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1

INTRODUCTION

1. Motivation

Deep learning (DL) has rapidly become a game-changer in the realm of ma-

chine learning, driving advancements across a wide range of applications, including

image and speech recognition, natural language processing, and bioinformatics [1].

Its remarkable performance is intrinsically linked to the vast amount of data available

for training. However, this dependence on large datasets raises significant privacy

concerns, especially when dealing with sensitive information like personal health

records, financial transactions, and confidential communications. In response to these

challenges, the field of Privacy-Preserving Deep Learning (PPDL) has emerged to en-

sure that such data can be utilized without compromising privacy [2].

To address this challenge, Google Brain pioneered federated learning (FL), a

groundbreaking technique that enables model training without requiring raw data to

leave individual devices. Instead, FL facilitates the collaborative construction of a

shared model by aggregating locally computed updates, ensuring that users’ private

data remains protected throughout the training process [3].

FL utilizes parameter averaging [4], which while preventing direct data leak-

age, can lead to unintentional information disclosure and compromise participant pri-

vacy [5]. Recent research focuses on mitigating this by incorporating differential

privacy (adding noise) or cryptographic methods (secure multi-party computation) to

enhance security during parameter sharing. However, despite these advancements,

there’s still room for improvement in security and efficiency when sharing local mod-

els [6].

Differential privacy (DP) techniques often require a trade-off between accu-

racy and privacy [7]. While they provide a layer of privacy protection, they are not

immune to vulnerabilities and can still be susceptible to certain types of attacks, such

as membership inference or model inversion, which may compromise the privacy

of individuals. On the other hand, cryptographic methods, especially Secure Multi-
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Party Computation (SMC) protocols, offer a promising avenue for achieving both

privacy and efficiency [8]. However, several challenges remain that hinder the practi-

cal application of these cryptographic approaches. Key limitations include the need to

safeguard against collusion among participating parties, which remains a significant

hurdle. Additionally, converting real numbers to integers for SMC computations can

result in accuracy degradation, along with increased communication overhead and

higher computational costs during the training process. Moreover, many advanced

protocols require the continuous involvement of all parties, which can be imprac-

tical in complex, real-world scenarios involving heterogeneous and geographically

distributed networks.

This thesis addresses these crucial limitations by proposing and enhancing

SMC protocols to enable secure and efficient federated learning in practical scenarios.

2. Thesis Objectives

Driven by the pressing need highlighted in this thesis, the dissertation focuses

on enhancing the security of distributed deep learning model training by integrating

FL with SMC techniques. Specifically, it tackles the challenge of protecting the pri-

vacy of parameter sharing among local models, particularly in scenarios where partic-

ipants are semi-trusted and the possibility of collusion exists. This issue is especially

critical in contexts involving a large number of participants, where current solutions

have proven inadequate.

To achieve this goal, the research focuses on two key objectives:

• Developing efficient secure sum protocols for real number vectors: This objec-

tive involves designing innovative SMC protocols that are specifically tailored

for handling real number vectors in a distributed setting. These protocols are

developed to ensure security even when participants are semi-honest and may

collude.

• Building robust distributed deep learning training frameworks: The research

also explores the integration of these proposed SMC protocols with FL. This

integration aims to construct secure training frameworks for distributed deep
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learning models, applicable in both centralized and decentralized network envi-

ronments where participants may not fully trust one another and collusion is a

potential risk.

3. Research Subject and Scope

This dissertation centers on safeguarding privacy in the training of distributed

deep neural networks through federated learning and SMC protocols, leveraging cryp-

tographic techniques.

The selection of this research topic is motivated by the following considera-

tions:

• Federated Learning: This method is highly effective for training distributed

deep learning models, offering accuracy comparable to centralized training with-

out privacy guarantees. It also minimizes the risk of data leakage by not sharing

raw data [6].

• SMC Protocols based on Cryptographic Tools: These protocols can ensure the

model’s accuracy without compromising it, unlike other techniques such as data

augmentation or perturbation [9].

4. Research content

With the research objective outlined above, the thesis identifies four main re-

search contents, presented in the following chapters of the dissertation:

• Conduct a thorough review of the PPDL challenge, examining the strengths and

weaknesses of various methodologies. The focus will be on FL, delving into its

potential as a promising solution for ensuring privacy in deep learning systems.

• Develop efficient secure multiparty summation protocols for real-number vec-

tors in semi-trusted environments, considering the possibility of collusion among

participants. The research will provide a thorough analysis of the performance

and security features of the proposed protocols.

• Develop distributed deep learning training protocols for both centralized and
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decentralized networks using the proposed SMC protocols.

• Experiment and evaluate the proposed distributed deep learning training proto-

cols using various datasets and deep learning architectures. Compare the ex-

perimental results with existing approaches to highlight the contributions of the

dissertation.

5. Research Methodology

The dissertation’s research methodology follows a well-defined roadmap to

achieve its objectives. The first step involves an exhaustive survey of relevant do-

mestic and international scientific literature on PPDL. This includes a thorough ex-

ploration of online databases like ACM Digital Library, IEEE Xplore, and Google

Scholar, as well as reports from esteemed scientific conferences such as USENIX,

Blackhat, SOICT, ICCM, and FAIR. These sources serve as the primary foundation

for the theoretical research, providing crucial knowledge and insights into the PPDL

domain.

