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INTRODUCTION 

1. Research basis and motivation 

Real-world datasets in the field of economics and finance often consist of time series data, 

where the number of variables is generally large, even much larger than the number of observations. 

Building forecasting models and performing forecasting on such datasets using statistical 

techniques is impossible. There are currently two main approaches to overcome this challenge: deep 

learning and dimensionality reduction. 

The deep learning approach considered most suitable for time series datasets is the use of 

Long Short-Term Memory (LSTM) neural network models (C. Zhang et al., 2024), (Sako et al., 

2022), (Zaheer et al., 2023), (Hopp, 2022), Gated Recurrent Unit (GRU) models (Torres et al., 

2021), and Transformer models for time series data (Ahmed et al., 2023), (Wen et al., 2022). 

However, LSTM and GRU deep learning models have limitations in handling input sequential data 

with long-term dependencies, capturing temporal backpropagation relationships, handling seasonal 

patterns, and dealing with a large number of variables and gradient issues (Vaswani et al., 2017). In 

the research (Kapetanios et al., 2018), LSTM and GRU models are suitable for forecasting 

problems on datasets where the number of observations is large, but the number of variables is not 

too large. The Transformers deep learning model has the advantage of capturing dependencies and 

interactions over long ranges between variables, which is why it is attracting research attention for 

time series forecasting. The results achieved by the Transformer model for time series data are still 

at an initial level (Wen et al., 2022). Through experimental research, (Zeng et al., 2023) showed that 

the model based on a simple multilayer neural network can still achieve better forecasting results 

than the time series Transformer model. It can be said that the application of the aforementioned 

deep learning methods in forecasting problems on large time series datasets (or datasets with a large 

number of time series variables) in the fields of economics and finance is still limited (Hopp, 2022), 

(Sezer et al., 2020; Torres et al., 2021). Research (Hopp, 2022) showed that the application of deep 

learning methods in socio-economic forecasting is still in its early stages, partially due to the 

limitations involved in their implementation. 

The research (Kim & Swanson, 2018b) found ample evidence that combining dimensionality 

reduction techniques and machine learning techniques to build forecasting models is a dominant 

approach in building forecasting models on large time series datasets. Studies (Chikamatsu et al., 

2021), (Bragoli, 2017), (Urasawa, 2014), (Jardet & Meunier, 2022), (Chinn et al., 2023) have 

demonstrated that the forecasting accuracy of models built based on factor models, where factors 

are extracted from the original dataset using PCA or SPCA dimensionality reduction methods, is 

always equal to or higher than that of other benchmark forecasting models. A recent study (Chinn et 

al., 2023) also evaluates that the forecasting accuracy of models built on large time series datasets 

using the three-step approach of variable selection, PCA dimensionality reduction, and economic 

random forest regression is the highest compared to models built using various other approaches, 

including deep learning, Markov chains, quantile regression, linear least squares estimation, etc. 

PCA is a typical linear dimensionality reduction method. Research (Shlens, 2014) 

demonstrated that PCA is the best linear dimensionality reduction method as it preserves the 

covariance structure and maximizes the variance of the original dataset. Experimental studies (Van 
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Der Maaten et al., 2009), (Zhong & Enke, 2017) have shown that none of the top 12 non-linear 

dimensionality reduction methods performed better than PCA on real-world datasets, although all 

12 methods showed good dimensionality reduction results on artificial datasets. Research (Koren & 

Carmel, 2004) has shown that PCA is ineffective for datasets that do not approximate a hyperplane. 

Thus, the research results of (Van Der Maaten et al., 2009), (Zhong & Enke, 2017) revealed that the 

real-world datasets used in those studies seem to approximate a hyperplane. However, reality shows 

that real-world time series datasets are not always like that. 

The above presentations are the motivation for the Thesis to propose a new variable 

dimensionality reduction method for large time series data sets. The studies (Chikamatsu et al., 

2021), (Bragoli, 2017), (Urasawa, 2014), (Jardet & Meunier, 2022), and especially (Van Der 

Maaten et al., 2009), (Zhong & Enke, 2017), and (Chinn et al., 2023) suggest that this method is a 

natural extension of the PCA method (i.e., in exceptional cases, the proposed method is the PCA 

method), overcoming the limitations of the PCA method indicated in the study (Koren & Carmel, 

2004) that it can be used to reduce the dimensionality of large time series datasets that are not 

approximately a hyperplane, and the dimensionality reduction performance of the proposed method 

should be equal to or higher than the dimensionality reduction performance of the PCA method. 

Here, the performance of a dimensionality reduction method is measured by the root mean squared 

error (RMSE) as the LOSS function. 

The purpose of dimensionality reduction is to increase efficiency (less time and memory) and 

ease of interpretation for forecasting models built on large data sets using dimensionality reduction 

methods. Proposing a forecasting process or algorithm on a large time series data set using the 

proposed variable dimensionality reduction method and applying that process or algorithm to 

forecast important economic-financial indicators also needs to be researched. For every country, 

forecasting the export turnover of the entire economy and each economic sector is always one of the 

most important macroeconomic forecasts. Vietnam has an open economy, where export and import 

turnover account for a high proportion of gross domestic product (GDP), so forecasting export 

turnover is even more important and necessary. Along with the deepening international integration 

process, the factors affecting Vietnam's export turnover are increasingly greater. The problem of 

forecasting export turnover on large data sets has been raised. Therefore, proposing a forecasting 

process/algorithm using the proposed dimensionality reduction method and applying it to forecast 

Vietnam's monthly export turnover is also one of the main research motivations for the Ph.D. 

student to carry out their thesis " KERNEL-BASED VARIABLE DIMENSION REDUCTION 

METHOD AND ITS APPLICATION FOR FORECASTING EXPORT TURNOVER." 

Specifically, the Thesis focuses on researching and proposing a dimensionality reduction 

method on large time series data sets to overcome limitations and have superior dimensionality 

reduction performance compared to some commonly used and considered the most effective 

dimensionality reduction methods in economics and finance. Propose a forecasting 

process/algorithm on a large time series data set using the proposed dimensionality reduction 

method and its application in the economic and financial fields, first of all, the area of exportation. 

2. Research objectives of the Thesis 
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The general objective of this Thesis is to research and propose a method for effectively 

variable dimensionality reduction on large time-series datasets and their applications in economic 

and financial forecasting. The specific objectives of the Thesis are as follows: 

-  Propose a novel dimensionality reduction method to overcome the disadvantages of 

prevalent dimensionality reduction methods effectively utilized in the field of economics and 

finance. The proposed dimensionality reduction method not only mitigates these limitations but also 

achieves dimensionality reduction performance comparable to or better than widely adopted 

methods in the economics and finance domain. 

- Propose a forecasting process/algorithm (conditional and unconditional) for large time series 

datasets using the proposed dimension reduction method and apply it to forecast Vietnam's export 

turnover on a dataset of a large number of economic and financial indicators. 

3. Layout of the Thesis 

The thesis layout consists of the following sections:- 

- Introduction: This section presents the theoretical foundation and research motivation of the 

Thesis, along with its research objectives, subjects, scope, research methodology, primary 

contributions, and thesis structure. 

- Chapter 1: Provides an overview of methods for building forecasting and nowcasting models 

on large time series datasets. It identifies the problem and scope of research, offers some related 

knowledge, and draws some conclusions. 

- Chapter 2: Proposes a variable dimensionality reduction method for large time series datasets 

based on the kernel trick, called KTPCA, and comparison of the variable dimensionality reduction 

performance of the KTPCA method based on the RMSE-best model with that of PCA and SPCA 

methods on datasets with and without the same sampling frequencies, and concludes with some 

findings. 

Chapter 3: Proposes conditional and unconditional forecasting algorithms on large time series 

datasets using the proposed dimensionality reduction method and applies this algorithm to forecast 

the monthly export turnover of Vietnam with and without conditions. 

