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INTRODUCTION

Motivation

The correlated and disordered lattice fermion systems have been at the forefront of condensed matter

research for decades. In particular, Coulomb interaction prevailing in strongly correlated electron

systems and disorder are two main sources leading to metal - insulator transitions (MITs). While

the correlation induced MITs are called Mott- Hubbard transition, the coherent backscattering of

non-interacting particles from randomly distributed impurities can cause Anderson localization.

Thus, it can be said that the interplay between disorder and interaction leads to many interesting

effects and poses fundamental challenges for both theory and experiment in physics. In the field

of ultracold atoms in optical lattice, where the parameters of the system are easily controlled and

changed. Then, we will study the same problems in more complex and real models, such as the

mass-imbalanced Anderson – Hubbard model.

Objectives

The aim of this project is to study Anderson localization and the Mott-Insulator in some disordered

and interacting fermion systems on two models AFKM and AHM.

Contents

1) Investigate the influence of the Gaussian distribution of disorder on the phase diagram for the

AHM and AFKM models. 2) Study the phase diagram of the asymmetric AHM model at half-filling

and the AHM model with a site-dependent interactions.
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Chapter 1

MOTT INSULATOR, ANDERSON

INSULATOR, TYPICAL MEDIUM

THEORY, AND OPTICAL LATTICE

1.1 Mott Insulator and Anderson Insulator

1.1.1 Mott insulator

In solid state physis, one can be distinguish the materials to the conductors, insulators and

semiconductors at absolute zero temperature by the band theory. For metals, the conduction

band (top region) is partially filled, whereas, for insulators, the conduction and valence bands have a

gap of 3 eV - 6 eV. In the case where there is a narrow gap between the conduction band and the

valence band (about 1 eV), we call the substance a semiconductor, it becomes a weak conductor

when there is electron excitation. Although the energy band picture has been very successful in

classifying solids many transition metal oxides with the partially filled d band has shown to be a

poor conductor and largely they are insulators (e.g., NiO, CO2, V2O3).

For materials like NiO, the electron-electron interaction plays an important role: the Coulomb

repulsion between electrons can be the source of their behavior as an insulator. Mott was the first to

construct important approximations so that a strong correlation of electrons could lead to a insulator

state. This insulator is called the Mott insulator. Mott considers a lattice consisting of a single
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electron orbital per site. In the absence of electron correlation, a single band will be formed due to

the overlapping of atomic orbitals in the system, the region will be filled when two electrons have

opposite spins on each side. However, with two electrons that they have opposite spins there would

be a Coulomb repulsion, where Mott argued that the band would split in two levels: the lower level

is formed from an electron occupying an empty site, the higher region is formed formed when an

electron takes the place of an existing electron. For each electron on each side the lower region is

filled, the system is insulator.

The first theoretical model proposed to explain for the phase transition between metals and Mott

insulator is the Hubbard [7] model. The model is written in the second quantization formalism

H = −t
∑
<ij>

(
c†iσcjσ +H.c.

)
+ U

∑
i

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
− µN, (1.1.1)

with c†iσ (ciσ) is a creation opperator (annihilation opperator) of an electron at site i with spin σ.

The competition between U and t determines whether the system is in the Mott insulator phase or

in the metal phase.

1.1.2 Anderson insulator

Disorder is very common in crystal solids. In fact, the lattice is never perfect, there will have

impurities, defects, excess or empty atoms and lead to the breaking of translation invariance. In 1958,

Anderson [3] introduced a new view of disorder, according to which even a small amount of disorder

can qualitatively and significantly affect the physical properties of the system. The metal-insulator

phase transition caused by disorder is called the Anderson phase transition, the insulator is called the

Anderson insulator (or Anderson localization). If d = 1, it can be exactly proved that the localization

must happen whenever how small the disorder is. As for d = 2, there is no exact solution, has no

phase transition and begins to have a phase transition in the dimensionality d = 3.

This problem can be understood within the framework of a quantum transport theory. However,

its main qualitative features, among which weak and strong localization, can be captured by a

multiple-scattering picture, which proves an intuitive tool to appreciate the effect of disorder. The

incoming wave is assumed to propagate freely through space and to undergo elastic scattering from

each impurity. Then all the waves are scattered many times interference and the wavefunction

density are the result of a complex interference process. As a result, quantum interference increases
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the probability of returning to the original position (contribution of the loop trajectories), although

the motion is still diffuse but the diffusion constant and conductivity decrease.

When there is no disorder, the wave function of the electron in a periodic lattice is the Bloch wave

function. But when there is disorder, instead of treating electrons as propagating waves with short

lifetimes, they can be viewed as confined waves in space with long lifetimes. The wavefuntion

ψ(r) ≈ A exp−|r−r0|/ξ of electron like an exponentially funtion in space with ξ defined as localization

length.