Following the literature review, a systematic analysis identifies existing chal-

lenges in PPDL that require further investigation and resolution to align with the re-

search goals. This process involves meticulously examining the literature to pinpoint

gaps and limitations in current distributed deep learning model training approaches.

Next, the dissertation rigorously assesses the security and efficiency of the

proposed SMC protocols using mathematical theory. This evaluation encompasses

the protocols’ security along with a detailed analysis of their communication and

computation costs.

To validate the proposed distributed deep learning training protocols, experi-

mental evaluations are conducted on various datasets and network architectures. The

efficacy of the protocols is meticulously assessed by analyzing performance metrics

like accuracy, convergence rate, and training time.

A comparative analysis is then performed against existing approaches to high-

light the unique contributions of the dissertation. Finally, the obtained results are
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thoroughly analyzed and compared with related research works. The dissertation em-

phasizes its contributions in terms of scientific novelty, practical significance, and po-

tential impact, solidifying its position within the broader landscape of PPDL research

and innovation.

6. Main contributions

The dissertation focuses on addressing the research contents mentioned above.

The contributions can be listed as the results of this dissertation, specifically includ-

ing:

Contribution 1. This thesis introduces three innovative SMC protocols specif-

ically designed for secure summation of real-number vectors. These protocols ensure

robust security without depending on a trusted third party or necessitating the involve-

ment of more than two participants who remain non-colluding. This is accomplished

through the use of a homomorphic encryption scheme, renowned for its robust se-

mantic security. The following is a detailed overview of the three proposed protocols:

• Integer quantization combine with modified homomorphic encryption protocol:

This method utilizes an integer quantization technique coupled with a modified

ElGamal cryptosystem. Real numbers are compressed with different precision

levels, achieving differential privacy through inherent noise and computational

security through cryptography. However, careful selection of compression ra-

tios is crucial to balance model accuracy with communication and processing

costs associated with large integer computations.

• Mask matrix combined with homomorphic encryption protocol: Addressing the

limitations of the first protocol, this approach utilizes a mask matrix technique

with a modified Elliptic Curve Cryptography (ECC) system. This combination

aims to achieve high accuracy while minimizing communication and processing

overhead.

• Mask matrix combined with homomorphic encryption protocol and authentica-

tion sub-protocol: While the first two protocols offer efficiency and accuracy,

they lack data authentication and are vulnerable to membership spoofing at-
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tacks. To address this, the thesis proposes a third protocol that combines a ran-

dom noise masking matrix with the ElGamal cryptosystem, hashing functions,

and digital signatures. This composite approach ensures data secrecy, privacy,

and participant validity for robust secure vector summation.

The three secure vector summation protocols introduced in this work, each

employing a distinct method, allow a group of n participants to compute the sum

of their private inputs securely, within a semi-honest framework. These protocols are

designed to withstand collusion among up to n−2 parties and are capable of handling

real-number values, making them highly suitable for federated learning applications.

Contribution 2. Building upon the proposed SMC protocols, this thesis makes

a second key contribution: two novel deep learning training frameworks. These

frameworks leverage the SMC protocols to evaluate their effectiveness in training

federated learning models across both centralized and decentralized network config-

urations. This evaluation encompasses both theoretical and empirical aspects. Theo-

retically, the research analyzes the privacy guarantees and communication overhead

associated with the training process using these frameworks. Empirically, extensive

evaluations are conducted on diverse datasets, including the balanced MNIST dataset

(handwritten digits), the imbalanced SMS Spam dataset (text messages), and the

CSIC 2010 dataset (cybersecurity). A range of deep learning architectures, includ-

ing Convolutional Neural Networks (CNNs), Character-level CNNs (CLCNNs), and

Long Short-Term Memory (LSTM) networks, were utilized in these experiments. The

outcomes strongly support the effectiveness of the proposed methodology in achiev-

ing high accuracy. For example, the model attained a baseline accuracy of 97% on the

MNIST dataset after just 10 training iterations, and 50 iterations for the SMS Spam

dataset. Moreover, the approach proves to be resilient in heterogeneous distributed

networks, even when data distributions are non-identical and imbalanced. Notably,

the empirical results show a fivefold reduction in the number of training iterations

needed to reach baseline accuracy, compared to the Downpour SGD algorithm, high-

lighting the substantial efficiency improvements of the proposed frameworks. This

thorough evaluation underscores the potential of the proposed SMC protocols for en-

abling privacy-preserving federated learning across a variety of network setups and
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data types.

Our approach provides a distinct advantage over differential privacy techniques

by ensuring strong cryptographic-level privacy while maintaining superior model util-

ity. This results in enhanced efficiency and practical applicability, making the proto-

cols highly suitable for real-world federated learning scenarios.

