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INTRODUCTION

Motivation

Fast reaction limits (or instantaneous limits) is a topic that has been

developed in recent years. In particular, the main idea is that in a series of

reactions that there are some reactions, which occur very quickly, then we

will approximate those reactions by their equilibrium states, which reduce

the numbers of reaction and variable, and make the system become simpler.

In fact, the first research on this topic dates back to the beginning of the

last century through discoveries in the field of biochemistry with the article

by Michaelis and Menten [1], from which it quickly became a technique

that popular in technical chemistry and related fields. However, although

it is widely applied in practical problems, a rigorous mathematical proof of

this method has not been paid attention for a long time. Moreover, abusing

this method can lead to incorrect results, with a counterexample given in

[2]. Therefore, a detailed proof of this reduction idea, even in just for a

system contains one reaction, is being interested.

Besides, early researches on the fast reaction limits were mainly for the

systems of ordinary differential equations, which were intended to simplify

the problem by considering the concentration at all locations to be the

same (or also called homogeneity). For realistic models, the inhomoge-

neous property, for example, spatial diffusion, often have to be taken into

account. It led to new studies on the fast reaction limits for systems of

partial differential equations, starting from 1980 with Evans’s paper study-
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ing a system of two diffusion equations in the 3-dimensional case (see [3]).

Since then, this research direction has become popular not only because of

its applications but also theoretically when it comes to many interesting

mathematical structures, some typical works include, [4, 5, 6, 7]. In par-

ticular, the study of fast reaction limits for bulk-surface reaction-diffusion

systems (or volume-surface reaction-diffusion systems) has received a lot of

attention in recent years when the system is used for modeling in a number

of fields such as population biology, materials science or cell biology (see,

e.g., [8, 9, 10]). Here, an example is article [6], where the authors consider

the reaction equation:

U
k
⇆
k
V

with U is a substance on volume Ω, V is a substance on boundary Γ := ∂Ω

and k is the reaction rate. Denote (uk, vk) the concentration of U and V ,

corresponding to reaction rate k. It has been shown in article [6] that

(uk, vk) → (w,w|Γ)

strongly in L2(0, T ;H1(Ω)×H1(Γ)) as k → ∞, where w is the weak solution

of a heat equation with dynamical boundary and w|Γ is the trace of w on

the boundary Γ. At the end of the article, the authors have given an open

question in nonlinear case, which means considering the stoichiometrics in

the chemical reaction are arbitrary positive numbers, what can we conclude

about the fast reaction limits. In this thesis, we will have a result about

this open question.

Main content

Consider an open, bounded, and connected set Ω ⊂ Rn, we will research

the asymptotic behavior of the reversible chemical reactions with the form

αU
k
⇆
k
βV (1)
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when the reaction rate k > 0. Similar to the case α = β = 1 as above, U is a

(volume-)substance on Ω, V is a (surface-)substance on Γ := ∂Ω (we assume

that the boundary Γ is smooth enough) and the stoichiometric coefficients

α, β ≥ 1 (in the view of chemistry, we can assume that α, β ∈ Z+).

The reaction (1) is motivated from a process called asymmetric stem

cell division, where there is a reaction between the proteins in cell cortex

and cell cytoplasm. An example is in SOP stem cells of Drosophila, the

division operates around a key protein called Lgl (Lethal giant larvae) and

the chemical reaction is the reaction between the Lpl protein on cytoplasm

and the one on membrane (see [8] and its references).

To rewrite reaction (1) in a mathematical problem, we set u(x, t) and

v(x, t) stand for the concentration of U and V at position x and time t.

Due to the mass action law and Fick’s second law, we can model (1) by the

following reaction-diffusion system problem

ut − du∆u = 0, x ∈ Ω, t > 0,

du∇u · ν = −α
ϵ (u

α − vβ), x ∈ Γ, t > 0,

∂tv − dv∆Γv = β
ϵ (u

α − vβ), x ∈ Γ, t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ Ω,

v(x, 0) = v0(x) ≥ 0, x ∈ Γ,

(2)

where we change the parameter ϵ = 1/k. In the above system, positive

constants du and dv are the diffusion coefficients of U in Ω and V in Γ,

respectively. We use the notation ∆ for Laplace operator on Ω, ∆Γ for

the Laplace–Beltrami operator on Γ and ν for the outward pointing unit

normal vector field on the boundary Γ. The initial condition (u0, v0) are

some non-negative function defined on Ω and Γ, which should be bounded

on corresponding area. The second and third equations of (2) are coupled
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by the rate function uα−vβ, which is a consequence of mass action law. The

system (2) is a bulk-surface reaction-diffusion system (or volume-surface

reaction-diffusion system) with nonlinear boundary coupling, and we call

nonlinear bulk-surface-reaction-diffusion system for short. From the system

(2), we can show that it satisfies the following mass conservation law

α

∫
Ω
u(x, t)dx+ β

∫
Γ
v(x, t)dS = α

∫
Ω
u0(x)dx+ β

∫
Γ
v0(x)dS =M0,

for each t > 0, and M0 is some non-negative constant.

In this thesis, we will concentrate on two questions. The first one is about

the fast reaction limit, that is, the reaction rate k → ∞, or, ϵ tend to 0,

how the solution of (2) converges. Let (uϵ, vϵ) be the unique weak solution

of the system (see [10]), we will show that there exists a subsequene of

{(uϵ, vϵ)}, converges to (w, z) as the parameter ϵ → 0, where z = (w|Γ)α/β

and w is the solution to a heat equation with nonlinear dynamic boundary

condition, see (3).

On the second question, we will consider on the convergence rate. In

detail, we will show that in the case α = β, and adding some technical

assumption, we will have a estimate in term ϵ for |uϵ − w| and |vϵ − z| (in
the L2− norm).

Methodology

In this thesis, we will prove the fast reaction limits by using functional

analytic approach. In this method, most of recent articles have done with

three main steps (see [4],[6],[11]). The first one is formally guessing the

limit, base on the structure of system. In the system (2), formally, one can

expect that uϵ → w and vϵ → z as ϵ→ 0, in a certain sense, and due to the

reactions in (2), it is expected that uαϵ − vβϵ → 0 on Γ, as the reaction rate

tends to infinity, which means the limit wα = zβ on Γ. Therefore, from the

original system (2), by substituting (u, v) by (w, (w|Γ)α/β), and combining



5

the second and third equation to remove the parameter ϵ, the formal limit

system of the original system (2) as ϵ→ 0 would be

∂tw − du∆w = 0, x ∈ Ω, t > 0,

du∇w · ν = −α
β [∂t(w

α/β)− dv∆Γ(w
α/β)], x ∈ Γ, t > 0,

w(x, 0) = u0(x), x ∈ Ω,

w|Γ(x, 0) = v
β/α
0 (x), x ∈ Γ.

(3)

This a heat equation with nonlinear dynamic boundary conditions.

The next step is to prove uniform estimations using the Lp approach,

entropy function, and so on, which is based on the structure of the system

(see [12]). In the last step, by these estimations, we will take the limit,

such as applying Aubin–Lions Lemma (see Lemma 1.1) and then define

the solution of the limit system. In these step, the second step is the most

difficult since we do not have any global method for this one, and also we

do not know which estimation is required.

For the second problem, the convergence rate, we use a similar calcula-

tion in [7] by setting U = u − w and V = v − z, and then estimates the

L2−norm of them with their time derivative. During the calculation, we

will need some technical assumptions.

Thesis structure

This thesis will be structured as following: In the first chapter, we will

present some important knowledge for the result, including Sobolev spaces,

Aubin–Lions Lemma and the existence of solution for system (2). Then,

on Chapter 2, we show that the convergence. After that, the limit system

and convergence rate will be shown on Chapter 3. Finally, we will discuss

some questions related to this problem.
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Chapter 1

PRELIMINARIES

The target of this chapter is to present some basic notations, definitions

and theorems, which are necessary for the following chapters.

1.1 Lp spaces

A vector x = (x1, . . . , xn)
T ∈ Rn, the Euclidean norm is given by

|x| =

√√√√ n∑
i=1

x2i .

For two vectors x, y ∈ Rn, x = (x1, . . . , xn)
T and y = (y1, . . . , yn)

T , the

inner product between x and y is given by

x · y =
n∑

i=1

xiyi.

Otherwise, if it is a norm defined for a Banach space X, we will use the

notation ∥ · ∥X , and, for an inner product for a Hilbert space H, we denote

by (·, ·)H .

Definition 1.1 ([13]). Consider an open subset Ω of Rn, we define Lp(Ω)
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is the space of all functions f : Ω → R with the finite Lp−norm

∥f∥Lp(Ω) :=

(∫
Ω
|f(x)|pdx

)1/p

if 1 ≤ p <∞. For the case p = ∞, we use the norm

∥f∥L∞(Ω) := ess sup
x∈Ω

|f(x)|.

We call a property that holds almost everywhere on Ω, if it is true on Ω

except a (or union of) subset(s) that has measure equal to 0, and written

short as “a.e.” (see [13, Section 1.4]).

Definition 1.2 ([14]). Let U, V be open subset of Rn. We write U ⊂⊂ V ,

if U ⊂ Ū ⊂ V , and we say the subset U us compactly contained in V .

Definition 1.3 ([14]). The functional sapce Lp
loc(Ω) contains all functions

f : Ω → R, such that for every K ⊂⊂ Ω, f ∈ Lp(K).

Theorem 1.1 (Hölder’s inequality, [14]). Assume 1 ≤ p, q ≤ ∞, 1/p +

1/q = 1. Then, if u ∈ Lp(Ω), v ∈ Lq(Ω), we have∫
Ω
|uv|dx ≤ ∥u∥Lp(Ω)∥v∥Lq(Ω).

Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) be two Banach spaces, the product space

X × Y is the space that contains all the elements (x, y), with x ∈ X and

y ∈ Y . In this case, we use the norm in X × Y

∥(x, y)∥X×Y := ∥x∥X + ∥y∥Y .

Next, we state three important convergence theorems.

Theorem 1.2 (Fatou’s Lemma, [14]). Assume the functions {fk}∞k=1 are
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non-negative and measurable, we have∫
Ω
lim inf
k→∞

fkdx ≤ lim inf
k→∞

∫
Ω
fkdx.