1.2 Typical Medium Theory

1.2.1 Dynamic mean field theory (DMFT)

Dynamic mean field theory is developed to approach problems involving strong correlations, based

on the main idea of replacing a lattice model by a single-site quantum impurity problem embedded

in an effective medium determine self-consistent. The main aim of dynamic mean field theory is

that instead of dealing with lattice problems with many degrees of freedom, we consider a single-site

quantum impurity embedded in a bath of non-interacting electrons containing all the remaining

degrees of freedom. Then the problem will be reduced to the Anderson problem of an effective

medium, the degrees of freedom of the electron bath are approximated by a hybridization function

and must be determined by self-consistent equation. The local action can be represented through

the free "Weiss" mean field propagator G(τ1 − τ2) as follows

Sloc = −
β∫

0

dτ1

β∫
0

dτ2
∑
σ

∑
j,k ̸=0

c∗σ(τ1)G−1
σ (τ1 − τ2)c0σ(τ2)

+U

∫ β

0
dτc∗↑(τ)c↑(τ)c

∗
0↓(τ)c0↓(τ). (1.2.1)

We have a relationship between the Green function G(0)
ijσ(τ − τ ′) with site i = 0 is removed and the

full lattice Green function, i.e,

G
(0)
ijσ = Gijσ −Gi0σG

−1
00σG0jσ, (1.2.2)
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which holds for a general lattice. It is convenient to express the relationship between the local Green

function G00σ ≡ Gσ and the "Weiss" mean field G−1 in the form of a Dyson equation

G−1
σ (iωn) = G−1

σ (iωn)− Σσ(iωn) = iωn + µ−∆σ(iωn)− Σσ(iωn).

When d→ ∞ we have Σσ(k, ω) ≡ Σσ(ω), the lattice Green function in k space, Gkσ(iωn) is given by

Gkσ(iωn) =
1

iωn − εk + µ− Σσ(iωn)
. (1.2.3)

Performing the lattice Hilbert transform we recover the local Green function

Gσ(iωn) =
∑
kσ

Gkσ(iωn) =

∞∫
−∞

dε
ρ0(ω)

iωn − ε+ µ− Σσ(iωn)
,

with ρ0(ω) corresponding to the non-interacting density of states. The self-consistent of DMFT

equation is closed by equation

Gσ(iωn) = − 1

–Z

∫ ∏
σ

Dc∗0σDc0σ[cσ(iωn)c
∗
0σ(iωn)] exp[−Sloc], (1.2.4)

with –Z =
∫ ∏

Dc∗iσDciσ exp[−Sloc]. The equations (1.2.1)-(1.2.4) provide a closed set of equations

for Gσ(iωn) and self-energy Σσ(iωn). However, the single impurity problem is still a complicate

problem, which cannot, in general, be solved exactly.

1.2.2 Dynamic mean field theory (DMFT)- Typical medium theory

(TMT)

DMFT can extend the problem of electronic correlation with local disorder [8]. The Hamiltonian of

AHM reads

Ĥ = −t
∑
ij,σ

c†iσcjσ +
∑
iσ

εiniσ + U
∑
i

n̂i↑n̂i↓, (1.2.5)

the ionic energy εi is a random variable follow a box probability distribution P (εi). If within

the framework of the DMFT the effect of disorder can be determined through the mean of the

local density of states (LDOS), when there is no interaction (U = 0) the method becomes a CPA

approximation [9]-[10], it does not describe a Anderson transition. To fix this problem Dobrosavljevic
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[5] and co-workers have proposed a variant of the DMFT where the typical value of the LDOS as an

order parameter for the Anderson transition. That theory is called typical medium theory (TMT).

The typical value of LDOS is approximated by the geometric average of LDOS.

The typical value of local density of states can be evaluated by

ρtyp(ω) = exp

{∫
dεiP (εi) ln ρ(ω, εi)

}
, (1.2.6)

with LDOS ρ(ω, εi) = −1/πℑG(ω, εi). The Green function corresponding to the ρtyp(ω) is determined

by the Hilbert transform

Gtyp =

∫ +∞

−∞
dω′ ρtyp(ω

′)

ω − ω′ . (1.2.7)

Then, The loop is closed by setting the Green function of the effective medium Gem equal to the

local Green function, e.g.,

Gem(ω) = G0(ω − Σ(ω)) = Gtyp(ω). (1.2.8)

here, the steps are determined by the equations (1.2.6)-(1.2.8) are not exclusive to the problem of no

interaction. The same strategy can be used in any theory characterized by a local self energy.

1.3 Ultralcold atoms in optical lattice

1.3.0.1 Optical lattice

Methods for storing and trapping neutral atoms or charged particles used in experiments are the

key to scientific advances, covering physics in the vast energy range from the elementary particles

to the ultracold atomic quantum matter. Here, we focus on trapping neutral atoms using optical

dipole trap. To form a lattice of atoms, one has to create trap potentials arranged in a periodic

lattice. This can be done using coherent laser beams opposite to each other. Two beams of waves

that interfere to form a standing wave with sites are fixed in space. When we introduce ultralcold

atoms, the wave junctions or the wave belly are atomic confinement points depending on lattice

is blue-deturned traps or red-deturned traps. If two pairs of beams are used in two perpendicular

directions, then we can create a 2D lattice, if we use three pairs of beams we can create a 3D lattice.
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1.3.1 Disordered optical lattice