The proposed protocols are innovative and tailored specifically to handle floating-

point real numbers. They focus on a critical security goal: safeguarding local models

from honest-but-curious participants who may try to access sensitive data. Addition-

ally, these protocols are designed to be resilient, ensuring protection even if a subset

of participants, up to n− 2 out of n, colludes within the semi-honest framework of

privacy-preserving deep learning.

7. Organization of the dissertation

Based on the research findings, this dissertation is organized as follows: an in-

troduction, three main chapters, and a conclusion outlining potential future directions

for the topic. The detailed structure of the dissertation is presented below:

Introduction: The dissertation highlights the urgency and scientific relevance

of the research topic, which forms the basis for defining the research objectives, scope,

content, and methods employed in the study.

Chapter 1: This chapter explores the field of PPDL, critically assessing the

advantages and drawbacks of three primary approaches: input sharing, model shar-

ing, and output sharing. After a comprehensive evaluation, the dissertation focuses

on addressing the challenges associated with training distributed deep learning mod-

els through a model-sharing approach. In this method, local model parameters are

shared to build a more accurate global model, all while protecting the privacy of the

local training data. However, sharing model parameters introduces potential risks,

including attacks like membership inference and model inversion, which can inadver-

tently lead to data leakage.

Chapter 2 introduces three innovative secure vector summation protocols: (1)
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Integer quantization combined with a modified homomorphic encryption protocol,

(2) Mask matrix combined with a homomorphic encryption protocol, and (3) Mask

matrix combined with a homomorphic encryption protocol along with an authentica-

tion sub-protocol. In this chapter, the proposed protocols will be evaluated, and their

security as well as execution cost will be analyzed and demonstrated.

Chapter 3 investigates the application of the proposed SMC protocols in fed-

erated learning. It presents two novel deep learning training protocols, designed to

operate in both centralized and decentralized network environments. These protocols

incorporate the SMC protocols to evaluate their effectiveness in training federated
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learning models. The evaluation spans a diverse set of datasets, including MNIST,

SMS Spam, and CSIC2010, across three distinct network architectures: CNN, LSTM,

and CLCNN, respectively.

Finally, the dissertation concludes, along with future research directions.
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CHAPTER 1. PRIVACY PRESERVING DEEP LEARNING

This chapter provides a thorough exploration of PPDL, examining its foun-

dational concepts, key challenges, and three main approaches: input sharing, model

sharing, and output sharing. It critically assesses the strengths and limitations of each

approach, ultimately concluding that model sharing—especially through Federated

Learning—emerges as the most promising method for training distributed deep learn-

ing networks. Building on this insight, the dissertation aims to develop and propose

appropriate SMC protocols to enhance the security of federated learning systems. The

detailed analysis is outlined in Publication 1.

1.1. Deep learning

Observation vectors, or attribute collections, are crucial for training machine

learning models, as their representation directly impacts performance. For example,

spam detection considers sender info, link trust, and attachments, while text is repre-

sented through word frequency vectors. Feature selection has traditionally been man-

ual, time-consuming, and costly, often leading to oversimplified or non-generalizable

attributes across different datasets or tasks, such as distinguishing cats from dogs ver-

sus cars [10].

Deep learning (DL), inspired by the brain’s structure, uses multi-layered ar-

tificial neural networks for data processing. These networks consist of neurons that

extract increasingly complex patterns from raw data, which form the foundation for

model learning and accurate predictions [11]. CNN, as shown in Figure 1.1, use

convolutional layers to specialize in feature extraction [12].

Deep learning involves two main phases: training and inference [11]. During

training, the model starts with random weights and adjusts them using input batches

to optimize parameters like weights and coefficients for the dataset. This optimiza-

tion relies on the loss function L (W ), which compares predicted values to actual

labels, guiding the model to reduce errors. The loss function quantifies prediction

discrepancies across the training set {x1,x2, . . . ,xm}, refining the model’s parameters
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Figure 1.1: The process of deriving high-level features utilizing deep learning

methods.

W through optimization. The loss function is mathematically represented in Equation

1.1.1.

L (W ) =
1
m ∑

i
L (W,xi). (1.1.1)

DL models consist of multiple layers that perform complex, non-linear trans-

formations on data, making it challenging to find the optimal configuration for per-

formance. The interplay between the model’s architecture and activation functions

complicates this process, resulting in a non-linear loss function that drives the train-

ing.

Finding the global minimum in this non-linear space is difficult, so optimiza-

tion algorithms rely on iterative updates to parameters, aiming for a ”good enough”

solution (local minimum). Techniques like Nesterov, Adagrad, and ADAM, derived

from stochastic gradient descent (SGD), perform these updates to minimize the loss

function [13].

