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INTRODUCTION 

1. The urgency of the thesis 

Currently, identifying disease-causing or so-called pathogenic genes 

is primarily carried out through clinical biological testing experiments on 

disease samples [3]. This task is often manually performed in the laboratory 

for thousands of candidate genes located in a suspicious chromosomal 

region, ensuring high accuracy but requiring significant time and cost [4]. To 

reduce the sample volume for clinical experiments, technological approaches 

have been introduced such as statistics and machine learning, including deep 

learning. Although these approaches have made significant contributions, 

they face limitations such as not fully understanding gene interactions and 

requiring large sample sizes, while sample selection remains a challenge. 

From the perspective of network graph theory, biological data can 

be modeled as complex networks, where vertices are understood as genes or 

gene products, and edges represent interactions between them [11]. 

Therefore, exploring biological data can be reduced to the problem of mining 

data on complex networks. This approach often leads to the proposal of 

computational models on networks [13], thereby ranking vertices (genes) 

based on certain attributes, with high-ranking vertices considered important 

and potentially related to the prediction target [13]. After ranking, a small 

number of high-ranking vertices (genes/proteins) are included in clinical 

experiments to search for evidence, affirming the function of genes related 

to the disease. 

2. Research Objectives of the Thesis  

The research objectives are to develop dynamic competitive models 

in complex information networks, identify network control components, and 

apply them to biological networks to predict target cancer treatment genes. 

3. Research Content 
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Systematizing fundamental knowledge of graph theory, complex 

network theory, data and modeling of biological network data, dynamic 

competitive network models, models and algorithms for ranking the 

functional prediction of vertices on complex networks. 

Chapter 1. AN OVERVIEW OF RANKING FOR PREDICTING 

TARGET CANCER TREATMENT GENES   

1.1. The Ranking Problem for Predicting Disease Genes 

 
Figure 1.1. Overview of Predicting Target Cancer Treatment Genes on 

Biological Networks. 

(a) Statistical approach, (b) Machine learning approach, (c) Network-

based approach, (d) Clinical experiments. 

The thesis states the ranking problem for predicting target cancer 

treatment genes as follows: 

- Problem Statement: Given a biological network, predict the target 

cancer treatment genes for drugs. 

- Input: Given a biological network G=(V,E), where V is the set of 

vertices (genes/proteins)  V={v1,v2,...,vn}, E is the set of edges (interactions 

between genes) E={(vi,vj)∣vi,vj∈V, i,j=1,...,n}. 
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- Output: A relationship R∗(V,F), where V is the set of vertices, and 

F∈R∗ indicates the likelihood of mutation of v causing cancer and being a 

treatment target. 

1.2. Theoretical Foundations  

1.2.1. Graph Theory  

1.2.2. Graph Representation on Computers  

1.2.2.1. Adjacency Matrix  

1.2.2.2. Weighted Matrix  

1.2.2.3. Edge List  

1.2.3. Complex Networks  

1.2.3.1. Basic Components of Complex Networks  

1.2.3.2. Characteristics of Complex Networks  

1.2.3.3. Fundamental Properties of Complex Networks  

1.2.3.4. Network Centers  

1.2.3.5. Network Clustering  

1.2.4. Data and Modeling of Biological Network Data  

1.3. Methods and Related Research in Predicting Disease 

Treatment Genes Based on Complex Networks  

1.3.1. Proximity Property of a Vertex  

1.3.2. Degree Proximity Property of a Vertex  

1.3.3. Betweenness Centrality Property of a Vertex  

1.3.4. Random Walk Algorithm with Restart  

1.3.5. ORIENT Algorithm  

1.3.6. PRINCE Algorithm using Prior Probability  

1.4. Overview of Large-Scale Networks  

1.4.1. Concept of Large-Scale Networks  

1.4.2. Some Research Directions on Large-Scale Networks  

1.5. Dynamic Network Models 
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Chapter 2. DYNAMIC COMPETITIVE MODELS ON COMPLEX 

NETWORKS APPLIED IN PREDICTING CANCER TREATMENT 

GENES  

2.1. Dynamic Competitive Models on Complex Networks 

Zhao and colleagues [104] introduced a dynamic competitive model 

on complex networks. The model depicts the competition between two 

agents (vertices) within the network regarding their ability to control or 

influence other agents in the network with respect to that agent. 