Disorder can be introduced into the ultracold atomic systems in several ways. An efficient way to

generate random potential is based on the dipole force caused by the electric field. When applied to

an electric field E(r) such as a laser, atom will interaction with this field and leads to a potential

called dipole potential

V (r) =
3πc2ΓI(r)

2ω3
0∆

, (1.3.1)

where I(r) is intensive of electric field, Γ is the scattering rate. ∆ is the difference between the

frequency of the laser beam ωL and the oscillation eigenfrequency of atom ω0: If ∆ < 0 (red-deturned

dipole trap), the potential is repulsive, if ∆ > 0 (blue-deturned dipole trap), the potential is

attractive.
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Chapter 2

DISORDERED FERMIONS SYSTEMS

WITH GAUSS DISTRIBUTION

2.1 Anderson Hubbard Model

2.1.1 Model and Methods

We consider the system described by the Anderson- Hubbard model

H = −t
∑

<ij>σ

(
a†iσajσ + H.c.

)
+
∑
i

εiniσ + U
∑
iσ

ni↑ni↓, (2.1.1)

The local ionic energies εi is the radom variable follow a continuous probability distribution P (εi).

In our paper we consider the box (PBo) and Gaussian (PGa) distributions which are given by

PBo =
1

∆Bo
θ
(
∆Bo
2 − |εi|

)
, PGa =

√
6

π∆2
Ga

exp
(
−6ε2i /∆

2
Ga

)
with θ is the Heaviside step function, ∆

denotes the disorder strength. In order to be able to compare the two different distributions, the

value of ∆Ga is chosen such that the variance of the Gaussian distribution equal that of the box

distribution ∆Bo = ∆Ga = ∆.

The effective single-impurity Anderson Hamiltonian with different εi reads

Himp =
∑
σ

(εi − µ)niσ + Uni↑ni↓ +
∑
kσ

εkc
†
kσckσ +

∑
kσ

(
Vkc

†
kσaiσ + V ∗

k a
†
iσckσ

)
, (2.1.2)
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The hybridization function is related to the matrix element Vk và the dispersion parameter εk by

η(ω) =
∑
k

|Vk|2

ω − εk
. (2.1.3)

For each ionic energy εi, we first calculate the local density of states (LDOS) ρ(ω, εi) = −ℑG(ω, εi)/π.

We can then obtain the geometrically averaged LDOS ρgeom = exp [⟨ln ρ(ω, εi)⟩] as well as the

arithmetically averaged DOS ρarith = ⟨ρ(ω, εi)⟩, with ⟨O(εi)⟩ =
∫
dεiP (εi)O(εi). The lattice Green

function is obtained from Hilbert transformation Gα(ω) =

∫
dω′ ρα(ω

′)

ω − ω′ , with α denotes for "arith"

or "geom". Here, We consider the Bethe lattice with infinite connectivity, ρ0(ε) = 4
πW

√
1− 4(ε/W )2,

W is the band width, the self-consistent condition is given by η(ω) = W 2G(ω)/16. We employ

the equations of motion to solve impurity problem [2], [14]. We focus on the paramagnetic case

at half-filling, for which ⟨n↑⟩ = ⟨n↓⟩ = ⟨ni⟩ /2 và µ = U/2. The impurity Green function can be

approximately obtained by equation

G(ω, εi) =
1− < ni > /2

ω − εi + U/2− η(ω) + Uη(ω)[ω − εi − U/2− 3η(ω)]−1

+
< ni > /2

ω − εi − U/2− η(ω)− Uη(ω)[ω − εi + U/2− 3η(ω)]−1
. (2.1.4)

Next, we derive the linearized DMFT equations. The purely imaginary of Green function at the

Fermi level leads to the recursive relation G(0)(n+1) = −iπρ(n)α ,where the left hand side in the (n

+ 1)th iteration step is given by the result from the (n)th iteration step. On the metallic side the

LDOS is arbitrarily small in the vicinity of the MIT region, we get

Igeom(U,∆) = 2 + ln

[
3

(
U

2

)2

+

(
∆

2

)2
]
+

2
√
3U

∆
arctan

(
∆√
3U

)

− 2 ln

[(
U

2

)2

−
(
∆

2

)2
]
− 2U

∆
ln

∆ + U

|∆− U |
, for∆ < U. (2.1.5)

Igeom(U,∆) =− 4U

∆
ln 2U + (1 +

2U

∆
) ln

[(
∆

2
+
U

2

)2

− U2

4

]

+
U

∆
ln

∆ + 3U

∆+ U
+

πU√
3∆

+ 2− 2 ln

∣∣∣∣∣
(
U

2

)2

−
(
∆

2

)2
∣∣∣∣∣

− 2U

∆
ln

∆ + U

|∆− U |
, for∆ > U. (2.1.6)
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For the linearized DMFT with arithmetical mean, the integral converges if only ∆ < U for ⟨ni⟩ = 1

and in this case

Iarith =
1

∆

[
− 2x

x2 − a2
− 1

2a
ln

∣∣∣∣x− a

x+ a

∣∣∣∣]∣∣∣∣∆/2

−∆/2

=
2(

U
2

)2 − (∆2 )2 +
2

∆U
ln

∆ + U

|∆− U |
(2.1.7)

Then, the equations (2.1.5), (2.1.6) and (2.1.7) are the lineared-DMFT equations of U and ∆ for

both averaged LDOS.

