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tolerant, and patient with me, always helping and guiding me. Thank you for

sharing with me so many profound ideas and new perspectives so that I can

see how beautiful Mathematics can be.

Thank all my teachers and advisors at the Institute of Mathematics for your

enthusiastic instruction and guidance. I would also like to thank the Institute

of Mathematics and the Graduate University of Science and Technology for

supporting and facilitating my study.

A special appreciation is given to my former supervisor, Dr. Ta. Thi. Thanh

Mai, for always being by my side, a warm fulcrum, and encouraging me.

Thank you for leading me to this career and sharing all the joys and sadness

on the road.

I am very grateful for the financial support from the Vingroup Innovation

Foundation for the Science and Technology domestic master program under

the grant VINIF.2022.ThS.VTH.07, which is a valuable aid for my study.



iii

Lastly, I want to thank my whole family and friends, who have always

backed me up and supported me.

Nguyen Quang Huy

Hanoi, August 2024.



iv

Table of Contents

Declaration i

Acknowledgements ii

Table of Contents iv

List of Figures vi

Introduction vii

1 Background 1

1.1 Functional spaces . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1. Sobolev spaces . . . . . . . . . . . . . . . . . . . . 3

1.1.2. Anisotropic Sobolev spaces . . . . . . . . . . . . . 4

1.2 Bounded linear operators . . . . . . . . . . . . . . . . . . . 6

1.2.1. Weak convergence in Banach spaces . . . . . . . . . 7

1.2.2. Differentiability in Banach spaces . . . . . . . . . . 8

2 An advection-diffusion equation with a moving interface 10

2.1 Variational formulation . . . . . . . . . . . . . . . . . . . . 12

2.2 Finite element discretization . . . . . . . . . . . . . . . . . 13



v

2.2.1. Interface-fitted space-time method . . . . . . . . . . 14

2.2.2. Auxiliary results . . . . . . . . . . . . . . . . . . . 15

2.2.3. A priori error estimates . . . . . . . . . . . . . . . . 19

3 An inverse source problem for the advection-diffusion equation

with a moving interface 28

3.1 The ill-posedness of the problem . . . . . . . . . . . . . . . 30

3.2 Tikhonov regularization . . . . . . . . . . . . . . . . . . . . 31

3.3 Finite element discretization . . . . . . . . . . . . . . . . . 39

3.3.1. The discrete regularized problem . . . . . . . . . . . 39

3.3.2. Error and convergence estimates . . . . . . . . . . . 43

Conclusion and perspectives 51

Bibliography 53



vi

List of Figures

2.1 The interface Γ(t), which envolves by a velocity v, devides

the domain Ω into two subdomains Ω1(t) and Ω2(t), consider

the case d = 1 [5]. . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 The mismatch region Sh = S1
h ∪ S2

h lies between the space-

time interface Γ∗ and the discrete one Γ∗
h, consider the case

d = 1 [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16



vii

Introduction

Advection-diffusion problems with moving subdomains play a significant

role in various fields of engineering and physical phenomena that involve

moving multiple-component systems, as in mass transport [1], heat transfer

[2], electromagnetics [3], or heat induction [4]. The Thesis aims to present

the numerical analysis of an interface-fitted space-time finite element method

[5] for a boundary value problem for an advection-diffusion equation with a

moving interface and an inverse source problem for this problem.

Relevant literature

The main difficulty of solving interface problems is the non-sufficient

smoothness of the solution across the interface, which results in sub-optimal

convergence orders of classical finite element methods [6]. In the last 50

years, many studies have focused on handling the issue, forming two major

approaches: interface-unfitted and interface-fitted methods. The former ap-

proach includes some examples such as the extended finite element method

(XFEM) [7], the immersed finite element method (IFEM) [8], and the multi-

scale finite element method (MsFEM) [9]. These methods approximate dis-

continuous quantities by modifying the local finite element basis functions
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on interface elements instead of using a triangulation that fits the interface.

When the interface evolves, this approach is efficient since it allows fixed

interface-independent simplicial triangulations [10, 11, 12].

In contrast, interface-fitted methods prevent the interface from cutting

through an element arbitrarily or resolve the interface approximately [13, 14].

However, as opposed to the success of unfitted approaches, interface-fitted

methods have received little attention for solving time-dependent problems

with moving subdomains. The reason is that the re-meshing procedure at

each time step introduces additional errors in interpolating two consecutive

meshes, which can exceed the feasible effort. The method is then applied to

an inverse source problem with observations inside the space domain.

Related to our problem setting, Bellassoued and Yamamoto [15] studied

an inverse source problem for a parabolic transmission equation. The authors

established a conditional stability of determining the spatial component of

the source from a single measurement on a fixed subdomain. Recently, also

invoked a partial interior observation, Chen et al. [16] simultaneously recon-

structed the initial value and the spatial part of the source. They ended up

with a conditional stability result and an iterative thresholding algorithm to

solve the inverse problem. In [17], Zhang et al. studied a distributed optimal

control problem (a special case of the inverse source problem) for a parabolic

interface system. The authors presented an error analysis of the finite element

discretization of the problem and obtained the optimal order error estimates

of the control, state, and adjoint. However, note that inverse source problems

for time-dependent equations with moving interfaces have not been studied
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so far.

Contributions

The Thesis presents an interface-fitted space-time finite element method

[5] for an advection-diffusion equation with a moving interface. This method

resolves a disadvantage of interface-fitted methods and allows us to cope with

geometrically complicated interfaces. We establish two new optimal order

priori error estimates for the method, supplementing the results in [5].

Next, we focus on an inverse source problem for the advection-diffusion

equation with a moving interface under non-negative constraints. It is an

ill-posed problem. We first regularize the problem by using the Tikhonov

method and then study the existence and stability of the regularized source

with respect to the noise. Second, we propose a strategy for discretizing our

problem. We discretize the regularized state and adjoint with element-wise

linear finite elements associated with an unstructured mesh [5]. On the other

hand, we employ the variational approach [18] for the regularized source. We

arrive at the optimal order priori error estimates of the regularized source,

state, and adjoint.

From these estimates, we suggest a condition for the strong convergence

of the discrete regularized source to the continuous unregularized one and

the corresponding convergence rate, following the idea of Hào et al. [19]

for elliptic inverse source problems. To the best of our knowledge, this type

of convergence rate for inverse source problems for an advection-diffusion

problem with a moving interface is new.
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Outline

The Thesis comprises three chapters, excluding introduction, conclusion,

and bibliography. Chapter 1 provides basic functional spaces and the back-

ground related to bounded linear operators. Chapter 2 is devoted to the

Galerkin finite element discretization of the advection-diffusion equation with

moving subdomains, in which we derive the optimal order prior error esti-

mates in various norms. Chapter 3 studies an inverse source problem for

the equation in chapter 2 from a partial interior observation. We present the

Tikhonov regularization, the finite element discretization errors in two norms,

and a condition for the convergence of the discrete regularized source to the

continuous unregularized one. Lastly, we will give some perspectives and

comments about future work.
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Chapter 1

Background

This chapter presents basic functional spaces and some topics related to

bounded linear operators. All the contents are cited from [20], [21], [22],

and [23]. We denote by C > 0 a generic constant depending on the space-

time domain QT , the coefficient κ and the operator S, but independent of the

function u. Their different values in different contexts are allowed.

1.1 Functional spaces

Definition 1.1. (Normed space) Let U be a real vector space. A function

∥·∥U : U → R is called a norm on U if it satisfies the following conditions:

a) ∥u∥U = 0 if and only if u = 0 for all u ∈ U.

b) ∥ηu∥U = |η| ∥u∥U for all η ∈ R and u ∈ U.

c) ∥u+ v∥U ≤ ∥u∥U + ∥v∥U for all u, v ∈ U.

The vector space U equipped with the norm ∥·∥U is called the normed space.

Definition 1.2. (Inner product space) Let U be a real vector space. A function

(·, ·)U : U×U → R is called an inner product on U if it satisfies the following
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conditions:

a) (u, u)U ≥ 0 for all u ∈ U and (u, u)U = 0 if and only if u = 0.

b) (u, v)U = (v, u)U for all u, v ∈ U.

c) (u+ v, w)U = (u,w)U + (v, w)U for all u, v, w ∈ U.

d) (ηu, v)U = η (u, v)U for all η ∈ R and u, v ∈ U.

The vector space U endowed with the inner product (·, ·)U is called the inner

product space.

Every inner product space U is a normed space with respect to the induced

norm ∥u∥U =
√
(u, u)U for all u ∈ U.

Definition 1.3. (Convergence and the Cauchy sequence) Let U be a normed

space. We say that the sequence {un}n∈N ⊂ U converges to u ∈ U if

lim
n→∞

∥un − u∥U = 0, denoted by lim
n→∞

un = u or un → u in U.

We say that the sequence {un}n∈N ⊂ U is the Cauchy sequence if for

all ε > 0, there exists M = M (ε) ∈ N such that ∥um − un∥U < ε for all

m,n > M .

Definition 1.4. (Complete space) A normed space U is said to be complete

if all Cauchy sequences in U converge.

Definition 1.5. (Banach space and Hilbert space) A complete normed space

is called a Banach space. A complete inner product space with respect to the

induced norm is called a Hilbert space.
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1.1.1. Sobolev spaces

In this section, we consider Ω to be an open set in Rd (d = 1, 2, 3).

Definition 1.6. (Lebesgue space) Let q ∈ [1,∞). The space Lq (Ω) consists

of all Lebesgue measurable functions u, defined at almost everywhere in Ω

such that

∥u∥Lq(Ω) :=

∫
Ω

|u (x)|q dx

 1
q

<∞.

The space L∞ (Ω) includes all Lebesgue measurable functions u, defined at

almost everywhere in Ω that satisfing

∥u∥L∞(Ω) := ess sup
x∈Ω

|u (x)| <∞.

Definition 1.7. (Integer order Sobolev space) Let s ∈ N, q ∈ [1,∞]. We

define the space Ws,q (Ω) as

Ws,q (Ω) := {u ∈ Lq (Ω) | ∂αu ∈ Lq (Ω) for all 0 ≤ |α| ≤ s} ,

where ∂αu denotes the α-order weak derivative of u, endowed with the norm

∥u∥Ws,q(Ω) :=

 ∑
0≤|α|≤s

∥∂αu∥qLq(Ω)

 1
q

∀u ∈ Ws,q (Ω) .

Definition 1.8. (Fractional order Sobolev space) Let s > 0, s /∈ N and q ∈

[1,∞). The space Ws,q (Ω) consists of all functions u ∈ W⌊s⌋,q (Ω) such that∑
|α|=⌊s⌋

∫
Ω

∫
Ω

|∂αu (x)− ∂αu (y)|q

|x− y|d+q(s−⌊s⌋) dx dy <∞,

equipped with the norm

∥u∥qWs,q(Ω) := ∥u∥q
W⌊s⌋,q(Ω)

+
∑

|α|=⌊s⌋

∫
Ω

∫
Ω

|∂αu (x)− ∂αu (y)|q

|x− y|d+q(s−⌊s⌋) dx dy,

for all u ∈ Ws,q (Ω).
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Theorem 1.9. Let s ≥ 0. The space Ws,q (Ω) furnished with the norm

∥·∥Ws,q(Ω) is a Banach space for all q ∈ [1,∞]. In particular, the space

Ws,2 (Ω) is a Hilbert space, denoted by Hs (Ω). The norm on this space is

denoted by ∥·∥Hs(Ω).

Theorem 1.10. (Embedding and compact embedding) Let s > 0, q ∈ [1,∞]

and Ω be a Lipschitz domain in Rd (d = 1, 2, 3).

a) If sq > d then we have the embedding Ws,q (Ω) ↪→ L∞ (Ω) and the

compact embedding Ws,q (Ω) ↪→ C
(
Ω
)
.

b) If sq ≤ d then for all q′ ∈
[
1, qd

d−sq

)
, we have the compact embedding

Ws,q (Ω) ↪→ Lq′ (Ω).

