
 

MINISTRY OF EDUCATION 
AND TRAINING 

VIETNAM ACADEMY OF SCIENCE 
AND TECHNOLOGY 

 GRADUATE UNIVERSITY OF SCIENCE AND TECHNOLOGY 

 

Vu Duy Hien 

 

 

DEVELOPING EFFICIENT AND SECURE MULTI-PARTY 

SUM COMPUTATION PROTOCOLS  

AND THEIR APPLICATIONS 

 

 

DISSERTATION ON INFORMATION SYSTEM 

 

 

 Hanoi – 2024 



 

BỘ GIÁO DỤC 

VÀ ĐÀO TẠO 

VIỆN HÀN LÂM KHOA HỌC 

VÀ CÔNG NGHỆ VIỆT NAM 

HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ 

 

Vũ Duy Hiến 

 

 

NGHIÊN CỨU PHÁT TRIỂN MỘT SỐ GIAO THỨC TÍNH 

TỔNG BẢO MẬT HIỆU QUẢ TRONG MÔ HÌNH DỮ LIỆU 

PHÂN TÁN ĐẦY ĐỦ VÀ ỨNG DỤNG 

 

 

LUẬN ÁN TIẾN SĨ NGÀNH HỆ THỐNG THÔNG TIN 

 

 

  Hà Nội – 2024 



 

BỘ GIÁO DỤC 

VÀ ĐÀO TẠO 

VIỆN HÀN LÂM KHOA HỌC 

VÀ CÔNG NGHỆ VIỆT NAM 
 

HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ 

 

 

Vũ Duy Hiến 

 

 

NGHIÊN CỨU PHÁT TRIỂN MỘT SỐ GIAO THỨC TÍNH 
TỔNG BẢO MẬT HIỆU QUẢ TRONG MÔ HÌNH DỮ LIỆU 

PHÂN TÁN ĐẦY ĐỦ VÀ ỨNG DỤNG 

 

 

 

 

LUẬN ÁN TIẾN SĨ NGÀNH HỆ THỐNG THÔNG TIN 
Mã số: 9 48 01 04 

 

  

Xác nhận của Học viện 
Khoa học và Công nghệ 

Người hướng dẫn 1 
(Ký, ghi rõ họ tên) 

 

 

 

GS. TSKH. Hồ Tú Bảo 

Người hướng dẫn 2 
(Ký, ghi rõ họ tên) 

 

 

 

PGS. TS. Lương Thế Dũng 

 

Hà Nội - 2024 



i

PLEDGE

I promise that the thesis: ”Developing efficient and secure multi-party sum

computation protocols and their applications” is my original research work under

the guidance of the academic supervisors. All contents of the thesis were written

based on papers and articles published in distinguished international conferences and

journals published by the reputed publishers. The source of the references in this

thesis are explitly cited. My research results were published jointly with other authors

and were agreed upon by the co-authors when included in the thesis. New results and

discussions presented in the thesis are perfectly honest and they have not yet published

by any other authors beyond my publications. This thesis has been finished during

the time I work as a PhD student at Graduate University of Science and Technology,

Vietnam Academy of Science and Technology.

Hanoi, 2024

PhD student

Vu Duy Hien



ii

ACKNOWLEDGEMENTS

Scientific research is an interesting journey where the thesis is one of the first

results that researchers have reached. On that journey, I have met many kind people

who have supported for me to finish this thesis.

First of all, I would like to thank my great supervisors Prof. Dr. Ho Tu Bao

and Assoc. Prof. Dr. Luong The Dung who have provided valuable advice to me.

Without their support and guidance, I would not able to complete my thesis. I have

learned a lot of things from my supervisors.

I am thankful to Graduate University of Science and Technology, colleagues

at Banking Academy of Vietnam, friends, and collaborators who always encour-

age me along my research journey.

I also thank the CAMEL cafe (No.104/1 Viet Hung street, Long Bien dis-

trict, Ha Noi) where my publications and thesis had been born in.

Finally, I want to send the most special thank to my big family, my wife, and

our children who always have my back.

Hanoi, 2024

PhD student

Vu Duy Hien



iii

CONTENTS

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 OVERVIEW OF SECURE MULTI-PARTY SUM COMPUTATION 7

1.1 Background of secure multi-party computation . . . . . . . . . . . . 7

1.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.2 Basic concept . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.3 Definition of security . . . . . . . . . . . . . . . . . . . . . . 11

1.1.4 Cryptographic preliminaries . . . . . . . . . . . . . . . . . . 18

1.2 Secure multi-party sum computation problem . . . . . . . . . . . . . 22

1.2.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . 22

1.2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2 PROPOSING EFFICIENT SECURE MULTI-PARTY SUM COMPUTA-

TION PROTOCOLS 36

2.1 Analysis of typical secure multi-party sum computation protocols . . 36

2.1.1 Simple secure multi-party sum computation protocol . . . . . 36

2.1.2 Secure multi-party sum computation protocol of Urabe et al. . 38

2.1.3 Secure multi-party sum computation protocol of Hao et al.,

2010 in an electronic voting system . . . . . . . . . . . . . . 40

2.1.4 Privacy-preserving frequency computation protocol of Yang

et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.1.5 Further discussion . . . . . . . . . . . . . . . . . . . . . . . 47

2.2 Proposed secure multi-party sum computation protocols . . . . . . . . 49

2.2.1 Privacy-preserving frequency computation protocol based on

elliptic curve ElGamal cryptosystem . . . . . . . . . . . . . . 50

2.2.2 An efficient approach for secure multi-party sum computation

without pre-establishing secure/authenticated channels . . . . 61



iv

2.2.3 Secure multi-sum computation protocol . . . . . . . . . . . . 78

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3 DEVELOPING NEW SOLUTIONS BASED ON SECUREMULTI-PARTY

SUM COMPUTATION PROTOCOLS FOR PRACTICAL PROBLEMS 93

3.1 An efficient solution for the secure electronic voting scheme without

pre-establishing authenticated channel . . . . . . . . . . . . . . . . . 93

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.1.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.1.4 A secure end-to-end electronic voting scheme . . . . . . . . . 97

3.1.5 Security analysis . . . . . . . . . . . . . . . . . . . . . . . . 99

3.1.6 Experimental evaluation . . . . . . . . . . . . . . . . . . . . 102

3.2 An efficient and practical solution for privacy-preserving Naive Bayes

classification in the horizontal data setting . . . . . . . . . . . . . . . 103

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.2.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.2.4 New privacy-preserving Naive Bayes classifier for the hori-

zontal partition data setting . . . . . . . . . . . . . . . . . . . 112

3.2.5 Privacy analysis . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.2.6 Accuracy analysis . . . . . . . . . . . . . . . . . . . . . . . 115

3.2.7 Experimental evaluation . . . . . . . . . . . . . . . . . . . . 115

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

PUBLICATION LIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140



v

LIST OF ABBREVIATIONS

BoW . . . . . . . . . Bag-of-Words

CDH . . . . . . . . . Computational Diffie-Hellman

DDH . . . . . . . . . Decisional Diffie-Hellman

DD-PKE . . . . . Public-key encryption with a double-decryption algorithm

DNA . . . . . . . . . Deoxyribonucleic acid

DRE . . . . . . . . . Direct-recording electronic

DSS . . . . . . . . . . Digital signature standard

E2E . . . . . . . . . . End-to-end

LWE . . . . . . . . . Learn with error

NSC . . . . . . . . . National university of Singapore short text messages corpus

PPFC . . . . . . . . Privacy-preserving frequency computation

PPML . . . . . . . Privacy-preserving machine learning

PPNBC . . . . . . Privacy-preserving Naive Bayes classification

PSI . . . . . . . . . . Private set intersection

RAM . . . . . . . . Random Access Machines

SMC . . . . . . . . . Secure multi-party computation

SMS . . . . . . . . . Secure multi-party sum

SSC . . . . . . . . . . Secure sum computation

TF-IDF . . . . . . Term frequency – inverse document frequency

UK . . . . . . . . . . United Kingdom

ZKP . . . . . . . . . Zero knowledge proof



vi

LIST OF TABLES

2.1 The brief comparisons of the computational complexity among three

typical SMS protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2 The computational complexity comparisons among the proposed pro-

tocol and the typical protocols. . . . . . . . . . . . . . . . . . . . . . 56

2.3 The communication cost comparisons among the typical PPFC protocols. 57

2.4 The stored data volume of the miner comparisons among the typical

PPFC protocols (in megabytes). . . . . . . . . . . . . . . . . . . . . . 62

2.5 The comparisons of each user’s computational complexity among the

proposed protocol and the typical protocols. . . . . . . . . . . . . . . 72

2.6 The miner’s computational complexity comparisons among the pro-

posed protocol and the typical protocols. . . . . . . . . . . . . . . . . 72

2.7 The comparisons of each user’s communication cost among the pro-

posed protocol and the typical protocols. . . . . . . . . . . . . . . . . 74

2.8 The comparisons of the miner’s communication cost among the pro-

posed protocol and the typical protocols. . . . . . . . . . . . . . . . . 74

2.9 The stored data volume of the miner comparisons among the pro-

posed protocol and the typical protocols (in megabytes). . . . . . . . 78

2.10 The computational complexity comparisons among the new proposal

and the typical solutions. . . . . . . . . . . . . . . . . . . . . . . . . 86

2.11 The communication cost comparison among the new proposal and the

typical solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.12 The running time for the miner to compute the sum values compar-

isons among the compared solutions (in seconds). . . . . . . . . . . . 91

2.13 The stored data volume of the miner comparisons among the com-

pared solutions (in megabytes). . . . . . . . . . . . . . . . . . . . . . 91

3.1 Spam short-messages dataset information . . . . . . . . . . . . . . . 118



vii

3.2 The running time comparisons among the new proposal and the typi-

cal PPNBC solutions on the real dataset (in seconds). . . . . . . . . . . 119



viii

LIST OF FIGURES

1.1 The distributed computing model in a secure manner . . . . . . . . . 8

1.2 An example of the authentication method without knowing user’s

password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 An example of monitoring user’s passwords . . . . . . . . . . . . . . 9

1.4 An example of the DNA pattern-matching problem . . . . . . . . . . . 9

1.5 The secure electronic sealed-bid auction model . . . . . . . . . . . . 10

1.6 The real and ideal models in distributed computing field . . . . . . . . 15

1.7 The computational model of the secure multi-party sum computation

problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.8 The single-candidate end to end decentralized e-voting model . . . . . 23

1.9 An example of the privacy-preserving frequent itemset mining problem 23

2.1 The computational model of the simple secure multi-party sum com-

putation protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 The running time of each user comparisons among the typical PPFC

protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.3 The time for the miner/the server computing the public keys compar-

isons among the typical PPFC protocols. . . . . . . . . . . . . . . . . 60

2.4 The time for the miner/the server computing the frequency value com-

parisons among the typical PPFC protocols. . . . . . . . . . . . . . . . 61

2.5 The running time of each user comparisons among the proposed pro-

tocol and the typical protocols. . . . . . . . . . . . . . . . . . . . . . 75

2.6 The time of the pre-computation phase comparisons among the pro-

posed protocol and the typical protocols. . . . . . . . . . . . . . . . . 76

2.7 The time of the user authentication phase comparisons among the

proposed protocol and the typical protocols. . . . . . . . . . . . . . . 77



ix

2.8 The time of the secure n-parties sum phase comparisons among the

proposed protocol and the typical protocols. . . . . . . . . . . . . . . 78

2.9 The number of private keys comparisons among the compared solutions. 88

2.10 The total running time of each user comparisons among the compared

solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.11 The running time for the miner to compute the public keys compar-

isons among the compared solutions. . . . . . . . . . . . . . . . . . . 90

3.1 The single-candidate E2E decentralized electronic voting model. . . . 96

3.2 The total running time of each voter comparisons between the new

solution and Hao’s scheme. . . . . . . . . . . . . . . . . . . . . . . . 103

3.3 The voting server’s total running time comparisons between the new

solution and Hao’s scheme. . . . . . . . . . . . . . . . . . . . . . . . 104

3.4 The horizontally distributed computing model. . . . . . . . . . . . . . 111

3.5 An example of data transformation. . . . . . . . . . . . . . . . . . . 112



1

INTRODUCTION

A. Motivation

Nowadays, the development of information technology and communication,

especially the birth of web applications or information systems has created a large

amount of data owned by organizations or individuals. This has spurred the devel-

opment of the distributed computing field where the data owners perform together

computational tasks based on their cooperative data [1, 2]. Basically, the distributed

computing field has brought a lot of substantial benefits to organizations and individ-

uals, such asreducing significantly costs, understanding comprehensively customers,

and making good business decisions. However, in fact, because of privacy policy

or business secrets, participants of distributed computing systems often wish to ob-

tain cooperative tasks’ correct output without revealing their input data. For instance,

some banks cooperate together to improve machine learning-based credit scoring tool

using their customers’ data, but they are not ready to share their customers’ data for

anyone. Similarly, although there are some hospitals who want to jointly develop dis-

ease diagnosis methods based on a large united database, however they do not want

to provide their patients’ data to others. These challenges had motivated the birth of

SECURE MULTI-PARTY COMPUTATION area (SMC, for short) that has been considered as

a subfield of modern cryptography.

In essence, Secure Multi-party Computation refers distributed computing

methods in security concerns [1, 3]. Particularly, in a secure multi-party computation

model, there are several parties, in which each participant owns a private input. These

participants wish to obtain the result of the specific function f over all private inputs

while each party reveals nothing about his/her input but the output result. Unlike

traditional cryptography field, the adversary of SMC problems in general and the SMS

problem in particular can be inside the system of participants. The attacks of the ad-

versary may be to learn the honest participants’ private input or to cause the outputs

to be incorrect [1]. As a result, the ”secure” term here means: (1) the output’s cor-
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rectness is guaranteed, and (2) each party’s input is privately kept by himself/herself.

Nowadays, SMC has become an interesting topic that has attracted more and

more attention from research community. A variety of SMC problems have been for-

mulated and their solutions have been proposed into SMC protocols, such as secure

comparison protocols [4,5], secure multi-party sum computation protocols [6–8], and

secure dot product protocols [6,9–11]. Furthermore, such SMC protocols have been ap-

plied to various practical problems, such as secure online auction [14], secure e-voting

systems [12,13], privacy-preserving queries system [15], privacy-preserving financial

data analytic [16], privacy-preserving online advertising [17], and privacy-preserving

machine learning/data mining [18–20].

This thesis has investigated one of the most important and popular SMC prob-

lems [6] that is the secure multi-party sum computation one (SMS, for short). In the

SMS problem, it is assumed that where there are some parties, in which each party

owns a private value as his/her input, and the parties wish to obtain the sum of all

inputs but they reveal nothing about their inputs beyond the sum value. Similarly

to SMC problems in general, the birth of SMS one has been based on the security

requirements of specific distributed computing problems. Currently, a lot of proto-

cols have been propounded for the SMS problem, and they have a wide applicability in

various practical computing tasks, such as privacy-preserving recommendation sys-

tem [21], privacy-preserving multi-party data analytics [22], secure electronic voting

system [12, 13], privacy-preserving association rule mining [6, 7], privacy-preserving

classification [23], secure data collection for the smart grid [24], and secure auc-

tion [25, 26].

For SMC problems in general, and SMS one in particular, the protocols must

be secure (mainly including the preservation of the privacy of the participants’ local

inputs and the correctness of the honest parties’ outputs [3]) enough to prevent the

adversary’s harmful behaviors. Besides, SMS protocols should be good performance

(i.e. low computational complexity and communication cost) to be implemented in

real-life applications. This is perfectly understandable, because a lot of practical

SMS problems require to perform computational tasks as quickly as possible, such
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as secure e-voting, secure online auction. SMS protocols-based privacy-preservation

solutions such as privacy-preserving Apriori algorithm for mining association rules,

privacy-preserving Naive Bayes classifier, and secure gradient descent algorithm have

to execute SMS protocol multiple times to compute necessary mediate values. More-

over, in many distributed computing scenarios, participants use devices limited in

computational ability, storage capacity, and connectivity, e.g. smartphones, tablets.

Thus, it is significant to develop SMS protocols having both high security level and

good performance.

B. Research objectives

As mentioned before, first of all, SMS protocols need to be secure. To do this,

SMS protocols either (1) require each participant to split his/her private value into a

number of parts, and he then shares them with all others using secure communica-

tion channels or (2) use homomorphic cryptosystems such as ElGamal encryption

scheme [27] or Paillier cryptosystem [28]. Considering the approach (1), such pro-

tocols obviously have high cost of communication, and they are unsuitable for multi-

party computational models with a large number of participants. In contrast, SMS

protocols based on the second approach (2) often have pricey cost of computation.

As a result, it can be stated that the biggest challenge for designing SMS protocols is

how to create SMS protocols having both high security level and good performance.

Thus, the research objectives of this thesis include:

• Designing efficient and secure multi-party sum computation protocols that

have the capability to preserve the privacy of the parties’ local inputs and

the correctness of the honest parties’ outputs, as well as good performance.

• Developing SMS-based solutions for practical problems that have been cur-

rently solved by existing SMS protocols but are not yet secure and efficient.

C. Main contributions

The scientific story of this thesis is narrated as follows:
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• The thesis starts with basic distributed computing problems requiring to ex-

ecute SMS protocols once (e.g. the single-candidate secure e-voting prob-

lem). Through a comprehensively analysis, one of the most typical SMS

protocols has been chosen to be re-designed. The improved SMS protocol is

then optimized by transforming into the elliptic curve analog of the ElGa-

mal cryptosystem-based variant. Hence, the first proposed protocol has not

only high level of security, but also good performance. Continuously, based

on one of the most typical SMS protocols mentioned above, the thesis tries

to integrate a Schnorr signature-derived authentication method into a secure

multi-party sum computation function, in which both these cryptographic

tools employ the same private and public keys. Hence, the second proposed

protocol has a unique feature which is unlike the existing work, that is no

need to pre-establish any authenticated channel between each tuple of par-

ties. Furthermore, this protocol is still secure in the common semi-honest

model, as well as efficient in real-life applications.

• In the next stage, the thesis considers practical problems where SMS pro-

tocols have been performed multiple times for solving specific distributed

computing tasks (e.g. privacy-preserving data mining and machine learning

problems). The selected typical SMS protocol is re-designed with the aim

of obtaining many sum values only in one round of computation and com-

munication. As a result, the third proposed protocol efficiently computes

multiple sum values. In addition, this proposal significantly saves the cost

of key generation and management.

• Finally, to demonstrate the applicability of the above results, the thesis con-

structs the new protocols-based solutions for the secure end-to-end e-voting

scheme and the privacy-preserving Naive Bayes classification problem in

the horizontal dataset setting.

The general contribution of this thesis is to propose novel SMS protocols. How-

ever, unlike the previous work, the SMS protocols of this thesis are efficient to be

implemented in real-life applications.
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In particular, the contributions of this thesis are presented in the following

sections.

The first contribution

The thesis proposes three novel SMS protocols based on the homomorphic El-

Gamal encryption. Because this standard cryptography technique is semantically se-

cure, all proposed protocols achieve a high level of security without using any trusted

party or more than two non-colluding parties. Three new SMS protocols include:

• The privacy-preserving frequency computation (PPFC) protocol that can ob-

tain a frequency value in the context where communication channels among

parties are authenticated. In addition to high level of security, this protocol

has good performance, since it is optimally re-designed from the ideas of the

typical SMS ones and the elliptic curve cryptography. Consequently, the pro-

posed PPFC protocol can be employed as a key building block to securely

and rapidly compute single or multiple sum values (e.g. counting the result

of secure e-voting problems).

• The SMS protocol can securely compute a sum value in the scenario where

communication channels among parties are only public. This proposal is

methodically combined of a secure sum function and a Schnorr signature-

derived authentication method, so the second SMS protocol not only satis-

fies the mandatory requirement of security, but also is efficient. Especially,

this protocol can be directly implemented on public channels (e.g. Internet)

without pre-establishing any authenticated/secure channels. Because of the

above advantages, the second SMS protocol can become a suitable solution

for the secure single-candidate electronic voting problem in the semi-honest

model.

• The secure multi-sum computation protocol that can privately compute mul-

tiple sum values in one round of computation and communication. By using

an optimal technique for solving discrete logarithm problems with small

space of solutions, this protocol has not only a high security level but also



6

good performance.

The second contribution

Based on analysis of the proposed protocols’ applicability and essential re-

quirements of practical problems, the second contribution is to develop secure and

efficient solutions for the secure electronic end-to-end voting scheme and the privacy-

preserving Naive Bayes classifier in the horizontally distributed scenario. Particularly,

because the secure electronic end-to-end voting scheme often require to accurately

and rapidly count the voting result over various types of communication channel, the

combination of the proposed PPFC and the SMS protocols are chosen to solve this

problem. For the privacy-preserving Naive Bayes classifier that requires to sum up

frequency values used for constructing the Naive Bayes classification model while

the parites reveal nothing about their data, the thesis employs the secure multi-sum

computation protocol for boosting this highly complex task.

D. Thesis organization

The main content of this thesis is organized as follows:

• Chapter 1 provides a general background about secure multi-party computa-

tion such as basic concepts, definition of security, and cryptography prelimi-

naries. After that, this chapter of the thesis comprehensively reviews related

work to identify research gap and new directions.

• Chapter 2 analyzes typical SMS protocols in detail. Based on the analy-

sis result, this chapter proposes three new protocols for privacy-preserving

frequency computation, secure multi-party sum computation without pre-

establishing secure/authenticated channels, and secure multi-sum computa-

tion problems.

•Chapter 3 develops the solutions based on the new SMS protocols for two prac-

tical applications, i.e. the secure electronic voting scheme and the privacy-

preserving Naive Bayes classifier.
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CHAPTER 1. OVERVIEW OF SECURE MULTI-PARTY SUM

COMPUTATION

In this chapter, the thesis first provides a background of secure multi-party

computation field. Next, this chapter introduces the secure multi-party sum computa-

tion problem, then the previous work closely related to this problem is meticulously

analyzed that supports to identify potential research issues.

1.1. Background of secure multi-party computation

1.1.1. Introduction

As mentioned before, Secure Multi-party Computation (as illustrated in Fig-

ure 1.1) refers distributed computing methods in security concerns [1, 3], in which:

• Input: there are n parties where each participant i owns a private input vi.

• Output: the participants obtain the result f (v1, ...,vn) of the specific function

f over the inputs (v1, ...,vn), and each party reveals nothing about his/her

input but the output result.

Here, it needs to be expressed that the ”secure” concept means the two fol-

lowing constraints:

• The correctness of the function’s output is guaranteed.

• Each party’s input is privately kept by himself/herself.

Generally, the security property of a SMC protocol depends on the adversary

model including type of adversary (i.e. semi-honest or malicious), type of commu-

nication channels (i.e. secure, authenticated, or public), and capabilities of adversary

(i.e. number of controlled parties, eavesdropping transferred messages, and computa-

tional power). Hence, the design of a SMC protocol needs to achieve the security level

corresponding to the selected adversary model. This aspect is fully analyzed in the

next sections.
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Figure 1.1: The distributed computing model in a secure manner

Figure 1.2: An example of the authentication method without knowing user’s pass-

word

It can be seen that there are many practical problems related to SMC. A highly

popular SMC problem is the authentication method as illustrated in Figure 1.2 where

a server has to obtain the output of user verification function (i.e. ”true/false”) while

this server does not store the user’s passwords into database (of course, they cannot

know what the user’s passwords are).

Also related to the issue of password management, Apple Inc. [29] moni-

tors the user’s passwords by securely matching such passwords (privately stored in

the autofill keychain on the user’s local device) against a large set of weak or leaked

passwords. As depicted in Figure 1.3, Apple’s technologies can detect the user’s pass-

words occurring on the list of weak or leaked passwords (e.g. 12345678, password,

and iloveyou) without knowing what the user’s passwords are.
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Figure 1.3: An example of monitoring user’s passwords

Figure 1.4: An example of the DNA pattern-matching problem

Considering the DNA pattern-matching problem [30] (as illustrated in Figure 1.4),

there are a party who wants to determine a specific DNA subsequence’s existence (e.g.

a short DNA string that describes a mutation leading to a disease) inside a DNA sequence

owned by another party without disclosing to each party’s input.