2.1.2 Results and Discussion

Figure 2.1.1: T = 0 phase diagram for the half filled Anderson - Hubbard model with the box
disorder distribution: a comparison between TMT-DMFT with the EOM and the SB4 result in
Ref.[13] (solid line with dots). In our result: solid (dashed) lines are determined by using geometrical
(arithmetical) averaging from the linearized DMFT; squares are obtained from numerical solution of
the DMFT equations. Energy parameters U , ∆ are in the unit set by W = 1.

At T = 0, the interaction - disorder (U -∆) phase diagram of the AHM with the box disorder

distribution is shown in (2.1.1). We compare our result with result obtained from the numerical

solution using four slave bosons to the TMT-DMFT [13]. It is seen that the overall structure is

reproduced: the two insulating phases, Mott insulator and Anderson localization, surround the

correlated metal. The latter is identified for small values of U and ∆. Whereas, the Mott phase

stabilizes with increasing U , and large ∆ favors the Anderson localization. Furthermore, the shape
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of metallic region is in good agreement and the boundary between two types of insulators occurs at

∆ ≈ U when U ≥ 2. . To sum up the comparison, our result within TMT-DMFT with the EOM

is justified on a qualitative level. The ground state phase diagram of the AHM with the Gaussian

disorder distribution is presented in (2.1.2).There is not a big difference between the two phase

diagrams shown in (2.1.1) và (2.1.2). For both disorder distributions one finds a metallic core for

small and intermediate strengths of both the disorder and the interaction. We find that for small

values of U the critical disorder strength in the system with the Gaussian distribution is larger than

those in the system with the box distribution. For example, in the non-interacting system the critical

disorder ∆c(U = 0) ≈ 1.66 for the Gaussian distribution larger than those ∆c(U = 0) ≈ 1.36 for

the box distribution, which is in reasonable agreement with numerical results from the literature

[15]. From (2.1.2) one can see that the border between the Mott and the Anderson insulators for the

Figure 2.1.2: T = 0 phase diagram for the half filled Anderson - Hubbard model with the Gaussian
disorder distribution, obtained from TMT-DMFT with the EOM. Solid line is determined by using
geometrical averaging from the linearized DMFT; dots are obtained from numerical solution of the
DMFT equations, dashed line is a guide to the eye.

system with the Gaussian distribution is located lower than those with the box distribution in the

(U,∆) plane.
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2.2 Anderson Falicov-Kimball model (AFKM)

2.2.1 Model and Methods

We consider the Anderson - Falicov - Kimball model, as defined by the following Hamiltonian

H = −
∑
<i,j>

ti,jc
†
icj +

∑
i

εic
†
ici +

∑
i

Uif
†
i fic

†
ici − µ

∑
i

c†ici, (2.2.1)

with c†i (ci) and f †i (fi) are fermionic creation (annihilation) operators for the mobile and immobile

particles at a lattice site i. tij is a hopping amplitude for mobile particles between i and j, Ui

the local interaction strength between mobile and immobile particles occupying in the same site

i. εi is the local impurity. These two quantities are randomly distributed through the lattice, we

assume a Gaussian distribution for impurities P (εi) =
√

6
π∆2 exp

(
−6ε2i /∆

)
and a box distribution

for local Coulomb interaction P̃ = θ(δ/2− |Ui − U |)/δ, where θ is the step function, ∆(δ) measures

the amount of Anderson (Coulomb) disorder, and U s the mean value of the Coulomb interaction

strength. Here, we deal only with the repulsive interaction, Ui ≥ 0, which leads to U ≥ δ/2. The

mean particle number for the mobile and trapped fermions at the ith site are given by ni =< c†ici >

and pi =< f †i fi >, and they are independent from each other.

The AFKM is solved within the DMFT combined with the TMT. The equation of motion for

Hamiltonian (2.2.1) are expressed by [17] và [2]. The local Green Gii(ω) and self-energy Σi(ω) are

given by, here we assume the lattice to be homogeneous with pi = p and p ∈ [0, 1])

Gii(ω) =
1

ω + µ− εi − η(ω)− Σi(ω)
≡ G(ω, εi), (2.2.2)

Σi(ω) = pUi +
p(1− p)U2

ω + µ− εi − (1− p)Ui − η(ω)
. (2.2.3)

The local density of states is ρi(ω) = − 1

π
Im[Gii(ω)]. Then, the both average of LDOS are given by

ρarith(ω) =

∫
dUi

∫
dεP (εi)P̃ (Ui)ρ(ω, εi, Ui), (2.2.4)

ρgeom(ω) = exp

[∫
dUi

∫
dεP (εi)P̃ (Ui) ln ρ(ω, εi, Ui)

]
. (2.2.5)

The lattice, i.e., translationally invariant, Green function is obtained by the Hilbert transform
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Gα,typ(ω) =

∫
dω′ ρα(ω

′)

ω − ω′ , with α stands for either "geom" or "arith". We consider the Bethe lattice

with infinite connectivity, ρ0(ε) = 4
√
1− 4(ε/W )2, for which the self-consistent condition is given

by η(ω) = W 2G(ω)/16. In addition, we study the band is half - filled, i.e., ⟨ni⟩ = ⟨n⟩ = 1/2 and

p = 1/2, µ = U/2.

