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ABSTRACT

Problem Statement

Deep learning is a powerful tool for various machine learning tasks,
relying heavily on large training datasets. However, concerns over privacy
have led to the adoption of federated learning, which allows for collabora-
tive model training while keeping data on local devices. Despite its benefits,
federated learning faces challenges such as indirect data leakage, prompt-
ing research into privacy-preserving techniques like differential privacy and
cryptographic methods. While these methods offer improved security, they
may impact model accuracy and introduce computational complexities. This
thesis seeks to enhance secure multiparty computation (SMC) protocols to
address these challenges and improve the efficiency and security of federated
learning in real-world scenarios.

Thesis Objectives

The research objectives of this thesis are as follows:

• Crafting robust and efficient SMC protocols to precisely compute the
sum of real-number vectors within a semi-trusted environment suscep-
tible to collusion.

• Proposing new distributed deep learning training frameworks that guar-
antee both accuracy and efficiency by seamlessly incorporating feder-
ated learning strategies and the novel proposed SMC protocols.

Main Contributions

The thesis makes the following contributions:

• The first contribution involves proposing three novel SMC protocols
designed to accurately compute the sum of real-number vectors within
a semi-trusted environment prone to collusion by n−2 out of n parties.

• The second contribution entails the development of new distributed
deep learning training frameworks that ensure both accuracy and effi-
ciency by seamlessly integrating federated learning strategies and pro-
posed SMC protocols.
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Thesis organization

The primary thesis content unfolds across three chapters, excluding the
Abstract and Conclusion.

• Chapter 1: Introduction navigates the landscape of Privacy-Preserving
Deep Learning, assessing three key approaches: input sharing, model
sharing, and output sharing. The thesis focuses on resolving challenges
in training distributed deep learning networks through a model-sharing
paradigm, which involves sharing parameters from local models to im-
prove a global model’s accuracy while protecting local training data.
However, sharing parameters poses vulnerabilities to attacks like mem-
bership inference and model inversion, leading to data leakage. To
mitigate these risks, the thesis proposes a fusion of SMC techniques to
compute real-number vectors sum, aiming to synthesize a global model
without compromising data from shared local models.

• Building on a deep analysis of the limitations of certain SMC protocols
when applied to federated learning (FL) problems in Chapter 1, this
dissertation proposes three novel secure multi-party summation proto-
cols for privacy-preserving federated learning. These protocols include
secure multi-party summation with integer quantization, secure multi-
party vector summation using a masking matrix, and secure multi-party
summation without requiring pre-established secure and authenticated
communication channels. These protocols enable efficient computa-
tion of the sum of real-valued vectors while safeguarding against col-
lusion of up to n−2 participants, including the aggregation server.

• Chapter 3 assesses the implemented proposed SMC protocols within
federated learning models, exploring their performance in centralized
and decentralized network settings. It encompasses evaluation scenar-
ios across three datasets: MNIST, SMS Spam, and CSIC2010. More-
over, it examines three network topologies – CNN, LSTM, and CLCNN
– within these evaluation scenarios.
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CHAPTER 1. PRIVACY PRESERVING DEEP LEARNING

This chapter reviewed the challenges of privacy-preserving deep learn-
ing and key approaches to address them. Federated Learning shows promise
for safeguarding privacy in neural network training, while cryptographic tech-
niques offer secure parameter sharing. However, cryptographic methods face
two major limitations: risks of collusion from key sharing and difficulties in
handling real numbers, leading to potential precision loss. The foundational
work from Chapter 1 has been published in Publication 1.

1.1. Deep learning

Deep learning involves multiple layers of abstraction, from data pre-
processing to designing deep neural networks for capturing complex patterns.
However, this approach faces challenges in terms of large data requirements
and the high computational power needed for training.

1.2. Privacy-preserving Deep Learning

The efficiency of Deep Neural Networks heavily relies on the size of
training datasets. Collaborative training of a global model faces a major hur-
dle: sharing local data among all parties. In response to privacy issues in
collaborative deep learning, the concept of privacy-preserving deep learning
has emerged [1].

1.3. Privacy Primitives

1.3.1. Anonymization

To protect privacy during model training, data is separated from its
owner’s identity, but simple anonymization (e.g., removing names) is often
insufficient, as demonstrated by the Netflix Prize case.