1.1.2. Anisotropic Sobolev spaces

In this section, we consider Ω to be an open set in Rd (d = 1, 2, 3) and

T > 0 to be a positive number. Denote by QT := Ω × (0, T ) a space-time

domain.

Definition 1.11. (t-anisotropic Sobolev space) Let l, k ∈ N. We define the

space Hl,k (QT ) as

Hl,k (QT ) :={
u ∈ L2 (QT ) | ∂αx ∂rt u ∈ L2 (QT ) for all 0 ≤ |α| ≤ l, r = 0, 1, . . . , k

}
,

where ∂αxu and ∂rt u are the weak derivatives with respect to x and t of u,

respectively, endowed with the norm

∥u∥Hl,k(QT )
:=

 ∑
0≤|α|≤l, 0≤r≤k

∥∂αx ∂rt u∥
2
L2(QT )

 1
2

∀u ∈ Hl,k (QT ) .
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Let H1,0
0 (QT ) be the closure of the space C1

0 (QT ) with respect to the norm

∥·∥H1,0(QT )
. For convenience, we use the compact notation Y := H1,0

0 (QT ),

furnished with an equivalent norm

∥u∥2Y :=

T∫
0

∫
Ω

κ |∇u|2 dx dt,

where κ = κ (x, t) will be introduced in chapter 2. The equivalence results

from the Poincaré–Steklov inequality

∥u∥L2(QT )
≤ C ∥∇u∥L2(QT )

∀u ∈ Y, (1.1)

we refer to [20]. The dual space of Y is denoted by Y′ (see Definition 1.18),

and the duality pairing between Y′ and Y is denoted by ⟨·, ·⟩. Let us introduce

the spaces

X := {u ∈ Y | ∂tu ∈ Y′} , (1.2)

and

Xt := {u ∈ X | u(·, t) = 0} ,

with t ∈ {0, T}, equipped with the norm ∥u∥2X := ∥u∥2Y + ∥∂tu∥2Y′.

Theorem 1.12. (Time trace and integration by parts) Let X be the space

defined in (1.2). Then, the following statements hold true

a) The space X is embedded into the space C
(
[0, T ] ,L2 (Ω)

)
.

b) The trace operator u ∈ X → u (·, t) ∈ L2 (Ω) is bounded for almost

every t ∈ [0, T ]. The following inequality holds

sup
t∈[0,T ]

∥u (·, t)∥L2(Ω) ≤ C ∥u∥X ∀u ∈ X . (1.3)
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c) For all u, v ∈ X, we have

⟨∂tu, v⟩+ ⟨∂tv, u⟩ =
∫
Ω

u (x, T ) v (x, T ) dx−
∫
Ω

u (x, 0) v (x, 0) dx.

Consider the case QT is separated into two subdomains Q1 and Q2 by

the space-time interface Γ∗ := ∂Q1 ∩ ∂Q2. In this scenario, the space

H1,0 (Q1 ∪Q2) is important, since in it, the trace operators γi : H1,0 (Qi) →

L2 (Γ∗) (i = 1, 2) are well-defined under mild assumptions on Γ∗ [24].

Let us present the Stein extension operators [23], which are crucial for

handling functions with global low but local high regularity. For any fixed

s ≥ 0, a function u ∈ Hs (Q1 ∪Q2), and i = 1, 2, denote by ui := u |Qi
∈

Hs (Qi) the restriction of u to the subdomain Qi.

Theorem 1.13. Assume that Γ∗ is a Lipschitz continuous hypersurface in

Rd+1, then there exists smooth extensions Ei : H
s (Qi) → Hs (QT ) such that

Ei u = ui in Qi, ∥Ei u∥Hs(QT )
≤ C ∥ui∥Hs(Qi)

(i = 1, 2). (1.4)

1.2 Bounded linear operators

In this section, we consider U and W to be two normed spaces.

Definition 1.14. (Linear operator and linear functional) An operator S :

D (S) ⊂ U → W is said to be linear if it satisfies the following conditions:

a) S (u+ v) = S (u) + S (v) for all u, v ∈ D (S).

b) S (ηu) = ηS (u) for all η ∈ R and u ∈ D (S).

When W = R, we call S a linear functional.
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Definition 1.15. (Continuous operator) An operator S : D (S) ⊂ U → W is

said to be continuous if for any sequence {un}n∈N ⊂ D (S) such that there

exists u ∈ D (S) satisfying un → u in U, we have S (un) → S (u) in W.

Definition 1.16. (Bounded operator) An operator S : D (S) ⊂ U → W

is said to be bounded if there exists a constant C = C (S) > 0 such that

∥S (u)∥W ≤ C ∥u∥U for all u ∈ U.

Theorem 1.17. A linear operator is continuous if and only if it is bounded.

Definition 1.18. (Dual space) Let U be a normed space. A dual space of U,

denoted by U′, consists of all bounded linear functionals S : D (S) ⊂ U →

R, furnished with the norm

∥S∥U′ := sup
u∈U

|S (u)|
∥u∥U

= sup
u∈U

∣∣∣⟨S, u⟩U′,U

∣∣∣
∥u∥U

∀S ∈ U′ .

Definition 1.19. (Adjoint operator) Let U,W be two Banach spaces and S :

D (S) ⊂ U → W be a bounded linear operator. An adjoint operator of S is a

bounded linear operator S∗ : W′ → U′ such that

⟨S∗ (w′) , u⟩U′,U = ⟨w′, S (u)⟩W′,W ∀ (u,w′) ∈ U×W′ .

1.2.1. Weak convergence in Banach spaces

Definition 1.20. (Weak convergence) Let U be a normed space. We say that

the sequence {un}n∈N ⊂ U converges weakly to u ∈ U, written as un ⇀ u

in U, if S (un) → S (u) for all S ∈ U′.

Theorem 1.21. Let U be a normed space. Then, every closed and convex

subset E of U is weakly sequentially closed, which means for any sequence

{un}n∈N ⊂ E such that un ⇀ u in U, we imply u ∈ E.
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Theorem 1.22. (Weak convergence in a reflexive space) Let U be a reflexive

Banach space. Then, every bounded, closed and convex subset E of U is

weakly sequentially compact, that is, for any sequence {un}n∈N ⊂ E, we

can extract a subsequence {unk
}k∈N such that there exists u ∈ E satisfying

un ⇀ u in U.

Theorem 1.23. (Weak convergence with convex continuous functional) Let U

be a Banach space. Then, every convex continuous functional S : D (S) ⊂

U → R is weakly lower semicontinuous, which means for any sequence

{un}n∈N ⊂ U such that there exists u ∈ U satisfying un ⇀ u in U, we

have lim inf
n→∞

S (un) ≥ S (u).

1.2.2. Differentiability in Banach spaces

Consider U,W as two Banach spaces and E as an open subset of U.

Definition 1.24. (Gâteaux derivative) An operator S : E → W is said to

have a directional derivative in the direction h ∈ U at an element u ∈ E,

written as DS (u, h), if there exists the limit

lim
τ→0

S (u+ τh)− S (u)

τ
=: DS (u, h) .

If the operator h → DS (u, h) is a bounded linear operator, then we say that

S is Gâteaux differentiable at u ∈ E with the Gâteaux differential DS (u, h)

and the Gâteaux derivative S ′ given by DS (u, h) =: S ′ (u) (h).

Definition 1.25. (Frechét derivative) A continuous operator S : E → W is

said to be Frechét differentiable at an element u ∈ E if there esists a bounded
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linear operator DS (u) : U → W such that

lim
h→0

∥S (u+ h)− S (u)−DS (u) (h)∥W
∥h∥U

= 0.

The term DS (u) (h) is refered as the Frechét differential of S at u ∈ E with

the variation h ∈ U, and DS (u) is the Frechét derivative of S at u ∈ E,

denoted by S ′ (u).

Clearly, if an operator is Frechét differentiable operator, then it is Gâteaux

differentiable. Moreover, in that case, these two derivatives coincide.
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Chapter 2

An advection-diffusion equation with

a moving interface

This chapter presents the interface-fitted space-time finite element method

[5] for solving an advection-diffusion equation with a moving interface. This

problem appears in various fields of engineering and physical phenomenon

that involve moving multiple-component systems, such as mass transport [1],

heat transfer [2], electromagnetics [3], or heat induction [4]. The unknown

U in (2.1) may represent the concentration of the pollutant or the electron

transported at a velocity v owing to the advection and diffusion effect.

Let Ω be a Lipschitz domain in Rd (d = 1, 2) with the boundary ∂Ω. The

domain Ω is splitted into two time-dependent subdomains Ω1(t) and Ω2(t) by

an interface Γ(t), for all t ∈ [0, T ] with T > 0. The interface Γ(t) is trans-

ported by a velocity field v = v (x, t) ∈ C
(
[0, T ],C2(Ω)

)
that satisfying

∇·v(x, t) = 0 for all (x, t) ∈ Ω×[0, T ] [25]. We denote byQT := Ω×(0, T )

the space-time domain and

Qi :=
⋃

t∈(0,T )

Ωi(t)× {t} (i = 1, 2)
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two subdomains seperated by the space-time interface Γ∗ :=
⋃

t∈(0,T ) Γ(t)×

{t}. Assume that Γ∗ is a C2-regular hypersurface in Rd+1 and Γ(t)∩∂Ω = ∅

for all t ∈ [0, T ]. Consider the following problem

∂tU + v · ∇U −∇ · (κ∇U) = F in QT ,

[U ] = 0 on Γ∗,

[κ∇U · n] = 0 on Γ∗,

U = 0 on ∂Ω× (0, T ),

U (·, 0) = U0 in Ω,

(2.1)

where F is the source term, U0 is the initial value, and n stands for the unit

normal at Γ(t) pointing from Ω1(t) into Ω2(t). The notation [U ] = U1 |Γ(t) −

U2 |Γ(t) denotes the jump of U across Γ(t), with Ui |Γ(t) the limiting value from

Ωi(t) of U (i = 1, 2).

v

Γ(t)

Ω2(t)

Ω

Ω1(t)

Figure 2.1: The interface Γ(t), which envolves by a velocity v, devides the domain Ω into two

subdomains Ω1(t) and Ω2(t), consider the case d = 1 [5].

For simplicity, let us assume that the diffusion coefficient κ is a positive

constant on each subdomain

κ =


κ1 > 0 in Ω1(t),

κ2 > 0 in Ω2(t),

t ∈ [0, T ] .
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The general setting of the subdomain-wise continuous uniformly positive co-

efficient κ ∈ L∞ (QT ) can be treated similarly. In this chapter, the constant

C > 0 depends on the space-time domain QT , the position of the space-time

interface Γ∗, the norm ∥v∥L∞(QT )
, and the coefficient κ, but is independent of

the function u, the function u, and the mesh size h. Their different values in

different contexts are allowed.

2.1 Variational formulation

In this section, we recall from [5] the variational formulation of the prob-

lem (2.1) and its well-posedness. Let F ∈ Y′ and U0 ∈ H1
0 (Ω). Denote by

u0 ∈ X an extension of U0 ∈ H1
0 (Ω). We define the solution of the problem

(2.1) as the function U = u+ u0 ∈ X such that u ∈ X0 solves

a (u, φ) = ⟨F, φ⟩ − a (u0, φ) ∀φ ∈ Y, (2.2)

where the bilinear form a : X×Y → R is given by

a (u, φ) := ⟨∂tu, φ⟩+
T∫

0

∫
Ω

(v · ∇u)φ+ κ∇u · ∇φ dx dt.

Lemma 2.1. There exists a constant C > 0 that satisfies

sup
φ∈Y \{0}

a (u, φ)

∥φ∥Y
≥ C ∥u∥X ∀u ∈ X0 .

Lemma 2.2. If a (u, φ) = 0 for all u ∈ X0 then φ = 0.

The well-posedness of the problem (2.2) results from Lemmas 2.1 and 2.2,

according to the Banach-Nečas-Babuška theorem [26].