To proceed further, we note that in the half-filled band case, the ground state properties can

be determined by the averaged LDOS at the Fermi level ρarith(ω) and ρgeom(ω) at (ω = 0): (i)

ρgeom(0) > 0 denotes a metallic phase, (ii) ρarith(0) = 0 indicates a Mott insulator phase (hard gap).

(iii) ρarith(0) > 0 and ρgeom(0) = 0 denote a Anderson insulator phase (gapless). In addition, the

Green function at the Fermi level is purely imaginary, G(0) = −iπρα(0) and on the metallic side the

LDOS is arbitrarily small in the vicinity of the MIT region. Therefore, the transition points on the

phase diagram can be found by linearizing the DMFT equations. The equations which determine

the MIT for both arithmetic and geometric means, respectively, take the form

1 =

√
6

π

1

4∆δ

∞∫
0

dεi

[
U/2− δ/4

(U/2− δ/4)2 − ε2i
− U/2 + δ/4

(U/2 + δ/4)2 − ε2i

]
e−

6ε2i
∆2 , (2.2.6)

1 =
W 2

16
exp

 4

∆δ

√
6

π

∞∫
0

dεif(δ, U, εi)e
− 6ε2i

∆2

 , (2.2.7)

with f(δ, U, εi) = t ln[t2 + ε2]− 2t ln |t2 − ε2|+ 2t+ 2ε

(
arctan

t

3
+ ln

∣∣∣∣ t− ε

t+ ε

∣∣∣∣)∣∣∣∣t2
t1

, where t1 =
U

2
−

δ

4
, t2 =

U

2
+
δ

4
.

For each value of δ the equations (2.2.6) and (2.2.7), which determined the ∆-U phase diagram.

2.2.2 Results and Discussion

Firstly, we calculate the case without Coulomb disorder (δ = 0), the U − ∆ phase diagram of

AFKM of AFKM with the Gaussian impurity disorder distribution is shown in (2.2.1) ((dash gray

lines) as well as well as in (2.2.2) (top-left part). As in the case of the box impurity disorder

distribution [6], we find that the metallic phase is identified for small value of U and ∆, the Mott

insulator appears when we increases U the Anderson insulator naturally overcomes for large ∆.

This is clearly seen in (2.2.1) we show that the major effect of including Coulomb disorder is the

narrowing of the metal and the Mott insulator regions as the strength of Coulomb disorder increases.

We note that all the critical curves presented in (2.2.1) were obtained directly from equations
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Figure 2.2.1: Phase diagrams of the AFKM for different Coulomb disorder strengths (solid red
(dash blue) lines for geometric (arithmetic) mean) compared with the δ = 0 case (dash gray lines).
The vertical dotted line splits the regions for which U < δ/2 (left side; not considered) and U ≤ δ/2
(right side). W sets the energy unit.

(2.2.6) - (2.2.7), however, it can verified that the numerical results obtained by solving the self -

consistent equations of DMFT absolutely matches with those from the linearised DMFT. In (2.2.2)

we compare our result with those obtained in [16], where the AFKM with box distribution for the

local impurities P (εi) = θ(∆/2 − |εi|)/∆ and box distribution for Coulomb interaction strength

P̃ (Ui) = θ(δ/2− |Ui + U |). In order to be able to compare the box and Gaussian distributions, we

choose their variances equal. There is not a big difference between the two phase diagrams when

δ = 0: for both disorder distributions one finds a metallic core for small and intermediate strengths

of both the disorder and the interaction. However, on a quantitative level the results differ each

other. We find that for small values of U , the critical disorder strength in the system with the

Gaussian distribution is larger than those in the system with the box distribution.

2.2.3 Conclustions

SIn summary, in this chapter we study the influence of Gauss distribution of disorder into the

nonmagnetic ground state phase diagram for AFKM and AHM using the equation of motion as an

impurity solver. We show that within DMFT-TMT the phase diagrams of the AFKM and AHM
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Figure 2.2.2: Phase diagrams of the AFKM with the Gaussian impurity disorder distribution and
the box Coulomb disorder distribution (our result, red lines with squares) compared to those with
the box impurity distribution and the box Coulomb disorder distribution in Ref.[16] (blue lines with
dots.

with the Gaussian distribution for impurities are qualitatively similar. For AFKM, We show that

the metallic and Mott insulator regimes shrink as the local Coulomb disordered strengths increases.
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Chapter 3

ASYMMETRIC ANDERSON

HUBBARD MODEL AND ANDERSON

HUBBARD MODEL WITH

SITE-DEPENDENT INTERACTIONS

3.1 Asymetric Anderson Hubbard Model (Mass

imbalance)

3.1.1 Model and Methods

The Hamiltonian model is solved within the DMFT [12], [2]. The effective single impurity Anderson

model with different εi reads

Himp =
∑
σ

(εi − µα)niσ + Uni↑ni↓

+
∑
kσ

εkσc
†
kσckσ +

∑
kσ

(
Vkσc

†
kσaiσ + V ∗

kσa
†
iσckσ

)
, (3.1.1)
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SWe now employ the equations of motion method (3.1.1) for solving the effective single impurity

