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Introduction

The arithmetic of number fields or local fields are related to the field’s Galois extensions
through Class Field Theory. The theory for abelian extensions was established by Kronecker,
Weber, Hilbert, Takagi, Artin, and others approximately between 1850 and 1927. With the
work of Langlands, nonabelian extensions only saw significant advancement for the first time
roughly 25 years ago. The present thesis is motivated by [1] and mainly focus on results on
local fields.
This thesis is divided into three chapters:

1. Chapter 1 is an introduction to the classical theory of cohomology of groups and Tate
cohomology. We present the notion of cup-product, a family of bi-additive pairings
Hr

T
(G,M)⇥Hs

T
(G,N) ! Hr+s

T
(G,M ⌦N). In this chapter, We also present two impor-

tant results: the Hilbert’s theorem (also known as Satz 90) and the Tate’s theorem. Main
references of this chapter are [2], [3] and [4].

2. The main focus of Chapter 2 is the construction of the Local Artin map. We also present
the Local Reciprocity Law theorem. Main references of this chapter are [5] and [6].

3. Chapter 3 is devoted to Lubin-Tate theory. We give a summary of Lubin and Tate’s works
on Local Class Field Theory, namely the construction of the Lubin-Tate group laws, the
Local Kronecker-Weber theorem and the Existence Theorem. This chapter is based on
[7] and [8].

The literature on class field theory is fairly large. But, for the reader’s convenience, we
suggest two additional references: [9] for basic notions on algebraic number theory and [10] for
basic notions and results on local fields.
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Chapter 1

Cohomology of groups

1.1 Introduction of the first chapter

In this chapter, we will introduce the theory of cohomology of groups. Throughout this chapter,
unless otherwise stated, we consider an abstract group G. The letter G0 denotes a subgroup of
G.

In particular, at the beginning of this chapter, we will first introduce the notion of a G-
module, a module structure on some abelian group A which is similar to the class of left
ZG-modules. In this context, we can form a category of G-modules that possesses all the
characteristics common to ring modules (for example, it has enough projectives and injectives).
Thus, by means of G-modules, we can also build some structure of G-cohomology (Hm(G,�))
and G-homology (Hm(G,�)) as usual. However, the main focus of this paper is on the zeroth,
first, and second cohomology groups.

Once we understand the basic notions of G-cohomology and G-homology, we would need to
explore their relationships and how they interact with each other. For any (sometimes required
normal) subgroup G0 of G, a G-module A also has a G0-module structure. Therefore, the
cohomology groups Hm(G,A) and Hm(G0, A) share some similar structure. In particular, there
are some special homomorphisms that illustrate this relation, such as

Res : Hm(G,A) ! Hm(G0, A), Cor : Hm(G0, A) ! Hm(G,A)

and
Inf : Hm(G/G0, AG

0
) ! Hm(G,A)

In the middle of this chapter, the notion of Tate cohomology will be introduced. Further-
more, when we examine the structures of G-cohomology and G-homology groups, we will notice
their similarities, but they seem too discrete to be connected. This is where we introduce John
Tate’s work on uniting these two concepts. By applying the snake lemma and the technique
called dimensional shifting, we can connect all cohomology and homology groups in one long
exact sequence

· · · ! Hm

T
(G,A0) ! Hm

T
(G,A) ! Hm

T
(G,A00)

��! Hm+1
T

(G,A0) ! . . . , m 2 Z

where Hm

T
(G,�) denotes the m-th Tate cohomology group, which generalizes the notion of

usual G-cohomology.
The goal of all the concepts about group cohomology is to support the theory of class field

theory on local fields. By the end of this chapter, we can view G as a Galois group of a finite
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Galois extension E/K of a local fieldK. The Tate Theorem will help us understand the relation
of the Tate cohomology of a finite group. In particular, if G and its G-module C satisfy some
special conditions (which will be explored further in the next chapter as the Galois group),
then essentially we have

Hm

T
(G,Z) ⇠= Hm+2(G,C)

which corresponds to the cup-product (another notion that will be introduced in this chapter
as well) with the selected element � 2 H2(G,C). It is, technically, a restriction of the map

^: H2(G,C)⇥Hm(G,Z) ! Hm+2(G,C)

on {�}⇥Hm(G,Z).

1.2 Cohomology of groups

We present here the classical construction of cohomology of groups as derived functors.

1.2.1 The category of G�modules

Let us first define the objects of the category of G�modules.

Definition 1.2.1 (G�modules)

A G�module is an abelian group A (noted additively), with a map

G⇥ A ! A : (g, a) 7! ga

so that for every elements g, g1, g2 2 G and a, a1, a2 2 A, we have

(i) g(a1 + a2) = ga1 + ga2;

(ii) (g1g2)(a) = g1(g2a), 1a = a.

Note that, a G�module is an abelian group A together with a group homomorphism G !
Aut(A), where Aut(A) is the group of group automophisms of A.

Example 1.2.2

a. Every abelian group A can be considered as a G�module by ga = a for all g 2 G and a 2 A.
From now, we call this action trivial.

b. Let A be the set of binary quadratic forms and let G = SL2(Z) be the group of 2 by 2
matrices with integer coe�cients of determinant 1. Define, for f(x, y) = ax2 + bxy + cy2

and g =

✓
↵ �
� �

◆
,

(g · f)(x, y) = f((x, y)gT ) = f(↵x+ �y, �x+ �y),

where gT denotes the transpose of g. We can easily check that this formula defines an action
of G on M . Then A, with the above action, becomes a G�module.

c. Let E/K be a Galois extension of fields with Galois group G = Gal(E/K). Then (E,+)
and (E⇥,⇥) are G�modules with the natural Galois actions.
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We now introduce the morphisms in the category of G�modules.

Definition 1.2.3 (G�homomorphisms)

Let A,B be two G�modules. A homomorphism of G�modules (or a G�homomorphism) from
A to B is a group homomorphism which is compatible with the G�actions; in other words, a
map ↵ : M ! N satifies

(i) ↵(a1 + a2) = ↵(a1) + ↵(a2) for all a1, a2 2 A;

(ii) ↵(ga) = g(↵(a)) for all g 2 G, a 2 A.

We shall denote the set of G�homomorphisms from A to B by HomG(A,B).

The G�modules together with G�homomorphisms form a category, denoted by ModG.
Moreover, routine calculations show that it’s an abelian category. This fact also follows from
the classical interpretations of the category of G�modules as the category of modules over its
group rings that we recall below.

We define ZG to be the free abelian group over G, that is

ZG := {
X

i

nigi : ni 2 Z; gi 2 G;ni = 0 for all but finitely many i}.

We then define the multiplication on ZG by the formula:
 
X

i

nigi

! 
X

j

n0
j
g0
j

!
=
X

i,j

nin
0

j
(gig

0

j
).

The abelian group ZG equipped with this multiplication is a ring.
Furthermore, anyG�module can be identified with a left ZG�module and anyG�homomorphism

can be identified with a morphism of ZG�modules. Thus, the category of modules over the
ring ZG can be identified with the category ModG of G�modules. Recall that the category of
modules over a fixed ring is an abelian categories with enough injectives and enough projectives.
In particular, ModG is an abelian category which has enough projectives and injectives.

Remark 1.2.4 (The G�module Hom(A,B))

Let A and B be G�modules, the set Hom(A,B) of abelian group homomorphisms is again
an abelian group. We can turns Hom(A,B) into a G�module by defining the action of G as
follows: for any ' 2 Hom(A,B) and a 2 A,

(g')(a) = g('(g�1a)).

1.2.2 Induction and induced modules

Note that every G�module has a natural G0�module structure defined by restriction. Similarly,
any G�homorphism between two G�modules is naturally an G0�homomorphism. It follows
that the restriction of the action of G to that of G0 is a functor, called restriction from G to
G0, denoted by ResG

G0 from the category ModG to the category Mod0
G
. It is evident that ResG

G0

is an additive, exact functor.
Now, we introduce anathor functor, which goes in the opposite direction.
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Definition 1.2.5 (Induced modules)

Let A be a G0�module A. We denote by IndG

G0(A) the set of maps ' : G ! A such that

'(g0g) = g0'(g) for all g0 2 G and g 2 G. We equip IndG

G0(A) with the regular right action of
G: for all g 2 G and ' 2 IndG

G0(A), we define the element g' 2 IndG

G0(A) by the formula:

(g')(x) = '(xg)

for all x 2 G. Eventually, IndG

G0(A) turns into a G�module with structures

('+ '0)(x) = '(x) + '0(x) and (g')(x) = '(xg)

. The set IndG

G0(A), which is an abelian group with the natural addition law, becomes a
G�module.

Remark 1.2.6 (Induced homomorphisms)

We also note that a G0�homomorphism ↵ : A ! A0 induces a G�homomorphism

' 7! ↵ � ' : IndG

G0(A) ! IndG

G0(A0).

Let us check that IndG

G0 : ModG0 ! ModG is a functor:

(i) On objects, IndG

G0 : A 7! IndG

G0(A), sends a G0�module A to IndG

G0(A), a G�module.

(ii) On morphisms, IndG

G0 : (↵ : A ! A0) 7! (' 7! ↵ � ' : IndG

G0(A) ! IndG

G0(A0)). Therefore,

IndG

G0 : idA 7! (' 7! idA �' : IndG

G0(A) ! IndG

G0(A)) ⌘ idIndG
G0 (A)

and for G0�homomorphisms f : A ! B and g : B ! C

IndG

G0 : (g � f : A ! C) 7! (' 7! (g � f) � ' ⌘ ' 7! g � (f � ') : IndG

G0(A) ! IndG

G0(C))

which is IndG

G0(g) � IndG

G0(f)

Moreover, the functor IndG

G0 is clearly additive.
The functors ResG

G0 and IndG

G0 are actually adjoint, as shown in the next lemma.

Lemma 1.2.7

(a) For any G0�module B and G�module A, we have a natural abelian group isomorphism

HomG(A, Ind
G

G0(B)) ⇠= HomG0(A,B),

where on the right hand side, for simplicity, we denote A in stead of ResG
G0(A) the module

A, viewed as a G0�module.

(b) The functor
IndG

G0 : ModG0 ! ModG

is exact.
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Proof:

(a) For a G�homomorphism ↵ : A ! IndG

G0(B), we construct a map � : A ! B by setting

�(a) = ↵(a)(1G).

Hence, for every g 2 G,

�(ga) = (↵(ga))(1G) = (g(↵(a)))(1G) = ↵(a)(g).

Since ↵(a) 2 IndG

G0(B), for g 2 G0, ↵(a)(g) = g(↵(a)(1G)) = g(�(a)). Thus, � is a
G0�homomorphism from A ! B. The map ↵ 7! � is obviously a group homomorphism.
Conversely, given a G0�homomorphism � : A ! B, we define ↵ to be the map A !
IndG

G0(A) such that ↵(a)(g) = �(ga). Then ↵ is a G homomorphism. We can check that
the mappings ↵ 7! � and � 7! ↵ are mutually inverse, thus they are isomorphisms. Note
that the constructions of ↵ and � are natural.

(b) Now we will prove the exactness of IndG

G0 . Consider a G0�exact sequence

0 ! A
f�! B

g�! C ! 0.

We have to show that

0 ! IndG

G0(A)
IndG

G0 (f)�����! IndG

G0(B)
IndG

G0 (g)�����! IndG

G0(C) ! 0

is an G�exact sequence.

(i) The exactness at IndG

G0(A) is obvious: since f is injective, it’s evident that the map
IndG

G0(f) : ' 7! f � ' is also injective.

(ii) Exactness at IndG

G0(B).

Ker IndG

G0(g) = {' 2 IndG

G0(B) : g � ' ⌘ 0}
= {' 2 IndG

G0(B) : g('(x)) = 0C 8x 2 G}
= {' 2 IndG

G0(B) : '(x) 2 Ker(g) 8x 2 G}
= {' 2 IndG

G0(B) : '(x) 2 Im(f) 8x 2 G}
= {' 2 IndG

G0(B) : '(x) = f(a) for some a 2 A, 8x 2 G}.

Now for such ', we fix a ax 2 A such that '(x) = f(ax) we define '0 as '0(x) = ax
for every x 2 G. Hence, for all x0 2 G0 and x 2 G

f(ag0x) = '(g0x) = g0'(x) = g0f(ax) = f(g0ax).

This implies '0(g0hx) = ag0x = g0ax = g0'0(x) since f is injective. Thus, '0(x) 2
IndG

G0(A) and ' = f � '0. In other words, ' 2 Im IndG

G0(f) or Ker IndG

G0(g) ⇢
Im IndG

G0(f). The proof for the inclusion Ker IndG

G0(g) � Im IndG

G0(f) is similar.

(iii) Exactness at IndG

G0(C). Let G = [s2SG0s where S is a set of representatives of the
G0� right cosets. Take any ' 2 IndG

G0(C). For every s 2 S, we choose an element
n(s) 2 B that maps to '(s) 2 C and define '0(g0s) = g0n(s). We can check that
'0 2 IndG

G0(B) and maps to '.



7

⇤

One interesting feature of the induction functor lies in the following lemma.

Lemma 1.2.8

Let G be a group and a subgroup G0 of finite index in G. The functor IndG

G0 : ModG0 ! ModG

preserves injectives.

Proof: Let B be an injective G0�module. Then the functor HomG0(�, B) from ModG0 to
Ab (the category of abelian groups) is exact. By Lemma 1.2.7, we have a natural isomor-
phism between the functors HomG(�, IndG

G0(B)) and HomG0(�, B). Therefore the functor
HomG(�, IndG

G0(B)) from ModG to Ab is also exact. Hence IndG

G0(B) is an injective G�module
and therefore IndG

G0 preserves injectives. ⇤

When G0 = {1G}, an G0�module is simply an abelian group. In this scenario, we use the
notation IndG instead of IndG

G0 . Therefore, we get the following homomorphisms of abelian
groups

IndG(A0) = {' : G ! A0} = Hom(ZG,A0).

Definition 1.2.9 (Induced G�modules)

A G�module A is deemed induced if it is isomorphic to IndG(A0) for a certain abelian group
A0.

Remark 1.2.10 (Induced modules of finite groups)

Let’s consider the case when G is a finite group. Recall that every abelian group has a natural
Z�module structure.

(a) A G�module A is induced i↵ there exists an abelian group A0 ⇢ A so that

A =
M

g2G

gA0,

whereby there is an G�isomorphism

' 7!
X

g2G

g ⌦ '(g�1) : IndG(A0) ! ZG⌦Z A0

Where ZG⌦Z A0 is a G�module by the structure g(z ⌦ a) = gz ⌦ a.

(b) Let G0 be a subgroup of G. An induced G�module, restricted to G0, is also an induced
G0�module.

(c) For a G�module A, if we refers to A0 as A, considered as an abelian group, then

⇡ : IndG(A0) ! A, ' 7!
X

g2G

g'(g�1)

is a surjective G�homomorphism. It corresponds to the map

ZG⌦ A0 ! A, (
X

ngg)⌦ a 7!
X

ngga.
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Remark 1.2.11 (Tensor products of G�modules)

For two G�modules A and B, the operation

g(a⌦ b) = (ga)⌦ (gb)

defines A⌦ZB as a G�module. If A0 refers to A as an abelian group then ZG⌦ZA = ZG⌦ZA0

as abelian groups but not as G�modules. However,

g ⌦ a 7! g ⌦ ga : ZG⌦Z A0

⇠=�! ZG⌦Z A

is a G�isomorphism.

1.2.3 The cohomology Hm(G,�)

For any G�module A, we define its G� fixed elements (or G�invariants)

AG = {a 2 A : ga = a; 8g 2 G}.

It is obvious thatAG is an abelian subgroup ofA. Note that if f : A ! B is aG�homomorphism
then f sends any G�fixed element of A to a G�fixed element of B, thus induces a morphism of
abelian groups: AG ! BG. In particular, the previous discussion show that (�)G : ModG ! Ab
is a functor.

Lemma 1.2.12

The functor (�)G : ModG ! Ab is isomorphic to the functor HomG(Z,�). As a consequence,
it is a left exact functor.

Proof: The functor HomG(Z,�) : ModG ! Ab corresponds to the functor HomZG(Z,�) :
ZG �Mod ! Ab which is a well-known left exact functor. Thus, we only need to prove that
(�)G ⇠= HomG(Z,�). Consider the natural transformation

µ : µA(A
G) : AG ! HomG(Z, A), a 7! (1 7! a),

each µA is an isomorphism AG ! HomG(Z, A). This implies the two functors are isomorphic.
⇤

Definition 1.2.13 (The cohomology groups)

Let A be G�module. The functor (�)G : ModG ! Ab is left exact. Moreover, the category
ModG has enough injectives. So it has right derived functors that we recall the constructions
below. Let’s choose an injective resolution (In) of A:

0 ! A ! I0
d
0

�! I1
d
1

�! I2
d
2

�! . . .

By applying the functor (�)G, we get the complex (�)G(In) of abelian groups:

0
d
�1

��! (I0)G
d
0

�! (I1)G ! . . .
d
r�1

��! (Ir)G
d
r

�! (Ir+1)G ! . . .

For a non negative integer m, we define the mth cohomology group of G with coe�cients in A
as

Hm(G,A) :=
Ker(dm)

Im(dm�1)
.

The abelian groups Hm(G,A), m = 0, 1, . . . , do not depend on the choice of (In).
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Remark 1.2.14

1. We have H0(G,A) = AG. Indeed, since (�)G is left exact,

0 ! AG ! (I0)G
d
0

�! (I1)G

is exact, hence H0(G,A) = Ker d0

Im d�1 = Ker d0 = AG.

2. Hm(G, I) = 0 for all m > 0 if I is injective. This fact follows from the fact that for such
a G�module, we always have a simple injective resolution

0 ! I ! I ! 0 ! . . .

3. Consider two injective resolutions of G�module A ! (In) and B ! (Jn). Any G�hormomorphism
↵ : A ! B extends to a map of complexes:

A (In)

B (Jn)

↵ ↵
?

and the homomorphisms between two cohomology groups:

Hm(↵?) : Hm(In) ! Hm(Jn)

are not dependent of the way we choose of ↵?. Moreover, there are functors A !
Hm(G,A) : ModG ! Ab, called the right derived functors of (�)G.