Theorem 2.3. Let F ∈ Y′ and U0 ∈ H1
0 (Ω). Then, the problem (2.2) admits

a unique solution u ∈ X0 such that ∥u∥X ≤ C (∥F∥Y′ + ∥u0∥X).
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Remark 2.4. If F ∈ L2 (QT ) then we have a priori estimate

∥u∥X ≤ C
(
∥F∥L2(QT )

+ ∥u0∥X
)
, (2.3)

since from the inequality (1.1), it holds that

∥F∥Y′ = sup
φ∈Y \{0}

⟨F, φ⟩
∥φ∥Y

≤ sup
φ∈Y \{0}

∥F∥L2(QT )
∥φ∥L2(QT )

∥φ∥Y
≤ C ∥F∥L2(QT )

.

Therefore, we imply ∥U∥X ≤ C
(
∥F∥L2(QT )

+ ∥u0∥X
)

.

Regarding an additional regularity of the solution U ∈ X of the problem

(2.1), let us introduce the following assumption:

Assumption 2.1. For F ∈ Y′ and U0 ∈ H1
0 (Ω), assume that the solution

U ∈ X of the problem (2.1) satisfies U ∈ H1 (QT ) ∩ Hs (Q1 ∪Q2) with a

given s > d+3
2 and there exists a constant C > 0 independent of F and U0

such that

∥U∥H1(QT )
≤ C (∥F∥Y′ + ∥u0∥X) . (2.4)

In this work, we assume that the assumption 2.1 is satisfied.

2.2 Finite element discretization

Assume that Ω is a polyhedron in Rd. The domain QT is divided into

shape-regular simplicial finite elements by an interface-fitted triangulation

Th, where the mesh size h ∈ (0, h∗) for a given h∗ > 0 [27]. Hence, every

triangle or tetrahedron K ∈ Th falls into one of the following scenarios:

1. K ⊂ Q1;

2. K ⊂ Q2;
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3. K ∩Q1 ̸= ∅ and K ∩Q2 ̸= ∅, then d+ 1 vertices of K lie on Γ∗.

Moreover, suppose that Th is quasi-uniform. We denote by Γ∗
h the linear

approximation of Γ∗, consisting of all edges (or faces) with the nodes lying

on Γ∗. The discrete interface Γ∗
h seperates QT into two subdomains Q1,h and

Q2,h, which are approximated counterparts of Q1 and Q2, respectively.

2.2.1. Interface-fitted space-time method

We discretize the problem (2.2) by using the interface-fitted space-time

finite element method, based on the work [5]. For simplicity, we assume

that U0 = 0, which means u0 = 0 in (2.2). Let Yh be the finite element

space of continuous element-wise linear functions on Th with zero values on

∂Ω× (0, T ). We define Xh,0 = {φh ∈ Yh | φh = 0 on Ω× {0}}. Obviously,

Yh ⊂ Y and Xh,0 ⊂ X0. Consider the discrete problem: Find uh ∈ Xh,0 that

satisfies

ah (uh, φh) = ⟨F, φh⟩ ∀φh ∈ Yh, (2.5)

with the bilinear form ah : X0×Y → R given by

ah (u, φ) = ⟨∂tu, φ⟩+
T∫

0

∫
Ω

(v · ∇u)φ+ κh∇u · ∇φ dx dt,

where κh approximates κ by means of

κh :=


κ1 > 0 in Q1,h,

κ2 > 0 in Q2,h.

Regarding the numerical analysis, we introduce the seminorm

|||v|||2 :=
2∑

i=1

∫
Qi,h

κi |∇v|2 dx dt ∀v ∈ H1,0 (Q1,h ∪Q2,h) .
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Note that in case v ∈ Y ⊂ H1,0 (Q1,h ∪Q2,h), the right-hand side becomes

2∑
i=1

∫
Qi,h

κi |∇v|2 dx dt =

T∫
0

∫
Ω

κh |∇v|2 dx dt,

which defines an equivalent norm in Y, also denoted by |||v|||. Since this norm

involves the coefficient κh, it is more favorable for studying discrete problems

than the norm ∥v∥Y. On the space H1 (Q1,h ∪Q2,h), we introduce the norm

|||v|||2∗ := |||v|||2 + |||zh (v)|||2 ∀v ∈ H1 (Q1,h ∪Q2,h) ,

where zh (v) ∈ Yh is a unique solution of the problem
T∫

0

∫
Ω

κh∇zh (v) · ∇ψh dx dt =
2∑

i=1

∫
Qi,h

(∂tv)ψh dx dt ∀ψh ∈ Yh .

Lemma 2.5. There exists a constant C > 0 such that

sup
φh∈Yh \{0}

ah (uh, φh)

|||φh|||
≥ C|||uh|||∗ ∀uh ∈ Xh,0 . (2.6)

Using the discrete Banach-Nečas-Babuška theorem [26], we conclude that

the problem (2.5) is uniquely solvable.

2.2.2. Auxiliary results

In this section, we provide some auxiliary findings. We first present a

result regarding the mismatch between each space-time subdomain Qi and

its approximated counterpart Qi,h, for i = 1, 2. Define by

S1
h := Q1,h \Q1 = Q2 \Q2,h, S2

h := Q2,h \Q2 = Q1 \Q1,h,

and Sh = S1
h∪S2

h (see Figure 2.2). We denote T ∗
h = {K ∈ Th | K ∩ Γ∗ ̸= ∅}

the set of all interface elements.
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Figure 2.2: The mismatch region Sh = S1
h ∪ S2

h lies between the space-time interface Γ∗ and the

discrete one Γ∗
h, consider the case d = 1 [5].

Lemma 2.6. Assume that Γ∗ is a C2-continuous hypersurface in Rd+1 (d =

1, 2) and Th is a quasi-uniform mesh. Then, for each K ∈ T ∗
h , we have

|K ∩ Sh| ≤ Chd+2. (2.7)

It holds for the cardinality of the set T ∗
h that∑

K∈T ∗
h

1 ≤ Ch−d. (2.8)

Proof. When d = 1, the proof of the first inequality can be found in [27].

We obtain the second one by combining this inequality with [28]. All the

arguments can be extended to the case d = 2 without essential changes.

We continue by studying the approximability of the Lagrangian inter-

polant. Let u ∈ H1 (QT ) ∩ H2 (Q1 ∪Q2). For u ∈ H2 (Q1 ∪Q2), the

Sobolev embedding [20] follows that u ∈ C
(
Q1

)
∩ C

(
Q2

)
. In addition,

if u ∈ H1 (QT ), then γ1u − γ2u = 0, which implies u ∈ C
(
QT

)
. Let

Ih : C
(
QT

)
→ Xh,0 be the nodal interpolation operator. When d = 1, the

interpolation estimate was addressed by Chen and Zou [27]. However, the

order was nearly optimal up to the factor |log h|, where h is the mesh size.

This paper imposes an additional condition on u and follows their approach
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to recover an optimal order estimate. We end up with the following result:

Lemma 2.7. For u ∈ H1 (QT )∩Hs (Q1 ∪Q2) with s > d+3
2 , the interpolation

operator Ih satisfies the following inequality

∥u− Ihu∥L2(QT )
+ h ∥D(u− Ihu)∥L2(QT )

≤ Ch2 ∥u∥Hs(Q1∪Q2)
, (2.9)

where D := (∇, ∂t)⊤ denotes the space-time gradient operator.

Proof. Let us focus on ∥u− Ihu∥L2(QT )
, since ∥D(u− Ihu)∥L2(QT )

can be

esimated similarly. The idea is first to estimate the interpolation error on

each element K ∈ Th, then sum over all elements to obtain the desired result.

Under the assumption, we have u ∈ H2 (K) on any K /∈ T ∗
h . The classical

interpolation theory [20] yields

∥u− Ihu∥L2(K) ≤ Ch2 ∥u∥H2(K) . (2.10)

Next, consider an arbitrary element K ∈ T ∗
h . Without loss of generality,

suppose that K ∩ Sh ⊂ Q1 and K \ Sh ⊂ Q2. For u ∈ Hs (Q1 ∪Q2) with

s > d+3
2 , note that Ei u ∈ Hs (QT ) ⊂ W1,∞ (QT ) (i = 1, 2) [20], with E1

and E2 the extension operators in (1.4). The inequality (2.7) and classical

interpolation theories give us

∥u− Ihu∥2L2(K)

= ∥E1 u− Ih (E1 u)∥2L2(K∩Sh)
+ ∥E2 u− Ih (E2 u)∥2L2(K\Sh)

≤ |K ∩ Sh| ∥E1 u− Ih (E1 u)∥2L∞(K∩Sh)
+ ∥E2 u− Ih (E2 u)∥2L2(K\Sh)

≤ Chd+2 ∥E1 u− Ih (E1 u)∥2L∞(K) + ∥E2 u− Ih (E2 u)∥2L2(K)

≤ Chd+4 ∥D(E1 u)∥2L∞(K) + Ch4
∥∥D2 (E2 u)

∥∥2
L2(K)

.



18

We sum over allK ∈ T ∗
h and use the inequality (2.8), the Sobolev embedding

Hs−1 (QT ) ↪→ L∞ (QT ) for s > d+3
2 [20], and the extension operators (1.4)

again to get∑
K∈T ∗

h

∥u− Ihu∥2L2(K) ≤

≤ Chd+4max
{
∥D(E1 u)∥2L∞(QT )

, ∥D(E2 u)∥2L∞(QT )

} ∑
K∈T ∗

h

1


+ Ch4

(∥∥D2 (E1 u)
∥∥2
L2(QT )

+
∥∥D2 (E2 u)

∥∥2
L2(QT )

)
≤ Ch4max

{
∥D(E1 u)∥2Hs−1(QT )

, ∥D(E2 u)∥2Hs−1(QT )

}
+ Ch4 ∥u∥2H2(Q1∪Q2)

≤ Ch4 ∥u∥2Hs(Q1∪Q2)
. (2.11)

Together with (2.10), we imply ∥u− Ihu∥L2(QT )
≤ Ch2 ∥u∥Hs(Q1∪Q2)

. Using

the same arguments, one obtains ∥D(u− Ihu)∥L2(QT )
≤ Ch ∥u∥Hs(Q1∪Q2)

.

The proof is complete.

Please note that the mismatch between Th and QT at the interface leads to

the non-conformal property of ah (·, ·). In particular, we have the following

lemma:

Lemma 2.8. Let u ∈ X0 and uh ∈ Xh,0 be the solutions of the problems (2.2)

and (2.5), respectively. There holds the following equality

ah (u− uh, φh) =

∫
Sh

(κh − κ)∇u · ∇φh dx dt ∀φh ∈ Yh . (2.12)

Proof. For u ∈ X0, uh ∈ Xh,0 and φh ∈ Yh, we invoke the equations (2.2)
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and (2.5) to have

ah (u, φh) = ⟨∂tu, φh⟩+
T∫

0

∫
Ω

(v · ∇u)φh + κh∇u · ∇φh dx dt

= a (u, φh) +

T∫
0

∫
Ω

(κh − κ)∇u · ∇φh dx dt

= ⟨F, φh⟩+
∫
Sh

(κh − κ)∇u · ∇φh dx dt

= ah (uh, φh) +

∫
Sh

(κh − κ)∇u · ∇φh dx dt,

observed that κh − κ vanishes everywhere outside of Sh.

2.2.3. A priori error estimates

Now, we estimate the error u − uh in various norms, where u ∈ X0 and

uh ∈ Xh,0 be the solutions of the problems (2.2) and (2.5), respectively. The

following result looks at the error u− uh in the norm |||·|||∗ (please see [5] for

more details).

Lemma 2.9. Let u ∈ X0 and uh ∈ Xh,0 be the solutions of the problems (2.2)

and (2.5), respectively. Assume that Assumption 2.1 is satisfied. Then, we

have the following estimate

|||u− uh|||∗ ≤ Ch ∥u∥Hs(Q1∪Q2)
. (2.13)

We continue by estimating the state error in the L2 (Ω)-norm at t = T .

