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Introduction

Advection-diffusion problems with moving subdomains play a significant
role in various fields of engineering and physical phenomena that involve
moving multiple-component systems, as in mass transport [1], heat transfer
[2], electromagnetics [3], or heat induction [4]. The Thesis aims to present
the numerical analysis of an interface-fitted space-time finite element method
[5] for a boundary value problem for an advection-diffusion equation with a

moving interface and an inverse source problem for this problem.

Relevant literature

The main difficulty of solving interface problems is the non-sufficient
smoothness of the solution across the interface, which results in sub-optimal
convergence orders of classical finite element methods [6]. In the last 50
years, many studies have focused on handling the issue, forming two major
approaches: interface-unfitted and interface-fitted methods. The former ap-
proach includes some examples such as the extended finite element method
(XFEM) [7], the immersed finite element method (IFEM) [8], and the multi-
scale finite element method (MsFEM) [9]. These methods approximate dis-

continuous quantities by modifying the local finite element basis functions
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on interface elements instead of using a triangulation that fits the interface.
When the interface evolves, this approach is efficient since it allows fixed
interface-independent simplicial triangulations [10, 11, 12].

In contrast, interface-fitted methods prevent the interface from cutting
through an element arbitrarily or resolve the interface approximately [13, 14].
However, as opposed to the success of unfitted approaches, interface-fitted
methods have received little attention for solving time-dependent problems
with moving subdomains. The reason is that the re-meshing procedure at
each time step introduces additional errors in interpolating two consecutive
meshes, which can exceed the feasible effort. The method is then applied to
an inverse source problem with observations inside the space domain.

Related to our problem setting, Bellassoued and Yamamoto [15] studied
an inverse source problem for a parabolic transmission equation. The authors
established a conditional stability of determining the spatial component of
the source from a single measurement on a fixed subdomain. Recently, also
invoked a partial interior observation, Chen et al. [16] simultaneously recon-
structed the initial value and the spatial part of the source. They ended up
with a conditional stability result and an iterative thresholding algorithm to
solve the inverse problem. In [17], Zhang et al. studied a distributed optimal
control problem (a special case of the inverse source problem) for a parabolic
interface system. The authors presented an error analysis of the finite element
discretization of the problem and obtained the optimal order error estimates
of the control, state, and adjoint. However, note that inverse source problems

for time-dependent equations with moving interfaces have not been studied
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so far.

Contributions

The Thesis presents an interface-fitted space-time finite element method
[5] for an advection-diffusion equation with a moving interface. This method
resolves a disadvantage of interface-fitted methods and allows us to cope with
geometrically complicated interfaces. We establish two new optimal order
priori error estimates for the method, supplementing the results in [5].

Next, we focus on an inverse source problem for the advection-diffusion
equation with a moving interface under non-negative constraints. It is an
ill-posed problem. We first regularize the problem by using the Tikhonov
method and then study the existence and stability of the regularized source
with respect to the noise. Second, we propose a strategy for discretizing our
problem. We discretize the regularized state and adjoint with element-wise
linear finite elements associated with an unstructured mesh [5]. On the other
hand, we employ the variational approach [18] for the regularized source. We
arrive at the optimal order priori error estimates of the regularized source,
state, and adjoint.

From these estimates, we suggest a condition for the strong convergence
of the discrete regularized source to the continuous unregularized one and
the corresponding convergence rate, following the idea of Hao et al. [19]
for elliptic inverse source problems. To the best of our knowledge, this type
of convergence rate for inverse source problems for an advection-diffusion

problem with a moving interface is new.



Outline

The Thesis comprises three chapters, excluding introduction, conclusion,
and bibliography. Chapter 1 provides basic functional spaces and the back-
ground related to bounded linear operators. Chapter 2 is devoted to the
Galerkin finite element discretization of the advection-diffusion equation with
moving subdomains, in which we derive the optimal order prior error esti-
mates in various norms. Chapter 3 studies an inverse source problem for
the equation in chapter 2 from a partial interior observation. We present the
Tikhonov regularization, the finite element discretization errors in two norms,
and a condition for the convergence of the discrete regularized source to the
continuous unregularized one. Lastly, we will give some perspectives and

comments about future work.



Chapter 1

Background

This chapter presents basic functional spaces and some topics related to
bounded linear operators. All the contents are cited from [20], [21], [22],
and [23]. We denote by C' > 0 a generic constant depending on the space-
time domain ()7, the coefficient x and the operator .S, but independent of the

function u. Their different values in different contexts are allowed.

1.1 Functional spaces
Definition 1.1. (Normed space) Let U be a real vector space. A function
|-[ly : U — Ris called a norm on U if it satisfies the following conditions:
a) ||ul|y; = 0if and only if u = 0 forall u € U.
b) ||nully = |n|||u||y foralln € Rand u € U.
) llu+vlly < llully + [[olly for all u,v € U,
The vector space U equipped with the norm ||-||; is called the normed space.

Definition 1.2. (Inner product space) Let U be a real vector space. A function

(,-)y : Ux U — Ris called an inner product on U if it satisfies the following



conditions:
a) (u,u)y > 0forallu € Uand (u,u)y = 0if and only if u = 0.
b) (u,v)y = (v,u)y forall u,v € U.
c) (u+v,w)y = (u,w)y + (v,w)y forall u,v,w € U.
d) (nu,v)y =n(u,v); foralln € Rand u,v € U.

The vector space U endowed with the inner product (-, -); is called the inner

product space.

Every inner product space U is a normed space with respect to the induced

norm ||ul|y = +/(u, u)y forall v € U.

Definition 1.3. (Convergence and the Cauchy sequence) Let U be a normed
space. We say that the sequence {u,},.y C U converges to u € U if
?111320 |, — u|ly = 0, denoted by nhjglo Up = uor u, — uin U.

We say that the sequence {u,},.y C U is the Cauchy sequence if for
all ¢ > 0, there exists M = M (¢) € N such that ||u,, — u,||y < ¢ for all

m,n > M.

Definition 1.4. (Complete space) A normed space U is said to be complete

if all Cauchy sequences in U converge.

Definition 1.5. (Banach space and Hilbert space) A complete normed space
1s called a Banach space. A complete inner product space with respect to the

induced norm is called a Hilbert space.



1.1.1. Sobolev spaces

In this section, we consider €2 to be an open set in R? (d = 1,2, 3).

Definition 1.6. (Lebesgue space) Let ¢ € [1, 00). The space LY (€2) consists
of all Lebesgue measurable functions u, defined at almost everywhere in €2

such that

q

Jull = | [l da | <o
Q

The space L™ (2) includes all Lebesgue measurable functions u, defined at

almost everywhere in (2 that satisfing

[ull () := esssup |u (x)] < oo.
el

Definition 1.7. (Integer order Sobolev space) Let s € N, ¢ € [1,00]. We
define the space W* (2) as

W (Q) = {u € L(Q) | 9%u € L1 (Q) forall 0 < |a| < s},

where 0%u denotes the av-order weak derivative of u, endowed with the norm
1

q

lullger == | 32 0%l Vu € W (Q).

0<]|a|<s

Definition 1.8. (Fractional order Sobolev space) Let s > 0,s ¢ Nand ¢ €

[1,00). The space W*¢ (2) consists of all functions u € W/ (Q) such that

Ia"‘ — 0%u(y)/"
Z// d+q ) dx dy < oo,

lal=5]

equipped with the norm

|0%u ( “u (y)|’
ullynaey = Il + Z // d+qs Ly drdy,

|a|=

for all u € W7 ().
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Theorem 1.9. Let s > 0. The space W1 (Q)) furnished with the norm
|l wsa(qy is a Banach space for all ¢ € [1,00]. In particular, the space
W*2(Q) is a Hilbert space, denoted by H* (Q). The norm on this space is
denoted by ||-|

H° (Q)
Theorem 1.10. (Embedding and compact embedding) Let s > 0,q € [1, o]
and ) be a Lipschitz domain in R? (d = 1,2, 3).
a) If sq > d then we have the embedding W*? () — L (Q2) and the
compact embedding W* () — C ().
b) If sq < d then for all ¢ € [1, dz—‘iq), we have the compact embedding
W (Q) — L7 (Q).

1.1.2. Anisotropic Sobolev spaces

In this section, we consider ) to be an open set in R? (d = 1,2,3) and
T > 0 to be a positive number. Denote by Q7 := Q x (0,7) a space-time

domain.