Remark 1.1. The Fatou’s lemma still works if we change the non-negative

condition to a lower bound or an upper bound condition. Indeed, if there

exists an integrable function g, where for all k, fk ≥ −g a.e.; we can apply

the original Fatou’s lemma to the sequence of functions fk + g ≥ 0. We

obtain ∫
Ω
lim inf
k→∞

(fk + g)dx ≤ lim inf
k→∞

∫
Ω
(fk + g)dx.

So, ∫
Ω
lim inf
k→∞

fkdx ≤ lim inf
k→∞

∫
Ω
fkdx.

For the upper bound case fk ≤ g, we apply to sequence {g − fk}, which we

need to change lim inf to lim sup and change the sign of inequality to get∫
Ω
lim sup
k→∞

fkdx ≥ lim sup
k→∞

∫
Ω
fkdx.

Theorem 1.3 (Monotone Convergence Theorem, [14]). Consider increas-

ing sequence of non-negative functions {fk}∞k=1, that is, 0 ≤ fi ≤ fj (where

i ≤ j), we have

lim
k→∞

∫
Ω
fkdx =

∫
Ω
lim
k→∞

fkdx.

Theorem 1.4 (Dominated Convergence Theorem, [14]). Assume the func-

tions {fk}∞k=1 are integrable and satisfy limk→∞ fk = f . Suppose also

|fk| ≤ g a.e. for all k, we have

lim
k→∞

∫
Ω
fkdx =

∫
Ω
lim
k→∞

fkdx =

∫
Ω
fdx.

Definition 1.4 ([15]). We denote X∗ the dual space of X, which is the

space that contains all the linear functional on X. The norm on X is the
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operator norm

∥f∥X∗ = sup
∥x∥X≤1

⟨f, x⟩X∗×X ,

which ⟨f, x⟩X∗×X = f(x) is the pairing of f ∈ X∗ and x ∈ X.

Remark 1.2. Let 1 < p < ∞, the dual sapce of Lp(Ω) is Lq(Ω), where

1/p+ 1/q = 1

1.2 Sobolev spaces

In this section, we will briefly present the theory of Sobolev spaces,

which is a powerful tool of functional analysis to work on problems in

partial differential equations.

1.2.1 Sobolev spaces on bounded domains

We first start with the Sobolev space on the domain Ω, where Ω is an

open, bounded subset of Rn. Sobolev space comes from the idea of defining

a functional space that is Banach but still has some smoothness properties,

or its function has a weak derivative - a weakened form of the classical

derivative.

Definition 1.5 (Weak derivative, [14]). Denote C∞
c (Ω) the space of in-

finitely differentiable functions with compact support in Ω. Suppose that

u, v ∈ L1
loc(Ω) and a multi-index α = (α1, . . . , αn). We say that v is the

αth- weak partial derivative of u, written as

Dαu = v,

if the following equation holds for all φ ∈ C∞
c (Ω)∫

Ω
uDαφdx = (−1)|α|

∫
Ω
φvdx.
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With the weak derivative mentioned above, we now give the definition

for Sobolev spaces

Definition 1.6 (Sobolev spaces, [14]). With k ∈ N, 1 ≤ p <∞, the Sobolev

space

W k,p(Ω)

contains all function u : Ω → R such that for each multi-index α, with

|α| ≤ k, u has the αth-weak derivative Dαu and it belongs to Lp(Ω).

Notice that with k = 0, the Sobolev space W 0,p(Ω) = Lp(Ω). Next, we

go to the norm of Sobolev space.

Proposition 1.1 (Norm of Sobolev spaces, [14]). Sobolev space W k,p(Ω) is

a Banach space, equipped by the following norm

∥u∥W k,p(Ω) :=

∑
|α|≤k

∫
Ω
|Dαu|pdx

1/p

.

Notation: In the thesis, we mostly work in the Sobolev spaces with

p = 2, and we use the notation:

Hk(Ω) := W k,2(Ω) (k ∈ Z+),

where the letter H is used since it is a Hilbert space.

Proposition 1.2 ([14]). The Sobolev space Hk(Ω) is a Hilbert space, with

the inner product

(u, v)Hk(Ω) :=
∑
|α|≤k

∫
Ω
(Dαu)(Dαv)dx.

One of the most significant difference between Lp(Ω) andW k,p(Ω) spaces

is that Sobolev spaces allow us to work with the boundary of Ω via the trace
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theorems. Before stating a theorem, we need to define the smooth domain

(or domain with smooth boundary).

Definition 1.7 (Smooth domain, [16]). An open set Ω ⊂ Rn is Ck if for

each point x0 ∈ Γ := ∂Ω, there exists a system of coordinates (y1, . . . , yn−1, yn)

≡ (y′, yn), with origin x0 and a ball B(x0, r) and a function ϕ (on y-

coordinate), defined in a neighborhood Nx0
⊂ Rn−1 of y′ = 0′, satisfies

the conditions

• ϕ ∈ Ck(Nx0
), ϕ(0′) = 0;

• Γ ∩B(x0, r) = {(y′, yn) : yn = ϕ(y′),y′ ∈ Nx0
};

• Ω ∩B(x0, r) = {(y′, yn) : yn > ϕ(y′),y′ ∈ Nx0
}.

A domain is Lipschitz if the mapping ϕ is Lipschitz.

Remark 1.3. From here, a boundary Γ of the domain Ω is Ck (Lipschitz)

if the domain is Ck (Lipschitz).

Theorem 1.5 (Trace theorem, [14]). Assume Ω is bounded and C1, there

exists a bounded linear operator T : W 1,p(Ω) → Lp(Γ), with 1 ≤ p < ∞,

such that

• Tu = u|Γ if u ∈ W 1,p(Ω) ∩ C(Ω̄).

• For all u ∈ W 1,p(Ω): ∥Tu∥Lp(Γ) ≤ C∥u∥W 1,p(Ω), where C is not depend

on u.

From here, we use the notation u|Γ, which stands for the trace of u ∈
H1(Ω).

Remark 1.4. The space Lp(Γ) in the above theorem is the space of all

function u : Γ → R with the finite Lp(Γ)−norm

∥u∥Lp(Γ) :=

(∫
Γ
updS

)1/p
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where 1 ≤ p < ∞, and the integration is defined by localization (see, e.g.,

[16]). For p = ∞, we use the essential supremum norm

∥u∥L∞(Γ) := ess sup
x∈Γ

|u(x)|.

1.2.2 Sobolev spaces on surfaces

As discussed in the introduction, we not only work with functions on

domain Ω but also the functions defined on its boundary. Assume that the

boundary Γ of the domain Ω is at least C2. A way to define the Sobolev

spaces on Γ is to consider the boundary as a compact manifold, where

various books have mentioned it (see, e.g., [17] and [18]). In this thesis,

we will present another way to establish Sobolev spaces W k,p(Γ) on the

boundary Γ, which is summarized from [19] and [20]. The authors define

the Sobolev space via the weak derivative in these articles. Denote ν(x) =

(ν1(x), . . . , νn(x)) is the unit outward normal vector at x ∈ Γ (see [14]), we

first introduce the tangential gradient and Laplace–Beltrami operator.

Definition 1.8 (Tangential gradient and Laplace–Beltrami operator, [20]).

Let f : Γ → R be differentiable, the tangential gradient of f at point x ∈ Γ

is defined by the projection

∇Γf(x) = ∇f̄(x)− [∇f̄(x) · ν(x)]ν(x),

where f̄ is a smooth extension of f to an n dimensional neighborhood U of

Γ (about constructing f̄ , see, e.g., [20, Section 2.3]) and ∇ is the normal

gradient in Rn.

The Laplace–Beltrami operator is the Laplace operator on Γ, given by

∆Γf = ∇Γ · ∇Γf =
n∑

i=1

D̄iD̄if,
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and D̄i is the coordinate of tangential gradient

∇Γf(x) = (D̄1f(x), . . . , D̄nf(x)).

Let H : Γ → R, given by

H(x) =
n∑

i=1

D̄iνi(x) for x ∈ Γ

be the mean curvature, the weak derivative and Sobolev spaces on surfaces

can be defined as below.

Definition 1.9 (Weak derivative and Sobolev spaces on boundary, [20]).

A function f ∈ L1(Γ) has the weak derivative vi = D̄if ∈ L1(Γ); if for all

test function φ ∈ C1(Γ) with compact support {x ∈ Γ |φ(x) ̸= 0} ⊂ Γ, the

following equation holds∫
Γ
fD̄iφdS = −

∫
Γ
φvidS +

∫
Γ
fφHνidS.

Then, the Sobolev space W 1,p(Γ) is defined by

W 1,p(Γ) = {f ∈ Lp(Γ)|D̄if ∈ Lp(Γ), i = 1, 2, .., n},

with the norm

∥f∥W 1,p(Γ) =
(
∥f∥pLp(Γ) + ∥∇Γf∥pLp(Γ)

)1/p
.

We will use the notation H1(Γ) := W 1,2(Γ) for this Hilbert space.

1.2.3 Spaces involving time

In this part, we will present the theory in spaces of function that map

a time interval into a Banach space X. These functions are essential since

we are studying the parabolic partial differential equations. The idea is to
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think of a function u(x, t) as a family of functions u(t), that each one is

constructed as a function belongs to X.

Definition 1.10 (Measurable function, [14]). A function f : [0, T ] → X is

called measurable if there exists a sequence of functions {sk} such that

sk(t) → f(t) for a.e. 0 ≤ t ≤ T,

and sk has form

sk(t) =
m∑
i=1

λEi
(t)ui, t ∈ [0, T ],

where Ei is a Lebesgue measurable subset of [0, T ], λEi
is the indicator

function on Ei and ui ∈ X.

We mow recall the definition of the Lp−space of the Banach-space valued

functions.

Definition 1.11 (Bochner spaces, [14]). The space Lp(0, T ;X) contains all

measurable functions u : [0, T ] → X that has finite norm

∥u∥Lp(0,T ;X) :=

(∫ T

0
∥u∥pX

)1/p

for 1 ≤ p <∞. For p = ∞, the norm is defined by

∥u∥L∞(0,T ;X) := ess sup
t∈[0,T ]

∥u∥X .