For a weighted network G(V,E) with n vertices and m links, where 

the vertex set V={1,2,...,n} and the network structure is described by an 

adjacency matrix ( )kl nxnA a= ; if vertex k interacts directly with l, then there 

 
Figure 2.1: An example of dynamic competitive model on complex 

networks [82]. 

(a) An undirected network consisting of 10 vertices with equal 

edge weights, the competition between vertex a and vertex b ends in a tie. 

(b) A network derived from network (a) with an additional edge between 

vertex j and vertex f, resulting in vertex b winning the competition. (c) A 

network with a structure similar to network (a) but with different edge 

weights, leading to vertex a winning. 
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is a link from k to l and akl>0; otherwise akl=0. Suppose there is a competition 

in the network between vertex i and vertex j with fixed and different states, 

represented by formula (2.1). 

( ) 1, ( ) 1, 0; ,i jx t x t t i j V= + = −     (2.1) 

In that case, each remaining normal agent in the network adjusts its 

state according to a distributed consensus protocol, reflecting the influence 

of each normal agent on each competing agent and predicting which 

competing agent will win. The states of the normal agents are represented by 

formula (2.2). 

𝑥𝑘(𝑡 + 1) = 𝑥𝑘(𝑡) + 𝜀 ∑ 𝑎𝑘𝑙(𝑥𝑙(𝑡) − 𝑥𝑘(𝑡))

𝑛

𝑙=1
𝑙≠𝑘

𝑙𝑉{𝑘}

 
(2.2) 

In that case, the state of each remaining normal agent will eventually 

reach a stable state, i.e., t→∞, and is calculated by formula (2.3). 

1
1

( ) ( )
1

norm i jX t X D A c c−
+ 

 → = −    −   

(2.3) 

Xnorm∈Rn−2 represents the converged state vector of the normal agents. 

The sign of the stable state indicates the "bias" of that agent. 

0 ( 0)k kx x  it implies that the last agent k will support the 

competing opponent i (or j), and |𝑥̅𝑘| corresponds to the degree of support or 

influence. 0 kx = It implies that agent k is a neutral agent. We have formula 

(2.4). 

 

ij

1
\{i,j}

( )
n

k

k
k V

sign x
=


 =   (2.4) 

In the expression above, sign() denotes the sign function. If 
ij 0  the 

competing agent i will win; if 
ij 0  the opposing agent j will win; if 

ij 0 =

the competition ends in a tie. 
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The study does not consider the case where one competing opponent 

is inside the network while the other is outside the network. Additionally, 

only considering direct interactions from each vertex to every other vertex in 

the network may not be efficient for large networks. 

2.2. Proposed Model of External Competitive Dynamics on 

Complex Networks 

Given a complex network G(V,E) with n agents (vertices) and m 

links between them. The set of agents is described as V={1,2,...,n}, and the 

network structure is described by a weighted adjacency matrix W=w(u,v)n×n; 

if agent u is directly linked to agent v, then wuv>0, otherwise wuv=0. Suppose 

the initial state of the vertices in the network is xu(t0)=0, u∈V. We assume 

that vertex α∈V is a control agent (such as a drug target gene), and vertex 

β∈/V is an external competing opponent (environmental agent, drug), where 

the states of control vertices and competing agents have fixed and different 

states: 

0( ) 1, ( ) 1, ( ) 0, 0, , ,ux t x t x t t u V V   = + = − =      (2.5) 