1.3.2. Cryptographic techniques and Secure Multiparty Computation

1.3.2.1. Basic Concept

Definition 1.3.1. Let K (K ≥ 2) denote the cardinality of the set of mem-
bers participating in the distributed computing network. Each member i ∈
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{1,2, . . . ,K} possesses an input xi ∈ Xi. The function f is defined as a multi-
party computing function as follows:

f : X → Y

x̄ = (x1,x2, . . . ,xK) 7→ f (x̄) = ( f1(x̄), f2(x̄), . . . , fK(x̄))
(1.3.1)

where X = {x̄ : x̄ = (x1, . . . ,xK)} and Y = {y : y = ( f1(x̄), . . . , fK(x̄))} and Xi

is value space for each xi.

1.3.2.2. Threat models

In Secure Multi-Party Computation (SMC), adversarial attacks are clas-
sified by behavior, power, and corruption type. Adversaries are either semi-
honest or malicious based on their behavior, and computationally bounded or
unbounded by their attack capabilities. They are also categorized as static or
adaptive, depending on how they select targets for corruption.

1.3.2.3. Security definition

The dissertation applies a standard definition of security for multi-
party computation protocols within the semi-honest model, utilizing the pub-
lic communication channels of O. Goldreich. [2].

Key techniques in SMC include oblivious transfer, homomorphic en-
cryption, and secret sharing.

1.3.3. Data obfuscation techniques

Data obfuscation techniques involve altering or generating data from
the original dataset to train a model. These include additive and multiplicative
perturbation, generative obfuscation, and data synthesis.

1.4. Privacy-Preserving Deep Learning: A Review

The literature examines three approaches to address these challenges.
The first approach involves sharing local datasets directly in noisy or en-
crypted forms, followed by specialized learning algorithms [3–7]. This method,
known as the ”data sharing approach,” utilizes techniques like homomorphic
encryption (HE), SMC, secret sharing, or adding noise.
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PATE [8] is another approach in privacy preserving deep learning. In
this second approach, instead of sharing local training datasets, participants
or ”teachers” share their knowledge of the predictive output to a ”student”
server model. Then the ”student” server trains the student public model by
using a public unlabeled dataset on the ensemble results from teacher models.

Distributed learning, particularly federated learning, is the predomi-
nant method for training deep learning models today. It addresses direct data
leaks by exchanging intermediate training models instead of sharing local
data directly. However, sharing model parameters directly can introduce vul-
nerabilities to indirect data leakage through attacks like model inversion or
membership inference. As a result, studies have integrated techniques such
as DP and SMC to enhance the security of sharing model parameter vectors.

DP methods often require a trade-off between model accuracy and pri-
vacy. Less noise enhances training model accuracy but raises vulnerability to
attacks causing indirect data leakage. Consequently, there’s promise in utiliz-
ing SMC in Federated Learning. However, SMC in Federated Learning faces
two notable limitations.

• The first limitation concerns the need for participants to share the same
key, rendering SMC vulnerable to collusion scenarios.

• The second limitation relates to efficiency in handling floating-point
real number. Parameter vectors require conversion to large integers,
significantly restricting computational capabilities of SMC protocols.

Thus, there’s a pressing need to devise SMC protocols adept at han-
dling collusion among multiple parties and maintaining accuracy with floating-
point real number vectors in Federated Learning settings. This thesis seeks
to address these limitations by proposing practical SMC protocols for pre-
serving privacy during distributed training of deep learning models within
Federated Learning frameworks. The main goal is to introduce SMC proto-
cols capable of effectively operating with floating-point real number vectors
in distributed multi-party environments, even in the presence of collusion.

1.5. Comparison of the PPDL Approach and Existing Limitations

The input sharing approach, aimed at enhancing security, often in-
volves noise addition or cryptography. However, noise addition weakens
security by making data susceptible to inference attacks and reduces model
accuracy due to data distortion. While SMC improves security, it poses sig-
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nificant challenges to model adaptation, increasing computational and com-
munication complexity. It also relies on key sharing, limiting security to
two-party computations, making it more suitable for prediction than training.

Output sharing impacts model accuracy due to errors from teacher
models and requires public data and high-quality local models, which is im-
practical in distributed training environments with limited data.