4. Every G�exact sequence:
0 ! A ! A0 ! A00 ! 0

induces a long exact sequence of abelian groups

0 ! H0(G,A0) ! · · · ! Hm(G,A) ! Hm(G,A00)
�
m

�! Hm+1(G,A0) ! . . .

As we mentioned before, for a G�module A

HomG(Z, A) ⇠= AG.

Lemma 1.2.15 (Shapiro’s)

If G0  G and B be a G0�module, then we get natural homomorphisms

Hm(G, IndG

G0(B)) ⇠= Hm(G0, B)

for every m � 0.
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Proof: In the case m = 0, the isomorphism is the composite:

BG
0 ⇠= HomG0(Z, B) ⇠= HomG(Z, IndG

G0(B)) ⇠= IndG

G0(B)G,

where the second isomorphism is given by Lemma 1.2.7. Recall that the functor IndG

G0 :
ModG0 ! ModG is exact and preserves injectives. Consider an injective resolution B ! (In) of
B. We apply the functor IndG

G0 to get an injective resolution IndG

G0(B) ! IndG

G0(In). Hence,

Hm(G, IndG

G0(B)) = Hm((IndG

G0(In))G) ⇠= Hm((In)G
0
) = Hm(G0, B).

⇤
This leads to an obvious consequence:

Corollary 1.2.16

Let A be an induced G�module i.e. A = IndG(A0) then Hm(G,A) = 0 for all m > 0.

Remark 1.2.17

a) Consider the exact sequence of G�module

0 ! A ! C ! B ! 0.

If Hm(G,C) = 0 for every m > 0, then the following exact sequence is formed from the
cohomology sequence .

0 ! AG ! CG ! AG ! H1(G,A) ! 0,

and the isomorphisms:

Hm(G,B)
⇠=�! Hm+1(G,A), m > 0

b) In general, the long exact sequence

0 ! A ! C1 ! · · · ! Cn ! B ! 0

so that Hm(G,Ci) = 0 for every m, i > 0 specifies isomorphisms

Hm(G,B)
⇠=�! Hm+n(G,A), for all m � 1.

We divide the sequence into short, exact sequences in order to demonstrate this.

0 ! A ! C1 ! B1 ! 0,

0 ! B1 ! C2 ! B2 ! 0,

0 ! Bn�1 ! Cn ! B ! 0,

and obtain the isomorphisms

Hm(G,B) ⇠= Hm+1(G,Bn�1) ⇠= Hm+2(G,Bn�2) ⇠= . . .

c) Let

0 ! A
✏�! C0 d

0

�! C1 d
1

�! C2 ! . . .

be an exact sequence so that Hm(G, Jn) = 0 for every n > 0 and every m � 0. Then

Hm(G,A) = Hm((Jn)G).
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1.2.4 The cohomology group by means of cochains

We consider Pm (m � 0) to be the free Z�module with the (m + 1)� tuples (g0, . . . , gm) 2
G⇥G⇥ · · ·⇥G as its basis, within the action of G:

g(g0, . . . , gm) = (gg0, . . . , ggm).

Pm is the free ZG�module with basis {(1, g1, . . . , gm)|gi 2 G} as well. We can define a
G�homomorphism dm : Pm ! Pm�1 By the rule

dm(g0, . . . , gm) =
mX

i=0

(�1)i(g0, . . . ,��gi, . . . , gm),

we define a homomorphism dm : Pm ! Pm�1, where the gi position is omitted. In other words,
(g0, . . . ,��gi, . . . , gm) becomes a m-tuple. Let (Pn) be

· · · ! Pm

dm�! Pm�1 ! · · · ! P0.

Lemma 1.2.18

The sequence defined by · · · ! Pm

dm�! Pm�1 ! · · · ! P0 forms a complex.

Proof: We only need to check that dm�1 � dm = 0. To avoid the confusion, let m = 4 and
(g0, g1, g2, g3, g4) be an element in the basis of P4. By the definition of d4,

d4(g0, g1, g2, g3, g4) = (g1, g2, g3, g4)�(g0, g2, g3, g4)+(g0, g1, g3, g4)�(g0, g1, g2, g4)+(g0, g1, g2, g3)

then d3 � d4(g0, g1, g2, g3, g4) = (g2, g3, g4) � (g1, g3, g4) + (g1, g2, g4) � (g1, g2, g3) + · · · = 0.
For arbitrary r � 0. Note that the coe�cient of (g0, . . . ,��gi, . . . ,��gj, . . . , gm) is (�1)i+1(�1)j +
(�1)j+1(�1)i+1 = 0 (the first coe�cient is from canceling gi first and then gj, the second
coe�cient is from canceling gj first and then gi). ⇤

Lemma 1.2.19

The complex (Pm)
"�! Z ! 0 is exact. Where " : P0 ! Z sends every basis element to 1.

Proof: For a fixed g 2 G, we define km : Pm ! Pm+1 by

km(g0, . . . , gm) = (g, g0, . . . , gm).

We will check that dm+1 � km + km�1 � dm = 1. Hence, if dm(x) = 0, then x = dm+1(km(x)).
Let (g0, g1, . . . , gm) be a given basis element of Pm. We only need to prove that

(dm+1 � km + km�1 � dm)(g0, g1, . . . , gm) = (g0, g1, . . . , gm).

This is just straightforward implied from

(dm+1 � km)(g0, g1, . . . , gm) =
mX

i=�1

(�1)i+1(g�1, g0, . . . ,��gi, . . . , gm)
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where g�1 = g and

(km�1 � dm)(g0, g1, . . . , gm) =
mX

i=0

(�1)i(g, g0, . . . ,��gi, . . . , gm).

⇤

Proposition 1.2.20

For any G�module A,
Hm(G,A) ⇠= Hm(HomG((Pm), A)).

Proof: Note that the category of G�module ModG has enough projectives and injectives.
For a G�module M , the functor Hom(Z,�) and H0(G,�) are the same. Thus, their right
derived functors also agree:

Extm
G
(Z, A) ⇠= Hr(G,A).

Thus, we can choose a projective resolution of Z and define Hm(G,A). ⇤

Remark 1.2.21

1. Any ' 2 Hom(Pm, A) can be viewed the same as ' : Gm+1 ! A and ' is invariant by the
action of G i↵

'(gg0, . . . , ggm) = g('(g0, . . . , gm)).

2. HomG(Pm, A) is the same with C̃r(G,A) of '’s satisfying above conditions, which we may
denote by C̃r(G,A).

3. The homomorphism dm+1 induced the boundary map d̃m : C̃m(G,A) ! C̃m+1(G,A). In
particular,

(d̃m')(g0, . . . , dm1) =
X

(�1)i'(g0, . . . ,��gi, . . . , gm+1).

4. On applying Proposition 1.2.20, we can say that:

Hm(G,A) ⇠=
Ker(d̃m)

Im(d̃m�1)
.

Definition 1.2.22 (Group of inhomogeneous m�cochain of G with value in A)

The group Cm(G,A) consisting of all maps ' : Gm ! A is said to be group of inhomogeneous
m�cochain of G with value in A. We consider G0 = {1G} sao C0(G,A) = A. Define

dm : Cm(G,A) ! Cm+1(G,A).

by

(dm')(g1, . . . , gm+1) = g1'(g2, . . . , gm+1)+
mX

j=1

(�1)j'(g1, . . . , gjgj+1, . . . , gm+1)+(�1)m+1'(g1, . . . , gm).

Let Zm(G,A) = Ker(dm) be the group of m�cocycles and Bm(G,A) = Im(dm�1) be the group
of m�coboundaries.
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Proposition 1.2.23

The following sequence is a complex:

C0(G,A)
d
0

�! C1(G,A)
d
1

�! . . .
d
m�1

���! Cm(G,A)
d
m

�! . . .

Furthermore,

Hm(G,A) ⇠=
Zm(G,A)

Bm(G,A)
.

Proof: For any ' 2 C̃m(G,A), we say

'0(g1, . . . , gm) := '(1, g1, g1g2, . . . , g1 . . . gm).

The map ' 7! '0 : C̃m(G,A) ! Cm(G,A) is a bijection. ⇤

Example 1.2.24 (Crossed homomorphism and normalized 2�cocyle)

1. We say ' : G ! A to be a cross homomorphism if it satisfies

'(�⌧) = �'(⌧) + '(⌧), 8⌧, � 2 G.

2. For every a 2 A, the map � 7! �a � a is a crossed homomorphism and we call it a
principal crossed homomorphism. Hence,

H1(G,A) =
“ G�module of all crossed homomorphism ”

“its submodule of all principal crossed homomorphisms”
.

3. In the case G acts trivially on A, a crossed homomorphism is said to be a homomorphism
G ! A and principal crossed homomorphisms are trivial as well. Therefore,

H1(G,A) ⇠= Hom(G,A).

4. Let A be a G�module. For a 2 A, let 'a : G ! A be the constant map � 7! a. Then

(d1'a)(�, ⌧) = �a� a+ a = �a.

In particular, (d1'a)(1, 1) = a. Hence, every class in H2(G,A) is represented by a
2�cocycle ' with '(1, 1) = 0. Such a 2�cocycle is said to be normalized.

5. Let ' : G ! A be a crossed homomorphism. For every � 2 G:

'(�f ) = �f�1'(�) + · · ·+ �'(�) + '(�).

Thus, if G = h�i with order f then a crossed homomorphism ' is defined by its value
(say a) on � such that:

�f�1a+ · · ·+ �a+ a = 0.

Conversely, if a 2 A satisfies such equation, the map '(�i) = �i�1a + · · · + �a + a
determines a homomorphism ' : G ! A and

' is principal , a = �x� x for some x 2 A.
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6. Let Nm : A ! A, a 7!
P

�2G
�a and � � 1 : A ! A,m 7! �a� a. When G is cyclic with

|G| < 1, the map ' 7! '(�) induces

H1(G,A)
⇠=�! Ker(NmG)

(� � 1)a
.

7. Consider an G�exact sequence: 0 ! A ! B ! C ! 0. The boundary map

�r : Hm(G,C) ! Hm+1(G,A)

can be described as follows: Take any � 2 Hm(G,C) be represented by the m�cochain
' : Gm ! C; since B ! C ! 0, there is an m�cochain '̃ : Gm ! B lifting '; d'̃ (which
takes value in A) is the cocycle representing �m�

1.2.5 The cohomology group of Galois extension field E and E⇥

Let E/K be the Galois extension such that G = Gal(E/K) is finite. Both E (under addition)
and E⇥ are G�modules.

Lemma 1.2.25 (Dedekind)

Let E be a field, G0 be a group and f1, . . . , fn be distinct homomorphisms G0 ! L⇥. Then they
are E�linearly independent.

Proof: Let n � 2 be the minimal number such that there exists n distinct E�linearly dependent
homomorphisms. Suppose

↵1f1(h) + · · ·+ ↵nfn(h) = 0 8h 2 G0

for ↵n 6= 0. Because f1 and fn are distinct, there exist h1 2 G0 such that f1(h1) 6= fn(h1).
Hence,

0 = ↵1f1(h1h) + · · ·+ ↵nfn(h1h) = ↵1f1(h1)f1(h) + . . .↵nfn(h1)fn(h).

However,
↵1f1(h1)f1(h) + · · ·+ ↵nf1(h1)fn(h) = 0.

Therefore, ↵2(f1(h1) � f2(h1))f2(h) + . . .↵n(f1(h1) � fn(h1))fn(h) = 0 for all h 2 G0 where
↵n(f1(h1) � fn(h1)) 6= 0. This means f2, . . . , fn are E�linearly dependent, a contradiction to
the minimality of n. ⌅
Theorem 1.2.26 (Hilbert’s 90)

H1(G,E⇥) = 0.

Proof: Recall that:

H1(G,E⇥) =
{crossed homomorphisms G ! L⇥}
{principal crossed homomorphisms} .

we need to show that every crossed homomorphism is principal. Let ' : G ! E⇥ be a crossed
homomorphism:

'(�⌧) = �'(⌧).'(�), 8�, ⌧ 2 G.
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By Lemma 1.2.25, there exists a 2 E⇥ so that

0 6=
X

�2G

'(�).�a = b.

Then
⌧b =

X

�2G

⌧'(�).⌧�a =
X

�2G

'�1(⌧)'(⌧�).⌧�a = '(⌧)�1b.

Hence,
⌧(b�1)

b�1
=

b

⌧b
= '(⌧).

⇤

Corollary 1.2.27

In the case E/K is a cyclic extension, G = Gal(E/K) generated by �. If NmE/K a = 1 then
a = �b

b
for some b.

Proof: This is implied directly by the fact

H1(G,E⇥) = Ker(NmG)/(� � 1)E⇥.

⇤

Example 1.2.28

Let K = Q and E = Q(
p
�7). The Galois group G = Gal(E/Q) is cyclic and moreover

|G| = 2, and the non-trivial automorphism � is given by:

�(
p
�7) = �

p
�7.

Since G = Gal(E/Q) is cyclic, the action of the automorphism � on E is:

�(p+ q
p
�7) = p� q

p
�7 for p, q 2 Q.

By Hilbert’s 90 theorem, for x 2 E⇥, we have:

x� �(x) 2 Q⇥.
Let e = p+ q

p
�7 2 E⇥, where p, q 2 Q. Then:

e� �(e) = (p+ q
p
�7)� (p� q

p
�7) = 2q

p
�7.

By Hilbert’s 90 theorem, we know that 2q
p
�7 2 Q⇥. Since

p
�7 is irrational, this implies

that q = 0. Thus, e = p for some p 2 Q.
Therefore, the only units in E = Q(

p
�7) that are fixed by G are the rational numbers

x = ±1. Thus,

O⇥
E
= {±1}.

This is a simple example of how Hilbert’s 90 theorem can be used to calculate the group of
units in a finite Galois extension of Q.

Proposition 1.2.29

Let E/K be Galois and finite, G = Gal(E/K). Then Hm(G,E) = 0 for every m > 0
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Proof: For a normal basis (�↵)�2G (↵ 2 E), let
X

�2G

a�� 7!
X

�2G

a��↵ : K[G] ! E

be an isomorphism ofG�module. K[G] = IndG

1G
K, by Lemma 1.2.15,Hm(G,E) ⇠= Hm(1G, K) =

0 for all m > 0. ⇤

1.2.6 Group cohomology operations and their functorial properties

Definition 1.2.30 (Product of G�modules)

Let A =
Q

Ai be a product of G�modules, we can make A turns into a G�module by the
following action (soon we will call it diagonal):

�(. . . , ai, . . . ) = (. . . , �ai, . . . ).

Proposition 1.2.31 (The cohomology of products)

For any G�module Ai,

Hm(G,
Y

Ai) =
Y

Hm(G,Ai).

Proof: Let I =
Q

Ii be a product of injectives G�modules then I is injective itself, since

HomG(�, I) ⇠=
Y

HomG(�, Ii).

is exact. Given an injective resolution of Ai Ai ! Ii. Afterwards,
Q

Ai !
Q

Ii is an injective
resolution of

Q
Ai. And then

Hm(G,
Y

Ai) = Hm((
Y

Ii)
G) = Hm(

Y
(Ii)

G) =
Y

Hm(IG
i
) =

Y
Hm(G,Ai).

⇤

Definition 1.2.32 (Compatible homomorphisms)

Let A and A0 represent G and H� modules, respectively. We call the homomorphism ↵ : G ! H
and � : A ! A0 compatible when

�(↵(g)a) = g(�(a)).

It also induces a homomorphism

Hm(G,A) ! Hm(H,A0),

by complexes homomorphisms: Cm(G,A) ! Cm(H,A0) : ' 7! � � ' � ↵m.

Remark 1.2.33 (Restriction, inflation homomorphisms and dimension shifting)

1. For any G0�module A with G0  G, the homomorphism

IndG

G0(A) ! A : ' 7! '(1G)

is compatible within the map G0 ,! G. Moreover, its induced homomorphism

Hm(G, IndG

G0(M)) ! Hm(G0, A)

is the isomorphism appeared in Lemma 1.2.15.
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2. Let ↵ : G0 ,! G and � = idA : A ! A. Thus, ↵ and � are compatible, we get the
restriction homomorphisms:

Res : Hm(G,A) ! Hm(G0, A).

3. When G0 is a normal subgroup, ↵ : G ! G/G0 and � : AG
0
,! A. Thus, ↵ and � are

compatible, we get the inflation homomorphisms:

Inf : Hm(G/G0, AG
0
) ! Hm(G,A)

4. Given g0 2 G and ↵ : G ! G, � 7! g0�g
�1
0 and � : A ! A, a 7! g�10 a are compatible. We

can check that
Hm(G,A) ! Hm(G,A).

is identity, for every m � 0.

5. (Dimension shifting) Given g0 2 G then ↵ : G ! G, � 7! g0�g
�1
0 and � : A ! A, a 7!

g�10 a are compatible. Eventually, for all m > 0

Hm(G,A) ! Hm(G,A)

are identity. For m = 0, the homomorphism becomes

a 7! g�1a : AG ! AG

is an indentity as well. Given m > 0 and suppose that the statement holds till m� 1. Let
B = IndG(A0), the short exact sequence

0 ! A ! B ! C ! 0

gives us a commutative diagram:

Hm�1(G,B) Hm�1(G,C) Hm(G,A) 0

Hm�1(G,B) Hm�1(G,C) Hm(G,A) 0.

The 0s at the right-hand side were obtained by the fact N is an induced module. The pair
(↵, �) defines the vertical maps. By induction, the map Hm�1(G,C) ! Hm�1(G,C) is
an identity. It suggests that the third vertical map is an identity as well.

6. When [G : G0] is finite and G = [s2SsG0. Given a G�module A. For every a 2 AG
0
,

NmG/G0 a :=
X

s2S

sa

is fixed by G and independent of the choice of S. Thus the map NmG/G0 : AG
0 ! AG is a

homomorphism. This extends to a corestriction:

Cor : Hm(G0, A) ! Hm(G,A),
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for every m since: for every G�module A, there is a G�homomorphism

IndG

H
A ! A : ' 7!