Whenever there is a temporary link that can connect from β to any 

vertex γ in the network to disrupt α, whenever γ adjusts its state. All 

remaining agents are called normal vertices and denoted as u∈V/{α,β} with 

a state at time t as xu(t) and update its state at time t+1 as xu(t+1) according 

to formula (2.6): 

𝑥𝑢(𝑡 + 1) = 𝑥𝑢(𝑡) + 𝜀 ∑ w(𝑢, 𝑣) ∗ (𝑥𝑣(t) − 𝑥𝑢(𝑡))

𝑛

𝑣=1
𝑣V{u}

 (2.6) 
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Figure 2.2. An example of external competitive dynamics model. 

The network has 12 vertices (genes/proteins) and 19 interactions. 

Let's assume vertex α (red) is the control vertex with a fixed state of +1, and 

β (blue) is an environmental agent with an opposing and fixed state of -1. 

At time t, a temporary undirected interaction is added between the 

environmental agent (drug) and a vertex (normal vertex in the network), 

causing the states of normal vertices in the network to change and converge 
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 The parameter 1

max0 Deg −   captures the degree of interaction of 

neighboring vertices, along with Degmax being the maximum out-degree of 

vertices in the network; and V(u)={v∈V∣w(u,v)>0} is the set of neighboring 

vertices of vertex u that can directly influence vertex u. As t→∞, the state of 

each normal vertex u converges to a stable value 𝑥̅𝑢 which is a convex 

combination of opponent states in the competition. The sign 

(positive/negative) of the stable state of each normal vertex 𝑥̅𝑢>0 (𝑥̅𝑢<0) 

implies that vertex u will eventually be influenced by the control vertex α or 

β, and |𝑥̅𝑢| corresponds to the degree of influence 𝑥̅𝑢 if vertex u is neutral. 

See Figure 2.2. 

The expression to calculate the total influence state of normal agents 

for each control agent α against disruption from β is proposed by formula (2.8). 

1
\{ , }

( ) ( )
n

u

u
u V

ToS sign x

 


=


=   (2.8) 

The control vertex of the network is determined by  𝐶 =
max
𝛼∈𝑉

𝑇𝑜𝑆(𝛼). 

2.3. Building the Algorithm of the External Competitive 

Dynamics Model  

2.3.1. Algorithm Idea  

2.3.2. Function, Input, Output of the Algorithm  

2.3.3. Flowchart and Pseudocode of the Algorithm Pseudocode of 

the Algorithm Algorithm  

Algorithm Algorithm 

Algorithm 2.1 of the External Competitive Dynamics Model. 

to a stable value according to a distributed consensus protocol, which is a 

convex combination of opponent states. The color spectrum indicates their 

influence on the control vertex inside the network or external agents. (a) 

Network state at time t0, xu(t0)=0, u∈V/(αβ). (b) Network state at time t. (c) 

Network state at time t+1. 



 

9 

 

 

 

1 
function OutsideCompetition(Graph G(V,E), Node αV) 

 // W=w(u,v)nxn = {start, end, direction, weight}. 

2 begin 

3    Epsilon = 2 * 1e-7f; 

4    for each Node in V do  

5     begin 

6      X0[Node]  0;  

7     end for 

8     Xt[α]  1;      

9     Xt+1[α]  1;   

10    Support  new Dictionary<node, state>;  

11      new Node;  

12    Xt[]  −1;     

13    Xt+1[]  −1; 

14    NormalAgents  V\{α, }; 

15   for each γ in NormalAgents do  

16     begin 

17       e  new Edge(β,  

18      E= E  {e};       

19      maxIterations  n x m;   

20       1/Max(Deg(v), vV);  

21     t  0; 

22     do 

23      Converging  0; 

24      for each u in V do  

25       begin 

26        if (u == α or u == β)  

27        continue;  

28          s  0;  
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29          for each v in Neighbors of u do  

30           begin 

31             s  s + weight(u, v)*(Xt[v]- Xt[u]);                      

32           end for 

33         Xt+1[u]  Xt[u]+  * s;   

34         Converging  Converging + Abs(Xt+1[u]- Xt[u]); 

35        end for 

36  Temp  Xt; 

37  Xt   Xt+1; 

38  Xt+1  Temp; 

39           t  t +1; 

40     while (Converging > Epsilon and t < maxIterations) 

41     Support[]  𝑋̅[];   

42     E= E \ {e};    

43   end for  

44 
   return Support; // The network state at the time connected 

to β 

45 end function. 