Model sharing, split into split learning and federated learning, offers
different trade-offs. Split learning shares parameters across specific layers
but struggles with accuracy and participant limitations due to information
leakage. Federated learning, however, is the most practical solution for dis-
tributed deep learning, balancing accuracy and execution cost while prevent-
ing direct data leakage. Still, it remains vulnerable to indirect leakage via
exposed model parameters. To mitigate this, techniques like Differential Pri-
vacy (DP) and SMC are proposed, though DP sacrifices accuracy. Federated
Learning combined with SMC emerges as a promising research direction,
offering a balance between security and performance.

However, integrating Federated Learning with SMC faces key chal-
lenges:

• Participants must share cryptographic keys directly or via a trusted in-
termediary, which is vulnerable to collusion.

• Real number transformation into large integers increases computational
load and slows down both calculation and data transmission.

1.6. Chapter Summary

This chapter has discussed the problem of ensuring privacy for deep
learning, various approaches, and the pros and cons of each approach. From
there, the dissertation identifies a focus on researching the problem of ensur-
ing privacy for the training process of distributed deep learning networks, or
more specifically, federated learning models. Through analysis, the disserta-
tion also concludes that this training process essentially requires computing
the sum of real-number vectors. Therefore, the dissertation will propose ef-
ficient protocols for computing the sum of real-number vectors to serve this
purpose.
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CHAPTER 2. PROPOSING SOME FLOATING POINT REAL

NUMBER SECURE MULTI-PARTY VECTOR SUM
PROTOCOLS

This chapter introduces three robust protocols for securely aggregating
real-valued vectors, designed to withstand collusion. The detailed documen-
tation of these protocols can be found in Publications 3, 5, 6, and 7.

2.1. Cryptography preliminaries

This research is based on two crucial foundations in the field of cryp-
tography, namely the discrete logarithm problem on elliptic curves and on
finite fields.

2.2. Secure Multi-Party Vector Sum Protocol with Integer quantization

2.2.1. Proposed protocol

The proposed protocol is summarized in Fig. 2.1.
2.2.2. Estimation error evaluation

Theorem 2.2.1. The proposed protocol can approximate the sum of n vec-
tors with the error bound of each j-th component calculated by the formula

∆S( j) =

√
(δ

( j)
1 )2 +(δ

( j)
2 )2 + . . .+(δ

( j)
n )2 ≤ d(n+1). Here, d is the number

of decimal digits for rounding.

2.2.3. Privacy analysis

Theorem 2.2.2. The protocol for secure n-clients sum presented in Fig pro-
tects each honest client’ privacy against the server and up to (n− 2) cor-
rupted clients.

2.2.4. Performance Evaluation

2.2.4.1. Computational cost

The computational overhead for generating shared values and the time
cost of performing secure aggregation (based on the Shank algorithm) are
depicted in Figure 2.2. The results demonstrate that the protocol incurs low
execution costs, making it well-suited for practical real-world application sce-
narios.
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Input:
• Each party Ui has private vector Wi = {W ( j)

i ,1≤ j ≤ model size}.
• Each party Ui has two private key vectors: xi = {y( j)

i },yi = {y( j)
i }.

• System parameters: the exponential factor (γ), Zp and generator g.
Output: Approximate vector sum: W̃ = ∑

n
i=1Wi.

Phase 1: Initialization Phase
• Each party Ui sends its public key vectors {X ( j)

i }= {gx( j)
i },{Y ( j)

i }= {gy( j)
i },

and normalization factor (minWi +σi,maxWi +σ ′i ) to server.

• The server computes: X =

{
n
∏
i=1

X ( j)
i

}
; Y =

{
n
∏
i=1

Y ( j)
i

}
for 1≤ j ≤ model size

and Wmax = maxn
i=i(maxWi +σ ′i ) and Wmin = minn

i=i(minWi +σi)
then sends them back to all clients.

Phase 2: Main phase

• Each client quantize parameter vectors W̃ ( j)
i ← W ( j)

i −Wmin
Wmax−Wmin

10γ , for 1≤ j ≤ model size.
• Each party Ui encrypts his model’s secret parameter vectors:{

V ( j)
i = X ( j)y( j)

i

Y ( j)x( j)
i

gW̃ ( j)
i

}
for 1≤ j ≤ model size and sends to the server.

• The server then computes {V ( j)}=
{

∏
n
i=1V ( j)

i

}
for 1≤ j ≤ model size.