X

s2S

s'(s�1),

the mapping on cohomology, when combined with the isomorphism noted in Lemma 1.2.15,
results in

Cor : Hm(G0, A)
⇠=�! Hm(G, IndG

G0 A) ! Hm(G,A)

Proposition 1.2.34

For a subgroup G0 of finite index in G. The composite homomorphism:

Cor �Res : Hm(G,A) :! Hm(G,A)

is a multiplication by [G : G0] map.

Proof: By the definition, the map Cor �Res is a cohomology map given by the composite of

A ! IndG

G0(A) ! A, a 7! 'a 7!
X

s2S

s'a(s
�1) =

X

s2S

a = [G : G0]a.

⇤

Corollary 1.2.35

Let n := |G| then nHm(G,A) = 0 for every m > 0.

Proof: For all m > 0, Hm(1, A) = 0. The map Cor �Res is the multiplication by [G : G0]
map, by

Hm(G,A)
Res��! Hm(1, A)

Cor��! Hm(G,A),

we get nHm(G,A) = 0. ⇤

Corollary 1.2.36

If G is finite, let Gp be its Sylow p�subgroup then for every G�module A, the restriction:

Res : Hm(G,A) ! Hm(Gp, A)

on the p�primary component of Hm(Gp, A), is injective.

Proof: Since p does not divide [G : G0], the composite

Cor �Res : Hm(G,A) ! Hm(Gp, A) ! Hm(G,A)

is the multiplication by [G : G0]. Hence, it is injective on the p�primary component of
Hm(G,A). ⇤

Remark 1.2.37

When G0 is normal.
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1. The restriction of an m�cocycle is the restriction of the map f : Gm ! A to a map
Res(f) : (G0)m ! A given by Res(f)(h) : f(h) for all h 2 (G0)m.

2. The inflation of an m�cocycle is just Inf(f)(g) = f(g) for all g 2 Gm and its image
g 2 (G/G0)m.

Proposition 1.2.38 (The inflation-restriction exact sequence)

Consider G0 E G and a G�module A. For a fixed m > 0, if H i(G0, A) = 0 for every 0 < i < m
then we get the following exact sequence:

0 ! Hm(G/G0, AG
0
)

Inf�! Hm(G,A)
Res��! Hm(G0, A).

Proof: For m = 1, the injectivity of inflation on cocycles is obvious from Remark 1.2.37. Let
f be a cocycle in Z1(G/G0, AG

0
). If f(g) = (g�1)a for some a 2 A and all g 2 G, then a 2 AG

0

as f(1) = 0. Thus, Inf is injective and also Res � Inf(f)(h) = f(h) = 0 for all h 2 G0.
Let f 0 2 Z1(G,A) and suppose Res(f 0) = 0. Then there exists a 2 A such that f 0(h) = (h�1)a
for all h 2 G0. Define k 2 Z1(G,A) by k(g) = f 0(g) � (g � 1)a, then k(h) = 0 for all h 2 G0.
We have:

k(gh) = gk(h) + k(h) = k(g),

for all g 2 G and h 2 G0, so k factors through G/G0. Also,

k(g) = k(gh) = k(gg�1hg) = k(hg) = hk(g) + k(h) = hk(g),

so k has image in AG
0
. Therefore, k is the inflation of a cocycle in Z1(G/G0, AG

0
). This prove

the exactness.
For m > 1, suppose the statement is true for m� 1. Consider the exact sequence:

0 ! A ! B ! C ! 0,

where B := IndG(A0) and C := B/A. Then

H i(G0, A) ⇠= H i+1(G0, A), i > 0

,soHi(G0, C) = 0 for all 0 < i  m� 1. By induction, we get the exact sequence

0 ! Hm�1(G/G0, CG
0
)

Inf�! Hm�1(G,C)
Res��! Hm�1(G0, C),

and it is isomorphic to

0 ! Hm(G/G0, AG
0
)

Inf�! Hm(G,A)
Res��! Hm(G0, A).

⇤

Example 1.2.39

If E ⇢ ⌦ and ⌦/K and E/K is Galois extensions then G0 := Gal(⌦/E) is a normal subgroup
of G := Gal(⌦/K). By the Theorem 1.2.26, H1(G0,⌦⇥) = 0 and then the sequence

0 ! H2(G/G0, E⇥) ! H2(G,⌦⇥) ! H2(G0,⌦⇥)

is exact.
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1.3 Homology of group

1.3.1 The construction of group homology

Definition 1.3.1

For every G�module A, we say

AG := A/{ga� a : g 2 G, a 2 A}

to be the largest quotient of A that G acts on trivially.

Remark 1.3.2

The functor A 7! AG : ModG ! Ab is equivalent to the functor Z ⌦ZG � : ZG �Mod ! Ab.
Hence, it is a right exact functor. Moreover, we can simply define homology group by letting

Hn(G,M) = TorZG
n

(Z,M).

Definition 1.3.3 (The homology group)

Recall that ModG has enough projectives, given a G�module A and consider its projective
resolution:

· · · ! P2
d2�! P1

d1�! P0 ! A ! 0.

This induces a complex

· · · ! (P2)G
d2�! (P1)G

d1�! (P0)G ! 0.

We set

Hm(G,A) =
Ker(dm)

Im(dm+1)
.

Example 1.3.4

1. H0(G,A) = AG because the sequence

(P1)G ! (P0)G ! AG ! 0

is exact, hence

H0(G,A) =
Ker(d0)

Im(d1)
=

(P0)G
Ker((P0)G ! AG)

= AG.

2. Consider a projective G�module P we have Hm(G,P ) = 0 for every m > 0 since we have
a simple projective resolution

· · · ! P ! P ! 0.

3. Consider two projective resolutions of G�modules (Pn) ! A and (Qn) ! A, every ho-
momorphism ↵ : A ! B of G�module extends to a complexes morphism:

(Pn) A

(Qn) B.

↵ ↵
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Hence, we get the homomorphisms

Hm(↵) : Hm((Pn)) ! Hm((Qn))

do not depend on the chosen ↵.

4. The exact sequence of G�modules

0 ! A0 ! A ! A00 ! 0

induces the long exact sequence

· · · ! Hm(G,A) ! Hm(G,A00) ! Hm�1(G,A0) ! · · · ! H0(G,A00) ! 0.

5. Hm(G,�) : ModG ! Ab is a functor.

1.3.2 Computing the group H1(G,Z)
Definition 1.3.5 (Augmentation ideal)

We define the map

ZG ! Z,
X

ngg 7!
X

ng

as the augmentation map and the augmentation ideal IG is its kernel.

Remark 1.3.6

Obviusly IG is a free Z�submodule of ZG with basis {g � 1 : g 2 G}, thus

A/IGA = AG = H0(G,A).

Lemma 1.3.7

H1(G,Z) ⇠= IG/I
2
G
.

Proof: By Remark 1.3.6, H0(G, IG) = IG/I2G, H0(G,ZG) = ZG/IGZG,H0(G,Z) = Z/IGZ = Z.
Moreover, H1(G,ZG) = 0 because ZG is a free (hence projective) G�module. Thus the exact
sequence

0 ! IG ! ZG ! Z ! 0

induces a homology groups exact sequence

0 ! H1(G,Z) ! IG/I
2
G
! ZG/IGZG = ZG/IG = Z ! Z ! 0.

The map IG/I2G ! ZG/IG is induced by the map IG ,! ZG hence its a zero map. Therefore,

H1(G,Z) ⇠= IG/I
2
G
.

⌅
Lemma 1.3.8

Let Gab := G/[G,G]. The mapping g 7! (g � 1) + I2
G

: G ! IG/I2G allows us to make an
isomorphism

Gab ! IG/I
2
G
.
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Proof: The mapping g 7! (g � 1) + I2
G
: G ! IG/I2G is a group homomorphism since

g1g2 � 1 = (g1 � 1)(g2 � 1) + (g1 � 1) + (g2 � 1) ⌘ (g1 � 1) + (g2 � 1) mod I2
G
.

Because G/Ker(g 7! (g� 1) + I2
G
) is isomorphic to the abelian group IG/I2G, there is a natural

homomorphism

Gab := G/[G,G] ! G/Ker(g 7! (g � 1) + I2
G
)
⇠=�! IG/I

2
G
.

Consider the inverse mapping
g � 1 7! g : IG ! Gab.

From
(g1 � 1)(g2 � 1) = (g1g2 � 1)� (g1 � 1)� (g2 � 1)

we have (g1 � 1)(g2 � 1) 7! g1g2.g1�1.g2�1 = 1. So this induces a well-define homomorphism
IG/I2G ! Gab.

⌅
Proposition 1.3.9

H1(G,Z) ⇠= Gab.

Proof: This can be proved directly from Lemma 1.3.7 and Lemma 1.3.8. ⇤

1.4 The Tate cohomology

1.4.1 Construction

In this subsection, we consider G to be finite and A as a G�module.

Definition 1.4.1 (The norm map)

We define a map NmG : A ! A as

a 7!
X

g2G

ga,

and call it the norm map.

Remark 1.4.2

We have
NmG(ga) = NmG(a) = g(NmG(a)).

Hence
IGA ⇢ Ker(NmG), Im(NmG) ⇢ AG.

As H0(G,A) = A/IGA and H0(G,A) = AG, that means NmG induces a homomorphism:

NmG : H0(G,A) ! H0(G,A).
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Lemma 1.4.3

Every G�exact sequence of the form

0 ! A0
f�! A ! A00 ! 0

induces a commutative diagram :

H1(G,A00) H0(G,A0) H0(G,A) H0(G,A00) 0

0 H0(G,A0) H0(G,A) H0(G,A00) H1(G,A0).

NmG NmG NmG

Proof: We rewrite H0(G,A) = A/IGA and H0(G,A) = AG, similarly for A0 and A00. We only
need to prove the commutative of the first square, i.e., the diagram

A0/IGA0 A/IGA

A0G AG

NmG NmG

is commutative. The homomorphism

A0/IGA
0 ! A/IGA

NmG���! AG

goes a0 + IGA0 7! a+ IGA 7! NmG(a), and the homomorphism

A0/IGA
0 ! A0G ! AG

goes a0 + IGA0 7! NmG(a0) 7! f(NmG(a0)). However,

f(NmG(a
0)) = f

 
X

g2G

ga0
!

=
X

g2G

gf(a0) =
X

g2G

ga = NmG(a)

hence, the diagram is commutative. ⌅
Definition 1.4.4 (The Tate groups)

The middle part of the diagram in Lemma 1.4.1 induces a long exact sequence due to the snake
lemma:

· · · ! Hm

T
(G,A0) ! Hm

T
(G,A) ! Hm

T
(G,A00)

��! Hm+1
T

(G,A0) ! . . . , m 2 Z

where

Hm

T
(G,A) :=

8
>>><

>>>:

Hm(G,A) m > 0

AG/NmG(A) m = 0

Ker(NmG)/IGM m = �1

H�m�1(G,A) m < �1.

Hm

T
(G,A) is called the m�th Tate cohomology group.

Remark 1.4.5

Almost every result we represented for the groups Hm(G,A) with m � 0 extends naturally to
every m 2 Z, include
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1. The Shapiro lemma for the Tate cohomology groups.

2. The restriction, costriction, inflation homomorphisms:

(a) Res : Hm

T
(G,A) ! Hm

T
(G0, A);

(b) Cor : Hm

T
(G0, A) ! Hm

T
(G,A);

(c) Inf : Hm

T
(G/G0, AG

0
) ! Hm

T
(G,A) (G0 is normal).

3. The homomorphism Res �Cor keeps being the multiplication by [G : G0] map and Hm

T
(G,A)

becomes trivial when multiplying |G|, for every m, i.e. |G|Hr

T
(G,A) = 0.

4. H�2
T

(G,Z) = H1(G,Z) ⇠= Gab.

For the rest of this chapter, we will denote Hr

T
by Hr since every cohomology from now is Tate

cohomology.

Definition 1.4.6 (The Verlagerung map)

Let G =
S
siG0, for g 2 G and index i, there exists gi 2 G0 and sj so that

gsi = sjgi.

The map
g 7!

Y
gi mod [G0, G0] : G ! (G0)ab

is a group homomorphism and it induces the Verlagerung map Ver : Gab ! (G0)ab.

Proposition 1.4.7

1. The homomorphism Res : H�2
T

(G,Z) ! H�2
T

(G0,Z) is equivalent to the Verlagerung map
Gab ! (G0)ab.

2. The homomorphism Cor : H�2
T

(G0,Z) ! H�2
T

(G,Z). represents the map (G0)ab ! Gab.
caused by inclusion G0 ,! G.

Proof:

1. From Proposition 1.3.9 and dimension shifting, we obtain a commutative diagram:

H�2(G0,Z) IG0/I2
G0 (G0)ab

H�2(G,Z) IG/I2G Gab.

⇠=

Cor

⇠=

⇠= ⇠=

Here the second and third down-arrow are (g0� 1) + I2
G0 7! (g0� 1) + I2

G
and g0[G0, G0] 7!

g0[G,G], respectively. This directly implies the correspondence.

2. Consider a diagram:

H�2(G,Z) H�2(G0,Z) H�2(G,Z)

Gab (G0)ab Gab,

Res

⇠=

Cor

⇠= ⇠=

Ver iG0



25

here the second square is commutative and iG0 is just (G0)ab ,! Gab. By Proposition
1.2.34, the map Cor �Res is [G : G0]. id : H�2(G,Z) ! H�2(G,Z). For any g[G,G] 2 Gab

and gsi = sjgi for G =
S
siG0,

iG0 � Ver(g[G,G]) = iG0(
Y

gi[G
0, G0])

= iG0(
Y

sjgis
�1
i
[G0, G0])

=
Y

sjgis
�1
i
[G,G]

=
Y

gi[G,G]

=
Y

s�1
j
gsi[G,G]

= g[G:G0][G,G].

(1.1)

Hence, the big rectangle of the diagram is indeed commutative. Since iG0 is injective, the
first square is also commutative.

⇤

1.4.2 The cohomology of finite cyclic groups

Let Z, Q/Z and Q to be G�modules that the actions of G on them are trivial.

Lemma 1.4.8

When G is finite

1. Hm

T
(G,Q) = 0 for every m;

2. Hm

T
(G,Z) = Z/|G|Z and H1(G,Z) = 0;

3. H2(G,Z) ⇠= Hom(G,Q/Z).

Proof:

1. SinceQ is uniquely divisible, for any integer a 6= 0, the homomorphismHm(a) : Hm

T
(G,Q) !

Hm

T
(G,Q) is an isomorphism since it is multiplication by a. Let a := |G|, the multiplica-

tion by a on Hm(G,A) is an isomorphism and zero. This implies Hm

T
(G,A) = 0.

2. We have ZG = Z and the norm map is mulplication by |G| mapping. Thus Z/|G|Z =
H0

T
(G,Z). In addition, H1(G,Z) = Hom(G,Z) = 0 because Z is torsion-free.

3. The exact cohomology sequence of the exact sequence

0 ! Z ! Q ! Q/Z ! 0

is of the form

H1(G,Q) H1(G,Q/Z) H2(G,Z) H2(G,Q).

0 Hom(G,Q/Z) 0

= ⇠= =
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⌅
Proposition 1.4.9

In the case G is a finite cyclic group and A is a G�module. For all m 2 Z

Hm

T
(G,A) ⇠= Hm+2

T
(G,A),

and the isomorphism depends only on the choice of group generator.

Proof: Suppose G = h�i, the sequence

0 ! Z a 7!a1G����! ZG ��1��! ZG �
i
7!1���! Z ! 0

is exact. Since the groups in the sequence and IG are free Z�modules, when we take tensor
product of the sequence with A, it stays exact. Hence we obtain the following exact sequence
of G�module

0 ! A ! ZG⌦Z A ! ZG⌦Z A ! A ! 0

Recall that ZG⌦ZA ⇠= ZG⌦ZA0 where A0 denotes the abelian group A, thusHm(G,ZG⌦ZA) =
0 for all m. Hence, the sequence induces an isomorphisms

Hm

T
(G,A)

⇠=�! Hm+2
T

(G,A),

for every m. ⇤

Remark 1.4.10

We know that
H2(G,Z) ⇠= Hom(G,Q/Z).

Let � 2 H2(G,Z) corrresponding under the isomorphism to the map G ! Q/Z : � 7! 1/a where
G = h�i. Therefore the homomorphism Hm(G,A) ! Hm+2(G,A) is defined by x 7! x [ �.

Definition 1.4.11 (Herbrand quotient)

In the case G finite and cyclic and A is a G�module. We say the following quotient is the
Herbrand quotient when the groups Hm(G,A) are finite:

h(A) =
#H0

T
(G,A)

#H1
T
(G,A)

.

Lemma 1.4.12

Consider
0 ! H0 ! H1 ! · · · ! Hr ! 0

as a sequence of finite groups. Therefore

#H0#H2 . . .

#H1#H3 . . .
= 1.
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Proof: In the case r = 3, the sequence becomes a short exact sequence, the statement is obvious.
Moreover, it is possible to divide every exact sequence into these exact sequences:

0 ! H0 ! H1 ! C1 ! 0;

0 ! C1 ! H2 ! C2 ! 0;

. . .

0 ! Cr�1 ! Hr�1 ! Hr ! 0;

here Ci = Coker(Hi�1 ! Hi) = Ker(Hi+1 ! Hi+2). From here we can see that

1 =
#H0#C1

#H1
=

#H0#H2

#H1#C2
= . . .

This proves our statement. ⌅
Proposition 1.4.13

Consider an short exact sequence of G�module:

0 ! A0 ! A ! A00 ! 0.

Any Herbrand quotient in h(A0), h(A), h(A00) is defined if any two of the others are. In addition,

h(A) = h(A0)h(A00).

Proof: The long exact sequence can be truncated as follows:

0 ! K ! H0
T
(A0) ! H0

T
(A) ! H0

T
(A00) ! H1

T
(A0) ! H1

T
(A) ! H1

T
(A00) ! K 0 ! 0,

here
K = Coker(H�1

T
(A) ! H�1

T
(A00)) ⇠= Coker(H1

T
(A) ! H1

T
(A00)) = K 0.