46 function ToS(Graph G(V,E), Node αV)  

47   begin 

48      Support  new Dictionary<node,state>; 

49      Support  OutsideCompetition(G(V,E), α); 

50      TotalSupport  0; 

51      for each γ in V - {α} do 

52        begin 

53           TotalSupport   TotalSupport + Support[]; 

54        end for 

55 
   return TotalSupport; // The total influence of all vertices 

on α 
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56 end function 

The algorithm consists of two functions: OutsideCompetition and 

TOS. (a) The OutsideCompetition function (G(V,E), α ∈ V) calculates the 

influence of each vertex on vertex α at the time when the network is 

connected to an external agent β in the external competitive dynamics model. 

(b) The TOS function (G(V, E), α ∈ V) calculates the total influence state of 

vertices in the network on vertex α. 

2.4. Assessing the Complexity of the Algorithm Summary:  

The computational complexity of the external competitive dynamics 

algorithm is O(n3 * m2). 

2.5. Building a Prediction System for Cancer Treatment Genes 

Using the External Competitive Dynamics Model  

2.5.1. Problem of Predicting Cancer Treatment Genes 

Input: Given a biological network G(V,E), where V is the set of 

genes/proteins (vertices) V= {v1,v2,…,vn}, E is the set of gene interactions 

(edges) E={(vi,vj ) | vi,vj∈V,i,j=1,..,n}.  

Output: Ranking table of genes based on the total influence state of 

genes on each gene in the network. Genes with high rankings are searched 

for biological evidence as cancer treatment target genes. 

2.5.2. Experimental Data  

The thesis utilizes data from 17 cancer signaling networks from the 

KEGG database (www.genome.jp/kegg) for analysis. The preprocessed data 

can be downloaded from the following link: 

https://github.com/tinhpd/NetCMD.git 

2.5.3. Correlation between Measurements 

Experiments on 17 cancer signaling networks and 100 randomly 

generated directed networks created by the Barabasi network development 

model with ∣V∣=50 and 49≤∣E∣≤100 show that the total influence of each 

vertex correlates with closeness centrality and degree centrality, where high 

https://github.com/tinhpd/NetCMD.git
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rankings of these two measurements have been used to predict disease genes 

and cancer biomarker genes, often also cancer treatment target genes (Figure 

2.5). 

Figure 2.5. Correlation between Closeness Centrality and Total Support 

2.5.4. Comprehensive Model of the Cancer Gene Diagnostic 

System Based on Complex Networks 

Figure 2.3: Overall model for identifying cancer treatment target genes. 

The model is designed following a complex network approach.  

(a) preprocessing of input data, (b) computational model and 

algorithm, calculating vertex attributes of the network, (c) organization of 
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output data and database matching to predict potential genes for further 

experiments. 

2.5.5. Prediction Results of Cancer Treatment Target Genes 

In experiments conducted on 17 cancer signaling networks, the 

results showed that 42 out of 51, equivalent to 82.36%, of the top 3 genes 

with the highest total influence were cancer treatment target genes. The 

genes marked in bold have been approved for drug production, while those 

marked with underline are undergoing clinical trials. The remaining genes 

are considered potential target genes. 