• The server performs Shank’s algorithm to find S( j) with:
gS( j)

=V ( j) for 1≤ j ≤ model size.
• The server computes the vector sum by computes: S( j)

10γ (Wmax−Wmin)+Wmin

Figure 2.1: Secure Vector Sum Protocol based on Integer quantization and
Elgamal cryptosystem

(a) The average compute share values
time at decimal precision levels of 2,

3, and 5

(b) Computational time for the secure
aggregation of different model size at

decimal precision levels

Figure 2.2: Computation Cost at compute share values and secure
aggregation phase with SVS1 Protolcol
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2.2.4.2. Communication cost

The bandwidth consumption at the Client and Server for each round
of the protocol is outlined in Table 2.1. The results indicate that the protocol
demands four times the bandwidth compared to a model without privacy pro-
tection. However, this trade-off is likely acceptable in practical applications,
given the enhanced privacy guarantees.

Client i Server
Round 1 2×model size×key size 2×model size×key size×n
Round 2 model size×key size model size× real number size×n

Table 2.1: Communication Cost per Round

2.3. Secure multi-party sum protocol using mask matrix with Modified
ECC protocol

2.3.1. Proposed Protocol

Using an elliptic curve analog of the ElGamal system, the proposed
scheme allows multi parties jointly compute the sum of their private messages
without revealing the actual values. The proposed protocol is summarized in
Fig. 2.3.

2.3.2. Proof of correctness

Theorem 2.3.1. The proposed protocol in the Figure 2.3 can calculate the
sum of n vectors.

We prove that
n
∑

i=1
Ti is equal to

n
∑

i=1
Wi, which implies that T =

n
∑

i=1
Wi.

2.3.3. Privacy analysis

Theorem 2.3.2. The protocol for secure n-clients sum presented in Figure
2.3 protects each honest client’ privacy against the server and up to (n− 2)
corrupted clients (and colluding with the server) in semi-honest model.
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Input:
• Each party Ui has private matrix W i = [W (k j)

i ];1≤ j,k ≤ d.
• Each party Ui has four private key matrices: pi = [p(k j)

i ],qi = [q(k j)
i ],ci = [c(k j)

i ],di = [d(k j)
i ].

• Each party Ui has four private random matrices: Mi,Ni,ri,si.
• System parameters: Elliptic Curve E(Zq) with order q and generator point G.

Output: Sum vector: W = ∑
n
i=1Wi.

Phase 1: Initialization Phase
• Set up system parameters E(Zq) and generator point G.
• Each party Ui sends its public keys Pi = {p(k j)

i G},Qi = {q(k j)
i G},

and Ci = {c(k j)
i G},Di = {d(k j)

i G} to server.

• The server computes and broadcasts: P =
n
∑

i=1
Pi,Q =

n
∑

i=1
Qi,C =

n
∑

i=1
Ci,D =

n
∑

i=1
Di.

Phase 2: Main phase
• Each party Ui computes and send his model’s public parameter vectors to the server:
Ai = Mi + ri,Bi = Ni + si,

Ri = {r(k j)
i G+q(k j)

i P(k j)− p(k j)
i Q(k j)},Si = {s(k j)

i G+ c(k j)
i D(k j)−d(k j)

i C(k j)}
• The server then computes R =

n
∑

i=1
Ri,S =

n
∑

i=1
Si and find r and s that each element satisfy

r(k j)G = R(k j) and s(k j)G = S(k j) and send M =
n
∑

i=1
Ai− r,N =

n
∑

i=1
Bi− s to all clients

• Each party computes Ti =Wi +MiN−MNi and sends Ti to the server

• The server obtain the sum of all clients’ messages as T =
n
∑

i=1
Ti =

n
∑

i=1
Wi =W .

Figure 2.3: Secure Vector Sum Protocol based on Mask matrix combine
with ECC cryptosystem

2.3.4. Performance evaluation

2.3.4.1. Computational cost

The computational overhead for generating shared values and the time
cost of performing secure aggregation (based on the Shank algorithm) are
depicted in Figure 2.4. The results demonstrate that the protocol incurs low
execution costs, making it well-suited for practical real-world application sce-
narios.