Another typical SMC problem as depicted in Figure 1.5 is the sealed-bid auction

system where the auctioneer exactly determines the winner without opening the bids.

In general, the solutions for SMCproblems have been formulated into SMCprotocols

that have been defined as a set of specific rules and guidelines for processing, com-

puting, and communicating data among participants.

Nowadays, SMC has become an interesting topic that has attracted more and

more attention from research community. Hence, a lot of protocols have been pro-

posed for different SMC problems, such as secure comparison protocols [4, 5], secure

multi-party sum computation protocols [6–8], and secure dot product protocols [6,

9–11]. Furthermore, such SMC protocols have been applied to various practical prob-
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Figure 1.5: The secure electronic sealed-bid auction model

lems, such as secure e-voting systems [12, 13], secure online auction [14], privacy-

preserving queries system [15], privacy-preserving financial data analytic [16], privacy-

preserving online advertising [17], and privacy-preserving machine learning and data

mining [18–20].

1.1.2. Basic concept

A general SMC problem is formulated as follows [3].

Let n (n ≥ 2) be the number of participants joining a distributed computing

network, in which the ith party keeps a private input vi (i = 1, ...,n), and all inputs

have the same length (| vi| =
∣∣ v j

∣∣ with ∀i, j). The multi-party computation function

f is defined as follows:

f : ({0,1}∗)n → ({0,1}∗)n

v̄ = (v1, ...,vn) → f (v̄) = ( f1(v̄), ..., fn(v̄))
(1.1.1)

As depicted above in Figure 1.1, the ith party who owns the private input value

vi wishes to obtain the ith element in f (v1, ...,vn) that is fi(v1, ...,vn) (denoted as yi).

A multi-party computation function f can fall into one of the following types:
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• Deterministic functions: that return a unique output with the same input

value, and include:

◦ Symmetric deterministic functions: that are deterministic functions in

which fi(v1, ...,vn)≡ f j(v1, ...,vn) with ∀i ̸= j.

◦ Asymmetric deterministic functions: that are deterministic functions

where fi(v1, ...,vn) ̸= f j(v1, ...,vn) with ∀i ̸= j.

• General functions (including both deterministic and indeterministic func-

tions): that can return different outputs with the same input value in different

executions.

Conceptually, the secure multi-party computation field refers to methods that

allow the participants to securely compute a function f based on their private inputs

while anyone learns nothing about each party’s input.

In essence, the SMC area is perfectly close to the traditional cryptography field,

because the design of a basic cryptographic scheme (e.g. encryption, digital signa-

ture) in a multi-party environment can be viewed as the design of a SMC protocol

for solving a specific issue [3], i.e. confidentiality, authentication, or integrity [2, 3].

Thus, the SMC area has become a crucial part of the modern cryptography [3]. In

the opposite perspective, there still exists the difference between the traditional cryp-

tography field and the SMC area [3]. This is explained that the basic cryptographic

primitives (e.g. encryption, digital signature) require participants to perform little in-

teraction while SMC protocols’ parties are often have to interact with others multiple

times.

Next, the thesis provides a well-known security definition of a general secure

multi-party computation protocol.

1.1.3. Definition of security

Before representing the standard definition of security for the SMC field, the

thesis describes an adversary model chosen for this study, a general approach formal-

izing the security of a SMC protocol, and necessary technical preliminaries.
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1.1.3.1. Adversary model

This section formalizes possible attacks on a SMC protocol into an adversary

model that has been used as an important basis to design provable secure crypto-

graphic protocols. Referred from the work [31], the adversary model of this study

also consists of three components, i.e. assumptions, goals, and capabilities of an

adversary.

i. Adversary assumptions

Basically, one of the most different characterizes between the SMC field with

the traditional cryptography (e.g. encryption, digital signature) that a SMC protocol

can be attacked by not only an external entity but also a set of the corrupted internal

parties controlled by an external entity [3]. Consequently, the computational model of

SMC includes three types of entity: (1) honest parties who follow the rule of protocol

and they do not collude with any one to perform malicious behaviors, (2) corrupted

parties who are ready to collude with others or can be controlled by an external ad-

versarial entity to execute malicious behaviors against honest parties, and (3) external

adversary who controls corrupted parties to perform malicious behaviors.

Considering the corrupted parties’ behaviors, if the corrupted parties are semi-

honest, then they still follow the protocol’s rule but they can collude together or be

controlled by the adversary to execute the harmful behaviors such as trying to gain

others’ private data input. In contrast, in the case the corrupted parties are malicious,

they can arbitrarily perform their behaviors without following the protocol’s rule, even

may abort the protocol anytime. Based on the corrupted parties’ behaviors, there are

two types of SMC model, i.e. the semi-honest and malicious models.

This thesis focuses on the semi-honest model, and the number of corrupted

parties is up to (n− 2) where n is the number of data users participating the proto-

col execution. SMC protocols based on the semi-honest model are quite efficient, so

this model is suitable for applications requiring high performance, such as privacy-

preserving distributed data mining and analytic [32–34]. It can be understandable,



13

because if a party who is ready to participate in a SMC protocol execution with his

goodwill and reputation, then he should follow the rule of protocol. For example,

there are several hospitals who wish to jointly research on their united patient records.

Due to privacy constraints, each hospital is not allowed to know others’ data. Clearly,

the semi-honest model is appropriate for such scenario. In the case there exist curious

parties who want to discover others’ private data based on what they observed, they

should be prevented by the protocol’s design.

Here, it should be emphasized that the parties in the semi-honest model only

adhere to the rules of computation, so that the non-collusion assumption (e.g. in [23,

35–37]) is unreasonable [1]. It is also noted that although the security requirement of

SMC protocols in the semi-honest model is not too strict, this model is an important

first step toward achieving higher levels of security. The semi-honest model thus will

play a major role in the design of protocols for the malicious model, and it can be

transformed protocols that are secure in the semi-honest model into protocols that are

secure in the malicious model [3].

Next, because of controlling the corrupted internal parties, it is assumed that

the adversary knows the corrupted internal parties’ knowledge (e.g. private keys, con-

fidential data input), as well as accessing communication channels among parties. In

addition, to consolidate the contributions, this thesis assumes that the communication

channels between the parties are only authenticated or even public.

ii. Adversary’s goals

While the classical distributed computing field often face inadvertent threats

such as unstable communication and machine crashes, SMC protocols are concerned

with some adversarial entity’s attacks with the aims of learning the honest parties’

private input or causing the output result to be incorrect [1].

iii. Adversary’s capabilities

As mentioned before, the adversary has an extremely powerful capability that

controls up to (n−2) corrupted internal parties (of course, we cannot know who the
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honest parties are) to perform malicious behaviors. Because the communication chan-

nels between parties are authenticated or even public, the adversary can eavesdrop

transferred messages. Besides, it is assumed that the adversary is computationally

bounded, that is, it runs in (probabilistic) polynomial-time [1].

1.1.3.2. Definitional approach

The direct way to define the security of a SMC protocol is to predetermine the

requirements, then show that the protocol satisfies all of them [3, 38]. However, this

approach is not general because: (i) an important property can be ignored, (ii) the

security definition is simple enough to see that the adversary’s possible attacks can be

prevented [1].

To choose a suitable approach for defining security of SMC protocols, let us be-

gin with a very basic paradigm for a public-key cryptosystem, that is semantic secu-

rity. Goldwasser and Micali [39] stated that a public-key cryptosystem is semantically

secure if whatever an adversary can compute about the plaintext given the ciphertext,

then it can also compute when receiving nothing. Obviously, if the adversary receives

nothing, then it gains nothing about the plaintext. The context where the adversary

receives nothing seems to imply an ”ideal world” [40]. Explicitly speaking, a sys-

tem is secure in the real world, if the adversary receives the ciphertext but nothing is

learned (equivalent to the ideal world where the adversary receives nothing). More

generally, the security of a system is proved by comparing what happens in the ”real

world” to what happens in the ”ideal world”. As a result, this formulation of secu-

rity is called the ”ideal/real simulation paradigm”. Moreover, the simulation-based

security model is the simplest but the most rigorous among the security models for

malicious adversaries.

For the secure multi-party computation field (see Figure 1.6), the ideal world

model is where there exists a trusted party who helps the participants to compute the

output without security concerns, and the real one is where no trusted party exists. In

the other words, every participant does not trust anyone in the real world. The security

of a protocol is determined by comparing the outcome of a real protocol execution to
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Figure 1.6: The real and ideal models in distributed computing field

the one of an ideal protocol execution [3].

Thus, in SMC field, the simulation-based security model has been used as an

important approach for proving a SMC protocol’s security.

1.1.3.3. Technical preliminaries

This section represents some necessary preliminaries employed for the SMC

field’s standard security definition.

i. Negligible function

Let n be a security parameter (well-known as the key length which the hard

problems such as discrete logarithm, large integer factorization cannot be solved in

poly-nominal time). Below is the definition of a negligible function referred from the

book [3].

Definition 1.1.1. A function µ(u) is called negligible with n if for all positive polyno-

mial p(.), there exists a non-negative integer N such that ∀n > N:

µ(u)<
1

p(n)
(1.1.2)
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ii. Computationally indistinguishable

The notion of computational indistinguishability is very crucial for both the

cryptography and SMC field [41]. Hence, the following definition [3] is provided.

Definition 1.1.2. Let X(n,a),Y (n,a) be two random ensembles indexed by (n,a) and

X = {X(n,a)}n∈N,a∈{0,1}∗,Y = {Y (n,a)}n∈N,a∈{0,1}∗ are corresponding distributions.

X ,Y are called ”computationally indistinguishable” (denoted as X
C≡ Y ) in poly-

nominal time if every probabilistic polynomial-time algorithm D, there exists a negli-

gible function µ(u) with n such that ∀a ∈ {0,1}∗:

|Pr[D(X(n,a)) = 1]−Pr[D(Y (n,a)) = 1|< µ(u) (1.1.3)

In SMC field, the above parameters can be understood as follows:

• n is security parameter.

• a is the input of SMC protocols.

• X is the output of SMC protocols in ideal world setting.

• Y is the output of SMC protocols in real world setting.

1.1.3.4. Standard definition of security

According to the simulation-based approach, this section presents the standard

definition of security of a SMC protocol in the semi-honest model using public channels

that is referred from the SMC framework [3].

Definition 1.1.3. (privacy with respect to the semi-honest model using public chan-

nels [3])

Let f be a secure multi-party computation function as defined in Section 1.1.1.

• In the case f is a deterministic function: the protocol Π privately computes

the function f against t corrupted participants if ∀I ⊆ {1,2, ...,n} such that

∥I∥= t, there exists a probabilistic polynomial-time algorithm M such that
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{M(I,vI, fI(v))}v∈({0,1}∗)n
c≡ {V IEW Π

A,I(v)}v∈({0,1}∗)n (1.1.4)

• In general case: the protocol Π privately computes the function f against t

corrupted participants if ∀I ⊆ {1,2, ...,n} such that ∥I∥ = t, there exists a

probabilistic polynomial-time algorithm M such that

{M(I,vI, fI(v), f (v))}v∈({0,1}∗)n
c≡ {V IEW Π

A,I(v),OUT PUT Π(v)}v∈({0,1}∗)n

(1.1.5)

where

• V IEW Π
A,I(v) is the views of t corrupted participants and all messages (trans-

ferred among the honest participants) that the adversary A eavesdrops dur-

ing the execution protocol Π on the input v = (v1, ...,vn)

• OUT PUT Π(v) is the output sequence of all parties involving the protocol Π.

In the first case, OUT PUT Π(v)≡ f (v)

• c≡ is computational indistinguishability.

Besides, there is a composition theorem often used to construct SMC protocols

in the semi-honest model (see Theorem 1.1.1).

Theorem 1.1.1. Suppose that the function g is privately reducible to the function f ,

and f is privately computed by a secure protocol. Then there exists a protocol for

privately computing g [3].

This theorem says that if a protocol can be decomposed into sub-protocols,

then it will be secure if its sub-protocols are secure [3].

In this thesis, all proposals’ security is proved using Definition 1.1.3 and The-

orem 1.1.1.

Next, the thesis presents foundation of cryptography used as preliminaries of

secure multi-party computation field.
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1.1.4. Cryptographic preliminaries

1.1.4.1. Discrete logarithm problems

For general cryptographic protocols, the discrete logarithm problems can be

seen as one of the most important preliminaries. As a result, this section provides

basic concepts related to the discrete logarithm problems referred from the book [41].

Considering a cyclic group G of order q (G= {g0,g1, . . . ,gq−1}). This equals

to ∀h ∈ G, there only exists a unique value x ∈ Zq such that gx = h. In that context,

it can be called ”x is discrete logarithm of h with the base g” and written x = loggh.

The hard discrete logarithm problem is defined as follows:

Definition 1.1.4. [41] Let G be a cyclic group of order q (∥q∥= n) with the generator

g and a random element h ∈ G. The discrete logarithm problem in G is to compute

loggh. The experiment simulating the discrete logarithm problem in G (denoted as

DLogA,G(n)) is described in the following steps:

• Run the poly-nominal algorithm G(1n) to obtain the parameters (G,q,g).

• Choose a random element h ∈G.

• The algorithm A is given (G,q,g,h) and output the value x ∈ Zq.

• If gx = h, then the output of this experiment is 1. And 0 if otherwise.

The discrete logarithm problem is hard relative to G, if for all probabilistic

polynomial-time algorithms A, then there exists a negligible function µ(n)

such that

Pr[DLogA,G(n)]< µ(n) (1.1.6)

Informally, although the algorithm A is given (G,q,g,h), the probability for A

to find out x ∈ Zq satisfying gx = h is negligible.

The problems related to compute discrete logarithms consist of the computa-

tional Diffie-Hellman (CDH) and the decisional Diffie-Hellman (DDH) ones.
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• Computational Diffie-Hellman (CDH) problem

Given the parameters (G,q,g) and two elements h1 = gx1,h2 = gx2 belongs to

G. DHg(h1,h2) is defined as
de f
= gx1x2 . The CDH problem is to compute DHg(h1,h2)

given h1,h2. If the discrete logarithm problem in G is easy, then the CDH problem

is solved. However, if the CDH problem is hard, then it cannot be stated that the

discrete logarithm problem is too. Thus the CDH assumption has seldom used in the

cryptography field.

• Decisional Diffie-Hellman (DDH) problem

Given the parameters (G,q,g) and three elements X = gx,Y = gy,Z = gz with

x,y,z are randomly chosen in Zq. The hard decisional Diffie-Hellman problem is

defined as follows:

Definition 1.1.5. The DDH problem is hard relative to G if for all probabilistic

polynomial-time algorithms A, then there exists a negligible function µ(n) such that

|Pr[A(G,q,g,gx,gy,gz) = 1]−Pr[A(G,q,g,gx,gy,gxy) = 1]|< µ(n) (1.1.7)

Basically, this definition states that (gx,gy,gz) and (gx,gy,gxy) are computa-

tionally indistinguishable with x,y,z are randomly chosen in Zq. Therefore, the hard

DDH problem is a strong assumption commonly used in the cryptography field.

In the SMC field, the computations of discrete logarithm-based protocols are

usually performed in cyclic groups of large prime order, because of the following

reasons:

• The discrete logarithm problem is hardest in these groups, and the decisional

Diffie-Hellman assumption is also held in such groups.

• It is easy to choose a generator of a cyclic group of large prime order (i.e.

every element, excepting the identity).

Additionally, cyclic groups of large prime order are suitable for SMC models
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with large number of parties. In such scenarios, the public parameters (G,q,g) only

need to be generated once, each participant can privately choose his/her confidential

parameters.

As a result, the cryptographic parameters for discrete logarithm-based proto-

cols are chosen as follows:

• Let p and q be two large primes such that (p− 1)
...q, and g ∈ Zp satisfying

g ̸= 1 and gq mod p = 1.

• G= {g0,g1, ...,gq−1}.

• The public parameters are (G, p,q,g).

1.1.4.2. ElGamal public-key cryptosystem: a homomorphic encryption

This section represents a common variant of the ElGamal encryption scheme [27]

that is based on discrete logarithm problems.

Let G,q,g be secure cryptographic parameters. In addition, let x be a private

key, and the public key is h = gx.

In the encryption step, the sender uses h to create the ciphertext C from the

plaintext m by randomly choosing k from {1,2, ...,q−1} and computing the cipher-

text C = (C1 = mhk,C2 = gk). To find out the plaintext m from the ciphertext C, the

receiver uses the private key x and computes m =C1(Cx
2)
−1.

Under necessary assumptions, the ElGamal encryption is semantically secure.

Hence, this cryptosystem has been used to construct several secure cryptographic pro-

tocols such as the ElGamal digital signature [27], the Schnorr signature scheme [42].

Moreover, the ElGamal encryption has homomorphic property that is the most im-

portant property used for designing SMC protocols.

•Multiplicative homomorphic property: it can be seen that if C(m1)= (m1hk1,gk1)

and C(m2) = (m2hk2,gk2) are the corresponding ciphertexts of m1,m2, then

C(m1)C(m2) = (m1m2hk1+k2,gk1+k2) is the ciphertext of m1m2.

• Additive homomorphic property: in the cases the size of plaintexts is not
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too large (e.g. input values of SMC problems), the ciphertexts of m1,m2 can

be modified into C(m1) = (gm1hk1,gk1);C(m2) = (gm2hk2,gk2), respectively.

Consequently, the value C(m1)C(m2) = (gm1+m2hk1+k2,gk1+k2) is the cipher-

text of (m1 +m2). Simultaneously, the small-sized value m can be easily

extracted from gm without spending much time, because there exist a lot

of methods solving this problem, in which the Shanks’ baby-step giant-step

algorithm is one of best candidates.

In addition, there exists an elliptic curve analog of the ElGamal cryptosys-

tem [43] described as follow:

Let q,E(Fq),O,G,q be secure cryptographic parameters. The private key is

d ∈ [1,q−1], and the public key Q = dG .

To encrypt m, the sender employs the public key Q to compute the ciphertext

C by randomly choosing k from [1,q− 1] and computing C = (C1 = Pm + kQ,C2 =

kG) where Pm is a point of E corresponding to the plaintext m (using a method of

imbedding plaintexts mentioned in [43]). To decrypt the ciphertext C based on the

private key d, the receiver needs to compute the value m decoded from the point

M (using a method of imbedding plaintexts mentioned in [43]), in which M = C1 +

(−dC2).

Under necessary assumptions, the elliptic curve analog of the ElGamal cryp-

tosystem is also semantically secure.

It can be seen that in secure multi-party computing models using the ElGamal

encryption, the cryptography parameters (G, g, q) or (E(Fq), O, q, G) can be publicly

chosen based on the highest standard of security without using any trusted third party,

and each participant only needs to choose private keys for himself/herself. Hence, the

ElGamal cryptosystem is suitable for such multi-party computing models. Because

of the advantages above, the ElGamal encryption is regarded as a key building block

of this thesis.
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1.1.4.3. Solving discrete logarithm problems with small space of solutions

For the ElGamal cryptosystem-based SMC protocols, we often face discrete log-

arithm problems in which their solution space is limited by small or medium val-

ues. Basically, there are two common methods to solve discrete logarithm problems:

Brute-force and Shanks’ baby-step giant-step algorithms (see Appendices A and B).

1.2. Secure multi-party sum computation problem

1.2.1. Problem formulation

As illustrated in Figure 1.7, the SMS problem is formulated as follows:

• Input: there are n parties, in which each participant i owns a private value vi.

• Output: the participants obtain the sum f (v1, ...,vn) = v1 + ...+ vn, and each

party reveals nothing about his/her input but the sum value.

Figure 1.7: The computational model of the secure multi-party sum computation

problem
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Figure 1.8: The single-candidate end to end decentralized e-voting model

Similarly to general SMC problems, the birth of SMS one has been based on the

security requirements of several specific distributed computing tasks. Considering

a very classical cryptography task depicted in Figure 1.8 that is the secure e-voting

problem where the vote counter needs to compute the sum of ’yes’ votes while each

voter still privately keeps his/her ballot (i.e. ’yes’ or ’no’ selection). It is clear that

this task is equal to the SMS problem.

Figure 1.9: An example of the privacy-preserving frequent itemset mining problem
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Another distributed computing task as presented in Figure 1.9 related to the

SMS problem is to mine frequent itemset from a large united transaction dataset (e.g.

shopping carts), in which each customer reveals nothing his/her data. More precisely,

for each itemset, the miner must count the sum of carts containing it while all cus-

tomers do not want to share their shopping data with anyone.

Let us regard the privacy-preserving Naive Bayes classifier in the horizontal

data model (e.g. [23, 33]). To predict the label of a new instance A = (a1, ...,am)

based on the multiple users’ data records, the miner must and all data users jointly

compute the sum of users whose class label is L(i) in which each label L(i) belongs

to the set of labels L. Concurrently, the miner also needs to calculate the sum of

users whose jth attribute is a j and class label is L(i). All of the sum values are used

for computing probabilistic values p(L(i))
m
∏
j=1

p(a j|L(i)) to decide the predicted label

of the instance A that has the maximum probability. Hence, the privacy-preserving

Naive Bayes classification problem in the horizontally distributed scenario is close to

the SMS one.

It can be stated that a lot of practical distributed computing tasks have related to

the SMS problem. Thus, SMS protocols have been currently applied to various practical

computing tasks, such as privacy-preserving recommendation system [21], privacy-

preserving data analytics [22], secure e-voting system [12, 13], privacy-preserving

classification [23], privacy-preserving association rule mining [6, 7], secure data col-

lection for the smart grid [24], and secure auction [25, 26].

1.2.2. Related work

In the literature, SMS problem has attracted a lot of attention from researchers.

Up to now, SMS protocols have been based on two approaches: non-cryptographic

and cryptographic ones. In this section, the typical SMS protocols following these

approaches are comprehensively reviewed about both the security and performance

properties. For convenience, it is assumed that there are n parties joining a SMS pro-

tocol execution, in which the ith party and his/her private input value are correspond-

ingly denoted as Ui and vi.
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1.2.2.1. Review of typical SMS protocols

(i) The non-cryptographic approach

SMS protocols based on the non-cryptographic approach often require each

party to split his/her private value into several parts and then share them with oth-

ers though secure communication channels. A number of such typical SMS protocols

are reviewed as follows.

It is widely known that the first SMS protocol based on the non-cryptographic

approach was introduced in [44]. Lately, the improved variant of this protocol was

presented in [6] by Clifton et al. Basically, each user Ui of these protocols hides

his/her private value vi by adding it to the number received from the user Ui−1, then

sharing the result for the user Ui+1. Hence, the cost of the protocols [6, 44] is inex-

pensive, but the private value of Ui is revealed if Ui−1 and Ui+1 collude together. In

the other words, these protocols have good performance but low level of security.

Urabe et al. [7] proposed a highly secure sum protocol solving privacy-preserving

association rules mining problem. In this SMS protocol, excepting the special party

U0, each party Ui of this protocol separates his/her private value vi into (n− i) parts

{vi,i,vi,i+1, ...,vi,n−1}, after that he/she keeps vi,i and shares {vi,i+1, ...,vi,n−1} for the

parties {Ui+1, ...,Un−1}, respectively. Thus, this protocol may prevent (n− 2) cor-

rupted users, but its communication cost is relatively high. Additionally, in the case

of large number of parties, it is quite expensive and impractical to establish commu-

nication channel between each pair of participants.

Zhu et al. [8] presented a collusion-resisting secure sum protocol, in which the

private number vi of the party Ui is masked in the phase 1 of this protocol. In particu-

lar, each participant Ui randomly chooses t different random numbers {vi 1,vi 2, ...,vi t}

(t is a given constant positive integer), then shares them for t different others who are

randomly chosen by himself/herself. Continuously, the party Pi hides his/her private

number vi by adding or subtracting vi to the values received from others. As a re-

sult, it can be seen that the privacy and execution cost of each party Ui depends on

the number t. More specifically, if t is small, then the communication cost of Ui is
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inexpensive, but the private number vi can be easily learned, and otherwise. In the

other words, the protocol [8] must suffer from the trade-off between the security and

performance properties.