Definition 1.11. (¢-anisotropic Sobolev space) Let [, £ € N. We define the
space H** (Qr) as

H* (Qr) =

{ueLl?*(Qr)] 050;u € L*(Qr) forall0 < |a| <1, r=0,1,....k},

where 05u and O;u are the weak derivatives with respect to « and ¢ of w,

respectively, endowed with the norm

N[

HUHH“"(QT) = Z Hﬁg‘é’fuﬂiz@ﬂ Vu € HYY (@r) -

0<|a|<l, 0<r<k
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Let Hy" (Qr) be the closure of the space C¢ (Qr) with respect to the norm
[[[10(,)- For convenience, we use the compact notation Y := H," (Qr),

furnished with an equivalent norm

T
|2 :://mw? da i,
0 Q

where x = k (x,t) will be introduced in chapter 2. The equivalence results

from the Poincaré—Steklov inequality

we refer to [20]. The dual space of Y is denoted by Y’ (see Definition 1.18),
and the duality pairing between Y’ and Y is denoted by (-, -). Let us introduce

the spaces

X:={ueY|dueY'}, (1.2)

and

Xpi={ueX|u(-t) =0},
with t € {0, T}, equipped with the norm ||u|% = ||ul|> + || Q5.

Theorem 1.12. (Time trace and integration by parts) Let X be the space

defined in (1.2). Then, the following statements hold true
a) The space X is embedded into the space C ([0,T],L* (Q)).

b) The trace operator u € X — u(-,t) € L*(Q) is bounded for almost

every t € [0, T]. The following inequality holds

sup || (-, 0)12q) < Cllullx Vu e X. (1.3)
t€[0,T



c) Forall u,v € X, we have

(O, v) + (O, u) = /u(a:,T)v(a:,T) da — /u(az,O)v(a:,O) de.
Q QO

Consider the case ()7 is separated into two subdomains (); and () by
the space-time interface ['* := 0Q; N 0Q3. In this scenario, the space
H'Y (Q, U ()2) is important, since in it, the trace operators 7; : H'Y(Q;) —
L2 (I'*) (i = 1,2) are well-defined under mild assumptions on I'* [24].

Let us present the Stein extension operators [23], which are crucial for
handling functions with global low but local high regularity. For any fixed
s > 0, a function u € H* (Q1 U Q2), and i = 1,2, denote by u; := u g, €

H?® (Q;) the restriction of u to the subdomain Q);.

Theorem 1.13. Assume that I'* is a Lipschitz continuous hypersurface in

R then there exists smooth extensions E; : H* (Q;) — H* (Qr) such that

wign < Cluillwg) (=12 (14

1.2 Bounded linear operators

In this section, we consider U and W to be two normed spaces.

Definition 1.14. (Linear operator and linear functional) An operator S :

D (S) C U — W is said to be linear if it satisfies the following conditions:
a) S(u+v) =S5 (u)+ S (v)forall u,v € D(95).
b) S (nu) =nS (u) foralln € Rand u € D (S).

When W = R, we call S a linear functional.
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Definition 1.15. (Continuous operator) An operator S : D (S) C U — W is
said to be continuous if for any sequence {u,}, . C D (S) such that there

exists u € D () satisfying u,, — u in U, we have S (u,,) — S (u) in W.

Definition 1.16. (Bounded operator) An operator S : D(S) ¢ U - W
is said to be bounded if there exists a constant C' = C'(S) > 0 such that

1S (w)]lyy < C|u|ly forall w € U.
Theorem 1.17. A linear operator is continuous if and only if it is bounded.

Definition 1.18. (Dual space) Let U be a normed space. A dual space of U,
denoted by U’, consists of all bounded linear functionals S : D (S) C U —

R, furnished with the norm

5 (S )y
1Sy = supM:sup— vsSelU'.
wet flully  wev  ully

Definition 1.19. (Adjoint operator) Let U, W be two Banach spaces and S :
D (S) c U— W be a bounded linear operator. An adjoint operator of S is a

bounded linear operator S* : W' — U’ such that

(5" (w) )y = (!, S (1)) ry V() € Ux W

1.2.1. Weak convergence in Banach spaces

Definition 1.20. (Weak convergence) Let U be a normed space. We say that
the sequence {u,}, . C U converges weakly to u € U, written as u,, — u

in U, if S (u,) — S (u) forall S € U’

Theorem 1.21. Let U be a normed space. Then, every closed and convex
subset . of U is weakly sequentially closed, which means for any sequence

{un},en C E such that v, — win U, we imply u € E.



Theorem 1.22. (Weak convergence in a reflexive space) Let U be a reflexive
Banach space. Then, every bounded, closed and convex subset & of U is
weakly sequentially compact, that is, for any sequence {u,}, . C E, we
can extract a subsequence {un, } .. Such that there exists u € E satisfying

w, — uin U.

Theorem 1.23. (Weak convergence with convex continuous functional) Let U
be a Banach space. Then, every convex continuous functional S : D (S) C
U — R is weakly lower semicontinuous, which means for any sequence
{un}, ey € U such that there exists uw € U satisfying v, — u in U, we

have liminf S (u,) > S (u).

n—oo

1.2.2. Differentiability in Banach spaces

Consider U, W as two Banach spaces and E as an open subset of U.

Definition 1.24. (Géateaux derivative) An operator S : E — W is said to
have a directional derivative in the direction h € U at an element u € E,

written as DS (u, h), if there exists the limit

lim S(u+T1h)— S (u)

7—0 T

=: DS (u,h).

If the operator h — DS (u, h) is a bounded linear operator, then we say that
S is Gateaux differentiable at v € E with the Géteaux differential DS (u, h)
and the Géteaux derivative S’ given by DS (u, h) =: 5" (u) (h).

Definition 1.25. (Frechét derivative) A continuous operator S : EE — W is

said to be Frechét differentiable at an element « € E if there esists a bounded
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linear operator DS (u) : U — W such that

S () = S (w) = DS () (B

0.
h—0 17/l

The term DS (u) (h) is refered as the Frechét differential of S at u € E with
the variation h € U, and DS (u) is the Frechét derivative of S at u € E,

denoted by S (u).

Clearly, if an operator is Frechét differentiable operator, then it is Gateaux

differentiable. Moreover, in that case, these two derivatives coincide.
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Chapter 2

An advection-diffusion equation with

a moving interface

This chapter presents the interface-fitted space-time finite element method
[5] for solving an advection-diffusion equation with a moving interface. This
problem appears in various fields of engineering and physical phenomenon
that involve moving multiple-component systems, such as mass transport [1],
heat transfer [2], electromagnetics [3], or heat induction [4]. The unknown
U in (2.1) may represent the concentration of the pollutant or the electron
transported at a velocity v owing to the advection and diffusion effect.

Let € be a Lipschitz domain in RY (d = 1,2) with the boundary 2. The
domain ) is splitted into two time-dependent subdomains €2;(¢) and 25(¢) by
an interface I'(¢), for all ¢t € [0, 7] with T" > 0. The interface I'(¢) is trans-
ported by a velocity field v = v (z,t) € C([0,T], CQ(Q)) that satisfying
V-v(x,t) = 0forall (x,t) € Qx][0,T][25]. We denote by Q7 := Q2 x(0,7T)
the space-time domain and

Qi=J ) x{t} (i=1,2)
)

te(0,T
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two subdomains seperated by the space-time interface I := (¢ 1 I'(¢) x
{t}. Assume that I'* is a C%-regular hypersurface in R*! and I'(t) N9 = @

for all £ € [0, T]. Consider the following problem

[ QU +v VU -V (:VU) = F inQp.
U] =0 on I'™*,
§ [kVU -n] =0 on ['*, (2.1)
U=0 on 0f) x (0,7,
\ U(-,0)=U, in (2,

where F' is the source term, U is the initial value, and n stands for the unit
normal at I'(¢) pointing from €2, () into €25(¢). The notation [U] = Uy ) —
Us| 1) denotes the jump of U across I'(t), with U; | p;) the limiting value from

Qi(t) of U (i = 1,2).

Figure 2.1: The interface I'(¢), which envolves by a velocity v, devides the domain (2 into two

subdomains €21 (t) and Q9(t), consider the case d = 1 [5].

For simplicity, let us assume that the diffusion coefficient « is a positive

constant on each subdomain

k1 >0 1n Ql(t),
K= tel0,77].

ko >0 1n Qg(t),
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The general setting of the subdomain-wise continuous uniformly positive co-
efficient € L™ (Qr) can be treated similarly. In this chapter, the constant
C > 0 depends on the space-time domain ()7, the position of the space-time
interface I'*, the norm ||v||y <, and the coefficient «, but is independent of
the function wu, the function w, and the mesh size h. Their different values in

different contexts are allowed.

2.1 Variational formulation

In this section, we recall from [5] the variational formulation of the prob-
lem (2.1) and its well-posedness. Let F' € Y’ and U, € Hj (). Denote by
uy € X an extension of Uy € H} (2). We define the solution of the problem

(2.1) as the function U = u + uy € X such that w € X, solves

a (T, ) = (F, ) —a(ug, p) Voey, (2.2)

where the bilinear form a : X X Y — R is given by

T
a(u,p) = (&u,g@)+//(V~Vu)g0+/<aVu-Vgpdmdt.
0 O

Lemma 2.1. There exists a constant C' > 0 that satisfies

sap %)
eeY \{0} HSOHY
Lemma 2.2. Ifa (u, ) = 0 for allw € X, then ¢ = 0.