Following the duality argument, let us define the space

VT :=
{
ψ ∈ X | ψ (·, T ) = γT ∥(u− uh) (·, T )∥−1

L2(Ω)
(u− uh) (·, T ) in Ω

}
,
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where γT > 0 is a sufficient large number, u ∈ X0 and uh ∈ Xh,0 are the

solutions of the problems (2.2) and (2.5), respectively. Assume that there

exists y ∈ VT that solves the problem

−⟨∂ty, ϕ⟩+
T∫

0

∫
Ω

− (v · ∇y)ϕ+κ∇y ·∇ϕ dx dt = 0 ∀ϕ ∈ Y . (2.14)

Under the assumption 2.1, one has y ∈ H1 (QT )∩Hs (Q1 ∪Q2) with s > d+3
2 .

We further assume that it satisfies

∥y∥Hs(Q1∪Q2)
≤ C, (2.15)

where the constant C > 0 is independent of u and uh.

Theorem 2.10. Let u ∈ X0 and uh ∈ Xh,0 be the solutions of the problems

(2.2) and (2.5), respectively. Assume that Assumption 2.1 is satisfied and the

problem (2.14) admits a solution y ∈ VT that satisfies (2.15). Then, we have

∥(u− uh) (·, T )∥L2(Ω) ≤ Ch2 ∥u∥Hs(Q1∪Q2)
. (2.16)

Proof. We choose ϕ = u−uh ∈ X0 in (2.14), then employ the integration by

parts formula to get

γT ∥(u− uh) (·, T )∥L2(Ω)

=

∫
Ω

(u− uh) (x, 0) y (x, 0) dx+ ⟨∂t (u− uh) , y⟩

+

T∫
0

∫
Ω

− (v · ∇y) (u− uh) + κ∇y · ∇ (u− uh) dx dt

= ⟨∂t (u− uh) , y⟩

+

T∫
0

∫
Ω

− (v · ∇y) (u− uh) + κ∇ (u− uh) · ∇y dx dt,
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using the fact that (u− uh) (·, 0) = 0 in Ω in the last step. To handle the

advection part on the right-hand side, we invoke the property ∇ · v(x, t) = 0

for all (x, t) ∈ Ω × [0, T ], the divergence theorem, and the homogeneous

Dirichlet boundary condition. We have
T∫

0

∫
Ω

(v · ∇y) (u− uh) dx dt =

T∫
0

∫
Ω

∇ · (y (u− uh)v) dx dt

−
T∫

0

∫
Ω

(v · ∇ (u− uh)) y + y (u− uh) (∇ · v) dx dt

=

T∫
0

∫
∂Ω

y (u− uh)v · nΩ ds dt−
T∫

0

∫
Ω

(v · ∇ (u− uh)) y dx dt

= −
T∫

0

∫
Ω

(v · ∇ (u− uh)) y dx dt, (2.17)

with nΩ the outward normal to ∂Ω. Hence, we get

γT ∥(u− uh) (·, T )∥L2(Ω) = ⟨∂t (u− uh) , y⟩

+

T∫
0

∫
Ω

(v · ∇ (u− uh)) y + κ∇ (u− uh) · ∇y dx dt

= ah (u− uh, y) +

∫
Sh

(κ− κh)∇ (u− uh) · ∇y dx dt,

noticing that κ−κh = 0 outside of Sh. Since y ∈ H1 (QT )∩Hs (Q1 ∪Q2) for

s > d+3
2 , we are able to invoke the interpolation Ihy. We denote e := y− Ihy

for convenience, and choose φh = Ihy ∈ Xh,0 in (2.12) to obtain

γT ∥(u− uh) (·, T )∥L2(Ω) =

= ah (u− uh, y) +

∫
Sh

(κ− κh)∇ (u− uh) · ∇y dx dt
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= ah (u− uh, e) + ah (u− uh, Ihy) +

∫
Sh

(κ− κh)∇ (u− uh) · ∇y dx dt

= ah (u− uh, e)

+

∫
Sh

(κh − κ)∇u · ∇ (Ihy) dx dt+

∫
Sh

(κ− κh)∇ (u− uh) · ∇y dx dt

= ah (u− uh, e)

+

∫
Sh

(κ− κh) (∇u · ∇e−∇u · ∇y +∇ (u− uh) · ∇y) dx dt. (2.18)

We first estimate the discrete bilinear term. In doing so, we integrate by parts

again, note that u − uh ∈ X0 and e ∈ H1 (QT ), and apply the inequalities

(2.9), (1.1), (2.13), and (2.15). One has

ah (u− uh, e) =

=

∫
Ω

(u− uh) (x, T ) e (x, T ) dx+

T∫
0

∫
Ω

− (u− uh) (∂te) dx dt

+

T∫
0

∫
Ω

(v · ∇ (u− uh)) e+ κh∇ (u− uh) · ∇e dx dt

≤ ∥(u− uh) (·, T )∥L2(Ω) ∥e (·, T )∥L2(Ω) + ∥u− uh∥L2(QT )
∥D e∥L2(QT )

+ C ∥∇ (u− uh)∥L2(QT )

(
∥e∥L2(QT )

+ ∥D e∥L2(QT )

)
≤ ∥(u− uh) (·, T )∥L2(Ω) ∥e (·, T )∥L2(Ω)

+ C ∥∇ (u− uh)∥L2(QT )

(
∥e∥L2(QT )

+ ∥D e∥L2(QT )

)
≤ ∥(u− uh) (·, T )∥L2(Ω) ∥e (·, T )∥L2(Ω) + Ch2 ∥u∥Hs(Q1∪Q2)

.

By using the trace inequality (1.3), the inequality (1.1), the estimate (2.9),
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and the inequality (2.15), we observe that

∥e (·, T )∥L2(Ω) ≤ C ∥e∥X ≤ C ∥e∥H1(QT )
≤ Ch ∥y∥Hs(Q1∪Q2)

≤ Ch, (2.19)

which yields

ah (u− uh, e) ≤ Ch ∥(u− uh) (·, T )∥L2(Ω) + Ch2 ∥u∥Hs(Q1∪Q2)
. (2.20)

Next, consider the second integral on the right-hand side of (2.18), denoted

by I for short. By using the Cauchy-Schwarz inequality, together with (2.9)

and (2.13), we bound I by

I :=

∫
Sh

(κ− κh) (∇u · ∇e−∇u · ∇y +∇ (u− uh) · ∇y) dx dt

≤ C
(
∥∇u∥L2(Sh)

∥D e∥L2(QT )
+ ∥∇u∥L2(Sh)

∥∇y∥L2(Sh)

)
+ C ∥∇ (u− uh)∥L2(QT )

∥∇y∥L2(Sh)

≤ C
(
∥∇u∥L2(Sh)

h ∥y∥Hs(Q1∪Q2)
+ ∥∇u∥L2(Sh)

∥∇y∥L2(Sh)

)
+ Ch ∥u∥Hs(Q1∪Q2)

∥∇y∥L2(Sh)
.

We follow the arguments of (2.11) to estimate ∥∇u∥L2(Sh)
and ∥∇y∥L2(Sh)

.

Take ∥∇u∥L2(Sh)
for instance. Under Assumption 2.1, we have u ∈ H1 (QT )∩

Hs (Q1 ∪Q2) with s > d+3
2 , and hence

∥∇u∥2L2(Sh)
=

∑
K∈T ∗

h

∥∇u∥2L2(K∩Sh)
≤

∑
K∈T ∗

h

|K ∩ Sh| ∥∇u∥2L∞(K∩Sh)

≤ Ch2 ∥u∥2Hs(Q1∪Q2)
,

which means ∥∇u∥L2(Sh)
≤ Ch ∥u∥Hs(Q1∪Q2)

.

Similarly, for y ∈ H1 (QT ) ∩ Hs (Q1 ∪Q2) with s > d+3
2 , we can prove

that ∥∇y∥L2(Sh)
≤ Ch ∥y∥Hs(Q1∪Q2)

≤ Ch by using the inequality (2.15).
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Therefore, we obtain

I ≤ Ch2 ∥u∥Hs(Q1∪Q2)
. (2.21)

We substitute (2.20) and (2.21) into (2.18) to arrive at

(γT − Ch) ∥(u− uh) (·, T )∥L2(Ω) ≤ Ch2 ∥u∥Hs(Q1∪Q2)
.

Since h ∈ (0, h∗) for a given h∗ > 0, the proof is finished by choosing γT

such that γT ≥ Ch∗ + 1.

Using the inequality (2.16), we are now able to estimate ∥u− uh∥L2(QT )
,

where u ∈ X0 and uh ∈ Xh,0 be the solutions of the problems (2.2) and (2.5),

respectively. In the following lemma, assume that there exists a solution

z ∈ X to the problem

− ⟨∂tz, ϕ⟩+
T∫

0

∫
Ω

− (v · ∇z)ϕ+ κ∇z · ∇ϕ dx dt =

= ∥u− uh∥−1
L2(QT )

T∫
0

∫
Ω

(u− uh)ϕ dx dt ∀ϕ ∈ Y, (2.22)

with z (·, T ) ∈ H1
0 (Ω). The assumption 2.1 yields z ∈ H1 (QT )∩Hs (Q1 ∪Q2)

with s > d+3
2 . Moreover, assume that

∥z∥Hs(Q1∪Q2)
≤ C, (2.23)

for a constant C > 0 independent of u and uh.

Theorem 2.11. Let u ∈ X0 and uh ∈ Xh,0 be the solutions of the problems

(2.2) and (2.5), respectively. Assume that the assumption of lemma 2.10 is

satisfied and there exists a solution z ∈ X of the problem (2.22) that satisfies

(2.23). Then, there holds the following estimate

∥u− uh∥L2(QT )
≤ Ch2 ∥u∥Hs(Q1∪Q2)

. (2.24)
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Proof. We choose ϕ = u − uh ∈ X0 in (2.22), then apply the integration by

parts formula, the arguments of (2.17), and the equality (2.12) to arrive at

∥u− uh∥L2(QT )
= −⟨∂tz, u− uh⟩

+

T∫
0

∫
Ω

− (v · ∇z) (u− uh) + κ∇z · ∇ (u− uh) dx dt

= ah (u− uh, z) +

∫
Sh

(κ− κh)∇ (u− uh) · ∇z dx dt

−
∫
Ω

(u− uh) (x, T ) z (x, T ) dx

= ah (u− uh, e
′) + ah (u− uh, Ihz)

+

∫
Sh

(κ− κh)∇ (u− uh) · ∇z dx dt−
∫
Ω

(u− uh) (x, T ) z (x, T ) dx

= ah (u− uh, e
′) +

∫
Sh

(κh − κ) (∇u · ∇ (Ihz)−∇ (u− uh) · ∇z) dx dt

−
∫
Ω

(u− uh) (x, T ) z (x, T ) dx, (2.25)

where we use the initial condition (u− uh) (·, 0) = 0 in Ω in the second step

and denote e′ := z − Ihz. Here, we can employ the interpolation Ihz since

z ∈ H1 (QT ) ∩ Hs (Q1 ∪Q2) with s > d+3
2 . For the term ah (u− uh, e

′), we

integrate by parts again with u− uh ∈ X0 and e′ ∈ H1 (QT ), and employ the

inequalities (2.9), (1.1), (2.13), and (2.23) to obtain

ah (u− uh, e
′) =

=

∫
Ω

(u− uh) (x, T ) e
′ (x, T ) dx+

T∫
0

∫
Ω

− (u− uh) (∂te
′) dx dt
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+

T∫
0

∫
Ω

(v · ∇ (u− uh)) e
′ + κh∇ (u− uh) · ∇e′ dx dt

≤
∫
Ω

(u− uh) (x, T ) e
′ (x, T ) dx+ ∥u− uh∥L2(QT )

∥D e′∥L2(QT )

+ C ∥∇ (u− uh)∥L2(QT )

(
∥e′∥L2(QT )

+ ∥D e′∥L2(QT )

)
≤

∫
Ω

(u− uh) (x, T ) e
′ (x, T ) dx

+ C ∥∇ (u− uh)∥L2(QT )

(
∥e′∥L2(QT )

+ ∥D e′∥L2(QT )

)
≤

∫
Ω

(u− uh) (x, T ) e
′ (x, T ) dx+ Ch2 ∥u∥Hs(Q1∪Q2)

. (2.26)

On the other hand, by following the technique as in (2.21), one can show that

J :=

∫
Sh

(κh − κ) (∇u · ∇ (Ihz)−∇ (u− uh) · ∇z) dx dt

=

∫
Sh

(κh − κ) (∇u · ∇z −∇u · ∇e′ −∇ (u− uh) · ∇z) dx dt

≤ C
(
∥∇u∥L2(Sh)

∥∇z∥L2(Sh)
+ ∥∇u∥L2(Sh)

∥∇e′∥L2(QT )

)
+ C ∥∇ (u− uh)∥L2(QT )

∥∇z∥L2(Sh)

≤ Ch2 ∥u∥Hs(Q1∪Q2)
. (2.27)

By substituting (2.26) and (2.27) into (2.25), we imply

∥u− uh∥L2(QT )
≤ Ch2 ∥u∥Hs(Q1∪Q2)

+

∫
Ω

(u− uh) (x, T ) e
′ (x, T ) dx−

∫
Ω

(u− uh) (x, T ) z (x, T ) dx

= Ch2 ∥u∥Hs(Q1∪Q2)
−
∫
Ω

(u− uh) (x, T ) (Ihz) (x, T ) dx
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≤ Ch2 ∥u∥Hs(Q1∪Q2)
+ ∥(u− uh) (·, T )∥L2(Ω) ∥(Ihz) (·, T )∥L2(Ω)

≤ Ch2 ∥u∥Hs(Q1∪Q2)
+ Ch2 ∥u∥Hs(Q1∪Q2)

∥(Ihz) (·, T )∥L2(Ω) ,

invoking the estimate (2.16) in the final line.

