MINISTRY OF EDUCATION AND TRAINING

VIETNAM ACADAMY OF SCIENCE AND TECHNOLOGY

GRADUATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

PHAM VAN CONG

PHYTOCHEMICAL INVESTIGATION AND THE INHIBITORY EFFECTS ON α-GLUCOSIDASE, XANTHINE OXIDASE ENZYMES OF VERNONIA AMYGDALINA AND VERNONIA GRATIOSA

SUMMARY DOCTORAL DISSERTATION

The project was completed at the Academy of Science and Technology - Vietnam Academy of Science and Technology

Supervior 1: Associate Professor. Dr. Hoang Le Tuan Anh Supervior 2: PhD. Bui Quang Minh

Reviewer 1: Reviewer 2: Reviewer 3:

The thesis will be defended at the academy-level doctoral dissertation committee at the Vietnam Academy of Science and Technology.

On: hour day month year

Thesis finding :

- Library of the Academy of Science and Technology, Vietnam Academy of Science and Technology

- National Library

I. INTRODUCTION

Nowadays, the incidence of metabolic diseases tends to increase rapidly, typically diabetes and gout. The prevalence and severity of these diseases have increased and caused the burden of health-care costs. Their treatment is just symptomatic treatment by drugs whose prolonged use causes a variety of side effects. Medicinal plants come into the spotlight as alternative therapeutics in immune disorders because of their proven safety with potent immunomodulatory effects.

Meanwhile, Vietnam is a tropical country and rich in natural resources with more than 12000 plant species, and more than 4000 of them are used as folk medicine, but there are still many species that have not been studied both biological effects and chemical composition. Therefore, continuing to search for effective, safe, and low-cost herbal medicines is still necessary. Vernonia is a large genus of the Asteraceae family with about 1000 species, distributed mainly in countries in South America, North America, Africa, and Southeast Asia. According to the Vietnamese Dictionary of Medicinal Plants (Vo Van Chi, 2012), in Vietnam, 16 species of the genus Vernonia are used as medicine to treat diseases such as dysentery, fever, malaria, hepatitis, stomach pain, eczema, and snakebites. bites, burns,...Almost all studies on the genus Vernonia mainly focus on botany, chemical composition, and biological activity. The results show that they contain many classes of substances with various biological activities such as steroids, flavonoids, terpenoids, and polyphenols, ... However, research on the genus Vernonia in Vietnam is still quite limited. Therefore, I have conducted research: "Phytochemical investigation and the inhibitory effects on α -glucosidase, xanthine oxidase enzymes of Vernonia amygdalina and Vernonia gratiosa".

1. Subjects and contents of thesis

Subjects of dissertation study: 02 species of *Vernonia* genus: *Vernonia amygdalina* and *Vernonia gratiosa* collected in Vietnam.

The main contents of the thesis:

1.1. Isolate compounds from two species V. amygdalina and V. gratiosa

1.2. Elucidate the chemical structure of isolated compounds from *V. amygdalina* and *V. gratiosa*

1.3. Evaluate the inhibitory effects of isolated compounds from *V. amygdalina* and *V. gratiosa* on α -glucosidase

1.4. Evaluate the inhibitory effects of isolated compounds from *V. amygdalina* and *V. gratiosa* on xanthine oxidase (XO).

2. New contribution of the dissertation

2.1. This is the first time to isolate and identify 07 new compounds from *V. amygdalina* (**LD1-LD7**) named as vernonioside K (**LD1**), vernonioside N (**LD2**), vernonioside M

(LD3), vernonioside O (LD4), vernonioside L (LD5), vernonioside P (LD6), vernonioside Q (LD7) and 07 new compounds from *V. gratiosa* (VG1 – VG7) as: vernogratioside C (VG1), vernogratioside D (VG2), vernogratioside E (VG3), vernogratioside R (VG4), vernogratioside S (VG5), vernoratioside A (VG6), vernoratioside B (VG7).

2.2. The inhibition of the α -glucosidase enzyme activity by isolated compounds from *V*. *amygdalina* và *V*. *gratiosa* was evaluated for the first time. The results indicated that LD1, LD5, LD14, LD12, and LD15 from *V*. *amygdalina* showed strong inhibitory effects with the IC₅₀ values from **7.42** ± **0.95** µM to **78.56** ± **7.28** µM (compared with acarbose 127.53 ± 1.73 µM). In addition, VG5 from *V*. *gratiosa* also exhibited significant inhibitory activity with an IC₅₀ value of **47.08** ± **3.98** µM whereas compounds VG-13 and VG-15 weakly inhibited α -glucosidase enzyme (acarbose 146.64 ± 8.85 µM).

2.3. This is the first time to examine the inhibitory effects on XO of isolated compounds from *V. amygdalina* và *V. gratiosa*. As a result, **VG5**, **VG13** và **VG15** exhibited potential inhibition of XO enzyme with IC₅₀ values from (6.26 ± 0.60 to 47.65 ± 3.44 μ M) (Positive control, allopurinol: (1.12 ± 0.15 μ M).

3. The layout of the thesis

The dissertation includes 148 pages with 39 tables and 94 figures. The layout of the thesis: Introduction (2 pages), Chapter 1: Overview (35 pages), Chapter 2: Objects and Methods (16 pages), Chapter 3: Results and discussion (56 pages), Conclusion (1 page), Recommendation (1 page), Publications (1 page), and references (6 pages), and Supporting Information.

II. CONTENTS OF THESIS

PREAMBLE: Indicate scientific sense, practicality, object, objectives and tasks of the dissertation research.

CHAPTER 1: OVERVIEW

- 1.1. General introduction about the Asteraceae family
- 1.2. Introduction of Vernonia genus
- 1.3. Overview of phytochemical studies of the Vernonia genus
- 1.4. Overview of biological studies of the Vernonia genus

CHAPTER 2: OBJECTS AND METHODS

2.1. Plant materials

Figure 2.1. V. amygdalina (Hanoi)

2.2. Methods

2.2.1. Extraction method

2.2.2. Isolation method

Combine chromatographic methods include thin-layer chromatography (TLC), and column chromatography (CC: silica gel, RP18 gel, LH-20 gel). Isolation schemes of

Figure 2.2. V. gratiosa (Quang Tri)

compounds from *V. amygdalina* and *V. gratiosa* were presented in Figures 2.3 and 2.4. Figure 2.3. Isolation scheme of compounds from *V. amygdalina* in Vietnam

3

Figure 2.4. Isolation scheme of compounds from *V. gratiosa* in Vietnam 2.2.3. Structural elucidation of isolated compounds method

The general method to determine the chemical structure of the compound is a combination of physical parameters and modern spectroscopic methods including optical rotation ($[\alpha]_D$), mass spectrometry and high-resolution mass spectrometry, magnetic resonance spectrum (1D, 2D-NMR), CD spectrum.

2.2.4. Evaluate inhibitory effects of compounds on α -glucosidase and xanthine oxidase

2.4. Physical and spectroscopic data

2.4.1. Physical and spectroscopic data from compounds of V. amygdalina

2.4.1.1. Compound LD1: vernonioside K (new compound)

White powder; $[\alpha]_D^{25}$: + 75° (c 0.2, MeOH); HR-ESI-MS *m/z*: 583.3248 [M+Na]⁺. ¹H and ¹³C NMR data: see Table 3.1

2.4.1.2. Compound LD2: Vernonioside N (new compound)

White powder; $[\alpha]_D^{25}$: +55° (c 0.2, MeOH); HR-ESI-MS *m/z*: 697.3385 [M+Na]⁺. ¹H NMR (600 MHz, pyridine-*d*₅): δ_H 1.16 (1H, m, H-1), 1.78 (1H, m, H-1), 2.10 (1H, m, H-2), 1.67 (1H, m, H-2), 3.89 (1H, m, H-3), 1.48 (1H, q, *J* = 10.0, 20.0 Hz, H-4), 1.98 (1H, m, H-4), 1.25 (1H, m, H-5), 1.76 (1H, m, H-6), 1.80 (1H, m, H-6), 5.35 (1H, brs, H-7), 5.39 (1H, d, *J* = 5.0 Hz, H-11), 2.18 (1H, m, H-12), 3.00 (1H, dd, *J* = 5.5, 15.0 Hz, H-12), 2.19 (1H, m, H-14), 1.49 (1H, m, H-15), 1.76 (1H, m, H-15), 1.70 (1H, m, H-16), 2.14 (1H, m, H-16), 2.26 (1H, m, H-17), 0.75 (3H, s, H-18), 0.80 (3H, s, H-19), 2.92 (1H, m, H-20), 4.56 (1H, t, *J* = 5.5 Hz, H-22), 4.81 (1H, d, *J* = 4.5 Hz, H-23), 2.24 (1H, m, H-25), 1.12 (3H, d, *J* = 6.0 Hz, H-26), 1.11 (3H, d, *J* = 5.5 Hz, H-27), 1.33 (3H, s, H-29), 3.23 (3H, s, OCH₃), 4.94 (1H, d, J = 7.8 Hz, H-1'), 3.99 (1H, t, J = 7.5 Hz, H-2'), 4.21 (1H, t, J = 7.5 Hz, H-3'), 4.16 (1H, t, J = 7.5 Hz, H-4'), 3.92 (1H, m, H-5'), 4.30 (1H, dd, J = 5.0, 10.0 Hz, H-6'), 4.49 (1H, dd, J = 2.0, 10.0 Hz, H-6'); ¹³C NMR (150 MHz, pyridine- d_5): δ_C 34.8 (C-1), 29.9 (C-2), 77.1 (C-3), 34.3 (C-4), 39.0 (C-5), 30.1 (C-6), 120.6 (C-7), 136.3 (C-8), 143.7 (C-9), 35.9 (C-10), 119.3 (C-11), 41.2 (C-12), 42.5 (C-13), 51.6 (C-14), 23.4 (C-15), 28.7 (C-16), 46.5 (C-17), 12.2 (C-18), 19.3 (C-19), 45.6 (C-20), 176.7 (C-21), 76.3 (C-22), 86.1 (C-23), 84.3 (C-24), 32.3 (C-25), 17.0 (C-26), 18.1 (C-27), 111.2 (C-28), 16.7 (C-29), 48.0 (OCH₃), 102.0 (C-1'), 74.9 (C-2'), 78.2 (C-3'), 71.4 (C-4'), 77.5 (C-5'), 62.5 (C-6').