> O |l Vi € Xo.

The well-posedness of the problem (2.2) results from Lemmas 2.1 and 2.2,

according to the Banach-Necas-Babuska theorem [26].

Theorem 2.3. Let F € Y' and Uy € H}, (Q). Then, the problem (2.2) admits

a unique solution w € X such that |||y < C (||Fly + ||uol/x)-
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Remark 2.4. If F' € L* (Qr) then we have a priori estimate

fllx < € (I1F g + luollx) 2.3)

since from the inequality (1.1), it holds that

F .- 2
| F|ly» = sup (o) < su IE W20 12Nz

= < CFizi0m -
cev {0y lelly ™ pevifoy lelly L7(Qr)

Therefore, we imply ||U||x < C (HFHLQ(QT) + HUOHX)

Regarding an additional regularity of the solution U € X of the problem

(2.1), let us introduce the following assumption:

Assumption 2.1. For F' € Y' and Uy € H} (), assume that the solution
U € X of the problem (2.1) satisfies U € H' (Qr) N H* (Q U Q2) with a
given s > # and there exists a constant C' > (0 independent of F' and U,
such that

Ul r) < C UIElly + [luollx) - (2.4)

In this work, we assume that the assumption 2.1 is satisfied.

2.2 Finite element discretization

Assume that ) is a polyhedron in R?. The domain Q7 is divided into
shape-regular simplicial finite elements by an interface-fitted triangulation
Th, where the mesh size h € (0, h,) for a given h, > 0 [27]. Hence, every

triangle or tetrahedron K € 7y, falls into one of the following scenarios:
1. K C Qq;

2. K C Qq;
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3. KNQ, # g and K N Qs # I, then d + 1 vertices of K lie on I'.

Moreover, suppose that 7, is quasi-uniform. We denote by I'; the linear
approximation of I'*, consisting of all edges (or faces) with the nodes lying
on ['*. The discrete interface I'; seperates ()7 into two subdomains ()1  and

(2.1, which are approximated counterparts of (); and (), respectively.

2.2.1. Interface-fitted space-time method

We discretize the problem (2.2) by using the interface-fitted space-time
finite element method, based on the work [5]. For simplicity, we assume
that Uy = 0, which means uy = 0 in (2.2). Let Y} be the finite element
space of continuous element-wise linear functions on 7}, with zero values on
0 x (0,7). We define X5, 0 = {vn € Yi | on = 00n Q x {0}}. Obviously,
Y, C Y and X, 0 C Xy. Consider the discrete problem: Find w;, € X, o that

satisfies
an (Un, pn) = (F, on) Von € Yy, (2.5)

with the bilinear form aj, : Xg X Y — R given by

T
ap (u, ) = (Qyu, ) + / / (v-Vu)p + kVu - Ve de dt,
0 0
where k; approximates x by means of

K1 > 0 in Ql,ha
Rp ‘=

ko >0 1In Q?,h-

Regarding the numerical analysis, we introduce the seminorm

2
ol =3 / o [Vof? dedt Vo € H Q10 U Qo).
=1
Qin
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Note that in case v € Y < H*? (Q1.n U Q2.1), the right-hand side becomes

9 T
Z/mwﬁ dmdt://ﬁ;h|Vv|2 de dt,
0 Q

o
which defines an equivalent norm in Y, also denoted by ||v|||. Since this norm

involves the coefficient kp, it is more favorable for studying discrete problems

than the norm ||v||y. On the space H' (Q1 1, U Q2.), we introduce the norm

ol = Nloll® + 2 ()11 Vo € H' (Qun U Q2n)

where z, (v) € Y}, is a unique solution of the problem

T 2
/ / KV (v) - Vi dadt =) / (D), de dt Vi, €Y, .
0 0 =10
Lemma 2.5. There exists a constant C' > 0 such that
sup (@) O]l Y, € Xpo. (2.6

wneYn \{0} \H@hm

Using the discrete Banach-Necas-Babuska theorem [26], we conclude that

the problem (2.5) is uniquely solvable.

2.2.2. Auxiliary results

In this section, we provide some auxiliary findings. We first present a
result regarding the mismatch between each space-time subdomain ¢); and

its approximated counterpart (); , for ¢ = 1, 2. Define by

Sp=Q1n\ Q1= Q2\ Qap, Sii=Qan\ Q2= Q1 \ Qr,

and S, = S}US? (see Figure 2.2). We denote 7, = {K € T, | K N # &}

the set of all interface elements.
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Figure 2.2: The mismatch region S;, = S} U S? lies between the space-time interface I'* and the

discrete one I'}, consider the case d = 1 [5].

Lemma 2.6. Assume that I'* is a C*-continuous hypersurface in R*! (d =

1,2) and Ty, is a quasi-uniform mesh. Then, for each K € T,’, we have
K NS, < Cht, (2.7)
It holds for the cardinality of the set T," that
d 1<on (2.8)
KeTy;
Proof. When d = 1, the proof of the first inequality can be found in [27].

We obtain the second one by combining this inequality with [28]. All the

arguments can be extended to the case d = 2 without essential changes. [

We continue by studying the approximability of the Lagrangian inter-
polant. Let u € H'(Qr) N H?*(Q,UQ,). For u € H?*(Q,UQ>), the
Sobolev embedding [20] follows that v € C (Q1) N C(Q2). In addition,
if w € H'(Qr), then yyu — you = 0, which implies u € C(Qr). Let
I : C(Qr) — Xy be the nodal interpolation operator. When d = 1, the

interpolation estimate was addressed by Chen and Zou [27]. However, the

order was nearly optimal up to the factor |log h|, where h is the mesh size.

This paper imposes an additional condition on u and follows their approach
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to recover an optimal order estimate. We end up with the following result:

Lemma 2.7. Foru € H' (Qr)NH’ (Q1 U Q) with s > X2, the interpolation

operator I}, satisfies the following inequality

lu = Inallyz gy + B 1D (4 = Tz gy < CH*lul

H*(Q1UQ2) > (2.9)

where D := (V, 6t)T denotes the space-time gradient operator.

Proof. Let us focus on [lu — Iyully2(g,). since ||D (u— Iyu)|yzg,) can be
esimated similarly. The idea is first to estimate the interpolation error on
each element K € 7T}, then sum over all elements to obtain the desired result.
Under the assumption, we have v € H? (K) on any K ¢ 7,". The classical

interpolation theory [20] yields

Next, consider an arbitrary element X' € 7,". Without loss of generality,
suppose that K NS, C Q1 and K \ S;, C @Qs. For u € H* (Q1 U Q9) with
s > 43 note that E;u € H* (Qr) C W™ (Qr) (i = 1,2) [20], with E,
and E» the extension operators in (1.4). The inequality (2.7) and classical

interpolation theories give us

Ju— [hUHi?(K)

= [[Eru — I (Es U)Hi?(KmSh) + [|Ecu — I (E2 u)HiZ(K\Sh)

< [K NSyl [Eru — I, (Eq u)”i%(fmsh) + B2 u — I (E2 U)HiQ(K\Sh)
< O™ ||y w — I (Ey )|y + B2 — I (B2 w) 12

2
< Ch™ D (Erw) 1) + C* [[D? (B2 ) |2 ) -
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We sum over all K € 7, and use the inequality (2.8), the Sobolev embedding
H* ! (Qr) — L™ (Qr) for s > % [20], and the extension operators (1.4)

again to get

2
Dl = Tl <
KeTy;

< CptH maX{HD (B4 U)H%OO(QT) D (E2 u)Hi“’(QT)} Z 1
KeT)

+ Ot (D2 (81 0)[gzq,, + D% (B2 )][52(q,)
t (@) + ID (B2 )

4 2
+Ch HuHHQ(QlUQz)

< Ch4max{||D(E1 w)|

2
H~(Qr)

< Ch* |lul

2
R (QWTa) (2.11)

Together with (2.10), we imply [|u — Tyull 2o, < CB* [|ullgs(g,uq,) Using

the same arguments, one obtains ||D (u — Lhu)|y2g,) < Ch|lullys(g,u0,)-

The proof is complete. []
Please note that the mismatch between 7, and ()7 at the interface leads to

the non-conformal property of ay (-, -). In particular, we have the following

lemma:

Lemma 2.8. Let u € X and uy, € Xy, be the solutions of the problems (2.2)

and (2.5), respectively. There holds the following equality

ayp, (ﬂ — Up, gOh) = / (Iﬁ:h — Ii) Vu -V dedt Yo € Y. (2.12)
Sh

Proof. For u € Xy, u;, € Xp,0 and @), € Yy, we invoke the equations (2.2)
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and (2.5) to have

T
an, (@, o) = (O, on) -l-// v - V) pp + £, Vu - Vo, dae dt
0

T
= a (U, ph +// kp — k) Vi - Vi, de dt
0

= <F790h>+/(/€h—/€)Vﬂ°chhd:cdt

Sh
—an () + [ (5= 1) VT Vion dad
Sh
observed that x; — k vanishes everywhere outside of .5,. []

2.2.3. A priori error estimates

Now, we estimate the error uw — uj, in various norms, where ©w € X, and
uy, € Xp0 be the solutions of the problems (2.2) and (2.5), respectively. The
following result looks at the error @ — @y, in the norm ||-|||, (please see [5] for

more details).