This (with Lemma 1.4.12) proves the proposition. ⇤

Proposition 1.4.14

We have h(A) = 1 when A is finite.

Proof: By directly checking, we can see that the sequence

0 ! AG ! A
⇥(g�1)����! A ! AG ! 0

is exact, where G = hgi, and then

0 ! H�1
T

(A) ! AG

NmG���! AG ! H0
T
(A) ! 0

is also an exact sequence. From the first sequence we can see that |AG| = |AG| and from the
second that |H�1

T
(A)| = |H0

T
(A)|. This implies h(A) = 1. ⇤

Corollary 1.4.15

For every G�homomorphism ↵ : A ! B such that Ker↵ and Coker↵ are finite. If either h(A)
or h(B) is defined then so also the other. Moreover, h(A) = h(B).
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Proof: Suppose that h(B) is defined, we have two following canonical exact sequences:

0 ! ↵(A) ! B ! Coker(↵) ! 0

and
0 ! Ker(↵) ! A ! ↵(A) ! 0.

The notation h(↵A) can be defined by the first exact sequence and it equals h(B). Similarly,
from the second sequence, we can also define h(A) and it equals h(↵A). Hence, h(A) = h(B). ⇤

1.4.3 Cup-products

Definition 1.4.16 (Tensor product)

For every pair of G�modules (X, Y ), we denote X ⌦ Y as X ⌦Z Y , regarded as a G�module
with

g(x⌦ y) = gx⌦ gy,

for any (g, x, y) 2 G⇥X ⇥ Y

Definition 1.4.17 (Coaugmentation ideal)

The coaugmentation maps is

Z ! ZG, n 7!
X

g2G

gn.

Its cokernel is denoted JG := Z/ZNG is the coaugmentation ideal of ZG, where ZNG := {
P

gn :
n 2 Z}.

Definition 1.4.18

Consider any arbitrary G�module X, we define the G�modules

Xm = JG ⌦ · · ·⌦ JG ⌦X,

for m > 0 with m times JG and

X�m = IG ⌦ · · ·⌦ IG ⌦X

for m > 0 with m times IG. We also consider X0 = X.

There is an (unique) family of bi-additive pairings (called cup-product and we are going to
construct it)

(x, y) 7! x^ y : Hm

T
(G,X)⇥Hn

T
(G, Y ) ! Hm+n

T
(G,X ⌦ Y )

defined for all G�modules X, Y and all integers m,n 2 Z that satisfy the following three
conditions:

1. When the two sides are considered as covariant bifunctors on (X, Y ), these maps transform
into functor morphisms;

2. In the case m = n = 0, the map becomes

(x, y) 7! x⌦ y : XG/NmG(X)⇥ Y G/NmG(Y ) ! (X ⌦ Y )G/NmG(X ⌦ Y ).
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3. For any G�short exact sequence 0 ! X 0 ! X ! X 00 ! 0 so that

0 ! X 0 ⌦ Y ! X ⌦ Y ! X 00 ⌦ Y ! 0

is also exact then

(�x00)^ y = �(x00 ^ y), x00 2 Hm

T
(G,X 00), y 2 Hn

T
(G, Y ).

Lemma 1.4.19

Let

0 0 0

0 X 0 X X 00 0

0 Y 0 Y Y 00 0

0 Z 0 Z Z 00 0

0 0 0

be a commutative diagram of G�module with all rows and columns be exact. Then the diagram

Hn�1(G,Z 00) Hn(G,Z 0)

Hn(G,X 00) Hn�1(G,X 0)

�n�1

�n�1 ��s

�s

commutes.

Proof: Let D = ker(Y ! Z 00), we obtain a well-known exact sequence:

0 ! D ! Y ! Z 00 ! 0.

Define homomorphism of G�modules

i : X 0 ! X � Y 0 : x0 7! (x, y0),

where x and y0 are the images of x0 in X and in Y 0, respectively.

j : X � Y 0 ! D : (x, y0) 7! d1 � d2,

where d1 is the image of x in D and similarly for y0 and d2. Then we have an exact sequence

0 ! X 0
i�! X � Y 0

j�! D ! 0,

and a commutative diagram
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X 0 X X 00 Y 00 Z 00

X 0 X � Y 0 D Y Z 00

X 0 Y 0 Z 0 Z Z 00.

i

id

� id

j

id⇥0

� id⇥0

id

id

In light of the exact sequence, we note that im(D ! Y 00) ⇢ im(X 00 ! Y 00). Given the
injectivity of the map X 00 ! Y 00, it follows that we can introduce a homomorphism from
D to X 00, preserving the structure of the diagram. Similarly, by analogous reasoning, we
extend the diagram with a homomorphism from D to Z 0. The resulting extensions maintain
commutativity within the diagram. Consequently, by applying dimension-shifting arguments,
we obtain a commutative diagram of cohomology groups.

Hs�1(G,Z 00) Hs(G,X 00) Hs+1(G,X 0)

Hs�1(G,Z 00) Hs(G,D) Hs+1(G,X 0)

Hs�1(G,Z 00) Hs(G,Z 0) Hs+1(G,X 0).

�s�1 �s

�s�1

id

id

�s

id

� id

�q�1 �s

⌅
Theorem 1.4.20

There exists an unique family of such bi-additive pairings.

Proof: First, for m = n = 0, we consider a map

XG/NmG(X)⇥ Y G/NmG(Y ) ! (X ⌦ Y )G/NmG(X ⌦ Y ) :

(x+NmG(X), y +NmG(Y )) 7! x⌦ y +NmG(X ⌦ Y ).

This map is well-defined since:

1. For x 2 XG, y 2 Y G

g(x⌦ y) = gx⌦ gy = x⌦ y 8g 2 G,

hence x⌦ y 2 (X ⌦ Y )G

2. For x, x0 2 XG; y, y0 2 Y G such that x� x0 2 NmG(X), y � y0 2 NmG(Y )

x⌦ y � x0 ⌦ y0 = x⌦ y � x⌦ y0 + x⌦ y0 � x0 ⌦ y0

= x⌦ (y � y0) + (x� x0)⌦ y0,
(1.2)

thus
X

g2G

g(x⌦ y � x0 ⌦ y0) = x⌦
X

g(y � y0) +
X

g(x� x0)⌦ y0

= x⌦ 0 + 0⌦ y0

= 0.

(1.3)

Hence, x⌦ y � x0 ⌦ y0 2 NmG(X ⌦ Y ).
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Since the mapping above is well-defined, we proceed to define the cup product across any
dimensions. Begin by observing that X ⌦ Y can be identified with Y ⌦ X, and likewise,
X ⌦ (Y ⌦ Z) is identified with (X ⌦ Y ) ⌦ Z for G-modules X, Y , and Z. Accordingly,
there are natural identifications for dimension-shifted modules: Xm ⌦ Y = (X ⌦ Y )m and
X ⌦ Y n = (X ⌦ Y )n for all m,n 2 Z. Given any m,n 2 Z, we thus consider the following
diagram.

H0(G,Xm)⇥H0(G, Y n) H0(G,Xm ⌦ Y n)

Hm(G,X)⇥H0(G, Y n) Hn(G,X ⌦ Y n)

Hm(G,X)⇥Hn(G, Y ) Hm+n(G,X ⌦ Y ).

^

�m⇥id �m

^

id⇥�n �n

^

We define the operation

^: Hm(G,X)⇥Hn(G, Y ) ! Hm+n(G,X ⌦ Y )

as a natural homomorphism that extends the existing diagram into a commutative one. By this
construction, it becomes clear that if ^ fulfills property 3 of the theorem, then this definition
of ^ must be unique.
To show that ^ satisfies property 3, we first provide explicit forms in the cases (m, 0) and
(0, n) for m,n � 0. Specifically, we assert that

^: Hm(G,X)⇥H0(G, Y ) ! Hm(G,X ⌦ Y ) : (xm, y0) 7! xm ⌦ y0

and
^: H0(G,X)⇥Hn(G, Y ) ! Hn(G,X ⌦ Y ) : (x0, yn) 7! x0 ⌦ yn

give the explicit descriptions. This definition readily satisfies property 2, so it remains to verify
property 3.

Assume we have the following exact sequences:

0 X 0 X X 00 0

0 X 0 ⌦ Y X ⌦ Y X 00 ⌦ Y 0.

'  

'  

It is necessary for us to demonstrate that the subsequent diagram commutes:

Hm(G,X 00)⇥H0(G, Y ) Hm(G,X 00 ⌦ Y )

Hm+1(G,X 0)⇥H0(G, Y ) Hm+1(G,X 0 ⌦ Y )

^

�m⇥id �m

^

Let x00
m

2 Hm(G,X 00) and y0 2 H0(G, Y ). Suppose xm is such that  (xm) = x00
m

and xm+1

satisfies '(xm+1) = �m(xm). Then �m(x00m) = xm+1. Therefore,

�m(x00m)^ y0 = xm+1 ⌦ y0.
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Moreover, since �m is independent of the choice of preimage, we may select xm⌦y0 as a preimage
of x00

m
⌦ y0 under  . This choice yields '(xm+1 ⌦ y0) = �m+1(xm ⌦ y0), leading to the equality

�m(x00m ^ y0) = xm+1 ⌦ y0 = �m(x00m)^ y0.

Hence, the diagram commutes, confirming property 3.
To address the general case, assume we have the exact sequences as outlined in the theorem’s
statement. This assumption gives rise to the following exact sequences.

0 Xn (X 0)n (X 00)n 0

0 (X ⌦ Y )n (X 0 ⌦ Y )n (X 00 ⌦ Y )n 0

which induce the diagram

H
m
(G,X

00
)⇥H

0
(G, Y

n
) H

m
(G, (X

00 ⌦ Y )
n
)

H
m+1

(G,X)⇥H
0
(G, Y

n
) H

m+1
(G, (X ⌦ Y )

n
)

H
m
(G,X

00
)⇥H

n
(G, Y ) H

m+n
(G,X

00 ⌦ Y )

H
m+1

(G,X)⇥H
n
(G, Y ) H

m+n+1
(G,X ⌦ Y )

The left-hand faces of these cubes commute straightforwardly. The right-hand faces commute due

to the composition of squares from Lemma 1.4.19. The front and back faces commute by the definition

of the cup product, and based on the cases (m, 0) and (0, n), the top faces also commute. Since all

vertical maps are isomorphisms, it follows that the bottom faces must commute as well.

To verify the first property, let f : X ! Y and g : X
0 ! Y

0
be homomorphism of G�modules. Denote

f ⌦ g the induced homomorphism

f ⌦ g : X ⌦ Y ! X
0 ⌦ Y

0

then we need to prove the diagram

H
m
(G,X)⇥H

n
(G, Y ) H

m+n
(G,X ⌦ Y )

H
m
(G,X

0
)⇥H

n
(G, Y

0
) H

m+n
(G,X

0 ⌦ Y
0
).

^

f⇥g f⌦g

^

However, this immediate in case that m = n = 0 and the general case then follows via dimension

shifting. ⇤

Corollary 1.4.21

For every exact sequnce of G�modules 0 ! Y 0 ! Y ! Y 00 ! 0 so that

0 ! X ⌦ Y 0 ! X ⌦ Y ! X ⌦ Y 00 ! 0

is exact then

x^ �y00 = (�1)m�(x^ y00), x 2 Hm(G,X), y00 2 Hn(G, Y 00).
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Proof: The argument is similar to the proof of Theorem 1.4.20. ⇤

Proposition 1.4.22

Let X, Y be G�modules and G0  G. Then for all a 2 Hm(G,X) and b 2 Hn(G, Y ) we have
the relations

1. Res(x)^ Res(y) = Res(x^ y);

2. Cor �Res(x^ y) = x^ Cor(y).

Proof: The general case follows from the case where m = n = 0 via dimension shifting. Now
suppose that m = n = 0. The first formula is immediate. To prove the second formula, fix
x + NmG(X) 2 H0(G,X) ⇠= XG/NmG(X) and y + NmG(Y ) 2 H0(G, Y ) ⇠= Y G/NmG(Y ). By
the definition of corestriction, we have

Cor((x+NmG(X))^ (y +NmG(Y ))) = Cor(x⌦ y +NmG0(X ⌦ Y ))

=
X

�2G/G0

�(x⌦ y) + NmG(X ⌦ Y )

=

0

@
X

�2G/G0

x⌦ �y

1

A+NmG(X ⌦ Y )

= x^

0

@
X

�2G/G0

�y

1

A+NmG(Y )

= x^ Cor(y).

(1.4)

⇤

Proposition 1.4.23

Let X, Y, Z be G�modules. Suppose that x 2 Hm(G,X), y 2 Hn(G, Y ) and Z 2 Hp(G,Z).
Then

1. The cup-product is anti commutative

(�1)mn(y ^ x) = x^ y

under the canonical isomorphism

Hm+n(G, Y ⌦X) ⇠= Hm+n(G,X ⌦ Y ).

2. The cup-product is associative

(x^ y)^ z = x^ (y ^ z)

under the canonical isomorphism

Hm+n+p(G,X ⌦ (Y ⌦ Z)) ⇠= Hm+n+p(G, (X ⌦ Y )⌦ Z).
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Proof: The proposition follows immediately from the properties of the tensor product in
dimensions m = n = p = 0 and then we can apply the dimension shifting principle for the
general cases. ⇤

Example 1.4.24

Let G = Z/2Z generated by g and X is a G�module with trivial action. For simplicity, we take
X = Z/2Z. The cohomology group Hm(G,X) for n � 0 alternate between X and the trivial
group 0. We have:

Hm(G,X) =

(
X if 2|n;
0 if 2 - n.

Now we compute the cup-product for classes in H0(G,X) and H2(G,X). Take ↵ 2 H0(G,X) =
Z/2Z and � 2 H1(G,X) = Z/2Z, which can be represented by the 2�cocycle corresponding to
the nontrivial central extension of G by X. The cup-product:

↵ [ � 2 H2(G,X),

since it was defined by the map

H0(G,X)⇥H2(G,X) ! H2(G,X)

Because both ↵, � 2 {0; 1}, we can compute their cup-product easily by multiplication:

1. If ↵ = � = 1 then ↵ [ � = 1 · 1 = 1 2 H2(G,X);

2. If ↵ = 0 or � = 0 then ↵ [ � = 0.

Example 1.4.25

Let G = Z/2Z, and consider the trivial G-module X = Z. We want to compute the cup product
in

H1(G,X)⇥H1(G,X) ! H2(G,X).

1. The group G = Z/2Z has two elements: 1 and � (with �2 = 1). A 1-cocycle f : G ! Z
is a function such that:

f(�⌧) = � · f(⌧) + f(�)

where �, ⌧ 2 G and � · x = x for any x 2 Z, because the action is trivial. In this context,
the cocycle condition simplifies to:

f(1) = 0 and f(�2) = 2f(�) = 0.

Since 2f(�) = 0 in Z, we conclude that f(�) can be any integer. Hence,

H1(G,A) = Z/2Z,

represented by [f(�) = 0] or [f(�) = 1].

2. Consider two cocycles: - f1(�) = 1 mod 2 - f2(�) = 1 mod 2.

Both represent non-trivial elements in H1(G,A).
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3. The cup product of f1 and f2 is given by:

f1 ^ f2 : G⇥G ! Z,

and the value on (�, ⌧) is:

(f1 ^ f2)(�, ⌧) = f1(�) · � · f2(⌧).

Since � · f2(⌧) = f2(⌧) (the action is trivial), we have:

(f1 ^ f2)(�, �) = f1(�) · f2(�).

Plugging in f1(�) = 1 and f2(�) = 1, we get:

(f1 ^ f2)(�, �) = 1 · 1 = 1.

4. The result 1 represents the cohomology class in H2(G,Z). For G = Z/2Z, this class
corresponds to the non-zero element of

H2(G,Z) ⇠= Z/2Z.

Example 1.4.26

Let G = Z/nZ and X = Q/Z as a trivial G-module. We will compute the cup product in:

H1(G,X)⇥H1(G,X) ! H2(G,X).

1. For G = Z/nZ, consider an element g 2 G with order n. The cohomology group
H1(G,Q/Z) can be identified with the group of homomorphisms from G to Q/Z:

Hom(G,Q/Z) ⇠= H1(G,Q/Z).

Since G ⇠= Z/nZ, we have:
Hom(G,Q/Z) ⇠= Q/Z.

An element of H1(G,Q/Z) can be represented by a cocycle f : G ! Q/Z where f(gk) = k

n

mod 1.

2. Let f1, f2 2 H1(G,Q/Z) be cocycles defined as:

f1(g
k) =

ak

n
and f2(g

k) =
bk

n
,

where a, b 2 Z are fixed integers.

3. The cup product f1 ^ f2 is defined as:

(f1 ^ f2)(g
i, gj) = f1(g

i) · gi · f2(gj),

where gi · f2(gj) = f2(gj) since the action on Q/Z is trivial.

Substituting the values, we get:

(f1 ^ f2)(g
i, gj) = f1(g

i) · f2(gj) =
ai

n
· bj
n

=
ab · ij
n2

.



36

4. Now, let’s compute this value modulo 1. Since i, j 2 {0, 1, . . . , n� 1}, we consider:

ab · ij
n2

2 Q/Z.

This value represents an element of H2(G,Q/Z). For G = Z/nZ, we have:

H2(G,Q/Z) ⇠= Z/nZ.

The cup product results in:

[f1 ^ f2] =
ab

n
2 Z/nZ.

5. The cup product of two elements f1, f2 2 H1(Z/nZ,Q/Z) is the cohomology class in
H2(Z/nZ,Q/Z) corresponding to ab

n
, where a, b are integers representing the chosen co-

cycles f1 and f2.

1.4.4 Tate’s Theorem

Lemma 1.4.27 (Tate’s)

When G is finite and A is a G�module. If

H1
T
(G0, A) = 0 = H2

T
(G0, A)

for every G0  G, then Hm

T
(G,A) = 0 for every m 2 Z.