Table 2.1. Performance of target gene identification for cancer treatment 

by dynamic competition outside mode 

Cancer signaling network 
Top 3 gens  

Cl C2 C3 

Acute myeloid leukemia GRB2 FLT3 PML 

Basal cell carcinoma SUFU SMO GLI3 

Bladder cancer RASSF1 FGFR3 HRAS 

Breast cancer LRP6 LRP5 WNT1 

Chronic myeloid leukemia CRK CRKL GAB2 

Colorectal cancer  EGFR GRB2 KRAS 

Endometrial cancer EGF EGFR AXIN1 

Gastric cancer LRP6 LRP5 WNT7A 

Glioma CALM1 CALML5 CALM2 

Hepatocellular carcinoma  LRP6 WNT3A WNT7A 

Melanoma FGF2 FGF1 HGF 

Nonsmall cell lung cancer ALK EML4 KRAS 

Pancreatic cancer KRAS AKT2 AKT1 

Prostate cancer IGF-1 INS PDGFB 

Renal cell carcinoma HGF MET EGLN2 

Small cell lung cancer ITGB1 COL4A1 LAMB3 

https://www.genome.jp/pathway/hsa05221
https://www.genome.jp/pathway/hsa05217
https://www.genome.jp/pathway/hsa05210
https://www.genome.jp/pathway/hsa05214
https://www.genome.jp/pathway/hsa05225
https://www.genome.jp/pathway/hsa05211
https://www.genome.jp/pathway/hsa05222
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Thyroid cancer  NTRK1 TPR TPM3 

Table 2.1 consists of target cancer treatment genes identified by 

ranking the overall impact status. In the table, C1, C2, and C3 represent the 

NCBI gene symbols of the top three genes with the highest overall impact 

status. The underlined genes (42 out of 51) were previously reported as drug-

target genes for cancer. Among them, 12 underlined genes in bold have been 

accepted for drug production, and 30 underlined genes without bold are 

genes in clinical trial stages. The remaining non-underlined genes include 09 

genes that are still under insufficient research but may serve as potential 

drug-target genes for cancer and are provided for reference purposes. 

2.5.6. Comparison of Prediction Results  

Both studies were conducted on the same dataset consisting of 17 

cancer signaling networks from KEGG. The results are presented in Table 

2.3.  

Table 2.2: Comparison of results between two different models on the same 

dataset. 

3 

The 

number of 

network 

predicted  

The prediction 

accurary in the 

top 3 ranks  

Execution 

time toal 

(minutes) 

Hierarchical 

Closeness Model [13, 

99].  

16/17 

37/48 gen, 

equivalent 

70,59%,  

124 

Outside competitive 

dynamic model 

network  

17/17 

42/51 gen, 

equivalent 

82,36% 

126 

https://www.genome.jp/pathway/hsa05216
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Test system: ASUS X510U, Intel i5-8250U CPU, clock speed 1.6GHz 

(8CPUs), 8GB DDR IV DDRAM memory, NVIDIA GeForce 940MX 2GB 

graphics card, Intel M2 120GB SSD. 

Chapter 3. INDIRECT INTERACTIONS IN THE IMPROVED 

OUTSIDE COMPETITION DYNAMIC MODEL AND ITS 

APPLICATION IN PREDICTING CANCER TREATMENT 

TARGET GENES 

3.1. Proposed Improved Outside Competition Dynamic Model 

In the thesis, F is referred to as the influence matrix 

(interaction/impact between elements in the network), where each element 

of matrix F describes the influence of one agent (vertex) on another. It should 

be noted that if there is a direct link from agent u to agent v, then it is 

understood that agent v directly interacts/influences agent u. In other cases, 

if there is no direct link from u to v, it means there is an interaction from 

agent u to agent 𝛾 and an interaction from agent 𝛾 to v. In this case, agent v 

indirectly affects agent u through agent 𝛾. Such indirect effects are usually 

weaker than direct effects. 

Let's denote D = (duv)nxn as the distance matrix representing the 

network. 

The thesis defines the matrix F = (fuv)nxn as the influence matrix of 

the network, representing the influence of agent v on agent u, for all u, v ∈ 

V, and it is calculated by the formula (3.5). 

