2IQR malware

propagation model whose transmission function is based on fuzzy rules. The obtained

results includes establishing a malware propagation model whose transmission function is

based on fuzzy rules, investigates the qualitative properties of the proposed model and

presents some evaluations and simulation calculations.

Chapter 4: In this chapter, the thesis studies a controlled fractional network-based SIRS

malware propagation model with a saturated treatment function. The obtained results

are as follows: establishing a network-based malware propagation model, investigating

some qualitative properties of the proposed model and its stabilization control problem

based on fractional interconnected Takagi-Sugeno fuzzy system.



Chapter 1

PRELIMINARIES

This chapter presents some theoretical results and necessary lemmas for some next chapters,

that are referred from Takagi and Sugeno (1985), Barabási and Albert (1999), Diethhelm (2010),

Bede (2013), Atangana and Baleanu (2016). The structure of this chapter is as follows:

1.1. Some notes on fractional analysis

In this section, we recall some fundamental concepts and properties of fractional calculus

and fractional differential systems.

1.2. Fuzzy sets and fuzzy analysis

This section presents some notes on fuzzy sets theory, fuzzy rule base and analysis of fuzzy-

valued functions.

1.3. Takagi-Sugeno fuzzy system

In this section, we present the theoretical results on Takagi-Sugeno fuzzy systems and ana-

lytical method to construct Takagi-Sugeno fuzzy systems for nonlinear dynamical systems.

1.4. Interconnected fractional Takagi-Sugeno fuzzy system

This section introduces the structure of Takagi-Sugeno fuzzy systems for scale-free networks

or large-scale networks, whose local models are governed fractional differential systems.

1.5. The scale-free network

This section presents a general discussion on Barabási-Albert scale-free network and energy-

aware Barabási-Albert scale-free network to describe the structure of wireless sensor network.



Chapter 2

THE FRACTIONAL SIQR MALWARE PROPAGATION MODEL

WITH FUZZY DATA

This chapter focuses on describing the uncertain behavior of malware propagation on wireless

sensor networks based on the fuzzy fractional differential system model. The results of Chapter

2 are referenced from the publication [P1].

2.1. The formulation of fuzzy fractional SIQR malware propagation model

In this, the thesis use the fuzzy fractional differential system model consisting of 4 variable

function (S-I-Q-R) corresponding to 4 compartments of malware propagation model to char-

acterize the propagation of malware programs on wireless sensor networks with uncertainty.

Denote S(t), I(t), Q(t) and R(t) by densities of susceptible, infectious, quarantined and recov-

ered nodes in time t, respectively. Then, the malware propagation model that describes the

spread of malicious objects is given in following diagram (see Figure 3.1).

Figure 2.1: The flowchart of SIQR malware propagation model

In order to protect sensor networks against malicious attacks, we need to understand the

epidemiological characteristics of the spread. In this chapter, the thesis approaches research

on the mechanism of malware spread based on mathematical models. Specifically, the thesis

assumes that every sensor node in compartments (S), (I), (Q) or (R) leaves the network with

rate µ due to energy depletion. The uncertain dynamics of malware propagation on wireless

sensor networks is described by the following system of differential equations:

abcDβ
+S(t) = A− λS(t)I(t) + ωQ(t) + σR(t)− µS(t)

abcDβ
+I(t) = λS(t)I(t)− (ν + γ + µ)I(t)

abcDβ
+Q(t) = γI(t)− (η + µ+ ω)Q(t)

abcDβ
+R(t) = νI(t) + ηQ(t)− (σ + µ)R(t)

(2.1)
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subject to the initial conditions S(0) = S0, I(0) = I0, Q(0) = Q0, R(0) = R0.

2.2. Caputo Atangana-Baleanu fractional derivative and Riemann-Liouville Atangana-

Baleanu fractional integral for fuzzy-valued functions

Definition 2.1. Assume that f(t) belongs to class C1 ([0, b],E ). Then, the Caputo Atangana

- Baleanu fractional derivative of order β ∈ (0, 1) of fuzzy-valued function f(t) is

abcDβ
+f(t) :=

Φ(β)

1− β

∫ t

0

Eβ

[
−β

(t− τ)β

1− β

]
f ′
gH(τ)dτ.

Proposition 2.1. Assume that f ∈ C1 ([0, b],E ) and its α−cuts can be represented in para-

metric form [f(t)]α = [f−
α (t), f

+
α (t)] for each t ∈ [0, b] and α ∈ [0, 1]. Then,

(i) If f is gH-differentiability in type 1 then
[
abcDβ

+f(t)
]α

=
[
abcDβ

+f
−
α (t),

abcDβ
+f

+
α (t)

]
.

(ii) If f is gH-differentiability in type 2 then
[
abcDβ

+f(t)
]α

=
[
abcDβ

+f
+
α (t),

abcDβ
+f

−
α (t)

]
.

Definition 2.2. Assume that f(t) belongs to class L1 ([0, b],E ). Then, the Riemann−Liouville

Atangana−Baleanu fractional integral of order β ∈ (0, 1] of fuzzy-valued function f(t) is

abIβ
+f(t) :=

1− β

Φ(β)
f(t) +

β

Φ(β)Γ(β)

∫ t

0

(t− τ)β−1f(τ)dτ =
1− β

Φ(β)
f(t) +

β

Φ(β)
Iβ
+f(t).

In addition, for each α ∈ [0, 1], α−cut of abIβ
+f(t) is given by[

abIβ
+f(t)

]α
=

[
abIβ+f

−
α (t), abIβ+f

+
α (t)

]
.

Remark 2.1. In some special cases of β, the Riemann−Liouville Atangana−Baleanu fractional

integral is identified with well-known concept:

(i) If β = 0 then the Riemann−Liouville Atangana−Baleanu fractional integral becomes

abI0
+f(t) =

1− 0

Φ(0)
f(t) +

0

Φ(0)Γ(0)

∫ t

0

(t− τ)−1f(τ)dτ = f(t).

(ii) If β = 1 then the Riemann−Liouville Atangana−Baleanu fractional integral becomes

abI1
+f(t) =

1− 1

Φ(1)
f(t) +

1

Φ(1)Γ(1)

∫ t

0

(t− τ)1−1f(τ)dτ =

∫ t

0

f(τ)dτ.