2.3.4.2. Communication cost

The bandwidth costs for the Client and Server at each round of the
protocol are presented in Table 2.2. The results indicate that this protocol
demands significantly more bandwidth compared to the first proposed pro-
tocol. However, for scenarios requiring high precision, this protocol offers
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(a) The average compute share values
time

(b) Computational time for the secure
aggregation

Figure 2.4: Computation Cost at compute share values and secure
aggregation phase with SVS2 Protolcol

lower computational costs. Therefore, it remains a viable option for practical
applications.

Client i Server
Round 1 4×model size×key size 4×model size×key size×n
Round 2 4×model size× real number size+2×model size×key size 2×model size× real number size×n
Round 3 model size× real number size model size× real number size×n

Table 2.2: Bandwidth costs per round for Client and Server

2.4. Secure multi-party sum protocol using mask matrix with Authenti-
cation

2.4.1. Proposed protocol

The proposed protocol is summarized in Fig. 2.5.
2.4.2. Proof of correctness

Theorem 2.4.1. The proposed protocol in the Figure 2.5 can calculate the
sum of n vectors.

We can obtain: V = (T −Q)H−1 =
(
∑

N
i=1 vi

)
HH−1 =

N
∑

i=1
vi.
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Input:
• Each party Ui has private matrix W i = [W (k j)

i ];1≤ j,k ≤ d.
• Each party Ui has two private key matrices: xi = [x(k j)

i ],yi = [y(k j)
i ].

• System parameters: Finite Field Zp, generator g and invertible matrix H of size d×d.
Output: Sum vector: W = ∑

n
i=1Wi.

Phase 1: Initialization Phase
• Each party Ui sends its public keys {X ( jk)

i }= {gx( jk)
i },{Y ( jk)

i }= {gy( jk)
i } to server.

• The server computes: {X ( jk)}=
{

n
∏
i=1

X ( jk)
i

}
; {Y ( jk)}=

{
n
∏
i=1

Y ( jk)
i

}
and

sends them back to all clients.
Phase 2: Main phase

• Each party Ui the public mask: R( jk)
i = gr( jk)

i X ( jk)y( jk)
i

Y ( jk)x( jk)
i

and messages Ti = viH + ri

then sends to the server.

• The server then computes {M( jk)
s }= {

n
∏
i=1

R( jk)
i } and find Q satisfy gQ( jk)

= M( jk)
s .

• The server obtains the vector sum by compute: V =
n
∑

i=1
vi = (T −Q)H−1.

Figure 2.5: SVS Protocol based on mask matrix and ElGamal cryptosystem

2.4.3. Privacy analysis

This section of the dissertation establishes that (i) each user Ui, with
parameters Pi,ri,si, is successfully authenticated, (ii) the protocol is provably
secure against potential attacks within the random oracle model, and (iii) the
protocol demonstrates resilience to collusion involving up to n− 2 partici-
pants, including the aggregation server.

Theorem 2.4.2. The multi-party sum protocol using El-Gamal is secure against
any semi-honest participating clients.

Theorem 2.4.3. The multi-party sum protocol using El-Gamal protects the
confidential data of any participating client even if there are n-2 colluding
members (and colluding with the server).

2.4.4. Performance evaluation

2.4.4.1. Computational cost

Figure 2.6 illustrates the computational overhead for generating shared
values and the time required for secure aggregation using the Shank algo-
rithm. The results show that the protocol maintains low execution costs,
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making it an efficient and practical choice for real-world applications.

(a) The average compute share values
time

(b) Computational time for the secure
aggregation

Figure 2.6: Computation Cost at compute share values and secure
aggregation phase with SVS3 Protolcol

2.4.4.2. Communication cost

The bandwidth requirements for the Client and Server in each round
of the protocol are detailed in Table 2.3. The results show that the protocol
requires four times the bandwidth of a model without privacy safeguards.
However, this increase in bandwidth is a reasonable trade-off in real-world
applications, as it ensures stronger privacy protection.