2.4.1.3. Compound LD3: Vernonioside M (new compound)

White powder; $[\alpha]_{D}^{25}$: +45° (c 0.2, MeOH); HR-ESI-MS *m/z*: 697.3385 [M+Na]⁺. ¹H NMR (600 MHz, pyridine- d_5): $\delta_{\rm H}$ 1.23 (1H, m, H-1), 1.85 (1H, m, H-1), 1.80 (1H, m, H-2), 3.95 (1H, m, H-3), 1.40 (1H, q, J = 10.0, 20.0 Hz, H-4), 2.00 (1H, m, H-4), 1.25 (1H, m, H-5), 1.14 (1H, m, H-6), 1.80 (1H, m, H-6), 5.37 (1H, brs, H-7), 5.48 (1H, d, J = 5.0 Hz, H-11), 2.18 (1H, m, H-12), 3.22 (1H, dd, J = 5.5, 15.0 Hz, H-12), 2.28 (1H, m, H-14), 1.47 (1H, dd, J = 5.0, 10.0, H-15), 1.81 (1H, m, H-15), 1.70 (1H, m, H-16), 2.14 (1H, m, H-16), 2.16 (1H, m, H-17), 0.71 (3H, s, H-18), 0.82 (3H, s, H-19), 2.85 (1H, m, H-20), 4.73 (1H, t, J = 5.5 Hz, H-22), 4.80 (1H, d, J = 4.5 Hz, H-23), 2.02 (1H, m, H-25), 0.92 (3H, d, J = 6.0 Hz, H-26), 1.17 (3H, d, J = 5.5 Hz, H-27), 1.33 (3H, d, J = 6.0 Hz, H-26), 1.17 (3H, d,s, H-29), 3.23 (3H, s, OCH₃), 4.94 (1H, d, J = 7.8 Hz, H-1'), 3.99 (1H, t, J = 7.5 Hz, H-2'), 4.21 (1H, t, J = 7.5 Hz, H-3'), 4.16 (1H, t, J = 7.5 Hz, H-4'), 3.95 (1H, m, H-5'), 4.30 (1H, dd, J = 5.0, 10.0 Hz, H-6'), 4.49 (1H, dd, J = 2.0, 10.0 Hz, H-6'); ¹³C NMR (150 MHz, pyridine-d₅): δ_C 34.9 (C-1), 29.9 (C-2), 77.1 (C-3), 34.3 (C-4), 39.4 (C-5), 30.1 (C-6), 120.6 (C-7), 136.3 (C-8), 143.8 (C-9), 35.9 (C-10), 119.4 (C-11), 41.7 (C-12), 42.5 (C-13), 51.6 (C-14), 23.3 (C-15), 28.5 (C-16), 45.9 (C-17), 12.1 (C-18), 19.3 (C-19), 48.4 (C-20), 176.0 (C-21), 79.7 (C-22), 79.5 (C-23), 83.5 (C-24), 31.3 (C-25), 16.7 (C-26), 17.7 (C-27), 107.6 (C-28), 15.1 (C-29), 48.0 (OCH₃), 102.1 (C-1'), 74.9 (C-2'), 78.1 (C-3'), 71.4 (C-4'), 78.1 (C-5'), 62.5 (C-6').

2.4.1.4. Compound LD4: Vernonioside O (new compound)

White powder; $[\alpha]_D^{25}$: +48.0° (c 0.2, MeOH); Phổ HR-ESI-MS *m/z*: 667.3308 [M+Cl]⁻. ¹H NMR (600 MHz, pyridine-*d*₅): δ_H 1.23 (1H, m, H-1), 1.80 (1H, m, H-1), 1.67 (1H, m, H-2), 1.22 (1H, m, H-2), 3.93 (1H, m, H-3), 1.99 (1H, q, *J* = 10.0, 20.0 Hz, H-4 α), 2.00 (1H, m, H-4 β), 1.22 (1H, m, H-5), 1.23 (1H, m, H-6), 1.78 (1H, m, H-6), 5.43 (1H, brs, H-7), 5.48 (1H, d, *J* = 5.0 Hz, H-11), 2.13 (1H, d, *J* = 14.5 Hz, H-12), 3.09 (1H, dd, *J* = 5.5, 14.5 Hz, H-12), 2.22 (1H, m, H-14), 1.44 (1H, m, H-15), 1.74 (1H, m, H-15), 1.57 (1H, dd, *J* = 7.5, 20.0 Hz, H-16), 2.37 (1H, m, H-16), 2.23 (1H, m, H-17), 0.76 (3H, s, H-18), 0.80 (3H, s, H-19), 2.87 (1H, m, H-20), 4.80 (1H, t, *J* = 4.0 Hz, H-22), 4.93 (1H, d, *J* = 4.0 Hz, H-23), 2.05 (1H, m, H-25), 1.07 (3H, d, *J* = 6.0 Hz, H-26), 1.18 (3H, d, *J* = 5.5 Hz, H-27), 4.27 (1H, m, H-28), 1.28 (3H, d, *J* = 5.5 Hz H-29),

4.96 (1H, d, J = 6.5 Hz, H-1'), 3.99 (1H, t, J = 7.5 Hz, H-2'), 4.21 (1H, t, J = 7.5 Hz, H-3'), 4.16 (1H, t, J = 7.5 Hz, H-4'), 3.11 (1H, m, H-5'), 4.50 (1H, dd, J = 12.5 Hz, H-6'), 4.49 (1H, dd, J = 5.0, 12.5 Hz, H-6'); ¹³C NMR (150 MHz, pyridine- d_5): δ_C 34.8 (C-1), 29.9 (C-2), 78.1 (C-3), 35.3 (C-4), 39.0 (C-5), 30.1 (C-6), 120.6 (C-7), 136.8 (C-8), 143.8 (C-9), 35.9 (C-10), 119.3 (C-11), 41.4 (C-12), 42.5 (C-13), 51.6 (C-14), 23.3 (C-15), 28.7 (C-16), 46.8 (C-17), 14.4 (C-18), 19.9 (C-19), 46.6 (C-20), 177.1 (C-21), 79.1 (C-22), 8.29 (C-23), 82.0 (C-24), 30.7 (C-25), 17.1 (C-26), 17.8 (C-27), 81.0 (C-28), 14.0 (C-29), 102.0 (C-1'), 74.9 (C-2'), 78.1 (C-3'), 71.4 (C-4'), 77.1 (C-5'), 62.5 (C-6'). 2.4.1.5. Compound LD5: vernonioside L (new compound)

White powder; $[\alpha]_D^{25}$: +45.7° (c 0.2, MeOH); HR-ESI-MS *m*/*z*: 669.3402 [M+Cl]⁻. ¹H NMR (600 MHz, pyridine- d_5): $\delta_{\rm H}$ 1.15 (1H, m, H-1), 1.77 (1H, m, H-1), 1.84 (1H, m, H-2), 2.15 (1H, m, H-2), 3.90 (1H, m, H-3), 1.17 (1H, q, J = 10.0, 20.0 Hz, H-4), 1.77 (1H, m, H-4), 1.24 (1H, m, H-5), 1.65 (1H, m, H-6), 2.08 (1H, m, H-6), 5.33 (1H, s, H-7), 5.54 (1H, s, H-11), 2.47 (1H, m, H-12), 2.20 (1H, dd, J = 6.6, 17.4 Hz, H-12), 2.23 (1H, m, H-14), 1.52 (1H, m, H-15), 1.82 (1H, m, H-15), 1.47 (1H, m, H-16), 2.33 (1H, m, H-16), 1.99 (1H, m, H-17), 0.75 (3H, s, H-18), 0.80 (3H, s, H-19), 1.97 (1H, m, H-20), 5.80 (1H, s, H-21), 4.55 (1H, m, H-22), 4.59 (1H, m, H-23), 4.53 (1H, m, H-24), 1.79 (1H, m, H-25), 1.05 (3H, d, J = 5.0 Hz, H-26), 1.15 (3H, d, J = 5.0 Hz, H-27), 4.53 (1H, m, H-28), 1.17 (3H, d, J = 6.5 Hz, H-29), 4.94 (1H, d, J = 6.5 Hz, H-1'), 3.96 (1H, m, H-2'), 4.22 (1H, m, H-3'), 4.18 (1H, m, H-4'), 4.22 (1H, m, H-5'), 4.31 (1H, m, H-6'), 4.57 (1H, m, H-6'); ¹³C NMR (150 MHz, pyridine- d_5): δ_C 34.9 (C-1), 29.9 (C-2), 77.1 (C-3), 34.9 (C-4), 39.0 (C-5), 30.0 (C-6), 120.7 (C-7), 136.4 (C-8), 143.9 (C-9), 35.9 (C-10), 118.9 (C-11), 41.5 (C-12), 42.4 (C-13), 51.3 (C-14), 23.6 (C-15), 27.8 (C-16), 44.9 (C-17), 12.7 (C-18), 19.3 (C-19), 50.7 (C-20), 98.9 (C-21), 87.4 (C-22), 82.5 (C-23), 81.9 (C-24), 31.5 (C-25), 17.4 (C-26), 17.6 (C-27), 84.5 (C-28), 14.5 (C-29), 48.0 (OCH₃), 102.0 (C-1'), 74.9 (C-2'), 78.1 (C-3'), 71.4 (C-4'), 78.1 (C-5'), 62.5 (C-6'). 2.4.1.6. Compound **LD6**: vernonioside P (new compound)