Theorem 2.1. Let β ∈ (0, 1) and f : [0, T ] ⊂ R → E be gH-differentiability with no switching

point in [0, T ]. Then, if β = 0, the Riemann−Liouville Atangana−Baleanu fractional integral

and Caputo Atangana−Baleanu fractional derivative of f(t) satisfy

abIβ
+

(
abcDβ

+f(t)
)
= f(t)⊖gH f(0), t ∈ [0, T ].

Proposition 2.2. Let f : [0, b] ⊂ R → E belong to C1 ([0, b],E ). Then, fuzzy Laplace transform

of Caputo Atangana−Baleanu fractional derivative abcDβ
+f(t) of the function f(t) is given by

L̃
{

abcDβ
+f(t)

}
(s) =


Φ(β)

1− β

sβL̃ {f(t)}(s)⊖ sβ−1f(0)

sβ + β
1−β

if f is gH-differentiable in type 1

(−1)Φ(β)

1− β

sβ−1f(0)⊖ sβL̃ {f(t)}(s)
sβ + β

1−β

if f is gH-differentiable in type 2.



9

Proposition 2.3. Assume that f : [0,∞) → E is continuous. Then, for each t > 0, we have

L̃

{∫ t

0

Eβ

[
−β

(t− τ)β

1− β

]
f(τ)dτ

}
(s) =

sβ−1

sβ + β
1−β

L̃ {f(t)} (s).

2.3. The existence and uniqueness of fuzzy solutions to Cauchy problem for fuzzy

fractional differential systems under gH-differentiability

In this section, the doctoral thesis studies the existence and uniqueness of fuzzy integral

solutions to Cauchy problem for fuzzy fractional differential systems under gH-differentiability

and Caputo Atangana−Baleanu fractional derivative:
abcDβ

+x(t) = F (t, x(t))

x(0) = x0,

(2.2)

where abcDβ
+x(t) is the Caputo Atangana−Baleanu fractional derivative of x(t), t ∈ J = [0, T ],

x0 ∈ E n and F : [0, T ] × E n → E n is a fuzzy vector-valued function satisfying the following

hypotheses:

(HF1) The fuzzy vector-valued function F(·, ξ) : [0, T ] → E n is strongly measurable for each

ξ ∈ E n and F(t, ·) : E n → E n is continuous for a.e. t ∈ [0, T ];

(HF2) There exists a matrix M0 such that Dn

(
F(t, ξ), 0̂

)
≤ M0Dn(ξ, 0̂) for all ξ ∈ E n.

(HF3) There exists a matrix M1 such tha Dn

(
F(t, ξ),F(t, ξ)

)
≤ M1Dn(ξ, ξ) for all ξ, ξ ∈ E n.

Consider the space

C ([0, T ], E n) = {φ : [0, T ] → E n : φ(t) is continuous on [0, T ]}

endowed with the weighted metric Hλ (φ, ψ) = sup[0,T ]

{
Dn(φ(t), ψ(t))e

−λt
}

with a large

enough λ > 0. The space (C ([0, T ],E n) ,Hλ) is complete. Assume that all components of

x(t) have a sane type of gH-differentiability with no switching point on J = [0, T ]. We consider

the following theorem:

Theorem 2.2. Assume that x ∈ C ([0, T ],E n) satisfies Cauchy problem (2.2).

(i) If x(t) is gH-differentiable in type 1 then it satisfies the following integral equation

x(t) = x0 +
1− β

Φ(β)
F(t, x(t)) +

β

Γ(β)Φ(β)

∫ t

0

(t− τ)β−1F(τ, x(τ))dτ. (2.3)

(ii) If x(t) is gH-differentiable in type 2 then it satisfies the following integral equation

x(t) = x0 ⊖ (−1)

[
1− β

Φ(β)
F(t, x(t)) +

β

Γ(β)Φ(β)

∫ t

0

(t− τ)β−1F(τ, x(τ))dτ

]
. (2.4)

Definition 2.3. Let x : [0, T ] ⊂ R → E n be continuous. Then, we have

(i) The function x(t) is said to be fuzzy integral solution of type (i) of Cauchy problem (2.2)

if it satisfies the integral equation (2.3).
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(ii) The function x(t) is said to be fuzzy integral solution of type (ii) of Cauchy problem (2.2)

if it satisfies the integral equation (2.4).

Theorem 2.3. If the hypotheses (HF1), (HF2), (HF3) are fulfilled and the spectral radii

of matrices (1−β)
Φ(β)

M0 and (1−β)
Φ(β)

M1 are less than 1 then Cauchy problem (2.2) has a unique fuzzy

integral solution of type (i) defined in [0, T ].

For each x ∈ C([0, T ],E n), consider an operator F [x] given by

F [x](t) = x0 ⊖
[
(1− β)

Φ(β)
F(t, x(t)) +

β

Γ(β)Φ(β)

∫ t

0

(t− τ)β−1F(τ, x(τ))dτ

]
. (2.5)

Denote Ĉ ([0, T ],E n) by the space of fuzzy-valued functions x ∈ C([0, T ],E n) such that the

equality (2.5) is true for each t ∈ [0, T ].

Theorem 2.4. Assume that Ĉ ([0, T ],E n) ̸= ∅, the hypotheses (HF1), (HF2), (HF3) are

fulfilled and the spectral radii of matrices (1−β)
Φ(β)

M0 and (1−β)
Φ(β)

M1 are less than 1. Then, Cauchy

problem (2.2) has a unique fuzzy integral solution of type (ii) defined in [0, T ].

Remark 2.2. We assume that all components of the solution vector x(t) has the same gH-

differentiable type and has no switching point on J = [0, T ]. In general, if the components of

x(t) =
(
x1(t) · · · xn(t)

)⊤
has different types of gH-differentiability on J , the existence and

uniqueness of fuzzy solution presented in Theorem 2.3 and Theorem 2.4 still holds.