The conclusion section presents the main research contributions of the Thesis and discusses its 

limitations. 

 

CHAPTER 1. OVERVIEW OF THE METHOD FOR BUILDING FORECASTING 

MODELS ON LARGE TIME SERIES DATA SETS 

 

1.1. Overview of domestic and foreign research 

 The overview of domestic and foreign research is presented in 17 pages. For details, please 

refer to pages 9 through 24 in the Thesis. 

1.2  Remaining problems 

  Based on the above analysis and evaluation of related domestic and foreign research, the 

Thesis focuses on researching solutions to overcome the above problems. Specifically, the Thesis 

focuses on researching: 
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1) Propose a new dimensionality reduction method that is considered a natural extension of 

the PCA method while overcoming the disadvantages of the PCA method on datasets that do not 

approximate a hyperplane and achieve dimensionality reduction performance equal to or better than 

the dimensionality reduction performance of PCA and SPCA methods in forecasting and 

nowcasting problems, respectively, on datasets with and without the same sampling frequencies. 

2) Propose a forecasting process or algorithm using the proposed dimensionality reduction 

method and apply it to forecast important macroeconomic indicators on a large dataset. 

1.3 Some basic knowledge 

 The content of this section presents the basic knowledge for the Thesis, spanning 20 pages. 

For details, please refer to pages 28 through 48 in the Thesis. 

1.4 Conclusion 

In this chapter, the Thesis has presented several English terms that, when translated into 

Vietnamese, closely align with the concept of "forecasting". This chapter has provided an overview 

of relevant domestic and foreign studies to identify research gaps, thereby defining the Thesis's 

problem and research scope. It has also presented some fundamental knowledge essential for 

subsequent research chapters. 

 

CHAPTER 2. THE KERNEL-BASED VARIABLE DIMENSIONALITY 

REDUCTION METHOD 

This chapter proposes a new dimensionality reduction method based on the kernel trick, 

serving as another natural extension of the PCA method, named the KTPCA method. The 

experimental evaluation of the KTPCA method's dimensionality reduction performance is based on 

the RMSE-best model (referred to as KTPCA#) on datasets with the same sampling frequency, as 

well as mixed sampling frequency, in comparison to the dimensionality reduction performance of 

PCA, SPCA, RSPCA, and ROBSPCA methods which are also presented in this chapter. 

2.1.    The method of variable dimensionality reduction based on the kernel trick 

 Suppose  � = [��, ��, … , ��]�×� is a dataset of time series explanatory variables where �� ∈

 ℝ�, � = 1, … , �; � is very large. Without loss of generality, � is a centered matrix, meaning 

∑ ���
= 0�

��� , ∀i = 1, . . . , m. 

2.1.1. The kernel-based dimensionality reduction method 

Chapter 1 clearly stated that although KPCA is a natural extension of PCA for linear datasets, 

PCA is still the best dimensionality reduction method for such datasets. The performance of KPCA 

in reducing dimensionality is not as good as that of PCA for approximately linear datasets. 

Determining the level of linearity approximation of a dataset to ensure that the dimensionality 

reduction performance of PCA is better than KPCA remains an open issue. This Thesis has not 

addressed this problem. However, the idea of KPCA suggests a new dimensionality reduction 

method based on the kernel trick, called KTPCA, to differentiate it from KPCA. This method 

differs from KPCA. Please refer to pages 49-50 of the Thesis. 

The dimensionality reduction algorithm using the KTPCA method can be written as 

pseudocode as follows: 

 



5 
 

 

KTPCA Algorithm 

Input: X ∈ ℝ�×� 

Output: Y ∈ ℝ�×� 

1. Construct the kernel matrix K=[κ(X�,X�)] ≡ [Φ(X�). �(X�)]   

2. Find the eigenvalues and eigenvectors of the kernel matrix 

3. Sort the eigenvectors according to the eigenvalues in decreasing order 

4. Construct the matrix ��� × � with the first p eigenvectors 

5. Transform X using ��� × � to obtain a new subspace Y = X. ��� × � 

Thus, it can be seen that the KTPCA method is a combination of dimensionality reduction 

ideas from both KPCA and PCA methods. When the kernel function κ is the inner product of two 

input vectors, i.e., κ(X�,X�) = <X�,X�>, the kernel matrix K becomes the covariance matrix, and the 

KTPCA method becomes the PCA method. This is what the Thesis aims for. 

When employing the KTPCA method for dimensionality reduction, the selection of a suitable 

kernel function is crucial so that the RMSE of the dependent variable forecast model based on the 

extracted factors corresponding to this kernel function is minimal. Similar to the KPCA method, 

there is currently no standard for choosing the optimal kernel function for the KTPCA method. 

Consequently, the most appropriate kernel function for reducing data dimensionality using the 

KTPCA method can only be determined through trial and error, based on the RMSE-best model. 

The KTPCA method based on the  RMSE-best model is referred to as KTPCA#. 

Table 2.1 below summarizes the PCA, KPCA, and KTPCA methods. This table shows the 

main differences between these methods; refer to pages 49 and 53 in the Thesis. 

Table 2.1: Differences between PCA, KPCA, and KTPCA methods 

PCA (Shlens, 2014) KPCA (Schölkopf et. al. 1998) KTPCA 
- The data set X ∈ ℝ�×� 
is mean-centered. 
- Find the eigenvalues and 
eigenvectors of the 
covariance matrix of X 
- Arrange eigenvectors 
according to eigenvalues 
- The first p factors are 
determined by: 
���× � = �� × �. �� × � 

- The data set X ∈ ℝ�×� 
- Determine the kernel matrix K = 
[κ(��,��)], �� is the data point vector of X 

and the Gramm matrix of level � × �:  
- �� =  � –  �. ��  − ��. � +

 ��. �. �� 
- Find the eigenvalues and eigenvectors 
of �� 
- The principal components of the 
kernel are determined through the point 
function:  
  ��(�(Z)) = v.�(Z) = 
∑ ��

�
���   �(��). �(Z) =  ∑ ��

�
��� �(��, Z), 

here Z  is the data point of X.  

- The data set X ∈ ℝ�×� is 
mean-centered. 
- Determine the kernel matrix 

��×� = [κ(��,��)], �� is the 

data vector of X. 
- Find the eigenvalues and 
eigenvectors of K 
orresponding to the kernel 
function κ; 
- The first p factors are 
determined by: 

��� ×� = �� × �. ��� ×� 

 

2.1.2. Variable dimensionality reduction using KTPCA# method 

The variable dimensionality reduction using the KTPCA# method is presented in Figure 2.1 below. 

Figure 2.1 illustrates that the forecasting or nowcasting model constructed using the KTPCA# 

dimension reduction method always has equal or higher forecast accuracy compared to the model 

constructed using the PCA dimension reduction method. 
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Figure 2.1: Flow chart of the KTPCA method based on an RMSE- best model 

 2.3.   Dimensionality reduction performance of the KTPCA# method 

The performance of a dimensionality reduction method is measured by the RMSE of a 

nowcast or forecasting model constructed based on the DFM model or the factor ARDL model, in 

which the factors are extracted from the large dataset of predictors at higher frequency, along with 

predictors at the same frequency as the dependent variable, utilizing the KTPCA# method. A 

smaller RMSE indicates higher performance of the dimensionality reduction method; refer to details 

on pages 55-56 in the Thesis. 

2.2.1. For datasets with the same sampling frequency 

2.2.1.1 Experimental data 

The datasets utilized for the experiments comprise 04 real-world datasets of the Vietnamese 

economy and 07 datasets from the UCI-Machine Learning Repository, as outlined in Table 2.2 

below; refer to pages 56-57 in the Thesis.  
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Table 2.2: Statistical characteristics of experimental data sets 
Data Sets Type of 

Data set 
Type of 
Attribute 

Num. of 
Obser. 