Lemma 2.9. Let u € X and uy, € Xy, be the solutions of the problems (2.2)
and (2.5), respectively. Assume that Assumption 2.1 is satisfied. Then, we

have the following estimate

Iz = @alll, < Chfu]

H(Q1UQs) - (2.13)

We continue by estimating the state error in the L (Q)-norm at t = T.

Following the duality argument, let us define the space

Vo= {0 € X[ 6 (.T) = |@ ) (- T) kg @~ ) (. T) in 2}
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where v > 0 is a sufficient large number, © € X, and u;, € X, are the
solutions of the problems (2.2) and (2.5), respectively. Assume that there

exists y € Vr that solves the problem

— (Owy, @) // -Vy) ¢+ kVy-Vodaxdt =0 VoeY. (2.14)

Under the assumption 2.1, one has y € H' (Qr)NH® (Q1 U Q) with s > 42,

We further assume that it satisfies

19l (0,00,) < C (2.15)
where the constant C' > 0 is independent of u and w;,.

Theorem 2.10. Let u € Xy and w;, € Xy, be the solutions of the problems
(2.2) and (2.5), respectively. Assume that Assumption 2.1 is satisfied and the

problem (2.14) admits a solution y € Vr that satisfies (2.15). Then, we have

1@ =) (-, T)llpae) < Ch* [Tl

H*(Q1UQ2) * (2.16)

Proof. We choose ¢ = u —uy, € Xy in (2.14), then employ the integration by

parts formula to get

Vo l|(@ —n) (1)l 12q)
:/(ﬂ—ﬂh)(m,O)y(rE,O) dz + (0, (T — ) ,y)
Q

+

\ﬂ

/ (v-Vy) (@—1up) +kVy -V (u—1up) dedt
Q

~ O

= <at(ﬂ_ﬂh>7y

+

Tt~

/ (v-Vy)(uw—1ap) + &V (u—1uy) - Vydadt,
0
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using the fact that (w — @) (,0) = 0 in Q in the last step. To handle the
advection part on the right-hand side, we invoke the property V - v(zx,t) = 0
for all (x,t) € Q x [0,T7], the divergence theorem, and the homogeneous

Dirichlet boundary condition. We have

T
//v Vy) (@ —up) dedt = // y(u—1u,)v) dedt
0

[ [ V@ m)y @ m) (Vv ded
0 Q

I
- i\%
\'ﬂ >

T
y (@ —1up) v -ngdsdt — // v-V(u—1ay))ydedt
0

/ (v-V (@ — ) yda dt, 2.17)
Q
with ng the outward normal to 0€). Hence, we get

o 1@ = un) (5 T2y = (0 (@ =), )
+ V(a—1ap)y+kV(u—1u,) - Vydedt
[
y)+

ap (T — Up, y

/(m— k) V(T — ) - Vy dao dI,

noticing that x — x5, = 0 outside of Sj,. Since y € H' (Q7)NH?* (Q, U Q5) for
5> @ , we are able to invoke the interpolation /,y. We denote e := y — Iy

for convenience, and choose ¢;, = I,y € X} 1n (2.12) to obtain

Vo l|(@ —=n) (1)l 12) =

:Cbh(ﬂ—ﬂh,y)+/(’f—fih)v(ﬂ—ﬂh)'Vydwdt
Sh



22

:ah(ﬂ—ﬂh,e)—l—ah(ﬂ—ﬂh,lhy)—|—/(/i—/—ih)V(ﬂ—ﬂh) -Vydxdt
Sh

= ap, (ﬂ—ﬂh,e)

+/(f<;h—/<;)Vﬂ-V(Ihy) da:dtJr/(/i—mh)V(ﬂ—ﬂh)-Vydmdt
Sh Sh

= ayp, (ﬂ—ﬂh,e)

+ / (k —kp)(Vu-Ve—-Vu-Vy+V (u—1a,)-Vy) dedt. (2.18)
Sh
We first estimate the discrete bilinear term. In doing so, we integrate by parts
again, note that @ — 7, € Xy and e € H' (Q7), and apply the inequalities
(2.9), (1.1), (2.13), and (2.15). One has

ap, (ﬂ—ﬂh,e) =

:/(ﬂ—ﬂh)(x T)e( da:+/T/ (@ - w) (Bre) da dt
0 Q

Q

_|_/T/<V.V(ﬂﬂh))e—f—ﬁ;hV(ﬂﬂh)-VCdedt

< 1@ — @) (- Tl lle (Dl + 17 = Tllzon, 1D el
+ IV @ =) g (g + P el
< [|(w —un) ('vT)HLQ(Q) le ('7T)HL2(Q)
+ CIIV (@ = Tnlleer) (lellizn + 1D el )

<@ =) (- Tl le (- Dllizgq) + Ch* [l

HS UQQ) :

By using the trace inequality (1.3), the inequality (1.1), the estimate (2.9),
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and the inequality (2.15), we observe that

H6(°7T)HL2( < Cllellx <Clle ||H (Qr) (Q1UQ) = Ch, (2.19)

which yields

an (T =T, ¢) < Ch|(@ =) (-, T)llpz(q) + CH* [Tl

HOu0, - (2:20)

Next, consider the second integral on the right-hand side of (2.18), denoted
by I for short. By using the Cauchy-Schwarz inequality, together with (2.9)
and (2.13), we bound [ by

]::/(R—H;L)(Vﬂ-Ve—Vﬂ-Vy+V(ﬂ—ﬂh)-Vy) da it
Sh

< C (I ¥llgaqs,y ID ellegp) + I Vallzqs,) 1V 0llizs,))
+C I @ =Tl 19 excs,

C (|\Vﬂ”L2(5h) Myl .00, HVﬂHLQ(sh) HVyHIﬁ(Sh))

H*(Q1UQ2) HVyHr} (Sh)
We follow the arguments of (2.11) to estimate ||V#([z2(g,) and [[Vyllyz(g,)
Take || V| 2 (g, for instance. Under Assumption 2.1, we have u € H' (Qr)N

H* (Q1 U Qs) with s > £3, and hence

IValliz, = D IV gnsy < D 1K N SullIValikns,)

KeTr KeTy
2
< Ch7 [l uuqy) »
which means ||V p2g,) < Ch [[Ullg 0,00,

Similarly, for y € H' (Q7) N H* (Q1 U Q2) with s > 3, we can prove
that [[Vy|lpzs,) < Chllyl

H(QUQy) < Ch by using the inequality (2.15).
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Therefore, we obtain

I < Ch* ||al

H* (Q1UQ) - (2.21)
We substitute (2.20) and (2.21) into (2.18) to arrive at

(vr = Ch) [|@ = @) (-, T) |2y < CH° |

H?(Q1UQ2) *
Since h € (0, h,) for a given h, > 0, the proof is finished by choosing 7
such that v > Ch, + 1. n

Using the inequality (2.16), we are now able to estimate |[u — U ||z (g,
where u € Xy and u;, € X, o be the solutions of the problems (2.2) and (2.5),
respectively. In the following lemma, assume that there exists a solution

z € X to the problem

T
— (D2, @) + —(v-V2)¢p+kVz-Vodxdt =
O/Q/

T
= 1@ = @l 2o, / / (@ — ) ¢ daz dt VoeY, (222
0 QO

with z (-, T) € Hj (Q). The assumption 2.1 yields z € H" (Q7)NH?® (Q; U Q5)

with s > #. Moreover, assume that

12ll11+(0,00,) < C- (2.23)

for a constant C' > 0 independent of w and uy,.