Definition 1.12 ([14]). The space C([0, T ];X) contains all continuous

functions u : [0, T ] → X with the norm

∥u∥C([0,T ];X) := sup
t∈[0,T ]

∥u∥X .

We can expand to the definition of (strongly) differentiable continuous

functions Ck([0, T ], X) by the Fréchet derivative (see [16, Section 7.11]).
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The weak derivative of Banach-space valued functions is given by

Definition 1.13 (Weak derivative, [14]). For u ∈ L1(0, T ;X), a function

v ∈ L1(0, T ;X) is called weak time derivative of u, and written: u′ = v, if∫ T

0
ϕ′(t)u(t)dt = −

∫ T

0
ϕ(t)v(t)dt

for all test functions ϕ ∈ C∞
c (0, T ), the space of all infinitely differentiable

functions with compact support on (0, T ).

In the next chapters, we will work with the spaces that the functions

locate in Hilbert space H1(Ω) (or H1(Γ)) and its time derivative belongs

to its dual space H−1(Ω) (or H−1(Γ)) (we denote H−1(Ω) := H1(Ω)∗). The

following is an essential theorem about what happens if we have a space

with properties as above.

Theorem 1.6 ([13]). Suppose that u ∈ L2(0, T ;H1(Ω)), and u′ ∈ L2(0, T ;

H−1(Ω)). Then, u ∈ C([0, T ];L2(Ω)), and we have the identity

d

dt
∥u(t)∥2L2(Ω) = 2⟨u′(t), u(t)⟩H−1(Ω)×H1(Ω)

for a.e. t ∈ [0, T ]. The notation ⟨u′(t), u(t)⟩H−1(Ω)×H1(Ω) denotes the paring

between u′(t) ∈ H−1(Ω) and u(t) ∈ H1(Ω).

Remark 1.5. Beside u′, the notations ut, ∂tu or ∂
∂tu also present the (weak)

time derivative of u.

Remark 1.6. The theorem also works when we replace H−1(Ω), L2(Ω) and

H1(Ω) by V ∗, H and V , respectively, where the relation V ⊂ H is dense

and continuous (see, e.g., [13]). In the thesis, we will work with the triple

H1(Ω) ⊂ L2(Ω) ⊂ H−1(Ω) (and the corresponding in Γ). For the rest of

this thesis, we will use the notation: ⟨·, ·⟩Ω for the pairing in H−1(Ω) and

H1(Ω); and ⟨·, ·⟩Γ for the pairing in H−1(Γ) and H1(Γ).
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Remark 1.7. The identity in the Theorem 1.6 can be proved by using a

smooth functions sequence {un} that approximates u (e.g., mollifier func-

tion). For a.e. t ∈ [0, T ], we have

∥un(t2)∥2L2(Ω) − ∥un(t1)∥2L2(Ω) = 2

∫ t2

t1

⟨u′n(τ), un(τ)⟩Ωdτ.

Then, the conclusion is obtained by taking the limit n → ∞ (see full proof

in [13]). Due to the proof, we can expand to calculate the time derivative

of the following function

F [u](t) :=

∫
Ω
uα(x, t)dx,

where α ∈ Z+, u is non-negative, u ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L∞(Ω))

and u′ ∈ L2(0, T ;H−1(Ω)). We have for a.e. 0 ≤ t ≤ T

d

dt

∫
Ω
uαdx = α⟨u′(t), u(t)⟩Ω.

At the end of this section, we present a theorem about the dual space

of Lp(0, T ;X).

Theorem 1.7 (Dual space, [13]). Let X is reflexive, p, q > 1 and 1/p +

1/q = 1, the dual space of Lp(0, T ;X) can be identified with the space

Lq(0, T ;X∗).

1.3 Weak convergence and embedding theorems

1.3.1 Weak convergence

Definition 1.14 (Weak convergence, [14]). Let denote X is a real Banach

space. A sequence {uk} ⊂ X is called weakly converges to u ∈ X, notation

with the “half-arrow”

uk ⇀ u,
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if it provides

lim
k→∞

⟨v, uk⟩X∗×X = ⟨v, u⟩X∗×X

for all v in X∗.

Remark 1.8. The strong convergence implies the weak convergence and

the limit of weak convergence is unique (see, e.g., [16]).

Theorem 1.8 (Uniform boundedness implies weak convergence, [14]).

Consider a Hilbert space H and a sequence of functions {uk}∞k=1 bounded

uniformly in H. Then, there exists a subsequence of {uk} that converges

weakly in H.

1.3.2 Embedding theorems

Definition 1.15 (Compact embedding, [14]). Consider Banach spaces X ⊂
Y , X is called compactly embedded in Y if the following conditions are

satisfied

• The embedding X into Y is continuous, i.e ∥x∥X ≤ C∥x∥Y for all

x ∈ X and constant C do not depend on x.

• Every bounded sequence in X has a subsequence that converges in Y .

We need an important result about the compact embedding of Sobolev

space.

Theorem 1.9 ([16]). The embedding H1(Ω) into L2(Ω) is compact, with Ω

is an open, bounded subset of Rn, and the boundary is C1.

Similar to the above theorem, we have an analogous theorem for the

boundary Γ, which is a case of Proposition 3.4, chapter 4 in [18]

Theorem 1.10 ([18]). The embedding H1(Γ) into L2(Γ) is compact.



18

Next, we state the Aubin–Lions Lemma (or Aubin– Lions–Simon lemma),

which is a essential tool for nonlinear fast reaction limit problems.

Lemma 1.1 (Aubin–Lions, [21]). For 1 < p, q <∞, we denote

W := {u ∈ Lp(0, T ;X0) : u
′ ∈ Lq(0, T ;X2)}

with X0, X1, X2 are Banach spaces such that X0 is compactly embedded in

X1 and X1 is continuously embedded in X2. Then, the embedding of W

into Lp(0, T ;X1) is compact.

Remark 1.9. The above lemma can be restated as follows (see [22]): we

consider a sequence of functions {un} of two variables t and x, with the

time variable t ∈ [0, T ] and space variable x. Let X0, X1 and X2 be Banach

space. Assume that these conditions hold:

• The sequence {un}∞n=1 is bounded uniformly in Lp(0, T ;X0), with 1 <

p <∞;

• time derivative {∂tun}∞n=1 is bounded uniformly in Lq(0, T ;X2), with

1 < q <∞;

• We have the embedding: X0 is embedded compactly in X1 and X1 is

continuous embedded in X2.

Then, the sequence {un} admits a subsequence that converges strongly in

Lp(0, T,X1).

Remark 1.10. A common triple space for X0, X1 and X2 are the Hilbert

triple H1(Ω) ↪→ L2(Ω) ↪→ H−1(Ω). However, since the lemma only requires

X1 to be embedded continuously on X2 and X0 need not be the dual space

of X2, we can use other appropriate functional spaces, depending on the

situation.
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1.4 Weak solutions of reaction-diffusion systems

In this section, we will recall the existence of bounded weak solution for

system (2), which have been stated and proved in [10] for a more general

setting.

Definition 1.16 ([10]). We call (uϵ, vϵ) a weak solution of (2) on (0, T )

(with given T > 0), parameterized ϵ > 0 if it satisfies the regularity condi-

tions

uϵ ∈ C([0, T ];L2(Ω)) and uϵ ∈ L∞(0, T ;L∞(Ω)) ∩ L2(0, T ;H1(Ω)); (1.1)

vϵ ∈ C([0, T ];L2(Γ)) and vϵ ∈ L∞(0, T ;L∞(Γ)) ∩ L2(0, T ;H1(Γ)); (1.2)

and the following weak formulations hold∫ T

0

∫
Ω
(−uϵφt + du∇uϵ · ∇φ)dxdt =

∫
Ω
u0φ(0)dx

− α

ϵ

∫ T

0

∫
Γ
(uαϵ − vβϵ )φdSdt (1.3)∫ T

0

∫
Γ
(−vϵψt + dv∇Γvϵ · ∇Γψ)dSdt =

∫
Γ
v0ψ(0)dS

+
β

ϵ

∫ T

0

∫
Γ
(uαϵ − vβϵ )ψdSdt (1.4)

for all non-negative test functions φ ∈ C1([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω))

and ψ ∈ C1([0, T ];L2(Γ)) ∩L2(0, T ;H1(Γ)), with φ(T ) = 0 and ψ(T ) = 0.

Remark 1.11 (Abuse of notation). In the above definition, the term uϵ

appears on the integral of Γ is the trace of uϵ, follows by the trace theorem.

The following theorem, which is a special case for Theorem 2.2 in [10]

Theorem 1.11 (Existence and uniqueness of weak solution [10]). For each

non-negative initial data (u0, v0) ∈ L∞(Ω)× L∞(Γ), there exists an unique
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non-negative pair of functions (uϵ, vϵ), corresponding to parameter ϵ, which

the weak solution of system (2) (in the sense of Definition 1.16).

Remark 1.12. In the thesis, for convenience in calculation, we will use

another weak formulation for (uϵ, vϵ): ⟨∂tuϵ, φ⟩Ω +
∫
Ω du∇uϵ · ∇φdx = −α

ϵ

∫
Γ(u

α
ϵ − vβϵ )φdS

⟨∂tvϵ, ψ⟩Γ +
∫
Γ dv∇Γv · ∇ΓψdS = β

ϵ

∫
Γ(u

α
ϵ − vβϵ )ψdS,

(1.5)

which holds for a.e. t ∈ (0, T ) and for all test functions (φ, ψ) ∈ H1(Ω)×
H1(Γ), and satisfies the initial conditions uϵ(x, 0) = u0(x) on L2(Ω) and

vϵ(x, 0) = v0(x) on L
2(Γ). The regularity condition becomes

uϵ ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L∞(Ω)) and ∂tuϵ ∈ L2(0, T ;H−1(Ω));

(1.6)

vϵ ∈ L2(0, T ;H1(Γ)) ∩ L∞(0, T ;L∞(Γ)) and ∂tvϵ ∈ L2(0, T ;H−1(Γ)).