Num. of 
Variables 

Missing 
Data 

Dependent 
Variable 

Freq. 

EXP Time series Real 60 63 No Total Export Monthly 
VN30 Time series Real 366 34 No VN30 Index Daily 
CPI Time series Real 72 102 No CPI Index  Monthly 
VIP Time Series Real 60 265 No Value of 

Industries 
Production 

Monthly 

Residential 
Building 

Multivariate 
 

Real 371 27 No 
Sales Price 

 

S&P500 Time series Real 1760 52 Yes S&P500 Index Daily 
DJI Time series Real 1760 81 Yes Dow Jones Index Daily 
NASDAQ Time series Real 1760 81 Yes Nasdaq Index Daily 
Air Quality Time series Real 9348 12 Yes CO of Air Hour 
Appliances 
Energy 

Time series  Real 19704 23 No The energy use of 
Appliances (wh) 

Every 10 
min 

SuperConduct. Multivariate Real 21263 81 No Critical 
temperature 

 

2.2.1.2. Experimental method 

To compare the dimensionality reduction performance of the KTPCA# method with the PCA, 

SPCA, RSPCA, and ROBSPCA methods across 11 experimental datasets, the Thesis selected only 

06 different kernel functions for experimentation with the KTPCA method, including 03 

polynomial kernel functions and 03 Gaussian kernel functions. Specifically, the selected kernel 

functions are as follows: for the polynomial kernel functions, the special polynomial kernel function 

�(��, ��) = ��(1,1,0) is consistently included, rendering the KTPCA and PCA methods equivalent; 

for the EXP, VN30, CPI, Air Quality, and Appliances Energy datasets, the other two polynomial 

kernel functions are of the form ����, ��� =  ��(1,2,0.5) and �(��, ��) = ��(1,3,0.5), while for the 

remaining datasets, the two polynomial kernel functions are �(��, ��)= ��(0.5,2,0.5) and �(��, ��) 

= ��(0.5,3,0.5). For the Gaussian kernel function with parameter ρ^2, the parameter values for the 

three selected functions are equal to, less than, and greater than the value ρ_0^2, denoted as 

���, ���, and ���, respectively. The ARDL model, according to equation (1.34), is utilized to 

construct the forecasting model using the dataset of the explanatory variables with the same 

sampling frequency. 

2.2.1.3 Result 
 The minimum average distance between two column vectors of the 11 datasets used in the 
experiment is calculated according to formula (2.2) and presented in Table 2.3 for the 
corresponding datasets. This value serves as an important hint to choose appropriate Gaussian 
kernel functions �(��, ��) = ��(��) when implementing the KTPCA method on a certain 

corresponding dataset. 

a. The performance of KTPCA# compared to PCA, SPCA, RSPCA, and ROBSPCA methods 

Extracted from Table A1 in the Appendix, Table 2.4 summarizes the dimensionality reduction 

results of KTPCA#, PCA, SPCA, RSPCA, and ROBSPCA methods across 11 experimental datasets 

with the same sampling frequency of explanatory variables. 
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Table 2.4: Dimensionality reduction performance of the KTPCA# method 

Datasets Method KTPCA# PCA SPCA RSPCA ROBSPCA 

EXP 
Number of factors  ���, 6 14 10 10 10 

RMSE 0.0104 NA NA NA NA 

VN30 
Number of factors  ���, 14 14 14 14 15 

RMSE 0.1819 0.1895 0.1968 0.1968 0.2054 

CPI 
Number of factors ���, 6 4 4 4 4 

RMSE 0.4452 1.4836 1.0659 1.0673 1.0659 

VIP 
Number of factors ���, 4 4 4 4 4 

RMSE 672.66 715.96 826.28 1373.57 2642.83 

Res. Building 
Number of factors ���, 2 1 1 1 1 

RMSE 919.9 1152.4 1152.5 1152.5 1151.2 

S&P500 
Number of factors ���, 2 1 1 1 1 

RMSE 61.60 161.415 161.441 161.441 161.441 

DJI 
Number of factors ���, 1 1 1 1 1 

RMSE 91.82 91.82 309.24 309.24 309.23 

NASDAQ 
Number of factors ���, 1 1 1 1 1 

RMSE 81.05 365.97 85.47 85.47 85.46 

Air Quality 
Number of factors ���, 5 1 1 1 1 

RMSE 50.297 71.459 71.499 71.499 71.427 

App. Energy 
Number of factors ���, 6 3 3 3 3 

RMSE 98.81 101.74 101.76 101.76 101.75 

SuperCon. 
Number of factors ���, 2  2 2 2 2 

RMSE 26.094 27.314 27.332 27.332 27.319 

where, the NA symbol is "No Available". 

For the EXP data set (line 1), when using PCA as the dimensionality reduction method, the 

number of principal component factors chosen is 10. Consequently, we cannot regress the 

dependent variable on the data set of 60 observations and 76 explanatory variables, which includes 

10 selected factors + (10 factors + 01 dependent variable) lagged from 1 to 6. However, if the 

variable dimensionality reduction method is KTPCA, the above challenge can be easily overcome. 

From the analysis in Table 2.4, it can be concluded that the dimensionality reduction 

performance of the KTPCA# method is equal to or higher than that of the PCA and SPCA family 

methods. 

b. The performance of the PCA method compared to the SPCA method family 

Table 2.5 (excluding data related to the KTPCA# method) below and Figure 2.2 both suggest 

that the dimension reduction performance of PCA and SPCA methods is competitive. This finding 

contradicts the traditional belief that the SPCA family method seems to outperform the PCA 

method in dimension reduction performance (refer to pages 62-63 in the Thesis). 

Table 2.5: Dimensionality reduction performance of methods (RMSE) 

Methods DS2 DS3 DS4 DS5 DS6 

KTPCA# 0.1819 0.4452 672.6600 919.9000 61.6000 
PCA 0.1895 1.4836 715.9608 1152.3950 161.4154 
SPCA 0.1968 1.0660 826.2757 1152.5310 161.4407 
RSPCA 0.1968 1.0673 1373.5670 1152.5310 161.4407 
ROBSPCA 0.2054 1.0659 2642.8340 1151.2470 161.4410 
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Methods DS7 DS8 DS9 DS10 DS11 

KTPCA# 91.8236 81.0500 50.2970 98.8100 26.0940 
PCA 91.8236 365.9698 71.45873 101.7423 27.3143 
SPCA 309.2405 85.4666 71.4989 101.7635 27.3318 
RSPCA 309.2405 85.4666 71.4989 101.7635 27.3318 
ROBSPCA 309.2349 85.4621 71.4266 101.7468 27.3193 

2.2.2   For the mixed frequency data set 

In this section, regression models, such as the BE factor model, U-MIDAS factor model, and 

several other factor models with limitations, including the STEP-MIDAS factor model, PAW-

MIDAS factor model, and EAW-MIDAS factor model, are utilized to construct the nowcast model. 

2.2.2.1 Experimental datasets 

Table 2.6 presents the experimental data sets used. Specifically, these include 07 datasets 

from the UCI—Machine Learning repository, as listed in Table 2.2, and 03 real-world datasets 

related to the Vietnamese economy, including the CPI dataset from Table 2.2 and the newly added 

RGDP and IIP datasets (refer to pages 64 - 65 in the Thesis). 