SGD processes each data point individually, but frequent updates can be com-

putationally expensive. Batch gradient descent, on the other hand, processes the en-

tire dataset at once, which can be slow or impractical for large datasets. To strike
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a balance, minibatch gradient descent is commonly used. This approach updates

the model’s parameters using a randomly selected subset of data, denoted as B, in

each step, improving both efficiency and stability by mitigating the influence of out-

liers [14].

gB =
1
|B| ∑x∈B

∇WL (W,x). (1.1.2)

During optimization, the model’s parameters, denoted by W , are iteratively

adjusted to minimize the loss function. Each update moves the parameters in the

opposite direction of the gradient, which indicates the direction and magnitude of the

change needed to reduce the loss. This process continues until a satisfactory minimum

is achieved:

w j = w j−η
∂Li

∂w j
. (1.1.3)

The learning rate (η) controls the size of the adjustments made to the model’s

parameters. Each full pass through the training data is called an epoch. The loss Li,

calculated for the i-th mini-batch, is essential in guiding these adjustments. Minimiz-

ing this loss is the core goal of training [15]. The process continues until the model

converges to a stable state, typically reaching a local minimum. Different gradient de-

scent optimization algorithms may vary in learning rates and incorporate additional

techniques to enhance efficiency.

Once trained, the model enters the prediction phase, where it takes unseen data

as input to generate predictions. These predictions can be applied to a variety of tasks,

such as image classification, speech recognition, and natural language processing.

Both training and prediction involve passing data through the model’s lay-

ers (forward pass). However, during prediction, there is no back-propagation, as no

weight updates are needed—only the generation of predictions.

Deep learning encompasses a wide range of architectures, each suited for dif-

ferent tasks. Multi-Layer Perceptrons (MLPs) are foundational models that include
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hidden layers to learn complex patterns. CNNs, inspired by the visual processing

mechanisms in the brain, are primarily used for image recognition and computer vi-

sion tasks. They use convolutional layers to apply filters to input data, capturing

spatial hierarchies and patterns at different levels of abstraction. Deep Autoencoders

(DAEs) are designed for unsupervised learning, focusing on reconstructing input data

to achieve efficient data encoding. Recurrent Neural Networks (RNNs), especially

LSTM, excel at processing sequential data, such as text, by incorporating information

from previous time steps. Generative Adversarial Networks (GANs) consist of two

competing models: a generator that creates synthetic data and a discriminator that

differentiates between real and generated data, driving the generator to improve its

outputs. These diverse architectures demonstrate the power and flexibility of deep

learning for solving a wide array of problems [16].

1.2. Privacy Preserving Deep learning

1.2.1. Privacy threats with DL models

Deep learning’s power hinges on vast amounts of data, but this raises critical

data security concerns. Figure 1.2 illustrates the key areas where data protection is

paramount to protect sensitive information throughout the entire lifecycle (training,

inference, and model sharing).

Figure 1.2: Different data types in DL Models.
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1.2.1.1. Privacy threats to input data

Input data can be leaked during collection or training, compromising confiden-

tiality. Data leakage can occur in two primary ways:

• Direct Leakage: This happens when attackers gain unfettered access to the

sharing data itself. This could be due to unencrypted transmission, compro-

mised client devices, or even intercepted data during transfer. Additionally,

there is a risk involving third-party servers, where intermediaries might inten-

tionally access and harvest information, further exacerbating security vulnera-

bilities.

• Indirect Leakage: This type of attack is more nuanced, as the attackers don’t

directly access the data itself. Instead, they extract sensitive information by ana-

lyzing the trained model. They can do so by leveraging the model’s predictions

(referred to as a black-box attack) or by gaining insight into the model’s internal

parameters (known as a white-box attack).

Indirect data leakage attacks represent serious threats to the security of ma-

chine learning systems. Two common forms of such attacks are inversion attacks and

inference attacks.

An inversion attack aims to reconstruct input data from a trained model by

either predicting the model’s outputs for specific inputs or using optimization al-

gorithms to match inputs to desired outputs, exposing hidden sensitive information.

Such attacks demonstrate the potential to uncover sensitive data indirectly by iden-

tifying patterns or unique traits in the training data through trained models or their

public features [17]. Fredrikson et al.’s study showed how attackers could retrieve

patient gene information using model predictions on drug dosage and variables like

height, age, and weight, requiring only access to the model’s prediction API or its out-

puts [18]. Deep learning models, due to their ability to retain information, compro-

mise the anonymity of their training data [19]. This vulnerability allows adversaries

to extract information from the training dataset using model-derived observations, as

evidenced by the reconstruction of facial images from original photographs (Figure
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1.3 [17]), assuming knowledge of the user’s identity and the model’s facial recogni-

tion capabilities, including the reliability of its predictions.

Figure 1.3: The left image shows the outcome of the inversion attack, while the right

image represents the original version

Salem et al. [20] and Zanella-Béguelin et al. [21] demonstrated the vulnerabil-

ity of systems to inversion attacks, particularly in online learning and language model

updates using GANs. He et al. [22] further highlighted how these attacks can jeopar-

dize query privacy in distributed learning environments, such as split learning, where

model components are distributed across participants. In this setup, attackers can

reconstruct part of the input data without needing full access to the dataset or compu-

tational resources. Hitaj et al. [23] showed that even with decentralized training and

noise addition, GANs can still be used to breach the system and retrieve original data,

emphasizing the model’s susceptibility to inversion attacks.