(1.7)

The equivalence for weak formulations and defining the weak solution can be

proved by using some theorems in Bochner space (for e.g., see [23, Chapter

3] and [16, Chapter 10]).

Remark 1.13. The positivity of solution is preserved from the initial condi-

tion, due to the properties of rate functions called quasi-positive (see [12]).

Besides, the positivity of uϵ still holds on the boundary, i.e. we have uϵ ≥ 0

for a.e. on Γ× (0, T ), which can be proved by consider a non-negative se-

quence of function {un} that approximates uϵ (e.g., mollifiers functions).

The non-negative and smoothness to boundary of {un} imply that {un} is

non-negative on the boundary, and the Trace theorem gives the conclusion.

Remark 1.14. From the first equation in the weak formulation (1.5), we

can show that uϵ ∈ L∞(0, T ;L∞(Γ)) for each fixed ϵ, by showing that
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∥uϵ(t)∥Lp(Γ) ≤ C and C does not depend on p. Then, ∥uϵ(t)∥L∞(Γ) is bounded

(see [13, Proposition 1.16]). This property allows us to use some conver-

gence theorems in the next chapter. A notice is that the upper bound for uϵ

on Γ× (0, T ) may vary on ϵ.

Remark 1.15. In the following chapter, we will call the weak solution of

system (2) by “the solution of system (2)”, for short.
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Chapter 2

FAST REACTION LIMITS

In this chapter, we will study the convergence of solutions to the system

(2) as ϵ → 0, i.e., the reaction rate constant 1/ϵ tends to infinity. In

detail, we will show that for arbitrary positive integers α, β, the sequence

of weak solutions {(uϵ, vϵ)} has a subsequence that converges strongly in

L2(0, T ;L2(Ω)×L2(Γ)). About the limit of the convergence, we will describe

later in Chapter 3.

2.1 The main theorem and outline of proof

The following lemma is the main result about the fast reaction limit of

system (2) as the reaction rate tends to infinity.

Theorem 2.1 (Convergence of subsequence). Let (uϵ, vϵ) be the weak solu-

tion of system (2) with parameter ϵ and non-negative initial value (u0, v0)

∈ L∞(Ω) × L∞(Γ) (from Theorem 1.11). Then, as ϵ → 0, the sequence

{(uϵ, vϵ)} has a subsequence that converges strongly in L2(0, T ; L2(Ω) ×
L2(Γ)) to (w, z), where z = (w|Γ)α/β and w is a weak solution to (3) (we

will define it in Chapter 3).

Remark 2.1. In the theorem, we only have the convergence for subse-

quence, not the whole sequence. To show that the whole sequence converges,
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it is sufficient to prove the uniqueness of the limit, was shown for the case

α = β in [6]. However, for the general case, we do not have that.

Now, we will sketch the proof of Theorem 2.1. The proof utilizes the

Aubin–Lions Lemma on well-constructed product spaces.

Sketch of the proof of Theorem 2.1. By Lemma 2.1, we have the uniform

boundedness of (uϵ, vϵ) in L∞(0, T ;L∞(Ω) × L∞(Γ)). Moreover, accord-

ing to Lemma 2.2, we have the gradient (∇uϵ,∇Γvϵ) is also uniformly

bounded in L2(0, T ;L2(Ω) × L2(Γ)). Therefore, combine these two lem-

mas, we have (uϵ, vϵ) in a bounded subset of L2(0, T ;H1(Ω)×H1(Γ)). On

the other hand, Lemma 2.3 shows that there exist a functional space Z

such that Z ↪→ L2(Ω) × L2(Γ) ↪→ Z∗ with compact and continuous em-

bedding, respectively, and time derivative ∂t(uϵ, vϵ) is bounded (uniformly)

in L2(0, T ;Z∗). Then, in the view of Aubin–Lions Lemma (see Lemma 1.1

and its remark), there exists a subsequence of {(uϵ, vϵ)} that it converges

strongly in L2(0, T ;L2(Ω) × L2(Γ)) as ϵ → 0, and we denote its limit by

(w, z). Finally, in Theorem 3.1, we show that z = (w|Γ)α/β and w is a weak

solution of the limit problem (3).

We will present in detail the proof of these lemmas with the following

structure. Section 2.2 shows the detailed proof for Lemma 2.1, then Lemma

2.2 about the boundedness of the gradient is presented in Section 2.3, and

finally, the functional space for the time derivative is presented in Section

2.4. And, in Chapter 3, we will present the proof of Theorem 3.1, which

discuss about the limit system and its weak solutions.

2.2 Uniform boundedness of the solution

In this section, we prove that the solution of the system (2) is uniformly

bounded in L∞(Ω)× L∞(Γ).
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Lemma 2.1. Let (uϵ, vϵ) be the weak solution of the system (2), correspond

to parameter ϵ and the non-negative initial condition (u0, v0) ∈ L∞(Ω) ×
L∞(Γ), we have the upper bound

∥uϵ∥L∞(0,T ;L∞(Ω)), ∥vϵ∥L∞(0,T ;L∞(Γ)) ≤M,

where M is a constant that does not depend on ϵ.

To prove this lemma, we will declare an Lp−energy functional that based

on the structure of the system and this function is decreasing in time.

Then, it leads to a prior estimation that holds for all p. Finally, due to

the boundedness of initial condition, we can show an uniform estimation

for Lp−norm of the solution. Therefore, we obtain the bounded for the

solution in L∞− norm.

Proof. We introduce the following entropy function

Ep[uϵ, vϵ](t) :=
1

pα2 + α

∫
Ω
upα+1
ϵ (t)dx+

1

pβ2 + β

∫
Γ
vpβ+1
ϵ (t)dS, (2.1)

where the parameter p is a positive integer. We first have the identity

d

dt

∫
Ω
upα+1
ϵ (t)dx = (pα + 1)⟨∂tuϵ(t), upαϵ (t)⟩Ω

for a.e. t ∈ [0, T ]. Then, by choosing upαϵ as the test function in the first

equation of (1.5), we obtain

d

dt

∫
Ω

upα+1
ϵ

pα2 + α
dx =

−du
α

∫
Ω
∇uϵ · ∇(upαϵ )dx− 1

ϵ

∫
Γ
(uαϵ − vβϵ )u

pα
ϵ dS

= −dup
∫
Ω
|∇uϵ|2upα−1

ϵ dx− 1

ϵ

∫
Γ
(uαϵ − vβϵ )u

pα
ϵ dS

By a similar argument, we have

d

dt

∫
Γ

vpβ+1
ϵ

pβ2 + β
dS = −dvp

∫
Γ
|∇Γvϵ|2vpβ−1

ϵ dS +
1

ϵ

∫
Γ
(uα − vβ)vpβϵ dS.



25

Combine these above, we obtain

d

dt
Ep(t) =− dup

∫
Ω
upα−1
ϵ |∇uϵ|2dx− dvp

∫
Γ
vpβ−1
ϵ |∇Γvϵ|2dS

+
1

ϵ

∫
Γ
(uαϵ − vβϵ )(v

pβ
ϵ − upαϵ )dS. (2.2)

Notice that

(uαϵ − vβϵ )(v
pβ
ϵ − upαϵ ) = (uαϵ − vβϵ )(v

β
ϵ − uαϵ )

 ∑
i+j=p−1

uiαϵ v
jβ
ϵ

 ,

where p is a positive integer. Combine with the fact that (uϵ, vϵ) is non-

negative, we have the estimate:

d

dt
Ep(t) ≤ 0 (2.3)

for all p ∈ Z+ and a.e. t ∈ [0, T ]. Fixed a t0 ∈ [0, T ], we have

Ep(t0) ≤ Ep(0)

or equivalently,

1

pα2 + α

∫
Ω
upα+1
ϵ (t0)dx+

1

pβ2 + β

∫
Γ
vpβ+1
ϵ (t0)dS

≤ 1

pα2 + α

∫
Ω
upα+1
0 dx+

1

pβ2 + β

∫
Γ
vpβ+1
0 dS (2.4)

for all p ∈ Z+. From (2.4), multiply both sides by p, we get

1

α2 + α/p

∫
Ω
upα+1
ϵ (t0)dx+

1

β2 + β/p

∫
Γ
vpβ+1
ϵ (t0)dS

≤ 1

α2 + α/p

∫
Ω
upα+1
0 dx+

1

β2 + β/p

∫
Γ
vpβ+1
0 dS,

which implies an estimate in which the coefficients of integrals do not de-
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pend on p

1

2α2

∫
Ω
upα+1
ϵ (t0)dx+

1

2β2

∫
Γ
vpβ+1
ϵ (t0)dS ≤

∫
Ω
upα+1
0 dx+

∫
Γ
vpβ+1
0 dS.

Taking the root of power p on both sides of the above estimate, we have:(
1

2α2

∫
Ω
upα+1
0 (t0)dx+

1

2β2

∫
Γ
vpβ+1
0 (t0)dS

)1/p

≤
(∫

Ω
upα+1
0 dx+

∫
Γ
vpβ+1
0 dS

)1/p

.

(2.5)

The right hand side of (2.5) can be estimated uniformly by(∫
Ω
upα+1
0 dx+

∫
Γ
vpβ+1
0 dS

)1/p

≤ (|Ω|.∥u0∥pα+1
L∞(Ω) + |Γ|.∥v0∥pβ+1

L∞(Γ))
1/p

≤ |Ω|1/p.∥u0∥(pα+1)/p
L∞(Ω) + |Γ|1/p.∥v0∥(pβ+1)/p

L∞(Γ)

≤ max{1, |Ω|}.max{1, ∥u0∥2αL∞(Ω)}

+max{1, |Γ|}.max{1, ∥v0∥2βL∞(Γ)}

≤ C1(α, β, |Ω|, |Γ|, ∥u0∥L∞(Ω), ∥v0∥L∞(Γ)),

(2.6)

where the second inequality is deduced from the fact that (a+ b)θ ≤ aθ+ bθ

for all a, b ≥ 0 and θ ∈ (0, 1]. Combine the estimations (2.5) and (2.6), we

have the estimate (
1

2α2

∫
Ω
upα+1
ϵ (t0)dx

)1/p

≤ C1

or (∫
Ω
upα+1
ϵ (t0)dx

)1/p

≤ C2 (2.7)

for all p ∈ Z+ and C1, C2 are constants that do not depend on ϵ. This

implies

∥uϵ(t0)∥Lpα+1(Ω) ≤ C
p

pα+1

2 .
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Letting p→ ∞ yields

∥uϵ(t0)∥L∞(Ω) ≤ C
1/α
2 .