Table 2.6: Statistical characteristics of experimental data sets 
Stat. Characteristics RGDP CPI IIP Air 

Quality 
App. Energy 

Characteristics of dataset Time-series Time-series Time-series Time-
series 

Time-series 

Variable characteristic Real Real Real Real Real 
No. of low-freq. variables 3 3 1 1 1 
No. of high-freq. variables 87 102 42 12 27 
Total number of Obser. 72 72 1840 9348 19704 
No. of low-freq. Obser. 24 24 92 779 3284 
S -No. of high-freq. values 
for a low-freq. value 1 

3 3 20 12 6 

Missing data No No Yes Yes No 
The dependent variable The growth 

rate of GDP 
Consumer 
Price 
Inflation 

Index of 
Industrial 
Production 

The Air 
CO 

Energy use of
Appliances 

Các đặc điềm thống kê Res. Build. S&P 500 DJI NASDAQ SuperCond. 
Characteristics of dataset cross data Time-series Time-series Time-series cross data 
Variable characteristic Real Real Real Real Real 
No. of low-freq. variables 1 1 1 1 1 
No. of high-freq. variables 27 52 81 81 81 
Total number of Obser. 366 1760 1760 1760 21260 
No. of low-freq. Obser. 122 88 88 88 1063 
S -No. of high-freq. values 
for a low-freq. value  

3 20 20 20 20 

Missing data 
 

No Yes Yes Yes No 

The dependent variable Sale Price S&P 500 
Index 

DJI Index Nasdaq 
Index 

Critical 
Temperature 

 

 
 
1 : Total number of observations (or number of high-frequency observations) = S * number of low-frequency observations. 
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2.2.2.2 Experimental method 

To construct nowcast models, the low-frequency dependent variable, explanatory variables at 

the same frequency as the dependent variable, and factors extracted from the higher-frequency 

explanatory variables are first transformed into stationary time series. The criterion for selecting the 

number of factors at high frequency is the percentage of their cumulative eigenvalues (Zhang et al., 

2012). The nowcast models are estimated under ideal conditions, where the lags of the high-

frequency explanatory variables are precisely determined. For further details, refer to pages 66-67 

in the Thesis. 

Additionally, the dimensionality reduction performance of the KTPCA# method is compared 

with the PCA, SPCA, RSPCA, and ROBSPCA methods on the 06 kernel functions mentioned in 

Section 2.2.1.2. 

2.2.2.3 Result 

Excluding the RGDP and IIP datasets, the remaining 08 datasets in Table 2.6 are sourced 

from the respective datasets with the same names in Table 2.2. Furthermore, the number of high-

frequency explanatory variables and the number of observations in these 08 datasets remain 

unchanged compared to the corresponding datasets in Table 2.2. Therefore, the minimum average 

distance between two column vectors in these eight datasets is determined, as shown in Table 2.3. 

For the RGDP and IIP datasets, the distances are ��
� =  exp(1.464) and ��

� = exp(8.978), 

respectively. 

With the same cumulative eigenvalue percentage threshold of 75% for all the variable 

dimensionality reduction methods mentioned above, for all experimental data sets and 05 regression 

models (BE, PAW- MIDAS, STEP-MIDAS, U-MIDAS and EAW-MIDAS), dimensionality 

reduction results, RMSE of the forecasting models according to the factors extracted by the 

dimensionality reduction methods and the most appropriate kernel functions among 06 

experimental kernel functions are presented in Table B (Appendix). 

a.  Performance of KTPCA# compared to PCA, SPCA, RSPCA, and ROBSPCA methods 

Table 2.7 below is extracted from Table B in the Appendix section. This table includes five 

sub-tables 3a, 3b, 3c, 3d, and 3e containing RMSE of nowcast models built based on BE factor 

models, U-MIDAS models, STEP-MIDAS models, PAW-MIDAS models, and EAW-MIDAS 

models. Here, the factors are extracted from the aforementioned experimental datasets using PCA, 

SPCA, RSPCA, ROBSPCA, and KTPCA# methods. 

Table 2.7 also demonstrates that for all ten experimental datasets and the 05 regression 

models mentioned above, the dimension reduction performance using the KTPCA# method is 

consistently superior. Specifically, across all 05 regression models, it is always possible to select a 

kernel function such that the RMSE of the nowcast model built on factors extracted by the KTPCA 

method corresponding to this kernel function is less than or equal to the RMSE of nowcast models 

built on factors extracted by one of the PCA, SPCA, RSPCA, and ROBSPCA methods. 
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Table 2.7: The variable dimensionality reduction performance of the proposed methods 

Note: The symbols SET1 through SET10 in Table 2.7 correspond to the ten experimental 

datasets in Table 2.6.  

b. Performance of PCA compared to SPCA, RSPCA, and ROBSPCA methods 

Figures 2.3, 2.4, 2.5, 2.6, and 2.7 below are drawn from the respective sub-tables 3a, 3b, 3c, 

3d, and 3e in Table 2.7 above and Table 2.8 below. The dimension reduction performance of the 

SPCA method is not superior to that of the PCA method; it is competitive. Refer to the detailed 

information on pages 70-72 in the Thesis. 

Table 2.8: Dimension reduction performance of PCA compared to the SPCA family 

DFM model Bằng Cao hơn Thấp hơn 

BE SET4, SET5, SET6, SET8, SET9, SET10 SET1, SET2, SET3 SET7 
STEP3-
MIDAS 

SET5, SET6, SET7, SET8, SET9, SET10 SET1, SET4 SET2, SET3 

PAW2-
MIDAS 

SET4, SET5, SET6, SET8, SET9, SET10 SET1, SET2, SET7 SET3 

EAW-MIDAS SET1, SET5, SET6, SET8, SET9, SET10 SET3, SET4, SET7 SET2 
U-MIDAS SET4, SET5, SET6, SET8, SET9, SET10 SET2, SET3 SET1, SET7 

 

2.4   Conclusion 

This chapter proposes a dimension reduction method based on kernel trick (KTPCA for 

short). It also highlights the differences between it,  KPCA and PCA methods. The KTPCA method 

is considered a natural extension of the PCA method, since it becomes the PCA method when the 

kernel function is the dot product of two vectors. The KTPCA method has overcome the limitation 
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of the PCA method in that it can reduce the dimensionality of data sets that do not approximate a 

hyperplane. The dimension reduction performance of the KTPCA method, based on the RMSE-best 

model, is equal to or higher than that of the PCA, SPCA, RSPCA, and ROBSPCA methods on 

datasets with the same and mixed sampling frequency. 

This chapter also demonstrates that the dimension reduction performance for both datasets 

with the same sampling frequency and mixed datasets of the PCA method and the SPCA variants is 

competitive. This contradicts the long-held belief that SPCA methods outperform the PCA method 

in dimension reduction performance.  

The research findings related to this chapter are published in studies [CT3] and [CT6] in the 

list of author's publications. 

 

CHAPTER 3. THE FORECASTING ON LARGE TIME SERIES DATASET USING 

THE KERNEL-BASED DIMENSION REDUCTION METHOD 

Chapter 3 proposes unconditional and conditional forecasting algorithms on large datasets,  

utilizing the KTPCA# dimensionality reduction method introduced in Chapter 2. The forecasting 

models are constructed based on the factor ARDL model, employing equation (1.34) for the 

conditional forecast model and equation (1.16) for the unconditional forecast model, in which 

factors are extracted using the KTPCA# method. Additionally, the chapter presents the modeling 

the forecast of Vietnam's export turnover by monthly frequency using the proposed algorithm. 

3.1   Unconditional and conditional forecasting process using KTPCA# method 

The forecasting process on large time series datasets using the KTPCA# dimensionality reduction 

method is developed based on the economic and financial forecasting modeling process outlined in 

section 1.3.6 of Chapter 1. 

Figure 3.1 includes two figures, 3.1a and 3.1b, respectively, depicting the conditional and 

unconditional forecasting process on a large time series dataset using the KTPCA# dimensionality 

reduction method. Both of these processes can be divided into four stages. While the main content 

that needs to be done in the basic stages remains consistent, there are some differences. Specifically, 

the main content of the stages in these two forecasting processes is presented in detail on pages 73 - 

79 in the Thesis.  
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. 