In contrast, an inference attack takes advantage of the information embedded in

a trained model to infer details about the input data. Attackers use statistical analysis

or machine learning techniques to train secondary models based on the output of the

target model, allowing them to uncover insights about the training data. Attribute

inference attacks, for example, enable attackers to deduce specific characteristics of

data records. Yeom et al. [24] studied this type of attack, where attackers assess the

model’s performance loss for different hypothetical values of a sensitive attribute. By

comparing these losses to the actual data, attackers can determine the most likely

value for that attribute.

Membership inference attacks aim to determine whether a specific data point
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was used in training a model. Shokri et al. [25] explored these attacks by having an

adversary query the model to obtain its prediction confidence score, which reveals

whether a data record was part of the training set. They created an attack model

by generating new data through techniques like model inversion and noise addition,

then used it to detect if inputs were in the original training set, based on the model’s

confidence in familiar records. Their method, tested on a multi-layer model with

data from Google retail transactions and a Texas hospital, achieved accuracy rates of

94% and 70%, respectively. This demonstrates how attackers can extract sensitive

information from models, even with limited access.

Truex et al. [26] proposed a framework to understand membership inference

attacks, highlighting the risk of deep neural networks memorizing training data and

becoming vulnerable. Recent work by Salem et al. [27] and Song et al. [28] shows

that even low-resource attacks can be effective. Additionally, Hayes et al. [29] ex-

plored how these attacks extend to models using GANs, broadening the scope of their

potential impact.

1.2.1.2. Privacy threats to trained models

The training model is considered a highly valuable and confidential asset by its

owner, making it a prime target for attackers seeking to replicate or steal it. One com-

mon attack method is the model stealing attack, where attackers attempt to reconstruct

the model’s parameters by analyzing its prediction outputs, especially the confidence

scores, for a given set of inputs. Tramer et al. [30] demonstrated how attackers could

infer a deep learning model’s parameters by studying the correlation between inputs

and their corresponding outputs. However, such attacks are less effective when the at-

tacker only has access to final predictions without any confidence score information.

In addition to targeting model parameters, attackers may also gain insights by exploit-

ing other aspects of the model, such as its hyperparameters [31], architecture [32,33],

decision boundaries [34–36], or by simulating its functions [37,38], as shown in mul-

tiple studies.
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1.2.1.3. Privacy threats in prediction outcomes

In many cases, prediction outputs are considered sensitive information [39].

For example, a service provider that obtains a user’s identity through registration

might offer predictions on topics such as health diagnoses or financial forecasts,

thereby gaining access to a wealth of personal data. Moreover, by storing the results

of these predictions, the provider can infer additional private details. For instance,

if predicting liver disease with high confidence using alcohol addiction as a factor,

the diagnosis of liver disease could indirectly suggest a higher likelihood of alcohol

dependency for that user.

1.2.2. Overview of privacy challenges in Deep Learning

The primary objective of PPDL is to protect both the confidentiality of training

data, trained models and the prediction outcomes. There are four key privacy chal-

lenges in PPDL: 1) Data publishing, where an entity shares data with others for model

training due to limited resources; 2) Data collection, which focuses on acquiring data

from diverse sources without infringing on privacy; 3) Prediction service, ensuring

that both the input data and the model’s predictions remain confidential in prediction

services; and 4) Distributed Learning, which aims to aggregate data from multiple

sources to improve model performance without compromising privacy.

1.2.2.1. Privacy-preserving data publishing

In the realm of data publishing (Figure 1.4), an entity D with dataset D may

lack sufficient computational power to train deep learning models, prompting the

practice of outsourcing data for model training and development, commonly referred

to as data outsourcing [40]. This practice has become widespread in the digital era,

as organizations often share data with external experts for analysis or make it pub-

licly accessible for research and competitions [41]. A notable example is Netflix’s

release of anonymized user data for the Netflix Prize, aimed at improving recommen-

dation algorithms [42]. However, this raises significant privacy concerns, as there is a

risk of data leakage and re-identification [43–45]. Narayanan et al. demonstrated the
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Figure 1.4: Data Publishing

feasibility of re-identifying individuals, exposing the limitations and potential vulner-

abilities of current anonymization techniques [46, 47].

1.2.2.2. Privacy-preserving user data collection

Figure 1.5: Training data collection from many sources

In this scenario, an entity responsible for model training gathers data from

multiple sources (Figure 1.5), each of which seeks to safeguard its own data pri-

vacy [48–50]. Despite privacy concerns, these sources upload their data to a central-

ized server for model training. This process can be classified as horizontal distribution

when each source provides data with identical features, or vertical distribution when
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different sources contribute distinct types of data. Unlike data publishing models,

where multiple entities may share both data and computational resources, only one

entity in this case assumes the role of the training server. Data contributors, however,

do not participate in the computational processes of model training. Privacy risks, par-

ticularly in the form of white-box attacks targeting the training server, could expose

sensitive information from participants. To address these concerns, solutions such as

model encryption or secure sharing frameworks like SecureNN [51] offer promising

ways to mitigate potential vulnerabilities.