Yellow oil; $[\alpha]_D^{25}$: -31.6 (c 0.2, CHCl₃); HR-ESI-MS *m/z*: 551.3118 [M + Cl]⁻. ¹H NMR (600 MHz, pyridine-*d*₅): $\delta_{\rm H}$ 1.33 (1H, m, H-1), 2.00 (1H, m, H-1), 1.28 (1H, m, H-2), 1.71 (1H, m, H-2), 3.35 (1H, m, H-3), 1.44 (1H, m, H-4), 1.86 (1H, brd, *J* = 1.5, 10.5 Hz, H-4), 1.41 (1H, m, H-5), 1.30 (1H, m, H-6), 1.92 (1H, m, H-6), 5.40 (1H, brs, H-7), 5.53 (1H, d, *J* = 5.0 Hz, H-11), 2.24 (1H, m, H-12), 2.34 (1H, dd, *J* = 5.5, 16.8 Hz, H-12), 2.42 (1H, m, H-14), 1.67 (1H, d, *J* = 5.5 Hz, H-15), 1.95 (1H, m, H-15), 5.18 (1H, t, *J* = 5.5 Hz, H-16), 2.26 (1H, m, H-17), 0.59 (3H, s, H-18), 0.93 (3H, s, H-19), 1.72 (1H, m, H-20), 1.05 (1H, d, *J* = 5.5 Hz, H-21), 0.94 (1H, m, H-22), 4.09 (1H, dd, *J* = 4.0, 7.0 Hz, H-23), 4.06 (1H, dd, *J* = 4.0, 6.5 Hz, H-24), 1.35 (3H, s, H-26), 1.37

(3H, s, H-27), 3.02 (1H, q, J = 5.0, 9.5 Hz, H-28), 1.56 (3H, d, J = 5.0 Hz, , H-29), 2.05 (3H, s, OCOCH₃), ¹³C NMR (150 MHz, pyridine- d_5): $\delta_C 35.9$ (C-1), 30.9 (C-2), 71.4 (C-3), 34.7 (C-4), 40.6 (C-5), 31.0 (C-6), 122.1 (C-7), 136.3 (C-8), 145.3 (C-9), 37.0 (C-10), 119.2 (C-11), 43.7 (C-12), 43.8 (C-13), 50.1 (C-14), 38.4 (C-15), 80.9 (C-16), 64.0 (C-17), 13.0 (C-18), 19.9 (C-19), 33.0 (C-20), 20.2 (C-21), 39.9 (C-22), 71.4 (C-23), 70.4 (C-24), 72.0 (C-25), 28.4 (C-26), 26.9 (C-27), 57.0 (C-28), 14.3 (C-29), 21.5 (OCOCH₃), 172.8 (OCOCH₃).

2.4.1.7. Compound LD7: Vernonioside Q (new compound)

Amorphous white powder; $[\alpha]_D^{25}$: -37.1 (c 0.2, CHCl₃); HR-ESI-MS: *m/z* 713.3690 $[M+C1]^{-}$. ¹H NMR (600 MHz, pyridine- d_5): δ_{H} 1.32 (1H, m, H-1), 1.98 (1H, m, H-1), 1.30 (1H, m, H-2), 1.96 (1H, m, H-2), 3.71 (1H, m, H-3), 1.30 (1H, m, H-4), 1.96 (1H, m, H-4), 1.40 (1H, m, H-5), 1.30 (1H, m, H-6), 1.96(1H, m, H-6), 5.38 (1H, brs, H-7), 5.50 (1H, d, J = 5.5 Hz, H-11), 2.24 (1H, d, J = 16.8 Hz, H-12), 2.34 (1H, dd, J = 5.5, 16.8 Hz, H-12), 2.39 (1H, m, H-14), 0.89 (1H, m, H-15), 1.51 (1H, m, H-15), 4.06 (1H, dd, J = 4.0, 7.0 Hz, H-16), 1.47 (1H, dd, J = 5.0, 9.0 Hz, H-17), 0.50 (3H, s, H-18), 0.90 $(3H, s, H-19), 1.67 (1H, d, J = 6.0 Hz, H-20), 1.53 (1H, d, J = 5.0 Hz, H-21), 0.91 (1H, d, J = 6.0 Hz, H-20), 1.53 (1H, d, J = 6.0 Hz, H-21), 0.91 (1H, d, J = 6.0 Hz, H-20), 1.53 (1H, d, J = 6.0 Hz, H-21), 0.91 (1H, d, J = 6.0 Hz, H-20), 1.53 (1H, d, J = 6.0 Hz, H-21), 0.91 (1H, d, J = 6.0 Hz, H-20), 1.53 (1H, d, J = 6.0 Hz, H_20), 1.53 (1H, d, J = 6.0 Hz, H_20), 1.53 (1H, d, J = 6.0 Hz, H_20), 1.53 (1H, d,$ m, H-22), 5.16 (1H, d, J = 6.0 Hz, H-23), 1.34 (3H, s, H-26), 1.36 (3H, s, H-27), 3.00 (1H, q, J = 5.0, 9.5 Hz, H-28), 1.03 (3H, d, J = 5.5 Hz, H-29), 2.03 (3H, s, OCOCH₃), 4.39 (1H, d, J = 6.5 Hz, H-1'), 3.13 (1H, d, J = 1.5, 8.0 Hz, H-2'), 3.26 (1H, m, H-3'), 3.27 (1H, m, H-4'), 3.34 (1H, m, H-5'), 3.64 (1H, d, *J* = 4.5, 10.0 Hz, H-6'), 3.85 (1H, d, J = 1.5, 10.0 Hz, H-6'); ¹³C NMR (150 MHz, pyridine- d_5): $\delta_C 35.9$ (C-1), 30.6 (C-2), 78.9 (C-3), 34.7 (C-4), 40.5 (C-5), 31.0 (C-6), 122.1 (C-7), 136.3 (C-8), 145.3 (C-9), 37.1 (C-10), 119.2 (C-11), 43.7 (C-12), 43.8 (C-13), 50.1 (C-14), 39.9 (C-15), 80.9 (C-16), 64.0 (C-17), 13.0 (C-18), 19.9 (C-19), 33.0 (C-20), 20.2 (C-21), 39.9 (C-22), 71.4 (C-23), 70.4 (C-24), 72.0 (C-25), 28.4 (C-26), 26.9 (C-27), 57.0 (C-28), 14.3 (C-29), 21.5 (OCOCH₃), 172.9 (OCOCH₃), 102.4 (C-1"), 75.2 (C-2"), 77.9 (C-3"), 71.7 (C-4"), 78.1 (C-5"), 62.8 (C-6").

2.4.1.8. Compound LD8: (22R,23S,24R,28S)-28-methoxy-7,8,9,11-tetradehydro-3β-16α,21,24 tetrahydroxy-21,23:22,28-diepoxy-5α- stigmastane).