2.4. Discussions

(a) The thesis simulates uncertain behavior of fuzzy solution of fuzzy fractional SIQR mal-

ware propagation model (2.1) with parameters

A = 0.2 µ = 0.2 λ = 0.3 ν = 0.15

ω = 0.008 σ = 0.01 γ = 0.2 η = 0.008

and fuzzy initial conditions S0 = (0.63, 0.64, 0.65), I0 = (0.23, 0.24, 0.25), Q0 = (0.09, 0.095, 0.1)

and R0 = (0, 0, 0). Figure 2.2 presents the plot of numerical solution of fuzzy fractional SIQR

malware propagation model with some different values of β. For these above parameters, we

can calculate the threshold value R0 = 0.545 < 1, that is, according to epidemiological theory,

the malware-free equilibrium is asymptotically stable. In fact, from Figure 2.2, we can see

that the infectious component I(t) of the solution tends to approach 0 over time, meaning that

malicious codes have can be removed from the network.
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Figure 2.2: The plot of numerical solution of fuzzy fractional SIQR malware propagation model in Case (a)

(b) The thesis simulates uncertain behavior of fuzzy solution of fuzzy fractional SIQR mal-

ware propagation model (2.1) with parameters

A = 0.2 µ = 0.2 λ = 0.9 ν = 0.15

ω = 0.008 σ = 0.01 γ = 0.2 η = 0.008

and fuzzy initial conditions S0 = (0.63, 0.64, 0.65), I0 = (0.23, 0.24, 0.25), Q0 = (0.09, 0.095, 0.1)

and R0 = (0, 0, 0). Figure 2.3 presents the plot of numerical solution of fuzzy fractional SIQR

malware propagation model with some different values of β. For these above parameters, we

can calculate the threshold value R0 = 1.636 > 1. This implies malware-free equilibrium is

unstable and hence, the spread of malware programs will continue. Indeed, according to Figure

2.3, we can see that the behavior of the infectious state function I(t) approaches a positive

value (component I∗ of the endemic equilibrium) as time increases.

Figure 2.3: The plot of numerical solution of fuzzy fractional SIQR malware propagation model in Case (b)



Chapter 3

THE FRACTIONAL NETWORK-BASED SE1E2IQR MALWARE

PROPAGATION MODEL WITH FUZZY-RULE BASED

TRANSMISSION FUNCTION

In order to take into account the heterogeneity in contact of network’s nodes and uncertainty

factors in malware propagation, this chapter focuses on a fractional network-based SE1E2IQR

malware propagation model with fuzzy-rule based transmission function, where the proposed

network-based model introduces a quarantine compartment (Q) and exposed group include two

compartments: E1 (Type 1-Exposed compartment) and E2 (Type 2-Exposed compartment).

This chapter is written based on the publication [P2].

3.1. The model’s formulation

In this section, the thesis regard a wireless sensor network as energy-aware Barabási-Albert

free-scale network and describes the propagation mechanism of malicious code on the network

based on mathematical modeling. We divide the total number of network nodes into n groups

based on the number of links that a node in the group has per unit of time. Denote Sk(t),

E1,k(t), E2,k(t), Ik(t), Qk(t) and Rk(t) by the density of Susceptible nodes, Type 1-Exposed

nodes, Type 2-Exposed nodes, Infectious, Quarantined and Recovered of degree k for each

k = 1, 2, . . . , n, respectively. The malware propagation on the network can be described in the

following diagram:

Figure 3.1: The flowchart of the network-based SE1E2IQR malware propagation model

It is a fact that the speed of information transmission on the network is directly affected by
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uncertain factors such as geography or climate conditions. Therefore, the thesis proposes to

use the linguistic variable q (q ∈ {high, medium, low}) to represent uncertain factors occurring

when modeling the malware propagation model. In particular, the thesis assigns three linguistic

variables “Low”, “Medium”, “High” with fuzzy values corresponding to fuzzy rules and uses a

fuzzy inference system to derive these rules into the proposed malware propagation model in

the form of propagating constantMq. Indeed, consider three fuzzy numbers A1 = (0, 0, 0.3, 0.4),

A2 = (0.3, 0.5, 0.7) and A3 = (0.6, 0.7, 1, 1) representing the terms “low”, “medium”, “high”

and using two triangular fuzzy numbers B1 = (0, 0.3, 0.6) and B2 = (0.4, 0.7, 1.0) to determine

whether output state belong to the Type 1-Exposed state or Type 2-Exposed state.

Let x represent the density of infectious node, y represent the node’s state change rate, and

z represent the output state of each rule. Now, the thesis proposes a MISO fuzzy system with

9 rules as follows:

Rule 1: If x is “LOW” and y is “LOW” then z belongs to E1.

Rule 2: If x is “LOW” and y is “MEDIUM” then z belongs to E1.

Rule 3: If x is “MEDIUM” and y is “LOW” then z belongs to E1.

Rule 4: If x is “MEDIUM” and y is “MEDIUM” then z belongs to E2.

Rule 5: If x is “LOW” and y is “HIGH” then z belongs to E2.

Rule 6: If x is “MEDIUM” and y is “HIGH” then z belongs to E2.

Rule 7: If x is “HIGH” and y is “LOW” then z belongs to E2.

Rule 8: If x is “HIGH” and y is “MEDIUM” then z belongs to E2.

Rule 9: If x is “HIGH” and y is “HIGH” then z belongs to E2.

Based on the diagram in Figure 3.1, the thesis establish a mathematical model describing

the spread of malware programs between six compartments (S), (E1), (E2) , (I), (Q) and

(R) in wireless sensor network. In addition, with the goal of demonstrating the non-locality

and memorability of the data diffusion process, the thesis use Caputo fractional derivative to

establish a fractional large-scale differential equation model, called the fractional network-based

SE1E2IQR malware propagation model. In particular, for each k = 1, n, we consider

C
0 D

β
t Sk(t) = Λ(k)− (σ1(k) + σ2(k))Sk(t)Θ(t)− µSk(t) + θRk(t)

C
0 D

β
t E1,k(t) = σ1(k)Sk(t)Θ(t)− (η + ω1 + µ)E1,k(t)

C
0 D

β
t E2,k(t) = σ2(k)Sk(t)Θ(t)− (µ+ ω2 + ω3)E2,k(t) + ηE1,k(t)

C
0 D

β
t Ik(t) = ω3E2,k(t)− (µ+ c+ r1)Ik(t)

C
0 D

β
t Qk(t) = ω1E1,k(t) + ω2E2,k(t) + cIk(t)− (r2 + µ)Qk(t)

C
0 D

β
t Rk(t) = r1Ik(t) + r2Qk(t)− (µ+ θ)Rk(t),

(3.1)

with initial condition

Sk(0) = S0
k, E1,k(0) = E0

1,k, E2,k(0) = E0
2,k, Ik(0) = I0k , Qk(0) = Q0

k, Rk(0) = R0
k, (3.2)
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where σ1(k), σ2(k) are the degree-dependent transmission rates given by σ1(k) = σ1k, σ2(k) =

σ2k, respectively. In addition, we assume that

Nk(t) =
Λ(k)

µ
Eβ(−µtβ) +

Λ(k)

µ

[
1− Eβ,1(−µtβ)

]
=

Λ(k)

µ
:= bk.