Proof: This is clear if G is cyclic. Presume that G is solvable. In this instance, we will use
induction on the size of finite group G to finish this lemma.
Assume that G/G0 is cyclic and that G0 is a proper subgroup of G. For every m 2 Z,
Hm

T
(H,A) = 0 since |G0| < |G| and the pair (G0, A) satisfy the lemma’s hypotheses. Thus,

we have exact sequences:

0 ! Hm

T
(G/G0, AG

0
) ! Hm

T
(G,A) ! Hm

T
(G0, A)

for every m � 1. Since H1
T
(G,A) = 0 = H2

T
(G,A), H1

T
(G/G0, AG

0
) = 0 = H2

T
(G/G0, AG

0
), and

G/G0 is cyclic, this leads to thatHm

T
(G/G0, AG

0
) = 0 for everym 2 Z. Therefore, Hm

T
(G,A) = 0

for all m > 0. We next show that H0(G,A) = 0. Let x 2 AG, because H0
T
(G/G0, AG

0
) = 0,

there is a y 2 AG
0
so that NmG/G0(y) = x. Moreover, since H0

T
(G0, A) = 0, there is a z 2 A

such that NmG0(z) = x. We have

NmG(z) = NmG/G0 �NmG0(z) = x.

Therefore, Hm

T
(G,A) = 0 for every m � 0. Now we consider the exact sequence

0 ! A ! IndG(A0) ! IndG(A0)/A ! 0

whereA0 isA as an abelian group. Because IndG(A0) induced as anG0�module,Hm

T
(G0, IndG(A0)) =

0 for every m 2 Z and every subgroup G0 of G. Thus

Hm

T
(G0, A) = Hm�1

T
(G0, IndG(A0)/A)
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for all m and all subgroup G0. Therefore, IndG(A0)/A is satisfies the hypothesis of the theorem,
and so Hm

T
(G, IndG(A0)/A) = 0 for all m � 0:

0 = H0
T
(G, IndG(A0)/A) = H�1

T
(G,A).

We repeat the argument so H�2
T

(G,A) = 0, H�3
T

(G,A) = 0, . . . . This demonstrates the lemma
when we consider G as a solvable group.
Now we look at the general case for any finite group G. The lemma’s hypotheses are satisfied
by Gp and A as well, if G and A do, where Gp is a Sylow p�subgroup. For every m 2 Z and
all prime p, Hm(Gp, A) = 0. The p�primary component of Hm(G,A) is zero for all m and all
p, according to Corollary 1.2.36. This suggests that for any m 2 Z, Hm(G,A) = 0. ⌅
Theorem 1.4.28 (Tate’s)

Let C be a G�module where G is a finite group. Suppose that for every G0 subgroup of G,
including G0 = G,

1. H1
T
(G0, C) = 0, and

2. H2
T
(G0, C) is a cyclic group and its order equals to |G0|.

Then for every m 2 Z, there exists an isomorphism

Hm

T
(G,Z)

⇠=�! Hm+2
T

(G,C).

Moreover, this isomorphism depends on how we choose the generator for H2(G,C).

Proof: Choose any generator � from H2
T
(G,C). Since the map Cor �Res : H2

T
(G,C) !

H2
T
(G,C) is a multiplication by [G : G0], the group H2

T
(H,C) = hRes(�)i for each subgroup G0

of G.
Let � be represented by cocycle �. We say

C(�) = C �
M

g2G; g 6=1

Z[xg]

and broaden the action of G on C to encompass C(�) by defining:

gxt = xgt � xg + �(g, t).

The notation x1 should be understood as �(1, 1). This indeed establishes an action of G on
C(�) since

rgxt = xrgt � xrg + �(rg, t)

and

r(gxt) = r(xgt � xg + �(g, t))

= xrgt � xr + �(r, gt)� (xrg � xr + �(r, g)) + r�(g, t)

= xrgt � xrg + xr + �(r, gt)� �(r, g) + r�(g, t)

= xrgt � xrg + �(rg, t).

(1.5)

The last equation comes from the cocycle condition

�(r, gt)� �(r, g) + r�(g, t) = �(rg, t).
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The reason � maps to 0 2 H2
T
(G,C(�)) is because � is the coboundary of the 1�cochain

g 7! xg. This is the reason C(�) is referred to as �’s splitting module.
First, we will demonstrate that the hypotheses imply that, for all subgroups G0 of G,

H1
T
(G0, C(�)) = 0 = H2

T
(G0, C(�))

We recall the following canonical exact sequence

0 ! IG ! ZG ! Z ! 0,

where IG = hg � 1|g 2 Gi. Because ZG is induced, Hm

T
(G0,ZG) = 0 for all r, and so

'(⌧) ⇠= H0
T
(G0,Z) ⇠= H1

T
(G0, IG)

and
H2

T
(G0, IG) ⇠= H1

T
(G0,Z) = 0

We define a additive mapping ↵ : C(�) ! ZG so that ↵(xg) = g� 1 and ↵(c) = 0 holds for all
c 2 C(�) Is is clear that the G�short sequece

0 ! C ! C(�)
↵�! IG ! 0

is exact. It induces the cohomology sequence

0 ! H1
T
(G0, C(�)) ! H1

T
(G0, IG) ! H2

T
(G0, C)

0�! H2
T
(G0, C(�)) ! 0.

Because of H1
T
(G0, C) = 0 and H2

T
(G0, IG) = 0, the zeros at the ends are used. Since Res(�)

generates H2(G0, C), the map H2
T
(G0, C) ! H2

T
(G0, C(�)) is zero, and this maps to the restric-

tion of the image of � in H2
T
(G,C(�)), which is also zero. Thus, H1

T
(G0, IG) = H2

T
(G0, C) is

surjective, and hence it is an isomorphism. As a result, H1
T
(G0, C(�)) and H2

T
(G0, C(�)), its

kernel and cokernel, are both zero.
Lemma 1.4.27 leads us to the conclusion that, for all m, Hm

T
(G0, C(�)) = 0. We obtain an

exact sequence by joining the two short exact sequences:

0 ! C ! C(�) ! ZG ! Z ! 0

possessing the characteristic that, for all m, Hm

T
(G,C(�)) = 0 = Hm

T
(G,ZG). The double

boundary map is an isomorphism as a result

Hm

T
(G,Z)

⇠=�! Hm+2
T

(G,C).

⇤

Remark 1.4.29

The cup-product with the selected � 2 H2(G,C) is the map Hm(G,Z) ! Hm+2(G,C).
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Chapter 2

Local Class Field Theory: Cohomology

2.1 Introduction of the second chapter

For the rest of this chapter, K is a non-Archimedean local field, OK is its ring of integers (i.e.,
its valuation ring), mK is its maximal ideal, and k is its residue field.

The central construction in this chapter is the local Artin map, which is an isomorphism
stated as follows:

'K : K⇥
⇠=�! Gal(Kab/K)

or locally, for every finite abelian extension E/K:

'E/K : K⇥/NE/K(L
⇥)

⇠=�! Gal(E/K).

In order to do that, we need to find out about the relation between Galois extensions of a local
field and how they interact with their Galois groups. Initially, their relations will start with the
unramified extensions - the most fundamental extensions of local fields. When we talk about
the ramification of an extension of a local field, we are referring to how the extension behaves
with respect to the valuation and the residue field. For some unramified extension E/K, the
residue field of E is an extension of the residue field of K but does not introduce any new
ramification. In other words, the extension of residue fields is purely algebraic and does not
involve any new ramification behavior. In particular, Gal(E/K) = Gal(e/k) where e is the
residue field of E. For convenience, we can treat an unramified extension of a local field as a
cyclic extension of a general abstract field.

Let UK be the group of all unit elements in K and UE be the group of all unit elements
in E for some finite unramified extension E/K with the Galois group G = Gal(E/K), we see
that UE is a subgroup of E⇥ (and hence is a G-module) and moreover it is a compact subset
of E in the natural topological sense. We will find that Hm

T
(G,UE) is trivial for all integers m.

Next, the notion of the invariant map invE/K : H2(E/K) ! Q/Z will be introduced. The
construction of the invariant map typically begins by considering the Galois group of a finite,
unramified extension L/K of a local field K. One then examines the corresponding ideal class
group Cl(K) of the base field K. The invariant map takes an element of the Galois group
Gal(L/K) and produces an element of the ideal class group Cl(K), reflecting how the Galois
group permutes ideals in K.

Finally, the Local Reciprocity Law Theorem will warrant the existence of the Local Artin
map.
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2.2 The Cohomology of Uramified Extensions of Local

Fields

2.2.1 Group cohomology of the ring of units

Proposition 2.2.1

An finite unramified extension of local fields E/K induces a surjective norm map

NmE/K : UE ! UK .

To demonstrate this claim, we require the following lemmas:

Lemma 2.2.2

For r > 0, let U (r)
E

:= 1 +mr

E
. Then

UE/U
(1)
E

⇠= e⇥

and
U (r)
E

/U (r+1)
E

⇠= e

as G�module.

Proof: Let mK = ⇡OK . In E, it is still prime, and

U (r)
E

= 1 + ⇡rOE.

The homomorphisms
u 7! u mod mE : UE ! e⇥;

1 + a⇡r 7! a mod mE : U (r)
E

! e

induce the required isomorphisms. ⇤

Lemma 2.2.3

Hm

T
(G, e⇥) = 0, for every m. More specifically, there is a surjective norm map e⇥ ! k⇥.

Proof: Let G := Gal(E/K), because E/K is unramified extension, G is also the Galois
group of their residue fields extension e/k. Moreover, E/K is finite so G is cyclic. By Theorem
1.2.26, H1(G, e⇥) = 0, and because e⇥ is finite so H2(G, e⇥) = 0. Therefore by Proposition
1.4.9, Hm

T
(G, e⇥) = 0 for all m. In particular,

0 = H0
T
(G, e⇥) = (e⇥)G/NmG(e⇥) = k⇥/Nm(e⇥)

so k⇥ = Nm(e⇥) or the norm map e⇥ ! k⇥ is surjective. ⇤
Similarly, we have

Lemma 2.2.4

Hm

T
(G, e) = 0 for every m. More specifically, there is a surjective trace map e⇥ ! k⇥.
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Proof: (of the proposition) Let u 2 UK . There is a e0 2 UE so that Nm(e0) ⌘ u mod U (1)
k

,

since Nm e⇥ ! k⇥ is surjective. For the same reason that the norm map U (1)
E

/U (2)
E

! U (1)
K

/U (2)
K

is surjective, so is the trace map e ! k, and so there is a e1 2 U (1)
E

such that Nm(e1) ⌘
u/Nm(e0) mod U (2)

K
. By following this pattern, we generate a sequence e0, e1, e2, · · · 2 U (i)

K
, so

that u/Nm(e0 . . . ei) 2 U (i+1)
K

. Let e = limi!1

Q
i

j=1 vj. Thus u/Nm(e) 2
T
U (i)
K

= {1}. ⇤

Proposition 2.2.5

Consider extension E/K : finite, unramified with G = Gal(E/K). Then

Hm

T
(G,UE) = 0, 8m 2 Z.

Proof: Let ⇡ 2 K be a prime and hence it is a prime in E as well. We get

E⇥ ⇠= UE ⇥ ⇡Z.

Thus, according to Proposition 1.2.31

Hm(G,E⇥) = Hm(G,UE)�Hm(G, ⇡Z)

since H1(G,E⇥) = 0 (by Theorem 1.2.26), H1(G,UE) = 0. Given that G is cyclic, proving
H0(G,UE) = 0 is su�cient to finish the proof. This can be done directly by Proposition 2.2.1.
⇤

Remark 2.2.6

Let E/K be an unramified extension and [E : K] = 1, for all m � 0,

Hm(Gal(E/K), UE) = lim�!
L

Hm(Gal(L/K), UL),

where the limit is over the finite extensions L/K such that L ⇢ E. Thus,

Hm(Gal(E/K), UE) = 0

for all m > 0.

2.2.2 Constructing the invariant map

Definition 2.2.7 (Frobenius element)

Given a non-Archimedean local field K, let E be its finite unramified extension. Hence, E/K is
Galois and for every a 2 OE, there is one and only one � 2 Gal(E/K) so that aq = �a (where
q = |k|). Denoted as FrobE/K, this � is known as the Frobenius element of Gal(E/K) and it
generates Gal(E/K).

Definition 2.2.8

For any Galois extension E/K, let

H2(E/K) = H2(Gal(E/K), E⇥).
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In the case E/K is unramified and G = Gal(E/K). From the G�cohomology sequence

0 ! UE ! E⇥
ordE��! Z ! 0.

An isomorphism is obtained:

H1(G,E⇥)
⇠=�! H1(G,Z).

The G�short exact sequence
0 ! Z ! Q ! Q/Z ! 0

induces a long exact sequence of cohomology, it leads to the isomorphism

H2(G,Z)
⇠=�! H1(G,Q/Z).

Recall that
H1(G,Q/Z) = Homcts(G,Q/Z).

If the degree of the extension E/K is equal to r, then the group G = hFrobE/Ki of order r.
The mapping defined by

f 7! f(FrobE/K) : Hom(G,Q/Z) ! Q/Z

illustrates the r-order of Q/Z. When [E : K] = 1, the group G is topologically generated
by FrobE/K . This indicates that G = Cl{Frobj

E/K
: j 2 Z}. Furthermore, the mapping

f 7! f(FrobL/K) establishes an isomorphism from Homcts(G,Q/Z) to an infinite subgroup of
Q/Z.

Definition 2.2.9 (Invariant map)

The composite of

H2(E/K)
⇠=�! H2(G,Z)

⇠=�! H1(G,Q/Z) = Hom(G,Q/Z)
f 7!f(FrobE/K)
���������! Q/Z

is called the invariant map
invE/K : H2(E/K) ! Q/Z.

Example 2.2.10

In the case K = Q5, consider a finite abelian extension E = Q5(
3
p
5) of K. Since this is a

cyclic extension of degree 3, the Galois group G = Gal(E/K) is cyclic of order 3.
The invariant map in this case sends the generator � of G to 1

[E:K] =
1
3 2 Q/Z. In particular,

Let � : 3
p
5 7! ⇣ 3

p
5, where ⇣ is a primitive cube root of unity. The invariant map

invE/K(�) =
1

3
2 Q/Z.

Therefore, each power of � corresponds to a multiple of 1
3 :

1. invE/K(1G) = 0;

2. invE/K(�) =
1
3 ;

3. invE/K(�2) = 2
3 .
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Proposition 2.2.11

When E/K is finite and [E/K] = r. Let Kun and Eun be the largest unramified extensions of
K and E, respectively. The diagram:

H2(Kun/K) H2(Eun/E)

Q/Z Q/Z

Res

invK invE

⇥r

commutes.

Proof: Consider the map

⌧ 7! ⌧ |Kun : Gal(Eun/E) ! Gal(Kun/K)

because Eun = L · Kun, it is injective. The restriction map is defined by the compatible
homomorphism Gal(Eun/E) ! Gal(Kun/K) and (Kun)⇥ ! (Eun)⇥ Let GK = Gal(Kun/K)
and GE = Gal(Eun/E). Consider the diagram:

H2(Kun/K) H2(GK ,Z) H1(GK ,Q/Z) Q/Z

H2(Eun/E) H2(GE,Z) H1(GE,Q/Z) Q/Z

⇠=

Res

⇠=

rRes rRes fe

⇠= ⇠=

The residue class degree and ramification index ofE/K are denoted by f and e in this case.
The commutative square yields the square on the left.

(Kun)⇥ Z

(Eun)⇥ Z

ordK

⇥r

ordE

The restriction map and boundary map commute, as indicated by the second square. Here is
the third square:

Hom(GK ,Q/Z) Q/Z

Hom(GE,Q/Z) Q/Z

FrobK

' 7!'|GE ⇥f

FrobE

Where FrobK and FrobE maps are ' 7! '(FrobK) and ' 7! '(FrobE), respectively. If q = |k|
and qf = |e|, then the Frobenius elements induce x 7! xq and x 7! xq

f
on the residue field.

Therefore, FrobL |K = Frobf

K
. Because n = rf , the square commutes. ⇤
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2.3 Local Artin map

Remark 2.3.1 (Construction of Local Artin map)

Let K be the algebraic closure of K (in the case K has charateristic p > 0, we uniformize the

notation K with Ksep - the separable closure of K) and q = |k| (necessarily q is a power of a
prime). Let Kun be the largest unramified extension of K which can be obtained by taking

S
E

where E runs over all finite unramified extensions of K. We can see that Kun is well-defined
since E · F/K is unramified for every finite unramified E/K and F/K. The algebraic closure
of the residue filed k of K is the residue field k of Kun.
All automorphisms � of Kun that fix K preserves the field norm | · |. Consequently, it induces
an automorphism � of k/k on Kun. The map

Gal(Kun/K) ! Gal(k/k) : � ! �

is an isomorphism. Hence, (x 7! xq) : k ! k and ↵ 7! Frob↵
K

: Ẑ ! Gal(Kun/K) are both
induced by the unique element FrobK 2 Gal(Kun/K).

We will prove the existence of a group homomorphism (called local Artin map)

'K : K⇥ ! Gal(Kab/K)

with these two properties:

1. 'K(⇡)|Kun = FrobK for any prime element ⇡ of K;

2. The kernel of a 7! 'K(a)|E contains NmE/K(E⇥) for any E/K finite abelian, and 'K

induces
'E/K : K⇥/NmE/K(L

⇥) ! Gal(E/K).

Lemma 2.3.2

Consider L ⇢ E ⇢ K as a Galois extension tower. Then

Res(uL/K) = uL/E

and
Inf(uE/K) = [L : E]uL/K .

Proof: Let [E : K] = n, [L : E] = m. Consider

H2(K/K) H2(K/E) H2(K/E)

Q/Z Q/Z Q/Z

Res

invK

Res

invL invL

⇥n ⇥m

Each of the vertical maps is an isomorphism. We get the following commutative diagram after
applying the kernel-cokernel lemma to the rows:

0 H2(E/K) H2(L/K) H2(L/E)

0 1
n
Z/Z 1

mn
Z/Z 1

m
Z/Z

Inf

invE/K

Res

invL /K invL/E

id ⇥n
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The fact that the two squares commute leads us to

Res(uL/K) = uL/E

and
Inf(uE/K) = [L : E]uL/K .