2.4.1.9. Compound LD9: Vernoamyoside E

2.4.1.10. Compound LD10: Vernonioside B2

2.4.1.11. Compound LD11: Vernoniacum B

2.4.1.12. Compound LD12: (23S,24R,28S)-3β,22α-dihydroxy-7,8,9,11-tetradehydro-

24,28-epoxy-5a-stigmastane-21,23-carbolactone

2.4.1.13. Compound LD13: Vemonioside B_1

2.4.1.14. Compound LD14: Veramyoside H

2.4.1.15. Compound LD15: Veramyoside J

2.4.1.16. Compound LD16: Vernoamyoside A

2.4.1.17. Compound LD17: α-spinasterol

2.4.2. Physical and spectroscopic data from compounds of V. gratiosa.

2.4.2.1. Compound VG1: Vernogratiosides A (new compound)

White powder; $[\alpha]_D^{25}$: -28 (c 0.02, MeOH); HR-ESI-MS *m/z*: 831.3892 [M+Cl]⁻. ¹H and ¹³C NMR data: see Table 3.4

2.4.2.2. Compound VG2: Vernogratioside B (new compound)

White powder; $[\alpha]_D^{25}$: -32 (c 0.2, MeOH); CD (c 5×10⁻⁴, MeOH); HR-ESI-MS m/z: 779.4212 [M-H]⁻ và m/z [M+Cl]⁻ 815.3984. ¹H NMR (600 MHz, pyridine- d_5): $\delta_{\rm H}$ 1.36 (1H, m, H-1), 2.00 (1H, m, H-1), 1.60 (1H, m, H-2), 2.02 (1H, m, H-2), 3.72 (1H, m, H-3), 1.39 (1H, m, H-4), 1.90 (1H, m, H-4), 1.40 (1H, m, H-5), 1.95 (1H, m, H-6), 5.43 (1H, brs, H-7), 5.52 (1H, d, J = 6.5 Hz, H-11), 2.02 (1H, m, H-12), 2.24 (1H, m, H-12), 2.23 (1H, m, H-14), 1.14 (1H, m, H-15), 1.64 (1H, m, H-15), 1.52 (1H, m, H-16), 1.92 (1H, m, H-16), 2.19 (1H, m, H-17), 0.63 (3H, s, H-18), 0.94 (3H, s, H-19), 2.57 (1H, m, H-20), 1.84 (1H, m, H-22), 2.10 (1H, m, H-22), 1.85 (1H, m, H-23), 2.05 (1H, m, H-23), 1.85 (1H, m, H-25), 1.00 (3H, d, *J* = 7.0 Hz, H-26), 1.03 (3H, d, *J* = 7.0 Hz, H-27), 3.95 (1H, q, J = 6.5 Hz, H-28), 1.19 (3H, d, J = 6.5 Hz, H-29), 4.56 (1H, d, *J* = 7.5 Hz, H-1'), 3.42 (1H, dd, *J* = 8.0, 9.0 Hz, H-2'), 3.29 (1H, m, H-3'), 3.34 (1H, m, H-4'), 3.58 (1H, m, H-5'), 3.68 (1H, d, J = 5.5, 12.0 Hz, H-6'), 3.87 (1H, d, J = 2.0, 12.0 Hz, H-6'), 4.51 (1H, d, J = 8.0 Hz, H-1"), 3.64 (1H, m, H-2"), 3.53 (1H, m, H-3"), 3.88 (1H, m, H-4"), 3.56 (1H, m, H-5"), 3.77 (2H, m, H-6"); ¹³C NMR (150 MHz, pyridine d_5): $\delta_C 36.0$ (C-1), 30.6 (C-2), 78.9 (C-3), 35.1 (C-4), 40.6 (C-5), 31.0 (C-6), 121.6 (C-7), 137.3 (C-8), 145.4 (C-9), 37.1 (C-10), 119.5 (C-11), 41.2 (C-12), 43.6 (C-13), 52.6 (C-14), 23.7 (C-15), 26.6 (C-16), 50.5 (C-17), 12.3 (C-18), 20.0 (C-19), 41.8 (C-20), 178.4 (C-21), 23.7 (C-22), 23.0 (C-23), 91.14 (C-24), 36.17 (C-25), 17.2 (C-26), 17.6 (C-27), 78.8 (C-28), 17.9 (C-29), 101.4 (C-1'), 83.6 (C-2'), 77.7 (C-3'), 71.5 (C-4'), 77.7 (C-5'), 62.7 (C-6'), 106.2 (C-1"), 73.5 (C-2"), 74.7 (C-3"), 70.0 (C-4"), 77.1 (C-5"), 62.1 (C-6").

2.4.2.3. Compound VG3: Vernogratioside C (new compound)

White powder; $[\alpha]_D^{25}$: -33° (c 0.2, MeOH); HR-ESI-MS: *m/z* [M+H]⁺ 797.4316 và [M+Na]⁺ 819.4140. ¹H NMR (600 MHz, pyridine-*d*₅): δ_H 1.48 (1H, m, H-1), 1.85 (1H, m, H-1), 1.70 (1H, m, H-2), 2.09 (1H, m, H-2), 3.73 (1H, m, H-3), 1.43 (1H, m, H-4), 1.82 (1H, m, H-4), 1.48 (1H, m, H-5), 1.21 (1H, m, H-6), 2.02 (1H, m, H-6), 1.49 (1H, m, H-7), 1.84 (1H, m, H-7), 3.06 (1H, m, H-8), 5.46 (1H, m, H-11), 1.84 (1H, m, H-12), 2.17 (1H, m, H-12), 2.12 (1H, m, H-14), 2.11 (1H, m, H-15), 2.60 (1H, m, H-15), 1.82

(1H, m, H-17), 0.75 (3H, s, H-18), 1.26 (3H, s, H-19), 2.57 (1H, m, H-20), 1.65 (1H, m, H-22), 2.10 (1H, m, H-22), 1.85 (1H, m, H-23), 2.04 (1H, m, H-23), 1.94 (1H, m, H-25), 1.00 (3H, d, J = 7.0 Hz, H-26), 1.03 (3H, d, J = 7.0 Hz, H-27), 3.95 (1H, q, J = 6.5 Hz, H-28), 1.19 (3H, d, J = 6.5 Hz, H-29), 4.55 (1H, d, J = 7.5 Hz, H-1'), 3.41 (1H, dd, J = 7.5, 9.0 Hz, H-2'), 3.29 (1H, m, H-3'), 3.32 (1H, m, H-4'), 3.58 (1H, m, H-5'), 3.67 (2H, d, J = 5.5, 12.0 Hz, H-6'), 4.51 (1H, d, J = 8.0 Hz, H-1"), 3.62 (1H, dd, J = 8.0, 9.5 Hz, H-2"), 3.52 (1H, dd, J = 8.0, 9.5 Hz, H-3"), 3.87 (1H, m, H-4"), 3.55 (1H, m, H-5"), 3.77 (2H, d, J = 6.5 Hz, H-6"); ¹³C NMR (150 MHz, pyridine- d_5): δ_C 35.4 (C-1), 30.2 (C-2), 79.3 (C-3), 36.1 (C-4), 44.0 (C-5), 27.0 (C-6), 26.6 (C-7), 54.2 (C-8), 145.3 (C-9), 39.1 (C-10), 119.8 (C-11), 39.6 (C-12), 42.5 (C-13), 49.7 (C-14), 46.1 (C-15), 212.2 (C-16), 47.1 (C-17), 12.5 (C-18), 18.0 (C-19), 41.1 (C-20), 178.4 (C-21), 23.9 (C-22), 23.0 (C-23), 91.2 (C-24), 36.2 (C-25), 17.2 (C-26), 17.6 (C-27), 71.9 (C-28), 17.9 (C-29), 101.4 (C-1'), 83.7 (C-2'), 77.8 (C-3'), 71.5 (C-4'), 77.9 (C-5'), 62.7 (C-6'), 106.2 (C-1"), 73.7 (C-2"), 74.7 (C-3"), 70.1 (C-4"), 77.1 (C-5"), 62.3 (C-6"). 2.4.2.4. Compound VG4: Vernogratioside R (new compound)

Amorphous white powder; $[\alpha]_D^{25}$: -35° (c 0.2, MeOH); HR-ESI-MS: m/z [M+Cl]⁻ 873.4033. ¹H NMR (600 MHz, CD₃OD): *δ*_H 1.36 (1H, m, H-1), 2.00 (1H, m, H-1), 1.60 (1H, m, H-2), 2.02 (1H, m, H-2), 3.73 (1H, m, H-3), 1.40 (1H, m, H-4), 1.90 (1H, m, H-4), 1.42 (1H, m, H-5), 1.21 (1H, m, H-6), 1.95 (1H, m, H-6), 5.43 (1H, brs, H-7), 5.56 (1H, brs, H-11), 2.17 (1H, m, H-12), 2.52 (1H, m, H-14), 1.81 (1H, m, H-15), 2.04 (1H, m, H-15), 5.28 (1H, t, J = 7.5 Hz, H-16), 2.62 (1H, m, H-17), 0.60 (3H, s, H-18), 0.94 (3H, s, H-19), 2.65 (1H, m, H-20), 1.85 (1H, m, H-22), 1.96 (1H, m, H-22), 1.84 (1H, m, H-23), 2.13 (1H, m, H-23), 1.87 (1H, m, H-25), 1.01 (3H, d, J = 7.0 Hz, H-26), 1.04 (3H, d, J = 6.5 Hz, H-27), 3.95 (1H, q, J = 6.5 Hz, H-28), 1.15 (3H, d, J = 6.5 Hz, H-29), 4.56 (1H, d, J = 7.5 Hz, H-1'), 3.42 (1H, d, J = 8.5 Hz, H-2'), 3.30 (1H, m, H-3'), 3.34 (1H, m, H-4'), 3.57 (1H, m, H-5'), 3.67 (1H, m, H-6'), 3.87 (1H, m, H-6'), 4.52 (1H, d, J = 8.0 Hz, H-1"), 3.63 (1H, m, H-2"), 3.52 (1H, m, H-3"), 3.86 (1H, m, H-4"), 3.55 (1H, m, H-5"), 3.77 (2H, m, H-6"); ¹³C NMR (150 MHz, CD₃OD): δ_C 35.9 (C-1), 30.5 (C-2), 79.8 (C-3), 35.1 (C-4), 40.5 (C-5), 30.9 (C-6), 122.2 (C-7), 136.1 (C-8), 145.4 (C-9), 37.1 (C-10), 119.0 (C-11), 41.2 (C-12), 44.3 (C-13), 49.9 (C-14), 33.4 (C-15), 77.4 (C-16), 56.7 (C-17), 13.9 (C-18), 20.0 (C-19), 10.2 (C-20), 178.3 (C-21), 23.9 (C-22), 25.2 (C-23), 90.7 (C-24), 37.2 (C-25), 16.8 (C-26), 17.5 (C-27), 71.8 (C-28), 17.8 (C-29), 101.3 (C-1'), 73.5 (C-2'), 74.7 (C-3'), 70.0 (C-4'), 77.0 (C-5'), 62.7 (C-6'), 106.2 (C-1"), 73.5 (C-2"), 74.7 (C-3"), 70.0 (C-4"), 77.0 (C-5"), 62.1 (C-6").