Zhang et al. [45] propounded a SMS protocol called the rational secure sum

one. At the first step of this protocol, each party Ui randomly chooses (n−1) differ-

ent integers {r1
i ,r

2
i , ...,r

i−1
i ,ri+1

i , ...,rn
i } and correspondingly sends them to the others

{U1,U2, ...,Ui−1,Ui+1, ...,Un}. The party Ui then adds his/her private value si to all

values r j
i ( j = 1,2, ..., i−1, i+1, ...,n) to the value vi. In the second step of the proto-

col [45], each party Ui subtracts all values ri
j (received from others) from the value vi.

Hence, the protocol of Zhang et al. [45] has the capability to prevent (n−2) colluding

parties. Moreover, differently from existing traditional SMS protocols, each party Ui

of the protocol [45] obtains the sum with complete fairness by executing the function

GenarateTag in the end step. In fact, the fairness property can be crucial for several

SMC protocols in some cases (e.g. the case of contract signing [1]), but it is unessential

to guarantee this property in many contexts. For example, in the case of credit scor-

ing problem that the miner cooperates with the bank customers to compute the total

number of good-rank customers, it does not make sense to share the results with the

bank customers. Besides, because each party Ui must transfer messages with (n−1)

others, the protocol of Zhang et al. [45] has the same disadvantages with that of Urabe

et al. [7].

Li et al. [21] propounded an unsynchronized SMS protocol that was applied to

a privacy-preserving collaborative filtering problem. In this protocol, each participant

separates his/her secret value into t parts, then securely shares them to t online par-

ticipants randomly chosen by himself/herself. Clearly, if t online participants collude

together, then each participant’s secret value is revealed. Consequently, the protocol

of Li et al. also has a trade-off between the security and performance.

Croce et al. [24] proposed a secure sum computation (SSC) tool as a building

block of privacy-preserving overgrid scheme used for securely collecting data in the

smart grid. In particular, the SSC tool [24] privately sums the secrets of n distributed

nodes by requiring the nodes to executing a protocol that is similar to the previous
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one [6]. As a result, the secure sum protocol of Croce et al. [24] is only suitable for

applications having weak-security constraints.

Based on the same idea of the protocol [7], Luo et al. [46] improved the secure

multi-party sum computation protocol to resist clients dropping out. However, this

new protocol also requires all participants to communicate together for transferring

messages that brings big inconvenience to distributed computation models.

(ii) The cryptographic approach

In contrast, SMS protocols based on the cryptography field use homomorphic

cryptosystems such as ElGamal cryptosystem [27] or Paillier encryption [28] to se-

curely compute the sum value while still protecting each participant’s private input.

Next, the SMS protocols following this approach are reviewed.

Xun Yi and Yanchun Zhang [47] employed two semi-trusted mixers (denoted

as Mixer 1 and Mixer 2) to construct a secure protocol for computing sum of counts

that is used to build privacy-preserving Naive Bayes classifiers. This protocol then

is improved to compute a series of sum values by encrypting multiple inputs in one

ciphertext. To obtain each sum value, the protocol [47] requires that each user Ui

divides his/her private count vi into two parts in which the first and second parts are

encrypted by the Paillier public keys of Mixer 1 and Mixer 2, then shares these ci-

phertexts for Mixer 1 and Mixer 2, respectively. At the end step of the protocol, the

semi-trusted mixers can obtain the sum of counts by aggregating all ciphers received

from users and jointly running the two-party protocol. It can be seen that if the two

mixers conclude, then each user’s count is disclosed. In the other words, the proto-

col [47] has low level of security.

In 2011, Shi et al. [48] proposed a SMS protocol that allows the aggregator com-

putes the sum of all parties’ private inputs without disclosing these values. To obtain

this goal, each party Ui’s private input vi is encrypted into the ciphertext gvi.H(t)ski ,

in which g is a generator, H(.) is a secure hash function, t is time step, and ski is

Ui’s secret key chosen by a trusted dealer. The aggregator recovers the sum value by

multiplying all ciphertexts, then executing the brute-force search or Pollard’s lambda
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method. It is not hard to see that the security of the protocol [48] is weak, because of

using the trusted party.

Jung et al. [49] propounded a collusion-tolerable privacy-preserving sum with-

out secure channel. Before submitting to the aggregator, the party Ui converts his/her

private value vi into the ciphertext Ci = (1 + p.vi).(
gri+1

gri−1 )
ri mod p2 where p,g is

the public cryptographic parameters, gri+1,gri−1 are the corresponding public keys

of Ui+1,Ui−1, and ri is the private key of Ui. After receiving the ciphertexts from

all participants, the aggregator calculates C = ∏
n
i=1Ci mod p2, then efficiently com-

putes the final sum by exploiting the modular property via the equation ∑
n
i=1 vi =

C−1
p .

Unfortunately, Datta and Joye pointed out in [50] that the private value vi of the party

Ui is easily recovered by anyone from the ciphertext Ci as vi =
1−Cp−1

i mod p2

p mod p.

Hence, the SMS protocol of Jung et al. [49] has low level of security.

Having the same idea to the privacy-preserving frequency mining protocol

in [33] (see more detail in the next section), Badsha et al. [51] proposed a SMS proto-

col. After that, the authors of [51] used this SMS protocol to construct a solution for

a practical privacy-preserving recommendation system. To get the similarity used for

generating recommendations for the target user, Badsha et al. securely compute me-

diate sum values by performing a SMS protocol that requires each user Ui transforms

his/her input, e.g. the rating of Ui on the jth item ri, j, into the ciphertext of ElGamal

encryption E(ri, j) = (gri, j .Y ri,gri), in which g is a generator, ri is the private key of

Ui, and Y is the global public key computed from all users’ local public keys (i.e. gxi ,

i = 1, ...,n). Because of the properties of ElGamal cryptosystem, the protocol [51]

can correctly compute the necessary sums as well as privately protecting each user’s

input values. However, its performance is quite poor, since all participants (including

both the users and server) must execute up to three rounds of computation.

Based on a random shuffle function and the ElGamal encryption, Mehnaz et

al. [22] proposed a collusion-resisting SMS protocol applied to privacy-preserving re-

gression and classification techniques. In the first phase of this protocol, each party

Ui first separates his/her private value vi into s segments {vi1,vi2, ...,vis}, then Ui se-

quentially encrypts these s values by using the ElGamal cryptosystem public keys of
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the mediator, U1,U2, ...,Un, orderly. Continuously, each party Ui sends the (n+ 1)

layers of encryption-ciphertexts to the mediator. In the second phase of the protocol,

the mediator shares all (n ∗ s) ciphertexts for the party Un. Next, Un strips off one

layer of encryption for (n∗ s) ciphertexts, then randomly re-orders the results to share

for Un−1. Similarly, the parties Un−1,Un−2, ...,U1 do this until n layers of encryption

of (n ∗ s) ciphertexts are stripped and no one knows that each of (n ∗ s) outputs is

the ciphertext (under the mediator’s public key) of which party’s segment. At the

end of the protocol, the mediator decrypts (n ∗ s) outputs into (n ∗ s) segments, then

computes the sum of these values to obtain the global sum. It is easy to see that the

ElGamal encryption and the random shuffle function securely protect the private input

of each party, as well as correctly computing the sum value. Nevertheless, each party

of the protocol [22] is required to operate too many times of ElGamal encryption and

decryption tasks. Consequently, the computational complexity of the protocol [22]

is extremely high. Moreover, this protocol must establish communication channels

between Ui and Ui+1 (i = 1,2, ...,n−1).

With the aim of proposing a differential private Naive Bayes classifier, Li et al.

constructed a SMS function in the study [23]. In this proposal, to help the data receiver

to obtain the classification model, the data collector cooperates with the data providers

to compute the sum of counts. In more detail, first of all, an honest dealer called

the system initializes cryptographic systems and generates some public and private

parameters for the entities. Next, each data provider’s local counts are encrypted by

the Paillier encryption public keys of the data collector and the data receiver, then the

ciphertexts are submitted to the data collector for this entity to aggregate and share the

results for the data receiver. Finally, based on the homomorphic property of Paillier

cryptosystem and the Laplace mechanism, the data receiver extracts the differential

model of a NB classifier. It is widely known that the Paillier cryptosystem has high

computational cost, so the SMS function of Li et al. [23] has poor performance. More

seriously, the private data of providers completely depends on the honest dealer.

To develop a secure decentralized training technique for privacy-preserving

deep learning models, Tran et al. [52] proposed an efficient and secure sum protocol
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enabling a large group of parties to jointly compute a sum of private inputs. The new

solution of Tran et al. can work not only with integer number, but also with floating

point number. To do this, Tran et al.’s protocol uses the original one [33], as well as

defining a function f : Zp×R 7→R. Next, each party Ui encrypts his/her private value

vi into two ciphertexts Ei = f (Xyi
Y xi ,k

vi) = Xyi
Y xi .k

vi,Fi =
Xyi
Y xi .g

ti , then sends them to the

master party. By computing T = ∏
n
i=1 Ei,S = ∏

n
i=1 Fi and solving logarithm problems

over the field R, the master party outputs the sum ∑
n
i=1 vi. It is not hard to see that if

the number of parties n is large, then T,S are extremely big integers and the issue of

solving logarithm problems over the field R is completely expensive. Consequently,

the protocol of Tran et al. [52] has poor performance.

Recently, the SMS protocols [53–56] based quantum computing techniques have

been considered as a new interesting research topic in the SMC field. Although such

protocols can withstand potential code-breaking attempts by quantum computers,

they need to be supported by a trusted third party and their computational cost is

high.

1.2.2.2. Review of typical privacy-preserving frequency computation protocols

In essence, privacy-preserving frequency computation (PPFC) is considered as

a special case of secure multi-party sum computation problem, because PPFC has the

same objective with SMS ones, but the private value vi of each party Ui is only ”0”

or ”1”. Up to now, a lot of secure protocols have been proposed for computing fre-

quency value. They have been used to construct practical problems such as privacy-

preserving ID3 tree and association rule mining [33], privacy-preserving Naive Bayes

classifier [23,57], secure electronic voting system [12,13,58]. Typical PPFC protocols

are reviewed as follows.

Yang et al. introduced a PPFC protocol in [33]. To securely compute a fre-

quency value, this protocol requires each party Ui to encrypt his/her private input vi

(using two global public keys derived from all parties’ public keys) into up to two ci-

phertexts mi,hi and submit them to the miner. When receiving the parties’ ciphertexts,

the miner multiplies all of them to get the value K and runs the brute-force algorithm
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to obtain the frequency value form K. Because of the properties of ElGamal encryp-

tion, this protocol strongly protects each user’s privacy without loss of accuracy. In

addition, it requires no communication channel between each pair of data users as

well as multi-round interaction between the miner and each data user. However, the

computational cost of the miner is quite expensive, especially in the case that the

number of parties is large or the protocol [33] is executed multiple times.

In 2009, Wu et al. [57] proposed a PPFC protocol for accurate and private min-

ing of support counts in fully distributed scenario. This protocol and that of Yang

et al. have the same method of computation, but differently from [33], the proto-

col [57] saves the overhead for certificating the parties’ public keys by employing

Boneh–Franklin identity-based encryption scheme. Nevertheless, the security of the

protocol [57] depends on the entity who creates a tuple of system parameters. Thus,

this protocol has low level of security.

Inspiring from the work [59] (Hao et al., 2006), Hao et al., 2010 [12] pro-

pounded a PPFC protocol that is used for an anonymous voting scheme to securely

compute the candidate’s overall total while revealing nothing about each voter’s bal-

lot. To do this, the protocol [12] requires each voter Ui to transform his/her ballot

vi (”0” or ”1” value) into a ciphertext of ElGamal encryption gvi(gyi)xi using his/her

private key xi and the reconstructed public key gyi derived from other (n−1) voters’

public keys. Next, to obtain the voting result, the counter aggregates all ciphertexts

received from the voters, then runs the brute-force or Shanks’ baby-step giant-step

algorithm. Similarly to the protocol of Yang et al. [33], each voter’s ballot is privately

protected, and the voting result is exactly ensured. However, because the voters’ pub-

lic keys are shared for all and each voter needs to compute his/her reconstructed public

key from (n−1) public keys by himself/herself, it can be seen that the protocol [12]’s

communication cost is high and each voter’s computational cost is expensive.

Improved from the work [12], a variant of PPFC protocol was presented to con-

struct a cryptographic e-voting protocol called DRE-i [13]. Instead of using individual

devices (e.g. personal computer, mobile phone) to compute the reconstructed public

key gyi and the ballot as in the original protocol [12], each voter Ui of the protocol [13]
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only interacts with the machine equipped a touch-screen. In addition, this protocol

also assumes the existence of a system entity who computes the reconstructed public

keys for all voter. As a result, the security of the voting system is guaranteed and each

voter’s computational complexity and the system’s communication cost are greatly

reduced, but the system entity’s computational complexity is high.

In 2018, Hao et al., 2018 developed an elliptic curve analog of ElGamal

system-based version of [13] that was then applied to a verifiable classroom voting

system [58]. Because of the elliptic curve analog of ElGamal system’s advantages,

the communication cost and computational complexity of each voter is optimized

in [58], but the voting system’s total computational complexity is equal to that of the

protocol [13].

1.2.2.3. Review of typical secure multi-sum computation protocols

In essence, the aim of the secure multi-sum computation problem is to simul-

taneously compute multiple sum values in one round of computation. This problem

is also called the secure aggregation one [60–63] that is to compute sum of private

vectors over multiple data sources within privacy constraints.

In fact, this problem is quite popular. For example, secure multi-candidate

election systems (e.g. [12, 64]), the voters want to compute each candidate’s overall

total while they do not reveal their ballots (i.e. yes or no selection). Another exam-

ple of the secure multi-sum computation problem is privacy-preserving Naive Bayes

classifier for the horizontal data setting (e.g. [47]) that requires the miner to cooperate

with the voters to privately compute multiple frequency values used for calculating

the necessary probabilities. In addition, there are a lot of other practical privacy-

preservation problems related to the secure multi-sum computation problem, such as

privacy-preserving linear regression [35], privacy-preserving logistic regression [65]).

The direct way to securely compute multiple sum values is to execute secure

multi-party sum or privacy-preserving frequency computation protocols in the stud-

ies [7, 12, 33] or the third publication multiple times. However, this method requires

high communication and computational costs.
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Several other studies [12, 47, 64–66] proposed improved solutions, in which

many sum values can be simultaneously calculated by packing multiple input val-

ues in a unique ciphertext. However, the solutions [47, 64, 66] based on the Paillier

encryption and the ones using the LWE-based encryption scheme (e.g. [35]) are un-

suitable for privacy-preservation issues requiring high level of security, because they

need a trusted party to generate security parameters. For the proposals based on the

ElGamal encryption (e.g. [12]), their computational cost is expensive, since logarithm

discrete problems with large scale of solutions must be solved.

To construct privacy preserving training of Naive Bayes models, Kjamilji et al.

propounded a secure sum protocol in [67] using an aggregation cloud server (TACS),

an encryption/decryption server (EDS) working with dataset owners. The most seri-

ous problem of Kjamilji et al.’s protocol is to assume that there is no collision between

the TACS and EDS in any scenario. Clearly, this assumption is perfectly weak.

To build privacy-preserving training models for federated learning, Kairouz et

al. [68] and Chen et al. [62] developed secure noise-sum values computation methods

by adding noise before performing secure aggregation. As a result, the propotocols

must have a trade-off betwen the privacy and correctness.

By using several popular cryptographic primitives, such as Shamir’s t-out-of-n

secret sharing technique, symmetric authenticated encryption public key infrastruc-

ture, Bonawitz et al. [60] presented two variants of practical secure aggregation proto-

col that have a constant number of rounds, low communication overhead, robustness

to failures. However, this proposal cannot preserve honest parties’ privacy in the

case the server colludes with more than ⌈n
3⌉ (n is the number of participants). Ad-

ditionally, the secure aggregation protocols in [60] are not suitable for large models,

because they requires pairs of users to communicate together.

Based on the idea of [60], Bell et al. [61] proposed a complete communication

graph used for the parties transferring messages to obtain the efficiency property while

maintaining the security guarantees. Nevertheless, similarly to the protocols in [60],

each pairs of users in [61] still needs to communicate together.
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With the aim of enhancing the efficiency of the protocol in [61] and enabling

input validation function based on zero-knowledge proof techniques, the authors of [63]

introduced three new extended secure aggregation protocols. In the first one, Bell et

al. [63] used the ring learning-with-errors (RLWE)-based encrytion that requires quite

expensive cost of computation and a trusted party to generate the security parameters.

For the ACORN-detect and ACORN-robust protocols, the capability to validate the

constraints of input values is not perfectly novel, because it has been provided by

several previous studies [12].

To prevent deletion and tampering attacks from aggregators, Jianhong Zhang

and Chenghe Dong [69] propounded a privacy-preserving data aggregation scheme

based on the idea of the protocol [12]. Unfortunately, the protocol [69] must use

a trusted authority who is responsible for initializing system parameters for all in a

trusted environment.

1.2.2.3. Summary of existing secure multi-party sum computation protocols

It can be seen that the non-cryptographic SMS protocols often have low com-

putational complexity, but they must suffer a trade-off between security and commu-

nication cost. In addition, they are unsuitable for multi-party computational models

with a large number of participants.

In contrast, SMS protocols based on cryptography can obtain high level of secu-

rity, and such protocols have been preferred. However, the cryptographic approach-

based SMS protocols often have pricey cost of computation.

For the cases simultaneously computing multiple sum values, the existing se-

cure multi-sum computation protocols still have serious drawbacks, such as low level

of privacy, high computational cost or poor applicability in large models.

Therefore, it is necessary and significant to design SMS protocols that should be

not only secure against malicious adversary but also efficient in real-life applications.
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1.3. Conclusion

In this chapter, the thesis has represented background and preliminaries in the

SMC field. The thesis then formulated the SMS problem and pointed its importance in

practice. To find out potential research issues for the SMS problem, the related work

has been fully analyzed.
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CHAPTER 2. PROPOSING EFFICIENT SECURE

MULTI-PARTY SUM COMPUTATION PROTOCOLS

This chapter meticulously typical secure multi-party sum computation proto-

cols. Based on the analysis result, this chapter proposed three new secure multi-party

sum computation protocols having both high security level and good performance.

2.1. Analysis of typical secure multi-party sum computation protocols

This section fully analyzes the most popular SMS protocols related to the thesis,

i.e. the simple secure sum protocol of Schneier et al. [44], the SMS protocol of Urabe

et al. [7], a series of secure sum protocols of Hao et al. [12, 13, 58] used in electronic

voting systems, and especially the privacy-preserving frequency computation proto-

col of Yang et al. [33] that most of this thesis’s proposals are inspirited from. For

each of these typical protocols, its security and performance properties will be com-

prehensively evaluated. Based on this analysis, the research issues of this thesis are

explicitly determined.

It is also recalled that there are n parties {U1,U2, ...,Un} where the ith party

Ui owns a private value vi (i = 1,2, ...,n). The aim of SMS protocols is to correctly

compute the sum value V = ∑
n
i=1 vi while all parties do not reveal their private values.

For convenience, this section uniformly uses the above notations in all analysis.

2.1.1. Simple secure multi-party sum computation protocol

2.1.1.1. The main phases

As mentioned before, the early SMS protocol was originally introduced in [44].

This protocol assumes that U1 is chosen as the master party computing the final sum

value for others. The main phases of the simple SMS protocol [44] is presented in

Protocol 2.1.
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Protocol 2.1: The simple secure multi-party sum computation protocol of Schneier

et al. [44]

Phase 1: Party U1 does

• Chooses a random number r in the same domain with the values vi and V

• Computes d = r+ v1

• Sends d to U2 via secure channel

Phase 2: Party Ui (i = 2, ...,n) does

• Updates d = d + vi

• Sends d to Ui+1 (if i = 2, ...,n−1) or U1 (if i = n) via secure channel

Phase 3: Party U1 does

• Computes V = d− r

• Broadcasts V to others

Figure 2.1: The computational model of the simple secure multi-party sum computa-

tion protocol
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2.2.1.2. Security analysis

i. Proof of correctness

It was proved that the output V of Protocol 2.1 is the sum of all input values

vi’s.

Indeed, considering the phases 1 and 2, it can be seen that d = r+ v1 + v2 +

...+ vn. Moreover, because V = d− r in the phase 3, V = v1 + v2 + ...+ vn.

ii. Privacy analysis

It is understandable that every party Ui’s private value vi is masked by the

number that received from Ui−1 (i = 2,3, ...,n). Hence, if Ui−1 collude with Ui+1 who

is received Ui’s message, then the party Ui’s private value vi is disclosed. Thus, the

security of the protocol [44] is quite weak.

2.1.1.3. Performance analysis

In the protocol [44], all of parties {U1,U2, ...,Un} cooperatively construct a

ring communication network (see in Protocol 2.1). Through this model, each user

only sends and receives one message using secure channels. As a result, this proto-

col requires low cost of computation and communication. In other words, the pro-

tocol [44] has high performance. However, it is quite complex to establish a ring

communication network in the case of large number of parties.

2.1.2. Secure multi-party sum computation protocol of Urabe et al.

2.1.2.1. The main phases

As shown in the first chapter, the main idea of the protocol of Urabe et al. [7]

is to each party splits his/her input value into several parts, then shares them for other

parties. Similarly to the protocol [44], U1 is the master party computing the sum

value. This protocol is briefly described in Protocol 2.2.
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Protocol 2.2: Urabe et al.’s protocol [7] for securely computing the multi-party sum

value

Phase 1: Each party Ui (i = 2, ...,n) does

• Splits vi into (n− i+1) random parts {v(i)i , ...,v(n)i } such that vi = ∑
n
j=i v

( j)
i

• Sends v( j)
i to U j ( j = i+1, ...,n)

Phase 2: Each party Ui (i = 2, ...,n) does

• Computes v′i = v(i)i +∑
i−1
j=1 v(i)j

• Sends v′i to U1

Phase 3: U1 does

• Computes V = v1 +∑
n
i=2 v′i

• Outputs V

2.1.2.2. Security analysis

i. Proof of correctness

It is shown that the output V of Protocol 2.2 is the sum of all input values vis.

Indeed, the following transformations are performed.

v = v1 +
n

∑
i=2

v′i

= v1 +
n

∑
i=2

(v(i)i +
i−1

∑
j=1

v(i)j )

= v1 +
n

∑
i=2

v(i)i +
n

∑
n=2

i−1

∑
j=1

v(i)j

= v1 +
n

∑
i=2

(v(i)i + ...+ v(n)i )

= v1 +
n

∑
i=2

vi

=
n

∑
i=1

vi.

Thus, the SMS protocol of Urabe et al. is correct.
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ii. Privacy analysis

Excepting the private value v1 of U1 is not shared for any party, the values vi of

the parties Ui (i = 2, ...,n) are depended on other (n−1) parties. Hence, Protocol 2.2

can securely protect the privacy of each honest party against (n−2) parties colluding

together.

2.1.2.3. Performance analysis

It can be seen in the protocol of Urabe et al. [7] that each party is required to es-

tablish secure (both private and authenticated) communication channels with (n−1)

others to prevent adversaries from eavesdropping. Furthermore, the number of com-

munication messages used for computing is n(n−1)
2 . Consequently, the computational

and communication costs of the protocol [7] are high. Besides, for the model with a

large number of participants, it is impractical to require each tuple of parties to setup a

communication channel together. This also makes the applicability of the protocol [7]

reduce greatly.

2.1.3. Secure multi-party sum computation protocol of Hao et al., 2010 in an

electronic voting system

To design a secure and efficient decentralized-voting solution, Hao et al., 2010 [12]

proposed a secure computation protocol that has the same goal with secure frequency

computation protocols. In the electronic voting setting, it is assumed that there are

n voters {U1, ...,Un} who need to vote ”yes/no” ballots (”1/0”, respectively) for a

candidate. In particular, each Ui votes for the candidate by submitting a private value

vi ∈ {0,1} (i = {1,2, ...,n}). The protocol of Hao et al., 2010 [12] aims to correctly

compute V =∑
n
i=1 vi while each voter reveals nothing about his/her vi. It can be stated

that the secure frequency computation protocol of Hao et al., 2010 [12] is one of the

most typical SMS protocols, and it has been currently used as an important secure

building block for various end-to-end voting systems [58, 70–72].
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2.1.3.1. The main phases

In the protocol [12], all participants agree to adopt a cyclic group G of large

prime order q with the generator g such that discrete logarithm problems in G are

hard. The main phases of this protocol is described in Protocol 2.3.