⌅
Proposition 2.3.3

Given a finite Galois extension E/K with a Galois group G, there is a canonical isomorphism
exists for all m:

Hm

T
(G,Z) ! Hm+2

T
(G,E⇥).

Proof: For every subgroup G0 of G, it is straightforward to verify that

1. H1(G0, E⇥) = 0 by the Hilbert’s Theorem 1.2.26.

2. H2(G0, E⇥) = hu
E/EG0 = Res(uE/K)i and |H2(G0, E⇥)| = |G0|.

The conditions of Tate’s theorem are fulfilled by the pair (G,E⇥). Therefore

Hm

T
(G,Z) ! Hm+2

T
(G,E⇥)

⇤

Corollary 2.3.4

In the case of a finite Galois extension of local fields with Galois group G denoted by E/K:

H2(G,Z) = H�2
T

(G,Z) ! H0
T
(G,E⇥)

or
Gab ⇠= K⇥/NmE/K(E

⇥).

Proof: This is directly implied by Proposition 2.3.3 by letting m = 2. ⇤

Remark 2.3.5

In the case of a finite abelian extension E/K, we can define the local Artin map as

'E/K : K⇥/Nm(E⇥) ! Gal(E/K) = Gab

by stipulating that it is the inverse of the isomorphism

Gab ⇠=�! K⇥/Nm(E⇥).

Theorem 2.3.6 (Norm limitation)

Let E/K be finite Galois and L/K be maximal abelian among all L ⇢ E. We can state that

NmL/K(L
⇥) = NmE/K(E

⇥).
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Proof: Let G = Gal(E/K). Since NmE/K = NmE/L �NmL/K , it follows that NmE/K(E⇥) is
contained within NmL/K(L⇥). In light of this, we have Gal(L/K) = Gal(E/K)ab = Gab, which
means that the norm groups have the same index in K⇥, since by the Corollary 2.3.4,

K⇥/NmE/K(E
⇥) ⇠= Gab = (Gab)ab ⇠= K⇥/NmL/K(L

⇥).

Consequently, this indicates that the norm groups are indeed equal. ⇤

Proposition 2.3.7

In the case where L � E � K forms a tower of finite ablian extensions of K, it follows that

'L/K(a)|E = 'E/K(a)

holds true for all a 2 K.

Proof: The local Artin maps’ definition allows us to directly check this by using Inf(uE/K ] =
[L : E]uL/K . ⇤

Remark 2.3.8

In the case where E/K is a finite unramified extension with G = Gal(E/K) and n = [E : K],
there exists an isomorphism given by

G = Gab = H�2
T

(G,Z) ! H0
T
(G,E⇥) = K⇥/Nm(E⇥).

For every prime ⇡ 2 E, ↵ 2 E⇥ can be expressed uniquely in the form ↵ = u⇡t for some u 2 UE

and t 2 Z. Consequently,
E⇥ = U ⇥ ⇡Z ⇠= UE ⇥ Z.

As E is unramified over K, we have the freedom to select ⇡ 2 K. This allows us to express
⌧↵ as ⌧(u⇡t) = (⌧u)⇡t for ⌧ 2 Gal(E/K), making the previous expression a decomposition of
G�modules, with G acting on Z ⇠= ⇡Z trivially.

Remark 2.3.9

Select an element � 2 G to be the generator, and consider

f 2 H1(G,Q/Z) = Hom(G,Q/Z)

as the element such that f(�t) = t

r
mod Z for all t. It is responsible for generating H1(G,Q/Z).

By using the exact sequence
0 ! Z ! Q ! Q/Z ! 0

and the fact that Hm(G,Q) = 0 for all m, we can establish an isomorphism

� : H1(G,Q/Z) ! H2(G,Z).

In order to form �f , we select a lift of f to a 1�cochain f : G ! Q. We define f as the
function �t 7! i

r
, where 0  t < r � 1. Then

df(�t, �k) = �tf(�k)� f(�t+k) + f(�k) =

(
0 if t+ k  r � 1

1 if t+ k > r � 1
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When Z is matched with ⇡Z  E⇥, we can observe uE/K 2 H2(G,E⇥) is depicted by the cocycle:

'(�t, �k) =

(
0 if t+ k  r � 1

⇡ if t+ k > r � 1

The sequences
0 ! I ! ZG ! Z ! 0

and
0 ! E⇥ ! E⇥(') ! I ! 0

yields

H�2
T

(G,Z)
⇠=�! H�1

T
(G, I)

H�1
T

(G, I)
⇠=�! H0

T
(G, I)

Since both ZG and E⇥(') exhibit trivial cohomology. In this context, E⇥(') denotes the splitting
module E⇥ �

L
�2G,� 6=1 Zx� associated with '.

Proposition 2.3.10

The composite of mapping in the following sequence

G
⇠=�! H�2(G,Z) ! H0(G,E⇥)

⇠=�! K⇥/NmG(E
⇥)

maps � 2 G 7! ⇡ mod NmG(E).

Proof: H�2(G,Z) ⇠= G indicates that under H�2(G,Z) ! H�1(G, IG) ⇢ IG/I2G, the element
� is represented as � � 1.
H�1(G, IG) ! H0(G,E⇥) is determined by the snake lemma applied to

H�1(G, IG)

(E⇥)G E⇥(')G (IG)G 0

0 (E⇥)G E⇥(')G IG

H0(G,E⇥)

Where the vertical maps are NmG =
P

r�1
t=0 �

t and (�� 1)+ I2
G
is the image of x�+ IG· E⇥(')G

in E⇥(')G and NmG(x� + IG · E⇥(')) is

�x� = '(�, �) + x�2 � x�;

�2x� = '(�, �2) + x�3 � x�2

. . . ;

�t�1x� = x1 � x�t�1 + '(�, �t�1);
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where 1 = '(1, 1) = x� and plus on the E⇥ of E(') is “·”, thus

NmG(x�) =
r�1Y

t=1

'(�, �t) = ⇡.

⇤

Lemma 2.3.11

If the extension E/K is Galois with a finite degree n, then the group H2(E/K) contains a
subgroup of order n.

Proof: Consider the diagram:

0 Ker(Res) H2(Kun/K) H2(Eun/E)

0 H2(E/K) H2(K/K) H2(K/E)

Res

Res Res

Res

The injectivity of the two restriction maps implies that the first vertical map is also injective.
However, Proposition 2.2.11 demonstrates that the Ker(Res) on the first row is 1

r
Z/Z. ⇤

Now we need to prove that the map 1
r
Z.Z ,! H2(E/K) is an isomorphism.

Lemma 2.3.12

In the case where E/K is finite Galois and G = Gal(E/K), there exists O ⇢open OE, which
remains stable under G and satisfies Hm(G,O) = 0 for every m > 0.

Proof: Consider {x�|� 2 G} as a normal basis for E over K. The elements x� share a
common denominator d in OK . By replacing each x� with d · x�, we can assume that they
belong to OE. Let O =

P
OEx�. Then it follows that

O ⇠= OE[G] = IndG OE

and consequently Hm(G,O) = 0 for all m > 0. ⇤

Lemma 2.3.13

An open subgroup O of UE exists that is stable under G, and for all m > 0, it satisfies
Hm(G,O) = 0.

Example 2.3.14

If charK = 0, then the power series

ex =
1X

i=0

xi

i!

converges for ord(p)/(p � 1) < ord(x). It establishes an isomorphism between an open neigh-
borhood of 0 in E and a neighborhood of 1 in E⇥, and its inverse is

log(x) = �
1X

i=1

(1� x)i

i
.
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It is evident that both mappings are compatible within the G�action. If O0 is an open neigh-
borhood of 0 as described in Lemma 2.3.12, then ⇡MO0 will possess the same properties, and
we can choose O = exp(⇡MO0) where M is su�ciently large to ensure the exponential function
is defined on ⇡MO0.

Lemma 2.3.15

In the case where E/K is finite Galois [E : K] = r, the order of H2(E/K) is also r.

Proof: We note that r divides |H2(E/K)| and |H2(E/K)| = r when E/K is cyclic. We will
establish the lemma using induction on [E : K]. As Gal(E/K) is solvable, there is L/K Galois
such that E � L � K. From the sequence

0 ! H2(L/K) ! H2(E/K) ! H2(E/L)

we can conclude that

r = |H2(L/K)|⇥ |H2(E/L)| � |H2(E/K)|.

⇤
Now we are prepared to demonstrate the main theorem:

Theorem 2.3.16

We can construct an isomorphism

invK : H2(K/K) ! Q/Z

on every non-archimedean local field K. In addition, if [E : K] = r, then the diagram

0 H2(E/K) H2(K/K) H2(K/E)

0 1
r
Z/Z Q/Z Q/Z

Res

invK invE

⇥r

is commutative, and thus defines a canonical isomorphism

invE/K : H2(E/K) ! 1

r
Z/Z.

Proof: We represent the following diagram

0 Ker(Res) H2(Kun/K) H2(Eun/E)

0 H2(E/K) H2(K/K) H2(K/E)

Res

Res Res

Res

For anyE/K finite Galois, we observe thatH2(E/K)  H2(K/K) andH2(E/K) ⇢ H2(Kun/K).
This implies thatH2(K/K) =

S
H2(E/K), demonstrating that the inflation mapH2(Kun/K) !

H2(K/K) forms an isomorphism. Consequently, the invariant map invK : H2(Kun/K) ! Q/Z
establishes an isomorphism H2(K/K) ! Q/Z. As a result of Lemma 2.3.11, it satisfies the
necessary properties for the theorem. Furthermore, the Proposition 2.3.10 (with chosen �)
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demonstrates that the homomorphism possesses the necessary properties for 2.2.11. Therefore,
the commutativity of the diagram can be directly inferred from Proposition 2.2.11. Let’s now
examine

L � E � K,

with L/K and E/K being uramified. The following diagram

H2(E/K) Q/Z

H2(L/K) Q/Z

invE/K

Inf ⇠=

invL/K

is commutative, as inv and Inf being compatible.
Specifically, there exists a natural isomorphism

invK : H2(Kun/K) ! Q/Z
such that for every E ⇢ Kun with E/K finite, the map invK induces

invE/K : H2(E/K)
⇠=�! 1

[E : K]
Z/Z.

⇤

Theorem 2.3.17 (Local Reciprocity Law)

On a non-Archimedean local field K, we defined the local Artin map, denoted as

'K : K⇥ ! Gal(Kab/K)

exists and it satisfies the following properties:

1. For each prime number ⇡ in the field K, the restriction of the Frobenius map 'K(⇡)|Kun

holds true.

2. Every finite abelian extension E of K has the property that NmE/K(E⇥) is included in the
kernel of the map a 7! 'K(a)|E, and the function 'K causes an one-to-one correspondence
denoted by

'E/K : K⇥/NmE/K(E
⇥) ! Gal(E/K).

Proof: It’s all clear now, except for 1. This is because in the case of an unramified extension
E of K, 'E/K is consistent with the one defined, so we can simply use Proposition 2.3.10. ⇤

Corollary 2.3.18

Let K be a nonarchimedean local field and' : K⇥ ! Gal(Kab/K) is its local Artin map. Then

1. The function that maps E to Nm(E⇥) forms an one-to-one correspondence between the
collection of finite abelian extensions of K and the assortment of norm groups in K⇥.

2. E ⇢ E 0 () Nm(E⇥) � Nm(E 0⇥).

3. Nm((E · E 0)⇥) = Nm(E⇥) \ Nm((E 0)⇥).

4. Nm((E \ E 0)⇥) = Nm(E⇥) · Nm((E 0)⇥).

5. The statement is that any subgroup of K⇥ that includes a norm group is also a norm
group itself.
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Proof: We note that the transitivity of norms can be expressed as

NmL/K = NmE/K �NmL/E .

This implies that if E ⇢ L, then
Nm(E⇥) � Nm(L⇥)

Hence, it follows that Nm((E · L)⇥) is a subset of Nm(E⇥) \ Nm(L⇥). On the other hand, if
a 2 Nm(E⇥) \ Nm(L⇥), then

'E/K(a) = 1 = 'L/K(a).

In the given context, it is evident that 'LE/K(a)|E = 'E/K(a) and 'LE/K(a)|E = 'L/K(a). Since
the mapping

� 7! (�|E, �|L) : Gal(LE/K) ! Gal(E/K)⇥Gal(L/K)

is shown to be injective, it follows that 'LE/K(a) = 1, thus implying that a 2 Nm((E · L)⇥).
Now we establish 3. Next, we finalize the demonstration of 2. If Nm(E⇥) � Nm(L⇥), then
statement 3 transforms into

Nm((LE)⇥) = Nm(L⇥).

The norm group’s index corresponds to the abelian extension’s degree that defines it, and since
LE � L, this means that LE = L. Therefore, L � E.
The mapping E 7! Nm(E⇥) is surjective, as per the definition, and it can be inferred from
point 2 that it is also injective. This proves 1.
We will now establish 5. Suppose N = Nm(L⇥) and I contains N . Let M denote the field
that is fixed by 'E/K(I), such that 'L/K bijectively maps I/N to Gal(E/M). We examine the
commutative diagram,

K⇥ Gal(E/K)

K⇥ Gal(M/K)

'E/K

⇠=

'M/K

The kernel of 'M/K can be represented as Nm(M⇥). Conversely, the kernel of the sequence

K⇥ ! Gal(E/K) ! Gal(M/K)

is equal to '�1
E/K

(Gal(E/M)), which equals to I.
At last, we demonstrate 4. There exists a bijective mapping that reverses the order between
two sets in 1. Since E \ L represents the most extensive expansion of K that is present in
both E and L, and Nm(E⇥) · Nm(L⇥) is the smallest subgroup that includes both Nm(E⇥)
and Nm(L⇥) (as specified in 5), the two sets must correspond to each other. ⇤

Example 2.3.19

In the case where K is an archimedean local field, K = R or C. For K = C, everything is

trivial since K = K itself. If K = R then R and C are the only two abelian extensions of K,
we have Nm(R⇥) = R⇥ and Nm(C⇥) = R>0. Let H  R⇥ with (R⇥ : H) < 1 then H is either
R⇥ or R>0. Hence, the isomorphism

R⇥/R>0

⇠=�! Z/2Z
⇠=�! Gal(C/R)

is termed the local Artin map for K = R.



52

Chapter 3

Local Class Field Theory: Lubin-Tate

theory

3.1 Introduction of the third chapter

While researching Local Class Field theory, John Tate and Jonathan Lubin realized that the
action of ramification groups of local field abelian extensions is extremely similar to a special
class of formal group laws.

In the beginning of this chapter, we introduce the formal group laws (a class of formal power
series ring R[[X1, X2]]). This is just formal algebra to soon support our theory of Lubin-Tate.
After that, let R be the ring of integers of a non-Archimedean local field K. Within any fixed
prime ⇡ 2 R, we can define another special formal power series of the ring R[[X]] and denote
it by F⇡. By that mean, every f 2 F⇡ can be seen as an endomorphism of a formal group law,
soon denoted by Ff and called Lubin-Tate formal series.

After that, we construct Kun - the maximal unramified extension of K - by joining every
cyclic extension of K that is generated by the m�th roots of unity. We need to construct an
abelian extension of E of K large enough so we get an isomorphism which is similar to the
local Artin map:

A⇥ ⇠= Gal(E/K).

This field is soon denoted by K⇡ and it only depends on the way we choose the prime ⇡.
In the last part, we will prove that K⇡ is actually the missing component of Kun in the

Kronecker-Weber theorem:
Kab = K⇡ ·Kun.

We also prove the statement (so-called the Existence Theorem) that when we view K⇥ as a
topological group, then every open subgroup of it is actually of the form NmE/K(E⇥) for some
finite extension E/K.

3.2 The basic notion of formal group laws

Definition 3.2.1 (Formal group law)

We call a (one dimensional) commutative formal group law over a commutative ring R is a
formal power series F (X1, X2) 2 R[[X1, X2]] in two variables with coe�cients in R such that

1. F (X1, 0) = X1 and F (0, X2) = X2,
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2. F (X1, F (X2, X3)) = F (F (X1, X2), X3) and

3. F (X1, X2) = F (X2, X1).

Definition 3.2.2 (Homomorphisms)

A homomorphism h : F ! G between two formal group laws F and G is a formal power series
h(X) 2 R[[X]] such that h(0) = 0 and h(F (X1, X2)) = G(h(X), h(Y )). Moreover, it is an
isomorphism if there exists h�1 : G ! F such that h�1(h(X)) = h(h�1(X)) = X.

Lemma 3.2.3 (Inverse of a formal power series)

The formal power series h(X) = c1X + . . . has an inverse h�1 if and only if c1 2 R⇥.

Proof: Let h�1(X) = c�11 X + . . . with higher coe�cients are determined uniquely by h(X)’s
coe�cients. ⌅
Remark 3.2.4 (Abelian group of homomorphisms)

The set HomR(F,G) of homomorphisms between formal group laws F and G is an abelian group
with respect to the addition (h1 + h2)(X) := G(h1(X), h2(X)) with zero element 0.

Lemma 3.2.5

The formal group law F (X, Y ) has a formal inverse in the sense that there is an unique formal
power series iF 2 R[[X]] such that iF (X) = �x+ . . . and F (X, iF (X)) = 0.

Proof: We construct inductively an unique sequence (ij(X))j�1 of polynomials in XR[X] such
that deg ij(X)  j and

F (X, ij(X)) ⌘ 0 mod Xj+1R[[X]]

Let i1(X) = �X. Suppose that ij(X) has been constructed already. Then

F (X, ij(X)) ⌘ cj+1X
j+1 mod Xj+2R[X]

for an unique cj+1 2 A. We define ij+1(X) := ij(X)� cj+1Xj+1. Then

F (X, ij+1(X)) = F (X, ij(X)� cj+1X
j+1) ⌘ F (X, ij(X))� cj+1X

j+1 ⌘ 0 mod Xj+2R[[X]].

It follows that iF (X) := �X �
P

j�2 cjX
j 2 R[[X]] satisfies F (X, iF (X)) = 0. ⌅

Example 3.2.6

The multicative formal group law bGm(X1, X2) := (1 +X1)(1 +X2)� 1 = X1 +X2 +X1X2 has
its inverse

ibGm
(X1) = � X1

X1 + 1
=
X

i�1

X i

1.