2.4.2.5. Compound VG5: Vernogratioside S (new compound)

Amorphous yellow powder.; $[\alpha]_D^{25}$: +45.7° (c 0.2, MeOH); HR-ESI-MS: m/z817.4067 [M+Cl]⁻. ¹H NMR (600 MHz, CD₃OD): *δ*_H 1.34 (1H, m, H-1), 2.00 (1H, m, H-1), 1.61 (1H, m, H-2), 2.01 (1H, m, H-2), 3.73 (1H, m, H-3), 1.39 (1H, m, H-4), 1.92 (1H, m, H-4), 1.40 (1H, m, H-5), 1.34 (1H, m, H-6), 1.98 (1H, m, H-6), 5.42 (1H, brs, H-7), 5.49 (1H, brs, H-11), 2.16 (1H, m, H-12), 2.12 (1H, m, H-14), 1.63 (1H, m, H-15), 2.07 (1H, m, H-15), 2.07 (1H, m, H-16), 1.40 (1H, m, H-16), 1.82 (1H, m, H-17), 0.60 (3H, s, H-18), 0.94 (3H, s, H-19), 2.24 (1H, m, H-20), 1.82 (1H, d, *J* = 9.0 Hz, H-22), 1.16 (1H, m, H-23, H-24), 1.16 (3H, s, H-26), 1.17 (3H, s, H-27), 1.63 (1H, m, H-28), 0.99 (3H, t, *J* = 7.2 Hz, H-29), 4.55 (1H, d, *J* = 7.5 Hz, H-1'), 3.41 (1H, dd, *J* = 7.5, 8.5 Hz, H-2'), 3.30 (1H, m, H-3'), 3.36 (1H, m, H-4'), 3.57 (1H, t, J = 8.5 Hz, H-5'), 3.67 (1H, dd, J = 5.5, 12.0 Hz, H-6'), 3.87 (1H, dd, J = 2.5, 12.0 Hz, H-6'), 4.51 (1H, d, J = 7.5 Hz, H-1"), 3.63 (1H, dd, J = 8.0, 10.0 Hz, H-2"), 3.52 (1H, dd, J = 3.0, 10.0 Hz, H-3"), 3.88 (1H, m, H-4"), 3.53 (1H, m, H-5"), 3.76 (2H, d, J = 6.0 Hz, H-6"); ¹³C NMR (150 MHz, CD₃OD): δ_C 36.0 (C-1), 30.6 (C-2), 79.9 (C-3), 35.1 (C-4), 40.5 (C-5), 31.0 (C-6), 121.7 (C-7), 137.3 (C-8), 145.3 (C-9), 37.1 (C-10), 119.4 (C-11), 41.1 (C-12), 43.2 (C-13), 52.5 (C-14), 33.3 (C-15), 28.6 (C-16), 53.9 (C-17), 11.6 (C-18), 19.9 (C-19), 50.1 (C-20), 178.5 (C-21), 23.8 (C-22), 29.6 (C-23), 52.8 (C-24), 74.7 (C-25), 27.3 (C-26), 27.1 (C-27), 24.7 (C-28), 14.3 (C-29), 101.4 (C-1'), 83.7 (C-2'), 77.8 (C-3'), 71.5 (C-4'), 77.7 (C-5'), 62.7 (C-6'), 106.2 (C-1"), 73.5 (C-2"), 74.5 (C-3"), 70.0 (C-4"), 77.1 (C-5"), 62.1 (C-6").

2.4.2.6. Compound VG6: Vernoratioside A (new compound)

Amorphous white powder; HR-ESI-MS: m/z: 741.3583 [M + Cl]; $[\alpha]_D^{25}$: +44.5 (c 0.1, MeOH); ¹H NMR (600 MHz, pyridine- d_5): δ_H 1.38 (1H, m, H-1), 2.02 (1H, m, H-1), 1.73 (1H, m, H-2), 2.00 (1H, m, H-2), 3.73 (1H, m, H-3), 1.35 (1H, m, H-4), 1.90 (1H, m, H-4), 1.43 (1H, m, H-5), 1.94 (2H, m, H-6), 5.43 (1H, m, H-7), 3.06 (1H, m, H-8), 5.55 (1H, m, H-11), 2.18 (1H, m, H-12), 2.25 (1H, m, H-12), 2.52 (1H, m, H-14), 1.76 (1H, m, H-15), 5.35 (1H, t, J = 7.0 Hz, H-16), 2.13 (1H, m, H-17), 0.65 (3H, s, H-18), 0.94 (3H, s, H-19), 2.25 (1H, m, H-20), 4.93 (1H, d, J = 6.5 Hz, H-21), 4.47 (1H, t, J = 4.5 Hz, H-22), 4.39 (1H, brd, J = 4.0 Hz, H-23), 1.88 (1H, m, H-25), 0.97 (3H, d, J = 6.0 Hz, H-26), 1.03 (3H, d, J = 6.5 Hz, H-27), 3.81 (1H, q, J = 6.5 Hz, H-28), 1.18 (3H, d, J = 6.5 Hz, H-29), 2.00 (3H, s, 16-CH₃COO), 3.48 (3H, s, 21-OCH₃); ¹³C NMR (150 MHz, pyridine- d_5): δ_C 36.0 (C-1), 30.6 (C-2), 78.9 (C-3), 35.0 (C-4), 40.5 (C-5), 31.0 (C-6), 122.3 (C-7), 136.3 (C-8), 145.3 (C-9), 37.1 (C-10), 119.0 (C-11), 41.1 (C-12), 44.1 (C-13), 50.1 (C-14), 34.2 (C-15), 79.1 (C-16), 55.0 (C-17), 13.5 (C-18), 19.9 (C-19), 52.7 (C-20), 110.6 (C-21), 83.8 (C-22), 83.7 (C-23), 83.6 (C-24), 31.1 (C-25),

17.5 (C-26), 18.1 (C-27), 82.7 (C-28), 14.1 (C-29), 102.4 (C-1'), 75.1 (C-2'), 78.1 (C-3'), 71.7 (C-4'), 77.9 (C-5'), 62.8 (C-6'), 172.3 (16-CH₃COO), 21.6 (16-CH₃COO), 56.7 (21-OCH₃).

2.4.2.7. Compound VG7: Vernoratioside B (new compound)

Amorphous white powder; $[\alpha]_D^{25}$:+ 30.6 c 0.2, MeOH); HR-ESI-MS: *m/z* 727.3466 [M+Cl]⁻. ¹H NMR (600 MHz, pyridine-*d*₅): $\delta_{\rm H}$ 1.39 (1H, m, H-1), 2.04 (1H, m, H-1), 1.63 (1H, m, H-2), 2.00 (1H, m, H-2), 3.72 (1H, m, H-3), 1.36 (1H, m, H-4), 1.90 (1H, m, H-4), 1.43 (1H, m, H-5), 1.95 (2H, m, H-6), 5.44 (1H, m, H-7), 5.59 (1H, brd, *J* = 5.5 Hz, H-11), 2.24 (2H, m, H-12), 2.53 (1H, m, H-14), 1.80 (1H, m, H-15), 5.30 (1H, t, *J* = 7.0 Hz, H-16), 1.92 (1H, m, H-17), 0.64 (3H, s, H-18), 0.94 (3H, s, H-19), 1.78 (1H, m, H-20), 5.54 (1H, s, H-21), 4.31 (1H, m, H-22), 4.90 (1H, m, H-23), 1.90 (1H, m, H-25), 0.92 (3H, d, *J* = 7.0 Hz, H-26), 0.93 (3H, d, *J* = 7.5 Hz, H-27), 4.10 (1H, q, *J* = 6.5 Hz, H-28), 1.12 (3H, d, *J* = 8.0 Hz, H-29), 2.00 (3H, s, 16-CH₃COO); ¹³C NMR (150 MHz, pyridine-*d*₅): $\delta_{\rm C}$ 35.9 (C-1), 30.6 (C-2), 78.9 (C-3), 35.0 (C-4), 40.5 (C-5), 31.0 (C-6), 122.3 (C-7), 136.3 (C-8), 145.2 (C-9), 37.2 (C-10), 119.2 (C-11), 41.1 (C-12), 44.1 (C-13), 50.1 (C-14), 34.3 (C-15), 79.2 (C-16), 55.1 (C-17), 14.0 (C-18), 19.9 (C-19), 53.0 (C-20), 101.7 (C-21), 77.3 (C-22), 83.6 (C-23), 91.9 (C-24), 30.6 (C-25), 17.4 (C-26), 18.0 (C-27), 81.2 (C-28), 20.1 (C-29), 102.4 (C-1'), 75.2 (C-2'), 78.1 (C-3'), 71.7 (C-4'), 77.9 (C-5'), 62.8 (C-6'), 172.3 (16-CH₃COO), 21.7 (16-<u>C</u>H₃COO).