( )
2

( )
( , )

( , )

x v
f u v

d u v
=  (3.5) 

Where xv is the state of vertex v at time t, as t→∞; duv is the shortest 

path distance from u to v. 

Let f(α,v) denote the element of the influence matrix F in the α-th 

row and v-th column. Then, v will exert an influence on α by a certain 
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amount, and the expression for calculating the total influence of agents v on 

each control agent α is given by formula (3.6). 

( )

 
1

\ ,

( ( , ) ( , ))
n

v
v V

ToSF sign f v f v

 

  
=


= −  (3.6) 

Where sign() denotes the sign (+ or –) indicating the 

influence/impact on the control vertex α or the external competing agent β. 

If f(α,v) > f(β,v), then vertex v will exert more influence on the control vertex 

α; conversely, if f(α,v) < f(β,v), it means vertex v will have a greater impact 

on the external agent β. If f(α,v) = f(β,v), then vertex v is neutral. ToSF(α) 

returns the degree of influence/impact of the normal vertices v in the network 

on the control vertex α in the improved outside competition dynamic model. 

3.2. Developing an algorithm for computing indirect dynamic 

competitive interaction 

3.2.1. Algorithm for calculating distance matrix 

In this research, the thesis utilizes the Floyd-Warshall algorithm 

[100] to compute the distance matrix between vertices in a weighted graph 

network. The algorithm consists of three nested loops executed n times, 

resulting in a time complexity of O(n3). 

3.2.2. Algorithm for computing the influence matrix 

1 function Matrix F[,] InfluenceMatrix(Graph G(V,E), Node αV)  

 //input: Adjacency weight matrix W=w(u,v)nxn; α 

2     D  DistanceMatrix(G(V,E))  

3    X  OutsideCompetition(G(V,E),α)  

4    for each vertex u in V do  

5         for each vertex v in V do  

6             if  D[u,v]==0 then  

7                 F[u,v]  NA  

8             else  
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9                F[u,v]  X(v) / (D[u,v])^2  

10            end if 

11          end for 

12       end for 

13     return F // Influence matrix F 

14 end function 

The time complexity of the InfluenceMatrix function is O(n3 + m2), 

where n is the number of vertices and m is the number of edges in the graph. 

3.2.3. Algorithm for computing the total influence on each 

network vertex 

1 
function ToSF(Graph G(V,E), Node α, out result) 

// input: Adjacency weight matrix W, α. 

2     F InfluenceMatrix(G(V,E),α)  

3     TotalSupportF  0  

4     for each v in V - {α, β} do 

5         TotalSupportF  TotalSupportF + (F[α, v] – F[, v]) 

6     end for 

7 
      result  TotalSupportF  // The total influence of vertices on 

vertex α 

8 end procedure 

The time complexity of the ToSF function is O(n3 + m2). 

3.3. High-performance computation for the dynamic external 

competitive model 

3.3.1. Developing an algorithm for high-performance 

computation for the model 

1 
function Matrix DnF[,] ParFindDriverNode(Graph G(V,E)) 

// input: weight matrix W=(wuv)nxn, {start, end, direction, weight}; 

2 DnF = new Matrix[n, n]  

4    parallel for each α in V do                
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5          result  0  

6          ToSF(G(V,E),α, result)   

7          Wait for all works done  

8 DnF[α, ]  result    

9      end parallel   

10 
 return DnF // "The matrix of total influence of each vertex in the 

network on every other vertex in the network." 

11 end function 

The time complexity depends on the time complexity of the ToSF 

function, which includes computing the influence matrix with a complexity 

of O(n3 + m2). 