Client i Server
Round 1 2×model size×key size 2×model size×key size×n
Round 2 model size× (2×key size+ real number size) model size× real number size×n

Table 2.3: Communication Cost per Round

2.5. Chapter Summary

This chapter has analyzed and proposed three new secure real-number
summation protocols. The proposed protocols have been proven secure in
the semi-honest model. The evaluations have also demonstrated their effec-
tiveness. Therefore, the proposed protocols are capable of being applied to
real-world problems that require secure computation of sum values or fre-
quencies.
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CHAPTER 3. DEVELOPING FEDERATED LEARNING

SCHEME BASED ON PROPOSED SECURE MULTIPARTY
SUM PROTOCOLS

3.1. Secure federated learning framework with semi-trusted server

3.1.1. Proposed framework

Here is a summary of the centralized framework embedding the secure
sum protocols:

Framework 1: Secure federated learning framework with semi-trusted aggre-
gator server

Input: A semi-trusted aggregator server and set of n clients U =U1,U2, . . . ,Un each
with a corresponding private dataset Di of sizes mi.
F : Fraction of clients participating per communication round, W 0 (initial global
model).
Output: Trained global model W .
Training Procedure:
The training phase entails T communication rounds. Each round, denoted as t, com-
prises the following operations:

• The server selects nt = F×n clients for the current training round.

• Phase (1) - Compute public share values:
– Client-side (executed by nt clients in parallel): Send the public values

corresponding to the client’s private values to the server.
– The semi-trusted aggregator server: Compute the public shared val-

ues and distribute them, along with the global model W t , to all clients
participating in the round.

• Phase (2) - Secure Sum Computation:
– Client-side (executed by nt clients in parallel):

* Trains the model W t on its data Di over E epochs, yielding W t+1
i .

* Transmits the masked W t+1
i : Mask(W t+1

i ), after applying trans-
formations based on secret values, to the server.

– The semi-trusted aggregator server:

* Execute the secure sum computation phase with
Mask(W t+1

i ),1≤ i≤ nt to obtain the global model:

W t+1←
n

∑
i=1

mi

M
W t+1

i .

* Send the updated global model W t+1 to all clients.
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The framework’s operation is depicted in Framework 1, where Phase
(1) - Compute Public Share Values and Phase (2) - Secure Sum Compu-
tation represent the execution stages of the SMC protocols in Chapter 2.

3.1.2. Experimental setup

Experiments were conducted on three datasets—CSIC2010, MNIST,
and SMS-Spam—to examine the impact of various factors on the global
model’s performance, using CLCNN, CNN, and LSTM as the respective net-
work architectures.

3.1.3. Experimental results and evaluation

3.1.3.1. The overall model performance

Centralized federated learning framework with secure multi-party
sum protocol using masking matrix

• Varying the number of the clients. The first experiment involves eval-
uating the performance of the global model under varying numbers of
clients. The ElGamal multiparty secure sum protocol was employed
to train the framework over 50 communication rounds. Figure 3.1
presents the study outcomes with three datasets: CSIC2010, MNIST,
and SMS-Spam.

Figure 3.1: The results on accuracy with different number of clients.

• Varying the dropout rate at each communication rounds. Figure 3.2
shows the impact of different dropout rates on the model’s perfor-
mance. Systematic evaluations were performed at dropout rates of 0%,
10%, 20%, 30%, 40%, and 50%, respectively.

Upon careful examination, it is evident that the outcomes obtained us-
ing the secure sum protocol employing ElGamal cryptography closely align
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Figure 3.2: The results on accuracy with different dropout rates.

with the results from experimenting with the secure sum protocol using ECC
cryptography. This alignment is attributed to preserving model parameters in
their original float number format, ensuring the integrity of the total number
of desired models.

Centralized federated learning framework with secure multi-party
sum protocol using quantization technique

• Impact of the number of decimal places

As illustrated in Figure 3.3, it becomes evident that rounding the model
parameters to a mere 3 digits results in a substantial reduction in accu-
racy. Conversely, employing higher encoding precision settings (i.e.,
5 and 10 decimal places) yields only negligible variations in perfor-
mance. It is worth noting that lower encoding precision not only com-
promises model accuracy but also adversely affects the convergence
rate, with the model requiring additional time to converge.

Figure 3.3: The result on accuracy for different precision levels.

When the decimal place is fixed 3, Figure 3.4 shows the accuracy of
the framework with the variation of the number of clients.
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Figure 3.4: The accuracy value with 3 decimal places when varying the num-
ber of clients.

3.1.3.2. The overall performance when the distribution of data across
clients is non-IID

• Varying the number of the clients. Figure 3.5 show that increasing the
number of clients does not necessarily lead to better performance. As
the number of clients increases, the diversity of the data may increase.
However, the challenges associated with coordinating the clients and
aggregating their updates also increase. This is visible in the 50 clients
case where the model seems to struggle to find a good convergence
pattern.