The last step is to estimate ∥(Ihz) (·, T )∥L2(Ω). We apply the technique as

in (2.19), the inequality (1.1) with Ihz ∈ Xh,0 and the H1-seminorm stability

of the interpolation operator Ih [20]. One gets

∥(Ihz) (·, T )∥2L2(Ω) ≤ C ∥Ihz∥2X ≤ C
(
∥Ihz∥2L2(QT )

+ ∥D(Ihz)∥2L2(QT )

)
≤ C

(
∥∇ (Ihz)∥2L2(QT )

+ ∥D(Ihz)∥2L2(QT )

)
≤ C ∥D(Ihz)∥2L2(QT )

≤ C ∥D z∥2L2(QT )
.

The proof is finished by employing a priori estimate (2.4) for the problem

(2.22) (after changing the time and the velocity field directions). We have

∥D z∥L2(QT )
≤ ∥z∥H1(QT )

≤ C
∥∥∥∥u− uh∥−1

L2(QT )
(u− uh)

∥∥∥
L2(QT )

= C.

The proof is complete.
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Chapter 3

An inverse source problem for

the advection-diffusion equation with

a moving interface

The aim of this chapter is to study an inverse source problem for the

advection-diffusion equation with a moving interface: Assume that in the

problem (2.1), the initial value U0 is zero and the source term F has the form

F (x, t) = ℓ (x, t) f (x, t) + g (x, t) for all (x, t) ∈ QT , where ℓ ∈ L∞ (QT )

and g ∈ L2 (QT ) are given. Moreover, assume that there exists a constant

L > 0 such that ℓ ≥ L at almost everywhere in QT . Let U be the solu-

tion of this problem. Determine f ∈ L2 (QT ), given a partial interior data

Ud := U|ωT
and a priori information f ≥ 0 at almost everywhere in QT .

Since U0 = 0, we see that u0 = 0 and the solution u ∈ X0 of the problem

(2.2) can be splitted as follows u = u + u∗, where u ∈ X0 is the solution to

the variational problem

a (u, φ) = (ℓf, φ)L2(QT )
∀φ ∈ Y, (3.1)
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and u∗ ∈ X0 solves the variational problem

a (u∗, φ) = (g, φ)L2(QT )
∀φ ∈ Y . (3.2)

The function u∗ is uniquely determined. We aim to identify f ∈ F+ in (3.1)

from the partial interior data Ud ∈ L2 (ωT ) in the subdomain ωT , where the

admissible set is defined by

F+ :=
{
f ∈ L2 (QT ) | f ≥ 0 at almost everywhere in QT

}
. (3.3)

This set is non-empty, close and convex. Our inverse source problem reads

as the following operator equation with a priori information

Af = zd, f ∈ F+, (3.4)

where zd := Ud − u∗|ωT
∈ L2 (ωT ) is the exact data and A is the bounded

linear operator, defined by

A : L2 (QT ) → L2 (ωT ) ,

f 7→ u (f) |ωT
.

Here, we use the notation u (f) to emphasize the dependence of u in (3.1)

on f . For avoiding ambiguity, we interpret zd ≡ 0 in QT \ ωT so that it is

well-defined in L2 (QT ).

In this chapter, C > 0 is a constant dependent on the space-time domain

QT , the position of the space-time interface Γ∗, the norm ∥v∥L∞(QT )
, the

function ℓ, the function g, and the coefficient κ, but does not depend on the

parameter λ, the noise level ε, the regularized state uελ and adjoint pελ, the

sources f+ and f ελ, and the mesh size h. Their different values in different

contexts are allowed.
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3.1 The ill-posedness of the problem

Let us discuss the concept of solutions to the problem (3.4). Firstly, this

problem may not have solutions since zd can be outside the restricted range

A (F+). On the other hand, we can construct examples in which two solutions

of the problem (3.1) coincide in the subdomain Q1 but behave differently in

the subdomain Q2. Therefore, in general, the operator A is not injective, and

the problem (3.4) may have many solutions. As a result, it is essential to

recall from [29] the following definition:

Definition 3.1. Let F+ be the admissible set in (3.3). An element f+ ∈ F+

is called the F+-best approximated solution of the problem (3.4) if among all

f ∈ F+ that solve this problem, it has the minimal L2 (QT )-norm

∥f+∥L2(QT )
≤ ∥f∥L2(QT )

.

Clearly, f+ ∈ F+ is uniquely determined. In some contexts, we also call

it the continuous unregularized source. Regarding the ill-posedness of the

problem (3.4), note that despite A being a linear operator, this problem is

nonlinear, owing to the presence of the inequality constraint. Therefore, the

ill-posedness criterion for linear problems [30] is not applicable. Instead, we

invoke the local ill-posedness concepts in [31] for nonlinear problems.

Definition 3.2. Let f ∈ F+ be a solution of the problem (3.4). The problem

(3.4) is said to be locally well-posed at f ∈ F+ if there exists a closed ball

Br (f) ⊂ L2 (QT ) with the center f ∈ F+ and radius r > 0 such that for

every sequence {fn}n∈N ⊂ F+ ∩ Br (f), if lim
n→∞

∥Afn − Af∥L2(ωT )
= 0 then

lim
n→∞

∥fn − f∥L2(QT )
= 0. Otherwise, the problem (3.4) is said to be locally
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ill-posed at f ∈ F+.

The compact embedding H1,0 (QT ) ↪→ L2 (QT ) [20] implies A is a com-

pact operator. Together with the arguments in [32], we conclude that the

problem (3.4) is locally ill-posed at every point in F+.

3.2 Tikhonov regularization

The ill-posedness of the problem (3.4) means its approximated solution

does not depend continuously on the data. Hence, regularization is required

to overcome this challenge and derive a stable solution. In this work, we

employ the Tikhonov regularization: Approximate the problem (3.4) by the

problem

min
f∈F+

Jε
λ (f) :=

1

2
∥u (f)− zεd∥

2
L2(ωT )

+
λ

2
∥f∥2L2(QT )

,

subject to (3.1),
(3.5)

where zεd := U ε
d − u∗|ωT

∈ L2 (ωT ) is the noise data and λ > 0 denotes

the regularization parameter. Similar to the problem (3.4), we treat zεd as

an element of L2 (QT ) by interpreting zεd ≡ 0 out side of ωT . Here, given

a noise level ε > 0, we define U ε
d ∈ L2 (ωT ) the imprecise observation of

Ud ∈ L2 (ωT ) that satisfies ∥Ud − U ε
d∥L2(ωT )

≤ ε.

Theorem 3.3. The regularized problem (3.5) has a unique solution f ελ ∈ F+.

Proof. Clearly, the set F+ := {f ∈ F+ | the problem (3.1) is well-posed} is

non-empty. Together with Jε
λ (f) ≥ 0 on F+, we deduce that j := inf

f∈F+

Jε
λ (f)

is finite. Hence, there exists a sequence {fn}n∈N ⊂ F+ such that

lim
n→∞

Jε
λ (fn) = j.
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The inequality ∥fn∥2L2(QT )
≤ 2

λJ
ε
λ (fn) for all n ∈ N implies that the sequence

{fn}n∈N is bounded in L2 (QT ), which allows us to extract a (not relabeled)

weakly convergent subsequence {fn}n∈N such that fn ⇀ f ελ in L2 (QT ) with

f ελ ∈ L2 (QT ). Moreover, there exists a sufficiently large r > 0 such that

{fn}n∈N ⊂ F+ ∩Br,

where Br denotes a closed ball with the radius r > 0 in L2 (QT ). Since

F+ ∩ Br is a closed, bounded, and convex subset of L2 (QT ), it is weakly

sequentially compact [22]. This gives us f ελ ∈ F+.

Consider the variational problem: Find un := u (fn) ∈ X0 that satisfies

a (un, φ) = (ℓfn, φ)L2(QT )
∀φ ∈ Y . (3.6)

This problem is well-posed. A priori estimate (2.3) says

∥un∥X ≤ C ∥fn∥L2(QT )
∀n ∈ N,

which means the sequence {un}n∈N is bounded in X. Hence, there exists

uελ ∈ X and a (not relabeled) weakly convergent subsequence {un}n∈N such

that un ⇀ uελ in X. Therefore, for any φ ∈ Y, we have

lim
n→∞

⟨∂tun, φ⟩+ T∫
0

∫
Ω

(v · ∇un)φ+ κ∇un · ∇φ dx dt

 =

= ⟨∂tuελ, φ⟩+
T∫

0

∫
Ω

(v · ∇uελ)φ+ κ∇uελ · ∇φ dx dt.

By passing the limit into (3.6), we arrive at

a (uελ, φ) = (ℓf ελ, φ)L2(QT )
∀φ ∈ Y . (3.7)
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To conclude that uελ = u (f ελ), one needs to prove uελ ∈ X0. In (3.6), we

choose φ ∈ C
(
[0, T ] ,H1

0 (Ω)
)

with φ (·, T ) = 0 in Ω and integrate by parts

to get

−⟨∂tun, φ⟩+
T∫

0

∫
Ω

(v · ∇un)φ+κ∇un ·∇φ dx dt = (ℓfn, φ)L2(QT )
, (3.8)

since un (·, 0) = 0 in Ω. We take n→ ∞ to obtain

−⟨∂tuελ, φ⟩+
T∫

0

∫
Ω

(v · ∇uελ)φ+ κ∇uελ · ∇φ dx dt = (ℓf ελ, φ)L2(QT )
.

On the other hand, by applying the technique in (3.8), we rewrite (3.7) as

follows

− ⟨∂tuελ, φ⟩+
T∫

0

∫
Ω

(v · ∇uελ)φ+ κ∇uελ · ∇φ dx dt =

= (ℓf ελ, φ)L2(QT )
+

∫
Ω

uελ (x, 0)φ (x, 0) dx.

From the last two equations, we imply uελ (·, 0) = 0 in Ω, and hence uελ =

u (f ελ). Therefore, we get

j = lim inf
n→∞

Jε
λ (fn) = lim inf

n→∞

1

2
∥u (fn)− zεd∥

2
L2(ωT )

+ lim inf
n→∞

λ

2
∥fn∥2L2(QT )

≥ 1

2
∥uελ − zεd∥

2
L2(ωT )

+
λ

2
∥f ελ∥

2
L2(QT )

= Jε
λ (f

ε
λ) ,

which indicates that f ελ ∈ F+ is a minimizer. The uniqueness follows from

the strict convexity of the functional Jε
λ. The proof is complete.

Next, we derive the optimality conditions of the regularized problem (3.5).