Anderson model, The local Green function in this case can be approximately expressed as (2.1.4)

Gσ(ω, εi) =
1− < ni > /2

ω − εi + U/2− ησ(ω) + Uησ̄(ω)[ω − εi − U/2− ησ(ω)− 2ησ̄(ω)]−1
(3.1.2)

+
< ni > /2

ω − εi − U/2− ησ(ω)− Uησ̄(ω)[ω − εi −+U/2− ησ(ω)− 2ησ̄(ω)]−1
,

where ησ(ω) = t2σGσ(ω). Equation (3.1.2) reproduces the result in [6] for r = 0 and in the mass

imbalance AHM r = 1 (t↑ = t↓) in [1]. In the non-disorder case εi = 0, equation 3.1.2 is reduced to

the mass-imbalance HM case in [18] and [20].

The linearized DMFT equations determining the MIT for both geometrical and arithmetical mean

can be obtained for ρ↑α and ρ↓α, α denotes a(g) corresponding to "arith" and "geom". The A pair

of linear equations for

[I1(U,∆)− 1][r2I1(U∆− 1)]− [UI2(U,∆)r]2 = 0 (3.1.3)

with t↑α = 1 sets the energy unit, t↓α = r.

I1(U,∆) =
1

∆

∫ ∆/2

−∆/2
dε
ε2 + U2/4 + (1− ni)Uε

[ε2 − U2/4]2
, (3.1.4)

I2(U,∆) =
1

∆

∫ ∆/2

−∆/2
dε
U/2 + (1− ni)ε

[ε2 − U2/4]2
. (3.1.5)

In the two limits r = 0 and r = 1 equation (3.1.3) is reduced to equation (15) in Ref.[6] and equation

(11) in Ref.[1], correspondingly.

The equations for ρ↑g(0) and ρ↓g(0) are also obtained

ρ↑g(0) = exp

[
1

∆

∫ ∆/2

−∆/2
ln

(
t2↑
[
ε2 + U2/4 + (1− ni)Uε

]
ρ↑g(0)

[ε2 − U2/4]2
+
Ut2↓ [U/2 + (1− ni)ε] ρ↓g(0)

[ε2 − U2/4]2

)
dε

]
(3.1.6)

ρ↓g(0) = exp

[
1

∆

∫ ∆/2

−∆/2
ln

(
Ut2↓ [U/2 + (1− ni)ε] ρ↑g(0)

[ε2 − U2/4]2
+
t2↑
[
ε2 + U2/4 + (1− ni)Uε

]
ρ↓g(0)

[ε2 − U2/4]2

)
dε

]
.

(3.1.7)
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3.1.2 Results and Discussion

Figure 3.1.1: (Color online) Nonmagnetic ground state phase diagram for the half-filled AHM with
mass imbalance for different values of r = 0.1, 0.5 and comparison with the result of the balanced case
r = 1. Solid with squares (solid with dots) lines are determined by using geometrical (arithmetical)
averaging for r = 0.1. Dash with squares (dash with dots) lines are determined by using geometrical
(arithmetical) averaging for r = 0.5. Dot with squares (dot with dots) lines are determined by using
geometrical (arithmetical) averaging for the balanced case r = 1. The spin-selective localized phase
is located in the line U = 0,∆r↓ < ∆ < ∆c↓.

KThe main result of our investigation is the nonmagnetic ground state phase diagram of the

mass imbalanced AHM at half-filling shown in (3.1.1) for r = 0.1, 0.5, 1.0. For 0 < r < 1 four

different phases are observed in the phase diagram: (1)The Anderson insulator phase is defined

by ρσg(0) = 0, ρσa(0) > 0. In the non-interacting system (U = 0), the critical disorder strength

∆c↑(U = 0) = 2e for all r. Similar to the mass balanced case, here, larger ∆ favors the Anderson

localization. In addition, the Anderson insulator region is enlarged with increasing the mass imbalance

(r decreases) because at fixed t↑, the larger the difference in the bare mass, the smaller t↓ and the

easier it is to localize the system. (2) The Mott insulator phase is identified by ρσa(0) = 0. As

in the balanced case the Mott insulator stabilizes with increasing U . Furthermore, its region is

enlarged with increasing the mass imbalance (r decreases) for the same reason as the Anderson

insulator. (3) The metal is determined by ρσg(0) > 0 and found for small values of U and ∆. Its

shape is similar to those of the balanced case, but its region is reduced with increasing the mass
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imbalance (r decreases) because the region of both types of insulator are enlarged. (4) The partially

localized or spin-selective localized phase, where the spin-down particles are localized (ρ↓g(0) = 0)

while those with spin-up are still itinerant (ρ↑g(0) > 0). PThis phase originates from the mass

imbalance in the system and takes place when U = 0 và 2er = ∆r↓(U = 0) < ∆ < ∆c↑(U = 0) = 2e.