Protocol 2.3: The secure multi-party sum computation protocol [12] of Hao et al.,

2010 for secure e-voting solution

Phase 1: Each party Ui (i = 1, ...,n) does

• Chooses a private key xi ∈ {1, ...,q} and computes the public key Xi = gxi

• Ui→ Server: Xi

Phase 2: Server does

• Server→Ui: X1,X2, ...,Xn

Phase 3: Each party Ui (i = 1, ...,n) does

• Computes ci = gvi.(
∏

i−1
j=1 X j

∏
n
j=i+1 X j

)
xi

• Ui→ Server: ci

Phase 4: Server does

• Computes K = ∏
n
i=1 ci

• Runs the Shanks’ algorithm to find out V ∈ {0, ...,n} satisfying gV = K

2.1.3.2. Security analysis

i. Proof of correctness

It needs to be shown that if the server finds out a value V ∈ {0, ...,n} that

satisfies gV = K, then V is correct.

Assume that gV = K. Then:
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gV = K

=
n

∏
i=1

ci

=
n

∏
i=1

gvi(
∏

i−1
j=1 X j

∏
n
j=i+1 X j

)

xi

=
n

∏
i=1

gvi(
∏

i−1
j=1 gx j

∏
n
j=i+1 gx j

)

xi

=
n

∏
i=1

gvi
n

∏
i=1

(
∏ j<i g

x j

∏ j>i g
x j
)

xi

= g∑
n
i=1 vi

Thus gV = g∑
n
i=1 vi , and therefore V =

n
∑

i=1
vi.

ii. Privacy analysis

Considering phases 1 and 2 of the protocol presented in Protocol 2.3, each

voter Ui sends (gxi,gvi(
∏

i−1
j=1 X j

∏
n
j=i+1 X j

)
xi

) to the server. It is clear that this tuple is a ci-

phertext of the ElGamal encryption (gxi,MY xi) where M = gvi , the public key is

Y = (
∏

i−1
j=1 X j

∏
n
j=i+1 X j

), and xi is randomly chosen from {1, ...,q}. Hence, the private value vi

is securely protected against the server and the corrupted voters.

2.1.3.3. Performance analysis

i. Computational complexity

For the server, this entity only performs (n− 1) modular multiplication op-

erations and runs Shanks’ algorithm to find out V . As a result, the computational

complexity required for the server is low.

Regarding the computational complexity of the voters, each Ui needs to exe-

cute 2 modular exponentiation, n modular multiplication, and 1 modular multiplica-

tive inverse operations. Hence, in the case of the large number of voters n, each voter

of the protocol [12] must spend high cost performing his/her tasks.
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ii. Communication cost

As described in Protocol 2.3, each voter only sends two messages to the server,

while the server must share the public keys Xi (i = 1,2, ...,n) for all voters. Thus, the

total messages transferred in the protocol [12] is quite large (i.e. (n2 +n)).

2.1.3.4. Variants of the protocol of Hao et al., 2010

To decrease each voter’s computational complexity, an improved protocol was

proposed for the DRE-based electronic voting system [13] (Hao et al., 2014). The

most difference between this protocol with the original work of Hao et al., 2010 [12]

is that the server computes the reconstructed key Pi =
∏ j<i X j
∏ j>i X j

for each party Ui (see

Protocol 2.4). Hence, each voter only performs 2 modular exponentiation and 1 mod-

ular multiplication operations, but the server needs to execute up to (3n− 4) more

modular multiplication operations and 1 modular multiplicative inverse operation.

Thus, if the number of voters n is large, then the computational complexity of the

server is expensive.

It is also noted in the second phase presented in Protocol 2.4 that the sever has

to share the specific reconstructed key Pi for each voter Ui (i = 1,2, ...,n). This means

it is complex to the sever ensures the integrity of n reconstructed keys (by creating n

corresponding digital signatures or establishing secure/authenticated channels with n

voters). Clearly, the computational complexity of the server is also expensive in the

case of large number of voters.
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Protocol 2.4: The secure multi-party sum computation protocol [13] of Hao et al.,

2014 for secure e-voting solution

Phase 1: Each party Ui (i = 1, ...,n) does

• Chooses a private key xi ∈ {1, ...,q} and computes the public key Xi = gxi

• Ui→ Server: Xi

Phase 2: Server does

• Computes the reconstructed key Pi =
∏

i−1
j=1 X j

∏
n
j=i+1 X j

for each party Ui (i = 1, ...,n)

• Server→Ui: Pi (i = 1, ...,n)

Phase 3: Each party Ui (i = 1, ...,n) does

• Computes ci = gvi.Pi
xi

• Ui→ Server: ci

Phase 4: Server does

• Computes K = ∏
n
i=1 ci

• Runs the Shanks’ algorithm to find out V ∈ {0, ...,n} satisfying gV = K

Moreover, there exists another variant of the protocol of Hao et al., 2010 in

the end-to-end verifiable classroom voting system [58] (Hao et al., 2018), where the

computations of this protocol are performed over an elliptic curve. As a result, when

compared with the protocol in [13] (Hao et al., 2014), the one in [58] (Hao et al.,

2018) has lower communication cost, but its computational complexity is equivalent

to the protocol in [13] (Hao et al., 2014).

2.1.4. Privacy-preserving frequency computation protocol of Yang et al.

Let {U1, ...,Un} be n participants where each Ui keeps a private value vi ∈

{0,1} with i = {1,2, ...,n}. A privacy-preserving frequency computation protocol in

the fully distributed setting aims to correctly compute V = ∑
n
i=1 vi without disclosing

the input values vi’s. Clearly, this is a special variant of SMS problem.
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2.1.4.1. The main phases

To securely protect the private values of n parties, Yang et al. employed the

homomorphic ElGamal encryption. Before the protocol starts, all participants agree

to adopt a cyclic group G of large prime order q with the generator g such that discrete

logarithm problems in G are hard. All private keys are chosen in {1, ...,q−1} and all

computational operations are taken in G. The major steps of Yang et al.’s protocol [33]

is presented in Protocol 2.5.

Protocol 2.5: Yang et al.’s protocol [33] for privately computing the frequency value

Phase 1: Each party Ui does

• Chooses two private key xi,yi and computes the public keys Xi = gxi,Yi = gyi

• Ui→Miner : Xi,Yi

Phase 2: Miner does

• Computes X = ∏
n
i=1 Xi,Y = ∏

n
i=1Yi

• Miner→Ui : X ,Y

Phase 3: Each party Ui does

• Computes mi = gviXyi,hi = Y xi

• Ui→Miner : mi,hi

Phase 4: Miner does

• Computes K = ∏
n
i=1

mi
hi

• Runs the brute force algorithm to output V ∈ {0, ...,n} satisfying gV = K

2.1.4.2. Security analysis

i. Proof of correctness

It needs to be shown that if the miner finds out a value V satisfying the equation

gV = K, then V is the sum of all parties’ private values.

Assume that gV = K. Then:
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gV = K

=
n

∏
i=1

Pi

=
n

∏
i=1

gvi.Xyi

Y xi

= g∑
n
i=1 vi

n

∏
i=1

Xyi

Y xi

= g∑
n
i=1 vi

n

∏
i=1

(∏n
j=1 X j)

yi

(∏n
j=1Yj)xi

= g∑
n
i=1 vi

n

∏
i=1

(g∑
n
j=1 x j)yi

(g∑
n
j=1 y j)xi

= g∑
n
i=1 vi

g∑
n
j=1 x j ∑

n
i=1 yi

g∑
n
j=1 y j ∑

n
i=1 xi

= g∑
n
i=1 vi

Hence, gV = g∑
n
i=1 vi , thus V =

n
∑

i=1
vi.

ii. Privacy analysis

Without loss of the generality, it is supposed that U1 and U2 do not collude and

I = {3,4, ...,n}. Based on the output V , knowledge of the corrupted parties, the public

keys and a few tuples of ElGamal encryption, the algorithm M simulates to compute

m1,h1,m2,h2 as follows:

m′1 = (gv1gx1.y1)(gv1gx2y1)Y ∑i∈I xi
1 ,h′1 =

(gv1gx1y1)(gv2gx1y2)X∑i∈I yi
1

gV−∑i∈I vi
(2.1.1)

m′2 = (gv2gx1y2)(gv2gx2y2)Y ∑i∈I xi
2 ,h′2 =

(gv2gx2.y1)(gv2gx2y2)X∑i∈I yi
2

gV−∑i∈I vi
(2.1.2)

Thus, the protocol [33] can securely protect the honest participants’ private

values, against up to (n−2) corrupted parties.
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2.1.4.3. Performance analysis

i. Computational complexity

Considering the protocol described in Protocol 2.5, each party performs 2

modular exponentiation operations for computing his/her public keys Xi,Yi, and 2

modular exponentiation and 1 modular multiplication operations for preparing the

communication messages mi,hi. For the miner, this entity needs to totally execute

(4n+V −4) modular multiplication and n modular multiplicative inverse operations.

Consequently, if the number of parties n is large, the computational cost of the miner

will be expensive.

ii. Communication cost

It can be seen in Protocol 2.5 that each party sends 4 |p| bits to the miner, while

the miner needs to transfer 2 |p| bits to all parties. Thus, the total of communication

cost of the protocol [33] is 6n |p| bits.

2.1.5. Further discussion

Based on the above analysis, it can be seen that the protocols of Yang et al. [33]

and Hao et al. [12,13,58] are the most remarkable ones among the typical SMS proto-

cols.

Let us compare the computational complexity among three typical SMS pro-

tocols. For convenience, the thesis uses the notations including • Te, Tm, Ti, TS that

are the times for executing a modular exponentiation, a modular multiplication, a

modular multiplicative inverse, Shanks’ baby-step giant-step algorithm operations,

respectively.

First of all, considering the computational complexity of the server/miner pre-

sented in the column 2 of Table 2.1, it takes the server of the protocol [12] the

smallest computational complexity among three typical SMS ones. This is under-

standable, because in the phase 2 described in Protocol 2.3, the server of the proto-

col [12] only forwards the public keys {X1,X2, ...,Xn} to all parties without perform-
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Table 2.1: The brief comparisons of the computational complexity among three typi-

cal SMS protocols

Protocols The server/miner Each party

Yang et al.’s [33] (4n+V −4)Tm +nTi 4Te +Tm

Hao et al., 2010’s [12] (n−1)Tm +TS 2Te +Ti +nTm

Hao et al., 2014’s [13] (3n−4)Tm +Ti +TS 2Te +Tm

ing any computation. Comparing the computational complexity of the server/miner

between the protocols [33] and [13], it takes the miner of the protocol [33] up to

(4n +V − 4)Tm + nTi to execute his/her tasks while that complexity of the proto-

col [13] is only (3n− 4)Tm + Ti + TS. The reason of this drawback is because the

miner must compute n values mi
hi

(i = 1,2, ...,n) in the phase 4 of the protocol [33].

Continuously, regarding each party’s computational complexity presented in

the third column of Table 2.1, it can be seen that each party’s computational com-

plexity of the protocol [13] is lower than that of the one [33]. This is that because the

protocol [13] only requires each party to use a unique private key (i.e. xi in Protocol

2.4), while each party of the protocol [33] have to employ 2 private keys (i.e. xi,yi

in Protocol 2.5). For the protocol [12], although each party of this protocol also uses

a unique private key as described in Protocol 2.3, he/she still spends quite high cost

executing his/her tasks. This is because he/she has to compute his/her reconstructed

key by himself/herself, the server only plays a role as a postman in the phase 2 of the

protocol [12].

Although the previous work of Yang et al. [33] had been proposed in 2005,

but the above analysis showed that this is the most potential SMS protocol among the

typical ones. It is easy to understand, because:

(1) In the case that distributed computing problems only require to execute

SMS protocols once (e.g. the single-candidate secure e-voting problem), the proto-

col [33] can be improved by requiring each party Ui to compute Pi =
gviXyi

Y xi , and send

a unique value Pi to the miner in the phase 3. According to this setting, when com-
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pared with the original work [33] and the typical SMS protocols [12,13], the improved

protocol only requires each party Ui to perform one more modular multiplication op-

eration and its computational cost will increase by a negligible amount, but the total

computational cost of the improved protocol will reduce n modular multiplicative in-

verse operations, the computational cost of the miner of the improved protocol will

decrease (n−1) modular multiplication and n modular multiplicative inverse opera-

tions, and the communication cost of the improved protocol will reduce n messages.

Moreover, in the re-designed protocol, each party Ui only sends a unique value Pi to

the miner in the phase 3, so it is possible to integrate an authenticated method into

the improved protocol to create an efficient SMS protocol can be directly implemented

on public networks (e.g. Internet) without pre-establishing secure/authenticated chan-

nels among the participants. Clearly, the above improvement can bring good changes.

Besides, the performance of [33] can be additionally boosted by replacing the brute-

force algorithm by efficient methods (e.g. Shanks’ algorithm [73]) to solve the dis-

crete logarithm problem gV = K in the phase 4, and employing elliptic curve-based

cryptosystems. These ideas are going to be actualized in Section 2.2.1, Section 2.2.2,

and Section 3.1 of the thesis.

(2) In the case that computational tasks require to execute SMS protocols multi-

ple times (denoted as ns times), the improved variant of [33] only uses
⌈

1
2 +

√
2ns+ 1

4

⌉
tuples of private and public keys without security concerns while those numbers of the

original work [33] and the typical SMS protocols [12,13] are up to 2ns and ns, respec-

tively. Especially, for several specific applications that need to simultaneously com-

pute multiple sum values only in one round of computation (e.g. privacy-preserving

Naive Bayes classification problem), it is possible to create a secure multi-sum com-

putation protocol by combining the improved protocol and some cryptography tech-

niques. This idea is implemented in Section 2.2.3 and Section 3.2 of the thesis.

2.2. Proposed secure multi-party sum computation protocols

Based on the above ideas, this section proposes three novel SMS protocols hav-

ing unique features. It is also recalled that all of the new proposals are based on the
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semi-honest model.

2.2.1. Privacy-preserving frequency computation protocol based on elliptic curve

ElGamal cryptosystem

This contribution is related to Publication 1. In this section, the thesis pro-

pounds a privacy-preserving frequency computation protocol based on an elliptic

curve analog of the ElGamal cryptosystem that allows a set of parties to securely

compute the sum of all ’1’ input values over authenticated communication channels.

2.2.1.1. Introduction

As mentioned before, the PPFC problem is a variant of SMS one, and it is orig-

inated from practical applications that require to securely computing one or many

frequency values (e.g. secure e-voting schema). Currently, the existing PPFC proto-

cols have high cost of computation, or a trade-off between security and computational

complexity. As a result, the thesis proposes a new PPFC protocol having both high

level of security and good performance.

This contribution of the thesis is based on the idea that consists of two main

steps as follows:

(1) First, re-designing the phase 3 of [33] by requiring each party Ui to compute
gviXyi

Y xi .

(2) Then, transforming the re-designed protocol into an elliptic curve analog

of the ElGamal system-based protocol.

When compared with both the original work [33] and other typical protocols,

the improved PPFC protocol has not only high level of security but also good perfor-

mance and wide applicability.
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2.2.1.2. Privacy-preserving frequency computation protocol

i. Problem statement

The PPFC problem in the fully distributed setting is stated as follows. It is

supposed n users {U1, ...,Un} where each user Ui owns a private value vi ∈ {0,1}, and

the miner who wishes to find out the sum v =
n
∑

i=1
vi. The computational method helps

the miner to obtain this goald is called PPFC protocol.

ii. Definition of security

The proposed protocol follows the semi-honest model that each user complies

the rules of the protocol, so the following definition of security is derived from the

standard definition represented in Section 1.1.

Definition 2.2.1. Suppose that each party Ui has his/her private keys pi,qi and public

keys Pi,Qi. A frequency computation protocol protects each party’s privacy against

the miner and t corrupted participants in the semi-honest model if, ∀I ⊆ {1, ...,n}

such that ∥I∥= t, there exists a probabilistic polynomial-time algorithm M such that:

{M(v, [vi, pi,qi]i∈I, [Pj,Q j] j/∈I)}
c≡ {viewMiner,{Ui}i∈I([vi, pi,qi]

n
i=1)} (2.2.3)

in which
c≡ is computational indistinguishability.

This definition means the computation is secure and the honest parties’ privacy

is guaranteed, if the corrupted participants and the miner learn nothing from the output

v and the communication messages of the honest users.

iii. System initialization

Let (d,E(Zd),O,G) be secure cryptographic parameters.

Each user Ui owns a private value vi ∈{0,1}. Before starting the PPFC protocol,

each party chooses the private keys pi,qi ∈ [1,d− 1], and computes the public keys

Pi = piG, Qi = qiG. Then P,i ,Qi are sent to the miner.
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iv. The proposed protocol

The proposed PPFC protocol consists of three main phases described in Proto-

col 2.6.

Protocol 2.6: A privacy-preserving frequency computation protocol for fully dis-

tributed setting

Phase 1: Pre-computing

• Miner pre-computes the public values: P =
n
∑

i=1
Pi, Q =

n
∑

i=1
Qi

• Miner→Ui: P,Q

Phase 2: Computing the messages

• Ui computes: Mi = viG+qiP− piQ

• Ui→Miner: Mi

Phase 3: Secure frequency computation

• Miner computes: M =
n
∑

i=1
Mi

• Miner runs Shanks’ algorithm to find out v that satisfies vG = M

2.2.1.3. Security analysis

i. Proof of Correctness

In this section, it is needed to be shown that the final output of the above PPFC

protocol is the sum of all participants’ private values. To obtain this, the following

theorem is proven.

Theorem 2.2.1. Protocol 2.6 for privacy-preserving frequency computation exactly

counts the number of 1′s values of all parties’ inputs.

Proof. The above theorem means that if the miner finds out a value v, then v is the

secure sum of all participants’ private values. Indeed, it is supposed that vG = M.

Then:
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vG = M

=
n

∑
i=1

Mi

=
n

∑
i=1

(viG+qiP− piQ)

=
n

∑
i=1

viG+
n

∑
i=1

(qi

n

∑
k=1

Pk− pi

n

∑
k=1

Qk)

=
n

∑
i=1

viG+
n

∑
i=1

qi

n

∑
k=1

pkG−
n

∑
i=1

pi

n

∑
k=1

qkG

=
n

∑
i=1

viG

Thus, vG =
n
∑

i=1
viG, and therefore v =

n
∑

i=1
vi. Note that the value of v is not too

large, so it can be computed by Shanks’ algorithm.

ii. Privacy Analysis

Firstly, this section proves that the proposed PPFC protocol protects each honest

party’s privacy in the common semi-honest model. Then, it is shown that this protocol

still preserves each honest party’s privacy in the case of (n−2) users colluding with

the miner.

It is recalled that the point Mi of each user Ui is represented as follows:

Mi = (viG− piQ)+qi

n

∑
i=1

piG (2.2.4)

It can be seen that Mi is the first part of an elliptic curve analog of the ElGamal

(Pm +qiP,qiG) in which Pm = viG− piQ, ∑ pi is the private key, and qi is uniformly

chosen at random from {1, ...,d−1}. Thus, the new protocol can preserve each honest

data user’s privacy in the semi-honest model.

Continuously, it is proven that the proposed PPFC protocol protects each party’s

privacy (even if there are up to (n− 2) participants colluding with the miner). The

following theorem is stated:
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Theorem 2.2.2. Protocol 2.6 for privacy-preserving frequency computation protects

each honest party’s privacy against the miner and up to (n− 2) corrupted partici-

pants.

Proof. To prove Theorem 2.2.2, it is necessary to be constructed a simulator M sim-

ulating the joint view of the corrupted parties and the miner by a polynomial-time

algorithm. Particularly, it is given an algorithm computing the view of the corrupted

parties and the miner only using public keys, the result v, corrupted parties’ knowl-

edge, and some tuples of ElGamal encryption.

Without loss of generality, it is assumed that U1,U2 do not collude and I =

3, ...,n. In Protocol 2.6, each user only sends a point Mi to the miner, so this algorithm

only simulates the computations for M1,M2. Below is the computations of M based

on the view of the corrupted parties and the miner using some encryption as its input:

(U12,V12) = (v2G+ q1(p2G), p2.G), (U21,V21) = (v1G+ q2(p1G), p1G). Simulator

M computes M1,M2 as follows:

M
′
1 =U12 +Q1 ∑

i∈I
pi−U21−P1 ∑

i∈I
qi (2.2.5)

M
′
2 =U21 +Q2 ∑

i∈I
pi−U12−P2 ∑

i∈I
qi (2.2.6)

Thus, based on Definition 2.2.1, the proposed PPFC protocol is semantically

secure.

2.2.1.4. Performance evaluation

To evaluate the proposed protocol, this section first compares its communi-

cation cost and computational complexity with that of the protocol of Hao et al.,

2018 [58] and an elliptic curve analog of the ElGamal system-based variant of the

protocol [33]. For convenience, it is noted that three compared protocols execute the

Shanks’ baby-step giant-step algorithm in the last phase to find out the sum value, and

authenticated channels are ready for communicating between the miner/the server and

each user.
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i. Theoretical evaluation

• Computational complexity

Because the computational complexity of the compared protocols mainly re-

lates to their time complexity, this section considers the time complexity required for

executing for executing the above protocols. For convenience, the following notations

are used:

◦ TM is the time for performing a multiplication operation between a big pos-

itive integer and a point on the elliptic curve.

◦ TA is the time for executing an addition operation between two points of the

elliptic curve.

◦ TS is the time for executing the Shanks’ baby-step giant-step algorithm.

Concerning the variant of Yang et al.’s protocol [33], it takes each user 2TM

for pre-computing two public keys. The time for each data user to prepare his/her

messages is 2TM +TA. In the pre-computing phase, the time required for the miner

is (2n− 2)TA. Moreover, the miner must spend (2n− 2)TA +TS computing the sum

value.

In the protocol of Hao et al., 2018 [58], it takes each user TM to pre-compute

the public value and TM +TA to prepare his/her message and the ZKP. Next, the miner

spends (3n−4)TA pre-computing the public keys, and the time for the server to com-

pute the sum value is (n−1)TA +TS.

Considering the new protocol, in the pre-computation stage each data user con-

sumes 2TM to compute the public value, he continuously spends 2TM +2TA preparing

his/her message in the first phase. In the second phase, the time for the miner in the

pre-computation stage is (2n− 2)TA. The proposed protocol’s last phase takes the

miner (n−1)TA +TS to compute the sum value.

The computational complexity comparisons are presented in Table 2.2. It can

be seen that each data user in the new solution and the variant of Yang et al.’s proto-
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Table 2.2: The computational complexity comparisons among the proposed protocol

and the typical protocols.

Protocols The time(1) The time(2) The time(3) The time(4)

The variant of Yang et al.’s protocol [33] 2TM 2TM +TA (2n−2)TA (2n−2)TA +TS

Hao et al., 2018’s protocol [58] TM TM +TA 3nTA−4 (n−1)TA +TS

The proposed protocol 2TM 2TM +2TA (2n−2)TA (n−1)TA +TS

Note: (1) The time for each user preparing the public keys, (2) The time for each user computing the

messages, (3) The time for the miner pre-computing the public keys, (4) The time for the miner

computing the frequency value.

col [33] spends the same time 2TM pre-computing the public values, and this time in

the protocol of Hao et al., 2018 is only TM. However, the time TM for performing one

multiplication operation over the elliptic curve is quite small.

Next, considering the time for each user preparing the messages as shown

in the 3rd column of Table 2.2, the time complexity of the proposed protocol is TA

and (TA + TM) more than that of the variant of Yang et al.’s protocol [33] and the

protocol [58], respectively.

Continuously, as seen in the fourth column of Table 2.2, the variant of Yang

et al.’s protocol [33] and the new proposal have the same time for the miner to pre-

compute the public keys (i.e. (2n−2)TA). That time is much less than the one in the

protocol [58] (i.e. (3n−4)TA).

Lastly, considering the time for the miner/server computing the sum value in

the last column of Table 2.2, it takes the new solution and the protocol of Hao et al.,

2018 [58] the same time (n−1)TA +TS to the miner to find out the frequency value,

and this time of the variant of Yang et al.’s protocol [33] is (2n−2)TA +TS.