In doing so, let us introduce the following adjoint problem: Identify p (f) ∈
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XT such that

a′ (p (f) , ϕ) = (χωT
(u (f)− zεd) , ϕ)L2(QT )

∀ϕ ∈ Y, (3.9)

where the bilinear form a′ : X×Y → R is defined by

a′ (p, ϕ) = −⟨∂tp, ϕ⟩+
T∫

0

∫
Ω

− (v · ∇p)ϕ+ κ∇p · ∇ϕ dx dt,

and χωT
is the characteristic function of the subdomain ωT . By changing the

time and the velocity field directions, and applying [5] with χωT
(u (f)− zεd) ∈

L2 (QT ), we conclude the well-posedness of this problem.

Theorem 3.4. The unique solution f ελ ∈ F+ of the problem (3.5), together

with the corresponding state uελ ∈ X0 and adjoint pελ ∈ XT , satisfies the

following optimality conditions

a (uελ, φ) = (ℓf ελ, φ)L2(QT )
∀φ ∈ Y, (3.10)

and

a′ (pελ, ϕ) = (χωT
(uελ − zεd) , ϕ)L2(QT )

∀ϕ ∈ Y, (3.11)

and the variational inequality

(ℓpελ + λf ελ, f − f ελ)L2(QT )
≥ 0 ∀f ∈ F+. (3.12)

Proof. Following the classical arguments [22], we show that the functional Jε
λ

defined by (3.5) is Fréchet differentiable and its gradient ∇Jε
λ (f) at f ∈ F+

has the form

∇Jε
λ (f) = ℓp (f) + λf,
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with p (f) ∈ XT solves the problem (3.9). Indeed, take a small variation

δf ∈ L2 (QT ) of f ∈ F+, we have

Jε
λ (f + δf)− Jε

λ (f) =

=
1

2
∥u (f + δf)− zεd∥

2
L2(ωT )

− 1

2
∥u (f)− zεd∥

2
L2(ωT )

+
λ

2
∥f + δf∥2L2(QT )

− λ

2
∥f∥2L2(QT )

=
1

2
∥u (f + δf)− u (f)∥2L2(ωT )

+ (u (f + δf)− u (f) , u (f)− zεd)L2(ωT )

+
λ

2
∥δf∥2L2(QT )

+ λ (f, δf)L2(QT )

=
1

2
∥u (δf)∥2L2(ωT )

+ (u (δf) , u (f)− zεd)L2(ωT )

+
λ

2
∥δf∥2L2(QT )

+ λ (f, δf)L2(QT )
.

Here, we know that u (δf) ∈ X0 is the solution of the problem

a (u (δf) , φ) = (ℓδf, φ)L2(QT )
∀φ ∈ Y . (3.13)

Owing to the inequality (1.1) and a priori estimate (2.4), one has

∥u (δf)∥L2(ωT )
< C ∥u (δf)∥Y < C ∥u (δf)∥X ≤ C ∥δf∥L2(QT )

,

which implies ∥u (δf)∥L2(ωT )
= o

(
∥δf∥L2(QT )

)
as ∥δf∥L2(QT )

→ 0. Hence

Jε
λ (f + δf)− Jε

λ (f) =

= (u (δf) , u (f)− zεd)L2(ωT )
+ λ (f, δf)L2(QT )

+ o
(
∥δf∥2L2(QT )

)
. (3.14)

To derive the functional gradient, we rewrite the first term on the right-hand

side of (3.14) as a scalar product in the solution space. Let p (f) ∈ XT be the

solution of (3.9), we choose ϕ = u (δf) ∈ X0 in (3.9) to arrive at

(u (δf) , u (f)− zεd)L2(ωT )
= (u (δf) , χωT

(u (f)− zεd))L2(QT )
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= −⟨∂tp (f) , u (δf)⟩

+

T∫
0

∫
Ω

− (v · ∇p (f))u (δf) + κ∇p (f) · ∇u (δf) dx dt. (3.15)

By integrating by parts, we can rewrite ⟨∂tp (f) , u (δf)⟩ as

⟨∂tp (f) , u (δf)⟩ =
∫
Ω

p (f) (x, T )u (δf) (x, T ) dx

−
∫
Ω

p (f) (x, 0)u (δf) (x, 0) dx− ⟨∂tu (δf) , p (f)⟩

= −⟨∂tu (δf) , p (f)⟩ ,

using p (f) ∈ XT and u (δf) ∈ X0 in the final step. To handle the advection

part on the right-hand side of (3.15), we invoke the technique as in (2.17).

We get

T∫
0

∫
Ω

(v · ∇p (f))u (δf) dx dt = −
T∫

0

∫
Ω

(v · ∇u (δf)) p (f) dx dt.

Hence, (3.15) becomes

(u (δf) , u (f)− zεd)L2(ωT )
=

= ⟨∂tu (δf) , p (f)⟩

+

T∫
0

∫
Ω

(v · ∇u (δf)) p (f) + κ∇u (δf) · ∇p (f) dx dt

= a (u (δf) , p (f)) = (ℓp (f) , δf)L2(QT )
. (3.16)

Here, we choose φ = p (f) ∈ XT in (3.13) to obtain the first equality. By

substituting into (3.14), we can conclude the Fréchet differentiability of the

functional Jε
λ, together with its gradient.
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We end this section with some convergence properties of the Tikhonov

regularization. We start by showing that the solution f ελ ∈ F+ of the problem

(3.5) is stable with respect to the noise in the observation zεd ∈ L2 (QT ). The

following theorem is the constrained variant of the results presented in [33]

and [34].

Theorem 3.5. For a fixed λ > 0, let {zn}n∈N ⊂ L2 (ωT ) be the sequence

that converges strongly to zεd in L2 (ωT ), and {fn}n∈N ⊂ F+ the sequence of

solutions to the corresponding problems

min
f∈F+

1

2
∥u (f)− zn∥2L2(ωT )

+
λ

2
∥f∥2L2(QT )

, n ∈ N,

subject to (3.1).
(3.17)

Then, {fn}n∈N converges strongly to the solution f ελ ∈ F+ of the problem

(3.5) in L2 (QT ).

Proof. Owing to Theorem 3.3, for each n ∈ N, there exists a unique mini-

mizer fn ∈ F+ of the problem (3.17). For all f ∈ F+, we have

1

2
∥u (fn)− zn∥2L2(ωT )

+
λ

2
∥fn∥2L2(QT )

≤ 1

2
∥u (f)− zn∥2L2(ωT )

+
λ

2
∥f∥2L2(QT )

,

which implies the boundedness of {fn}n∈N in L2 (QT ). By following the

technique as in Theorem 3.3, we conclude the existence of an element f ελ ∈

F+ and a (not relabed) weakly convergent subsequence {fn}n∈N such that

fn ⇀ f ελ in L2 (QT ). Moreover, as n→ ∞, it holds

u (fn)⇀ u (f ελ) in X,

up to taking a further subsequence. Together with the strong convergence of

the sequence {zn}n∈N to zεd in L2 (ωT ), one gets u (fn)− zn ⇀ u (f ελ)− zεd in
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L2 (ωT ), and hence

lim inf
n→∞

∥u (fn)− zn∥2L2(ωT )
≥ ∥u (f ελ)− zεd∥

2
L2(ωT )

. (3.18)

Therefore, for all f ∈ F+, we deduce that

Jε
λ (f) =

1

2
∥u (f)− zεd∥

2
L2(ωT )

+
λ

2
∥f∥2L2(QT )

≥ lim
n→∞

(
1

2
∥u (f)− zn∥2L2(ωT )

+
λ

2
∥f∥2L2(QT )

)
≥ lim inf

n→∞

(
1

2
∥u (fn)− zn∥2L2(ωT )

+
λ

2
∥fn∥2L2(QT )

)
≥ 1

2
∥u (f ελ)− zεd∥

2
L2(ωT )

+
λ

2
∥f ελ∥

2
L2(QT )

= Jε
λ (f

ε
λ) , (3.19)

which means that f ελ ∈ F+ is the solution of the problem (3.5).

Next, we prove that the sequence {fn}n∈N converges strongly to f ελ in

L2 (QT ). By contradiction, suppose that the claim is false. Then, we observe

that

lim
n→∞

∥fn∥L2(QT )
̸= ∥f ελ∥L2(QT )

,

which yields

θ := lim sup
n→∞

∥fn∥L2(QT )
> lim inf

n→∞
∥fn∥L2(QT )

≥ ∥f ελ∥L2(QT )
. (3.20)

Therefore, there exists a (not relabeled) subsequence {fn}n∈N that satisfying

lim
n→∞

∥fn∥L2(QT )
= θ. By choosing f = f ελ ∈ F+ in (3.19), we have

Jε
λ (j

ε
λ) = lim inf

n→∞

(
1

2
∥u (fn)− zn∥2L2(ωT )

+
λ

2
∥fn∥2L2(QT )

)
= lim inf

n→∞

1

2
∥u (fn)− zn∥2L2(ωT )

+
λ

2
θ2.

Combining with (3.20), we arrive at

1

2
∥u (f ελ)− zεd∥

2
L2(ωT )

=
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= lim inf
n→∞

1

2
∥u (fn)− zn∥2L2(ωT )

+
λ

2

(
θ2 − ∥f ελ∥

2
L2(QT )

)
> lim inf

n→∞

1

2
∥u (fn)− zn∥2L2(ωT )

,

which contradicts with (3.18). The proof is finished.

On the other hand, regarding the error estimate of regularizing the source

f+ ∈ F+ in Definition 3.1 by the Tikhonov regularization, let us recall from

[29] the following result for the general linear inverse problems with convex

constraints:

Lemma 3.6. Let f+ ∈ F+ be the F+-best approximated source of the problem

(3.4) and f ελ ∈ F+ be the solution of the regularized problem (3.5). Assume

that there exists ξ ∈ L2 (ωT ) with the minimal L2 (ωT )-norm that satisfies

f+ = ProjF+
(A∗ξ), where A∗ : L2 (ωT ) → L2 (QT ) denotes the adjoint

operator of the operator A in (3.4). Then, we have the following inequality

∥f+ − f ελ∥L2(QT )
≤

√
λ ∥ξ∥L2(ωT )

+
ε√
λ
.

3.3 Finite element discretization

In this section, we discretize the problem (3.5) by combining the interface-

fitted space-time finite element method [5] and the variational approach [18].

3.3.1. The discrete regularized problem

We first discretize the regularized state and adjoint. As in section 2.2.1.,

let us define the discrete state problem: For ℓ ∈ L∞ (QT ) and f ∈ L2 (QT ),
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find uh (f) ∈ Xh,0 that satisfies

ah (uh (f) , φh) = (ℓf, φh)L2(QT )
∀φh ∈ Yh . (3.21)

The following discrete stability condition holds

sup
φh∈Yh \{0}

ah (uh (f) , φh)

|||φh|||
≥ C|||uh (f)|||∗ ∀uh (f) ∈ Xh,0, (3.22)

which ensures that the problem (3.21) is uniquely solvable. A priori estimates

for the state error in three different norms have been presented in the previous

chapter.

Similarly, we present the interface-fitted space-time method for solving

the adjoint problem (3.9). We introduce the space

Xh,T = {φh ∈ Yh | φh = 0 on Ω× {T}} ⊂ XT .

The discrete adjoint problem reads as: Determine ph (f) ∈ Xh,T such that

a′h (ph (f) , ϕh) = (χωT
(u (f)− zεd) , ϕh)L2(QT )

∀ϕh ∈ Yh, (3.23)

with the bilinear form a′h : XT ×Y → R given by

a′h (p, ϕ) = −⟨∂tp, ϕ⟩+
T∫

0

∫
Ω

− (v · ∇p)ϕ+ κh∇p · ∇ϕ dx dt.