1.2.2.3. Privacy-preserving prediction service

In this framework, a server (S) and a user (U) interact, where S utilizes a pre-

trained deep learning model—developed from a dataset—to offer prediction services

(Figure 1.6). The user (U) requests a prediction from the server, which responds with

the output. The main challenge is to protect sensitive data transmitted by the user

for prediction purposes, as well as the confidentiality of the prediction results. Ad-

ditionally, the proprietary nature of the model and the dataset used for training must

be safeguarded against unauthorized access. This requires securing several elements:

the user’s input data, the resulting predictions, the model itself, and the underlying

training data. Effectively addressing these privacy concerns is essential to maintain

the confidentiality of all parties involved—user data, model outputs, and intellectual

property.

Figure 1.6: Privacy Guarantee for prediction service
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1.2.2.4. Privacy-preserving distributed training

This approach aims to develop training protocols that allow participants to

contribute to model training without exposing their private data. Each participant

processes a portion of the training on their own dataset and subsequently shares the

results to collectively build a global model, thus safeguarding data privacy [52]. The

method distinguishes between centralized networks, where local models are sent to a

central server for aggregation, and decentralized networks, which rely on direct peer-

to-peer communication [53]. The architecture shown in Figure 1.7 illustrates these

two configurations.

(a) Decentralized network settings (b) Centralized network settings

Figure 1.7: Distributed deep learning model

Data distribution plays a critical role in devising privacy solutions, generally

falling into horizontally or vertically distributed models [54]. In the horizontal model,

participants have data with common attributes but differing records, useful in systems

like anomaly detection in network traffic. The vertical model involves participants

holding the same records but different attributes, seen in collaborations among banks,

tax authorities, and hospitals [55]. An example given by Jaideep Vaidya et al. shows

the combination of medical data with telephone usage to study health impacts [56].

In both horizontal and vertical distributions, successful training requires data

exchange among parties, posing privacy concerns. The primary challenge is develop-

ing methods that maintain training data privacy while leveraging necessary informa-

tion for model development.
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This dissertation delves into the intricate challenge of developing privacy-

preserving distributed deep learning models, specifically tailored for scenarios in-

volving horizontally partitioned data.

1.3. Privacy Preserving Primitives

This section delves into a selection of established data privacy strategies high-

lighted in academic literature, focusing on their applied efficacy. Within the domain

of PPDL, a variety of approaches draw on these fundamental strategies. We cate-

gorize these primitives into three main groups. The first, anonymization, involves

modifying quasi-identifiers and eliminating direct identifiers to safeguard individual

privacy. The second, cryptographic methods, leverage well-established protocols to

ensure data confidentiality. Lastly, data obfuscation employs the strategic insertion of

noise to veil the original data, maintaining its utility for machine learning applications

while protecting sensitive information.

1.3.1. Anonymization

To protect privacy during model training, data is detached from its owner’s

identity, keeping the data unchanged. Simple anonymization, like removing names or

addresses, is often inadequate, as shown by the Netflix Prize case, where researchers

identified users from anonymized movie ratings using additional data from the In-

ternet Movie Database [46]. K-anonymity aims to make data re-identification diffi-

cult by ensuring each data point is indistinguishable from at least k-1 others [57],

but it struggles with high-dimensional data, leading to advanced concepts like l-

diversity [58] and t-closeness [59], which are beyond this thesis’s scope.

1.3.2. Cryptographic techniques and Secure Multiparty Computation

The concept of SMC first emerged in the late 1970s, with early contribu-

tions from A. Shamir, R. Rivest, and L. Adleman, who sought to enhance privacy

in telephone-based poker games and mitigate fraud risks [60]. However, it was for-

malized in 1982 when Yao introduced the Garbled Circuit (GC) protocol [61], which

enabled secure information exchange by representing computational functions using
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Boolean logic circuits. In 1987, Goldreich et al. further expanded SMC’s scope, en-

abling secure collaborative computation without the need for a trusted third party [62].

Since then, SMC has become crucial in various domains, including secure voting sys-

tems [63], online auctions [64], and data protection, particularly in privacy-preserving

data mining (PPDM) and privacy-preserving deep learning (PPDL) applications [65].

Among the key techniques used in SMC are oblivious transfer (OT), homomorphic

encryption (HE), and secret sharing (SS), which will be explored in greater detail in

the following sections.

1.3.2.1. Basic concept

Secure Multiparty Computation (SMC) is a cryptographic framework that in-

volves distributed computing protocols, allowing multiple participants to collabora-

tively compute the value of a function while maintaining the confidentiality of their

private inputs. Various definitions of SMC have been presented in existing litera-

ture [66–69]. For the purpose of this thesis, a generalized model will be adopted,

encompassing the most relevant privacy-preserving approaches applicable to deep

learning models.

Definition 1.3.1. Let n (n≥ 2) represent the number of participants in the distributed

computing network. Each participant i ∈ {1,2, . . . ,n} holds an input value xi ∈ Xi.

The function f is then defined as a multi-party computation function, as given below:

f : X → Y

x̄ = (x1,x2, . . . ,xn) 7→ f (x̄) = ( f1(x̄), f2(x̄), . . . , fn(x̄))
(1.3.4)

where X = {x̄ : x̄ = (x1, . . . ,xn)} and Y = {y : y = ( f1(x̄), . . . , fn(x̄))} and Xi is value

space for each xi.