• Communication cost

Considering the variant of Yang et al.’s protocol [33], before starting the pro-

tocol, each data user needs to send two public keys out the miner. After the miner

computes two shared public keys, he/she sends these keys for all data users. In the

second phase of the variant of Yang et al.’s protocol [33], each user Ui also needs
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Table 2.3: The communication cost comparisons among the typical PPFC protocols.

Protocols The number of messages Total size (in bits)

The variant of Yang et al.’s protocol [33] 12n 12n|d|

The protocol of Hao et al., 2018 [58] 6n 6n|d|

The new solution 10n 10n|d|

Note: n is the number of users, and |d| is the length of the cryptographic parameter d

to send two values to the miner. Hence, the variant of Yang et al.’s protocol [33]

exchanges 12n messages.

For the protocol [58], in the pre-computing phase, each user sends one public

key to the miner. The miner then sends a specific public key to each user. in the

phase 2 of [58], each user submits one message to the miner. Thus, the protocol [58]

requires the participants to transfer 6n messages.

For the new solution, before it starts, each data user needs to send two public

keys (two points) out the miner. The miner then computes two public keys in the first

phase, after that he sends them to all users. Continuously, each data user needs to

only send a point Mi to the miner in the second phase. As a result, the new solution

exchanges 10n messages.

Below is Table 2.3 presenting the communication cost comparisons among the

compared protocol. It can be seen in this table that the communication cost of the

protocol [58] is a half of the variant of Yang et al.’s protocol [33], and it is also less

than the new solution’s communication cost. However, it is noted that the server of

the protocol [58] must send one specific public key to each voter while the miner in

the variant of Yang et al.’s protocol [33] and the new solution only sends two shared

public keys to all users. Consequently, when working on authenticated channels, the

protocol of Hao et al., 2018 must spend more communication cost (even computa-

tional complexity) than the variant of Yang et al.’s protocol [33] and the new proposal.

The next section implements the variant of Yang et al.’s protocol [33], the

protocol [58], and the new solution.
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ii. Experimental evaluation

• Experimental setting

The experiments are implemented on the Lenovo Thinkpad X280 laptop with

an Intel core i5 8250U @1.6GHz processor and 8GB memory. In the experiments, all

operations are performed over the safe elliptic curve 25519 [74].

It is assumed that all users execute their tasks at the same time, the network

latency is not considered in the running time. The experiments are run 50 times with

different numbers of users, from 10000 to 50000. Next, the average executing time of

the phases in each protocol is calculated using the available library of programming

language.

• Experimental results

As presented before, in the phase 2 of Yang et al.’s protocol, each user sends

two public points to the miner. Based on these values, the miner must additionally

perform n addition operations over the elliptic curve. The new proposal is inspirited

from the variant of Yang et al.’s protocol [33], but each user Ui computes a unique

point Mi in the phase 2 of the new solution, and the miner only computes the sum

of all points Mi (i = {1, ...,n}). This improvement only makes each data user’s com-

putational complexity negligibly increase, but the miner’s computational complexity

greatly reduce.

The running time of each user comparisons among three protocols are pre-

sented in Figure 2.2. It can be seen that the new proposal and the variant of Yang

et al.’s protocol [33] spend the same time preparing the public keys and computing

the messages (i.e. about 0.116 seconds and 0.128 seconds, respectively). In addition,

those times are larger than the ones in the protocol of Hao et al., 2018 [58]. The

reason of these results is because both the new proposal and the variant of Yang et

al.’s protocol [33] require each user to employ two private keys, while that value of

the protocol [58] of Hao et al., 2018 is one. However, the amount of differences

are negligible, i.e. 0.053 seconds for preparing the public keys and 0.04 seconds for
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computing the messages.
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(1) The time for preparing the public keys, (2) The time for computing the messages

Figure 2.2: The running time of each user comparisons among the typical PPFC pro-

tocols.

Continuously, Figure 2.3 describes the time for the miner computing the public

keys in three compared protocols. The proposed protocol and the variant of Yang et

al.’s protocol [33] also require the same time for the miner computing the public keys.

Nevertheless, this time in the protocol [58] of Hao et al., 2018 is the longest one in the

compared protocols, and the amount of difference between the protocol [58] of Hao

et al., 2018 and the new solution is nearly linearly related to the number of data users

n, for instance this amount is 1.65 seconds in the case of n = 10000 and 7.18 seconds

in the case of n = 50000. These results are logical to the theoretical comparisons as

shown in Table 2.2.

Next, the time for the miner computing frequency value comparisons among

three protocols are presented in Figure 2.4. The protocol [58] and the new proposal

require the same time for the miner to compute the frequency value. This time is

much less than that of the variant of Yang et al.’s protocol [33], and the amount of

difference is also nearly linearly related to the number of users n. Particularly, this
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Figure 2.3: The time for the miner/the server computing the public keys comparisons

among the typical PPFC protocols.

amount of difference is only about 1.5 seconds in the case of n = 10000, but it is up

to 7 seconds in the case of n = 50000.

In addition, the thesis also compares data volume stored by the miner/server in

each protocol presented in Table 2.4 that shows the difference among the compared

protocols is negligible. For example, in the case the number of parties is 50000, the

miner/server only needs to store 12.2 MB, 6.1 MB, and 9.2 MB in the variant of Yang

et al.’s protocol, the protocol of Hao et al., 2018, and the new solution, respectively.

According to the above results, it can be stated that the new solution has more

advantages than the variant of Yang et al.’s protocol [33], and the protocol [58] of

Hao et al., 2018. Furthermore, based on the experimental results, it can be stated that

the proposed PPFC protocol has a wide applicability.

It needs to be recalled that the above evaluation has not yet considered the cost

for establishing authenticated communication between the miner/the server and each

user. If this had been done, the communication cost and computational complexity

of Hao et al. [58]’s protocol would have significantly increased, because in the pre-
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Figure 2.4: The time for the miner/the server computing the frequency value compar-

isons among the typical PPFC protocols.

computing phase, the server in the protocol [58] of Hao et al., 2018 must send a

specific reconstructed public key to each voter while the miner of the variant of Yang

et al.’s protocol [33] and the proposed protocol only needs to sign on the message of

two public keys (P ∥ Q) once, then shares (P ∥ Q) and the signature for all without

executing any more computational operation.

2.2.2. An efficient approach for secure multi-party sum computation without

pre-establishing secure/authenticated channels

In this section, an efficient secure multi-party sum computation protocol with-

out pre-establishing secure/authenticated channels is proposed. This proposal relates

to Publication 3.

2.2.2.1. Introduction

This contribution of the thesis is to develop a new SMS protocol without pre-

establishing secure/authenticated channels that is designed by combining a multi-

party sum computation function with a Schnorr signature-derived authentication tech-
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Table 2.4: The stored data volume of the miner comparisons among the typical PPFC

protocols (in megabytes).
XXXXXXXXXXXXXXXXXXX
Protocols

Number of parties
10000 20000 30000 40000 50000

The variant of Yang et al.’s protocol [33] 2.4 4.9 7.3 9.8 12.2

The protocol of Hao et al., 2018 [58] 1.2 2.4 3.7 4.9 6.1

The new solution 1.8 3.7 5.5 7.3 9.2

nique, where these cryptographic tools employ the same private and public keys.

Hence, when compared with the existing solutions, the proposed SMS protocol has

several following advantages:

• The proposed protocol is highly easy-to-use, because of being directly per-

formed on public networks without pre-installing any cryptographic tool.

• The proposed protocol ensures the result’s correctness as well as having high

level of security.

• The proposed protocol is applicable to practical problems.

In addition, the proposed protocol requires no communication channel be-

tween each tuple of the users. Hence, it is suitable for multi-party distributed models.

Furthermore, excepting the key exchange stage, the proposed protocol only requires

each data user to send one communication flow to the miner. This advantage makes

the new protocol suitable for web applications because the data users only need to

submit messages and finish their task.

2.2.2.2. An efficient secure multi-party sum computation protocol without pre-

establishing secure/authenticated channels

i. Problem statement

It is recalled that there are a miner and n users {U1, ...,Un}, where each user

Ui owns a private value vi (i = 1, ...,n), and the miner wishes to obtain the sum value
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V = ∑
n
i=1 vi. For convenience, it is also assumed that vi ∈ {0,1} (∀i ∈ [1,n]), be-

cause if the inputs are common integers then the proposed protocol still efficiently

calculates the sum value, and in the case that the private inputs are quite large in-

tegers, the data scaling process should be executed before performing the new SMS

protocol. For an instance, instead of calculating the sum of four persons’ income

{10000$,20000$,35000$,50000$}, it may be computed the sum of values {10,20,35,50}.

ii. Definition of security

The new SMS protocol is based on the common semi-honest model [3], so the

security definition is stated as follows:

Definition 2.2.2. Assume that each data user Ui has the private keys (xi,yi) and

the corresponding public keys (Xi,Yi). A protocol protects each data user’s privacy

against t corrupted parties and the miner in the common semi-honest model if, for all

I ⊆ {1, ...,n} such that ∥I∥= t, there exists a probabilistic polynomial-time algorithm

M such that

{M(V, [vi,xi,yi]i∈I, [X j,Yj] j/∈I)}
c≡ {viewminer,{Ui}i∈I([vi,xi,yi]

n
i=1)} (2.2.7)

in which
c≡ is computational indistinguishability.

To reach the mentioned objectives, this section first develops a multi-party sum

computation function that is re-designed from the original protocol in [33]. Next,

instead of using popular cryptographic techniques such as digital signature standard

(DSS), RSA signature scheme, this section designs a Schnorr signature-based authen-

tication method (after here called Schnorr signature-based ZKP) employing the same

parameters with the above multi-party sum computation function. By combining this

authentication method with the multi-party sum computation function, it can be ob-

tained a novel SMS protocol that can securely protect the data users’ privacy and to

guarantee the output’s correctness without pre-establishing any authenticated chan-

nel. Additionally, this way helps to optimize the proposed protocol’s performance.

The next section presents the main stages of the new protocol.
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iii. System initialization

The new protocol uses the following parameters:

• Let (G, p,q,g) be public parameters as mentioned in Section 1.1.3.

• Each data user Ui has already held a private key xi and the correspond-

ing public key is Xi = gxi in his/her digital certificate issued by a trusted

certification authority. Each data user randomly chooses a secret number

yi ∈ {1, ...,q−1} and computes Yi = gyi . Note that yi is only used once and

Xi is also sent to the miner before the new protocol starts.

• H : {0,1}∗→ Zq that is a secure hash function [75].

Before the protocol starts, each data user Ui directly sends Yi to the miner

without his/her (ZKP), because of the existence of the user authentication phase (see

in Protocol 2.7).

Next, the miner pre-computes:

X =
n

∏
i=1

Xi ; Y =
n

∏
i=1

Yi (2.2.8)

After that, the miner shares M = (X ∥ Y ) and the Schnorr signature of M for

all data users via public networks. This work ensures that no one can forge him, but

only takes the miner a negligible cost.

iv. The proposed protocol

The proposed protocol contains three main phases described as follows.

• Data submission phase

In this phase, each participant Ui first authenticates the miner’s Schnorr signa-

ture, then he encrypts his/her secret value vi by computing Pi =
gviXyi

Y xi . Next, he com-

putes his/her Schnorr signature-based ZKP (ri = Yi;si ≡ yi− xiH(ri ∥ Pi) (mod q))

and only sends Pi,si to the miner, because Yi has been sent before starting the new

protocol.
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• User authentication phase

In the phase 2, to authenticate each data user Ui, firstly, the miner computes

r
′
i = gsiX γi

i , where γi = H(ri ∥ Pi). If ri = r
′
i, the miner accepts the user Ui, and vice

versa.

• Secure n-parties sum computation phase

The miner aggregates K =
n
∏
i=1

Pi. Next, he performs Shanks’ algorithm to

achieve the sum value V that satisfies gV = K.

Three main phases of the new SMS protocol are presented in Protocol 2.7.

Protocol 2.7: A secure n-parties sum protocol without pre-establishing se-

cure/authenticated channels.

Phase 1: Data submission

• Each user verifies the miner’s Schnorr signature on M = (X ∥ Y )

• Each user Ui computes: Pi =
gviXyi

Y xi ,ri = Yi,si ≡ yi− xiH(ri ∥ Pi) (mod q)

• Each user Ui→Miner: Pi,si

Phase 2: User authentication

• Miner computes: γi = H(ri ∥ Pi),r
′
i = gsiX γi

i

• Miner authenticates each user Ui by verifying the equation: ri
?
= r

′
i

Phase 3: Secure n-parties sum computation

• Miner computes: K =
n
∏
i=1

Pi

• Miner executes Shanks’ algorithm to find out V that satisfies gV = K

2.2.2.3. Security analysis

As mentioned before, the new protocol is composed from two sub-protocols

employing the same cryptography parameters, in which the first is the multi-party

sum computation function that is re-designed from the original protocol in [33], and

the second is the Schnorr signature-based authentication tool. According to the com-

position theorem mentioned in Chapter 1, it needs to be shown that both sub-protocols

are secure.
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i. The sub-protocol for computing the sum value

• Proof of correctness

This section proves that the final output of the sub-protocol for computing the

sum value is the sum of all participants’ private values, if they follow the protocol’s

rules. Hence, the following theorem is stated.

Theorem 2.2.3. The sub-protocol for computing the sum value exactly computes the

sum of all data users’ private values.

Proof. It needs to be showed that if the miner finds out the value V satisfying the

equation gS = K, then V is the sum of all data users’ private values.

Assume that gV = K. Then:

gV = K

=
n

∏
i=1

Pi

=
n

∏
i=1

gviXyi

Y xi

= g∑
n
i=1 vi

n

∏
i=1

Xyi

Y xi

= g∑
n
i=1 vi

n

∏
i=1

(∏n
j=1 X j)

yi

(∏n
j=1Yj)xi

= g∑
n
i=1 vi

n

∏
i=1

(g∑
n
j=1 x j)yi

(g∑
n
j=1 y j)xi

= g∑
n
i=1 vi

g∑
n
j=1 x j ∑

n
i=1 yi

g∑
n
j=1 y j ∑

n
i=1 xi

= g∑
n
i=1 vi

Hence, gV = g∑
n
i=1 vi , and thus V =

n
∑

i=1
vi.

Therefore, the output result is the sum of all participants’ private values.

• Privacy analysis
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In the following section, it is proven that the sub-protocol for computing the

sum value securely protects each honest data user’s privacy in the semi-honest model.

Considering this sub-protocol, each message Pi of the user Ui is represented by the

following equation:

Pi = (gviY−xi)Xyi (2.2.9)

It can be seen that the message Pi in Equation (2.2.9) is the first part of an

ElGamal encryption (mXyi,gyi), correspondingly m = gviY−xi , ∑xi is the private key

and yi is uniformly chosen. Thus, the sub-protocol for computing the sum value

securely preserves each honest data user’s privacy in the common semi-honest model.

Continuously, it is shown that the sub-protocol for computing the sum value

still securely preserves each honest participant’s privacy in the case of (n−2) parties

colluding with the miner. Hence, the following theorem is stated.

Theorem 2.2.4. The sub-protocol for computing the sum value protects each honest

data user’s privacy against the miner and up to (n−2) corrupted data users.

Proof. As mentioned before, it needs to be given an algorithm computing the joint

view of the corrupted data users and the miner using only public keys, the output

result V , corrupted data users’ knowledge, and some ElGamal encryptions.

Without loss of generality, it is assumed that U1 and U2 do not collude. In the

sub-protocol for computing the sum value, each user only shares two values (Pi,si)

for the miner where the value si is a random value, since the private keys xi,yi are

random. As a result, the algorithm only needs to simulate the computation for P1 and

P2. The algorithm computing the view of the miner and the corrupted data users using

several ElGamal encryptions (u12,v12) = (gv1gx2y1,gx2),(u21,v21) = (gv2gx1y2,gx1) as

its input. M computes P1 and P2 is presented as follows:

P
′
1 =

u12Y
∑i∈I xi
1 gV−∑i∈I vi

u21X∑i∈I yi
1

(2.2.10)
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P
′
2 =

u21Y
∑i∈I xi
2 gV−∑i∈I vi

u12X∑i∈I yi
2

(2.2.11)

Thus, according to Definition 2.2.2, the sub-protocol for computing the sum

value is semantically secure.

ii. The sub-protocol for authenticating each user

Regarding the sub-protocol for authenticating each user Ui using the tuple

{Pi,ri = gyi,si ≡ yi−xiH(ri ∥ Pi) (mod q)}, it needs to be shown that (i) each user Ui

with the tuple {Pi,ri,si} is properly authenticated by proving Theorem 2.2.5, and (ii)

the sub-protocol for authenticating each user is secure against possible attacks in the

random oracle model.

• Proof of correctness

Theorem 2.2.5. The miner of the protocol presented in Protocol 2.7 properly authen-

ticates each user.

Proof. To show Theorem 2.2.5’s correctness, the following equation is considered.

gsi.X γi
i ≡ ri (mod p) . (2.2.12)

where γi = H(ri ∥ Pi), ri = gyi , and si ≡ yi− xiH(ri ∥ Pi) (mod q).

Indeed,

gsiX γi
i ≡ gyi−xiH(ri∥Pi)XH(ri∥Pi)

i (mod p)

≡ gyi−xiH(ri∥Pi)gxiH(ri∥Pi) (mod p)

≡ gyi (mod p)

≡ ri (mod p)

Thus, Theorem 2.2.5 is proven.

Next, based on the security standard for digital signature [41, 76], this section

proves the security of the sub-protocol for authenticating each user by showing that

this authentication protocol is secure against the adaptively chosen-message attack.
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It is recalled that the sub-protocol for authentication purpose is directly derived

from Schnorr signature scheme [42]. In more detail, the elements (xi,yi,Pi,ri,si) in

the sub-protocol presented in Protocol 2.7 are perfectly equal to Schnorr signature

scheme’s elements (s,r,m,x,y) presented in Figure 2 of the work [42]. In the other

words, Schnorr signature scheme and the sub-protocol for authenticating each user

have the same level of security.

In the other hand, Pointcheval and Stern pointed in [77, 78] that if an exis-

tential forgery of the Schnorr signature scheme, under an adaptively chosen-message

attack in the random oracle model, has non-negligible probability of success, then the

discrete logarithm in subgroups can be solved in polynomial time. Meanwhile, the

cryptographic parameters (p,q,g) are chosen to ensure that solving discrete logarithm

problems in subgroups are hard (see in Section 1.1. This means Schnorr signature

scheme is secure against the adaptively chosen-message attack. Thus, it can be stated

that the sub-protocol for authenticating each user is also secure against the adaptively

chosen-message attack.

2.2.2.4. Performance evaluation

Recall that in the new protocol, each data user Ui only computes a unique

value Pi related to vi, and the public values Yi = gyi , Pi are used in both the user

authentication phase and secure multi-party sum computation stage. Additionally,

the proposed protocol does not use any more the private key but (xi,yi). Hence,

the communication cost and computational complexity of the new protocol reduce

significantly.

This section compares the performance of the new solution with the typical

protocols of Yang et al. in [33] and of Hao et al., 2014 in [13], briefly named Yang’s

protocol and Hao2014’s protocol, respectively. They are chosen for the comparisons,

because they have the highest level of privacy among the existing SMS protocols.

Firstly, the computational complexity and communication cost of the above

protocols are evaluated. Secondly, the experiments are deployed with the best imple-

mentation, after that the running time of the miner and each user in three protocols is
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measured. Finally, the experimental results are analyzed.

To guarantee the fairness for the comparisons, it is supposed the following

settings:

• Yang’s and Hao2014’s protocols use the Schnorr signature scheme [42] to

ensure that the messages transferred between the miner and each user are

authenticated.

• The miner and each data user of the compared protocols have already owned

their private and public keys for creating and verifying their Schnorr signa-

tures/ZKPs, and these public keys have been exchanged before the protocols

start.

• RIPEMD-160 hash function [79] is used in the experiments.

• For each communication flow in three protocols, there is a unique Schnorr

signature/ZKP (if existing), and it is the Schnorr signature/ZKP of data con-

catenated from all communication messages in that flow.

• The compared protocols use Shanks’ algorithm to obtain the sum value from

the discrete logarithm problem.

i. Theoretical evaluation

In this section, the thesis considers a comparative study on the compared SMS

protocols in terms of communication cost and computational complexity.

• Computational complexity

This section considers the times Te,Tm,Ti for executing modular exponentia-

tion, modular multiplicative inverse, and modular multiplication operations (respec-

tively) with big integers. The time complexity Th of the hash function H is also listed.

Te is the most expensive operation among these ones. Moreover, the time complexity

for executing Shanks’ algorithm is also considered, and this time is denoted as TS.

Concerning Yang’s protocol, it takes each data user 2Te to pre-compute two

public values and (Te+Tm+Th) to compute his/her Schnorr signature on these public
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values in the pre-computation phase. Next, the miner spends (2Te + Tm + Th) au-

thenticating each user and 2(n− 1)Tm computing two shared public values for all

users. Simultaneously, this entity spends (Te +Tm +Th) creating the Schnorr signa-

ture. Continuously, each user must consume (5Te + 3Tm + 2Th) to authenticate the

miner and prepare mi,hi with his Schnorr signature. In the user authentication stage,

the time for the miner verifying each user is (2Te+Tm+Th). Lastly, the miner spends

((2n−1)Tm +nTi +TS) calculating the sum value.

In Hao2014’s protocol, it takes each user Te for pre-computing his/her public

value and (Te+Tm+Th) to compute his/her Schnorr signature. Continuously, it takes

the miner (2Te +Tm +Th) to authenticate each user and ((3n−4)Tm +Ti) to compute

the public values. Then it is required the miner n(Te +Tm +Th) to sign on n public

values. Next, each user spends (4Te +3Tm +2Th) authenticating the miner’s message

and preparing his/her message with the ZKP. To authenticate each user and compute

the sum value, the miner must consume (2Te+Tm+Th) and ((n−1)Tm+TS), respec-

tively.

Considering the proposed protocol, each user Ui only spends Te computing the

public value Yi = gyi in the pre-computation stage. Next, it takes the miner (Te+(2n−

1)Tm+Th) to compute the shared public values X ,Y and the Schnorr signature of M =

(X ∥Y ). Continuously, each user must consume (4Te+4Tm+2Th) to authenticate the

miner’s message M and compute his/her messages in the data submission phase. Then

it takes the miner (2Te +Tm +Th) to authenticate each user and ((n− 1)Tm +TS) to

compute the sum value.

The comparisons of each user’s computational complexity are presented in

Table 2.5. It can be seen in the pre-computation phase that the time complexity of

each user in the proposed protocol is the smallest among the compared protocols.

This is understandable, because each user Ui only sends the public value Yi = gyi

without attaching his/her Schnorr signature-based to the miner.

Continuously, regarding the time for each data user for authenticating the

miner and preparing the messages as shown in the column 3 of Table 2.5, that time of
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Table 2.5: The comparisons of each user’s computational complexity among the pro-

posed protocol and the typical protocols.

Protocols The time(1) The time(2)

Yang’s protocol [33] 3Te +Tm +Th 5Te +3Tm +2Th

Hao2014’s protocol [13] 2Te +Tm +Th 4Te +3Tm +2Th

The proposed protocol Te 4Te +4Tm +2Th

Note: (1) The time for each user in the pre-computation phase, (2) The time for each user in the data

submission phase.

the new solution is Te and Te +Tm more than that of Hao2014’s protocol and Yang’s

protocol, respectively. However, these differences are negligible.

Table 2.6: The miner’s computational complexity comparisons among the proposed

protocol and the typical protocols.

Protocols The time(1) The time(2) The time(3)

Yang’s protocol [33] (2n+1)Te +(3n−1)Tm +(n+1)Th n(2Te +Tm +Th) (2n−1)Tm +nTi +TS

Hao2014’s protocol [13] 3nTe +(5n−4)Tm +Ti +2nTh n(2Te +Tm +Th) (n−1)Tm +TS

The proposed protocol Te +(2n−1)Tm +Th n(2Te +Tm +Th) (n−1)Tm +TS

Note: (1) The time for the miner in the pre-computation phase, (2) The time for the miner in the user

authentication phase, (3) The time for the miner in the secure n-parties sum computation phase.