Figure 3.5: The results on accuracy and loss with different number of clients
with non IID.

• Varying the dropout rate at each communication rounds. Figure 3.6
show the accuracy of the global model with different dropout rate with
non IID.
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Figure 3.6: The results on accuracy with different dropout rates.

3.1.3.3. Comparing the accuracy of the framework with other strategies.

The obtained results are shown in Table. 3.1.

Table 3.1: Compare performance with different strategies

Method
Data

IID Non-IID
MNIST CSIC 2010 SMS Spam MNIST CSIC 2010 SMS Spam

Standalone .9658 .9448 .9203 .314 .6103 .8821
Centralized .9943 .9676 .9806 .9943 .9676 .9806
Fed-Avg (small noise) .9741 .9469 .9147 .9454 .9442 .8173
Fed-Avg (large noise) .9659 .8745 .6397 .8954 .7214 .5634
Selective learning .9629 .9575 .9619 .9724 .8534 .9662
FedAvg + SMC 1 .9942 .9685 .9728 .9882 .9433 .9762
FedAvg + SMC 2 .9913 .9654 .9692 .9869 .9621 .9793
FedAvg + SMC 3 .9913 .9654 .9692 .9869 .9621 .9793

3.2. Secure federated learning framework in decentralized network set-
tings

3.2.1. Proposed framework

This section implements three security protocols within the decentral-
ized, federated learning framework. Here is a summary of the framework:
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Framework 2: Decentralized federated learning framework with secure multi-
party sum protocol

Input: Set of n clients U = U1,U2, . . . ,Un with private datasets Di of sizes mi.
F : Fraction of clients participating per communication round. Hyperparameters: T
(number of communication rounds), E (number of local epochs), B (local mini-batch
size), W 0 (initial global model). Output: Trained global model W .
Training Procedure:
The training phase entails T communication rounds. Each round, denoted as t, com-
prises the following operations:

• Clients engage in a voting process to find a master node, Umaster. The master
node chooses nt = F×n clients for the current round.

• Phase (1) - Compute public share values:
– Client-side operations (executed by nt clients in parallel): Send the

public values corresponding to the client’s private values to the master
node.

– Master node operations: Compute the public shared values and dis-
tribute them, along with the global model W t , to all other clients par-
ticipating in the round.

• Phase (2) - Secure Sum Computation:
– Client-side operations (executed by nt clients in parallel):

* Locally train the model W t on its data Di over E epochs, yielding
W t+1

i .

* Compute mask values for W t+1
i using the corresponding client i

private keys.

* Transmit the masked local model Mask(W t+1
i ) to Umaster.

– Master node operations:

* Locally train the model W t on its data Dmaster over E epochs,
producing W t+1

master.

* Combine the received masked models and its own model, and
execute the secure sum computation phase to obtain the global
model:

W t+1←
nt

∑
i=1

mi

m
W t+1

i +
mmaster

m
W t+1

master.

* Transmit the global model W t+1 to all clients.

3.2.2. Experimental setup

Experiments were conducted using the MNIST and UCI SMS Spam
to assess the proposed framework. This section presents the efficiency of the
proposed framework in handling IID, Non-IID, and imbalanced data.
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3.2.3. Experimental results and evaluation

Overall model performance. Table 3.2 shows the performance of the
Secure Decentralized Training Framework (SDTF). After 100 communica-
tion rounds, the framework achieved 97.6% accuracy on the IID dataset and
93% on the Non-IID dataset, demonstrating its strong performance and high
accuracy despite variations in local parameters.

Table 3.2: The results on accuracy for different local training parameters on
MNIST CNN (IID and Non-IID)

MNIST CNN IID MNIST CNN Non-IID

Model accuracy comparison. The second experiment compares the
proposed framework’s accuracy with six other training strategies for a CNN
model during the first 100 communication rounds. The cooperation results
are presented in Table 3.3. The proposed framework performed better than
most of the provided CNN model in this scenario with the accuracy of 98.57%
after 100 communication rounds.