Figure 3.1: Flow chart of unconditional forecasting and conditional forecasting process 

Table 3.1 summarizes the results comparing the approach to building a conditional forecast 

model in this Thesis with the 3-step approach to building a forecast model in the study (Chinn et al., 

2023); refer to pages 78-79 in the Thesis. 

Table 3.2: Comparison of two approaches to building conditional forecast models 
Thesis vs. 
Research 

(Chinn et al., 
2023) 

Stage 2- Step 1: 
Feature selection 

Stage 3- Step 2:  
Feature Learning 

Stage 4- Step 3: Regression method 

Thesis  Use Least Angle 
Regression (LARs) 
but handle 
redundant data. 
Rating: better 

 The dimensionality 
reduction method was 
used on both the data 
sets that approximated 
or did not approximate a 
hyperplane. 
Rating: better 

The autoregressive distributed lag 
(ARDL) model is based on factors 
extracted from the data set of all 
input variables. 
Rating: Poorer 

Research Use Least Angle Use the PCA Economic random forest regression. 
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(Chinn et al., 
2023) 

Regression, but do 
not handle 
redundant data. 
Rating: poorer 

dimensionality reduction 
method (a particular 
case of the 
dimensionality reduction 
method in the Thesis) 
for data sets that do not 
approximate the 
hyperplane. 
Rating: poorer 

Its essence is to divide explanatory 
variables into subgroups, build a 
forecast model for the dependent 
variable on subgroups using the 
autoregressive distributed lag 
(ARDL) model, and then combine 
the dependent variable forecast 
results of the component models. 
Rating: better 

3.2 Forecasting algorithms on large time series data sets 

These algorithms are constructed following the process outlined in Figure 3.1. Suppose �� =

 ���,�, ��,�, … , ��,�� ∈ ℝ�×� is a data set of time series variables, ��,� ∈ ℝ�, � = 1, … , �; �� ∈  ℝ� is 

the dependent variable, where m and t are the number of variables and observations, respectively; m 

is very large. 

The problem is to develop an algorithm capable of automatically generating unconditional or 

conditional forecasts of the dependent variable ��  based on the set of explanatory variables ��. 

The forecasting algorithms proposed in the subsequent section for large time series datasets 

are constructed based on the aforementioned forecasting process. 

3.2.1 Conditional and unconditional forecasting algorithm 

 Without loss of generality, assuming the dataset of explanatory variables, denoted as x, is 

mean-centered. This dataset is utilized to extract factors using the KTPCA method corresponding to 

each kernel function tested. 

 Conditional and unconditional forecasting algorithms for large time series datasets are 

presented in pseudocode as follows:  

Algorithm 1a: CONF algorithm Algorithm 1b: UNCONF algorithm  
Input: �� ∈  ℝ�×�, �� ∈  ℝ�, α and β are user-
defined relevant and redundant thresholds, q(%) is 
the user-defined threshold of the cumulative 
eigenvalue percentage. 
Output: �����: the h-step-ahead forecast made at the 
time t of the variable �� on ��.   
Begin 

1. Determining h - the farthest time of forecast;    
2. Repetition ← "Yes"; 
3. FeatureSelection (��, ��); 
4. Center ��; 
5. Calculate the average minimum distance 

between two data vectors of predictors; 
6. Tính ma trận hiệp phương sai K của ��; 
7. FeatureLearning(K); 
8. Save the retained factors, the forecast model 

on the set of retained factors, and the RMSE 
of this model.  

9. Repeat 
10. Input a kernel �: ℝ� x ℝ� ⟶ ℝ; 
11. Calculate the kernel matrix �; 
12. FeatureLearning (�); 

Input: �� ∈  ℝ�×�, �� ∈  ℝ�, q(%) is the user-
defined threshold of the cumulative eigenvalue 
percentage. 
Output: �����: the out-of-sample the h-step-
ahead forecast made at the time t of the variable 
��  // h is at least 1 but not predefined.   
Begin 

1. Determine the common lag p for all 
variables; 
       ………………………………………… .      
3.     LeadingIndicatorSelection (��, ��); 
 …………………………………………… . 
       
 
 
 
 ………………………………………… 
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13.  if  RMSE of the newly built model <  
RMSE currently saved then 

    Replace the saved factors, forecast 
model, and corresponding saved RMSE 
with the new factors, newly built 
forecast model, and RMSE of this 
model. 

14.     end 
15. Until (Repetition = “No”) 
16. Forecast(Y����, The forecasting model of 

variable Y�); 
End. 

 
       ………………………………………… 
 
 
 
 
 
 
       ………………………………………… 
16.   Calculate(Y����,The forecasting model of 
variable Y�); 

End. 

 The functions FeatureSelection, LeadingIndicatorSelection, the procedures FeatureLearning, 

Forecast, and Calculate are introduced in more detail below. 

 

Algorithm 2a: FeatureSelection Algorithm  

 

Input: �� ∈  ℝ�×�, �� ∈  ℝ� . 

Output: Subset of non-redundant and relevant 

variables for �� in ��. 

begin      

1.  Remove little relevance or irrelevant 

variables to ��. 

2.  Order (��) // Arrange variables in 

descending order of Pearson measure. 

3.  Remove redundant variables of �� 

4. return �� 

end; 

 

Algorithm 2b: LeadingIndicatorSelection 

Algorithm  

Input: �� ∈  ℝ�×�, �� ∈  ℝ�, p is the general 

lag. 

Output: Subset of leading indicators of �� with 

the lag of p in ��; α (%) - statistical 

significance level;  

begin      

1. Transform �� and variables in �� into 

stationary time  series variables; 

2. for each variable in �� perform    

- Build a forecasting model to 

variable ��according to this variable 

based on model (2.2) 

- Calculate the probability of the F 

statistic in the forecast model; 

3.      if that probability < α then the  

    explanatory variable is the   

    leading indicator; 

4. end for 

end; 

Algorithm 3a: FeatureLearning  Procedure  

Input: The kernel matrix ��×�. 

Output: The set of factors is retained; forecast 

model �� according to the retained factors, and 

the RMSE of this model 

begin 

1. Calculate eigenvalues and eigenvectors of 

Algorithm 3b: FeatureLearning  Procedure  

Input: Matrix ��×� is the kernel matrix of the 

dataset including g leading indicator; 

Output: The set of chosen factors; The  

forecast model of variable ��on the selected 

factors, and the RMSE of this model. 

begin 
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the matrix K 

2. Sort the eigenvectors in descending order 

of their respective eigenvalues; 

3. Extract factors by projecting the mean-

centered input dataset �� onto 

eigenvectors; 

4. Create a set of the first p factors such that 

their cumulative eigenvalue percentage is 

not less than the given q(%); 

5. Building the forecasting model of �� on 

retained factors based on the ARDL 

model;   

 

6. Calculate the RMSE of the model �� 

end; 

 ………………………………………… 

 

 

 

………………………………………… 

 

 

 

5. Build the forecasting model of �� on 

selected factors of leading indicators 

based on the ARDL model, where the lags 

of the dependent variable and explanatory 

variables have been predetermined.  

    …………………………………………… . 

end; 

Algorithm 4a: Forecast Algorithm 

Input: The set of factors is chosen for the last 

time, the forecasting model of �� is built based 

on the chosen factors; 

Output: �����: the h-step-ahead forecasts made 

at the time t for the variable ��; 

begin 

1. Build an auxiliary forecasting model for 

the factors in the �� variable forecasting 

model based on the autoregressive model 

with quadratic trend AR(p); 

2. Perform out-of-sample the h-step-ahead 

forecasting for the factors using 

corresponding auxiliary forecasting 

models;  

3. Calculate ����� using the forecasting 

model of  �� 

end; 

Algorithm 4b: Calculate algorithm 

Input: The set of factors is chosen for the last 

time, the forecasting model of �� is built based 

on the chosen factors.  