3.3.2. Designing a high-performance computing software tool  

The software Drivergen.net is developed based on the dynamic 

external competitive model with the capability of high-performance 

computing on multi-core CPUs. It is designed to function as a Cytoscape 

plugin, featuring a graphical user interface (GUI). Details about the software 

along with experimental data can be downloaded from 

https://github.com/tinhpd/Drivergen.git 

3.3.3. Performance evaluation and computation speed of the 

algorithm  

Table 3.3 presents the test results of the Drivergen.net software with 

different computation modes on 04 biological networks. The results indicate 

a speedup improvement ranging from 51 to 145 times depending on the 

specific network type. 

Table 3.3. Computational Capability on Large-Scale Networks 

Name Network 

Attribute 
Time 

(minutes) 
Speedup 

Type Node Edge 
Seque

ntially 

Par

alle 

https://github.com/tinhpd/Drivergen.git
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virus 

cytomegalo 

network 
Indirect 

network 

 

213 1214 5,7 
0,1

1 
51,8 

E. coli protein 

interaction 

network 

850 1193 341 5 68,2 

Gen Gene 

gegulatory 

network 

Direct 

network 
943 3917 207 7 29,5 

Cell signaling 

network 

Mix 

network 
1549 5074 5092 35 145,5 

Test system: Dell OptiPlex 5050, Intel Core i7-7700 octa-core CPU with 

a clock speed of 3.6GHz, 32GB DDR4 RAM 

3.4. Experiment  

3.4.1. Experimental Data  

The thesis conducts experiments on three types of large-scale 

biological networks, downloaded from reputable publications. The 

preprocessed data of these three networks are stored and can be downloaded 

from the following link: https://github.com/tinhpd/Drivergen.git 

3.4.2. Architecture of the Prediction Model 

Figure 3.1. Prediction Model for Target Cancer Therapy Genes on 

Large-Scale Network 

https://github.com/tinhpd/Drivergen.git
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 (a) Input Biological Network Data, (b) Design Architecture for 

Computational Model, (c) Output Data Organization and Policy Evidence 

Search. The experimental data, software, and usage instructions for this study 

are stored and can be downloaded at https://github.com/tinhpd/Drivergene. 

3.4.3. Prediction Results of Cancer Therapy Target Genes  

The prediction results on three large-scale biological networks show 

86.67%, i.e., 26 out of the top 30 genes with the highest total influence states 

are target genes of drugs in cancer therapy. 

Table 3.4. Identification of Cancer Therapy Target Genes on 3 Large 

Networks. 

Biology 

network 

Attribute 

Gen 

name 

Evidence from 

the 

PubMed.gov 

database 

Network 

type 

 

Number 

node  

Number 

edge 

Gene 

regulatory 

network 

Direct 

network 
943 3917 

NFKB1 30205516 

RELA  

JUN 32917236 

FOS 34610301 

MYC 22464321 

STAT1 33608980 

CCND1 29969496 

CREB1 30127997 

STAT3 24743777 

HIF1A 28358664 

Cell 

signaling 

network  

Mix 

network 
1549 5074 

SRC 11114744 

AR 24425228 

AKT 27232857 

SHC  

https://github.com/tinhpd/Drivergene
https://pubmed.ncbi.nlm.nih.gov/22464321
https://pubmed.ncbi.nlm.nih.gov/24743777
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SMAD3 20010874 

RAC1 32460002 

GAB2 22858987 

PI3K 30782187 

PKA 24212646 

SMAD4 29602802 

Protein 

interation 

network  

Indirect 

netwok 
7279 21911 

TP53 23115424 

GRB2 29550383 

PXN 34135128 

TRAF2 30294322 

DIPA  

SMAD2 20010874 

VCL  

EGFR 28368335 

SRC 11114744 

SMAD3 20010874 

Additionally, the top 10 genes in Table 3.4 are found to belong to the 

K-core and R-core [49] cores of the network. 

Table 3.5. Identification of K-core and R-core Cores 

Network type 
Core type 

K-core R-core 

Cell signaling network 80%  

Gene regulatory network  70% 

Protein interation network 60%  

This result is consistent with previous studies' findings that 

important cancer hallmark genes tend to reside in the innermost core of the 

biological network [168-170]. 