2.4.2.8. Compound VG8: VE1

2.4.2.9. Compound VG9: Vernoniacum B

- 2.4.2.10. Compound VG10: Kaempferol
- 2.4.2.11. Compound VG11: Quercetin 3-0-methyl ether
- 2.4.2.12. Compound VG12: Quercetin

2.4.2.13. Compound VG13: Apigenin

2.4.2.15. Compound VG14: Syringaresinol-β-D-glucoside

2.4.2.16.Compound VG15: 3-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-2-[4-(3 hydroxy-1-(E)-propenyl)-2,6-dimethoxy phenoxy]propyl- β -D-glucopyranoside

2.4.2.17. Compound VG16: 11β , 13-dihydrovernolide

2.4.2.18. Compound VG17: 5-(methoxymethyl)-1H-pyrrole-2-carbaldehyde

CHAPTER 3: RESULTS AND DISCUSSION

3.1. Determination of chemical structures of isolated compounds from *V*. *amygdalina*

17 compounds (**LD1-LD17**) were isolated from the leaves of *V. amygdalina*, including 07 new stigmastane steroids (**LD1-LD7**) and 10 known ones (**LD8** – **LD17**). Their structures were elucidated by the NMR, HR-ESI-MS, and previous published data.

Figure 3.1. Chemical structures of isolated compounds from *V. amygdalina 3.1.1. Compound LD1: Vernonioside K (new compound)*

Compound **LD1** was obtained as a white amorphous solid. Electrospray ionization high-resolution time-of-flight mass spectrometry (ESI-HR-TOF-MS) revealed a quasimolecular ion peak at m/z 583.3248 [M + Na]+ (calcd. for C₃₂H₄₈NaO₈⁺, 583.3241), suggesting a molecular formula of C₃₂H₄₈O₈. The ¹H and ¹³C nuclear magnetic resonance (NMR) data of **LD1** showed the characteristic signals of $\Delta^{7,9(11)}$ stigmastane-type steroidal skeleton. The ¹H NMR spectrum of **LD1** revealed the presence of two olefinic protons [$\delta_{\rm H}$ 5.33 (1H, brs, H-7), 5.44 (1H, d, J = 6.0 Hz, H-11)], a distinctive H-

3 multiplet [$\delta_{\rm H}$ 3.78 (1H, m, H-2)], an isopropyl group [$\delta_{\rm H}$ 1.11 (3H, d, J = 6.6 Hz, H-26), 1.23 (3H, d, J = 6.6 Hz, H-27)], two angular methyl protons [$\delta_{\rm H}$ 0.61 (3H, s, H-18), 0.86 (3H, s, H-19)], another methyl proton [$\delta_{\rm H}$ 1.59 (3H, s, H-29)], an acetylate methyl group [$\delta_{\rm H}$ 2.21 (3H, s, 16-OAc)], and a methoxyl group [$\delta_{\rm H}$ 3.29 (3H, s, 28-OCH₃)]. ¹³C NMR showed 29 carbon signals, including six quaternary carbons, six methylene groups, four olefinic carbons, an acetyl group, five methyl groups, and a methoxy group. The planar structure of LD1 was further supported by the heteronuclear multiple bond correlation (HMBC) spectrum. The HMBC correlations between H-11 and C-8/C-9/C-10/C-13 and between H-7 and C-5/C-8/C-9/C-15 indicated that the two double bonds were at 7(8) and 9(11) positions. The HMBC cross-peaks from H-16 to $\delta_{\rm C}$ 170.8 (CH₃COO) indicated that the acetyl group was located at C-16. For the side chain, the HMBC spectrum showed the connection of H-26/H-27 and C-24, suggesting that the isopropyl moiety was attached to C-24. Additionally, the positions of methoxy and methyl groups at C-28 were deduced by the HMBC correlation of 28-OCH₃/H-29 with C-28. The HMBC cross-peaks from H-20 to C-21/C-22, from H-21 to C-22/C-23, from H-22 to C-20/C-23, and from H-23 to C-21/C-24 confirmed the presence of two furan rings, which were connected via C-22 and C-23. Finally, the side chain was attached to C-17 by the HMBC correlation of H-17 and C-20. The nuclear Overhauser effect spectroscopy (NOESY) correlations between H-3 and H-5, H-14 and H-17, and H-18 and H-16 and H-19, indicated that rings A/B and C/D fused in trans; H-16, H-18, and H-19 were in the β configuration; and H-3, H-5, and H-17 were in the α configuration. Furthermore, the NOESY correlation between H-17 and 28-OCH3 indicated that these protons adopted the α configuration, whereas correlations between H-20 and H-18/H-21/H-27, between H-23 and H-22/H-27/H-29 indicated that these protons were in the β configuration. Therefore, the stereochemistry of the side chain was determined as shown in Figure 3.2. Finally, the structure of compound LD1 was elucidated and named vernonioside K.

LD1 LD1a

Figure 3.2. Chemical structures of compounds LD1 and reference compound LD1a

Figure 3.3. Key COSY, HMBC, and NOESY correlations of compound **LD1 Table 3.1.** ¹H (500 MHz), ¹³C NMR (125 MHz) spectroscopic data of **LD1** and

	rei	erence com	ipound
С	$^{\#}\delta c^{a}$	$\delta_{\rm C}{}^{\rm a}$	$\delta_{\rm H}{}^{\rm a}$ (mult., J = Hz)
1	35.2	35.0	1.23, m*
2	32.5	32.0	1.71, m*
3	70.2	70.0	3.78, m
4	38.8	38.2	1.54, q (12.0)
·			1.49. d. (12.0)
5	39.6	39.4	1.40, m
6	30.4	30.1	1.82, m*
7	121.5	121.7	5.33, brs
8	135	135.1	
9	144.2	143.9	
10	36.2	36.0	
11	118.6	118.6	5.44, d (6.0)
12	41.8	41.0	2.35, dd (16.8, 6.6)
12		41.9	2.49. d (17.4)
13	43 7	42.9	, , ,
14	49.2	48.8	2.58 m
15	35.3	34.7	1.92. m*
16	76.3	78.4	5.53. t (6.0)
17	56.1	51.1	2.79, dd (11.4, 5.4)
18	14.6	14.1	0.61. s
19	19.7	19.4	0.86, s
20	48.6	48.8	2.58, m
21	99.2	98.8	2.22, m*
22	81.0	79.9	4.45, t, (6.0)
23	91.2	91.5	4.75, d (6.0)
24	82.0	81.8	
25	32.4	32.2	2.27, m [*]
26	17.5	17.4	1.11, d (6.6)
27	18.5	18.4	1.23, d (6.6)
28	113.4	112.7	
29	17.5	17.5	1.59, s
28-OCH ₃	48.5	48.1	3.29, s
CH ₃ COO		170.8	
<u>C</u> H ₃ OO		21.7	2.21, s

^apyridine- d_5 , [#] δ_C LD1a. (*) overlapped

3.1.2. Compound LD6: Vernonioside P (new compound)

Compound **LD6** was isolated as a white crystalize. The molecular formula of **LD6** was determined as C₃₁H₄₈O₆ by the HR-ESI-MS spectrum at m/z 551.3118 [M+Cl]⁻ (calcd. for C₂₉H₃₉O₄Cl⁻, 551.3139). The ¹H NMR data of **LD6** showed typical signals of a stigmastane steroid skeleton and was similar to those of compounds **LD1-LD5**, except for the structure of the side chain part. The ¹H NMR spectrum of **LD6** displayed the presence of two doublet methyl groups [$\delta_{\rm H}$ 1.05 (1H, d, J = 5.5 Hz, H-21), 1.56 (1H, d, J = 5.0 Hz, H-29)], two *tert*-methyl group [$\delta_{\rm H}$ 1.35 (3H, s, H-26), 1.37 (3H, s, H-27)], two oxymethine groups [$\delta_{\rm H}$ 4.93 (1H, dd, J = 4.0, 7.0 Hz, H-23), 3.02 (1H, q, J = 4.0, 9.5 Hz, H-28)], and a methine and a methylene group in the upfield region [1.72 (1H, m, H-20), 0.94 (2H, m, H-22)] for the side chain, which was confirmed by the COSY

15

correlations of H-20/ H-21/ H-22/ H-23 as well as HMBC correlation of H-21 and C-20/ C-22, H-23 với C-24/ C-28/ C-25, H-29 and C-24/ C-28, H-26/H-27 and C-24/ C-25. The relative configuration of **LD6** was identified by the NOESY spectrum. The ROESY spectrum revealed the cross-peaks from H-16/ H-18, H-18/ H-19, H-18/ H-20 suggesting the β configuration of these protons. Besides, the correlations of H-3 /H-5, H-14/ H-17, H-17/ H-21, H-21/ H-23, H-23/ H-28 were observed in the NOESY spectrum of **LD6**, which indicated that protons H-3, H-5, H-14, H-17, H-21, H-23, and H-28 had α -form. Therefore, the structure of **LD6** was established as shown in Figure 3.4 and named vernonioside P.