Similarly, we also get

∥vϵ(t0)∥L∞(Γ) ≤ C
1/β
3 ,

which end the proof.

Remark 2.2. With similar arguments, we also can prove that the solution

also has a strictly positive lower bound for the case α = β, which is in-

dependent of ϵ, and showing that ( 1
uϵ
, 1
vϵ
) is bounded uniformly from above.

The difference in the proof is that we substitute (uϵ, vϵ) by ( 1
uϵ
, 1
vϵ
) in the

entropy function (we also need to modify the coefficients of integrals), we

add a small constant δ to uϵ and vϵ which avoid the blow-up during calcu-

lation and then take the limit δ → 0 by using the convergence theorems in

Chapter 1.

From the remark above, we have the following proposition about lower

boundedness of the solution

Proposition 2.1. Assume that α = β and the initial condition (u0, v0) ∈
L∞(Ω) × L∞(Γ) is bounded from below by a positive constant m0, that is,

u0(x) ≥ m0 a.e. x ∈ Ω and v0(x) ≥ m0 a.e. x ∈ Γ. Then, the solution

of (2) uϵ(x, t) ≥ m for a.e. (x, t) ∈ Ω × (0, T ) and vϵ(x, t) ≥ m for a.e.

(x, t) ∈ Γ× (0, T ), where the constant m > 0 and does not depend on ϵ.

Proof. Similarly, we introduce another entropy function, with parameter

p ∈ Z+ and a small constant δ > 0

Hp,δ[uϵ, vϵ](t) :=
β

αp− 1

∫
Ω

1

(uϵ + δ)αp−1
dx+

α

βp− 1

∫
Γ

1

(vϵ + δ)βp−1
dS.

Since (uϵ, vϵ) is non-negative and the constants α, β, p ≥ 1, we have the pos-

itivity Hp,δ[uϵ, vϵ](t) > 0. With a similar calculation for the time derivative
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of entropy function as Lemma 2.1, we can show that for a.e. t ∈ [0, T ]:

d

dt
Hp,δ(t) = β

∫
Ω
∇uϵ · ∇(uϵ + δ)−αpdx+ α

∫
Γ
∇Γvϵ · ∇Γ(vϵ + δ)−βpdS

+
αβ

ϵ

∫
Γ
(uαϵ − vβϵ )((uϵ + δ)−αp − (vϵ + δ)−βp)dS.

Fixed a t0 ∈ [0, T ] and take the integration from 0 to t0, we have:

Hp,δ(t0)−Hp,δ(0) =β

∫ t0

0

∫
Ω
∇(uϵ + δ) · ∇(uϵ + δ)−αpdxdt

+ α

∫ t0

0

∫
Γ
∇Γ(vϵ + δ) · ∇Γ(vϵ + δ)−βpdSdt

+
αβ

ϵ

∫ t0

0

∫
Γ
(uαϵ − vβϵ )((uϵ + δ)−αp − (vϵ + δ)−βp)dSst

≤αβ
ϵ

∫ t0

0

∫
Γ
(uαϵ − vβϵ )((uϵ + δ)−αp − (vϵ + δ)−βp)dSdt.

From the assumption α = β, the right hand side of the above inequality is

non-negative, which implies:

Hp,δ(t0) ≤ Hp,δ(0)

for all δ. Then, by using Monotone Convergence Theorem to take the limit

of δ → 0+, we get:

0 ≤ β

αp− 1

∫
Ω

1

uϵ(t0)αp−1
dx+

α

βp− 1

∫
Γ

1

vϵ(t0)βp−1
dS

≤ β

αp− 1

∫
Ω

1

uαp−1
0

dx+
α

βp− 1

∫
Γ

1

vβp−1
0

dS.

Since u0, v0 has a strictly positive lower bound, by using similar arguments

in the proof of Lemma 2.1, we have:(∫
Ω

1

uαp−1
ϵ (t0)

dx

)1/p

,

(∫
Γ

1

vβp−1
ϵ (t0)

dS

)1/p
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bounded (uniformly in term of p and ϵ). And from the fact that (uϵ, vϵ)

bounded uniformly, we have for any p ≥ 2:

∥u−α
ϵ (t0)∥Lp(Ω) ≤M2

and

∥v−β
ϵ (t0)∥Lp(Γ) ≤M3

where the constant M2,M3 does not depend on ϵ and p. Then, with a

similar argument at the end of proof for Lemma 2.1, we can show that

( 1
uϵ
, 1
vϵ
) is bounded above or (uϵ, vϵ) has a lower bound m > 0, where the

constant m doesn’t depend on ϵ.

Remark 2.3. This property will be used in the next chapter, where we

discuss on the convergence rate and we require the strictly positive of the

solution (uϵ, vϵ). In the proof, we need to assume that the coefficient α = β

to have the sign of the term (uαϵ −vβϵ )((uϵ+ δ)−αp− (vϵ+ δ)
−βp). A question

is, can we have the same result if we remove this assumption, which seems

to be quite complicated since it is quite difficult to have any estimation for

this term to use the convergence theorems.

2.3 Boundedness of gradient operator

Next, we will prove that the (spatial) gradients of the solution are uni-

formly bounded.

Lemma 2.2. With (uϵ, vϵ) as the solution of (2), we have the estimate:

∥∇uϵ∥L2(0,T ;L2(Ω)), ∥∇Γvϵ∥L2(0,T ;L2(Γ)) ≤MD

with a constant MD does not depend on ϵ.
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Proof. We consider the logarithm entropy function (see [10]):

E[uϵ, vϵ](t) =

∫
Ω
uϵ(log uϵ − 1)dx+

∫
Γ
vϵ(log vϵ − 1)dS, (2.8)

where log(x) is the natural logarithm of the positive number x. Formally, we

have the dissipation of entropy functionD(t) = −d
dt E(t) = ⟨−∂tuϵ, log(uϵ)⟩Ω+

⟨−∂tvϵ, log(vϵ)⟩Γ and then choose log(uϵ) (and log(vϵ), respectively) as the

test functions. However, we don’t have a lower bound for uϵ and vϵ, in

generally, which means that log(uϵ) and log(vϵ) do not belong to L2(Ω)

and L2(Γ), respectively. A naive idea is adding the assumption that the

solution (uϵ, vϵ) is strictly positive. Fortunately, there is a way to avoid this

assumption by using a similar technique in [5] (we will present the theorem

if we have the strictly positive assumption in the remark below). Indeed,

we replace uϵ (and vϵ) by uϵ + δ (and vϵ + δ), with δ is a small parameter

and taking the limit δ → 0.

Again, we introduce the modified entropy function:

Eδ[uϵ, vϵ](t) =

∫
Ω
(uϵ + δ)(log(uϵ + δ)− 1)dx

+

∫
Γ
(vϵ + δ)(log(vϵ + δ)− 1)dS. (2.9)

With a similar calculation for the time derivative entropy function, we have

the dissipation function:

Dδ(t) =− d

dt
Eδ(t)

= ⟨∂t(uϵ + δ),− log(uϵ + δ)⟩Ω
+ ⟨∂t(vϵ + δ),− log(vϵ + δ)⟩Γ

= ⟨∂t(vϵ),− log(uϵ + δ)⟩Ω + ⟨∂t(vϵ),− log(vϵ + δ)⟩Γ,

for a.e. t ∈ [0, T ] and δ is a small, positive constant. Then, by choosing
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the logarithm of solution (− log(uϵ + δ),− log(vϵ + δ)) as the test function

in weak formulation (1.5), we have

Dδ(t) =− du

∫
Ω
∇uϵ · ∇(log(uϵ + δ))dx+

α

ϵ

∫
Γ
(uαϵ − vβϵ ) log(uϵ + δ)dS

− dv

∫
Γ
∇Γvϵ · ∇Γ(log(vϵ + δ))dS − β

ϵ

∫
Γ
(uαϵ − vβϵ ) log(vϵ + δ)dS

= du

∫
Ω

|∇uϵ|2

uϵ + δ
dx+ dv

∫
Γ

|∇Γvϵ|2

vϵ + δ
dS +

1

ϵ

∫
Γ
(uαϵ − vβϵ ) log

(uϵ + δ)α

(vϵ + δ)β
dS.

Then, by integrating Dδ(t) from 0 to T , we get

Eδ(0)− Eδ(T ) =

∫ T

0
Dδ(t)dt

=

∫ T

0

(
du

∫
Ω

|∇uϵ|2

uϵ + δ
dx+ dv

∫
Γ

|∇Γvϵ|2

vϵ + δ
dS

)
dt

+

∫ T

0

1

ϵ

∫
Γ
(uαϵ − vβϵ ) log

(uϵ + δ)α

(vϵ + δ)β
dSdt.

We can rewrite the above equation to:∫ T

0

(
du

∫
Ω

|∇uϵ|2

uϵ + δ
dx+ dv

∫
Γ

|∇Γvϵ|2

vϵ + δ
dS

)
dt = Eδ(0)− Eδ(T )

+
1

ϵ

∫ T

0

∫
Γ
(vβϵ − uαϵ ) log

(uϵ + δ)α

(vϵ + δ)β
dS

From the fact that the initial condition (u0, v0) is bounded, we have Eδ(0)

can be bounded uniformly (choose δ < 1). Moreover, Eδ(T ) has a lower

bound without depending on δ. Therefore, Eδ(0)− Eδ(T ) is bounded and

we have the estimate:

du

∫ T

0

∫
Ω

|∇uϵ|2

uϵ + δ
dxdt+dv

∫ T

0

∫
Γ

|∇Γvϵ|2

vϵ + δ
dSdt

≤ C +
1

ϵ

∫ T

0

∫
Γ
(vβϵ − uαϵ ) log

(uϵ + δ)α

(vϵ + δ)β
dS, (2.10)

with C is a constant that does not depend on δ and also ϵ. Now, similar
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to [5], we can use the convergence theorem to take the limit δ → 0+.