Next, the miner’s computational complexity comparisons are described in Ta-

ble 2.6. The new solution and Yang’s protocol require the miner to respectively

consume Te +(2n− 1)Tm + Th and (2n+ 1)Te +(3n− 1)Tm +(n+ 1)Th in the pre-

computation phase, while that time of Hao2014’s protocol is up to 3nTe + (5n−

4)Tm + Ti + 2nTh. There exists this difference, since the miner must compute the

specific public key and the Schnorr signature for each user in Hao2014’s protocol.

Consequently, the time for the miner in the pre-computation phase of Hao2014’s pro-

tocol is lengthy, if the number of user n is large.

Lastly, it can be seen in the third columns of Table 2.6 that it takes all protocols
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the same time (i.e. n(2Te +Tm +Th)) for the miner in the user authentication phase.

However, the fourth column of Table 2.6 shows that Hao2014’s protocol and the new

proposal require the same time (i.e. (n− 1)Tm +TS) for the miner in the last phase

while that time of Yang’s protocol [33] is up to (2n−1)Tm +nTi +TS.

• Communication cost

This section compares the communication cost among the new proposal and

the typical protocols in [13,33]. In this section, some notations |p|, |q| and |h| are the

large prime p’s length, the length of the small prime q, and the length of the output of

the hash function H, respectively.

Regarding the communication messages in Yang’s protocol, before starting the

protocol, each data user Ui sends {Xi,Yi} and his/her Schnorr signature to the miner,

then he/she receives the public values {X ,Y} and a Schnorr signature on (X ∥Y ) from

the miner. In the data submission phase, each data user Ui sends {mi,hi} to the miner.

Nevertheless, to be correctly authenticated, each user Ui needs to attach a Schnorr

signature on (mi ∥ hi) together with {mi,hi}. Thus, each user’s communication cost

is (4 |p|+ 2 |q|+ 2 |h|) bits, and the miner’s communication cost is n(2 |p|+ |q|+

|h|) bits.

In Hao2014’s protocol [13], each data user first sends a public value and a

Schnorr signature to the server. Then the miner sends a specific public key attached

with a Schnorr signature to each user. Next, he/she sends out the ciphertext of his/her

private value and a Schnorr signature to the server. Hence, each user’s communication

cost is (2 |p|+2 |q|+2 |h|) bits, and the miner’s communication cost is n(|p|+ |q|+

|h|) bits.

Considering the new solution, before starting the protocol, each data user Ui

only sends Yi to the miner. Next, he receives the shared public values {X ,Y} and a

Schnorr signature on (X ∥ Y ). Continuously, each data user Ui submits two messages

{Pi,si} to the miner. Thus, each user’s communication cost is (2 |p|+ |q|) bits, and

the miner’s communication cost is n(2 |p|+ |q|+ |h|) bits.

The comparisons of each data user’s communication cost are shown in Ta-
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Table 2.7: The comparisons of each user’s communication cost among the proposed

protocol and the typical protocols.

Protocols The number of flows of comm. Total size (in bits)

Yang’s protocol 2 4 |p|+2 |q|+2 |h|

Hao2014’s protocol 2 2 |p|+2 |q|+2 |h|

The proposed protocol 2 2 |p|+ |q|

Table 2.8: The comparisons of the miner’s communication cost among the proposed

protocol and the typical protocols.

Protocols The number of flows of comm. Total size (in bits)

Yang’s protocol n n(2 |p|+ |q|+ |h|)

Hao2014’s protocol n n(|p|+ |q|+ |h|)

The proposed protocol n n(2 |p|+ |q|+ |h|)

ble 2.7. It is clear that the compared protocols require each data user to transfer the

same number of communication flows, where amount of data (in bits) required for

each data user in the new protocol is the lowest in the compared protocols.

Table 2.8 presents the miner’s communication cost in the compared protocols.

The miner of all compared protocols sends the same number of communication flows.

However, the amount of data (in bits) transferred by the miner in Hao2014’s protocol

is n |p| bits less than Yang’s protocol and the new proposal.

ii. Experimental evaluation

• Experimental setting

The experiments are run on the Lenovo Thinkpad X280 laptop. In the ex-

periments, the prime numbers p,q are 2048,256 bits length, respectively, as recom-

mended in the document [80].

The experiments are run 50 times for different numbers of data users from

200000 to 1000000. Next, the average running time of four stages for each protocol
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is calculated using the available library of programming language.

• Experimental results

Figure 2.5 presents the time for each data user in the pre-computation and data

submission phases. Particularly, the experimental results in Figure 2.5 show that each

user in the new solution only spends about 20 milliseconds pre-computing the pa-

rameters, while this time in Yang’s protocol and Hao2014’s protocol is almost 60 and

40 milliseconds, respectively. Continuously, the time for each user to prepare his/her

messages is almost 80 milliseconds in Hao2014’s protocol and the new solution. This

time is about 100 milliseconds in Yang’s protocol. These results are logical to the

theoretical comparisons as shown in Table 2.5
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Figure 2.5: The running time of each user comparisons among the proposed protocol

and the typical protocols.

Next, the running time of the miner is presented in Figures 2.6, 2.7, 2.8.

In particular, Figure 2.6 shows the time for the miner in the pre-computation

phase. That time in Yang’s and Hao2014’s protocols is extremely much larger than

the one in the new proposal. For example, in the case n = 1000000, the proposed
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protocol only takes the miner about 100 seconds in the pre-computation phase. How-

ever, Yang’s and Hao2014’s protocols take the miner up to 40190 and 60330 seconds,

respectively. The reason for this difference is that the miner in Yang’s and Hao2014’s

protocols must verify the message containing each user’s public values. Especially,

Hao2014’s protocol requires the miner to sign on each user’s specific public value to

send to each user.
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Figure 2.6: The time of the pre-computation phase comparisons among the proposed

protocol and the typical protocols.

Continuously, the time for the miner in the user authentication phase of the

compared protocols is presented in Figure 2.7. Because each user in the proposed

protocol uses the Schnorr signature-based authentication method, it can be easily seen

that all of three protocols require the miner the same running time in the user authen-

tication phase, and that time is linearly related to the number of users n. This is also

logical to the theoretical comparisons as shown in Table 2.5.

Lastly, Figure 2.8 presents the time for the secure n-parties sum phase. As

seen in this figure, it can be determined that Hao2014’s protocol and the new proposal

spend the same time for the last phase, while Yang’s protocol requires the miner the
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Figure 2.7: The time of the user authentication phase comparisons among the pro-

posed protocol and the typical protocols.

longest time for the secure n-parties sum phases in the compared protocols. This can

be explained that in the last phase of Yang’s protocol, the miner must compute hi
−1

and mihi
−1 to obtain mi

hi
with i = {1,2, ...,n} while the miner in the other does not

need to do this task.

In addition, the thesis also compares data volume stored by the miner/server in

each protocol presented in Table 2.9 showing that in the cases of number of parties,

that data volume of the proposed protocol is only a half of Yang’s and Hao2014’s

protocols. For example, in the case the number of parties is 1000000, the miner/server

of the new protocol only needs to use 537.9 MB, while that amount of Yang’s and

Hao2014’s protocols is up to about 1075.7 MB.

In summary, based on the above experimental results, it can be stated that the

new SMS protocol has more advantages than the others. Thus, when compared to the

typical SMS protocols, the new proposal is the most suitable solution for applications

in practice.
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Figure 2.8: The time of the secure n-parties sum phase comparisons among the pro-

posed protocol and the typical protocols.

Table 2.9: The stored data volume of the miner comparisons among the proposed

protocol and the typical protocols (in megabytes).
XXXXXXXXXXXXXXXXXXX
Protocols

Number of parties
200000 400000 600000 800000 1000000

Yang’s protocol [33] 215.1 430.3 645.4 860.6 1075.7

Hao2014’s protocol [13] 215.1 430.3 645.4 860.6 1075.7

The proposed protocol 107.6 215.1 322.7 430.3 537.9

2.2.3. Secure multi-sum computation protocol

This section presents an efficient secure multi-sum computation protocol that

can securely compute multiple sum values only in a unique round of computation.

This proposal of the thesis is related to Publication 4.

2.2.3.1. Introduction

As mentioned above, the aim of the secure multi-sum computation or the se-

cure agregation problem is to obtain multiple sum values in one round of computation.

Instead of performing secure sum/privacy-preserving frequency computation proto-
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cols multiple times or using expensive homomorphic encryption systems (e.g. the

Paillier encryption, the LWE-based encryption schemes), this section provides a new

secure building block called the secure multi-sum computation protocol that has ca-

pacity to simultaneously and efficiently compute multiple sum values.

The main idea of the new secure multi-sum computation protocol is to flexibly

and delicately combine the secure sum protocols in one round of computation. In

particular, before starting the proposed protocol, the tuples of private and public keys

have been prepared. After that, each data provider encrypts his/her private values

into ciphertexts to submit them to the miner once. This is detailed in the following

sections.

2.2.3.2. The secure protocol for multi-sum computation

i. Problem statement

This section propounds a novel secure multi-sum computation protocol. Here,

the computational model consists of np parties {U1, ...,Unp} where each party Ui has

a set Vi of ns private small/medium non-negative integers {v1
i , ...,v

ns
i }, and a miner

needs to achieve the set SUM consisting of ns sum values {Sum1 =∑
np
i=1 v1

i , ...,Sumns =

∑
np
i=1 vns

i }. Instead of performing privacy-preserving frequency computation or secure

sum protocols ns times, the new protocol is designed as follows:

• Each participant prepares the set Prvi of nk private keys {Prv1
i , ...,Prvnk

i }

and the Pubi set of nk corresponding public keys {Pub1
i , ...,Pubnk

i } at the beginning

(nk is computed from Equation 2.2.14) and uses these keys to encrypt his/her set Vi

of ns input values into ns ciphertexts. Each party then only needs to submit these

ciphertexts to the miner one time.

• The miner aggregates ns ciphertexts of sum values from all messages re-

ceived from the participants, then extracts ns sum values. To perform this task, the

miner needs to solve ns discrete logarithm problems by only executing the brute-

force algorithm once (as described in Appendix B), since these problems have the

same space of solutions (i.e. {0,1, ...,np}).
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ii. Definition of security

The new secure multi-sum computation protocol is based on the semi-honest

model [3], so the security definition is stated as follows:

Definition 2.2.3. A secure multi-sum computation protocol protects each user’s pri-

vacy against t corrupted parties and the miner in the semi-honest model if, for ∀I ⊆

{1, ...,np} such that ∥I∥ = t, there exists a probabilistic polynomial-time algorithm

M such that

{M(SUM, [Vi,Prvi]i∈I, [Pub j] j/∈I)}
c≡ {viewminer,{Ui}i∈I([Vi,Prvi]

n
i=1)} (2.2.13)

where
c≡ is computational indistinguishability.

In the following section, the proposed secure multi-sum computation protocol

is presented in detail.

iii. System initialization

Let (G, p,q,g) be cryptographic parameters as mentioned in Section 1.1.3.

These parameters are known by every participant.

iv. The proposed protocol

The main stages of the new secure multi-sum computation protocol are pre-

sented in Protocol 2.8.
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Protocol 2.8: A secure protocol for computing multi-sum in one round of computa-

tion

1. Phase 1: The users Ui do

forall i where 1≤ i≤ np do

forall j where 1≤ j ≤ nk do
Prv j

i = Random(1,q−1)

Pub j
i = gPrv j

i

Sends to Miner: Pub j
i

end

end

3. Phase 3: The users Ui do

forall i where 1≤ i≤ np do
j = 1

forall t where 1≤ t ≤ nk−1 do

forall k where t +1≤ k ≤ nk do

p j
i = gv j

i (Pubt)Prvk
i (Pubk)q−Prvt

i

if j == ns then
break

else
j++

end

end

end

Sends to Miner: p j
i

end

2. Phase 2: Miner does

forall j where 1≤ j ≤ nk do
Pub j = 1

forall i where 1≤ i≤ np do
Pub j = Pub j ∗Pub j

i

end

Sends to all Ui: Pub j

end

4. Phase 4: Miner does

forall j where 1≤ j ≤ ns do
K j = 1

forall i where 1≤ i≤ np do
K j = K j ∗ p j

i

end

end

Solves the problems gSum j = K j

( j ∈ {1, ...,ns}) by running the

brute-force algorithm once

Protocol 2.8 shows that each private value vs
i of Ui is encrypted by two tuples

of private and public keys. As a result, if each party uses nk tuples of keys, he/she can

encrypt up to Cnk
2 private values. Hence, each party only needs to prepare nk tuples
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of private and public keys, where nk is calculated by the following equation:

nk =

⌈
1
2
+

√
2ns+

1
4

⌉
(2.2.14)

Clearly, the value nk is often much smaller than ns.

2.2.3.3. Security analysis

i. Proof of Correctness

To prove the proposed protocol’s correctness, the thesis states and proves The-

orem 2.2.6.

Theorem 2.2.6. Protocol 2.8 correctly computes multiple sum values only in one

round of computation.

Proof. Indeed, it is supposed that gSum j = K j. Then:

gSum j =
np

∏
i=1

p j
i

=
np

∏
i=1

gv j
i (Pubt)

Prvk
i (Pubk)

q−Prvt
i

=
np

∏
i=1

gv j
i (Pubt)Prvk

i

(Pubk)
Prvt

i

=
np

∏
i=1

gv j
i (∏

np
i=1 Pubt

i)
Prvk

i

(∏
np
i=1 Pubk

i )
Prvt

i

=
np

∏
i=1

gv j
i (∏

np
i=1 gPrvt

i)
Prvk

i

(∏
np
i=1 gPrvk

i )
Prvt

i

=
np

∏
i=1

gv j
i (g∑

np
i=1 Prvt

i)
Prvk

i

(g∑
np
i=1 Prvk

i )
Prvt

i

=
g∑

np
i=1 v j

i (g∑
np
i=1 Prvt

i)
∑

np
j=1 Prvk

j

(g∑
np
i=1 Prvk

i )
∑

np
j=1 Prvt

j

= g∑
np
i=1 v j

i
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Thus, Sum j = ∑
np
i=1 v j

i .

ii. Privacy analysis

In this section, it is proved that the proposed protocol securely protects honest

data parties’ privacy in the common semi-honest model.

Recall that, each data user Ui only sends the values p j
i ( j ∈ {1, ...,ns}) in one

communication flow where each value p j
i is represented by the following equation:

p j
i = (gv j

i (Pubk)
q−Prvt

i)(Pubt)
Prvk

i (2.2.15)

It can be seen that the value p j
i in Equation 2.2.15 is the first part of an ElGamal

encryption (m(Pubt)Prvk
i ,gPrvk

i ) with m = gv j
i (Pubk)

q−Prvt
i , the private key is ∑Prvt

i

and Prvk
i is randomly chosen in {1, ...,q− 1}. Hence, the proposed protocol can

securely protect honest parties’ privacy in the common semi-honest model.

Next, it is shown that the new proposal still securely preserves the honest par-

ties’ privacy in the case of (np−2) parties controlled by the miner. The thesis states

the following theorem:

Theorem 2.2.7. Protocol 2.8 securely protects each data user’s privacy against up to

(np−2) corrupted parties and the miner.

Proof. Without the loss of generality, it can be assumed that U1 and U2 are honest.

Hence, the algorithm M only needs to simulate the computation for the values p j
1 and

p j
2 ( j ∈ {1, ...,ns}) via the following equations:

P j
1 =

u12(Pubk
1)

∑i∈I Prvt
i gSum j−∑i∈I v j

i

u21(Pubt
1)

∑i∈I Prvk
i

(2.2.16)

P j
2 =

u21(Pubk
2)

∑i∈I Prvt
i gSum j−∑i∈I v j

i

u12(Pubt
2)

∑i∈I Prvk
i

(2.2.17)

in which (u12,v12) = (gv j
1gPrvt

2Prvk
1,gPrvt

2), (u21,v21) = (gv j
2gPrvt

1Prvk
2,gPrvt

1)
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Thus, according to Definition 2.2.3 and the compositiontheorem, the proposed

protocol is semantically secure.

2.2.3.4. Performance evaluation

This section evaluates the new proposal and the solutions created by executing

multiple times the protocols of Yang et al. in [33], Hao et al., 2014 [13], and Hien et al.

in the third publication (denoted as Yang’s-based solution, Hao2014’s-based solution,

and Hien’s-based solution, respectively). The above three solutions are chosen for

the comparisons, since they have the same high level of security. For each compared

solution, the communication cost and computational complexity of four phases are

considered. It is recalled that the parameters np,ns are the number of users and the

number of sum values, the number of tuples of private & public keys nk in each

solution is calculated from ns.

At the first step, the compared solutions are theoretically evaluated (i.e. com-

putational complexity and communication cost aspects). Next, this section measures

and compares the running time of these solutions.

i. Theoretical evaluation

• Computational complexity

For convenience, it is denoted Te, Tm, Ti as the time for performing a modular

exponentiation operation, executing a modular multiplication, and computing a mod-

ular multiplicative inverse, respectively, where the most expensive operation is Te.

Additionally, the time TS for running Shanks’ algorithm is considered in Hao2014’s-

based and Hien’s-based solutions.

For Yang’s-based solution, it takes each data holder 2ns.Te to prepare the nec-

essary keys in the phase 1 and ns(2Te +Tm) for encrypting his/her array of ns private

values in the phase 3. The miner in Yang’s-based solution spends 2ns(np−1)Tm for

computing the shared public keys in the phase 2 and ns(npTi +(2np+ns−2)Tm) for

finding the sum values in the phase 4.
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Concerning Hao2014’s-based solution, the computational costs for each data

user preparing the necessary keys in the phase 1 and encrypting his/her array of ns

private values in the phase 3 are nsTe and ns(Te + Tm), respectively. The miner of

Hao2014’s-based solution spends ns((3np−4)Tm +Ti) computing the public keys in

the phase 2 and ns((np−1)Tm +TS) finding the sum values in the phase 4.

For Hien’s-based solution, each data holder spends nkTe preparing the nec-

essary keys in the phase 1 and ns(2Te + 2Tm) encrypting his/her array of ns private

values in the phase 3. The miner consumes nk(np− 1)Tm for computing the shared

public keys in the phase 2 and ns((np− 1)Tm +TS) for extracting the sum values in

the phase 4.

Considering the new solution, the computational costs of each data user prepar-

ing the necessary keys in the phase 1 and encrypting his/her private values in the phase

3 are nkTe and ns(2Te +2Tm), respectively. The miner spends nk(np−1)Tm comput-

ing the shared public keys in the phase 2 and (ns(np−1)+ns−1)Tm extracting the

sum values in the phase 4.

The computational complexity comparisons are presented in Table 2.10. Hien’s-

based solution and the new proposal take the same time nkTe for each data user com-

puting the necessary keys in the phase 1 and the same time nk(np−1)Tm for the miner

computing the public keys in the phase 2, while these times in Hao2014’s-based so-

lution are nsTe and ns((3np− 4)Tm +Ti), and the ones in Yang’s-based solution are

2nsTe and 2ns(np− 1)Tm. Among the compared solutions, the time complexity for

each data user encrypting ns private values in the third phase of Hao2014’s-based

solution is smallest. It is easy to understand the above differences, since Yang’s and

Hao2014’s-based solutions must use 2ns and ns tuples of keys, respectively, for jointly

computing ns the sum values, while the new proposal and Hien’s-based solution only

need to employ nk tuples of private and public keys. Additional, among the compared

solutions, the computational complexity for the miner extracting the sum values in the

proposed solution is smallest.

• Communication cost
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Table 2.10: The computational complexity comparisons among the new proposal and

the typical solutions.
Solutions The time for the phase 1 The time for the phase 2 The time for the phase 3 The time for the phase 4

Yang’s-based solution 2nsTe 2ns(np−1)Tm ns(2Te +Tm) ns(npTi +(2np+ns−2)Tm)

Hao2014’s-based solution nsTe ns((3np−4)Tm +Ti) ns(Te +Tm) ns((np−1)Tm +TS)

Hien’s-based solution nkTe nk(np−1)Tm ns(2Te +2Tm) ns((np−1)Tm +TS)

The new solution nkTe nk(np−1)Tm ns(2Te +2Tm) (ns(np−1)+ns−1)Tm

This section compares the communication cost among the compared solutions.

It is noted that |p| is denoted as the length of public keys.

Regarding the communication messages in Yang’s-based solution, each data

user sends his/her 2ns public keys in the phase 1 and ns tuples of ciphertexts in the

phase 3 to the miner. The miner sends 2ns shared public keys to all data users in the

phase 2. These messages are |p| bits length, so the communication cost of Yang’s-

based solution is 6np.ns |p| bits.

Considering the communication cost of Hao2014’s-based solution, each data

user sends ns public keys in the 1st phase and ns ciphertexts in the 3rd phase to the

miner. The miner of Hao2014’s-based solution also sends ns specific public keys to

each data holder in the phase 2. Thus, the communication cost of Hao2014’s-based

solution is 3np.ns |p|.

For both the new proposal and Hien’s-based solution, each data holder sends nk

public keys in the 1st phase and ns ciphertexts in the 3rd phase to the miner. The miner

of the above solutions sends nk shared public keys to all data holders in the phase 2.

Thus, the new proposal and Hien’s-based solution have the same communication cost

np{2nk+ns}|p| bits.

The communication cost comparisons are shown in Table 2.11 that the com-

pared solutions send the same number of flows of communication. Moreover, the

amount of transferred data (in bits) of Hien’s-based solution and the new proposal

is np{2nk+ns}|p|, while the one of Yang’s and Hao2014’s-based solutions is 6np∗

ns |p| and 3np∗ns |p|, respectively. Obviously, if ns is large, then the communication

cost of Yang’s and Hao2014’s-based solutions is much larger than that of Hien’s-
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based and the new ones.

Table 2.11: The communication cost comparison among the new proposal and the

typical solutions.

Solutions The number of comm. flows Total size (in bits)

Yang’s-based solution 3np 6np∗ns |p|

Hao2014’s-based solution 3np 3np∗ns |p|

Hien’s-based solution 3np np{2(
⌈

1
2 +

√
2ns+ 1

4

⌉
)+ns}|p|

The new solution 3np np{2(
⌈

1
2 +

√
2ns+ 1

4

⌉
)+ns}|p|

ii. Experimental evaluation

• Experimental setting

In the experiments, all compared solutions are implemented in the Python lan-

guage of Anaconda environment on the Lenovo Thinkpad X280 laptop. The prime

numbers p,q are 2048,256 bits length, respectively. For convenience, it is assumed

that each private input value is 1, and the space of discrete logarithm problems’ solu-

tions is from 0 to np.

The experiments are run 50 times for different tuples (number of users, number

of sums), i.e. (1000, 500), (2000, 1000), (3000, 1500), (4000, 2000), (5000, 2500).

Next, the average running time of four phases for each solution is calculated using the

available library of Python language.

• Experimental results

Firstly, Figure 2.9 shows the number of private keys which each user of the

compared solutions uses in the different cases of number of users and number of

sums. The new proposal and Hien’s-based solution employ the same small number

of private keys while these numbers in Hao2014’s-based and Yang’s-based solutions

are very large. For example, in the case of number of users = 5000 and number of
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sums = 2500, the new proposal and Hien’s-based solution only uses 72 private keys,

but Hao2014’s-based and Yang’s-based solutions need to employs up to 2500 and

5000 private keys, respectively. This is because both the new proposal and Hien’s-

based solution can re-use private keys without security concerns. As a result, the new

solution not only has the low time for preparing the necessary keys, but also saves the

cost of keys management.
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Figure 2.9: The number of private keys comparisons among the compared solutions.

Continuously, Figure 2.10 presents the total running time of each user in the

compared solutions. It is easy to see that the total running time of each user in Yang’s-

based solution is the largest when compared with others. The reason of this is because

each user of Yang’s-based solution must use two private keys to encrypt a private

value, and these two keys cannot be used. Figure 2.10 also shows that Hien’s-based

solution and the new proposal require the same total running time for each user, and

that time is only slight more than that of Hao2014’s-based solution. For example, in

the case of number of users = 5000 and number of sums = 2500, this difference is
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only about 1 second.
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Figure 2.10: The total running time of each user comparisons among the compared

solutions.