<u> </u>	#\$ ~a	S_a	$\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^$
<u>1</u>	<u>#0C</u>	<u> </u>	$0_{\rm H}$ (mun., J III fiZ)
1	55.9 20.6	<i>33.9</i>	1.55, 111/2.00, 111 1.28 m/1.71 m
∠ 3	50.0 78 0	50.9 71 4	1.20, 111/1.71, 111
5	/0.7 21 7	/1.4	3.33, III 1.44 m/1.86 hr d (1.5, 10.5)
4	34.7	54.7 40.6	1.44, 111/1.80, 01 (1.3, 10.3)
5	39.9 20.6	40.0	1.41, III 1.20,
07	30.0 122.1	31.0 122.1	1.50, m 5.40, hr a
/	122.1	122.1	5.40, br s
8	136.9	130.3	-
9	145.2	145.3	-
10	3/.1	3/.0	-
	119.2	119.2	5.53, d (5.5)
12	40.5	43.7	2.24, d (16.8)
13	43.6	43.8	-
14	50.1	50.1	2.42, m
15	34.7	38.4	1.67, d (5.5)/ 1.95, m
16	70.0	80.9	5.18, t (5.5)
17	57.0	64.0	1.49, dd (9.0, 5.0)
18	14.2	13.0	0.59, s
19	19.9	19.9	0.93, s
20	33.0	33.0	1.72, m
21	13.0	20.2	1.05, d (5.5)
22	47.8	39.9	0.94, m
23	80.9	71.4	4.09, dd (7.0, 4.0)
24	71.0	70.4	4.06, dd (6.5, 4.0)
25	70.0	72.0	-
26	28.4	28.4	1.35, s
27	26.9	26.9	1.37, s
28	63.9	57.0	3.02, q (9.5, 5.0)
29	14.3	14.3	1.56, d (5.0)
OCOCH ₃	21.5	21.5	2.05, s
$OCOCH_3$	172.8	172.8	
1'	102.4		
2'	75.1		
3'	77.9		
4'	71.7		
5'	78.1		
6'	62.8		

 Table 3.2. ¹H (125 MHz) và ¹³C NMR-(500 MHz) spectroscopic data of LD6 and reference compound

^a in pyridine, ${}^{\#}\delta_{C}$ reference compound

Figure 3.4. Chemical structure of compound LD6

3.2. Identification of chemical structures of isolated compounds from Vernonia gratiosa

Figure 3.5. Chemical structures of isolated compounds from V. gratiosa

C		• 11 (500	VG1	<u>125 M</u> C	<u>.112) sp</u>	ceuose	
_	$^{\#}\!\delta\mathrm{c}^{\mathrm{a}}$	δc ^{a,b}	$\frac{\delta H^{a, c}}{(\Phi \hat{a} \ h \hat{a} \ J = Hz)}$		$^{\#}\!\delta c^{a}$	δc ^{a, b}	$\delta_{\mathrm{H}^{\mathrm{a, c}}}$ (Đô bôi $J = \mathrm{Hz}$)
1	36,0	36.0	1.33, m, 2.00, m	21	178.	177.	
2	30,6	30.6	1.61, m, 2.02, m	22	23.7	27.4	1.14, m, 1.55, m
3	79,9	79.9	3.72, m	23	23.0	23.5	1.60, m
4	35,1	35.1	1.40, m, 1.90, m	24	91.1	91.1	
5	40,6	40.6	1.39, m	25	36.2	43.4	2.12, m
6	31,0	31.0	1.96, m	26	17.2	12.6	1.06, s
7	121,6	121.7	5.43, s	27	17.6	63.9	3.45, m, 3.80, m
8	137,3	137.2		28	71.8	71.1	3.91, m
9	145,4	145.4		29	17.9	17.6	1.26, d (6.5)
10	37.1	37.1		1′	101.	101.	4.55, d (7.5)
11	119.5	119.4	5.50, d (6.5)	2′	83.7	83.6	3.42, m
12	41.2	41.0	1.96, m, 2.23, m	3'	77.7	77.7	3.29, m
13	43.6	43.2		4′	71.5	71.5	3.34, m
14	52.6	52.8	1.15, m	5'	77.7	77.8	3.60, m
15	23.7	23.7	1.81, m, 1.48, m	6'	62.7	62.7	3.68, m, 3.89, m
16	26.6	27.4	1.98, m, 1.50, m	1″	106.	106.	4.51, d (8.0)
17	50.4	50.7	1.79, m	2″	73.5	73.5	3.64, m
18	12.3	11.9	0.61, s	3″	74.7	74.7	3.53, m
19	20.0	19.9	0.95, s	4″	70.0	70.0	3.89, m
20	41.7	41.9	2.55, m	5″	77.0	77.0	3.55, m
21	178.4	177.4		6″	62.1	62.1	3,77, m

3.3.1. Hợp chất VG1; Vernogratioside A (New compound)

Table 3.4. ¹H (500 MHz) và ¹³C-NMR (125 MHz) spectroscopic data of VG1

^a đo trong CD₃OD, ${}^{\#}\!\delta_{\rm C}$ hợp chất tham khảo

Compound **VG1** was yielded as a white amorphous powder with the molecular formula C₄₁H₆₄O₁₅, which was identified from its HR-ESI-MS at m/z [M+Cl]-831.3892; (calcd for C₄₁H₆₄ClO₁₅, 831.3939). The NMR data of **VG1** were determined based on 1D, 2D NMR, and ECD analyses, and by comparison with previously reported vernocuminosides. These data showed that **VG1** is a $\Delta^{7,9(11)}$ stigmastan type steroid saponin with a δ -lactone ring system. Indeed, the ¹H NMR representation of **VG1** displayed signals of two olefinic protons [$\delta_{\rm H}$ 5.43 (1H, s, H-7) and 5.50 (1H, brd, J =5.5 Hz, H-11)], a distinctive H-3 multiplet [$\delta_{\rm H}$ 3.72 (1H, m, H-3), two angular methyls [$\delta_{\rm H}$ 0.66 (3H, s, H-18) and 0.94 (3H, s, H-19)], a propanyl-1-ol unit [$\delta_{\rm H}$ 2.12 (1H, m, H-25), 1.06 (3H, d, J = 7.0 Hz, H-26), and 3.45 (2H, m, H-27)], and another doublet methyl [$\delta_{\rm H}$ 1.26 (3H, d, J = 6.5 Hz, H-29)]. In addition, two sets of proton signals for glucopyranosyl and galactopyranosyl units, along with their anomeric protons [$\delta_{\rm H}$ 4.55 (1H, d, J = 7.5 Hz, H-1') and 4.51 (1H, d, J = 8.0 Hz, H-1"), were shown in the ¹H NMR spectrum. The large coupling constants (J = 7.5 Hz between H-1' and H-2', J =8.0 Hz between H-1" and H-2") supported β -linkage of the sugar moieties. The ¹³C NMR data of VG1 revealed 42 carbon resonances, containing 29 for the aglycone moiety and 12 for the two sugar units. The ¹³C NMR data showed the existence of a carbonyl $[\delta_{\rm C} 177.4 \text{ (C-21)}, \text{ four olefinic carbons } [\delta_{\rm C} 121.7 \text{ (C-7)}, 137.2 \text{ (C-8)}, 145.4 \text{ (C-9)}, 119.4 \text{$ (C-11)], two oxygenated methine carbons [$\delta_{\rm C}$ 79.9 (C-3), 71.1 (C-28), and four methyl carbons [$\delta_{\rm C}$ 11.9 (C-18), 19.9 (C-19), 12.6 (C-26), 17.6 (C-29)] for the aglycone moiety. The existence of the δ -lactone unit in the side chain of VG1 was deduced by the connectivities of H-20/H-22/H-23, H-25/H-26/H-27, and H-28/H-29, together with the HMBC correlations between H-22 and C-21/C-24, H-26 and C-24/C-25/C-27, and H-29 and C-24/C-28. The HMBC correlations from H-17 to C-20/C-21 allowed us to determine the location of the δ -lactone unit at C-17 of the aglycone of VG1. The HMBC from H-1' (δ H 4.55) to C-3 (δ _C 79.9) demonstrated that the β -D-glucosyl group was connected to C-3. The position of the galactopyranosyl moiety at C-2' was estimated from a downfield shift of C-2' (δ C 83.6) in VG1 compared to C-2' (δ C 75.1) of glucose in vernocuminoside H, as well as the long-range HMBC correlation of H-1" ($\delta_{\rm H}$ 4.51) with C-2' ($\delta_{\rm C}$ 83.7). The comparison between the NMR values of 1 and the reported NMR data showed that VG1 has similar NMR values to vernocuminoside I (Ver I), which was recently purified from the stem bark V. cumingiana Benth [20]. The main difference is the replacement of an oxygenated methylene group in VG1 by a methyl group in Ver I. This was also confirmed by the HMBC correlations of H-27 with C-24, C-25, and C-26. Thus, the planar structure of VG1 was deduced. The stereochemistry of VG1 was defined based on NOESY correlations. In particular, the NOESY crosspeaks H-3/H-5, H-14/H-17, and H-18/H-19 indicated that A/B and C/D fused in trans, H-18 and H-19 had β -configurations, and H-3, H-5, and H-17 had α -configurations. In addition, the NOESY correlation of H-18/H-20 showed the relationship between the lactone ring E and the β -orientation of H-20 showed the relationship between the lactone ring E and the positioning of H-20 in a β-structure. The stereochemistry of C-24 and C-28 (Fig. 2) was determined from the NOESY cross-peaks from H-26 to H-28. The stereochemistry of C-24 was deduced based on the ECD spectrum. The ECD spectrum of VG1 showed the opposite signals to those of vernocuminoside H, a new saponin reported from the Vernonia genus. Indeed, the circular dichroism spectrum of VG1 showed λ max (mdeg) 221 (+2.82), and 243 (+10.78) nm. Thus, the absolute configuration of C-24 was assigned as S-form based on the established correlation between the absolute configuration and the Cotton effect's sign. Moreover, the stereochemistry of C-28 in VG1 has been remaining due to the small amount. Finally, the identification of the sugar residues as D-glucose and D-galactose was established through the absolute configurations obtained from the acid hydrolysis of VG1. This was further confirmed by comparing the results with authentic samples through TLC analysis. As a result, compound VG1 was found to be a new compound and was named vernogratioside A.