Table 3.3: Model accuracy comparison: balanced dataset
Selective

10%
Selective

50%
FedAVG Downpour

SGD
CNN

Centralize
CNN

Standalone
SDTF

Large
Noise

Small
Noise

5 0.7436 0.8141 0.75 0.899 0.8913 0.9756 0.9061 0.9616
10 0.7902 0.8417 0.802 0.901 0.9295 0.9824 0.9341 0.9798
20 0.8171 0.8686 0.866 0.934 0.9518 0.9889 0.9354 0.9803
50 0.8214 0.8991 0.871 0.945 0.9768 0.9901 0.9355 0.9843
100 0.8862 0.9105 0.88 0.96 0.9817 0.9912 0.9479 0.9857

Impact of Dropped Nodes Ratio on Performance. This section eval-
uates the proposed framework’s performance under varying node dropout ra-
tios. With a fixed batch size of 5 and 10 local epochs, the evaluation occurs
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at the 5th, 10th, 20th, 50th, and 100th rounds. Dropout ratios of 1%, 5%,
10%, and 20% are tested, corresponding to 99%, 95%, 90%, and 80% node
participation per round. The results are shown in Table 3.4.

Table 3.4: Results on the framework’s performance for the dropped nodes on
the MNIST dataset.

MNIST CNN IID MNIST CNN Non-IID

Imbalanced datasets. The Long Short-Term Memory (LSTM) model
is employed for this scenario. A comparison is drawn between the Secure De-
centralized Training Framework (SDTF) and five different training strategies:
selective learning with 10%, selective learning with 50%, DownpourSGD,
federated learning, and LSTM centralized. The results are presented in Table
3.5.

Table 3.5: Model accuracy comparison: imbalanced dataset
Selective
10%

Selective
50%

Downpour
SGD

FedAVG
LSTM
Centralize

LSTM
standalone

SDTF

5 0.9499 0.9507 0.9634 0.9568 0.9676 0.8645 0.9658
10 0.9551 0.9542 0.9641 0.9563 0.9689 0.867 0.9677
20 0.9559 0.9561 0.9684 0.9683 0.9782 0.9052 0.9686
50 0.9623 0.9678 0.9719 0.9696 0.9788 0.9134 0.9695
100 0.9688 0.9692 0.9726 0.9719 0.9813 0.9257 0.9721

3.3. Chapter Summary

This chapter introduced two distributed deep learning training proto-
cols based on the secure real-number vector summation methods from the
previous chapter. Evaluation on the MNIST, SMS Spam, and CSIC 2010
datasets showed that the resulting models achieved high accuracy, outper-
forming other methods, demonstrating the protocols’ practical applicability.
These findings are detailed in Publications [2,3,4,5,6,7].
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CHAPTER 4. CONCLUSION AND FUTURE WORK

Deep learning has emerged as a powerful tool in various machine learn-
ing domains, including image classification, speech recognition, natural lan-
guage processing (NLP), and bioinformatics. However, leveraging deep learn-
ing effectively relies heavily on access to large amounts of data for training.
Federated learning, pioneered by Google Brain, offers a solution by allow-
ing training data to remain on local devices while a shared model is learned
through aggregated updates.

However, sharing model parameters in federated learning can inadver-
tently compromise user privacy. Current research focuses on addressing this
issue through methodologies such as differential privacy or cryptographic-
based approaches like secure multiparty computation (SMC). While cryp-
tographic approaches offer promising solutions for enhancing both security
and efficiency, challenges remain, particularly in converting floating-point
real numbers into integers, which is computationally demanding and can lead
to accuracy loss.

To address these challenges, this thesis proposes three secure multi-
party sum protocols tailored for floating-point real number vectors in semi-
honest collision scenarios. These protocols ensure differential privacy and
computational security while minimizing communication and processing costs.
Despite their high efficiency, they lack data authentication and are vulnerable
to membership spoofing attacks. Therefore, a novel protocol combining ran-
dom noise masking, the ElGamal cryptosystem, hashing methods, and digital
signatures is introduced to tackle these issues.

Empirical evaluations on various datasets and deep neural network ar-
chitectures demonstrate the proposed methodology’s effectiveness, achieving
high accuracy levels even in distributed networks with non-IID and imbal-
anced data distributions. Furthermore, the proposed protocols are designed to
withstand collusion among n−2 parties, ensuring privacy in privacy-preserving
deep learning.

Looking ahead, it is essential for the research community to develop
new SMC protocols tailored to evolving distributed computing scenarios and
future cryptographic advancements, such as post-quantum cryptography. Ad-
ditionally, integrating SMC into input sharing approaches and ensemble learn-
ing can further enhance efficiency and address specific training model cases
under certain conditions.
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