Output: �����: the h-step-ahead forecasts made 

at the time t for the variable ��, (1 ≤ ℎ ≤  p); 

begin 

1. Calculate ����� using the forecasting 

model of  �� at the time t.   

end; 

 Specifically, the meanings of the command lines of algorithms, functions, and procedures are 

elaborated on pages 80 - 86 of the Thesis. 

 The estimation of the computational complexity of the unconditional and conditional 

forecasting algorithms will be presented in the next section below. 

3.2.3 Computational complexity 

3.2.3.1 Computational complexity of the CONF algorithm 
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 Let m and N denote the number of variables and observations in the input dataset ��, 

respectively; � is the number of iterations of the KTPCA dimension reduction method, and the 

model builds on the extracted factors.  

 The computational complexity of the conditional forecasting algorithm is dependent on the 

computational complexity of: (1) the FeatureSelection algorithm (line 3) in the CONF algorithm, 

(2) the computation of the kernel matrix (with the kernel function being either dot product or not 

dot product) (line 6 or line 11), (3) the FeatureLearning procedure (line 7 or line 12), and (4) the 

Forecast algorithm at line 16, refer to details on pages 86-88 in the Thesis.  

- The computational complexity of the FeatureSelection algorithm is: �(��)       (3.2) 

- The computational complexity of command lines 7 and 8 is �(�. ��+ ��)    (3.3)     

- The computational complexity of command lines 12 and 13 is �(�. ��+ �� + ��).  

- Since there are q such loops, the computational complexity of lines 10 to 16 is:  

                                         �. �(�. ��+ �� + ��).                              (3.4) 

- The computational complexity of the Forecast algorithm in command line 17 of the CONF 

algorithm (P.M. Tan al. et., 2018), the computational cost to build such a model is �((� +

2)�. � + (� + 2)�) = �(�), here s is the optimal lag length of exogenous variables, and there 

are 02 trend variables: tr and ���. Moreover, the computational complexity of the Forecast 

algorithm is �. �(�) = �(�) (since p is minimal)          (3.5)      

From (3.2), (3.3), (3.4), and (3.5), the computational complexity of the CONF conditional 

forecasting algorithm is derived as �. �(�. ��+ �� + ��).                      (3.6) 

3.2.3.2 Computational complexity of the UNCONF algorithm 

The unconditional forecasting algorithm differs from the conditional algorithm mainly in the 

LeadingIndicatorSelection and Calculate algorithms. As the computational cost of Calculate is 

negligible compared to FeatureLearning algorithms, it can be disregarded. 

For each explanatory variable, the computational cost determining whether this variable is a 

Granger cause with s lag of the dependent variable is �((2� + 1)�. � + (2� + 1)� = �(�), since s 

is fixed and small (P.M.Tan al. et., 2018). Therefore, the computational complexity of the 

LeadingIndicatorSelection algorithm is:  

���. �(�)� = �(�. �)     (3.7) 

Following a similar argument as with the CONF algorithm, we determine that the 

complexity of the UNCONF algorithm is �. �(�. ��+ �� + ��). Consequently, the complexity of 

the forecasting algorithm, encompassing both unconditional and conditional forecasting, is  

�. �(�. ��+ �� + ��)                           (3.8)  

3.3 Forecasting export turnover using the KTPCA dimensionality reduction method 

3.3.1 Identifying the forecasting problem 

With increasing international integration, the factors influencing Vietnam's export turnover 

are becoming more numerous and diverse. The collection of such data is becoming easier and more 

complete, thanks to advancements in information technology. How to forecast Vietnam's export 

turnover amidst the multitude of influencing factors is the motivation for this Thesis, to study the 

application of the conditional and unconditional forecasting model utilizing the dimensionality 
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reduction method based on the kernel trick proposed in Chapter 2 to forecast Vietnam's monthly 

export turnover. 

The problem that needs to be solved in this section is forecasting Vietnam's monthly export 

turnover by considering all potential domestic and foreign factors (variables) that affect Vietnam's 

export activities. 

3.3.2 Factors impacting export turnover and data collection 

3.3.2.1 Factors impacting export turnover 

One commonly utilized model for forecasting export turnover is the export demand model. 

This model operates under the assumption of infinitely elastic supply, implying that any amount of 

supply can be generated in response to demand. Within export demand models, most variables such 

as exchange rates, price indices, and relative prices of exported goods are incorporated, among 

which relative price is one of the factors holding significant importance, determining the 

competitiveness of export activities;  comparative advantage is presented in detail according to the 

theoretical framework in the study (Siggel, 2006). Specifically, research (Siggel, 2006) proposes a 

general form of the forecast model for total export turnover as follows: 

        �� = ������,�������,�������, �������, � ≥ 1          (3.2) 

where �� is the value of merchandise and service exports (expressed in nominal or real terms), ��� 

is a composite measure of external demand, ��� is the exchange rate (nominal or real), and �� is 

the price vector, creating price dynamics for the goods group in the international market. 

3.3.2.2    Data 

Researchers (Siggel, 2006), (Stoevsky, 2009), (Lehmann, 2015) have suggested the types of 

data required for forecasting Vietnam's monthly export turnover. In this Thesis, the actual dataset 

employed for forecasting Vietnam's export turnover by month is a dataset of 161 explanatory 

variables, including hard and soft variables, called EXP, encompassing factors influencing export 

turnover as per the export demand model (Siggel, 2006), (Stoevsky, 2009) are presented in Table 

3.1, pages 92 - 93. 

3.3.3   Unconditional forecast of export turnover 

 The EXP dataset is extensive. To make forecasts on such a set, economic forecasters often 

select only a handful of leading indicators with high statistical significance to include in the 

unconditional forecast model of export turnover. It is evident that forecasting accuracy using such 

an approach will be limited since numerous variables influence changes in export turnover but have 

not been included in its forecasting model. This limitation can be easily overcome by employing the 

unconditional forecast algorithm on large datasets using the proposed kernel-based dimensionality 

reduction method. Presented below are presented the intermediate results obtained from applying 

the forecasting algorithm to unconditionally forecast Vietnam's monthly export turnover. 

3.3.3.1 Stage 1: Data preprocessing 

Addressing missing values, transforming data - handling non-stationarity according to 

formula (3.10) (Eskin & Gusev, 2009). Using the formula (3.10) to transform data also aids in 

handling the non-stationarity of time series variables. 

To conduct the forecast and validate the constructed model, the dissertation divides the input 

dataset of 65 observations into 02 sets: a training set comprising 62 observations from February 
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2014 to March 2019, and a testing set containing 03 observations from April 2019 to June 2019. 

Initially, the unconditional forecast model is constructed using the training dataset. 

3.3.3.2 Stage 2: Determining leading indicators 

Test the stationarity of the export variable (denoted as EX) and 161 explanatory variables 

using the training dataset. 

Execute lines 3 to 5 in the LeadingIndicatorSelection algorithm to test the Granger causality 

between the dependent variable EX and each explanatory variable with an optimal lag of 06, 

determined based on economic theories as suggested (Wooldridge, 2016). Utilizing a threshold � <

0.1, implying a probability of rejection is <  0.1, the Thesis identifies 37 variables as leading 

indicators of the dependent variable. The statistically significant leading indicators for the export 

variable EX are listed in Table 3.2 below; refer to page 98 in the Thesis. 

3.3.3.3 Stage 3: Extract factors and build models 

First, the dataset of 37 leading indicators is mean-centered, and the minimum average distance 

between 02 column vectors on this data set is calculated as ��
� = 0.3273 ≈ ���,�� . Factors are 

extracted using the KTPCA# method based on the 06 corresponding kernel functions listed in the 

first column of Table 3.4 below, and the optimal lag is chosen to be 06 as suggested in 

(Wooldridge, 2016) for economic and financial datasets at monthly frequency. With a chosen 

cumulative eigenvalue percentage threshold of ≥ 75%, Table 3.4 below presents the number of 

selected factors, the cumulative eigenvalue percentage, and the RMSE of the unconditional 

forecasting model for the export turnover variable, EX. 