3.4.4. Comparison of Prediction Results with Other Studies 
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- A comparison is made between the two proposed models in Chapter 

2 and Chapter 3 of the thesis using the same dataset. 

Table 3.6. Prediction Results on 2 Models with Incremental Indirect 

Interaction 

Dynamic model of 

external competition 
Data 

Prediction 

accuracy in 

the top 10 

ranks 

Only considering direct 

interactions (Chapter 2) 

01 cell signaling network 

01 protein interaction 

network 

01 gene regulatory 

network 

82.36 % 

Including additional 

indirect interactions 

(Chapter 3) 

86,67 % 

- A comparison is conducted between independent studies and the 

research results of the thesis. The thesis uses the prediction results, including 

the list of genes supported in Table 2.1 and Table 3.4. The results show that 

the number of predicted genes in the thesis is the largest, with 55 genes, and 

is consistent with 3 out of 4 methods, along with the largest intersection of 5 

genes. Meanwhile, the other methods have the largest number of predicted 

genes at 30 genes and the largest intersection of 4 genes. This implies that 

the prediction results of the thesis outperform the methods involved in the 

comparison. 

Table 3.7. Comparison of Prediction Results with Previous Studies 

Representative 

author of the 

research 

The number 

of consensus 

methods 

The number of 

non-redundant 

predicted genes 

The 

number of 

overlapping 

genes 

Thesis 3/4 55 5 

Emig [126] 2/4 17 4 
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Wang [125] 1/4 25 1 

Li [127] 2/4 16 2 

Peng [128] 2/4 30 2 

 

CONCLUSION AND FUTURE DEVELOPMENT 

Diagnosis and treatment of cancer have been facing numerous 

challenges, and in reality, have not achieved much success in practice. One 

approach in cancer treatment is to predict the mutation-prone genes causing 

the disease, aiming towards developing effective therapeutic drugs. Research 

focuses on proposing novel competitive dynamic modeling approaches on 

complex networks that can aid in accurately diagnosing disease-causing 

genes. This research is of current, scientific, and practical significance. 

The thesis presented fundamental knowledge about complex 

networks, surveyed methods for identifying disease-causing genes, 

evaluated the effectiveness of these methods, and proposed a method for 

identifying disease-causing genes using complex network techniques. The 

thesis conducted experiments on datasets to evaluate effectiveness. 

The two main achievements of the thesis are: 

Proposing a novel competitive dynamic modeling approach on 

complex networks, termed as the outside competitive dynamic model. The 

model describes the competition among vertices (agents) within the network 

(controller agents) with the environmental agents outside the network 

(drugs). The model can identify prominent controller vertices in any complex 

network. Applying the proposed model on biological networks can predict 

cancer treatment genes. 

Proposing an improved outside competitive dynamic model capable 

of handling indirect interactions among vertices in complex network models, 

enhancing the ability to predict target cancer treatment genes, especially in 

large-scale biological networks. 
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Furthermore, complex networks are a multidisciplinary research 

field that converges various types of networks, such as social networks and 

biological networks. Hence, the research results of the thesis can be applied 

to various types of networks with specific problems. 

Future research directions: The outside competitive dynamic model 

and its improved version proposed in the thesis yielded promising 

experimental results in predicting target cancer treatment genes on biological 

networks. However, the proposed models currently consider the case where 

at time t or t+1, there is only one link (interaction) from outside agents to the 

system. In the future, further research may continue to develop the outside 

competitive dynamic model with the case where at the same time there are 

more than one interactions to the system (multiple agents with simultaneous 

interactions or multiple external agents with interactions to the system). This 

is a common scenario in real-world problems, for example, in disease 

treatment, combination therapies may be used simultaneously 

(chemotherapy, targeted therapy), or a targeted drug may have multiple 

active ingredients synthesized or used simultaneously in disease treatment. 
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