Theorem 2.11. Let u € Xy and w;, € Xy, be the solutions of the problems
(2.2) and (2.5), respectively. Assume that the assumption of lemma 2.10 is
satisfied and there exists a solution z € X of the problem (2.22) that satisfies

(2.23). Then, there holds the following estimate
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Proof. We choose ¢ = u — uj, € Xg in (2.22), then apply the integration by

parts formula, the arguments of (2.17), and the equality (2.12) to arrive at

||ﬂ — ﬂhHLQ(QT) == (@z,ﬂ — ﬂh>

—I—/T/—(V-Vz)(ﬂ—ﬂh)+/€V:<:-V(ﬂ—ﬂh) de dt
0 Q

=ap(@W—1up,z2)+ | (k—kp)V(@w—1u) Vzdedt
/
—/(a—ah) (@.7) 2 (x,T) dz
0
= ap, (ﬂ — Up, 6’) + ap, (ﬂ — Up, Ihz)
+ [ (k—rp)V(@—1y) -Vzdedt — | (u—1u) (2, T)z(x,T) de
! [
= ay, (u — up, ) —|—/(/~€h —k)(Vu-V (Iyz) = V(u—1y,) - Vz) dedt
Sh
— / (@ —1up) (x,T) z(x,T) de, (2.25)
0

where we use the initial condition (7 — %) (-,0) = 0 in €2 in the second step
and denote ¢’ := z — I;,z. Here, we can employ the interpolation [,z since
z € H' (Qr) NH’ (@1 UQ2) with s > 2. For the term ay, (T — Uy, €/), we
integrate by parts again with @ — u;, € X and ¢’ € H' (Qr), and employ the
inequalities (2.9), (1.1), (2.13), and (2.23) to obtain

ap, (ﬂ — Up, 6,) =

:/(ﬂ—ﬂh)(m )¢ dw+/T/ (T — ) (8,¢') de dt
0 Q

Q



26

T
-I—// v-V(@—1uy)) e + )V (u—1a,) Ve dedt
0

Q
< | @—1u) (@, T) e (2,T) dz + [0 — Unll 2o, D €'llr2q,

{O\

FCIV @ =) gy (€20 + HD@’“mem)

< [ (u—1u)(x,T)e (x,T) de

SR

+CIV @ =Tl (1900 + D€l n)

< [ (@—1) (z,T)e (x,T) de + Ch* [ullys 9,00, - (2.26)

SE

On the other hand, by following the technique as in (2.21), one can show that

JI:/(KVh—KL) (Vu -V (Iyz) =V (u—1y) - Vz) dedt

Sh
= /(/ﬁ)h—li) (Vu-Vz—-Vu-Ve' =V (u—1u,) Vz) dedt
Sh
<C (HVﬂHﬁ(Sh) Ve, + 1IVEllpzs,) HV€/HL2(QT)>
+ OV (@ =)z V22,
< CR* a0, u0) - (2.27)
By substituting (2.26) and (2.27) into (2.25), we imply
1@ = Tnllizgr) < CF llie guuqu)
+ / (w—up) (2, 7)€ (x,T) de — / (@ —1y) (2, T) 2z (2, T) de
Q Q

= Oh? ||u|

o0 — / @ =) (2.7) (Inz) (2,T) de
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< CP* [l (g,00, + 1@ = @) 5 Dllr2i) 1(Tn2) Tl

< Ch?||ul

H* (Q1UQ0) T Ch* |4l H*(Q1UQ,) |(In2) (-, T)||L2(Q) ;

invoking the estimate (2.16) in the final line.
The last step is to estimate ||(1,2) (-, T)||12(q)- We apply the technique as
in (2.19), the inequality (1.1) with [}z € X}, o and the H'-seminorm stability

of the interpolation operator I [20]. One gets
(12) (- )2y < €12l < € (2o + 1D (n) )
< C (IV ()20 + 1D 22y )
2 2
< D (In2)llpzg,y < ClID 2lliz g, -

The proof is finished by employing a priori estimate (2.4) for the problem

(2.22) (after changing the time and the velocity field directions). We have

ID 2lgegn) < 12l on < C Il —ldg, @-m)||, =C.

L*(Qr)

The proof is complete. [
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Chapter 3

An inverse source problem for
the advection-diffusion equation with

a moving interface

The aim of this chapter is to study an inverse source problem for the
advection-diffusion equation with a moving interface: Assume that in the
problem (2.1), the initial value Uy is zero and the source term F' has the form
F(x,t) =/l (x,t) f(x,t)+ g (x,t) forall (x,t) € Qr, where £ € L™ (Qr)
and g € L* (Qr) are given. Moreover, assume that there exists a constant
L > 0 such that { > L at almost everywhere in QQp. Let U be the solu-
tion of this problem. Determine f € 1> (Qr), given a partial interior data
Uq := U, and a priori information [ > 0 at almost everywhere in Qr.

Since Uy = 0, we see that ug = 0 and the solution u € X, of the problem
(2.2) can be splitted as follows ©u = u 4 u*, where u € X is the solution to

the variational problem

a (u7 (p) - (gfa @)LQ(QT) VSO € Ya (31)
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and u* € X, solves the variational problem

a(u’, ) = (9:9)12Qp VoeY. (3.2)

The function u* is uniquely determined. We aim to identify f € F, in (3.1)
from the partial interior data U; € .2 (wr) in the subdomain wy, where the

admissible set is defined by
Fy:={feL?(Qr) ]| f > 0atalmost everywhere in Qr} . (3.3)

This set is non-empty, close and convex. Our inverse source problem reads

as the following operator equation with a priori information
Af = Zd; f S F+7 (34)

where zq == Ug — ], € L? (wr) is the exact data and A is the bounded

linear operator, defined by
A L2 (QT) — L2 (CUT) ,
f=u(f) lwr

Here, we use the notation u (f) to emphasize the dependence of u in (3.1)
on f. For avoiding ambiguity, we interpret z; = 0 in Q7 \ @y so that it is
well-defined in L? (Q7).

In this chapter, C' > 0 is a constant dependent on the space-time domain
Qr, the position of the space-time interface I, the norm [[v|[p~ (g, . the
function ¢, the function g, and the coefficient «, but does not depend on the
parameter A, the noise level ¢, the regularized state u5 and adjoint p5, the
sources fy and f§, and the mesh size h. Their different values in different

contexts are allowed.
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3.1 The ill-posedness of the problem

Let us discuss the concept of solutions to the problem (3.4). Firstly, this
problem may not have solutions since z; can be outside the restricted range
A (F4). On the other hand, we can construct examples in which two solutions
of the problem (3.1) coincide in the subdomain (); but behave differently in
the subdomain (),. Therefore, in general, the operator A is not injective, and
the problem (3.4) may have many solutions. As a result, it is essential to

recall from [29] the following definition:

Definition 3.1. Let 7', be the admissible set in (3.3). An element f, € F',
is called the [, -best approximated solution of the problem (3.4) if among all

f € F, that solve this problem, it has the minimal L? (Q)7)-norm

[+ llezor) < W fllezor) -

Clearly, f, € F is uniquely determined. In some contexts, we also call
it the continuous unregularized source. Regarding the ill-posedness of the
problem (3.4), note that despite A being a linear operator, this problem is
nonlinear, owing to the presence of the inequality constraint. Therefore, the
ill-posedness criterion for linear problems [30] is not applicable. Instead, we

invoke the local ill-posedness concepts in [31] for nonlinear problems.

Definition 3.2. Let f € F, be a solution of the problem (3.4). The problem
(3.4) is said to be locally well-posed at f € F', if there exists a closed ball
B, (f) ¢ L?(Qr) with the center f € F, and radius » > 0 such that for
every sequence {f,}, .y C Fy N B, (f), if 7}1_>H010 |Afn — Aflli2(,) = 0 then
nll_{glo /o = flli2(n) = 0. Otherwise, the problem (3.4) is said to be locally
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ill-posed at f € F,.

The compact embedding H'* (Q7) < L2 (Qr) [20] implies A is a com-
pact operator. Together with the arguments in [32], we conclude that the

problem (3.4) is locally ill-posed at every point in F', .

3.2 Tikhonov regularization

The ill-posedness of the problem (3.4) means its approximated solution
does not depend continuously on the data. Hence, regularization is required
to overcome this challenge and derive a stable solution. In this work, we

employ the Tikhonov regularization: Approximate the problem (3.4) by the

problem
min 5 () = 5 e (1) = il + 5 1712
feF, A ’ 2 AL (wr) 2 L(Qr) (35)
subject to (3.1),

where z; == U; —uj,, € L? (wr) is the noise data and A > 0 denotes

the regularization parameter. Similar to the problem (3.4), we treat z§ as
an element of L? (Q7) by interpreting z5 = 0 out side of wy. Here, given
a noise level ¢ > 0, we define U; € L (wr) the imprecise observation of
Uy € L? (wr) that satisfies ||Uy — Uilrz,) <e

Theorem 3.3. The regularized problem (3.5) has a unique solution f; € F.
Proof. Clearly, the set 7 := {f € F; | the problem (3.1) is well-posed} is

non-empty. Together with J5 (f) > 0 on ., we deduce that j := fler;f J5 (f)
+

is finite. Hence, there exists a sequence { f,,}, . C F. such that

lim ‘]i (fn) =J.

n—oo
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The inequality || aniQ(QT) < 2J5 (fn) forall n € N implies that the sequence
{fu},,cn is bounded in L? (Qr), which allows us to extract a (not relabeled)
weakly convergent subsequence {f,,}, _ such that f, — f5 in L (Q7) with

f5 € L*(Qr). Moreover, there exists a sufficiently large > 0 such that

{fN}neN - f-l— ﬂE?‘?

where B, denotes a closed ball with the radius r > 0 in L? (Qr). Since
F. N B, is a closed, bounded, and convex subset of .2 (Qr), it is weakly
sequentially compact [22]. This gives us f{ € F,.