The function Θ(t) represents the probability that a given link connects to an infectious node

given by Θ(t) = Mq

⟨n⟩
∑n

i=1
ν(i)
bi
P(i)Ii(t), where P(i) is the probability that a randomly chosen

node has degree i, ⟨n⟩ =
∑n

i=1 iP(i) represents the average degree of the network , Mq ∈ [0, 1] is

the output parameter of the MISO system deduced from fuzzy rules for the linguistic variable

q, the function ν(i) = i represents the number of average links that an infectious node of degree

i will spread malware programs to other nodes.

3.2. The qualitative properties of the proposed malware propagation model

3.2.1. The existence of positively invariant set

Denote xk(t) =
(
E1,k(t) E2,k(t) Ik(t) Sk(t) Qk(t) Rk(t)

)⊤
,x(t) =

(
x1(t) · · · xn(t)

)⊤

f(xk(t)) =



f1(x
k(t))

f2(x
k(t))

f3(x
k(t))

f4(x
k(t))

f5(x
k(t))

f6(x
k(t))


=



σ1(k)Sk(t)Θ(t)− (η + ω1 + µ)E1,k(t)

σ2(k)Sk(t)Θ(t)− (µ+ ω2 + ω3)E2,k(t) + ηE1,k(t)

ω3E2,k(t)− (µ+ c+ r1)Ik(t)

Λ(k)− (σ1(k) + σ2(k))Sk(t)Θ(t)− µSk(t) + θRk(t)

ω1E1,k(t) + ω2E2,k(t) + cIk(t)− (r2 + µ)Qk(t)

r1Ik(t) + r2Qk(t)− (µ+ θ)Rk(t)


,

This section starts with a result on the existence and uniqueness of a non-negative solution

and a positively invariant set for the fractional network-based SE1E2IQR malware propagation

model. Firstly, we considers the following table:

Table 3.1: The table of parameters

Notation Value Notation Value

bk
Λ(k)
µ α1 ω1 + µ+ η

α2 ω2 + ω3 + µ α3 r2 + µ

α4 µ+ θ α5 r1 + c+ µ

α6,k ησ1(k) + α1σ2(k) α7,k α2α5σ1(k)ω1 + α5α6,kω2 + cα3α6,kω3

Theorem 3.1. Assume that

S0
k > 0, E0

1,k ≥ 0, E0
2,k ≥ 0, I0k ≥ 0, Q0

k ≥ 0, R0
k ≥ 0 (3.3)

for all k = 1, n. Then, the fractional network-based SE1E2IQR malware propagation model with

initial condition x(0) satisfying (3.3) always admits a unique non-negative solution x(t) and
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the function Θ(t) is positive for all t > 0. Moreover, the set

Σ+ =
{
x(t) ∈ R6n

+ : Sk + E1,k + E2,k + Ik +Qk +Rk = bk, k = 1, n
}

is a positively invariant set for the proposed malware propagation model.

3.2.2. The threshold value R0 and equilibrium states

Equilibrium states are determined by the system of equations f(xk(t)) = 0. It is easy to

see that in malware-free equilibrium state, since there is no malicious code spreading on the

network, so E1,k = E2,k = Ik = 0 for all k = overline1, n. Therefore, the proposed malware

propagation model has a unique malware-free equilibrium P0 given by

P0 = (0, 0, 0, b1, 0, 0, . . . , 0, 0, 0, bn, 0, 0)︸ ︷︷ ︸
6n

.

Next, using the next generation matrix method, the thesis determines a threshold value R0.

Indeed, the state change in the proposed malware propagation model has the following charac-

teristics:

� There are only three compartments that cause malware propagation in the proposed mal-

ware propagation model, which are the compartments: (E1), (E2) and (I).

� The state change of nodes from infectious compartment to exposed compartments or be-

tween two exposed compartments is just regarded as the state change between infected

nodes.

Then, we find out the threshold value R0 as follows:

R0 =
Mq

⟨n⟩

n∑
k=1

ω3ν(k)P(k)(ησ1(k) + α1σ2(k))

α1α2α5

=
ω3Mq⟨α6ν⟩
α1α2α5⟨n⟩

, (3.4)

where ⟨α6ν⟩ =
n∑

k=1

ν(k)P(k)(ησ1(k) + α1σ2(k)).

Next, we denote Ak =Mqν(k)P (k)α3α4α6,kω3, Ã2 = α1α2α3α4α5 and

Ã1,k = ω3 (α3α4α6,k + r1α3α6,k) + (α3α4α5α6,k + α4α7,k + α2α3α4α5σ1(k) + r2α7,k) = ω3α8,k + α9,k.