Employing the technique as in (3.22), we establish the following stability

condition

sup
ϕh∈Yh \{0}

a′h (ph (f) , ϕh)

|||ϕh|||
≥ C|||ph (f)|||∗ ∀ph (f) ∈ Xh,T , (3.24)

and concludes the unique solvability of the problem (3.23). By using the

arguments for the state problem, one can derive a priori error estimates for
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the adjoint. For completeness, let us state the main results. We shall need the

space

V0 :=

{
ψ ∈ X | ψ (·, 0) = γ0 (p (f)− ph (f)) (·, 0)

∥(p (f)− ph (f)) (·, 0)∥−1
L2(Ω)

in Ω

}
,

where γ0 > 0 is a sufficiently large number, p (f) ∈ XT and ph (f) ∈ Xh,T

be the solutions of the problems (3.9) and (3.23), respectively. Assume that

there exists y′ ∈ V0 and z′ ∈ X that satisfy

⟨∂ty′, φ⟩+
T∫

0

∫
Ω

(v · ∇y′)φ+ κ∇y′ · ∇φ dx dt = 0 ∀φ ∈ Y, (3.25)

and

⟨∂tz′, φ⟩+
T∫

0

∫
Ω

(v · ∇z′)φ+ κ∇z′ · ∇φ dx dt =

= ∥p (f)− ph (f)∥−1
L2(QT )

T∫
0

∫
Ω

(p (f)− ph (f))φ dx dt ∀φ ∈ Y . (3.26)

with z′ (·, 0) ∈ H1
0 (Ω). We have y′, z′ ∈ H1 (QT ) ∩ Hs (Q1 ∪Q2) with s >

d+3
2 . Furthermore, assume that there exists a constant C > 0 independent of

p (f) and ph (f) such that

∥y′∥Hs(Q1∪Q2)
≤ C, (3.27)

and

∥z′∥Hs(Q1∪Q2)
≤ C. (3.28)

Lemma 3.7. For f ∈ F+, let p (f) ∈ XT and ph (f) ∈ Xh,T be the solutions

of the problems (3.9) and (3.23), respectively.
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a) Assume that Assumption 2.1 is satisfied. Then, we have the following

estimate

|||p (f)− ph (f)|||∗ ≤ Ch ∥p (f)∥Hs(Q1∪Q2)
. (3.29)

b) Moreover, if the problem (3.25) has a solution y′ ∈ V0 that satisfies

(3.27), then there holds the estimate

∥(p (f)− ph (f)) (·, 0)∥L2(Ω) ≤ Ch2 ∥p (f)∥Hs(Q1∪Q2)
.

c) Furthermore, if there exists a solution z′ ∈ X of the problem (3.26) that

satisfies (3.28), then the following estimate holds

∥p (f)− ph (f)∥L2(QT )
≤ Ch2 ∥p (f)∥Hs(Q1∪Q2)

. (3.30)

The final step is to discretize the regularized source. In this work, we

invoke the variational approach [18], in which we turn the discretization of

the regularized source into the discrete treatment for a term that involves the

regularized adjoint. The discrete inverse source problem reads as

min
fh∈F+

Jε
λ,h (fh) :=

1

2

∥∥uh (fh)− zεd,h
∥∥2
L2(ωT )

+
λ

2
∥fh∥2L2(QT )

,

subject to (3.21),
(3.31)

where zεd,h := U ε
d − u∗h |ωT

∈ L2 (ωT ) denotes the discrete data. Here, u∗h ∈

Xh,0 approximates u∗ ∈ X0 in (3.2), also by the interface-fitted space-time

method. Therefore, it can be defined similarly as uh (f) ∈ Xh,0 in (3.21).

Analogue to the problem (3.13), for fh ∈ F+ and δfh ∈ L2 (QT ), the

function uh (δfh) = uh (fh + δfh) − uh (fh) ∈ Xh,0 will be the solution of

the problem

ah (uh (δfh) , φh) = (ℓδfh, φh)L2(QT )
∀φh ∈ Yh . (3.32)
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Furthermore, the technique as in (3.16) gives us(
uh (δfh) , uh (fh)− zεd,h

)
L2(ωT )

= (ℓph (fh) , δfh)L2(QT )
, (3.33)

where uh (fh) ∈ Xh,0 and ph (fh) ∈ Xh,T be the solutions of the problems

(3.21) and (3.23) with the corresponding right-hand sides ℓfh ∈ L2 (QT ) and

χωT

(
uh (fh)− zεd,h

)
∈ L2 (QT ). By employing this equality, we can prove

the following discrete optimality conditions:

Lemma 3.8. Let f ελ,h ∈ F+ be the solution of the problem (3.31), uελ,h ∈

Xh,0 and pελ,h ∈ Xh,T denote the corresponding state and adjoint. Then, the

following optimality system is satisfied

ah
(
uελ,h, φh

)
=

(
ℓf ελ,h, φh

)
L2(QT )

∀φh ∈ Yh, (3.34)

and

a′h
(
pελ,h, ϕh

)
=

(
χωT

(
uελ,h − zεd,h

)
, ϕh

)
L2(QT )

∀ϕh ∈ Yh, (3.35)

and the variational inequality(
ℓpελ,h + λf ελ,h, fh − f ελ,h

)
L2(QT )

≥ 0 ∀fh ∈ F+. (3.36)

3.3.2. Error and convergence estimates

Let f+ ∈ F+ be the F+-best approximated solution of the problem (3.4)

and f ελ,h ∈ F+ be the solution of the problem (3.31). In this section, we

estimate the errors f+ − f ελ,h in the L2 (QT )-norm in terms of the parameter

λ, the mesh size h and the noise level ε. Moreover, we suggest an a priori

choice for λ, depending on h and ε, such that f ελ,h converges strongly to f+
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in L2 (QT ) as λ→ 0. Let us start with the triangle inequality∥∥f+ − f ελ,h
∥∥
L2(QT )

≤ ∥f+ − f ελ∥L2(QT )
+
∥∥f ελ − f ελ,h

∥∥
L2(QT )

. (3.37)

The first term on the right-hand side of (3.37) is treated in Lemma 3.6. Hence,

our aim is first to estimate the second error term in (3.37), then provide an

a priori choice for λ that ensures the desired convergence, depending on the

total error.

The main result of this subsection is stated in Theorem 3.12 and Corollary

3.13. To begin, we denote by uh (f ελ) ∈ Xh,0 and ph (f ελ) ∈ Xh,T the solutions

of the following problems

ah (uh (f
ε
λ) , φh) = (ℓf ελ, φh)L2(QT )

∀φh ∈ Yh, (3.38)

and

a′h (ph (f
ε
λ) , ϕh) =

(
χωT

(
uh (f

ε
λ)− zεd,h

)
, ϕh

)
L2(QT )

∀ϕh ∈ Yh . (3.39)

Lemma 3.9. Let the triples (uh (f
ε
λ) , ph (f

ε
λ) , f

ε
λ) ∈ Xh,0×Xh,T ×F+ and(

uελ,h, p
ε
λ,h, f

ε
λ,h

)
∈ Xh,0×Xh,T ×F+ be the solutions of the problems (3.38)-

(3.39), (3.12) and (3.34)-(3.36), respectively. Then, it holds that∣∣∣∣∣∣uh (f ελ)− uελ,h
∣∣∣∣∣∣

∗ +
∣∣∣∣∣∣ph (f ελ)− pελ,h

∣∣∣∣∣∣
∗ ≤ C

∥∥f ελ − f ελ,h
∥∥
L2(QT )

,

and∥∥uh (f ελ)− uελ,h
∥∥
L2(QT )

+
∥∥ph (f ελ)− pελ,h

∥∥
L2(QT )

≤ C
∥∥f ελ − f ελ,h

∥∥
L2(QT )

.

Proof. First, let us prove the first inequality. By subtracting (3.34) from

(3.38), we obtain

ah
(
uh (f

ε
λ)− uελ,h, φh

)
=

(
ℓf ελ − ℓf ελ,h, φh

)
L2(QT )

∀φh ∈ Yh .
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The stability condition (3.22) gives us

C
∣∣∣∣∣∣uh (f ελ)− uελ,h

∣∣∣∣∣∣
∗ ≤ sup

φh∈Yh \{0}

ah
(
uh (f

ε
λ)− uελ,h, φh

)
|||φh|||

.

On the other hand, from the inequality (1.1), one has

sup
φh∈Yh \{0}

ah
(
uh (f

ε
λ)− uελ,h, φh

)
|||φh|||

= sup
φh∈Yh \{0}

(
ℓf ελ − ℓf ελ,h, φh

)
L2(QT )

|||φh|||

≤ C
∥∥f ελ − f ελ,h

∥∥
L2(QT )

.

Therefore, we have∣∣∣∣∣∣uh (f ελ)− uελ,h
∣∣∣∣∣∣

∗ ≤ C
∥∥f ελ − f ελ,h

∥∥
L2(QT )

. (3.40)

We continue by subtracting (3.35) from (3.39) to get

a′h
(
ph (f

ε
λ)− pελ,h, ϕh

)
=

(
χωT

(
uh (f

ε
λ)− uελ,h

)
, ϕh

)
L2(QT )

∀ϕh ∈ Yh .

Invoke the inequality (3.24), the technique as in (3.40), and the inequality

(3.40) itself, one obtains∣∣∣∣∣∣ph (f ελ)− pελ,h
∣∣∣∣∣∣

∗ ≤ C
∥∥uh (f ελ)− uελ,h

∥∥
L2(ωT )

≤ C
∥∥f ελ − f ελ,h

∥∥
L2(QT )

.

(3.41)

The first inequality follows by combining (3.40) and (3.41). The second one

is a consequence of the first one, thanks to (1.1).

Lemma 3.10. Let (pελ, f
ε
λ) ∈ XT ×F+ and ph (f ελ) ∈ Xh,T be the solutions

of the problems (3.11)-(3.12) and (3.39), respectively. Let f ελ,h ∈ F+ be the

solution of the problem (3.36) in case of variational discretization. Then, the

following estimate holds∥∥f ελ − f ελ,h
∥∥
L2(QT )

≤ C

λ
∥pελ − ph (f

ε
λ)∥L2(QT )

.
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Proof. We choose f = f ελ,h ∈ F+ in (3.12) and fh = f ελ ∈ F+ in (3.36), then

add the corresponding inequalities to get

λ
∥∥f ελ − f ελ,h

∥∥2
L2(QT )

≤

≤
(
ℓpελ − ℓpελ,h, f

ε
λ,h − f ελ

)
L2(QT )

=
(
ℓpελ − ℓph (f

ε
λ) , f

ε
λ,h − f ελ

)
L2(QT )

+
(
ℓph (f

ε
λ)− ℓpελ,h, f

ε
λ,h − f ελ

)
L2(QT )

.

(3.42)

By using the Cauchy inequality, we estimate the first term on the right-hand

side of (3.42) as follows(
ℓpελ − ℓph (f

ε
λ) , f

ε
λ,h − f ελ

)
L2(QT )

≤

≤ ∥ℓ∥L∞(QT )
∥pελ − ph (f

ε
λ)∥L2(QT )

∥∥f ελ,h − f ελ
∥∥
L2(QT )

≤ 1

2λ
∥ℓ∥2L∞(QT )

∥pελ − ph (f
ε
λ)∥

2
L2(QT )

+
λ

2

∥∥f ελ,h − f ελ
∥∥2
L2(QT )

. (3.43)

To handle the second term on the right-hand side of (3.42), we utilize the

equality (3.33) twice. We have(
ℓph (f

ε
λ)− ℓpελ,h, f

ε
λ,h − f ελ

)
L2(QT )

=

=
(
ℓph (f

ε
λ) , f

ε
λ,h − f ελ

)
L2(QT )

−
(
ℓpελ,h, f

ε
λ,h − f ελ

)
L2(QT )

=
(
uελ,h − uh (f

ε
λ) , uh (f

ε
λ)− zεd,h

)
L2(ωT )

−
(
uελ,h − uh (f

ε
λ) , u

ε
λ,h − zεd,h

)
L2(ωT )

= −
∥∥uελ,h − uh (f

ε
λ)
∥∥2
L2(ωT )

≤ 0. (3.44)

By combining (3.42), (3.43), and (3.44), we obtain the result.