Consider the variational problem: Find u,, := u (f,) € X, that satisfies
a (un, ¢) = (Lfn, )r2gp) VoeY. (3.6)
This problem is well-posed. A priori estimate (2.3) says
|unllx <C anHLQ(QT) Vn € N,

which means the sequence {u,}, .y is bounded in X. Hence, there exists
u; € X and a (not relabeled) weakly convergent subsequence {uy, }, .y such

that u,, — uS in X. Therefore, for any ¢ € Y, we have

n—oo

T
lim | (Qyuy,, ) +// v - Vu,) o+ kVu, - Vodedt| =
0

T
= (Quu3, ) + // v-Vu5) ¢ + kVu§ - Ve da dt.
0
By passing the limit into (3.6), we arrive at

a (uf\v 90) = (Kfi, ¢)L2(QT) VoeyY. (3.7)
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To conclude that 5 = wu (f5), one needs to prove uj € X,. In (3.6), we
choose ¢ € C ([0, T],Hg (€2)) with ¢ (,T) = 0 in  and integrate by parts

to get

T
— (Opt, +// -Vuy,) p+kVu, - Vedxdt = (éfn,cp)Lz(QT), (3.8)
0

since u,, (-,0) = 0 in 2. We take n — oo to obtain

~ i)+ [ [ (v T e+ kT Tpdwdt = (0 ey

On the other hand, by applying the technique in (3.8), we rewrite (3.7) as

follows

T
— (O, ¢ +// v-Vu3) ¢+ kVuS - Veodedt =
0 0

= (Lfy, )LZQT)+ u5 (,0) ¢ (x,0) d.

From the last two equations, we imply u5 (-,0) = 0 in €2, and hence u§ =

u (f5). Therefore, we get
. |
J = h,{gg.}f I3 (fo) = hﬁgf 2 [l (fn) — ZdHL2 (wr) T hmmf anHL2 (Qr)

€ €12 €
> ) [ul — ZdHLQ(wT) + 9 Hf)\||L2(QT)

=J i (f § ) J
which indicates that f; € F is a minimizer. The uniqueness follows from

the strict convexity of the functional J5. The proof is complete. [

Next, we derive the optimality conditions of the regularized problem (3.5).

In doing so, let us introduce the following adjoint problem: Identify p (f) €
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X7 such that

@ (p(f),8) = (ur (W (f) = 22) D)1, VoeY,  (39)

where the bilinear form o’ : X x Y — R is defined by

a (p, @) = — (0w, ®) // (v-Vp)op+ kVp- - Vodedt,

and Y, 1s the characteristic function of the subdomain w7. By changing the
time and the velocity field directions, and applying [5] with x,,, (u (f) — 23) €

L2 (Qr), we conclude the well-posedness of this problem.

Theorem 3.4. The unique solution f; € F, of the problem (3.5), together
with the corresponding state u5 € Xo and adjoint p§ € Xr, satisfies the

following optimality conditions

a (U’/\J ) (gf)\u )L2 (Qr) \V/SO € Y7 (310)

and

a' (p, @) = (Xwr (U3 — 22) , )12 Voey, (3.11)

and the variational inequality

(D5 + M5, f = F)iigm = 0 VfeF. (312

Proof. Following the classical arguments [22], we show that the functional J§
defined by (3.5) is Fréchet differentiable and its gradient V.J5 (f) at f € F,

has the form

VI (f) =tp(f)+Af,
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with p (f) € Xy solves the problem (3.9). Indeed, take a small variation
§f € L*(Qr) of f € I, we have

I +0f) =T (f) =
_ % lu (f +0f) = 2illteg,) — % lu (f) = 23120
20+ 57 B — 5 17 By
_ % lu(f +5f) —u (DI, +(u(f+6f) —u(f),u(f) = 2012
5 H5fHL2 ) A0 g,
_ % la (S 1), + (w (5F) ,u(f) - zd)L2< )
5 H5f|\L2 ) A0 g,

Here, we know that u (6 f) € X is the solution of the problem

a(uw(df).p) = {5f. @)z VoeY. (3.13)

Owing to the inequality (1.1) and a priori estimate (2.4), one has

lu (0 2y < Cllu(0h)lly < Cllu(0f)llx < ClOfllrzqy)
which implies [|u (6 f)][12(,,) = 0 (||5f\|L2(QT)) as [|0flyz(g,) — 0. Hence
SL(f+0f) =I5 (f) =
= (@@F) () = 2D + A0 Dign +0 (1072, ) - B14)

To derive the functional gradient, we rewrite the first term on the right-hand
side of (3.14) as a scalar product in the solution space. Let p (f) € X be the

solution of (3.9), we choose ¢ = u (0 f) € X in (3.9) to arrive at

(u (5f) ; U (f) - Z§)L2(wT) - (u (5f) s Xwr (u (f) o Zfl))Lz(QT)
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=0 (f),u(df))

// w(6f) + KVp (f) - Vu (5f) dedt.  (3.15)

By integrating by parts, we can rewrite (O;p (f),u (df)) as

O (1) u(61)) = / p(f) (2. T) u(6f) (x.T) dae

Q

- / p(f) (,0)u (67) (,0) dz — (9 (6£) . p (f))
Q

— (@ (0f),p(f))
using p(f) € Xpand u (df) € X in the final step. To handle the advection

part on the right-hand side of (3.15), we invoke the technique as in (2.17).
We get

T
O// v-Vp(f)u(df) dedt = 0// -Vu (0f))p(f) dedt.

Hence, (3.15) becomes

(w(0f),u(f) = 2a) 2 =
= (O (6f),p(f))

; / / (v-Vu(S)p(f) + KVu () - Vp (f) dedt

=a(u(df),p(f)) = (lp(f) 75f>L2(QT) : (3.16)

Here, we choose ¢ = p(f) € Xp in (3.13) to obtain the first equality. By
substituting into (3.14), we can conclude the Fréchet differentiability of the

functional J5, together with its gradient. [
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We end this section with some convergence properties of the Tikhonov
regularization. We start by showing that the solution f} € F of the problem
(3.5) is stable with respect to the noise in the observation 25 € L* (Q7). The
following theorem is the constrained variant of the results presented in [33]

and [34].

Theorem 3.5. For a fixed A > 0, let {z,} .y C L?(wr) be the sequence
that converges strongly to z5 in L2 (wr), and { f},cny C Fy the sequence of

solutions to the corresponding problems

1

A
. 2 2
min o flu (f) = zalltzry + 5 1 lz2r) n €N, G

subject to (3.1).
Then, { [}, cn converges strongly to the solution f5 € F. of the problem

(3.5)in L? (Qr).

Proof. Owing to Theorem 3.3, for each n € N, there exists a unique mini-

mizer f,, € F of the problem (3.17). For all f € F;, we have

1 A 1 A
5 Ju(fa) — ZnHiQ(wT) T3 anHiQ(QT) <3 Ju(f) — ZnH%ﬁ(wT) T3 Hf“i%QT) :

which implies the boundedness of {f,} _y in L* (Q7). By following the
technique as in Theorem 3.3, we conclude the existence of an element f} €
F; and a (not relabed) weakly convergent subsequence {f,}, .y such that

fn— f5in 1.2 (Q1). Moreover, as n — oo, it holds

u(fn) = u(f3) in X,

up to taking a further subsequence. Together with the strong convergence of

the sequence {2, }, . to 25 in L? (wr), one gets u (f,) — 2, — u (f5) — 25 in
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L2 (wr), and hence

lim inf u (fn) = 2alliz@) = 1 (f) = Zillze) - (3.18)

n—oo

Therefore, for all f € F',, we deduce that
1 A
T () =5 lu(f) = 2tz + 5 1/l

(1 A
> lim (5 |lu(f) — ZnHiQ(wT) + 5 HinQ(QT))

n—oo

n—oo

(1 A
> lim inf <§ |l (fn) — Z”HIQE(WT) + 5 an||i2(QT)>

(3 (3 >\ g € (3
> () = 2illtz) + 5 1 £l = 5 (). (G19)