Theorem 3.2. If R0 > 1 then the proposed malware propagation model has a unique endemic

equilibrium state P∗ = (E∗
1,1, E

∗
2,1, I

∗
1 , S

∗
1 , Q

∗
1, R

∗
1, . . . , E

∗
1,n, E

∗
2,n, I

∗
n, S

∗
n, Q

∗
n, R

∗
n), given by

S∗
k =

α1α2α5

ω3α6,kΘ∗ I
∗
k , E

∗
1,k =

α2α5σ1(k)

ω3α6,k

I∗k , E
∗
2,k =

α5

ω3

I∗k , Q
∗
k =

α7,k

ω3α3α6,k

I∗k , (3.5)

R∗
k =

r1α3α6,kω3 + r2α7,k

α3α4α6,kω3

I∗k , Θ∗ =
Mq

⟨n⟩

n∑
i=1

ν(i)

bi
P(i)I∗i , I∗k =

bkα3α4α6,kω3Θ
∗

(ω3α8,k + α9,k)Θ∗ + Ã2

.
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3.2.3. The asymptotic behavior of malware-free equilibrium P0

In this section, the thesis discuss on the asymptotic behavior of malware-free equilibrium

P0 of the proposed malware propagation model. Firstly, we present the relationship between

R0 and asymptotic stability of malware-free equilibrium P0:

Theorem 3.3. The following assertions hold

(i) If R0 > 1 then malware-free equilibrium P0 is unstable.

(ii) If R0 < 1 and α1α2+α1α5+α2α5 >
σ2Mq⟨n2⟩

⟨n⟩
then malware-free equilibrium P0 is locally

asymptotically stable.

(iii) If R0 < 1 and α1α2+α1α5+α2α5 ≤
σ2Mq⟨n2⟩

⟨n⟩
then the stability of malware-free equilibrium

depends on parameters and fractional order β.

Next, the thesis discuss on an important topic on the epidemiological theory related to the

global asymptotic stability of malware-free equilibrium P0:

Theorem 3.4. If the threshold value

R̃0 =
ω3Mq(σ1 + σ2)⟨n2⟩

α2α5⟨n⟩
< 1

then malware-free equilibrium P0 of the fractional network-based SE1E2IQR malware propaga-

tion model is globally asymptotically stable on Σ+.

Remark 3.1. Since α1 = η + µ + ω1 > η then ω3(σ1(k)+σ2(k))
α2α5

> ω3(ησ1(k)+α1σ2(k))
α1α2α5

, that is,

R̃0 > R0. On the other hand, according to Theorem 3.4, since the equilibrium P0 is globally

asymptotically stable if and only if R̃0 > 1 then the condition R0 < 1 is not sufficient for

completely eliminating malicious objects on the network.

3.2.4. The bifurcation analysis

In this section, we discuss on the bifurcation phenomena that occurs at R0 = 1.

Theorem 3.5. The fractional network-based SE1E2IQR malware propagation model always

exhibits forward bifurcation at R0 = 1 for all values of parameters.



Chapter 4

A CONTROLLED FRACTIONAL NETWORK-BASED SIRS

MALWARE PROPAGATION MODEL WITH SATURATED

TREATMENT FUNCTION

In this chapter, we establish a controlled fractional network-based SIRS malware propaga-

tion model with saturated treatment functions in order to describe the dynamics of malware

propagation on wireless sensor network in case the number of infected nodes exceeds the net-

work’s ability to handle malware. The results of this chapter are based on the publications

[P3] and [P4].

4.1. The model’s formulation

In this chapter, the thesis proposes to use a fractional network-based SIRS malware propaga-

tion model to study the effects of malware spread on complex heterogeneous networks. Denote

Sk(t), Ik(t) and Rk(t) by the densities of susceptible, infectious and recovered nodes of degree k

at time t, respectively. In addition, the thesis assumes that Nk(t) = Sk(t)+ Ik(t)+Rk(t) is the

density of nodes with degree k at time t. The state transitions between three compartments

are based on the following rules:

� Each node becomes dead node at a rate µ when it runs out of energy, and new nodes are

added to the network at a rate Λ. The rate Λ and death rate µ are assumed to be equal

to ensure balance and continuity of the network.

� A susceptible node of degree k that contacts with malicious code, will be transferred into

Infectious state at the rate σkΘ(t), with σk being the transmission rate. On the other

hand, a susceptible node can be moved to state (R) with a varying isolation rate uk(t).

� The thesis considers the nonlinear treatment function in the form φ(Ik) =
rIk

1 + γΘ
, where

r is recovered rate and γ is used to measure the impact of infectious nodes whose treatment

process are delayed.

� Nodes in state (R) log off the network at a rate of µ due to run out of energy, and recovery

nodes may lose their immunization and return to susceptible state at a rate ω.

Based on the advantages of non-integer derivatives in modeling non-local processes and

in order to demonstrate the influence of memory in the process of malware propagation on

the network, the thesis studies the spread of malicious code on wireless sensor networks with
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fractional derivatives. In particular, the thesis considers a fractional network-based malware

propagation model whose kth-system is as follows:

C
0 D

β
t Sk(t) = Λ− σkΘ(t)Sk(t)− (µ+ uk(t))Sk(t) + ωRk(t)

C
0 D

β
t Ik(t) = σkΘ(t)Sk(t)− µIk(t)−

rIk(t)

1 + γΘ(t)

C
0 D

β
tRk(t) = uk(t)Sk(t) +

rIk(t)

1 + γΘ(t)
− (µ+ ω)Rk(t),

(4.1)

with the initial condition

Sk(0) = S0
k > 0, Ik(0) = I0k ≥ 0, Rk(0) = R0

k ≥ 0. (4.2)

The function Θ(t) = 1
⟨n⟩

∑n
k=1 φ(k)P(k)Ik(t) is probability that a given link is connected to

an infectious node, where P(k) is the probability that a randomly chosen node has degree k,

φ(k) = k is the transmission rate of a node of degree k and ⟨n⟩ =
∑n

k=1 kP(k) is the average

degree of the network.

4.2. The qualitative properties of the proposed malware propagation model

4.2.1. The existence of positively invariant set

For convenience of readers, we denote

x̃k(t) =
(
Sk(t) Ik(t) Rk(t)

)⊤
, x̃(t) =

(
x̃1(t) x̃2(t) · · · x̃n(t)

)⊤

Σ+ =
{
x̃(t) ∈ R3n

+ : Sk(t) + Ik(t) +Rk(t) = 1, k = 1, n, t ≥ 0
}

Fk(t, x̃(t),u(t)) =


Λ− σkΘ(t)Sk(t)− (µ+ uk(t))Sk(t) + ωRk(t)

σkΘ(t)Sk(t)− µIk(t)−
rIk(t)

1 + γΘ(t)

uk(t)Sk(t) +
rIk(t)

1 + γΘ(t)
− (µ+ ω)Rk(t)

 .