Indeed, the left hand side can be taken limit δ → 0+ by using Monotone

Convergence Theorem (Theorem 1.3)

lim
δ→0

(
du

∫ T

0

∫
Ω

|∇uϵ|2

uϵ + δ
dx+ dv

∫ T

0

∫
Γ

|∇Γvϵ|2

vϵ + δ
dS dt

)
= du

∫ T

0

∫
Ω

|∇uϵ|2

uϵ
dxdt+ dv

∫ T

0

∫
Γ

|∇Γvϵ|2

vϵ
dSdt

Now, we only need to work with the term containing logarithm. Since the

solution (uϵ, vϵ) is non-negative and bounded, this term has an upper bound

(for each fixed ϵ):

(vβϵ − uαϵ ) log(uϵ + δ)α = αvβϵ log(uϵ + δ)− αuαϵ log(uϵ + δ) ≤ C,

where the constant C does not depend on δ. Similarly, we have

(−vβϵ + uαϵ ) log(vϵ + δ)β ≤ C,

which implies that (vβϵ − uαϵ ) log
(uϵ+δ)α

(vϵ+δ)β has an upper bound. Then, we can

use Fatou’s lemma for a function that has upper bounded (see Theorem 1.2

and its remark)

lim sup
δ→0

∫ T

0

∫
Γ
(vβϵ − uαϵ ) log

(uϵ + δ)α

(vϵ + δ)β
dS

≤
∫ T

0

∫
Γ
lim sup

δ→0
(vβϵ − uαϵ ) log

(uϵ + δ)α

(vϵ + δ)β
dS

=

∫ T

0

∫
Γ
(vβϵ − uαϵ ) log

(uϵ)
α

(vϵ)β
dS ≤ 0.

Combine these all and take the limit δ → 0+ of (2.10), we obtain the

uniform estimation

du

∫ T

0

∫
Ω

|∇uϵ|2

uϵ
dxdt+ dv

∫ T

0

∫
Γ

|∇Γvϵ|2

vϵ
dSdt ≤ C,
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where C is a constant that does not depend on ϵ. Since du, dv > 0 and the

solution (uϵ, vϵ) is non-negative, we obtain∫ T

0

∫
Ω

|∇uϵ|2

uϵ
dxdt ≤ C,∫ T

0

∫
Γ

|∇Γvϵ|2

vϵ
dSdt ≤ C,

where constant C doesn’t depend on ϵ.

Finally, from the fact that (uϵ, vϵ) is bounded uniformly in Lemma 2.1,

we show that the gradient is also bounded uniformly:

∥∇uϵ∥2L2(0,T ;L2(Ω)) =

∫ T

0

∫
Ω
|∇uϵ|2dxdt

=

∫ T

0

∫
Ω

|∇uϵ|2

uϵ
(uϵ)dxdt

≤
∫ T

0
∥uϵ(t)∥L∞(Ω)

∫
Ω

|∇uϵ|2

uϵ
dxdt

≤ ∥uϵ∥L∞(0,T ;L∞(Ω))

∫ T

0

∫
Ω

|∇uϵ|2

uϵ
dxdt

≤MD

with a constant MD is independent to ϵ. By a similar argument, we also

get

∥∇Γvϵ∥2L2(0,T ;L2(Γ) ≤MD,

which concludes the proof.

Remark 2.4. As mentioned above, we can still use the entropy function

(2.8) without modification if we add an assumption that the solution (uϵ, vϵ)

is strictly positive. Moreover, we can do it in a more simple way by choosing

(uαϵ , v
β
ϵ ) as the test function and using the fact that uϵ, vϵ is non-negative

and bounded uniformly. Indeed, we start with the time derivative of entropy

function (2.2) in the proof of Lemma 2.1, and choose the parameter p = 1
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to get

du

∫
Ω
uα−1
ϵ |∇uϵ|2dx + dv

∫
Γ
vβ−1
ϵ |∇Γvϵ|2dS +

d

dt
E1(t)

=
1

ϵ

∫
Γ
(uαϵ − vβϵ )(v

β
ϵ − uαϵ )dS

for a.e. t ∈ [0, T ] and entropy function E1 is defined by

E1(t) :=
1

α2 + α

∫
Ω
uα+1
ϵ (t)dx+

1

β2 + β

∫
Γ
vβ+1
ϵ (t)dS.

Then, by integrating both sides from 0 to T and using the fact that the

right-hand side is non-positive, we have the estimatation

du

∫ T

0

∫
Ω
uα−1
ϵ |∇uϵ|2dxdt + dv

∫ T

0

∫
Γ
vβ−1
ϵ |∇Γvϵ|2dSdt ≤ E1(0)− E1(T ).

(2.11)

The lower boundedness of (uϵ, vϵ) allows us to estimate the left hand side

by

du

∫ T

0

∫
Ω
uα−1
ϵ |∇uϵ|2dxdt + dv

∫ T

0

∫
Γ
vβ−1
ϵ |∇Γvϵ|2dSdt

≥ dum
α−1∥∇uϵ∥L2(0,T ;L2(Ω)) + dvm

β−1∥∇Γvϵ∥L2(0,T ;L2(Γ)),

with constant m > 0 is the lower bound of (uϵ, vϵ), that is, for a.e. t ∈
(0, T ), uϵ(x, t) ≥ m on Ω and vϵ(x, t) ≥ m on Γ. On the other hand, the

right-hand side of (2.11) is bounded since (uϵ, vϵ) is bounded. Therefore,

we have the conclusion

∥∇uϵ∥L2(0,T ;L2(Ω)), ∥∇Γvϵ∥L2(0,T ;L2(Γ)) ≤MD.

In this case, we can prove that the gradient is bounded without using the

assumption that the solution has a strictly lower bound. However, in some

cases, we will need this condition.



35

2.4 Functional space for time derivative

We finish this chapter by showing that there exists a suitable functional

space for the time derivative of solution ∂t(uϵ, vϵ), where the Aubin–Lions

lemma is applicable. Therefore, combine with Lemma 2.1 and Lemma 2.2,

the sequence of solution {(uϵ, vϵ)} has a subseqeunce that converges strongly
in L2(0, T ;L2(Ω)× L2(Γ)).

Lemma 2.3. There exists a Banach space Z such that the embedding of

Z into L2(Ω)× L2(Γ) is compact and ∂t(uϵ, vϵ) is bounded (uniformly with

respect to ϵ) in the space L2(0, T ;Z∗).

Proof. First, we recall a weak formulation, which have been mentioned in

Chapter 1:

⟨∂tuϵ, φ⟩Ω +

∫
Ω
du∇uϵ · ∇φdx = −α

ϵ

∫
Γ
(uαϵ − vβϵ )φdS, (2.12)

⟨∂tvϵ, ψ⟩Γ +
∫
Γ
dv∇Γvϵ · ∇ΓψdS =

β

ϵ

∫
Γ
(uαϵ − vβϵ )ψdS. (2.13)

Since our target is to estimate the time derivative by a constant without

dependence on ϵ, we would like to remove the right hand sides of these

equality by adding the two equations above. To do it, we define a new

functional space for the test function

Z := {(ϕ, ϕ|Γ) : ϕ ∈ H1(Ω) and ϕ|Γ ∈ H1(Γ)}, (2.14)

and inherited the norm and inner product of H1(Ω)×H1(Γ)

∥(ϕ, ϕ|Γ)∥Z := ∥ϕ∥H1(Ω) + ∥ϕ|Γ∥H1(Γ), (2.15)(
(ϕ1, ϕ1|Γ), (ϕ2, ϕ2|Γ)

)
Z
:= (ϕ1, ϕ2)H1(Ω) + (ϕ1|Γ, ϕ2|Γ)H1(Γ). (2.16)

The functional space Z can be shown that it is a closed subspace ofH1(Ω)×
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H1(Γ), so it is a Hilbert space. More detail about this functional space

can be seen at [24] and its references. Besides, we have that the functional

space Z is compactly embedded in L2(Ω)×L2(Γ). So, we only need to prove

that the time derivative is bounded in L2(0, T ;Z∗). Choose (φ, φ|Γ) ∈ Z

arbitrary and multiply (2.12) by β, (2.13) by α and take the sum of these

and take the integration from 0 to T , we have:∫ T

0

(∫
Ω
α⟨∂tuϵ, φ⟩Ωdx+

∫
Γ
β⟨∂tvϵ, φ|Γ⟩ΓdS

)
dt

= −
∫ T

0

(∫
Ω
βdu∇uϵ · ∇φdx+

∫
Γ
αdv∇Γvϵ · ∇Γφ|ΓdS

)
dt.

(2.17)

Setting V := L2(0, T ;Z), the dual of V is V ∗, which can be identified by

L2(0, T ;Z∗). So, the left hand side of equation (2.17) can be rewritten as

the pairing between V ∗ and V :∫ T

0

(∫
Ω
α⟨∂tuϵ, φ⟩Ωdx+

∫
Γ
β⟨∂tvϵ, φ|Γ⟩ΓdS

)
dt

= ⟨∂t(αuϵ, βvϵ);(φ, φ|Γ)⟩V ∗×V . (2.18)

Besides, the right hand side of (2.17) can be bounded in the norm of V due

to the Lemma 2.2, which give the estimate:∫ T

0

∫
Ω
βdu∇uϵ · ∇φdx+

∫
Γ
αdv∇Γvϵ · ∇Γ(φ|Γ)dSdt

≤ βdu∥∇uϵ∥L2(0,T ;L2(Ω))∥∇φ∥L2(0,T ;L2(Ω))

+ αdv∥∇Γvϵ∥L2(0,T ;L2(Γ))∥∇Γ(φ|Γ)∥L2(0,T ;L2(Γ))

≤C(∥φ∥L2(0,T ;H1(Ω)) + ∥φ|Γ∥L2(0,T ;H1(Γ)))

≤C ∥(φ, φ|Γ)∥V ,

where the first inequality given by Holder inequality. In the estimate, C is
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a constant that does not depend on ϵ. Combine with (2.17) and (2.18), we

have:

⟨∂t(αuϵ, βvϵ); (φ, φ|Γ)⟩V ∗×V ≤ C∥(φ, φ|Γ)∥V (2.19)

for all (φ, φ|Γ) ∈ V . Therefore, the time derivative is bounded in functional

space V ∗:

∥∂t(uϵ, vϵ)∥V ∗ ≤ C.