DO | —

which means that f§ € F, is the solution of the problem (3.5).
Next, we prove that the sequence {f,}, .y converges strongly to f§ in

L2 (Qr). By contradiction, suppose that the claim is false. Then, we observe

that
lim [ fullizion # 155 lh2an
which yields
0= 1im_>SUP 1fullzgpy > Timinf | fullizg,y 2> 15Nz 0r) - (3.20)

Therefore, there exists a (not relabeled) subsequence { fn}neN that satisfying

nh_{]cf)lo | full2(g,) = 0- By choosing f = f{ € F. in (3.19), we have

€ (q€ .. 1 A

1 A
= liminf — ||u (f,) — Zn“?f(w) + 502.

n—oo 2

Combining with (3.20), we arrive at

1 2
2 lu (f3) — ZZ?HL?(MT) =
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. 2 A [ p2 2
= timinf = |lu (f2) = 2l 2 + 5 (02 = 153 l1E2(n)

e
> l1g£f§ [ (fa) — Zn||iQ(wT) ,
which contradicts with (3.18). The proof is finished. []

On the other hand, regarding the error estimate of regularizing the source
f+ € F, in Definition 3.1 by the Tikhonov regularization, let us recall from
[29] the following result for the general linear inverse problems with convex

constraints:

Lemma 3.6. Let f € F' be the I, -best approximated source of the problem
(3.4) and f; € Fy be the solution of the regularized problem (3.5). Assume

that there exists & € L* (wr) with the minimal L? (wr)-norm that satisfies
f+ = Projp, (A*§), where A* : L2 (wr) — L*(Qr) denotes the adjoint

operator of the operator A in (3.4). Then, we have the following inequality

g
— Fillizion < VAEl 2000 + —.
||f+ f)\HL (Qr) HSHL (wr) \/X

3.3 Finite element discretization

In this section, we discretize the problem (3.5) by combining the interface-
fitted space-time finite element method [5] and the variational approach [18].
3.3.1. The discrete regularized problem

We first discretize the regularized state and adjoint. As in section 2.2.1.,

let us define the discrete state problem: For / € L™ (Qr) and f € L* (Q7),
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find uy, (f) € Xy, 0 that satisfies

an (un (f),on) = (Lf on)12gp) Von € Y. (3.21)

The following discrete stability condition holds

sp @ (un (f),on)

> Cllfun (HI. Vuy, (f) € Xpo, (3.22)
enevirfoy  lllenll

which ensures that the problem (3.21) is uniquely solvable. A priori estimates
for the state error in three different norms have been presented in the previous
chapter.

Similarly, we present the interface-fitted space-time method for solving

the adjoint problem (3.9). We introduce the space
Xh7T:{90h €Yy ‘ gOhZOOIlQ X {T}} C Xp.
The discrete adjoint problem reads as: Determine p;, (f) € X}, 7 such that

ay, (P (f) s &) = (Xeor (W (f) = 23) s d0)12(00) Von € Yi, (3.23)

with the bilinear form a) : X7 x Y — R given by

T
a/h(Pmb):_<atp7¢>+//—(V-Vp)q5+/<;th~qudwdt.
0

Q

Employing the technique as in (3.22), we establish the following stability

condition
a ,
sup P On) ), i (f) € X, (324)
6r Y \{0} llon]l

and concludes the unique solvability of the problem (3.23). By using the

arguments for the state problem, one can derive a priori error estimates for
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the adjoint. For completeness, let us state the main results. We shall need the

space

VO:{MXMO): 20 (P (f) = pu (£)) (,0) Q}
, 3 ,

It () = ( ) (-, 0)

where vy > 0 is a sufficiently large number, p (f) € Xy and p;, (f) € Xpr

HI}

be the solutions of the problems (3.9) and (3.23), respectively. Assume that

there exists ¢ € Vg and 2’ € X that satisfy

(O, ©) + // (v-Vy)p+rVYy -Vodedt=0 VpeY, (325)
and

T
<8tz',<p>+// V) o+ rkVZ - Vededt =
0

= |lp(f) —pn( HLQQT// Nededt YoeY. (3.26)

with 2/ (-,0) € H} (Q). We have ¢/, 2/ € H' (Qr) N H* (Q1 U Q5) with s >
#. Furthermore, assume that there exists a constant C' > 0 independent of

p (f) and py, (f) such that

H (Q1UQs) = <C, (3.27)

and

12/ lz-(0,00,) < C- (3.28)

Lemma 3.7. For f € F., letp(f) € Xy and p;, (f) € X be the solutions
of the problems (3.9) and (3.23), respectively.
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a) Assume that Assumption 2.1 is satisfied. Then, we have the following

estimate

llp (f) = pu (Pl < Chlp ()]

H*(Q1UQ2) * (3.29)

b) Moreover, if the problem (3.25) has a solution ' € V| that satisfies

(3.27), then there holds the estimate

1t (F) = (F)) (-, 0)ll2() < CR* [lp ()]

H*(Q1UQ2)

c) Furthermore, if there exists a solution z' € X of the problem (3.26) that

satisfies (3.28), then the following estimate holds

lp (f) = pn (D)ll2qr) < CH* Mlp (£)]

H*(Q1UQ2) - (3.30)

The final step is to discretize the regularized source. In this work, we
invoke the variational approach [18], in which we turn the discretization of
the regularized source into the discrete treatment for a term that involves the

regularized adjoint. The discrete inverse source problem reads as

. 8 o 1 e N2 A 2
in i (fn) =3 [un (F) = Zanll2g,) + 5 ulli2gr -

subject to (3.21),

(3.31)

where z;, = Uj —uy,,, € L? (wr) denotes the discrete data. Here, u} €
Xp,0 approximates u* € X in (3.2), also by the interface-fitted space-time
method. Therefore, it can be defined similarly as uy, (f) € Xj in (3.21).
Analogue to the problem (3.13), for f, € F, and 6f, € L*(Qr), the
function wuy, (0fn) = un (fn + 0fn) — un (fn) € Xpo will be the solution of

the problem

ap (uh (5fh) , gOh) = (€5fh, <ph)L2(QT) Yo, € Yy, (3.32)
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Furthermore, the technique as in (3.16) gives us

(un (5fn) s un (fn) = 240) 120, = (EP0 (f) - 0f0) 12 - (3.33)

where uy, (f) € Xp and py, (fn) € X be the solutions of the problems
(3.21) and (3.23) with the corresponding right-hand sides /), € L* (Q) and
Xor (un (fn) — zgh) € L?(Qr). By employing this equality, we can prove

the following discrete optimality conditions:

Lemma 3.8. Let [}, € F4 be the solution of the problem (3.31), uj , €
Xno and p§ ;, € Xp,r denote the corresponding state and adjoint. Then, the

following optimality system is satisfied

an (651, 0n) = (Ef50:00) 120y Yon € Y, (3.34)

and

ap (D ) = (or (W3 = 220) » P1) 120, Yon € Y, (3.35)

and the variational inequality

(D50 + M5 fo = Fin) 1209y 2 0 Vi, € F.. (3.36)

3.3.2. Error and convergence estimates

Let f. € F, be the F;-best approximated solution of the problem (3.4)
and f5, € [4 be the solution of the problem (3.31). In this section, we
estimate the errors f — [, in the L2 (@7)-norm in terms of the parameter
A, the mesh size h and the noise level e. Moreover, we suggest an a priori

choice for A, depending on % and ¢, such that f5 , converges strongly to [
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in L? (Q7) as A — 0. Let us start with the triangle inequality

Hf+ T fihHLZ(QT) S Hf+ o fiHLQ(QT) + Hfi T f/ihHLQ(QT) . (337)

The first term on the right-hand side of (3.37) is treated in Lemma 3.6. Hence,
our aim is first to estimate the second error term in (3.37), then provide an
a priori choice for A that ensures the desired convergence, depending on the
total error.

The main result of this subsection is stated in Theorem 3.12 and Corollary
3.13. To begin, we denote by uy, (f5) € X0 and py, (f5) € X, 7 the solutions

of the following problems

an (un (f3) s on) = (Cf5s en)r200) Von € Y, (3.38)
and
a, (pn (13) 0n) = (xor (un (F2) = 230) 00) 12g,y Y00 € Yo (3.39)

Lemma 3.9. Let the triples (uy, (f5),pn (f5), f5) € Xno X Xpr X Fy and
(ui,h,pih, fih) € Xp 0 X Xp 1 X Fy be the solutions of the problems (3.38)-
(3.39), (3.12) and (3.34)-(3.36), respectively. Then, it holds that

Ilen (75) = el + llow (5 = walll, < C 5 = Fallizgu

and

Huh (fi) - uiﬁHLQ(QT) + th (fi) _pi,h ’LQ(QT) S C Hfi _ fi,hHI}(QT) .