Every party i aims to obtain the specific component i of the function f (x1, . . . ,xn)

while keeping their private input xi. This is denoted by fi(x1, . . . ,xn).

A multi-party computation function f can be classified into two types:

• Symmetric functions yield identical results for all participants involved. In this
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scenario, fi and f j are equal for all i ̸= j.

• Asymmetric functions result in different outcomes for different participants.

That is, f j(x1, . . . ,xn) ̸= fi(x1, . . . ,xn) when j ̸= i and i, j ∈ {1, . . . ,n}

In cryptography, SMC involves collaborative computation of a function f by

entities while safeguarding their private input values against potential malicious be-

havior from adversaries. These protocols collectively constitute SMC protocols.

In contrast to traditional cryptographic domains like encryption or digital sig-

natures, adversaries in SMC protocols can include participating members or external

entities controlling internal members. Therefore, when evaluating an SMC protocol,

three categories of entities emerge:

• Honest parties refers to members who strictly adhere to the rules outlined by

the protocol.

• Corrupted parties are participants who either collude with others involved in

the protocol or are manipulated by external entities to execute harmful actions

against the honest parties.

• External adversaries are entities that exert control over certain members within

the protocol, orchestrating actions that are harmful to the honest parties in-

volved.

1.3.2.2. Threat models

As illustrated in Figure 1.8, we categorize adversarial attack assumptions in

SMC based on the adversary’s behavior, level of power, and the types of corruption

they may introduce.

Adversarial behavior

Adversarial behaviors in SMC model are typically divided into two distinct

types: semi-honest and malicious. The semi-honest, or honest but curious model,

assumes that while all parties may adhere to the prescribed security protocols, those

compromised might still seek to gain unauthorized access to sensitive information
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Figure 1.8: Adversarial attack assumptions in PPDL

through passive means, without actively harming the system or its users. This ap-

proach is commonly applied in SMC contexts.

On the other hand, the malicious model, also known as the active adversary

model, characterizes corrupted participants who engage in direct attacks against the

system, potentially violating the established security protocols to achieve their aims.

When such parties are capable of discontinuing their attacks, this scenario is often

referred to as a fail-stop model, indicating a specific subset of malicious behavior

where attacks can be ceased.

This thesis primarily focuses on the semi-honest model, which is suitable when

participants engage in SMC protocols with integrity and adhere to protocol rules. For

instance, maintaining individual account confidentiality is paramount in collaborative

financial data analysis among institutions. The semi-honest model prevents curious

parties from accessing others’ private data through observations. Despite its relatively

relaxed security measures, this model is a fundamental initial step toward enhancing

overall security. This model plays a crucial role in designing protocols for the ma-

licious model and facilitates the transition of secure protocols from the semi-honest

to the malicious model [62]. Participants strictly adhere to computational rules in the

semi-honest model, making non-collusion assumptions unreasonable [70]. There-

fore, the thesis focuses on SMC using the semi-honest model, allowing collaboration

among participants while permitting up to (n− 2) corrupted parties, with n repre-

senting the total number of participating data users in the protocol execution. In this

scenario, it is assumed that the adversary possesses knowledge of corrupted parties’

information and has access to communication channels, which could be authenticated
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or even public.

Adversarial power

Adversaries are categorized as computationally unbounded or computation-

ally bounded based on the extent of their attack capabilities. In a computationally

unbounded setting, adversaries possess infinite computational power, representing

the ideal or perfect adversary. This scenario is mostly theoretical and impractical

in real-world contexts, often applied in theoretical information security studies.

Conversely, a computationally bounded adversary operates within constrained

computational capabilities. Cryptographic assumptions, often involving polynomial

time, are necessary to model attacks within this framework. As previously stated, the

adversary possesses control over (n−2) corrupted internal parties without knowledge

of the honest entities involved. The communication channels among these parties are

either authenticated or public, granting the adversary the capability to intercept trans-

mitted messages. Moreover, the adversary’s computational capacity is constrained,

operating within a (probabilistic) polynomial-time framework [70]. This limitation

signifies their restricted ability to perform extensive computations or attacks. This

model aligns with the realistic assumption about the adversary.

Adversarial corruption type

Adversaries in SMC are categorized into static or adaptive types, contingent

upon their method of selecting targets for corruption. In a static adversary framework,

the identity of corrupted participants is predetermined from the start. Once designated

as honest or corrupt, these participants maintain their roles throughout the process.

Contrastingly, the adaptive adversary framework allows for the flexibility of

choosing which participants to corrupt as events unfold, making decisions based on

the evolving context of the situation. This dynamic approach means that an individual

previously acting in good faith could be compromised mid-execution. Despite this,

within the adaptive model, there exists the potential for a corrupted individual to be

influenced or pressured back into acting in an honest manner, highlighting the fluidity

and complexity of participant roles under this classification.
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1.3.2.3. Security definition

This section covers essential preliminaries crucial for establishing the standard

security definitions in the field of SMC.