Figure 3.6. Chemical structure of compound VG1 and reference compound

VG1a

BIOLOGICAL ACTIVITY OF ISOLATED COMPOUNDS FROM V. 3.4. AMYGDALINA VÀ V. GRATIOSA

3.5.1. Anti-a-glucosidase activity of isolated compounds from V. amygdalina Table 3.6. Inhibitory effects of isolated compounds from V. amygdalina on α -

	LD1	LD2	LD3	LD5	LD4
IC ₅₀	78.56 ± 7.28	>500	>500	14.74 ± 1.57	>500
	LD6	LD7	LD8	LD14	LD16
IC ₅₀	>500	>500	>500	48.55 ± 4.31	>500
	LD12	LD15	LD17	Acarbose	

aluquidaça

IC ₅₀ 72.41 ±	7.56 7.42 ± 0.95	>500	127.53 ± 1.73	
---------------------------------	----------------------	------	-------------------	--

3.5.2. Anti-a-glucosidase activity of isolated compounds from V. gratiosa

Table 3.7. Inhibitory effects of isolated compounds from V. gratiosa on α-glucosidase

	VG1	VG2	VG3	VG15	VG5
IC ₅₀	>500	>500	>500	47.08 ± 3.98	424.79 ± 37.83
IC ₅₀	VG6	VG7	VG8	VG13	VG14
IC ₅₀	>500	>500	>500	477.52 ± 20.84	>500
IC ₅₀	VG4	VG17	Acarbose		
IC ₅₀	>500	>500	146.64 ± 8.85		

3.5.3. Anti-xanthine oxidase activity of isolated compounds from V. amygdalina Table 3.8. Inhibitory effects of isolated compounds from V. amygdalina on xanthine

	oxidase
	LD1-LD17
IC ₅₀	>500

<i>3.5.4</i> .	Anti-xanthine	oxidase	activity (of isolated	compoun	ds from V	7. gratiosa	
T.I.I.	20 T 1 '1 '	<u> </u>	• 1 4 1	1		<i>,</i> •	.1 •	•

Table 3.9. Inhibitory effects of isolated compounds from *V. gratiosa* on xanthine oxidase

	VG1	VG2	VG3	VG4
IC ₅₀	>500	>500	>500	>500
	VG5	VG6	VG7	VG8
IC ₅₀	47.65 ± 3.44	>500	>500	>500
	VG15	VG14	VG13	Allopurinol
IC ₅₀	26.92 ± 1.04	>500	6.26 ± 0.60	1.12 ± 0.15

CONCLUSION

1. Phytochemical study

Seventeen compounds (LD1-LD7) were isolated from the leaves of *V. amygdalina*, including seven new stigmastane steroids (LD1-LD7), named as (LD1-vernonioside K); (LD2-Vernonioside N), (LD3-Vernonioside M); (LD4-Vernonioside O); (LD5-Vernonioside L); (LD6- vernonioside P); (LD7-Vernonioside Q) and ten known ones: (LD8-(22R,23S,24R,28S)-28-methoxy-7,8,9,11-tetradehydro- 3β -16 α ,21,24 tetrahydroxy-21,23:22,28-diepoxy-5 α - stigmastane); (LD9-Vernoamyoside E); (LD10-vernonioside B2); (LD11-Vernoniacum B); (LD12-(23S,24R,28S)- $3\beta,22\alpha$ -dihydroxy-7,8,9,11-tetradehydro-24,28-epoxy- 5α -stigmastane-21,23-carbolactone); (LD13-vernonioside B_1); (LD14: Veramyoside H); (LD15- Veramyoside J); (LD16-Vernoamyoside A); (LD17- α -spinasterol).

Seventeen compounds were isolated from the aerial parts of *V. gratiosa*, including seven new compounds (VG1 – VG7) as Vernogratiosides A (VG1); Vernogratioside B (VG2); Vernogratioside C (VG3); Vernogratioside R (VG4); Vernogratioside S (VG5); Vernoratioside A (VG6); Vernoratioside B (VG7); and ten known compounds: VE1 (VG8); Vernoniacum B (VG9); Kaempferol (VG10); Quercetin 3-o-methyl ether (VG11); Quercetin (VG12); Apigenin (VG13); Syringaresinol- β -D-glucoside (VG14); 3-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-2-[4-(3 hydroxy-1-(*E*)-propenyl)-2,6dimethoxy phenoxy]propyl- β -D-glucopyranoside (VG15); 11 β ,13-dihydrovernolide (VG16); 5-(methoxymethyl)-1*H*-pyrrole-2-carbaldehyde (VG17).

2. Biological activities

From *V. amygdalina*, compounds LD1, LD5, LD14, LD12, and LD15 showed strong inhibitory effects on α -glucosidase with IC₅₀ values from 7.42 ± 0.95 μ M to 78.56 ± 7.28 μ M (compared to positive control, acarbose 127.53 ± 1.73 μ M). Besides, compound VG5 from *V. gratiosa* also significantly inhibited α -glucosidase with IC₅₀ values of 47.08 ± 3.98 μ M (acarbose 146.64 ± 8.85 μ M).

Compounds VG5, VG13, and VG15 also exhibited the potential inhibitory effects on xanthine oxidase activity with IC₅₀ values of ($6.26 \pm 0.60 - 47.65 \pm 3.44 \mu$ M) (allopurinol là: 1.12 ± 0.15 (μ M). The others did not show any activities.

RECOMMENDATION

Our results suggest that LD5, LD14, LD12, LD1 from *V. amygdalina*, and VG15 from *V. gratiosa* may potentially have a use as a therapeutic compound for the treatment or prevention of diabetes disease. In addition, compounds VG15 và VG3 may be a promising candidate for the treatment of gout disease. However, comprehensive and in-depth research about the molecular mechanism of α-glucosidase enzymes of compounds LD5, LD14, LD12, LD1, and VG15, as well as tests on *in vivo* models and clinical trials are required. At the same time, more research is needed to evaluate the toxicity of these compounds in both *in vitro* and *in vivo* models. Furthermore, repeated studies need to be conducted to confirm the xanthine oxidase inhibitory effect of compounds VG15 and VG3, as well as to find out their target mechanism of action.

LIST OF PUBLICATIONS

1. Cong Pham Van, Hieu Ngo Van, Minh Bui Quang, Nam Duong Thanh, Dan Nguyen Van, Tuan Do Thanh, Ngoc Tran Minh, Hien Nguyen Thi Thu, Trung Nguyen Quang, Thao Do Thi, Loan Pham Thanh, Hien Do Thi Thu, and Anh Hoang Le Tuan; "Stigmastane-type steroid saponins from the leaves of *Vernonia amygdalina* and their α-glucosidase and xanthine oxidase inhibitory activities"; 2023; *Natural Product research*; SCIE; IF-2.488; https://doi.org/10.1080/14786419.2023.2188589

2. Pham Van Cong, Hoang Le Tuan Anh, Nguyen Quang Trung, Bui Quang Minh, Ngo Viet Duc, Nguyen Van Dan, Nguyen Minh Trang, Nguyen Viet Phong, Le Ba Vinh, Le Tuan Anh & Ki Yong Lee; "Isolation, structural elucidation and molecular docking studies against SARS-CoV-2 main protease of new stigmastane-type steroidal glucosides isolated from the whole plants of *Vernonia gratiosa*"; *Natural Product research;* SCIE; IF-2.488; https://doi.org/10.1080/14786419.2022.2042534

3. Pham Van Cong, Hoang Le Tuan Anh, Le Ba Vinh, Yoo Kyong Han, Nguyen Quang Trung, Bui Quang Minh, Ngo Viet Duc, Tran Minh Ngoc, Nguyen Thi Thu Hien, Hoang Duc Manh, Le Thi Lien8, Ki Yong Lee; "Alpha-Glucosidase Inhibitory Activity of Saponins Isolated from *Vernonia gratiosa* Hance"; *Journal of Microbiology Biotechnology*. 2023; 33(6): 797-805; SCIE; IF-3.27, https://doi.org/10.4014/jmb.2212.12040

4. Pham Van Cong, Ngo Van Hieu, Bui Quang Minh, Ngo Viet Duc, Vu Thi Trang, Nguyen Thi Thu Hien, Nguyen Viet Khanh, Tran Thi Phuong Anh, Ton That Huu Dat, Le Tuan Anh, Hoang Le Tuan Anh; "Constituents of *Vernonia gratiosa* Hance and their α -glucosidase and xanthine oxidase inhibitory activities"; *Vietnam Journal of Chemistry*, 2022, 60(5), 653-659; ESCI, IF-0.74; doi: 10.1002/vjch.202200019