Proof. First, let us prove the first inequality. By subtracting (3.34) from
(3.38), we obtain

ap, (Uh (fi) T ui,h? gph) = (ffi T gfi,h? @h)LQ(QT) vsph S Yh .
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The stability condition (3.22) gives us

ap (up (f5) —us ., 0
C”Huh (fi) _uf\,hm* S sup h ( h( ﬁ\l) Ah h)
PneY \{0} onl)

On the other hand, from the inequality (1.1), one has

sup Gh (uh (fi) o ui,h’ QOh) _ sup (éfi - Efi,hv gDh)LQ(QT)
PrEY 0} il n€Yn \{0} llnll

=C Hfi - f§7hHL2(QT) '

Therefore, we have

llwn (75 = wialll, < C N5 = Fnllizgy - (3.40)

We continue by subtracting (3.35) from (3.39) to get

a (pn (£3) = Pans @n) = (Xor (un (F) = 050) 00) 120, V0 € Yo

Invoke the inequality (3.24), the technique as in (3.40), and the inequality

(3.40) itself, one obtains

llow (£5) = 23alll, < € llun (D) = inllizy < €I85 = Fallizgu
(3.41)
The first inequality follows by combining (3.40) and (3.41). The second one

is a consequence of the first one, thanks to (1.1). []

Lemma 3.10. Let (p5, f5) € Xo xXFy and py, (f5) € Xp1 be the solutions
of the problems (3.11)-(3.12) and (3.39), respectively. Let fih € F be the
solution of the problem (3.36) in case of variational discretization. Then, the

following estimate holds

C
Hfi - fi,hHI}(QT) < By ||pi — Pn (fi)HLQ(QT) :
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Proof. We choose [ = f5, € I in (3.12) and f), = [} € F in (3.36), then
add the corresponding inequalities to get

M = Bl <

< (Kpi — D50 o — fi)m(QT)

= (gpi - Eph (fi) 7f§,h - fi)LQ(QT) + (Eph (fi) - épi,ha fi,h - fi)LZ(QT) .
(3.42)

By using the Cauchy inequality, we estimate the first term on the right-hand
side of (3.42) as follows

(95— ton (£3) . f3n = F)12(gy) <

< el 165 = 21 D llziom 155 — F o

< o 165 — 0 D ey + 2 150 = 5 (3.43)
= gy =@ IPx = PRI Q) T 5 I1IAn = X2y - :

To handle the second term on the right-hand side of (3.42), we utilize the
equality (3.33) twice. We have

(ﬁph (fi) - gpi:\,ha fi,h - fi)]}(QT) -

= (fph (fi) 7f§7h _ fi)LZ(QT) T (Epi,ha fih _ fi)LZ(QT)

= (i = un (F3) s un () = 220) 120y — (W = un (fR) 050 = Z0n) 2,

2
= — [luin = un (F) Iz, 0. (3.44)
By combining (3.42), (3.43), and (3.44), we obtain the result. []

We next estimate the right-hand side of the inequality in lemma 3.10. In

doing so, let us introduce py, (f5) € Xj, 7 as the solution of the problem

a’;z (pvh (fi) ) gbh) = (XWT (Ui - Zfl) ) ¢h)L2(QT) v¢h S Yh . (345)



47

Lemma 3.11. Ler (u5,p5, f5) € Xo x Xy xXFy and py, (f5) € Xur be the
solutions of the problems (3.10)-(3.12) and (3.39), respectively. Let u* € X
be the solution of the problem (3.2). Assume that the assumptions of Lemma

2.11 and Lemma 3.7c are satisfied. Then, there holds the following

o5 = n (SOl <

< CR? (||

1(QuuQy) T 1] HS(Qlqu)) + Chpillusguugy » (3-46)

and

165, — 2 (F) 20, <
< n? (||

HS(QlUQ2)> ) (3.47)

Proof. We first derive the estimate (3.46). By using the triangle inequality,

10,00, T 14 w00, + 193

one has

llpx = 2o (PO < lps = pn (KON A+ Mlon (FX) = 2o (PO, (3:48)

where pj, (f5) € Xjr is the solution of the problem (3.45). A priori error

estimate (3.29) yields

lIp5 = pn (FOIl. < ChIp

H?(Q:1UQ2) * (3.49)

For dealing with the second term on the right-hand side of (3.48), we subtract
(3.39) from (3.45) to get

ay, (on (f3) = pu (f3) &) =
= (or (65 —wn (f)) =20 +200) 1 00) 12, Yo € Yoo (3.50)

We invoke the technique as in (3.41) and a priori error estimate (2.24) to

arrive at

150 (75) = on UM < € (5 = w0 () ey + 1" = 2
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< CR? (|l

' (QuQs) T \|u*\|HS(Q1UQ2)) . (351

The estimate (3.46) follows by substituting (3.49) and (3.51) into (3.48). We

employ the same arguments to prove the estimate (3.47). Indeed, we have

155 — 2 () hzcany < 1185 — B (5D lezqany + 10 (F5) — 21 (F)liz(am) -

By a priori error estimate (3.30), it holds

IP3 = 2r (F) 2oy < CR PRl (0 -

On the other hand, we apply the technique as in (3.41), and the inequality
(3.51) to obtain

150 (£5) = 2 ) < M50 (F5) = 2 ()1,
< C (I = un () gy + 07 = 52y

< Ch? (s

1 (Quugs) T 114 HS(QluQ2>) -
(3.52)

The proof is complete. [

We arrive at the first main result of this section by combining Lemmas 3.9,

3.10, and 3.11 with the triangle inequality.

Theorem 3.12. Ler (u§,p5, f5) € Xox Xp XFy and (u§,, 0550 fin) €
X0 X Xy X F be the solutions of the problems (3.10)-(3.12) and (3.34)-
(3.36) in case of variational discretization, respectively. Let u* € Xq be the
solution of the problem (3.2). Assume that the assumptions of Lemma 2.11

and Lemma 3.7c are satisfied. Then, the following estimates hold

|5 = uin

LT H’pi —ualll, + Hfi - fi,hHLQ(QT) <
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H*(Q1UQ2) + ||u*| H*(Q1UQ2)

1
L O (1 + X) lPAllee .00y -

1 2 €
<c (1 + X) 2 (s,

HS(Q1UQ2)> + Ch|u|

and

H“i - “i,hHﬁ(QT) + Hpi - piﬁHLQ(QT) + Hfi - fi,hHLZ(QT) <

1 3
<C (1 + X) 22 (]

1 (@uue) T 1 s guuq,) + 1123 HS(Qlqu)) :
(3.53)

Proof. Let us sketch the proof of the first estimate. Thanks to the triangle

inequality, a priori error estimate (2.24), Lemmas 3.9 and 3.10, we have

s = wialll, o5 = 2Aalll, + 15 = Fllyeg,) =
< g = M+ [lfan () = i all, + 25 = o (£,
w5 = Rl + 15 = Fallizony

< Ch|uj|

wi@ue) + C I = Rl + 1IP3 = e (SO

9 1 (S 9
< Chlilhrioay +C (145 ) I~ m UL

The conclusion follows from the estimate (3.46). The inequality (3.53) is

proved similarly. ]

Finally, from the inequality (3.37), Lemma 3.6, and the inequality (3.53)

in the previous theorem, we have the following result:

Corollary 3.13. Let f. € F'. be the F',-best approximated solution of the
problem (3.4) and [5, € F. be the solution of the problem (3.31). Assume

that the assumptions of Theorem 2.11, Lemma 3.6 and Lemma 3.7c are satis-
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fied. There holds the following estimate

Hf+ o fi,hHLQ(QT) < \/X H§||L2(wT) + %
1
+C (1 + X) P2 (]

1°(Q,00,) T 2]
Moreover, if \ = O (hgL + 8) then f, — [ in L2 (Q7) as A — 0 with the

H*(Q1UQ2) + ”pf\’ HS(Q1UQ2)> )

convergence rate O (hg + 55>.
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Conclusion and perspectives

Conclusion

We presented the interface-fitted space-time method for the advection-
diffusion equation with a moving interface. We showed two optimal order
a priori error estimates under some appropriate conditions.

After that, we derived the error and convergence estimates of an inverse
source problem governed by an advection-diffusion problem with moving
subdomains. The regularized state and adjoint were treated by the interface-
fitted space-time method. The regularized source was discretized by using
the variational approach. We established the optimal order error estimates
of the regularized source, state, and adjoint in two norms. Furthermore, we
suggest a priori choice for A such that f§, — f; in L2 (Qr) as A — 0. The

convergence rate was derived in that case.

Future work

In the future, we will extend the presented results to the case of three-
dimensional space. Another direction is to develop a priori error estimates

in which the parameter A appears on the numerator of the fractions on the
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right-hand sides, as in [35], to get a higher convergence rate with respect to

h in corollary 3.13.
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