Suppose R = OK . Any commutative formal group law F over R gives rise to actual abelian
groups in the following way:

Definition 3.2.7

Let E be any nonarchimedean local field extension of K and let mE be the maximal ideal of its
ring of integers. For any two x, y 2 mE, the series

x+F y := F (x, y)

converges with the limit in mE. Thus (mE,+F ) is an abelian group in which the inverse of x is
given by iF (x). Moreover, any h 2 EndOK (F ) induces the endomorphism x 7! h(x) of (mE,+F )
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Example 3.2.8

Consider a formal group law denoted as G. We can define f +G g = G(f(T ), g(T )) for any f
and g belonging to TR[[T ]]. This transforms TR[[T ]] into an abelian group.

Remark 3.2.9

In the context of a formal group law over OK, if we have f : F ! G, it will establish

a 7! f(a) : (mE,+F ) ! (mE,+G)

for any E � K.

Example 3.2.10

We define F = bGm(X1, X2) := X1 + X2 + X1X2 = (1 + X1)(1 + X2) � 1, consider f(T ) =
�1 + (1 + T )p as an endomorphism of F since

F (f(X1), f(X2)) = (1 +X1)
p(1 +X2)

p � 1 = f(F (X1, X2))

It is worth noting that the diagram below is commutative,

mK mK

1 +mK 1 +mK

f

a 7!1+a a 7!1+a

a 7!a
p

When we match (mK ,+F ) with (1 +mK ,⇥), f is then associated with the function a 7! ap.

Example 3.2.11

The abelian group (mE,+bGm
) is isomorphic to the subgroup 1 + mE of E⇥ under the map

x ! 1 + x for the multiplicative formal group.

3.3 The introduction of Lubin-Tate group laws

Let K be a nonarchimedean local field and R = OK be its ring of integers and k = OK/mK be
its residue field, choose a prime ⇡ 2 OK

Definition 3.3.1

We denote F⇡ as the set of every formal power series f(X) 2 R[[X]] satisfies the following two
conditions:

1. f(X) = ⇡X + . . . ;

2. f(X) ⌘ Xq mod ⇡,

where the following terms after ⇡X is of degree � 2 and q = |k|.

Example 3.3.2

The polynomial f(X) = ⇡X +Xq belongs to F⇡.

Example 3.3.3

When K is Qp then
f(X) = �1 + (1 +X)p 2 Fp.
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Lemma 3.3.4

In F⇡, consider forms f and g, and a linear form '1(X1, . . . , Xr) with coe�cients in R. There
exists an unique ' 2 R[[X1, . . . , Xr]] so that

'(X1, . . . , Xr) = '1 +� 2�degree

and
f('(X1, . . . , Xr)) = '(g(X1), . . . , g(Xr))

Proof: By using the method of induction on n, we can demonstrate that there exists an unique
polynomial 'n(X1, . . . , Xr) of degree n, satisfying the conditions:

'n(X1, . . . , Xr) = '1 +� 2�degree

and
f('n(X1, . . . , Xr)) = 'n(g(X1), . . . , g(Xr)) +� n+ 1�degree.

The initial polynomial has a distinctive coordinate denoted as '1. This coordinate definitely
fulfills the initial requirement. If we express '1 as

P
aiXi, the second requirement states that

⇡(
X

aiXi) =
X

ai(⇡Xi) + terms of degree � 2

This condition also holds true. If n � 1, the definition of 'n+1 is required. Since 'n is unique,
'n+1 should be equal to 'n+Q for a homogeneous polynomial Q of degree n+1 in A[X1, . . . , Xr].
It is necessary to have

f('r(X1, . . . , Xr)) = 'n+1(g(X1), . . . , g(Xr))�� n+ 2�degree.

On the left side, we have

f('r(X1, . . . , Xr)) + ⇡Q(X1, . . . , Xr) +� n+ 2�degree

and on the right side, we have

'n(g(X1), . . . , g(Xr)) +Q(⇡X1, . . . , ⇡Xr) +� n+ 2�degree.

Since Q is homogeneous of degree n+1, it follows that Q(⇡X1, . . . , ⇡Xr) = ⇡n+1Q(X1, . . . , Xr).
Therefore, it is necessary for

(⇡n+1�⇡)Q(X1, . . . , Xr) = f('n(X1, . . . , Xr))�'n(g(X1), . . . , g(Xr))+terms of degree � n+ 2

The polynomial Q must be the only one that satisfies the following condition:

f('n(X1, . . . , Xr))� 'n(g(X1), . . . , g(Xr))

(⇡n � 1)⇡
= Q+ terms of degree � n+ 2.

It is important to note that on the field of characteristic p,

f � 'n � 'n � g ⌘ 'n(X1, . . . , Xr)
q � 'n(X

q

1 , . . . , X
q

r
) ⌘ 0 mod ⇡

The form Q has coe�cients in the ring A since ⇡|(f �'n�'n�g), and ⇡n�1 2 R⇥. Additionally,
the function 'n satisfies the induction hypothesis and indeed has degree n+ 1.
Once we have established the values of 'n for n = 1, 2 . . . , and have observed that

'n+1 = 'n + terms with a degree � n+ 1

allows us to define ' as the only one power series for which

' = 'n + terms with a degree � n+ 1,

for all values of n. ⌅
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Proposition 3.3.5

Any f belonging to F⇡ corresponds to only one formal group law Ff with coe�cients in R that
allows f to act as an endomorphism. We soon call this Ff the Lubin-Tate formal group law for
f .

Proof: As per Lemma 3.3.4, there exists a singular power series Ff (X1, x2) such that
(
Ff (X1, X2) = X1 +X2 +� 2�degree

f(Ff (X1, X2)) = Ff (f(X1), f(X2))
(3.1)

We still need to verify that this satisfies the requirements of a formal group law.
Commutativity: Let G = Ff (X2, X1). Then

(
G(X1, X2) = X1 +X2 +� 2�degree

f(G(X1, X2)) = f(Ff (X2, X1)) = Ff (f(X2), f(X1)) = G(f(X1), f(X2))
(3.2)

Given that Ff (X1, X2) is the only power series with these characteristics, we can conclude that
G(X1, X2) = Ff (X1, X2).
Regarding associativity, if we let G1(X1, X2, X3) = Ff (X1, Ff (X2, X3)) and G2(X1, X2, X3) =
Ff (Ff (X1, X2), X3). Then, for i = 1, 2:

(
Gi(X1, X2, X3) = X1 +X2 +X3 + term of degree � 2

Gi(f(X1), f(X2), f(X3)) = f(Gi(X1, X2, X3))
(3.3)

Lemma 3.3.4 implies that only one power series fulfills these conditions. ⇤

Example 3.3.6

Consider K = Qp and let ⇡ = p. We have f = (1 + T )p � 1 =
P

p

i=1

�
p

i

�
T i satisfies all the

conditions to be an element of Fp, and the form F = X1+X2+X1X2 has f as an endomorphism.
Hence, we can write F = Ff .

Proposition 3.3.7

In the set F⇡, consider two elements f and g, and an element r belonging to R. Then, let
[r]g,f 2 R[[T ]] such that (

[r]g,f (T ) = rT +� 2�degree

g � [r]g,f = [r]g,f � f.
and it induces a formal group laws homomorphism [r]g,f : Ff ! Fg.

Proof: In Lemma 3.3.4, we are assured of the existence of h = [r]g,f . Our task is to demon-
strate that

h(Ff (X1, X2)) = Fg(h(X1), h(X2)).

Each term is clearly in the form rX + rY + term of degree � 2. Additionally,

h(Ff (f(X1), f(X2)) = (h � g)(Ff (X1, X2)) = g(h(Ff (X1, X2)))

and
Fg(h(f(X1)), h(f(X2))) = Fg(g(h(X1)), g(h(X2))) = g(Fg(h(X1), h(X2)))

and we again utilize the uniqueness in Lemma 3.3.4. ⇤
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Proposition 3.3.8

For any r1, r2 2 R,
[r1 + r2]g,f = [r1]g,f +Fg [r2]g,f

and
[r1r2]h,f = [r1]h,g � [r2]g,f .

Proof: We can readily verify the accuracy of the statement based on the definition of [.]g,f .
⇤

Corollary 3.3.9

For f, g 2 F⇡, Ff ⇡ Fg.

Proof: Each element r 2 R⇥ has inverse isomorphisms [r]f,g and r�1
g,f

. Specifically, there exists

one and only one h : Ff

⇠=�! Fg such that h(T ) = T + � 2�degree together with g � h = h � g,
denoted as [1]g,f . ⇤

Corollary 3.3.10

For every element r in the set R, there exists one and only one endomorphism [r]f : Ff ! Ff

in such a way that [r]f = rT + term of degree � 2, and [r]f has the property of commuting
with f . The function

r 7! [r]f : R ,! End(Ff )

acts as a homomorphism of rings.

Proof: Consider [r]f = [r]f,f - it represents the unique series rT + � 2�degree, which com-
mutes with f . This series serves as an endomorphism of Ff . The fact that r 7! [r]f forms a
homomorphism of rings can be derived from Proposition 3.3.8, and [1]f = T . ⇤

Remark 3.3.11

Therefore, for any finite extension E of K, the abelian group (mE,+Ff
) naturally possesses an

R�module structure.

Example 3.3.12 (Lubin-Tate group law and its attached endomorphism on Qp)

When K = Qp, let f = (1 + T )p � 1 ==
P

p

i=1

�
p

i

�
T i 2 Fp (as we have shown before), so that

Ff = X1 +X2 +X1X2. For any r 2 Zp, we can define

(1 + T )r =
X

r�0

✓
r

m

◆
T r

The definitions coincide with the usual ones when a 2 Z, and if (ri)i�1 is a sequence of integers
converging to r 2 Zp, then

�
ri

m

�
!
�
r

m

�
as i ! 1. In the case of

�
r

m

�
2 Zp, we have

[r]f = (1 + T )r � 1

It is certain that (1 + T )r � 1 = rT + . . . , and

((1 + T )r � 1) � f = (1 + T )rp � 1 = f � ((1 + T )r � 1)

holds true for integer r, and due to continuity, it holds true for all r 2 Zp.

When we consider the isomorphism (m,+Ff
)

t 7!1+t����! (1 + m,⇥), the action of [r]f corresponds
to the mapping of an element of 1 +m to its r�th power.
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Example 3.3.13 (Lubin-Tate group law and its attached endomorphism on Fp((t)))
In the case K = Fp((t)), its ring of integers is R = Fp[[t]], its residue field is Fp and K now
has characteristic p. We are going to define the Carlitz polynomial [M ](T ).

1. By setting [1](T ) := T and [t](T ) := T p + tT , we define (for every n � 2):

[tn](T ) := [t]([tn�1](T )).

2. For every F = a0 + a1t+ a2t2 + · · · 2 Fp[[t]], let

[F ](T ) = a0T + a1[t](T ) + a2[t
2](T ) + · · · 2 Fp[[t]][[T ]].

Now, let f = T p + tT 2 Fp, its Lubin-Tate group law is just F (X1, X2) = X1 +X2 and for all
F 2 Fp[[t]], we can define

[F ]f := [F ](T ).

Remark 3.3.14

1. Note that [⇡]f = f .

2. The mapping r 7! [r]f : R 7! End(Ff ) is an injective homomorphism, since the leading
coe�cient of [r]f allows for the recovery of r.

3. [1]g,f : Ff

⇠=�! Fg preserves the actions of R on Fg and Ff as shown by the equation

[1]g,f � [r]f = [r]g,f = [r]g � [1]g,f .

3.4 Constructing the extension K⇡/K

Recall that a non-archimedean local fieldK is either a finite extension of Qp or a finite extension
of Fp((t)). In this subsection, we consider R = OK as its ring of integers, k = R/m as its residue
field and q = |k|. It is well-known that q is a power of some prime number p.

Remark 3.4.1 (The construction of Kun
)

Let

µm := {⇣ 2 K : ⇣m = 1}

be the set of all m�th roots of unity in K. When p is not a prime factor of m, the discriminant
of the polynomial P (X) = Xm � 1

disc(Xm � 1) =
Y

i<j

(⇣i � ⇣j)
2 = (�1)n(n+1)/2mm

is an unit in the ring R = OK where ⇣i, ⇣j 2 µm. Let K[µm] be the extension of K generated by
the m�roots of unity, since Gal(K[µm]/K) is cyclic the extension is unramified. Additionally,
the splitting field of P (x) over k is the residue field km of K[µm]. Moreover, km has exactly
qordm(p) elements. Consequently, we have

Kun =
[

p-m

K[µm]
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and the Galois group Gal(Kun/K) ⇠= bZ. Where

bZ := lim
 �

Z/nZ.

We can also identify each n 2 bZ with a homomorphism �n 2 Gal(K[µm]/K) as: for each
⇣ 2 µm and every n0 2 Z close enough to n (with canonical norm and only depends on m),

�n · ⇣ := ⇣n0 .

In other words, �n can be seem as Frobn

K

Example 3.4.2 (The case K = Qp)

When K is the field of p-adic numbers Qp with ⇡ being the prime number p, an analogous
structure for the extension K⇡ known as (Qp)p can be defined as the union of the fields Qp[µpn ]
for all n. The mapping ([m], ⇣) ! ⇣m from the group Z/pnZ⇥ µpn to µpn transforms the group
upn into a free module over Z/pnZ with one generator. Considering that Z/pnZ is equivalent to
Zp/pnZp, we can treat µpn like a cyclic module over the p-adic integers Zp, similar to the cyclic
group Z/(pn). The Zp-action on µpn allows for an isomorphism between the units of Zp/pnZp

and the Galois group Gal(Qp[µpn ]/Qp). As we take the limit when n increases without bound,
this results in an isomorphism between the units of the p-adic integers Z⇥

p
and the Galois group

Gal((Qp)p/Qp).
For the field extensions Kun/K and (Qp)p/Qp, we can concretely specify a set of elements

that generate the extension, describe the Galois group in detail, and express precisely how the
Galois group acts on these generators.

Definition 3.4.3 (Similar results for general cases by Lubin-Tate groups)

The absolute value operator | · | on the field K uniquely extends to any E ⇢ K with E/K finite

and subsequently to the entire algebraic closure K. Suppose f 2 F⇡. For any �, � 2 K such
that |�|, |�| < 1 and r 2 R, the series Ff (�, �) and [r]f (r) converge. As a result, we define ⇤f

as the R�module satisfying
⇤f = {�K||�| < 1}

� +⇤f
� = � +Ff

� = Ff (�, �)

a · � = [a]f (�).

We define ⇤n ⇢ ⇤f as submodule consisting of all elements annihilated by [⇡]n
f
.

Remark 3.4.4

In light of the fact that f(T ) = [⇡]f (T ), we can define ⇤n as the collection of roots of

f � · · · � f = f (n) (n times)

in K with a valuation of less than 1. To simplify, let’s assume that f is T q + · · · + T 2 + ⇡T .
By Corollary 3.3.9, we can take f = T q + ⇡T as su�cient. Then,

(f � f)(T ) = f(f(T )) = (T q + · · ·+ ⇡T )q + · · ·+ ⇡(T q + · · ·+ ⇡T ) = T q
2
+ · · ·+ ⇡T 2

and
f (n)(T ) = ⇡nT + · · ·+ T q

n
.
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For the Newton polynomial of f (n), it is evident that all of its roots have a positive ordK, thus
a valuation < 1. Therefore, ⇤n represents the collection of all roots of f (n) in K with the given
commutative group structure

� +Ff
� = Ff (�, �) = � + � + . . .

along with the R�module structure,

[r]f↵ = r� + . . .

Lemma 3.4.5

Consider an R�module denoted as A, and define Am as the kernel of the map ⇡m : A ! A.
Assume that the following conditions are satisfied:

1. |A1| = (A : (⇡)), and

2. ⇡ : A ! A is onto map.

The group Am is isomorphic to the quotient group R/(⇡m); therefore, it contains qm elements.

Proof: We will utilize induction on m. As R/(⇡m) has an order of qm, when considering
condition 1 and the structure theorem, we can conclude that A1 is isomorphic to R/(⇡). Let’s
examine the sequence

0 ! A1 ! Am

⇥⇡�! Am�1 ! 0.

Condition 2 indicates that it is exact at Am�1, and hence, exact in general. Consequently, Am

contains qm elements. Additionally, if Am is not cyclic, A1 would not be too. Thus Am is cyclic
R�module with |Am| = qm and Am

⇠= R/(⇡m). ⌅
Proposition 3.4.6

The quotient R/(⇡m) is isomorphic to the R�module ⇤m. Therefore EndR(⇤m) ⇠= R/(⇡m) as
well as AutR(⇤m) ⇠= (R/(⇡m))⇥.

Proof: The existence of h : Ff

⇠=�! Fg results in R�homomorphism ⇤f

⇠=�! ⇤g, making the
choice of f 2 F⇡ irrelevant. We take f 2 F⇡ to be of the form of T q + . . . ⇡T . This polynomial
is an Eisenstein polynomial and therefore possesses q distinct roots, each with a valuation less
than 1. Let � 2 K have a valuation less than 1. Consider the Newton polynomial of

f(T )� ↵ = �↵ + T q + · · ·+ ⇡T.

The roots have a valuation of less than 1 and therefore belong to ⇤f . As a result, we have
confirmed that the assumptions of the lemma hold for ⇤f , meaning that ⇤m

⇠= R/(⇡m). Con-
sequently, the impact of R on ⇤m causes an isomorphism R/(⇡m) ! EndR(⇤m). ⇤

Lemma 3.4.7

Let E/K be finite Galois with G = Gal(E/K). For any F 2 OK [[X1, . . . , Xn]] and �1, . . . , �n 2
mE,

F (✓�1, . . . , ✓�n) = ✓F (�1, . . . , �n), 8✓ 2 G.
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Proof: We know that ✓ is a field isomorphism preserving OK implies that if F is a polynomial.
It is known that ✓ preserves the valuation on E, so ✓ is continuous. Hence, it maintains
boundaries: For

lim
i!1

↵i = E

it follows that
lim
i!1

⌧↵i = ⌧E.