Next, the comparisons on the running time for the miner to compute the public

keys are illustrated in Figure 2.11. It can be seen that the new proposal and Hien’s-

based solution spend the small time for the miner to compute the public keys while

that time of Hao2014’s-based and Yang’s-based solutions is extremely large. For

example, in the case of number of users = 5000 and number of sums = 2500, it only

takes the new proposal and Hien’s-based solution about 5 seconds, but Yang’s-based

and Hao2014’s-based solutions correspondingly require the miner up to 343 and 571

seconds to compute the public keys. This is because the number of private keys used

in the new proposal and Hien’s-based solution is much smaller than that of Yang’s-

based and Hao2014’s-based solutions.

Next, the running time for the miner to compute the sum values comparisons

among the compared solutions are described in Table 2.12. It is clear that the new so-
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Figure 2.11: The running time for the miner to compute the public keys comparisons

among the compared solutions.

lution requires the smallest running time for the miner computing the sum values (see

the bold values in Table 2.12), and that time is about 3 and 23 seconds less than that in

Hao2014’s-based and Hien’s-based solutions in the cases that (number of users, num-

ber of sums) is (1000, 500) and (5000, 2500), respectively. Especially, Yang-based

solution requires the extremely large time for the miner to compute the sum values

in the last phase (see the underlined values in Table 2.12). This is understandable,

since the miner of Yang-based solution must perform the slow brute force algorithm

ns times to find out ns sum values.

Lastly, the thesis also compares data volume stored by the miner/server in each

solution presented in Table 2.13 showing that in the cases of number of parties and

sum values, the data volume of Hien’s-based solution and the new one is smallest

among the compared solutions. For example, in the case the number of parties is

5000 and the number of sum values is 2500, the miner/server of the new protocol

only needs to use 3139.7 MB, while that amount of Yang’s-based and Hao2014’s-

based solutions is up to about 12209.5 MB and 9155.3 MB, respectively.
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Table 2.12: The running time for the miner to compute the sum values comparisons

among the compared solutions (in seconds).
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
Solutions

Number of users-Number of sums
1000-500 2000-1000 3000-1500 4000-2000 5000-2500

Yang’s-based solution 823.142 3217.324 7299.532 13320.492 19310.021

Hao2014’s-based solution 10.000 35.556 74.314 128.160 195.650

Hien’s-based solution 10.005 35.004 74.102 128.533 195.647

The new solution 7.104 27.588 62.085 110.262 172.094

Table 2.13: The stored data volume of the miner comparisons among the compared

solutions (in megabytes).
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
Solutions

Number of users-Number of sums
1000-500 2000-1000 3000-1500 4000-2000 5000-2500

Yang’s-based solution 488.8 1954.1 4396.0 7814.5 12209.5

Hao2014’s-based solution 366.2 1464.8 3295.9 5859.4 9155.3

Hien’s-based solution 130.1 510.8 1139.7 2015.6 3139.7

The new solution 130.1 510.8 1139.7 2015.6 3139.7

In summary, considering all above experimental results, it can be stated that

the proposed solution has more advantages than the others. Thus, when compared

to the typical solution, the new proposal is the most suitable one for applications in

practice.

2.3. Conclusion

This chapter has provided a background of secure multi-party computation

field and comprehensively analyzed the most typical existing work related to this

study. Based on the analysis results, three new protocols have been propounded for

the privacy-preserving frequency computation, secure multi-party sum computation

without pre-establishing secure/authenticated channels, and secure multi-sum com-

putation problems, respectively. It has been proven that the proposed protocols are

secure in the semi-honest model. The evaluations also show their efficiency. Thus,

the proposed protocols have the capability to be applied in practical problems requir-

ing to securely compute frequency or sum values, such as secure electronic voting
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scheme, privacy-preserving data mining/machine learning techniques (e.g. K-means

clustering, Apriori association rule mining, Naive Bayes classification, ID3 decision

tree) for distributed data models.



93

CHAPTER 3. DEVELOPING NEW SOLUTIONS BASED ON

SECURE MULTI-PARTY SUM COMPUTATION PROTOCOLS

FOR PRACTICAL PROBLEMS

Based on the proposed protocols presented in Chapter 2, this chapter constructs

solutions for two very practical problems that are the secure end-to-end decentralized

voting scheme and the privacy-preserving Naive Bayes classification technique in the

horizontally distributed data setting. The proposed solutions are not only considered

the aspect of security but also evaluated their performance. These proposals of the

thesis are related to Publications 2, 4, and 5.

3.1. An efficient solution for the secure electronic voting scheme without pre-

establishing authenticated channel

In this section, an efficient solution for electronic voting scheme without pre-

establishing authenticated channel is proposed. This proposal has related to Publica-

tion 2.

3.1.1. Introduction

Generally, the electronic voting scheme (also called e-voting system) is one of

the most classical cryptographic applications. Such scheme uses electronic systems

for casting and counting votes [81]. Currently, there have been two approaches to

construct an electronic voting scheme [81]: (1) based on homomorphic cryptosystems

(e.g. [12, 13, 58, 81, 82]), and (2) based on anonymous channels (e.g. [83, 84]).

According to methods for voting, e-voting systems are separated into two

types [81, 85]: centralized elections in which the voters employ voting machines at

polling stations to submit their ballots, and decentralized elections (internet voting

or remote voting) where the voters send their ballots to the voting server through a

network.

In this section, the thesis focuses on the end-to-end (E2E) decentralized elec-
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tronic voting system for the small or medium scale elections that have been inves-

tigated in the previous work [12, 58, 81, 82]. There are four key properties for such

voting systems [85–89]:

•Accuracy: all valid votes are listed correctly, and the e-voting protocol’s out-

put is the correct result. Nobody can remove, alter, or duplicate the voters’

ballots.

• Secrecy/Privacy: Nobody knows each voter’s choice beyond himself/herself

(even in the case of some voters colluding with the voting server).

• Verifiability: Anyone can verify/prove the voting result’s correctness.

• Efficiency: each voter uses the lowest cost executing his/her tasks, and the

performance of the electronic voting system is good enough to be imple-

mented in practice.

3.1.2. Related work

Generally, most of existing solutions for the E2E decentralized electronic vot-

ing scheme are based on cryptographic protocols. However, these solutions have a lot

of drawbacks as analyzed in the following section.

The first E2E decentralized electronic voting scheme has been introduced by

Kiayias and Yung in [81]. This protocol is self-tallying, dispute-free, and supports

perfect ballot secrecy. Nevertheless, its computational cost for each voter is heavy.

After that, the solution [82] was propounded with the aim of improving computational

complexity. In the protocol [82], the computational cost of the ith voter depends on

that of the (i−1)th voter, hence the executing time of [82] greatly increases.

To reduce the number of computational rounds, the authors proposed [12]

based on the two rounds anonymous veto protocol [12]. However, each voter’s com-

putational complexity in [12] linearly increases with the number of voters. Further-

more, the communication cost of this protocol is bounded by O(n2). After that, the

DRE-based e-voting [13] was proposed to guarantee the integrity property. In the

protocol [13], the voting server computes the restructured public values Pi for all vot-
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ers to reduce each voter’s cost. Nevertheless, the total time of the voting task is not

improved.

One of the most practical e-voting solution named Helios [90] that can tally

integrity. This solution has a number of drawbacks as analyzed in [13] such as a

vulnerable Java plug-in, each voter’s expensive computation cost, low level of privacy,

or much weakness.

Inspired from the work [59], the authors of [58] propounded the verifiable

classroom voting system. Although, the protocol [58]’s communication cost is lower

than that of [12, 13], but the execution time of this protocol is still equivalent to that

of [13].

In briefly, the performance of the existing electronic voting solutions is quite

poor. Furthermore, to prevent an adversary from modifying the ballots, most of ex-

isting decentralized electronic voting schemes [12, 13, 58, 81, 82] use authenticated

channels for the voters sending their ballots to the voting server. This is inconvenient,

since these solutions cannot be directly implemented on public networks. In addition,

this makes the performance of electronic voting schemes significantly reduce.

The contribution of this section is to develop an efficient and secure solution

for the E2E decentralized e-voting system. The new scheme is also based on cryptog-

raphy, but because of improvements, this solution has the following advantages:

• No trusted party involves in the e-voting system. The semi-honest voting

server is only used for computing the public parameters for the voters.

• Each voter clicks his/her choice (e.g. ’yes/no’ buttons) to broadcast his/her

encrypted ballot to the voting server through public networks (e.g. Internet)

without pre-establishing any authenticated channel. No one knows his/her

selection beyond himself/herself (even if there are up to some voters collud-

ing with the voting server).

• The new solution is efficient and convenient, because each voter only inter-

acts with the voting server once excepting the pre-processing stage.
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Figure 3.1: The single-candidate E2E decentralized electronic voting model.

3.1.3. Preliminaries

3.1.3.1. System model

In the model as illustrated in Figure 3.1, there are n voters {U1, ...,Un}, in

which each voter Ui (i = 1, ...,n) clicks ’yes/no’ buttons on the voting website to vote

his/her ’yes/no’ ballot vi (1/0, respectively). The voting server works as a bulletin

board enabling any body to read the data viewed on it. In the addition, the voting

server also consists of high performance computers. The system model assumes no

communication among the voters, and each voter only uses a public network for in-

teracting with the voting server.

As mentioned before, our system is secure if the following requirements are

satisfied:

• The output of the electronic voting protocol is the correct voting result.

• Nobody knows each voter’s ballot (1 or 0?) beyond himself/herself (even if

the voting server colludes with several voters).
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3.1.3.2. Definition of security

In the proposed voting system model, each voter is supposed as a semi-honest

participant. Thus, the following security definition that is similar to the ones in [1, 3,

33] is stated:

Definition 3.1.1. Assume that each voter Ui has two private keys pi,qi and the cor-

responding public keys Pi,Qi. An electronic voting protocol protects each voter’s

privacy against t corrupted voters and the voting server in the common semi-honest

model if, ∀I ⊆{1, ...,n} such that ∥I∥= t, there exists a probabilistic polynomial-time

algorithm M such that

{M(v, [vi, pi,qi]i∈I, [Pj,Q j] j/∈I)}
c≡ {viewServer,{Ui}i∈I([vi, pi,qi]

n
i=1)}.

where
c≡ is computational indistinguishability, and vi is the voter Ui’s ballot.

3.1.4. A secure end-to-end electronic voting scheme

In the new e-voting system, each voter needs to know that his/her ballot sub-

mitted to the server by himself. This is the most important requirement, since it

ensures that the voting result is correct. In the proposed electronic voting system, an

authentication method is redesigned from the work [42]. Combining this method with

the privacy-preserving frequency computation protocol presented in Section 2.3.1, an

efficient solution for the decentralized e-voting scheme is created.

In the proposed solution, it is assumed that all participants agree to employ the

following parameters. Let (q,E(Zq),O,G) be secure cryptographic parameters.

The new electronic voting scheme contains the main stages as follows:

• Preparation phase: each voter has already owned a private key pi ∈ [1,q−1]

and the public key point Pi = piG. On the other hand, the voting server

has kept a tuple of private and public keys to sign and verify its signature.

Before the electronic voting protocol starts, each voter randomly chooses a

private value qi ∈ [1,q− 1], and he/she computes the corresponding public

point Qi = qiG. The information of Qi is also sent to the voting server be-
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fore starting the protocol. The voting server pre-computes the shared public

values P =
n
∑

i=1
Pi, Q =

n
∑

i=1
Qi and sends them to every voter.

• Ballot submission phase: each voter computes his/her encrypted ballot with

its ZKP.

• Voter authentication phase: the voting server verifies each voter’s ZKP.

• Vote counting phase: the voting server computes the number of ’yes’ votes

for the candidate based on the voters’ encrypted ballots.

In this proposal, H is a secure hash function as mentioned in [75].

It is also necessary to be noted that this section denotes xP as the value cor-

responding to the point P of the curve E(Zq), and vice verse (using a method of

imbedding plaintexts mentioned in [43]).

The main phases of the single-candidate decentralized e-voting system based

on privacy-preserving frequency computation protocol are presented in Protocol 3.1.
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Protocol 3.1: A single-candidate decentralized electronic voting scheme based on

privacy-preserving frequency computation protocol

Phase 0: Preparation

• Each voter Ui chooses pi,qi ∈ {1, ...,q−1}

• Each voter Ui computes: Pi = piG, Qi = qiG

• Ui→ Voting server: Pi,Qi

• Voting server pre-computes the shared public values: P =
n
∑

i=1
Pi, Q =

n
∑

i=1
Qi

• Voting server→ All voters: P,Q

Phase 1: Ballot submission

• Each voter Ui computes: Mi = viG+qiP− piQ, ri = xQi , si = qi− piH(xMi ∥ ri)

• Ui→ Voting server: Mi,si

Phase 2: Voter authentication

• Voting server publishes Mi,si on its bulletin board

• Voting server authenticates Ui by:

◦ Computing γi = H(xMi ∥ ri), R
′
i = siG+ γiPi

◦ Verifying the equation ri
?
= xR′i

Phase 3: Vote counting

• Voting server computes: M =
n
∑

i=1
Mi

• Executes Shanks’ algorithm to obtain the output v satisfying vG = M

3.1.5. Security analysis

In this section, the most important security properties of the proposed elec-

tronic voting scheme (i.e. accuracy, privacy, and verifiability) are considered.

3.1.5.1. Accuracy

In this section, it needs to be proved that the output v of the proposed electronic

voting scheme in Protocol 3.1 is the total ’yes’ votes. Because the proposed electronic

voting system is based on the privacy-preserving frequency computation protocol pre-

sented in Section 2.3.1, this section only proves that each voter and his/her ballot is
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properly verified, as well as considering possible attacks where the adversary tries to

create the fake voting result by deleting, duplicating, or modifying the voters’ ballots.

i. Proof of the authentication method’s correctness

In the new voting scheme, it needs to be proved that the authentication method

modified from the work [42] is correct.

Indeed, the equation R
′
i = siG+ γiPi is transformed as follows:

R
′
i = siG+ γiPi

= siG+H(xMi ∥ ri)Pi

= (qi− piH(xMi ∥ ri))G+H(xMi ∥ ri)piG

= qiG

= Qi

Hence, xR′i
= xQi , and thus the equation ri = xR′i

is true and the authentication

method modified from the work [42] is correct.

Next, it is shown that if he tries to delete, modify, or duplicate the voters’

ballots, then the adversary must face the hard problems.

ii. Ballots modification attacks

The attacks using this way are classified into two types: forging ballots and

ZKP, and recovering the private keys attacks.

• Recovering the private keys attacks: an adversary tries to analyze the equa-

tion Qi = siG+ γiPi to obtain the private keys (pi,qi) of the voter Ui, then he

generates another valid ballot of the voter Ui (even he can learn Ui’s selec-

tion). This task is equivalent to solving a discrete logarithm problem.

• Forging ballots and ZKP attacks: assume that a forger tries to create the
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values {H(xM′i
∥ xQi);Q

′
i;s
′
i} satisfying the system of equations:γ

′
i = H(xM′i

∥ xQi)

Q
′
i = s

′
iG+ γ

′
i Pi

(3.1.1)

For example, the forger may randomly choose k and t in {1, ...,q−1}, he then

computes: Q
′
i = kG+ tPi;s

′
i = k;γ

′
i = t.

Nevertheless, to cheat the voting server, the adversary must compute M
′
i from

the equation γ
′
i = H(xM′i

∥ xQi), he then sends the set (M
′
i ,s
′
i) to the voting server. This

is hard, because of the secure hash function H.

In another way, the forger tries to find M
′
i ̸= Mi such that H(xM′i

∥ xQi) =

H(xMi ∥ xQi), he then sends the values (P
′
i ,si) to cheat the voting server. However,

this is hard because of the secure hash function H.

iii. Ballots deletion attacks

These attacks cannot be performed, because the bulletin board helps any voter

to easily detect his/her ballot’s absence.

iv. Ballots duplication attacks

Similarly, the adversary cannot execute these attacks, because of using the

bulletin board.

In briefly, the proposed electronic voting scheme ensures the correctness of the

voting result. No one can duplicate, delete, modify the voters’ ballots.

3.1.5.2. Privacy

As mentioned before, the proposed electronic voting scheme is based on the

privacy-preserving frequency computation protocol presented in Section 2.3.1. Thus,

the proposed electronic voting scheme is also semantically secure.
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3.1.5.3. Verifiability

In the scheme presented in Protocol 3.1, the voting server shows the encrypted

ballots Mi of all voters on the bulletin board. Anybody can easily verify the correct-

ness of voting result by performing the phase 3 of the new proposal (see in Protocol

3.1). Thus, the proposed scheme satisfies the verifiability requirement.

3.1.6. Experimental evaluation

This section considers the running time between the proposed solution and

one of the most typical electronic voting schemes [58] (Hao’s scheme, for short). It

is assumed that all voters interact with the voting server at the same time, and the

network latency is ignored.

3.1.6.1. Experimental setting

The experiments are implemented on the Lenovo Thinkpad X280 laptop. In

the experiments, all public key operations are defined over the curve 25519 [74], and

the secure hash function RIPEMD−160 is chosen.

To measure the running time of the compared solutions, the experiments are

run 50 times with different numbers of voters, from 2000 to 10000. Next, the average

executing time of four phases (i.e. preparation, ballot submission, voter authentica-

tion, and vote counting) for each solution is calculated using the available library of

programming language.

3.1.6.2. Experimental results

The experimental results are detailed in Figures 3.2 and 3.3.

Figure 3.2 presents the total running time of each voter in Hao’s scheme and

the proposed solution. Particularly, the proposed scheme requires each voter to spend

almost 170 milliseconds performing his/her tasks, while that time in Hao’s solution

is about 204 milliseconds. The reason of this difference is because each voter in

Hao’s solution must send its signature on the public point in the preparation phase.
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Of courses, the difference here is not too large.
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Figure 3.2: The total running time of each voter comparisons between the new solu-

tion and Hao’s scheme.

Next, it can be seen in Figure 3.3, the total running time of the voting server in

both solutions is nearly linearly related to the number of voters n. Especially, the total

running time of the voting server in the new solution is much lower than that in Hao’s

scheme. For instance, in the case the number of voters is up to 10000, it only takes

the voting server of the new solution 17.07 minutes while that time in Hao’s scheme

is 28.46 minutes. This is understandable, because the server in the new solution only

computes two share public points for all voters, while the server in Hao’s scheme

must compute each public point for each specific voter.

Thus, it can be stated that the proposed electronic voting scheme is efficient

and practical.

3.2. An efficient and practical solution for privacy-preserving Naive Bayes clas-

sification in the horizontal data setting

This section presents an efficient and practical solution for privacy-preserving

Naive Bayes classification in the horizontally distributed data setting. This proposal
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lution and Hao’s scheme.

of the thesis has related to Publications 4 and 5.

3.2.1. Introduction

Recently, the advancement of web applications or information systems has cre-

ated a large amount of data. Based on such data, machine learning models have been

constructed to solve complex problems in various fields. Nevertheless, in many cases,

processes of machine learning can violate private or sensitive information into data,

such as users’ political opinions, or patients’ diseases, or customers’ income. Hence,

privacy preservation issues for machine learning techniques have attracted much at-

tention from the researchers [60, 91–96]. The goal of privacy-preserving machine

learning (PPML) methods is to build machine learning models while still securely pro-

tecting private and sensitive information existing in data.

In essence, a PPML solution should have the following important properties:

• Accuracy: a PPML technique should output the same model with the tradi-

tional one when built from the same dataset of input vectors.

• Privacy: no one knows each holder’s data, but himself/herself.

• Efficiency: a PPML solution should be efficient enough to be applied in prac-
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tice.

Up to now, PPML solutions have been investigated for both centralized and dis-

tributed (i.e. horizontal, vertical, and arbitrary) data models. Such solutions are often

based on the cryptography, randomization, or hybrid approaches.

• Randomization approach: such PPML techniques often hide private and sen-

sitive information by adding noise (e.g., differently privacy technique [97])

to the original data or transforming the original data into the random one.

Hence, such PPML solutions can be employed in both data models, and they

are quite efficient. Nevertheless, they have a trade-off between privacy and

accuracy properties [33, 34, 47, 98].

• Cryptography-based approach: PPML solutions based on cryptography tech-

niques often employ SMC protocols based on homomorphic cryptosystems,

for example, ElGamal encryption [27], Paillier cryptosystem [28], and Gen-

try’s scheme [99]. As a result, such PPML solutions can securely protect

each data holder’s privacy without the loss of accuracy. Nevertheless, their

performance is often poor.

• Hybrid approach: PPML solutions based on both randomization and cryptog-

raphy techniques have been created to balance the properties (i.e. accuracy,

privacy, and efficiency).

According the security aspect, a PPML solution can follow either the semi-

honest model or the malicious one [1]. It is assumed in the semi-honest model that

the parties comply the computational rules, but there are some corrupted parties who

want to know the other participants’ private data. In contrast, a participant can do ar-

bitrary behaviors in the malicious model. As a result, design of PPML solutions secure

in this model is much more expensive and complex than the semi-honest one. Hence,

PPML solutions for the common semi-honest model have been investigated much more

than the malicious one.

This study focuses on privacy preservation problem for private and sensitive

data used to build the Naive Bayes classifier which is a powerful machine learn-
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ing technique for predicting unlabeled samples. This section investigates privacy-

preserving Naive Bayes classification (PPNBC) solutions in the semi-honest model that

are used for the horizontal data setting. It can be seen that this scenario is popular in

practice. For an instance, a retailer B wants to suggest new services/products based on

shopping bills collected from its customers, while they disclose nothing about their

data. Another case that a sociologist researches social media problems, in which sev-

eral online survey questions are provided to some people. However, they do not want

to directly reveal their viewpoints because of privacy concerns.

Up to now, a lot of PPNBC solutions for the horizontal setting have been pro-

posed, such as [23, 33, 66, 100, 101]. Such solutions are based on the cryptography-

based or hybrid approaches. The solutions using cryptography techniques [33, 102,

103] can preserve honest data holders’ privacy and ensure classification models’ ac-

curacy. Nevertheless, the performance of these solutions is quite poor, because their

communication and computational costs are expensive. In contrast, the solutions fol-

lowing the hybrid approach [23,37,104] need to have a trade-off between privacy and

accuracy. Thus, it is necessary to create new efficient PPNBC solutions having a high

level of security, as well as ensuring the accuracy property.

In this section, the thesis chooses the cryptography-based approach. Never-

theless, unlike the existing solutions that often sequentially compute each frequency

value used for constructing the PPNBC classifier, the new proposal is based on the

secure multi-sum computation protocol (presented in Section 2.3.3) that has the ca-

pability to obtain all necessary frequency values only in one round of computation.

Consequently, the proposed PPNBC classifier for the horizontal setting has the follow-

ing advantages:

• The proposed solution has the capability to securely protect each data holder’s

privacy, as well as guaranteeing classification models’s accuracy. Addition-

ally, any trusted party is not assumed in this solution.

• The proposed solution uses a practical model including data holders and a

unique miner who wishes to construct Naive Bayes classifiers by collaborat-
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ing with data providers. Furthermore, the proposed solution requires each

tuple of data providers to establish no communication channel. Such ad-

vantages make the proposed PPNBC solution suitable for the distributed data

setting.

• The proposed solution’s each data provider only executes one round of com-

munication and computation without the key-agreement stage. Hence, it is

appropriate to web applications in which each data provider only needs to

submit his/her messages once.

• The proposed solution’s performance is quite high, because each data provider

only spends a small amount of communication and computational cost per-

forming his/her tasks. To prove the proposed solution’s applicability and

efficiency, the new PPNBC solution is deployed for spam short text-messages

detection problem using the real data set at Kaggle1 under privacy con-

straints.

3.2.2. Related work

Until now, a large number of PPNBC solutions have been propounded to be

widely applied in a variety of fields, such as malware detection system [108], medical

data analytics [103,106,107], or recommendation system [105]. This section provides

a review of typical PPNBC solutions closely related to the thesis’s study.

It is widely known that the first PPNBC solution was propounded in the work [100]

(another version found in [109]). The authors in [100,109] used the simple secure sum

protocol [6,44] to build Naive Bayes classifiers without clearly seeing the parties’ pri-

vate data. Unfortunately, the simple secure sum protocol is weak, so the Naive Bayes

classification method [100] cannot securely protect the participants’ privacy.