We next estimate the right-hand side of the inequality in lemma 3.10. In

doing so, let us introduce p̃h (f ελ) ∈ Xh,T as the solution of the problem

a′h (p̃h (f
ε
λ) , ϕh) = (χωT

(uελ − zεd) , ϕh)L2(QT )
∀ϕh ∈ Yh . (3.45)
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Lemma 3.11. Let (uελ, p
ε
λ, f

ε
λ) ∈ X0×XT ×F+ and ph (f ελ) ∈ Xh,T be the

solutions of the problems (3.10)-(3.12) and (3.39), respectively. Let u∗ ∈ X0

be the solution of the problem (3.2). Assume that the assumptions of Lemma

2.11 and Lemma 3.7c are satisfied. Then, there holds the following

|||pελ − ph (f
ε
λ)|||∗ ≤

≤ Ch2
(
∥uελ∥Hs(Q1∪Q2)

+ ∥u∗∥Hs(Q1∪Q2)

)
+ Ch ∥pελ∥Hs(Q1∪Q2)

, (3.46)

and

∥pελ − ph (f
ε
λ)∥L2(QT )

≤

≤ Ch2
(
∥uελ∥Hs(Q1∪Q2)

+ ∥u∗∥Hs(Q1∪Q2)
+ ∥pελ∥Hs(Q1∪Q2)

)
. (3.47)

Proof. We first derive the estimate (3.46). By using the triangle inequality,

one has

|||pελ − ph (f
ε
λ)|||∗ ≤ |||pελ − p̃h (f

ε
λ)|||∗ + |||p̃h (f ελ)− ph (f

ε
λ)|||∗, (3.48)

where p̃h (f ελ) ∈ Xh,T is the solution of the problem (3.45). A priori error

estimate (3.29) yields

|||pελ − p̃h (f
ε
λ)|||∗ ≤ Ch ∥pελ∥Hs(Q1∪Q2)

. (3.49)

For dealing with the second term on the right-hand side of (3.48), we subtract

(3.39) from (3.45) to get

a′h (p̃h (f
ε
λ)− ph (f

ε
λ) , ϕh) =

=
(
χωT

(
uελ − uh (f

ε
λ)− zεd + zεd,h

)
, ϕh

)
L2(QT )

∀ϕh ∈ Yh . (3.50)

We invoke the technique as in (3.41) and a priori error estimate (2.24) to

arrive at

|||p̃h (f ελ)− ph (f
ε
λ)|||∗ ≤ C

(
∥uελ − uh (f

ε
λ)∥L2(ωT )

+ ∥u∗ − u∗h∥L2(ωT )

)
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≤ Ch2
(
∥uελ∥Hs(Q1∪Q2)

+ ∥u∗∥Hs(Q1∪Q2)

)
. (3.51)

The estimate (3.46) follows by substituting (3.49) and (3.51) into (3.48). We

employ the same arguments to prove the estimate (3.47). Indeed, we have

∥pελ − ph (f
ε
λ)∥L2(QT )

≤ ∥pελ − p̃h (f
ε
λ)∥L2(QT )

+ ∥p̃h (f ελ)− ph (f
ε
λ)∥L2(QT )

.

By a priori error estimate (3.30), it holds

∥pελ − p̃h (f
ε
λ)∥L2(QT )

≤ Ch2 ∥pελ∥Hs(Q1∪Q2)
.

On the other hand, we apply the technique as in (3.41), and the inequality

(3.51) to obtain

∥p̃h (f ελ)− ph (f
ε
λ)∥L2(QT )

≤ |||p̃h (f ελ)− ph (f
ε
λ)|||∗

≤ C
(
∥uελ − uh (f

ε
λ)∥L2(ωT )

+ ∥u∗ − u∗h∥L2(ωT )

)
≤ Ch2

(
∥uελ∥Hs(Q1∪Q2)

+ ∥u∗∥Hs(Q1∪Q2)

)
.

(3.52)

The proof is complete.

We arrive at the first main result of this section by combining Lemmas 3.9,

3.10, and 3.11 with the triangle inequality.

Theorem 3.12. Let (uελ, p
ε
λ, f

ε
λ) ∈ X0×XT ×F+ and

(
uελ,h, p

ε
λ,h, f

ε
λ,h

)
∈

Xh,0×Xh,T ×F+ be the solutions of the problems (3.10)-(3.12) and (3.34)-

(3.36) in case of variational discretization, respectively. Let u∗ ∈ X0 be the

solution of the problem (3.2). Assume that the assumptions of Lemma 2.11

and Lemma 3.7c are satisfied. Then, the following estimates hold∣∣∣∣∣∣uελ − uελ,h
∣∣∣∣∣∣

∗ +
∣∣∣∣∣∣pελ − pελ,h

∣∣∣∣∣∣
∗ +

∥∥f ελ − f ελ,h
∥∥
L2(QT )

≤
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≤ C

(
1 +

1

λ

)
h2

(
∥uελ∥Hs(Q1∪Q2)

+ ∥u∗∥Hs(Q1∪Q2)

)
+ Ch ∥uελ∥Hs(Q1∪Q2)

+ C

(
1 +

1

λ

)
h ∥pελ∥Hs(Q1∪Q2)

,

and∥∥uελ − uελ,h
∥∥
L2(QT )

+
∥∥pελ − pελ,h

∥∥
L2(QT )

+
∥∥f ελ − f ελ,h

∥∥
L2(QT )

≤

≤ C

(
1 +

1

λ

)
h2

(
∥uελ∥Hs(Q1∪Q2)

+ ∥u∗∥Hs(Q1∪Q2)
+ ∥pελ∥Hs(Q1∪Q2)

)
.

(3.53)

Proof. Let us sketch the proof of the first estimate. Thanks to the triangle

inequality, a priori error estimate (2.24), Lemmas 3.9 and 3.10, we have∣∣∣∣∣∣uελ − uελ,h
∣∣∣∣∣∣

∗ +
∣∣∣∣∣∣pελ − pελ,h

∣∣∣∣∣∣
∗ +

∥∥f ελ − f ελ,h
∥∥
L2(QT )

≤

≤ |||uελ − uh (f
ε
λ)|||∗ +

∣∣∣∣∣∣uh (f ελ)− uελ,h
∣∣∣∣∣∣

∗ + |||pελ − ph (f
ε
λ)|||∗

+
∣∣∣∣∣∣ph (f ελ)− pελ,h

∣∣∣∣∣∣
∗ +

∥∥f ελ − f ελ,h
∥∥
L2(QT )

≤ Ch ∥uελ∥Hs(Q1∪Q2)
+ C

∥∥f ελ − f ελ,h
∥∥
L2(QT )

+ |||pελ − ph (f
ε
λ)|||∗

≤ Ch ∥uελ∥Hs(Q1∪Q2)
+ C

(
1 +

1

λ

)
|||pελ − ph (f

ε
λ)|||∗.

The conclusion follows from the estimate (3.46). The inequality (3.53) is

proved similarly.

Finally, from the inequality (3.37), Lemma 3.6, and the inequality (3.53)

in the previous theorem, we have the following result:

Corollary 3.13. Let f+ ∈ F+ be the F+-best approximated solution of the

problem (3.4) and f ελ,h ∈ F+ be the solution of the problem (3.31). Assume

that the assumptions of Theorem 2.11, Lemma 3.6 and Lemma 3.7c are satis-
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fied. There holds the following estimate∥∥f+ − f ελ,h
∥∥
L2(QT )

≤
√
λ ∥ξ∥L2(ωT )

+
ε√
λ

+ C

(
1 +

1

λ

)
h2

(
∥uελ∥Hs(Q1∪Q2)

+ ∥u∗∥Hs(Q1∪Q2)
+ ∥pελ∥Hs(Q1∪Q2)

)
.

Moreover, if λ = O
(
h

4
3 + ε

)
then f ελ,h → f+ in L2 (QT ) as λ → 0 with the

convergence rate O
(
h

2
3 + ε

1
2

)
.
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Conclusion and perspectives

Conclusion

We presented the interface-fitted space-time method for the advection-

diffusion equation with a moving interface. We showed two optimal order

a priori error estimates under some appropriate conditions.

After that, we derived the error and convergence estimates of an inverse

source problem governed by an advection-diffusion problem with moving

subdomains. The regularized state and adjoint were treated by the interface-

fitted space-time method. The regularized source was discretized by using

the variational approach. We established the optimal order error estimates

of the regularized source, state, and adjoint in two norms. Furthermore, we

suggest a priori choice for λ such that f ελ,h → f+ in L2 (QT ) as λ → 0. The

convergence rate was derived in that case.

Future work

In the future, we will extend the presented results to the case of three-

dimensional space. Another direction is to develop a priori error estimates

in which the parameter λ appears on the numerator of the fractions on the
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right-hand sides, as in [35], to get a higher convergence rate with respect to

h in corollary 3.13.
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paraboliques dans des ouverts non cylindriques. Ann. Inst. Fourier

(Grenoble), 7:143–182, 1957.

[25] I. Voulis and A. Reusken. A time dependent Stokes interface problem:

well-posedness and space-time finite element discretization. ESAIM:

Math. Model. Numer. Anal., 52(6):2187–2213, 2018.

[26] A. Ern and J.-L. Guermond. Finite Elements II: Galerkin Approxima-

tion, Elliptic and Mixed PDEs. Springer International Publishing, 2021.

[27] Z. Chen and J. Zou. Finite element methods and their convergence for

elliptic and parabolic interface problems. Numer. Math., 79(2):175–202,

1998.

[28] M. Feistauer. On the finite element approximation of a cascade flow

problem. Numer. Math., 50(6):655–684, 1987.

[29] H. W. Engl, M. Hanke, and A. Neubauer. Regularization of Inverse

Problems. Kluwer Academic Publishers, 1996.

[30] V. K. Ivanov, V. V. Vasin, and V. P. Tanana. Theory of Linear Ill-Posed

Problems and Its Applications. VSP, 2002.

[31] B. Hofmann and R. Plato. On ill-posedness concepts, stable solvability

and saturation. J. Inverse Ill-Posed Probl., 26(2):287–297, 2018.



57

[32] Y. Zhang and B. Hofmann. Two new non-negativity preserving iterative

regularization methods for ill-posed inverse problems. Inverse Probl.

Imaging, 15(2):229–256, 2021.

[33] H. W. Engl, K. Kunisch, and A. Neubauer. Convergence rates for

Tikhonov regularisation of nonlinear ill-posed problems. Inverse Prob-

lems, 5(4):523–540, 1989.

[34] D. Jiang, Y. Liu, and D. Wang. Numerical reconstruction of the spatial

component in the source term of a time-fractional diffusion equation.

Adv. Comput. Math., 46(3):Paper No. 43, 24, 2020.

[35] B. Jin and Z. Zhou. Error analysis of finite element approximations of

diffusion coefficient identification for elliptic and parabolic problems.

SIAM J. Numer. Anal., 59(1):119–142, 2021.


	Declaration
	Acknowledgements
	Table of Contents
	List of Figures
	Introduction
	Background
	Functional spaces
	Sobolev spaces
	Anisotropic Sobolev spaces

	Bounded linear operators
	Weak convergence in Banach spaces
	Differentiability in Banach spaces


	An advection-diffusion equation with a moving interface
	Variational formulation
	Finite element discretization
	Interface-fitted space-time method
	Auxiliary results
	A priori error estimates


	An inverse source problem for the advection-diffusion equation with a moving interface
	The ill-posedness of the problem
	Tikhonov regularization
	Finite element discretization
	The discrete regularized problem
	Error and convergence estimates


	Conclusion and perspectives
	Bibliography


 
 
    
   HistoryItem_V1
   PageSizes
        
     Range: From page 1 to page 1069
     Size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
     Action: Make all pages the same size
     Scale: Scale width and height separately
     Rotate: Counterclockwise if needed
      

        
     D:20241125103948
      

        
     AllSame
     0
            
       D:20241125103846
       841.8898
       a4
       Blank
       595.2756
          

     Tall
     1
     0
     928
     244
    
     qi4alphabase[QI 4.0/QHI 4.0 alpha]
     CW
     Separate
     0.9900
            
                
         1
         SubDoc
         1069
              

       CurrentAVDoc
          

     Custom
      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0i
     Quite Imposing Plus 4
     1
      

        
     0
     70
     69
     70
      

   1
  

 HistoryList_V1
 qi2base