The input control uk(t) is regarded as the rate of susceptible nodes protected by the firewall

per unit time. Denote

Uad =
{
u(·) ∈

(
L1[0, T ]

)n
: 0 ≤ uk(t) ≤ b, k = 1, n

}
(0 < b < 1),

is an admissible control set consisting of all Lebesgue measurable functions on [0, T ].

Theorem 4.1. For each control input u ∈ Uad, Cauchy problem for the controlled fractional

network-based SIRS malware propagation model has a unique non-negative solution x̃(t). In

particular, if x̃(0) ∈ Σ+ then for all t > 0, the solution x̃(t) belongs to the set Σ+.
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4.2.2. The threshold value R0 and equilibrium states

In order to find equilibrium states, the thesis solves a system of algebraic equations Fk(t, x̃(t),u(t)) =

0. If the network is clear of malware programs, the proposed malware propagation model admits

a unique malware-free equilibrium P0 = (S0
1 , I

0
1 , R

0
1, . . . , S

0
n, I

0
n, R

0
n) is given by

P0 =

(
µ+ ω

µ+ ω + u1

, 0,
u1

µ+ ω + u1

, . . . ,
µ+ ω

µ+ ω + un

, 0,
un

µ+ ω + un

)
︸ ︷︷ ︸

3n

,

while if there exist malware programs spreading on the network, then the proposed malware

propagation model has at least one endemic equilibrium P∗ = (S∗
1 , I

∗
1 , R

∗
1, . . . , S

∗
n, I

∗
n, R

∗
n) under

some certain conditions related to the threshold value R0.

According to the next generation matrix method, the threshold value R0 is given by

R0 =
σ(µ+ ω)

(µ+ r) ⟨n⟩

n∑
k=1

k2P(k)
(µ+ ω + uk)

=
σ(µ+ ω)⟨n2u⟩
(µ+ r) ⟨n⟩

, (4.3)

where ⟨n2u⟩ =
∑n

k=1
k2P(k)

(µ+ω+uk)
.

Theorem 4.2. If R0 > 1 then the fractional network-based SIRS malware propagation model

has at least one endemic equilibrium P∗ = (S∗
1 , I

∗
1 , R

∗
1, . . . , S

∗
n, I

∗
n, R

∗
n) defined by

S∗
k =

1

σkΘ∗

(
µ+

r

1 + γΘ∗

)
I∗k , R∗

k =
1

µ+ ω

[
r

1 + γΘ∗ +
uk

σkΘ∗

(
µ+

r

1 + γΘ∗

)]
I∗k ,

I∗k =
σkΘ

∗{
µ+ r

1+γΘ∗ + σkΘ∗ + σkΘ
∗

µ+ω

[
r

1+γΘ∗ + uk
σkΘ

∗

(
µ+ r

1+γΘ∗

)]} .

4.2.3. The asymptotic behavior of malware-free equilibrium P0

Theorem 4.3. The following assertions are fulfilled

(i) If R0 > 1 then malware-free equilibrium P0 is unstable.

(ii) If R0 < 1 malware-free equilibrium P0 is locally asymptotically stable.

Theorem 4.4. Denote R̃0 =
σ(µ+ω)⟨n2u⟩

µ⟨n⟩ . Then, if the threshold value R̃0 < 1 then malware-free

equilibrium P0 is globally asymptotically stable.

Remark 4.1. It is easy to see that R0 < R̃0, that is, the condition R0 < 1 is not enough to

ensure the global attraction of the equilibrium state P0 and in this case, we cannot eliminate

malware attacks unless the value of R0 decreases such that R0 < R̃0 < 1.

4.2.4. The backward bifurcation

Next, the thesis will establish a sufficient condition such that the backward bifurcation

phenomena occurs at R0 = 1.
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Theorem 4.5. The fractional network-based SIRS malware propagation model exhibits the

backward bifurcation at R0 = 1 if

γ >
(µ+ r)⟨n3a⟩⟨n⟩

r⟨n2u⟩

(
1 +

r

µ+ ω

)
,

where ⟨n3a⟩ = 1
⟨n⟩

n∑
k=1

k3P(k)
µ+ω+uk

.

4.3. The stabilization problem based on fractional interconnected Takagi-Sugeno

fuzzy system

The thesis considers a scenario when R0 > 1, that is, the equilibrium state P0 is unstable,

and establish a quarantine control function u(t) to stabilize this equilibrium state, that is, it

transfers the state function of the proposed malware propagation model to the state P̃0 =

(1, 0, 0, 1, 0, 0, . . . , 1, 0, 0)︸ ︷︷ ︸
3n

. Denote

ẽ(t) = x̃(t)− P̃0 = (S1 − 1, I1, R1, S2 − 1, I2, R2, . . . , Sn − 1, In, Rn)︸ ︷︷ ︸
3n

.

Then, the considered stabilization problem is equivalent to a control problem that stabilizes

the vector e(t) to 0. Next, the thesis will use the fractional interconnected Takagi-Sugeno

fuzzy system to establish the control function u(t). Since Λ = µ, that is, Ni(t) is constant,

by substituting Si = 1 − Ii − Ri, we only need to consider the dynamics in terms of Ii and

Ri. On the other hand, since Si(t) > 0 and is bounded above by 1 and the ith-group receives

a new node at a rate Λ, it can be assumed that Si(t) ∈ [0.1, 0.9] for all t > 0 and entails

Ii(t) +Ri(t) ∈ [0.1, 0.9]. Then, the considered nonlinear system can be rewritten as follows:

C
0 D

β
t ei(t) =

−µ− r
1+γΘ(t)

+ σiiP(i)(Si(t)−1)
⟨n⟩ 0

r
1+γΘ(t)

−(µ+ ω)

 ei(t) +

 0

Si(t)− 1

ui(t) +

n∑
j=1
j ̸=i

σi(Si(t)−1)
⟨n⟩ jP(j) 0

0 0

 ej(t).