It should be noted that without interaction (U = 0) the two spin components are independent, and

the spinselective localized phase can be found, but as soon as the interaction is switched (U ̸= 0) on

the two spin components are coupled, as a result ρ↑g(0) and ρ↓g(0) are vanished simultaneously and

the spin-selective localized phase no longer exists.

3.2 Anderson Hubbard Model with site-dependent

interactions

3.2.1 Model and methods

The Hamiltonian of AHM reads

H = −t
∑

<i,j>,σ

(a†iσajσ + h.c.) +
∑
iσ

(εi − µσ)niσ + U
∑
i

[
ni↑ni↓ −

1

2
(ni↑ + ni↓)

]
, (3.2.1)

where εi follow a box probability distribution with ∆ denotes the Anderson disorder strength.In our

paper we consider two types of site-dependent Coulomb repulsion Ui:

(i) Ui is assumed as random and uniformly distributed within the interval [U − δ/2;U + δ/2], U is

the mean value of the on-site interaction, δ is the Coulomb disorder strength. Here, we only consider

the repulsive interaction, Ui ≥ 0, from which U ≥ δ/2.

(ii) Uiis spatially alternating interactions in a bipartite lattice, i.e., Ui = Us in the sublattice s = A,B.

Within the DMFT [12] - [2], Hamiltonian (3.2.1) is mapped onto an effective Anderson model as

follows

Himp =
∑
σ

(εi − µ)niσ + Ui

[
ni↑ni↓ −

1

2
(ni↑ + ni↓)

]
+
∑
k,σ

εkc
†
kσckσ (3.2.2)

+
∑
kσ

(
Vkc

†
kσaiσ + V ∗

k a
†
iσckσ

)
.
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We restrict our study to the nonmagnetic case at half-filling, for which ⟨ni↑⟩ = ⟨ni↓⟩ = ⟨ni⟩ /2 và

µ = 0. By decoupling the equations of motion at second order, the impurity Green function can be

approximated as follow

Gσ(ω, εi) =
1− < ni > /2

ω − εi + Ui/2− ηi(ω) + Uiηi(ω)[ω − εi − Ui/2− 3ηi(ω)]−1
(3.2.3)

+
< ni > /2

ω − εi − Ui/2− ησ(ω)− Uiησ̄(ω)[ω − εi −+U/2− ησ(ω)− 2ησ̄(ω)]−1
,

where ηi(ω) is the hybridization function, which describes the coupling of lattice site i with all

other sites of the system within the DMFT. Here Ui = Us, ηi = ηs if i ∈ s-sublattice for the case of

spatially alternating interactions, while ηi is site-independent for the case of random interactions. In

the non-disorder limits εi = 0, Ui = U , equation (3.2.3) is the recovery of the (full) Hubbard III

approximation of the Hubbard model at half-filling [7].

(i)Random on-site interactions. The arithmetic and geometric mean of the LDOS can be evaluated

by

ρarith(ω) =

∫
dUi

∫
dεP (ε)P̃ (Ui)ρ(ω, εi, Ui), (3.2.4)

ρgeom(ω) = exp

[∫
dUi

∫
dεP (ε)P̃ (Ui) ln ρ(ω, εi, Ui)

]
. (3.2.5)

The linearized DMFT equations with arithmetic and geometric means, which determine the boundary

curves between metallic and insulating phases, are obtained as

1 =
W 2

16∆δ

∫
dUi

∫
dεY (ε, Ui), (3.2.6)

1 =
W 2

16
exp

[
1

∆δ

∫
dUi

∫
dε lnY (ε, Ui)

]
, (3.2.7)

where Y (ε, Ui) =
ε2 + 3U2

i /4 + 2εUi(1− ⟨ni⟩)
[ε2 − U2/4]2

.

(ii) Spatially alternating interactions. The arithmetically and geometrically averaged LDOS for

s-sublattice can be now is given by

ρs,arith(ω) =

∫
dεP (ε)ρ(ω, ε, Us), (3.2.8)

ρs,geom(ω) = exp

[∫
dεP (ε) ln ρ(ω, εi, Us)

]
. (3.2.9)
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The Green function for s-sublattice is obtained by corresponding Hilbert transform. Similary, we

also obtain the equations of linearized DMFT as follow

1 =
W 2

16
exp [Igeom(UA, UB,∆)] , (3.2.10)

where Igeom(UA, UB,∆) =
1

2∆

∫
dεi ln [YA(εi)YB(εi)] , for the linearized DMFT with geometric

mean, and

1 =
W 2

16
Iarith(UA, UB,∆), (3.2.11)

where Iarith(UA, UB,∆) = 1
∆

[∫
dεiYA(εi)

∫
dεYB(εi)

]1/2
, for the linearized DMFT with arithmetic

mean, Ys(εi) =
ε2i + 3U2

s /4 + 2εiUs(1− ⟨ni⟩)
[ε2i − U2

s /4]
2

.