The first row in Table 3.4 shows the result of factor extraction using the KTPCA method, 

with the polynomial kernel function being the dot product of two vectors ��(��, ��) = 〈��, ��〉, 

indicates the necessity of selecting 12 factors to achieve the cumulative percentage of variance 

above threshold of 77.01%. We cannot build a forecasting model for EX export turnover according 

to model (1.16) on the 12 selected factors, because with a general optimal lag of 6, the number of 

variables in the EX forecasting model = 12* 6 (number of lagged variables) + 6 (lagged variables of 

EX) = 78 variables. In contrast, the number of observations of the EXP dataset is only 63. 

Table 3.4: Results of factor extraction using the KTPCA# method 

Kernel Kernel function 
The number of 

factors 

% Cumulative 

eigenvalue 
���� 

Polynomial 

��(��, ��) = 〈��, ��〉 hay PCA 12 77,01 Not continue 

��(��, ��) = 〈��, ��〉� 2 83,34 0.0228 

��(��, ��) = 〈��, ��〉� 1 74,83 0.0270 

 Gaussian 

���: �� =  ���.� 5 76,03 0.0202 

���: �� = ���,�� 9 75,20 Not continue 

���: �� = ���,� 10 76,41 Not continue 

Table 3.4 shows that among the six experimental kernel functions, the most suitable one is the 

Gauss kernel function ��� with parameter �� =  ���,�,  with the model's RMSE of 0.0202 being 

the lowest, and 05 factors are selected to replace the dataset of 37 leading indicators. Testing the 

stationarity of the 05 factors shows that all factors are stationary. The model unconditionally 
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forecasts Vietnam's monthly export turnover based on 05 factors is in the form of equation (3.11); 

refer to page 100 in the Thesis. 

3.3.3.4   Stage 4: Implement forecasts 

Forecasting model acceptance testing is conducted on the testing dataset comprising 03 

observations in the months of April 2019, May 2019, and June 2019 using the Calculate algorithm 

with model (3.11). It can be observed that according to model (3.11) and solely based on the leading 

indicators in the current month, we can only forecast EX export turnover for the following month, 

specifically April 2019. 

Unconditional forecasts of Vietnam's export turnover for April 2019, May 2019, and June 

2019, generated in this manner, are compared with the actual statistical values of export turnover 

for these months, and compared with the forecast results obtained from some other typical 

univariate models, including the AR(6) model, the ARIMA model, and the Holt-Winter model. The 

results are presented in Table 3.5 below, where the symbol EXF denotes the forecast value of EX 

by model (3.11), and univariate models AR, ARIMA, and Holt–Winter. 

Table 3.5: Comparison of forecasted export turnover results from various models with actual 

figures. 

Model Proposed model AR(6) 

Month EX EXF % forecast error EXF % forecast error 

04/2019 20439.83 20299.12 0.69 18891.92 7.57 

05/2019 21904.59 21173.66 3.34 20724.46 5.39 

06/2019 21427.77 21418.12 0.05 20211.47 5.68 

  
 

RMSEOUT = 

429.79  

Abs(% forecast 

error) TB = 1.36 

RMSEOUT = 

1325.16 

Abs(% forecast 

error) TB = 6.21 

Model ARIMA(2, 1, 2) Holt-Winter Add 

Month EX EXF % forecast error EXF % forecast error 

04/2019 20439.83 19238.68 5.88 19389.46 5.14 

05/2019 21904.59 21213.68 3.15 20644.72 5.75 

06/2019 21427.77 20958.26 2.19 20349.69 5.03 

 
 

RMSEOUT= 

844.70 

Abs(% forecast 

error) TB = 3.74 

RMSEOUT= 

1133.26 

Abs(% forecast 

error) TB = 5.31 

In this context, % forecast error is calculated as 100*(actual statistical value - forecast value)/actual 

statistical value. Abs(% error db)TB is the average of the absolute value of the percentage of 

forecast error across 3 months of April, May, and June 2019; refer to pages 101 - 102 in the Thesis. 

 Table 3.5 illustrates that the forecasting accuracy of the unconditional export turnover 

forecast model, constructed based on the factorial ARDL model, according to the unconditional 

algorithm using the proposed dimensionality reduction method, significantly surpasses the forecast 

accuracy of the univariate unconditional forecasting models AR(p), ARIMA, and Holt-Winter. 

The average forecast error % for the 03 months of April 2019, May 2019, and June 2019, obtained 

from the export turnover forecast model using the unconditional algorithm, exceeds the % forecast 

error of the unconditional forecast model built based on the best univariate forecast model 

ARIMA(2,1,2) by 2.38 percentage points, enhancing forecast accuracy to 63.6%. Therefore, we can 
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accept the constructed forecast model and use this model for forecasting export turnover for 

subsequent out-of-sample months, such as July 2019. 

3.3.3.5 Out-of-sample forecast of export turnover 

The data for export turnover forecasting includes observations up to June 2019. To forecast 

export turnover for the following month, follow these steps: 

- Updated additional observations up to June 2019 for 05 factors extracted from the 37 leading 

indicators using the KTPCA method with Gauss kernel function with parameter �� =  ���.�. 

- Re-estimate model (3.11) using the leading factors with observations up to June 2019; 

- Use the newly re-estimated model (3.11) to forecast Vietnam's export turnover for July 

2019. 

To execute these tasks using the unconditional forecasting process, simply repeat the Stages 3 

and 4 with the Gauss kernel function with parameter �� =  ���.� in the same way as described 

above. 

3.3.4   Conditional forecast of export turnover 

The EXP dataset mentioned above is also used to forecast export turnover for the upcoming 

months, such as the next three months. 

3.3.4.1 Stage 1: Data preprocessing 

Similar to the case of unconditional forecasting. 

3.3.4.2 Eliminate noisy and redundant variables 

On the training dataset, with relevance and redundancy thresholds of 0.2 and 0.9, respectively, 

using the FeatureSelection algorithm, only 63 variables are identified as relevant and non-redundant 

for the purpose of forecasting export turnover, EX. These variables are presented in Table 3.6 on 

page 104. 

3.3.4.3 Stage 3: Factor extraction using KTPCA# method  

With the cumulative eigenvalue percentage threshold ≥ 75% and an overall optimal lag of the 

factors in the estimation model, determined as suggested in (Wooldridge, 2016), and is 6. The 

results of factor extraction using the KTPCA# method are presented in Table 3.7. 

Table 3.7: Factor extraction using KTPCA# method 

Kernel κ Parameters The number 

of Factors 

%Cumulative 

eigenvalue 

RMSE 

(PCA) ��(, ): c = 0, d = 1 14 76.72 Not continue 

 

Polynomial 

��(, ): c = 0, d = 2 5 76.02 0.0153 

��(, ): c = 0, d = 3 2 81.97 0.0270 

 

Gauss 

��(, ); �� = 0.569  10 75.56 Not continue 

��(, ): �� = 0.833 6 76.16 0.0104 

��(, ): �� = 0.500  12 76.09 Not continue 

Table 3.7 also shows that the kernel function �����, ���  is the most suitable among the 

experimented kernel functions because the RMSE of the predictive model for the variable EX, 

using the factors selected by KTPCA with this kernel function, attains the smallest, equal to 0.0104, 

and the parameter ρ2 in this kernel function is not the minimum average distance between two 
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column vectors in the input dataset. Following the iteration process, we obtain the optimal forecast 

model for export turnover in the form of equation (3.13) on page 106. 