Suppose Ft is the polynomial with a degree of t, such that F = Ft + deg � t+ 1. Thus

✓(F (�1, . . . )) = ✓( lim
t!1

Ft(�1, . . . )) = lim
t!1

✓Fm(�1, . . . ) = lim
m!1

Fm(⌧�1, . . . ).

⌅
Theorem 3.4.8

Consider K⇡,m = K[⇤m], a subfield of K created by the elements of ⇤m.

1. For every m, K⇡,m/K is totally ramified of degree (q � 1)qm�1.

2. The action of R on ⇤m defines

(R/mm)⇥
⇠=�! Gal(K⇡,m/K).

Specifically, K⇡,m/K is abelian.

3. For every m � 1, ⇡ 2 NmK⇡,m/K(K⇥⇡,m).

Proof: It is reasonable to assume once more that f 2 F⇡ is of the form T q + · · ·+ ⇡T .
Choose a nonzero root ⇡1 of f(T ) and a roots ⇡m of f(T ) � ⇡m�1 (inductively) for 1 and 2.
Consider

K[⇤m] � K[⇡m] � K[⇡m�1] � · · · � K[⇡1] � K.

Eisenstein is used for each extension, with the degree indicated. Consequently, over K of degree
qm�1(q � 1), K[⇡m] is completely ramified.
Remember that K[⇤m] is the splitting field of f (m) since ⇤m is the set of roots of f (m) in K.
The image of Gal(K[⇤m]/K) in Sym(⇤m) is therefore contained in

EndA(⇤m) = (R/(⇡m))⇥)

because Gal(K[⇤m]/K) is an isomorphism between A�modules and can be associated with a
subgroup of the group of permutations of the set ⇤m. Therefore

(q � 1)qm�1 = [K[⇤m] : K] = |Gal(K[⇤m]/K)|  (q � 1)qm�1.

The equalities hold i↵ Gal(K[⇤m]/K) ⇠= (R/mm)⇥ and K[⇤m] = K[⇡m].
For 3. Let f [m](T ) = f

T
� f � · · · � f (m terms), so

f [m](T ) = T (q�1)qm�1
+ · · ·+ ⇡.

Then 0 = · · · = f(⇡1) = f [m�1](⇡m�1) = f [m](⇡m). Because f [m] is monic with deg f [m] =
(q � 1)qm�1 = [K[⇡m] : K], it is the minimal polynomial of ⇡m over K. Therefore,

NmK[⇤m]/K ⇡m = (�1)(q�1)q
m�2

⇡ = ⇡,

unless q = 2 and m = 1. Since K[⇤1] = K in the exceptional case, ⇡ is unquestionably a norm.
⇤
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Remark 3.4.9

We now can define K⇡ :=
S
K⇡,m which is a abelian extension of K. The isomorphism

(R/mm)⇥ ⇠= Gal(K⇡,m, K)

induced (by inverse limit) the isomorphism

R⇥ ⇠= Gal(K⇡/K).

Example 3.4.10

Assume that f = (T + 1)p � 1 and K = Qp. Select a primitive ⇣p and ⇣ppn = ⇣pn�1 for each n
by taking the pn�th root ⇣pn of 1. Then, (Qp)p,n = Qp[⇡n] = Qp[⇣pn ] and ⇡ = ⇣pn � 1 follow.
Additionally, the standard isomorphism is (Zp/(pn))⇥ ! Gal(Qp[⇣pn ]/Qp).

3.5 An Introduction of Local Kronecker-Weber Theo-

rem and its application

This section’s primary purpose is the demonstration that Kab = K⇡ ·Kun.

3.5.1 Note on the ramification group of the field extension K⇡,m/K

Let G be the Galois group of a finite Galois extension E/K. Remember that

Gi = {g 2 G| ordE(gr � r) � i+ 1 8r 2 OE}

is the i�th ramification group. In addition, for i � 0,

Gi = {g 2 G0| ordE(g⇧� ⇧) � i+ 1}

where ⇧ 2 E is prime. The normalized valuation E⇥ ! Z is represented here by ordE.
Afterwards, G/G0 = Gal(e/k), with the following inclusions:

(⇧ 7! g⇧/⇧ mod ⇧) : G0/G1 ,! e⇥

(⇧ 7! (g⇧� ⇧)/⇧i+1 mod ⇧) : Gi/Gi+1 ,! e

where k and e are the residue fields of K and E, respectively. Hence (G0 : G1)|(q � 1) and
(Gi : Gi+1)|q for i � 1. Additionally, Gi = {1} for i large enough. Consider

U (0) = U = R⇥;

U (i) = 1 +mi, i � 1.

Then
U/U (m) � U (1)/U (m) � · · · � U (m)/U (m) = 0

on R⇥/(1 +mm) = U/U (m).

Proposition 3.5.1

Under R⇥/U (m)
⇠=�! G of Theorem 3.4.8, U (i)/U (m) ! Gqi�1 is surjective.



63

Proof: Let f = ⇡T + T q. As G = G0, U (0)/U (m) ⇣ G0, without a doubt. Now, let u 2
U (i) \ U (i+1), and assume i � 1. Afterwards, u = 1 + v⇡i and

[u]f (⇡m) = [1]f (⇡m) + [v]f [⇡
i]f (⇡m) = ⇡m + [v]f (⇡m�i) = ⇡m + (unit)⇡m�i.

For any i � 1, ⇡i = ⇡⇡i+1+⇡
q

i+1 = ⇡q

i+1

⇣
⇡⇡i+1

⇡
q
i+1

+ 1
⌘
= ⇡q

i+1⇥unit. Since ord

✓
⇡

⇡
q�1
i+1

◆
> 0. Thus

⇡m�1 = ⇡q
i

m
⇥ unit, and

[u]f (⇡m)� ⇡m = ⇡q
i

m
⇥ unit.

This indicates that, by definition, [u]f 2 Gqi�1, and [u]f 62 Gqi . This states that U (i) ⇣ Gqi�1

since it is true for all i. ⇤

Remark 3.5.2

From the above arguments, we get

8
>>>>>><

>>>>>>:

G0 = G

Gq�1 = Gq�2 = · · · = G1

Gq2�1 = Gq2�2 = · · · = Gq

. . .

Gqm�1 = 1

3.5.2 Upper numbering on ramification groups

Let E/K be a finite Galois extension, with G = Gal(E/K). We now define the notation Gr

for all real number r � �1 by letting

Gr = Gi, 8i = due

For r > 0, Gr = {g 2 G0| ordE(g⇧� ⇧) � i + 1} defines an unique continuous pairwise linear
function

⇡ : R�0 ! R
satisfied: (

'(0) = 0

'0(u) = (G0 : Gr)�1 if r 62 Z.

We now letting Gv = Gr if v = '(r), i.e., Gv = G'�1(v)

Example 3.5.3

Let E = K⇡,m. Then

Gq�1 = · · · = G2 = G+ 1, q � 1 = (G0 : G1)

The map '0 with respect to u is given by '0(u) = 1
q�1 for 0 < u < q� 1, and the initial segment

of the graph of ' extends from the point (0, 0) to (q � 1, 1). Consequently, G1 is equivalent
to Gq�1. Following this, we have (Gq�1 : Gq) = q, and Gq is equal to Gq+1, continuing up to
Gq2�1. Therefore, within the interval q � 1 < u < q2 � 1, it follows that '0(u) = 1

q(q�1) . The

second portion of the graph representing ' extends from the point (q� 1, 1) to (q2 � 1, 2). As a
result, we have G2 = Gq2�1. Proceeding in a similar fashion, we derive the diagram below:
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G0 � Gq�1 � Gq2�1 � . . . Gqm�1 = {1}

G0 G1 G2 . . . Gm

⇠= ⇠= ⇠= ⇠=

Remark 3.5.4

Under R⇥/U (m)
⇠=�! G,

U (i)/U (m) ⇠=�! Gi.

The upper numbering corresponds to the quotient and the lower numbering corresponds to the
subgroup.

Proposition 3.5.5

Consider a tower of Galois extensions L � E � K, where G = Gal(L/K) and G0 = Gal(L/E),
and note that G/G0 = Gal(E/K). We get

(G/G0)v = Im(Gv ! G/G0)

in other words, (G/G0)v = GvG0/G0.

Proof: See Serre, Local Fields [6]. ⇤
Consider ⌦/K to be Galois with [⌦ : K] = 1 with Galois group G, we define a filtration on G:

g 2 Gv () g 2 Gal(E/K)v, 8E/K finite and Galois E ⇢ ⌦.

Definition 3.5.6

In a finite Galois extension E/K, a value v is termed a jump in the series {Gv} if Gv 6= Gv+✏

for every ✏ > 0.

Theorem 3.5.7 (Hasse-Arf)

All the jumps are integers in the case E/K is finite abelian. In other words, if Gi 6= Gi+1, then
'(i) 2 Z.

Proof: See Serre, Local Fields [6]. ⇤
Therefore, in the case E/K finite abelian, the filtration onG0 = G0 takes the following structure

G0 ) Gj1 ) Gj2 . . . jn 2 N

.

3.5.3 The local Kronecker-Weber theorem

Let K be a nonarchimedean local field, and assume that all extensions of K are subfields within
a designated separable algebraic closure K of K.

Lemma 3.5.8

Let E be an abelian totally ramified extension of K. If E � K⇡, then E = K⇡.

Proof: Let G = Gal(E/K) and G0 = Gal(E/K⇡), so that G/G0 = Gal(K⇡/K). Consider the
diagram of abelian groups:
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1 1 1

1 Gm+1 \G0 Gm+1 (G/G0)m+1 1

1 Gm \G0 Gm (G/G0)m 1

1 G
m
\G

0

Gm+1\G0
G

m

Gm+1
(G/G

0)m

(G/G0)m+1 1

1 1 1

It is trivial that all the columns exact, and Proposition 3.5.5 demonstrates the exactness of two
top rows and the snake lemma shows that the third row is also exact, hence

q � (Gm : Gm+1) = ((G/G0)m : (G/G0)m+1)(Gm \G0 : Gm+1 \G0).

This leads to the conclusion that Gm \G0 = Gm+1 \G0 for every m. Therefore,

Gm+1 \G0 = Gm \G0 = · · · = G0 \G0 = G0

Hence G0 ⇢ Gm for all m or G0 = {1G} (since
T
Gm = 1). ⌅

Lemma 3.5.9

All finite unramified extensions of K⇡ are contained in K⇡ ·Kun.

Proof: Let E denote an unramified extension of K⇡. It follows that E can be expressed as
K⇡ ·E 0, where E 0 represents an unramified extension of K⇡,m for a certain m. Furthermore, we
observe that E 0 can be expressed as K⇡,m · E 00, where E 00 is an unramified extension of K. ⌅
Lemma 3.5.10

Let E/K be finite abelian extension with an exponent of k (i.e., gk = 1 for all g 2 Gal(E/K)),
and let Kk denote the unramified extension of K with a degree of k. It follows that there exists
a totally ramified abelian extension Et of K such that

E ⇢ Et ·Kk = E ·Kk.

Proof: For any element g 2 Gal(EKk/K), the restriction of g to E is trivial, i.e., g|E =
1 = gk

|Kk
, indicating that Gal(EKk/K) remains an abelian group with exponent k. Suppose

g 2 Gal(EKk/K) such that g|Kk
represents the Frobenius automorphism. Then, g has order k,

and we have
Gal(E/K) =< g > ⇥G0

for some subgroup G0. Let Et = E<g>; consequently, Et is totally ramified over K, and
E ·Kk = Et ·Kk. ⌅
Theorem 3.5.11 (Local Kronecker-Weber)

K⇡ ·Kun = Kab

for every prime ⇡ of K.
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Proof: Let E represent a finite abelian extension of K. Our objective is to establish that E
is a subset of K⇡ ·Kun. Lemma 3.5.8 remains applicable when K is replaced with K⇡. Upon
applying it to the extension E ·K⇡/K⇡, we infer the existence of a totally ramified extension
Et of K⇡ and an unramified extension Eu of K⇡ such that

E ·K⇡ ⇢ Et · Eu ⇢ (Et ·K⇡) · Eu.

Additionally, Lemma 3.5.9 implies that Et ⇢ K⇡, and Lemma 3.5.10 implies that Eu ⇢ K⇡ ·Kun.
⇤

Corollary 3.5.12

Every finite abelian extension of Qp is encompassed within a cyclotomic extension.

Corollary 3.5.13 (Calculating Gal(Kab/K))

• Kab ⇠= K⇡ ·Kun, depends only on the choice of ⇡;

• K⇡K \Kun = K, hence

• Gal(Kab/K) ⇠= Gal(K⇡/K)⇥Gal(Kun/K);

• Gal(K⇡/K) ⇠= O⇥
K
;

• Gal(Kun/K) ⇠= bZ := lim
 

Z/nZ;

• Gal(Kab/K) ⇠= O⇥
K
⇥ bZ.

3.6 The Existence Theorem

Let K represent a local field. It is worth recalling that a subgroup N of K⇥ is termed a
norm group if there exists a finite abelian extension E/K such that NmE/K(E⇥) = N . Since

K⇥/N
⇠=�! Gal(E/K), the group N is of finite index in K⇥ and, consequently, open.

Theorem 3.6.1 (Existence Theorem)

Every O ⇢open K⇥ and O < K⇥ there exists a finite abelian extension E/K such that O =
NmE/K(E⇥).

Certainly, here are the proofs of the lemmas that we need:

Lemma 3.6.2

For all finite extension E/K, the norm map E⇥ ! K⇥ has closed image and compact kernel.

Proof: Recall that (K : N) = (K⇥ : Nm(E⇥)) < 1 and N is open in K⇥, therefore N is closed.
Ker(NmE/K) is also closed since the norm map is continuous. We have

ordE(NmE/K(a)) = [E : K] ordE(a) = f · ordK(a)

so N ⇢ UK and then N is compact since UK is compact ⌅
For convenience, let HK =

T
NmE/K(E⇥) where E runs over the finite extensions of K.
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Lemma 3.6.3

NmK0/K HK0 = HK

for every finite extension K 0/K.

Proof: It is trivial that
NmK0/K HK0 ⇢ HK .

For every finite extension E/K and every a 2 K, we consider the set:

TE(a) = NmE/K(E
⇥) \ Nm�1

K0/K(a).

We get a collection of sets:
TK0 = {TE(a)},

where E runs over the finites extension of K 0 and a runs in K. We can check that those sets are
nonempty and then compact since they are the intersection of two compact sets. Furthermore,
TE(a) is obviously a subset of HK0 due to their definitions and every t 2 TE(a) has norm a.
Hence,

NmK0/K HK0 � HK .

⌅
Lemma 3.6.4

The group HK is divisible.

Proof: Let n be a positive integer greater than 1. The objective is to establish that nHK = HK .
Let a 2 HK . For every E/K finite such that n

p
1K 2 E, we denote

D(E) = {b 2 K⇥|bn = a, b 2 NmE/K E⇥}.

This set is proven to be nonempty since a = NmE/K a0 for some a0 2 HE, where a0 = cn for
some c 2 E (according to Proposition 3.5.1). Thus,

NmE/K(c)
n = NmE/K(a

0) = a.

Hence, b := NmE/K(c) 2 D(E). Moreover, every set D(E) is finite since E/K finite and
D(E) \D(E 0) � D(E · E 0) 6= ; for every finite extensions E and E 0 of K. This implies there
exists b 2 D(E) \D(E 0) \HK has an n-th power of a. ⌅
Lemma 3.6.5

HK = {1}.

Proof: Select a prime of K. Define Wm,n = U (m) ⇥ ⇡nZ. It follows that Wm,n constitutes an
open subgroup of finite index in K⇥, and therefore encompasses HK . Consequently, HK ⇢T

m,n
Wm,n = {1}. ⌅

Lemma 3.6.6

Every subgroup J of K⇥ with finite index and containing UK is a norm group.

Proof: Consider the map
ordK : K⇥ ! Z,

which is surjective and Ker(ordK) = UK . Hence, every subgroup J ⇢ K⇥ is of the form
ord�1

K
(mZ) for some integerm � 1. LetKm/K be unramified extension with [Km : K] = m. We

know that NmKm/K(K⇥m) is a subgroup ofK⇥ and it contains UK . Moreover, ordK NmKm/K(K⇥m) =
mZ. This proved our statement. ⌅
To proceed, we will now prove the theorem:
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Proof: (of the Existence Theorem)
We denote N to be the set of all norm groups of K⇥, and define HK =

T
N2N

N . Suppose J
is a finite index subgroup of K⇥. Since HK is divisible, we have J � HK , which implies

\

N2N

(N \ UK) ⇢
\

N2N

N ⇢ J.

This leads to (UK \N) \J = ;. Since all the sets are compact, there is a subfamily with empty
intersection. As any two sets N \ UK contain a third, it follows that J � N \ UK for some N .
Consider a norm group N such that N \ UK ⇢ J . Consequently, we have

I � N \ (UK · (N \ I)).

Each element from this intersection can be expressed as ab, where a 2 UK and b 2 N \ I,
with the property that ab 2 N . According to the previous two lemmas, this means a 2 N and
therefore a 2 N \ UK ⇢ I, ensuring ab 2 I. Given that N \ I has a finite index in K⇥, and
this is also the case for both N and I, the quotient K⇥/N \ I embeds into (K⇥/N)⇥ (K⇥/I).
Thus, UK · (N \ I) represents a finite-index subgroup of K⇥ that includes UK , qualifying it as a
norm group, as per the previous lemma. Moreover, since N \ (UK · (N \ I)) is the intersection
of two norm groups, it includes a norm group. This results in I containing a norm group, which
shows that I itself is a norm group. ⇤
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Conclusion

In this thesis, we have presented the following.

1. The construction of Cohomology of groups and Homology of groups and their basic prop-
erties. Moreover, we gave constructions of the Tate groups and cup-product to prove the
Tate’s theorem - one of the most important result in Local Class Field theory.

2. The construction of Local Artin map and prove the Local Reciprocity Law theorem.

3. Finally, we gave proofs to the Local Kronecker-Weber theorem and the Existence theorem.
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