Based on the ElGamal encryption [27], Yang et al. [33] described a privacy-

preserving Naive Bayes classification for the fully distributed data setting. The so-

lution of Yang et al. [33] can securely protect the participants’ privacy. Neverthe-

1https://www.kaggle.com/uciml/sms-spam-collection-dataset
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less, this solution requires the participants to perform a privacy-preserving frequency

computation protocol multiple times. Hence, the PPNBC solution [33] has poor perfor-

mance.

Yi and Zhang proposed a privacy-preserving solution [47] for Naive Bayes

classification technique on distributed dataset using the two semi-trusted mixers model [110],

in which each data holder tries to encrypt multiple private values into a unique cipher-

text of Paillier encryption [28] and then sends these ciphertexts to the mixers. This

setting helps the solution [47] to obtain high performance, but the model using the

non-colluding mixers in [47] violates data holders’ privacy. Furthermore, the semi-

trusted model of Yi and Zhang is different from the one in this study.

Huai et al. [104] propounded a PPNBC solution based on performing a privacy-

preserving aggregation protocol [48] on noise-added data multiple times. Moreover,

this classification method uses a trusted third party to manage the necessary secret pa-

rameters. As a result, the solution [104] has a trade-off between privacy and accuracy

properties, and its cost is also pricey.

Based on Gentry’s scheme [99], Li et al. [111] built privacy-preserving out-

sourced Naive Bayes classification for cloud computing model to obtain the following

objectives: secure data outsourcing, secure classification model, and secure prediction

result. In the training phase of [111], the evaluator S needs to employ an optimized

approximation. Consequently, classification models’ accuracy cannot be guaranteed

in this proposal. Additionally, because Gentry’s encryption [99] has extremely high

computational complexity [112,113], the cost for deploying the solution [111] is quite

expensive.

P. Li et al. [37] and T. Li et al. [23] have introduced two PPNBC solutions based

on public-key infrastructures (i.e. Paillier encryption and DD-PKE, respectively) and

differential privacy methods to privately protect the providers’ data. Hence, these

solutions need to have a trade-off between the providers’ privacy and classification

models’ accuracy. Additionally, these solutions require the providers to use high

computational cost for executing the necessary cryptography tasks.
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Especially, a series of privacy-preserving Naive Bayes classification meth-

ods [23, 37, 47, 101, 102, 114] assumed the existing of several non-colluding partic-

ipants. Unfortunately, the problem of collusion always exists in any computational

model (even ideal model) [1,3]. As a result, these solutions [23,37,47,101,102,114]

have low level of security.

Skarkala et al. [66] proposed a privacy-preserving Naive Bayesian classifica-

tion technique based on a multi-candidate election scheme for the vertically and hor-

izontally partitioned database models. By employing Paillier cryptosystem [28], the

holders are protected against popular attacks. Furthermore, to improve the security,

the parties in [66] are authenticated by a certification authority. Nevertheless, it can

be seen in the third phase of Skarkala et al.’s solution that each data holder is required

to share the private frequencies of his/her dataset for the miner.

In summary, the existing PPNBC solutions have many disadvantages, such as

poor performance, low privacy level, or a trade-off between privacy and accuracy

properties. This thesis proposes an efficient privacy-preservation solution for Naive

Bayes classification problem in the horizontal data model that can ensure the classifi-

cation model’s accuracy and securely protect data providers’ privacy.

3.2.3. Preliminaries

3.2.3.1. Naive Bayes classification

To decide that which of the class labels {τ1,τ2, ...,τk} is the predicted label of

a new instance X = (x1,x2, ...,xm) (denoted as τy), a Naive Bayes classifier is con-

structed as follows:

y = argmax
j=1,...,k

log{p[ j] ·
m

∏
i=1

p[i, j]}

= argmax
j=1,...,k

{log p[ j]+
m

∑
i=1

log p[i, j]}
(3.2.2)

in which:

• The occurring probability of the class τ j is p[ j].
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• The conditional probability of the attribute value xi given the class τ j is p[i, j].

Particularly, let n,n[ j],n[i, j] be the numbers of samples, samples that their

class label is τ j, and samples that their ith attribute is xi and their class label is τ j,

respectively, then the following equations are formulated:

p[ j] =
n[ j]

n
(3.2.3)

p[i, j] =
n[i, j]
n[ j]

(3.2.4)

y = argmax
j=1,...,k

{log
m

∏
i=1

n[i, j]− log(n[ j]m−1)− logn} (3.2.5)

Thus, the miner builds Naive Bayes classifier using Equation 3.2.5 needs to ob-

tain the frequency values n[ j],n[i, j] in which i ∈ {1, ...,m}, j ∈ {1, ...,k}. In the case

of the horizontal partition scenario within privacy constraints, such values are often

computed by performing privacy-preserving frequency or secure sum computation

protocols multiple times, where each data holder uses the statistic values extracted

from his/her dataset that are considered as his/her private inputs.

3.2.3.2. Problem of privacy-preserving Naive Bayes classification

The computational model (as illustrated in Figure 3.4) includes:

• Input: np datasets of labeled records {IV1, ..., IVnp}, in which each IVi is

privately kept by one data owner Ui (i ∈ {1, ...,np}).

• Output: a Naive Bayes classifier that is constructed from the union dataset⋃np
i=1 IVi.

Hence, the output of this problem is called the privacy-preserving Naive Bayes

classifier, and the term ”privacy” here is to ensure each data provider privately keeps

his/her dataset without sharing anyone. It can be seen that this computational model

is practical.
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Figure 3.4: The horizontally distributed computing model.

In essence, the miner desires to obtain the set OUT of frequency values summed

up from the union dataset
⋃np

i=1 IVi. More particularly, for the horizontal partition

model, the main challenge of the privacy-preserving Naive Bayes classification prob-

lem is to securely compute the set OUT ’s frequency values (|OUT | denoted as ns)

from np sets of ns local frequency values (denoted as Vii=1,...,np) privately kept by np

data owners {U1, ...,Unp}. Hence, by employing the efficient and secure multi-sum

computation protocol described in Chapter 2, this study obtains a new PPNBC solu-

tion that can securely protect the data owners’ privacy and ensure the classification

model’s accuracy. Furthermore, this design also enhances the performance of the

proposed solution.

3.2.3.3. Definition of security

Because the proposed PPNBC solution follows the semi-honest model [3], this

section states the following definition of security.

Definition 3.2.1. Assume that each data owner Ui holds a set of private keys Prvi
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and the set of corresponding public keys Pubi. A PPNBC protocol protects each data

holder’s privacy against t corrupted parties and the miner in the common semi-honest

model if, for ∀I ⊆ {1,2, ...,np} (∥I∥= t), there exists a probabilistic polynomial-time

algorithm M such that

{M(OUT, [Vi,Prvi]i∈I, [Pub j] j/∈I)}
c≡ {viewminer,{Ui}i∈I([Vi,Prvi]

n
i=1)}

where
c≡ is computational indistinguishability.

3.2.4. New privacy-preserving Naive Bayes classifier for the horizontal partition

data setting

In the problem mentioned in Section 3.2.3, suppose that n is total number

of records of the datasets {IV1, ..., IVnp} and each IVi (i ∈ {1, ...,np}) has the struc-

ture consisting of na independent attributes {A1, ...,Ana} with one class label attribute

where A j has a determined set of k j values {a1
j , ...,a

k j
j }, and each label belongs to

{L1, ...,Lnc}. Hence, each data record is then transformed into a (nd+1) dimensions-

vector (nd = ∑
na
j=1 k j). By aggregating such vectors, each data provider Ui achieves

an array of ns private values {v1
i , ...,v

ns
i } with ns = nc+∑

na
j=1 nc∗k j. Figure 3.5 illus-

trates the above transformation.

Figure 3.5: An example of data transformation.

In addition, each data owner also computes the number nk of necessary keys
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following the equation 2.2.14.

In brief, to train Naive Bayes classification models, the miner needs to ob-

tain the sum values {∑np
i=1 v1

i , ...,∑
np
i=1 vns

i } of the set OUT in a secure way, where

∑
np
i=1 v j

i ( j ∈ {1, ...,ns}) is viewed as a frequency value extracted from the union

dataset
⋃np

i=1 IVi. Hence, by employing the secure multi-sum computation algorithm

propounded in Chapter 2, this study proposes a new privacy-preserving Naive Bayes

classifier as illustrated in Protocol 3.2.

Before starting the new solution, the miner and the participants also agree to

use the cryptographic parameters (p,q,g) as shown in Section 2.3.3.2. The proposed

PPNBC solution built from the secure multi-party computation protocol is presented as

follows.
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Protocol 3.2: An efficient solution based on secure multi-party computation protocol

for privacy-preserving Naive Bayes classification

1. Keys preparation: The data owners

Ui do

forall i where 1≤ i≤ np do

forall j where 1≤ j ≤ nk do
Prv j

i = Random(1,q−1)

Pub j
i = gPrv j

i

Sends to Miner: Pub j
i

end

end

3. Data submission: The data owners

Ui do

forall i where 1≤ i≤ np do
j = 1

forall t where 1≤ t ≤ nk−1 do

forall k where t +1≤ k ≤ nk do

p j
i = gv j

i (Pubt)Prvk
i (Pubk)q−Prvt

i

if j == ns then
break

else
j++

end

end

end

Sends to Miner: p j
i

end

2. Shared public keys computation:

Miner does

forall j where 1≤ j ≤ nk do
Pub j = 1

forall i where 1≤ i≤ np do
Pub j = Pub j ∗Pub j

i

end

Sends to all data owners: Pub j

end

4. Results Extraction: Miner does

forall j where 1≤ j ≤ ns do
K j = 1

forall i where 1≤ i≤ np do
K j = K j ∗ p j

i

end

end

Solves the problems gSum j = K j

(Sum j ∈ {0,1, ...,np}, j ∈ {1, ...,ns}) by

performing the brute-force algorithm

once
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3.2.5. Privacy analysis

To show that each data holder’s privacy is protected in the new solution pre-

sented in Protocol 3.2, the following theorem is stated and proven.

Theorem 3.2.1. Protocol 3.2 for Naive Bayes learning securely protects each data

holder’s privacy against corrupted participants colluding with the miner.

Proof. As discussed above, the new PPNBC solution shown in Protocol 3.2 is created

by ns secure multi-sum protocols described in Chapter 2. Furthermore, the thesis

proved in Section 2.3 that the new multi-sum computation protocol is secure in the

common semi-honest model. Hence, according to Theorem 2.1, the new PPNBC solu-

tion can securely guarantee each data provider’s privacy, even if the miner controls

up to (np−2) participants.

3.2.6. Accuracy analysis

This section proves that the classifier created by the new proposal is equal to

that built by the traditional Naive Bayes classification technique when constructed

from the same dataset of input vectors.

Theorem 3.2.2. Protocol 3.2 for Naive Bayes learning ensures the classification

model’s accuracy.

Proof. Indeed, as discussed above, using the secure multi-sum protocol proposed in

Chapter 2 to obtain the frequency values in the horizontal partition scenario is equiv-

alent to calculating these frequencies in the centralized data model. Additionally,

the correctness of the proposed secure multi-sum computation protocol is proved in

Section 2.3.3.4. Thus, the new PPNBC solution guarantees the classification model’s

accuracy.

3.2.7. Experimental evaluation

To show the proposed PPNBC solution’s advantages, this section compares the

experimental results of this proposal with the ones of three typical privacy-preserving
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Naive Bayes classification solutions: the solution of Yang et al. in [33], the solution

using Hao et al.’s protocol [13] to compute frequency values, and the private Naive

Bayes classifier of Hien et al. in the fifth publication (named as Yang’s solution,

Hao’s-based solution, and Hien’s solution, respectively).

The thesis chooses the above solutions for the comparisons because they also

obtain a high level of privacy and can ensure the classification model’s accuracy.

Considering each compared solution, the running time of all four phases are reviewed.

Recall that np,ns are the numbers of data providers and sum values in the compared

solutions, and the number nk of tuples of private & public keys in each solution is

calculated from ns.

3.2.7.1. Experimental setting

This section studies a spam messages detection problem using Naive Bayes

classification method within privacy constraints as follows:

• Input: a set of short ham/spam messages, in which each subset is privately

owned by a unique user.

• Output: spam messages detection tool based on the Naive Bayes classifier

that has built from the above dataset.

To solve this, the experiments are implemented on the dataset of 5,000 sam-

ples randomly chosen from the spam short text-messages collection dataset, publicly

available at Kaggle as mentioned above. It is supposed there are 250 users involving

in the experiments where each data provider possesses 20 messages (i.e. 14 and 6

ones for training and testing phases, respectively). Each data provider is also shared

the dictionary of tokens D (see in Section 3.2.7.2).

Next, the average running time of the phases in each solution is measuring

by the available library of programming language. Additionally, the accuracy of the

output classification model is also discussed in detail.

For the parameters, the prime numbers p,q are 2048,256 bits length, respec-

tively. Moreover, all experiments are implemented in the Python language of Ana-
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conda environment on the Lenovo Thinkpad X280 laptop.

3.2.7.2. Data preparation

i. Data pre-processing

The dataset used in this work is a collection of mobile English text messages,

labeled as ham (legitimate) or spam. This dataset has been collected from several

free-for-research sources:

• Grumbletext Web site: a public UK forum about spam short text-messages

(425 spam messages). 2

• A subset containing 3,375 short text-messages randomly chosen from the

NUS short-messages corpus (NSC) of the National University of Singapore
3.

• A list of 450 ham messages collected from the University of Birmingham4.

• Spam Corpus v.0.1 Big containing 1,002 ham messages and 322 spam mes-

sages. 5

Each data sample includes two elements: the content of the message and its la-

bel (ham or spam). Each message’s content is preprocessed by removing rare words,

common words, or punctuation, and lowercasing all of the tokens. For convenience,

the thesis only picks 5,000 samples from the above dataset. Some statistics informa-

tion of the pre-processed dataset is presented in Table 3.1.

ii. Features encoding and model setup

Basically, when building text classification model based on the Naive Bayes

algorithm, each message’s content is often transformed into a vector of features using

TF-IDF vectorization Bag-of-Words (BOW) techniques. Nevertheless, with the as-

sumption of existing privacy constraints where whole corpus is not available because
2http://www.grumbletext.co.uk/
3https://scholarbank.nus.edu.sg/handle/10635/137343
4https://etheses.bham.ac.uk/id/eprint/253/1/Tagg09PhD.pdf
5http://www.esp.uem.es/jmgomez/smsspamcorpus/
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Table 3.1: Spam short-messages dataset information

Number of samples 5,000

Ham/spam distribution 4,311/689

Short-messages max/average length 211/13.74

each data provider keeps his/her private short messages. Thus, an external corpus

constructed from the public Wikipedia source is used. After that, a BOW model is

created that has the k-tokens dictionary D. Here, the thesis sets k = 1500.

3.2.7.3. Experimental results

i. Running time

The experimental results are presented in Table 3.2. It can be seen in the

column 2 of Table 3.2 that Hien’s solution and the new proposal require each data

provider about 0.429 seconds for preparing the necessary keys in the phase 1, while

those times in Yang’s and Hao’s-based solution are up to 46.196 and 23.036 seconds,

respectively. Continuously, the 3rd column of Table 3.2 illustrates that the miner

of Hien’s and the proposed solutions uses almost 0.382 seconds for calculating the

shared public keys in the phase 2, while those times in Yang’s and Hao’s-based solu-

tions are 40.506 and 76.287 seconds, respectively. It can be understandable because

the numbers of tuples of keys used by each provider in Yang’s and Hao’s-based so-

lutions are up to 12004 and 6002, respectively, while that number of Hien’s solution

and the new proposal is only 111.

The column 4 of Table 3.2 shows that the running time for each provider en-

crypting private values in the phase 3 of Hao’s-based solution is smaller than that of

others. There is this difference since each data provider in Hao’s-based solution only

uses one tuple of keys for encrypting one private value. Nevertheless, the total run-

ning time for each data provider of the new proposal and Hien’s solution (i.e. around

47.163 seconds) is slight more than that in Hao’s-based solution (i.e. almost 46.299

seconds), and each data provider’s total running time in these three solutions is much
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Table 3.2: The running time comparisons among the new proposal and the typical

PPNBC solutions on the real dataset (in seconds).

Solutions The time(1) The time(2) The time(3) The time(4)

Yang’s solution 46.196 40.506 46.602 2808.035

Hao’s-based solution 23.036 76.287 23.263 81.390

Hien’s solution 0.429 0.382 46.734 81.390

The new solution 0.429 0.382 46.734 20.394
Note: The time(1) for the phase 1, The time(2) for the phase 2.

The time(3) for the phase 3, The time(4) for the phase 4.

smaller than that of Yang’s solution (i.e. almost 92.798 seconds).

Lastly, considering the time for the miner extracting the sum values in the last

phase, it takes the proposed solution 20.394 seconds, and this time is much smaller

than the one in both Hao’s-based and Hien’s solutions (i.e. about 81.390 seconds).

The miner of Yang’s solution uses up to 2808 seconds for extracting the sum values.

Especially, regarding all types of execution time in the compared PPNBC solu-

tions, it is easy to know that the new proposal and Hien’s solution consume the same

amount in the first three phases. This is understandable, because the proposed PPNBC

solution’s building block is the new secure multi-sum computation protocol. The

largest difference between Hien’s solution and the new proposal is in the last phase.

Particularly, as mentioned before, the miner of the new proposal solves ns discrete

logarithm problems gSum j = K j (Sum j ∈ {0,1, ...,np}, j ∈ {1, ...,ns}) by running the

brute-force algorithm one time, because they have the same small space {0,1, ...,n}

of solutions.

As a result, the above results prove that the proposed PPNBC solution has more

advantages than the others. Thus, among the typical PPNBC solutions, the new one is

the most suitable solution for practical applications.
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ii. Classification accuracy discussion

It is recalled that the aim of the proposed solution is to not only protect each

data provider’s privacy but also guarantee the accuracy property when compared

with the traditional method implementing on a dataset. These requirements has been

proven in the above sections.

In the experiments, the model outputted from the proposed solution obtains

0.97 in accuracy, 0.92 in balanced accuracy, and 0.93 in F1-score. These ratings are

equal to the ones of the traditional Naive Bayes classifier implemented on the same

dataset.

When compared with the normal Naive Bayes classifier (which achieves 0.99,0.96,0.97

in accuracy, balanced accuracy, and F1-score, respectively), it is clear that the data

transformation process has slightly impacted on the classification model’s accuracy.

This is understandable, because each record of the dataset has not been transformed

into an input vector yet. Hence, privacy preservation problems working on such

datasets (e.g. spam short-messages detection) must face the above issue. Never-

theless, the new proposal’s accuracy is still high.

iii. Deployment issues of the proposed PPNBC solution

In practice, the deployment of the proposed PPNBC solution is quite simple.

Firstly, this solution (also including the public dictionary D) needs to be packaged

into a mobile application (e.g. iOS or Android app) to be installed on smartphones.

When receiving a new SMS, the application uses the dictionary D to locally transform

it into a private binary vector. Next, the application predicts the label (ham or spam?)

of this vector based on the parameters of Naive Bayes classification model.

3.3. Conclusion

In this chapter, based on the new protocols presented in Chapter 2, the thesis

has developed new solutions for two practical problems. In the first one, the thesis

constructed the secure voting scheme in the end-to-end decentralized environment.
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For the second problem, a privacy-preserving Naive Bayes classifier is built for the

horizontal partition model. The necessary experiments have been run, and the ex-

perimental results proved that the new proposals not only satisfy the requirements of

practical problems, but also outperform the previous solutions. It is also additionally

analyzed that the proposed protocols in this thesis assume that all participants do not

abort the protocols prematurely that cannot be avoided even in the malicious model.

Nevertheless, the proposed protocols and solutions have the capability to prevent up

to (n−2) colluding participants, in which n is the total number of parties.
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CONCLUSION AND FUTURE WORK

The thesis has proposed three new secure multi-party sum computation proto-

cols and developed new solutions based on these protocols for two practical applica-

tions. For each proposal, the thesis analyzed the security aspect as well as evaluated

the performance. The results of the thesis can be summarized as follows:

• In the first work, the thesis has propounded three novel secure multi-party

sum computation protocols that are the elliptic curve analog of the ElGamal

cryptosystem-based protocol for privacy-preserving frequency computation

in fully distributed setting, the secure multi-party sum computation protocol

without pre-establishing any authenticated/secure channel, and the secure

multi-sum computation protocol in one round of computation. The proposed

protocols are secure in the semi-honest model. Furthermore, these new pro-

posals are efficient enough to be implemented in real-life applications.

• In the second work, the thesis has developed new solutions based on the

proposed protocols for two practical applications that are the secure end-

to-end e-voting scheme without pre-establishing secure/authenticated chan-

nels, and an efficient and practical method for privacy-preserving Naive

Bayes classification in the horizontally distributed data setting. The security

analysis results have proved that the new solutions satisfy the requirements

of applications. Besides, the experimental evaluations has showed the new

proposals’ efficacy, so they can be implemented in practice.

Next, the thesis discusses some potential issues of the general SMC field in the

future.

• Firstly, as mentioned in Chapter 1, the birth of SMC field was initiated from

distributed computing scenarios and practical problems. As a result, based

on new distributed computing scenarios or the requirements of practical

problems, new secure multi-party computation protocols are necessary to
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be investigated by research community.

• Secondly, secure multi-party computation protocols should be based on mod-

ern cryptography (e.g. post-quantum cryptographic techniques) with the aim

of preventing potential attacks on the next generation of computing that is

coming closer to us.

• Thirdly, because of SMC protocols’ applicability in various domains, such

protocols should be considered for the implementation in real-life applica-

tions. This helps not only distributed computing tasks to be performed more

easily, but also the participants’ safety to be protected.
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[59] F Hao and P Zieliński. A 2-Round Anonymous Veto Protocol. In Proceedings

of 14th International Workshop on Security Protocols. Springer, 2006.

[60] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Bren-

dan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth.

Practical Secure Aggregation for Privacy-Preserving Machine Learning. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-

nications Security, pages 1175–1191. ACM, 2017.

[61] J. Henry Bell, Kallista A. Bonawitz, Adrià Gascón, Tancrède Lepoint, and
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APPENDICES

A. Shanks’ baby-step giant-step algorithm

In this section, the thesis present Shanks’ algorithm [73,115] that is an efficient

method used for solving discrete logarithm problems.

Input: A cyclic group G of order q has a generator g, and an element y

Output: A value x satisfies gx = y

m← ⌈√q⌉

forall j where 0≤ j < m do
Computes g j and store the pair ( j,g j) in a hash table

end

Computes g−m

β ← y

forall i where 0≤ i < m do

if β is the second component (g j) of any pair in the hash table then
Returns x = i.m+ j

else
β ← β .g−m

end

end

Algorithm 1: Shanks’ baby-step giant-step algorithm.

Specifically, if it can be limited the range of value x (i.e., x ≤ n≪ q), then

Shanks’ algorithm runs much more efficient.

Simultaneously, there is a variant of this Shanks’ algorithm based on the elliptic-

curve cryptography described as follows:
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Input: An elliptic curve (E) over (Z)p with a base point G and a point Y ∈ E

Output: A value x satisfies xG = Y

m← ⌈√q⌉

forall j where 0≤ j < m do
Computes jG and store the pair ( j, jG) in a hash table

end

Computes A =−(mG)

B← Y

forall i where 0≤ i < m do

if β is the second component ( jG) of any pair in the hash table then
Returns x = i.m+ j

else
B← B+A

end

end

Algorithm 2: The variant of Shanks’ baby-step giant-step algorithm.

B. Brute-force algorithm

Although the brute-force algorithm is one of the worst methods for solving

discrete logarithms, this method is efficient in the case that the solution space of

discrete logarithm problems are not too large.
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Input: A cyclic group G of order q has a generator g, and an element y ∈G.

Output: A value x ∈ {0, ...,max value} satisfies gx = y.

K = 1

forall i where 0≤ i≤ max value do

if K = y then
output i.

else
K = K ∗g

end

end
Algorithm 3: Brute-force algorithm for solving discrete logarithms.
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