3.2.2 Results and discussion

The ground state will be investigated from the obtained values of ρarith and ρgeom : (1) ρarith(0) ̸= 0

and ρgeom(0) ̸= 0 indicate a metallic phase, (2) ρarith(0) = 0, ρgeom(0) = 0 and
∫
ρgeom(ω)dω ̸= 0

give a Mott insulating phase, (3)
∫
ρgeom(ω)dω = 0 specifies an Anderson localized phase, (4)

ρarith(0) ̸= 0, ρgeom(0) = 0 and
∫
ρgeom(ω)dω ̸= 0 specify localized states inside the Mott gap

(i) Random on-site interactions. Figure (3.2.1) depics the U −∆ nonmagnetic phase diagrams of the

half-filled AHM for various Coulomb disorder strengths. The system can be in a metallic phase, a

MI, localized states inside the Mott gap or an Anderson localization phase. It should be noted that

the metallic domain and the Mott insulating domain are only connected when δ = 0. In the presence

of Coulomb disorder, δ ̸= 0,one can see that the metallic domain and the Mott insulating domain is

separated by the localized states inside the Mott gap. The extended states (metallic region) and

the true band gap are no longer connected as the localized states are in between. If the Coulomb

disorder increases, the metallic and Mott insulating regions shrink, whereas the Anderson localized

region is enlarged. When the Coulomb disorder reaches its maximum, δ = 2U , the Mott insulating

region disappears, and the system enters either a metallic, Anderson localized phase or localized

states inside the Mott gap. When δ = 2U , the Coulomb strength Ui at a given site will range

from 0 to 2U ; thus, when taking the arithmetic average, there will always be a distribution from

non-interacting electrons (Ui = 0) that prevents the establishment of a Mott insulating phase. Both

Anderson disorder and Coulomb disorder support Anderson localization and prevent the metallic
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Figure 3.2.1: Phase diagram of the half-filled AHM for different Coulomb disorder strengths (solid
line) compared with the δ = 0 case (dash lines). M, AI, MI and LS stand for metal, AI, MI and
localized states in the Mott gap, respectively. Energy scale: W = 1.

phase as well as the MI from being established. But only Coulomb disorder can suppress the Mott

insulating completely. In addition to the narrowing of the metallic and MI regions, the presence of

Coulomb disorder gives rise to a new region where the system is in a localized state.

(ii)Spatially alternating interactions. In order to present our numerical results for spatially alternating

interactions, we set UB = U and r = UB/UA and r: 0 < r < 1. The nonmagnetic groundstate phase

diagram, the main result of our investigation for spatially alternating interactions, is shown in figure

6 for different values of r = 0.5, 0.8 and 1.0. In this phase diagram we do not distinguish the Mott

insulating phase from localized states inside the Mott gap one, but simply refer them to a disordered

MI. For 0 < r < 1 three different phases (metal, MI and AI) can be seen in the phase diagram as

r = 1, but the metallic region is reduced, and the AI region is enlarged by decreasing the spatial

modulation parameter e.

3.2.3 Conclusions

In the mass-imbalance AHM case, in addition to the three phases showed up in the balanced case,

the phase diagram of the mass imbalanced case contains a spin-selective localized phase, where one
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Figure 3.2.2: Phase diagram of the half-filled AHM with spatially alternating interactions for
different values of r = 0.5, 0.8 compared with r = 1. M, AI and MI stand for metal, AI, and
disordered MI, respectively

spin component is metallic while the other spin component is insulating.

In the AHM with site-dependent interactions case, we figure out that the presence of Coulomb

disorder drives the system toward the Anderson localized phase that can occur even in the absence

of Anderson structural disorder. For the spatially alternating interactions, we find that the metallic

region is reduced and the Anderson insulator one is enlarged with increasing interaction modulation.
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CONCLUSIONS

In this thesis, we want to investigate the influence of disorder and correlation in two models AHM

and AFKM through four problems in chapter 2 and chapter 3. (1)-(2) Investigate the influence of

Gaussian distribution on the phase diagram of two models AHM and AFKM. The similar overall

form of the phase diagram as well as the averaged local densities of states obtained from the box

and Gaussian disorder distribution indicate that qualitatively they are not dependent on the choice

of the above disorder distributions. However, note that this conclusion is derived within the TMT -

DMFT with an approximation to the equation of motion as an impurity solver. (3) We have studied

the ground state phase diagram of the mass imbalanced AHM at half-filling. In addition to the

three phases that showed up in the balanced case, the phase diagram of the mass imbalanced case

contains a spin-selective localized phase. For 0 < r < 1 we found that excluding the non-interacting

case the phase transition occurs simultaneously for two spin components, both the Anderson and

Mott insulator region are enlarged and the metallic one is reduced as the mass imbalance increased.

The phase diagram of the mass imbalanced AHM also differs from those of the balanced case by the

fact that the spin-selective localized phase is appeared in the line U = 0, ∆r↓ < ∆ < ∆c↑. (4) we

studied the solutions of the half-filled AHM with site-dependent local interactions. The two simplest

types of site-dependent interactions considered in the presence paper are the random and uniformly

distributed one and the spatially alternating one in the lattice. In the case of random and uniformly

distributed interactions, we showed that Coulomb disorder has the main effect of driving the system

from a metallic state to the Anderson localized phase, and the Anderson localized states appear

even in the absence of Anderson structural disorder. For the spatially alternating interactions, we

find that the metallic region is reduced and the Anderson insulator one is enlarged with increasing

interaction modulation.
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