Hence, the proof is complete.
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Chapter 3

LIMIT SYSTEM AND

CONVERGENCE RATE

In this chapter, we will discuss two problems: the first one is describing

the limit of the (sub)sequence {(uϵ, vϵ)} as ϵ → 0, what we have shown

in the previous chapter, and the second one, where we will have a result

about the convergence rate of the sequence in the case α = β, which is a

new result in this area.

3.1 Limit system

In this section, we will go in detail about the limit of convergence in

the last chapter. As mentioned in the Introduction part, formally, we ex-

pect that the limit system is the heat equation with nonlinear dynamical

boundary condition (3).

However, we only have the weak solution of (2) and the convergence

only in the space L2(0, T ;L2(Ω)×L2(Γ)). So, we only expect that the limit

is still the solution of (3) but in a weaker sense. Denote (w, z) the limit

of a subsequence of {(uϵ, vϵ)} that converges in L2(0, T ;L2(Ω)×L2(Γ)), we

will show that w is a weak solution of the limit system (we will define the

weak solution in below). To do that, we first remind that in Chapter 2, we
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have shown that the sequence {(uϵ, vϵ)} have

• The existence of a subsequence that converges strongly in L2(0, T ;

L2(Ω)× L2(Γ));

• The uniform boundedness of uϵ in L
2(0, T ;H1(Ω))∩L∞(0, T ;L∞(Ω)),

which implies we have the same for uαϵ ;

• Both sequences vϵ and v
β
ϵ are uniformly bounded in L2(0, T ;H1(Γ)) ∩

L∞(0, T ;L∞(Γ)).

Due to Theorem 1.8, from the uniform boundedness of a sequence of so-

lution in certain functional spaces, we have the weak convergences of sub-

sequences of uαϵ and vβϵ in the corresponding spaces. Therefore, combine

with the setting of (w, z) above, there exists a subsequence {(uϵi, vϵi)}∞i=1 of

{(uϵ, vϵ)} (where ϵi → 0 as i→ ∞) that satisfies

• The sequence {(uϵi, vϵi)} converges strongly to (w, z) as i → ∞, in

L2(0, T ;L2(Ω)× L2(Γ));

• The sequence {uϵi}, and also {uαϵi} converge weakly to w and wα,

respectively in L2(0, T ;H1(Ω)) as i→ ∞;

• The sequence {vϵi} and {vβϵi} converge weakly to z and zβ, respectively

in L2(0, T ;H1(Γ)) as i→ ∞.

So, to work with the limit (w, z), we can consider that it is the limit of

{(uϵi, vϵi)} as i → 0. Now, we will give the definition of weak solution of

the limit system (3).

Definition 3.1. We call w a weak solution of problem (3) if it satisfies the

regular condition

w ∈ C([0, T ];L2(Ω)) and w ∈ L∞(0, T ;L∞(Ω)) ∩ L2(0, T ;H1(Ω));
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and it satisfies the following weak formulation∫ T

0

∫
Ω
−wφt +∇w · ∇φdxdt

+
α

β

∫ T

0

∫
Γ
−(w|Γ)α/β(φ|Γ)t+∇Γ(w|α/βΓ ) · ∇Γ(φ|Γ)dSdt (3.1)

=

∫
Ω
u0φ(0)dx+

α

β

∫
Γ
v0φ|Γ(0)dS

where the test function (φ, φ|Γ) ∈ C1([0, T ], H1(Ω)×H1(Γ)) and φ(T ) = 0

(which means φ|Γ(T ) = 0, also). Moreover, the trace function zβ(t) =

wα|Γ(t) (0 < t < T ) is existed and satisfies the following regularity condition

z ∈ C([0, T ];L2(Γ)) and w ∈ L∞(0, T ;L∞(Γ)) ∩ L2(0, T ;H1(Γ)).

Remark 3.1. The space of test functions can be rewritten by using the

functional space Z, which is defined in Lemma 2.3:

(φ, φ|Γ) ∈ C1([0, T ];Z).

Theorem 3.1 (Limit system). Denote (w, z) is the limit of a subsequence

{(uϵ, vϵ)} converges in L2(0, T ;L2(Ω)× L2(Γ)) as ϵ → 0, then w is a weak

solution of (3) (in the sense of Definition 3.1). Moreover (w|Γ)α(t) = zβ(t)

for a.e. t ∈ (0, T ), so we can rewrite the limit by (w, (w|Γ)α/β).

Proof. The proof is similar to the case α = β = 1 in the article [6]. First,

we proof the identity wα|Γ(t) = zβ(t) by starting again with equation (2.2),

choose p = 1 and take the integration from 0 to T , the uniform boundedness

of (uϵ, vϵ) implies
1

ϵ
∥uαϵ − vβϵ ∥2L2(Γ×(0,T )) ≤ C.

where C is independent of ϵ, which means uαϵ − vβϵ → 0 strongly in L2(Γ×
(0, T )). Then, we have the weak convergence uαϵ − vβϵ → 0 in the same
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functional space, or in other words

lim
ϵ→0

∫
Γ
(uαϵ − vβϵ )ηdS = 0

for all η ∈ L2(Γ× (0, T )). Now, we restrict to the subsequence {(uϵi, vϵi)},
i.e., we have:

lim
i→∞

∫
Γ
(uαϵi − vβϵi)ηdS = 0. (3.2)

On the other hand, we have the weak convergenceuαϵi ⇀ wα ∈ L2(0, T ;H1(Ω)),

vβϵi ⇀ zβ ∈ L2(0, T ;H1(Γ)).

Due to Trace Theorem, it impliesuαϵi ⇀ wα ∈ L2(0, T ;L2(Γ)),

vβϵi ⇀ zβ ∈ L2(0, T ;L2(Γ)).

So, for any η ∈ L2(0, T ;L2(Γ)) limi→∞(uαϵi − wα, η)L2(0,T ;L2(Γ)) = 0,

limi→∞(vβϵi − zβ, η)L2(0,T ;L2(Γ)) = 0.

Combine these and (3.2), we can deduce

(wα − zβ, η)L2(0,T ;L2(Γ)) = 0

for all η ∈ L2(0, T ;L2(Γ)), which give the conclusion

wα = zβ

for a.e on Γ× (0, T ). So, we can rewrite the limit (w, z) by (w, (w|Γ)α/β).
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Next, we will complete the proof of theorem by showing that w satisfies

the weak formulation (3.1). First, we recall the weak formulation (1.3) and

(1.4), and choose the test function (φ, φ|Γ) ∈ C([0, T ];Z)∫ T

0

∫
Ω
(−uϵφt + du∇uϵ · ∇φ)dxdt =

∫
Ω
u0φ(0)dx

− α

ϵ

∫ T

0

∫
Γ
(uαϵ − vβϵ )φdSdt (3.3)

∫ T

0

∫
Γ
(−vϵ(φ|Γ)t + dv∇Γvϵ · ∇Γ(φ|Γ))dSdt =

∫
Γ
v0φ|Γ(0)dS

+
β

ϵ

∫ T

0

∫
Γ
(uαϵ − vβϵ )φ|ΓdSdt

(3.4)

Then, multiply (3.3) by β, (3.4) by α, and take the sum, we obtain

β

∫ T

0

∫
Ω
−uϵφt + du∇uϵ · ∇φdxdt

+α

∫ T

0

∫
Γ
−vϵ(φ|Γ)t + dv∇Γvϵ · ∇Γ(φ|Γ)dSdt

= β

∫
Ω
u0φ(0)dx+ α

∫
Γ
v0φ|Γ(0)dS. (3.5)

Consider the subsequence {(uϵi, vϵi)} to the equation (3.5) and take the limit

i → ∞. The convergence of the sequence {(uϵi, vϵi)}∞i=1 to (w, (w|Γ)α/β)
gives the weak formulation (3.1), which conclude this proof.

Remark 3.2. The regularity condition (w, z) ∈ C([0, T ];L2(Ω)×L2(Γ)) in

fact is consequence of the regularities (w, z) ∈ L2(0, T ;Z) and time deriva-

tive ∂t(w, z) ∈ L2(0, T ;Z∗), with Z defined in the Section 2.4 (see Theorem

1.6 and its remarks). To show that ∂t(w, z) ∈ L2(0, T ;Z∗), we go back to

the uniform boundedness of time derivative in Lemma 2.3, then we have a

subsequence of {(uϵ, vϵ)} converges weakly in this functional space. Com-
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bine with the fact that {(uϵi, vϵi)} converges weakly to (w, z) in L2(0, T ;Z),

we can show that a subsequence of {∂t(uϵi, vϵi)} converges weakly to ∂t(w, z)

in L2(0, T ;Z∗) (for e.g., see [14, Section 7.5]).

Remark 3.3. Moreover, we can rewrite the weak formulation to a form

similar to (1.5)

⟨∂t(w, (w|Γ)α/β); (φ, φ|Γ)⟩V ∗×V + du

∫
Ω
∇w · ∇φdx

+ dv

∫
Γ
∇Γ(w|Γ)α/β · ∇Γ(φ|Γ)dS = 0 (3.6)

and test function (φ, φ|Γ) ∈ Z.

Remark 3.4. Consequently, the limit system (3) has a weak solution, and

to the best of our knowledge, there is not any results related to this type of

system.

As mentioned in the last chapter, we have noticed that the convergence

holds for the whole sequence if the limit is unique (e.g., see [11]). In this

case, up to our knowledge, we do not have the uniqueness of the solution

for (3). However, we have it hold for the case α = β, shown in [6].

Theorem 3.2 ([6]). The limit system in the case α = β (see system (3.7))

has a unique weak solution, with initial condition (u0, v0) ∈ L2(Ω)×L2(Γ).