(4.4)

Denote zi(t) =
(
zi1(t) zi2(t) · · · ziq(t)

)⊤
is the antecedent variables vector. The thesis

establishes a fractional interconnected Takagi-Sugeno fuzzy system for the nonlinear systems

(4.4) with the following fuzzy rules:

Rule Ep
i : If zi1 is F p

i1 and zi2 is F p
i2 and · · · and ziq is F

p
iq then

C
0 D

β
t ei(t) = Ap

i ei(t) +Bp
i ui(t) +

n∑
j=1
j ̸=i

αp
ijej(t),

where Ap
i , B

p
i and αp

ij are real matrices for all i = 1, n and p = 1, ri. The nonlinear system (4.4)

can be expressed by the following fractional differential system:

C
0 D

β
t ei(t) =

ri∑
p=1

wp
i (zi(t))

Ap
i ei(t) +Bp

i ui(t) +
n∑

j=1
j ̸=i

αp
ijej(t)

 (
i = 1, n

)
, (4.5)
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where wp
i (zi(t)) is a membership function indicating the activation degree of the pth-local model

of the subsystem Ei . Therefore, the fractional interconnected Takagi-Sugeno fuzzy system for

the proposed malware propagation model is given by:

C
0 D

β
t e(t) =



r1∑
p=1

wp
1 (z1(t))

Ap
1e1(t) +Bp

1u1(t) +
n∑

j=1
j ̸=i

αp
1jej(t)


...

rn∑
p=1

wp
n (zn(t))

Ap
nen(t) +Bp

nun(t) +
n∑

j=1
j ̸=i

αp
njej(t)




. (4.6)

The pth-fuzzy rule of input control function in the subsystem Ei can be considered as follows:

Rule Ep
i : If zi1 is F p

i1 and zi2 is F p
i2 and · · · and ziq is F

p
iq then ui(t) = Kp

i ei(t).

The state-feedback control ui(t) for the subsystemEi is ui(t) =

ri∑
p=1

wp
i (zi(t))K

p
i ei(t)

(
i = 1, n

)
.

Denote u(t) =
(
u1(t) . . . un(t)

)⊤
by the state-feedback control vector for the proposed mal-

ware propagation model. Next, the thesis establishes sufficient conditions to stabilize the

unstable equilibrium state:

Theorem 4.6. Assume that there exist some matrices Pi ∈ Sn
++, Qi ≻ 0, Upm

i ,Upm
ij ∈ Sn and

Kp
i satisfies the following inequalities:

Qpm
i ⪯ Upm

i (MI.1)(
αp
ij

)⊤
Pi + Piα

p
ij +

(
αm
ji

)⊤
Pj + Pjα

m
ji ⪯ 2Upm

ij (LMI.2)

U =



U1 U12 · · · U1n

U⊤
12 U2 · · · U2n

...
...

. . .
...

U⊤
1n U⊤

2n · · · Un


≺ 0, (LMI.3)

where for each i, j = 1, n, the matrices Ui and Uij (i ̸= j) are given by

Ui =



U11
i U12

i · · · U1ri
i

(U12
i )⊤ U22

i · · · U2ri
i

...
...

. . .
...

(U1ri
i )⊤ (U2ri

i )⊤ · · · Uriri
i


, Uij =



U11
ij U12

ij · · · U
1rj
ij

U21
ij U22

ij · · · U
2rj
ij

...
...

. . .
...

Uri1
ij Uri2

ij · · · U
rirj
ij


.

Then, the fractional interconnected Takagi-Sugeno fuzzy system (4.6) is stabilized under the

fuzzy state-feedback control u(t), where

Qpm
i = (Gpm

i )⊤ Pi + PiG
pm
i và Gpm

i = Ap
i +Bp

iK
m
i .
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Remark 4.2. In order to apply MatLab program to solve the system of MIs and LMIs in Theo-

rem 4.6, the thesis will apply Schur’s complement theorem to transform the matrix inequalities

(MI.1), ( LMI.2) and (LMI.3) into linear matrix inequalities in a more convenient form. For

this aim, the thesis carry out the following transformations:

Ci = P−1
i , Kp

i = Wp
iC

−1
i , Ũpm

i = CiU
pm
i Ci, Ũpm

ij = CiU
pm
ij Cj +CjU

pm
ij Ci

and Q̃pm
i = Ci

{
(Gpm

i )⊤ Pi + PiG
pm
i

}
Ci = Ci (A

p
i )

⊤ + Ap
iCi + Bp

iW
m
i + (Wm

i )
⊤ (Bp

i )
⊤ . By

multiplying the left and right sides of the matrices Ui, Uij with diag [Ci, . . . ,Ci]︸ ︷︷ ︸
n

, we obtain

Ũi =



Ũ11
i Ũ12

i · · · Ũ1ri
i

(Ũ12
i )⊤ Ũ22

i · · · Ũ2ri
i

...
...

. . .
...

(Ũ1ri
i )⊤ (Ũ2ri

i )⊤ · · · Ũriri
i


, Ũij =



Ũ11
ij Ũ12

ij · · · Ũ
1rj
ij

Ũ21
ij Ũ22

ij · · · Ũ
2rj
ij

...
...

. . .
...

Ũri1
ij Ũri2

ij · · · Ũ
rirj
ij


.

Therefore, we can rewrite the system of MIs in Theorem 4.6 as follows:

Q̃pm
i ⪯ Ũpm

i (LMI.4)(
αp
ij

)⊤
Ci + Ciα

p
ij +

(
αm
ji

)⊤
Cj + Cjα

m
ji ⪯ 2Ũpm

ij (LMI.5)

Ũ =



Ũ1 Ũ12 · · · Ũ1n

Ũ⊤
12 Ũ2 · · · Ũ2n

...
...

. . .
...

Ũ⊤
1n Ũ⊤

2n · · · Ũn


≺ 0. (LMI.6)

Example 4.1. Consider a wireless sensor network with Barabási-Albert free-scale network

structure for n = 2 and parameters are given by Λ = µ = 0.14, ω = 0.1, σ = 0.8, r = 0.6, γ = 2.

Then, we can calculate ⟨n⟩ =
∑n

k=1 kP(k) =
10
9
, ⟨n2⟩ =

∑n
k=1 k

2P(k) = 4
3
and R0 = 1.8018 > 1.