3.3.4.4   Stage 4: Building a forecast model for exogenous variables and conducting forecasts 

a.  Forecasting the factors in the built forecast model 

The auxiliary forecast model for the factors in the model (3.13) is constructed based on the 

AR(p) model with trends, as per equation (3.1). Table 3.8 below presents the forecast results for 06 

factors in the months of April, May, and June 2019; refer to page 107 in the Thesis. 

b.  Building an export demand model and forecast the exogenous variables in the model 

To compare and evaluate forecast accuracy for export turnover (EX) using the proposed 

conditional forecast model, the Thesis also forecasts EX using the forecast model constructed based 

on the export demand model introduced in section 3.3.2.1. 

Testing the stationarity of the variables ER, ED, POIL, PRICE_VN, and PEX/PWEX reveals 

that they are all stationary time series. The forecast model for export turnover is derived from the 

export demand model using equation (3.9) with a common optimal lag of 6 (Wooldridge, 2016). 

The forecast results of export turnover using the export demand model in April, May, and June 

2019 are presented in Table 3.11. 

c.  Implementing forecasting testing, comparison, and evaluation 

The symbols EXF and DEXF represent the forecast values of EX using the factor model and 

the export-demand model, respectively. The forecast results of EX for April, May, and June 2019 

using these two approaches, along with the actual statistical values, are presented in Table 3.10 

below. 

Table 3.11 Comparison of forecasted export values with actual values 

    Proposed model Export demand model 

Month EX EXF % forecast error DEXF  % forecast error 

04/2019 20439.83 20051.57 1.90 19757.77 3.34 

05/2019 21904.59 21603.89 1.37 21464.56 2.01 

06/2019 21427.77 21203.48 1.05 22246.80 -3.82 

 Abs(% forecast error) TB = 1.44 Abs(% forecast error) TB = 3.06 

RMSE  0.0104 0.0261 

RMSEOUT  0.0038 0.0296 

Calculate the average of the absolute value of the percentage error of export turnover forecast 

for the 03 months of April, May, and June 2019 using the proposed conditional forecasting model 

and the export demand model under the same assumed conditions that the factors affecting exports 

in April, May, and June 2019 do not have unusual fluctuations. The forecast accuracy of the model 

constructed based on a conditional algorithm surpasses that of the export demand model by 1.62 

percentage points, and enhancing forecasting accuracy up to 52.9%. 

3.3.4.5 Forecasting export turnover and building forecast scenarios 

a.   Out-of-sample forecast of export turnover 

Similar to the out-of-sample forecasting of export turnover using the unconditional 

forecasting model approach, conditionally forecasting this variable entails the following steps: 
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-  Update and supplement the observations until June 2019 for the 06 factors extracted from 

the 63 explanatory variables using the KTPCA method with a Gaussian kernel function parameter 

�� =  ��.���.  

-  Re-estimate the model (3.14) with the factors that have observations until June 2019; 

-  Forecast the factors in the model (3.14) for the next 03 months. 

-  Utilize the updated model (3.14) and the forecast results of the factors in that model to 

forecast Vietnam's export turnover for the next 03 months. 

It is understood that forecasting using quantitative models acknowledges that the future will 

resemble the present and the past. However, in reality, this may not always hold true, especially in 

the context of today's economic globalization. There are numerous unpredictable fluctuations that 

can impact Vietnam's export activities. To address this reality when conducting conditional 

forecasting, three commonly used approaches are employed; refer to pages 111-113 in the Thesis. 

3.4     Conclusion 

Based on the time series modeling process presented in Chapter 1, this chapter proposed a 

process and forecasting algorithm (unconditional and conditional) for large time series datasets 

using the dimensionality reduction method proposed in Chapter 2. The computational complexity of 

this algorithm was also estimated to be polynomial. 

 The dimension reduction in the algorithm is proposed to be done using both feature selection 

and feature learning methods. The feature selection method is built based on the Granger causality 

relationship for the unconditional forecasting algorithm or the Pearson correlation coefficient 

measure for the conditional forecasting algorithm. The feature learning method is KTPCA#..  

Chapter 3 also presents the application of unconditional and conditional forecasting 

algorithms on large time series data sets to forecast Vietnam's monthly export turnover. The 

forecast accuracy (unconditional and conditional) of Vietnam's export turnover is quite high, 

showing that the proposed dimensionality reduction forecasting algorithm can be applied to forecast 

export turnover as well as forecast other economic-social indicators on large time series datasets..  

The research findings related to this chapter are published in studies [CT1], [CT2], [CT4], and 

[CT5] in the list of author's publications. 

 

CONCLUSION 

1.   Research results of the Thesis 

The Thesis focuses on solving the limitations of PCA and SPCA methods on large time series 

datasets. The Thesis makes the following main research contributions: 

1. Theoretical contributions 

-  Proposing a dimensionality reduction method based on the kernel trick, abbreviated as 

KTPCA. It is a natural extension of the PCA method and overcomes its limitations in reducing the 

dimensionality of datasets that do not approximate a hyperplane. The dimensionality reduction 

performance of the KTPCA method, based on the RMSE-best model (referred to as KTPCA#), 

equals or surpasses that of PCA, SPCA, RSPCA, and ROBSPCA methods on datasets with similar 

or mixed sampling frequencies. Additionally, the Thesis demonstrates that the dimensionality 

reduction performance of PCA and SPCA methods is competitive. This result is different from the 
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long-standing belief that the dimensionality reduction performance of the SPCA method and its 

developed versions is equal to or superior to the PCA method. 

-  Proposing a procedure and algorithm for conditional and unconditional forecasting on large 

time series datasets using the proposed dimensionality reduction method. The computational 

complexity of this algorithm is a third-degree polynomial of the number of observations and 

variables in the input dataset. Comparing this forecasting procedure with the three-step forecasting 

approach in (Chinn et al., 2023) (considered the most superior forecasting method currently), the 

initial two steps of the proposed forecasting procedure using the dimensionality reduction method 

outperform the corresponding two steps in the three-step forecasting approach, while the remaining 

third step has not yet been compared.       

2. Practical application contributions 

 The application of the forecasting algorithm employing the proposed dimensionality reduction 

method to forecast Vietnam's monthly export turnover, utilizing a dataset of 161 time-series 

explanatory variables, reveals that: 

 - The forecast error percentage of the conditional export turnover forecasting model using the 

proposed algorithm is lower than that of the export demand forecasting model by 1.62 percentage 

points, enhancing the forecasting accuracy by up to 52.9% compared to the export demand model. 

In the fields of economics and finance, the export demand model is widely adopted and regarded as 

superior for forecasting export turnover in countries, including Vietnam. 

 - The forecasting error percentage of the unconditional export turnover forecasting model 

using the proposed algorithm is lower than the forecasting error percentage of the ARIMA (2,1,2) 

model (the best forecasting model among univariate models constructed based on ARIMA, AR(p), 

and Holt-Winter models) by 2.38 percentage points, improving the forecasting accuracy by up to 

63.6% compared to the ARIMA (2,1,2) model. 

 These outcomes, along with the computational complexity of the forecasting algorithms being 

a third-degree polynomial, indicate the prospects of applying the proposed forecasting procedure 

and algorithm employing the dimensionality reduction method in forecasting not only export 

turnover but also various other economic and financial indicators on large time series datasets. 

 The thesis results have been published in domestic and international journals and conferences 

with reviews. 

2.  Limitations of the Thesis 

The Thesis has the following primary limitations: 

1. Firstly, the forecasting algorithms (conditional and unconditional forecasting) using the 

proposed dimensionality reduction method and their applications have only been proposed for 

datasets with uniform sampling frequency, not for datasets with mixed sampling frequency. 

2. Secondly, the forecasting algorithm based on the proposed procedure has only been 

partially computerized, lacking fully computerization. This limits the proposed forecasting 

procedure using the dimensionality reduction method to forecast economic and financial indicators 

on large time series datasets. 