3.2 Convergence rate

In this section, we will investigate the convergence rate. We will consider

this situation since we only have the uniqueness when α = β. We will use

a similar technique in [7]. In this article, the authors define functions that

represent the differences between the solution of the original system and

limit system’s solution, assuming that these systems have classical solutions

with the best regularities (the solutions are smooth and bounded).
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In here, we assume that the initial condition belongs to functional space

Z in the last chapter, which means

u0 ∈ H1(Ω) , v0 ∈ H1(Γ) and v0 = u0|Γ.

This kind of condition is called compatibility condition, and it leads the

limit system to a heat equation with Wentzell boundary condition

∂tw − du∆w = 0, x ∈ Ω, t > 0

du∇w · ν = −∂tw + dv∆Γw, x ∈ Γ, t > 0

w(x, 0) = u0(x), x ∈ Ω, t > 0

w|Γ(x, 0) = v0(x), x ∈ Γ, t > 0,

(3.7)

where (u0, v0) ∈ Z, defined as above. We can use many results related to

this type of equation. Indeed, the equation (3.7) has been proved that it has

a unique solution with “nice” regularity that we require (see [24, Theorem

1]).

Proposition 3.1 ([24]). If the initial condition (u0, v0) ∈ Z, then the sys-

tem (3.7) has an unique solution, satisfies the following regularity.

w ∈ C1([0,∞), H1(Ω)) ∩ C1((0,∞), H2(Ω)) ∩ C((0,∞), H3(Ω))

and

w|Γ ∈ C1([0,∞), H1(Γ)) ∩ C1((0,∞), H2(Γ)) ∩ C((0,∞), H3(Γ)).

So, the solution of (3.7) w satisfies the following weak formulation

⟨wt, φ⟩Ω + ⟨(w|Γ)t, φ|Γ⟩Γ + du

∫
Ω
∇w · ∇φdx

+ dv

∫
Γ
∇Γ(w|Γ) · ∇Γ(φ|Γ)dS = 0 (3.8)
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for all φ ∈ H1(Ω) and φ|Γ ∈ H1(Γ) and a.e. t ∈ (0, T ).

On the other hand, when α = β ,the original system has the form

ut − du∆u = 0, x ∈ Ω, t > 0,

du∇u · ν = −α
ϵ (u

α − vα), x ∈ Γ, t > 0,

∂tv − dv∆Γv = α
ϵ (u

α − vα), x ∈ Γ, t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ Ω,

v(x, 0) = v0(x) = (u0)|Γ(x) ≥ 0, x ∈ Γ,

(3.9)

and we use the following weak formulation:

⟨∂tuϵ, φ⟩Ω +

∫
Ω
du∇uϵ · ∇φdx = −α

ϵ

∫
Γ
(uαϵ − vαϵ )φdS, (3.10)

⟨∂tvϵ, ψ⟩Γ +
∫
Γ
dv∇Γvϵ · ∇ΓψdS =

α

ϵ

∫
Γ
(uαϵ − vαϵ )ψdS, (3.11)

for a.e. t ∈ [0, T ] and for all (φ, ψ) ∈ H1(Ω)×H1(Γ).

We are interested in the convergence rate for the system (3.9) converges

to equation (3.7) as ϵ→ 0. First, fix a small ϵ, we set

U(x, t) := uϵ(x, t)− w(x, t) on Ω× [0, T ],

V (x, t) := vϵ(x, t)− w(x, t) on Γ× [0, T ].

Remark that we have: U − V = u− v a.e. on Γ× (0, T ).

We have the time derivative

d

dt
∥U(t)∥2L2(Ω) = ⟨∂tuϵ, uϵ − w⟩Ω − ⟨∂tw, uϵ − w⟩Ω

for a.e. t ∈ (0, T ). Similarly, we have

d

dt
∥V (t)∥2L2(Γ) = ⟨∂tvϵ, vϵ − w⟩Γ − ⟨∂tw, vϵ − w⟩Γ.
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Combine these, we get

d

dt
(∥U(t)∥2L2(Ω) + ∥V (t)∥2L2(Γ)) =⟨∂tuϵ, uϵ − w⟩Ω − ⟨∂tw, uϵ − w⟩Ω

+ ⟨∂tvϵ, vϵ − w⟩Γ − ⟨∂tw, vϵ − w⟩Γ
=⟨∂tuϵ, uϵ − w⟩Ω + ⟨∂tvϵ, vϵ − w⟩Γ
− (⟨∂tw, uϵ − w⟩Ω + ⟨∂tw, uϵ − w⟩Γ)

+ ⟨∂tw, uϵ − vϵ⟩Γ.

Then, choosing the appropriate test function for weak formulation (3.8),

(3.10) and (3.11), we obtain

⟨∂tuϵ, uϵ − w⟩Ω =− du

∫
Ω
∇uϵ · ∇(uϵ − w)dx

− α

ϵ

∫
Γ
(uαϵ − vαϵ )(uϵ − w)dS,

⟨∂tvϵ, vϵ − w⟩Γ =− dv

∫
Γ
∇Γvϵ · ∇Γ(vϵ − w)dS

+
α

ϵ

∫
Γ
(uαϵ − vαϵ )(vϵ − w)dS,

and

⟨∂tw, uϵ − w⟩Ω + ⟨∂tw, uϵ − w⟩Γ =− du

∫
Ω
∇w · ∇(uϵ − w)dx

− dv

∫
Γ
∇Γ(w|Γ) · ∇Γ(uϵ − w)dS.

Combine these, we have:

d

dt
(∥U(t)∥2L2(Ω) + ∥V (t)∥2L2(Γ)) =− du∥∇(uϵ − w)∥2L2(Ω) − dv∥∇(vϵ − w)∥2L2(Γ)

− α

ϵ

∫
Γ
(uαϵ − vαϵ )(uϵ − vϵ)dS

+ ⟨∂tw, uϵ − vϵ⟩Γ.
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The first and second terms of the right-hand side are non-positive, so we

only need to work with the other two. For the integral term, we have:

−α
ϵ

∫
Γ
(uαϵ − vαϵ )(uϵ − vϵ)dS =− α

ϵ

∫
Γ
(
α−1∑
i=0

uiϵv
α−1−i
ϵ )(uϵ − vϵ)(uϵ − vϵ)dS

=− α

ϵ

∫
Γ
(
α−1∑
i=0

uiϵv
α−1−i
ϵ )|U − V |2dS.

We use the assumption that the initial condition is strictly positive. Then,

due to Proposition 2.1, vϵ has a lower bound m > 0 that does not depend

on ϵ. So, we have the estimate:

α−1∑
i=0

uiϵv
α−1−i
ϵ ≥ vα−1

ϵ ≥ mα−1 > 0 a.e. (0, T )× Γ,

which implies:

−α
ϵ

∫
Γ
(uαϵ − vαϵ )(uϵ − vϵ)dS ≤ −c1

ϵ
∥U − V ∥2L2(Γ),

With c1 is a constant does not depend on ϵ. On the other hand, the

regularity of w allows us to rewrite

⟨∂tw, uϵ − vϵ⟩Γ = (∂tw, uϵ − vϵ)L2(Γ) ≤ c2∥U − V ∥L2(Γ),

Moreover, c2 is a constant not dependent on ϵ. The above inequality holds

since wt is bounded in L2(Γ), uϵ−vϵ = U −V on Γ and Holder’s inequality.

Combine these above, we deduce

d

dt
(∥U(t)∥2L2(Ω) + ∥V (t)∥2L2(Γ)) ≤

−c1
ϵ

∥U − V ∥2L2(Γ) + c2∥U − V ∥L2(Γ)

≤ −c1
ϵ

∥U − V ∥2L2(Γ) +
c1
2ϵ
∥U − V ∥2L2(Γ) +

2c22
c1
ϵ

≤ c3ϵ,
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with c3 =
2c22
c1
. So for any fixed t0 ∈ [0, T ], take the integration from 0 to t0

and using the fact that U(0) = V (0) = 0

∥U(t0)∥2L2(Ω) + ∥V (t0)∥2L2(Γ) ≤ c3t0ϵ.

From the argument, we have the following theorem:

Theorem 3.3 (Convergence rate). Assume that initial condition (u0, v0) ∈
Z is strictly positive, the solution of (3.9) {(uϵ, vϵ)} converges to the solu-

tion of (3.7) as ϵ→ 0 with convergence rate

∥u(t)− w(t)∥L2(Ω) + ∥v(t)− w|Γ(t)∥L2(Γ) ≤ c
√
ϵ.

Remark 3.5. Notice that the positivity of the initial condition is only nec-

essary if α > 1. In the linear case α = 1, the constant c1 = 1 intimately,

then we can remove that condition.

Remark 3.6. In Section 3.1, we have shown that uαϵ −vβϵ converges strongly

to 0 with the rate ϵ1/2 also. Therefore, it seems that the convergence rate

of {(uϵ, vϵ)} generally cannot exceed this rate.
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CONCLUSION AND DISCUSSION

In this thesis, we have introduced the fast reaction limits for the non-

linear bulk-surface reaction-diffusion problems. In detail, we have given a

result related to the open question in article [6], which is the fast reaction

limit problem for the bulk-surface reaction-diffusion system, modeled by

the chemical reaction (1). We have shown that the solution of the original

system (2) admits a subsequence that converges strongly to the solution of

(3), in the functional space L2(0, T ;L2(Ω) × L2(Γ)). Moreover, we have a

result about the convergence rate, with some technical assumptions.

Due to the lack of time, there are still many open questions related to

this problem. Here are some example:

• Can we have a better convergence, for example in the case α = β,

the authors of [6] have shown that the convergence holds in the space

L2(0, T ;H1(Ω)×H1(Γ))? This is proved by using convergence to equi-

librium, which we also have for this situation.

• Expansion for the rate function: Here, we work with F (u, v) = uα−vβ,
based on the mass action law. What happens if we replace it with a

more general function, for example, a polynomial?

• Adding more components in the chemical reaction (1): What can we

say if adding one more component in the reaction, for example

U
k1
⇆
k1

u
k2
⇆
k2

v
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with U are on Ω while u and v are located on Γ? The question here

is what can we conclude about the fast reaction limit if k2 > 0 is fixed

and k1 tends to infinity. The well-posedness of the system have been

proved in [9]

• Can we remove any assumption in the convergence rate question?
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