By choosing the terms zi1 = Si(t) and zi2 = r
1+γΘ(t)

in the system (4.4) as a premise variable,

the thesis establishes a fractional interconnected Takagi-Sugeno fuzzy system corresponding

to the proposed malware propagation model with weight functions η1i0 (zi1) =
1−zi1
0.8

, η1i1 (zi1) =
zi1−0.2

0.8
for variables zi1 and η2i0 (zi2) =

5(1−zi2)
2

, η2i1 (zi2) =
5zi2−3

2
for variable zi2. Denote zi(t) =(

zi1(t) zi2(t)
)⊤

and the corresponding fuzzy sets with weight functions by F χ
ik for each i = 1, 2,

k = 0, 1 and χ = 1, 2. Now, we obtain the following fuzzy rules:

Rule E1
i : If zi1 is F 1

i0 and zi2 is F 2
i0 then C

0 D
β
t ei(t) = A1

i ei(t) +B1
i ui(t) +

2∑
j=1
j ̸=i

α1
ijej(t),

Rule E2
i : If zi1 is F 1

i0 and zi2 is F 2
i1 then C

0 D
β
t ei(t) = A2

i ei(t) +B2
i ui(t) +

2∑
j=1
j ̸=i

α2
ijej(t),

Rule E3
i : If zi1 is F 1

i1 and zi2 is F 2
i0 then C

0 D
β
t ei(t) = A3

i ei(t) +B3
i ui(t) +

2∑
j=1
j ̸=i

α3
ijej(t),

Rule E4
i : If zi1 is F 1

i1 and zi2 is F 2
i1 then C

0 D
β
t ei(t) = A4

i ei(t) +B4
i ui(t) +

2∑
j=1
j ̸=i

α4
ijej(t),
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where for all i, j = 1, 2 and p = 1, 4, the matrices Ap
i , B

p
i và αp

ij are given by

A1
1 =

−0.916 0

0.2 −0.24

 , A2
1 =

−1.316 0

0.6 −0.24

 , A3
1 =

−0.404 0

0.2 −0.24

 , A4
1 =

−0.804 0

0.6 −0.24

 ,

A1
2 =

−0.628 0

0.2 −0.24

 , A2
2 =

−1.028 0

0.6 −0.24

 , A3
2 =

−0.372 0

0.2 −0.24

 , A4
2 =

−0.772 0

0.6 −0.24

 ,

B1
1 = B2

1 = B1
2 = B2

2 =

 0

−0.9

 , B3
1 = B4

1 = B3
2 = B4

2 =

 0

−0.1

 ,

α1
12 = α2

12 =

−0.144 0

0 0

 , α3
12 = α4

12 =

−0.016 0

0 0

 , α1
21 = α2

21 =

−1.152 0

0 0

 , α3
21 = α4

21 =

−0.128 0

0 0

 .

Then, the fractional interconnected Takagi-Sugeno fuzzy system (4.5) can be rewritten as

follows:

C
0 D

β
t ei(t) =

4∑
p=1

wp
i (zi(t))

Ap
i ei(t) +Bp

i ui(t) +
2∑

j=1
j ̸=i

αp
ijej(t)

 ,

where i = 1, 2 and wp
i (zi(t)) = φp

i (zi(t))
[∑4

p=1 φ
p
i (zi(t))

]−1

, φp
i (zi(t)) = η1ikη

2
ij. By using lmi

MatLab toolbox for (LMI.4), (LMI.5) and (LMI.6), we obtain

C1 =

21.8174 1.3860

1.3860 92.7029

 ,C2 =

18.5841 1.0680

1.0680 91.7758

 ,P1 =

 0.0459 −0.0007

−0.0007 0.0108

 ,P2 =

 0.0538 −0.0006

−0.0006 0.0109

 ,

K1
1 =

(
0.1067 0.2151

)
, K2

1 =
(
0.2983 0.0581

)
, K3

1 =
(
0.3112 −0.0300

)
, K4

1 =
(
0.3358 −0.0330

)
K1

2 =
(
0.0605 0.2203

)
, K2

2 =
(
0.2944 0.0617

)
, K3

2 =
(
0.3172 −0.0280

)
, K4

2 =
(
0.3598 −0.0315

)
.

Therefore, the malware-free equilibrium of the proposed network-based malware propagation

model is stabilizable.
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GENERAL CONCLUSIONS

1. The obtained results

The doctoral thesis studies the mathematical modeling of malware propagation on complex

networks based on differential models and fuzzy set theory. The obtained results of the doctoral

thesis are as follows:

(i) Establish a fractional SIQR malware propagation model with fuzzy data, propose some

new concepts of fuzzy Caputo-Atangana-Baneanu fractional derivative (Definition 2.1)

and fuzzy Riemann-Liouville Atangana-Baleanu fractional integral (Definition 2.2), prove

the existence and uniqueness of fuzzy integral solution of the proposed model (Theorem

2.3 and Theorem 2.4) and carry out some numerical simulations.

(ii) Establish a fractional network-based SE1E2IQR malware propagation model whose trans-

mission function is constructed by fuzzy-rule base and prove some qualitative properties of

this model such as the positiveness, threshold value R0 (The formula (3.4), the asymptotic

stability of malware-free equilibrium P0 (Theorem 3.3 and Theorem 3.4) and the forward

bifurcation at R0 = 1 (Theorem 3.5).

(iii) Establish a controlled fractional network-based SIRS malware propagation model with

saturated treatment function and its stabilization problem based on fractional intercon-

nected Takagi-Sugeno fuzzy systems. The obtained results are as follows: the positiveness

of solutions, the threshold value R0 (The formula (4.3)), the asymptotic stability (Theo-

rem 4.3 and Theorem 4.4), the backward bifurcation at R0 = 1 (Theorem 4.5) and some

sufficient conditions in form of linear matrix inequalities for the stabilization (Theorem

4.6) of malware-free equilibrium P0.

2. Some future research

� Study more details on the epidemiological properties of malware propagation models con-

taining uncertainty based on linear correlated fuzzy number approach, fuzzy in granular

form or Z-numbers.

� Study the observable problem and guaranteed cost control problem for network-based

malware propagation models based on the approach of fractional interconnected Takagi-

Sugeno fuzzy systems that contains time-delay or disturbance.
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