• Ideal/real simulation paradigm

Goldwasser and Micali [71] introduced the notion of semantic security in

public-key cryptography. They argued that if an adversary can derive any information

about the plaintext from the ciphertext, this information should not exceed what could

be learned without any input. The idea of ”no input” represents an ”ideal world” sce-

nario [72]. Thus, a system is considered secure in the ”real world” if the adversary

gains no more information from the ciphertext than it would in the absence of any

input.

The comparison between the ”real world” and the ”ideal world” forms the basis

of the ”ideal/real simulation paradigm,” which is a fundamental approach for evaluat-

ing security. This paradigm sets the highest standard for security models, particularly

when dealing with adversaries exhibiting malicious behavior.

In the context of SMC, the ideal world assumes the existence of a trusted party

that facilitates computations among participants without introducing any security con-

cerns. In contrast, the real world operates without such trust, requiring participants

to remain vigilant about potential threats from one another. The security of a proto-

col is determined by comparing the outcomes of its execution in the real world with

those in the ideal world. A protocol is deemed secure if any information an adversary

could feasibly obtain in the real world could just as feasibly be obtained in the ideal

world [62].

• Negligible function

Let n denote the security parameter, often associated with the key length, which

determines the complexity of problems such as discrete logarithms and large integer

factorization, making them infeasible to solve in polynomial time. The definition of

a negligible function, as outlined in [62], is presented below.
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Definition 1.3.2. [62] A function µ(u) is considered negligible with respect to n if,

for any positive polynomial p(.), there exists a non-negative integer N such that for

all n > N:

µ(u)<
1

p(n)

• Computationally indistinguishable

Definition 1.3.3. [62] Let X(n,a) and Y (n,a) be two random ensembles indexed by

(n,a). The distributions X = {X(n,a)}n∈N,a∈{0,1}∗ and Y = {Y (n,a)}n∈N,a∈{0,1}∗

are said to be ”computationally indistinguishable” (denoted as X
C≡Y ) in polynomial

time if, for every probabilistic polynomial-time algorithm D, there exists a negligible

function µ(n) dependent on n, such that for all a ∈ {0,1}∗:

|Pr[D(X(n,a)) = 1]−Pr[D(Y (n,a)) = 1]| ≤ µ(n).

This indicates that no efficient algorithm D can differentiate X from Y with a signif-

icant probability of success, as any deviation in outcomes is limited by a negligible

function.

In SMC, these parameters are defined as follows:

• n: Represents the security parameter, which defines the level of cryptographic

difficulty.

• a: Denotes the input provided to the SMC protocols.

• X : Refers to the output generated by the SMC protocols in an ideal-world sce-

nario.

• Y : Corresponds to the output produced by the SMC protocols in a real-world

environment.

• Standard definition of security

This section presents the formal definition of security for an SMC protocol op-

erating within the semi-honest model, utilizing public communication channels. The

definition is based on the foundational framework of secure multiparty computation

outlined in [62].
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Definition 1.3.4. The protocol Π is said to privately compute the function f in the

presence of t corrupted parties if, for every subset I ⊆ {1,2, . . . ,n} with ∥I∥= t, there

exists a probabilistic polynomial-time algorithm M such that:

{M(I, v̄I, fI(v̄), f (v̄))}v̄∈({0,1}∗)n
C≡
{

V IEW Π
A,I(v̄),OUTPUTΠ(v̄)

}
v̄∈({0,1}∗)n ,

where:

• V IEW Π
A,I(v̄): Represents the view of the t corrupted parties along with all mes-

sages observed by the adversary A during the execution of the protocol Π with

input v̄ = (v1, . . . ,vn).

• OUTPUTΠ(v̄): Denotes the output of all parties involved in the protocol Π.

When f is deterministic, OUTPUTΠ(v̄)≡ f (v̄), satisfying:

{M(I, v̄I, fI(v̄))}v̄∈({0,1}∗)n
C≡
{

V IEW Π
A,I(v̄)

}
v̄∈({0,1}∗)n .

•
C≡: Denotes computational indistinguishability.

In essence, the protocol ensures that the view of the corrupted parties, combined with

the information an adversary can observe, is computationally indistinguishable from

the output that could be simulated with access only to the inputs and function outputs.

This guarantees the privacy of the computation.

Let’s consider a scenario where four participants are involved in a protocol to

compute a function f , specifically the sum of their respective values v1, v2, v3, and

v4. Suppose that two of these participants, U1 and U2, are corrupted parties who are

colluding with an attacker A. In this case, the information available to the attacker A,

represented by
{

VIEWΠ
A,I(v̄),OUTPUTΠ(v̄)

}
v̄∈({0,1}∗)n

, includes:

• The values v1 and v2 obtained through collusion with U1 and U2,

• The public result of the sum OUTPUTΠ(v̄) = v1+v2+v3+v4, which is shared

among all participants.

Due to the protections offered by the protocol, the attacker A should only be

able to obtain these three pieces of information (i.e., v1, v2, and the final sum). Addi-

tionally, A might have access to the encrypted forms of v3 and v4, but not their actual

values.
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In this setting, each participant shares a ”masked” or encrypted version of their

number. The protocol is designed to ensure that, even if A uses all the information

received during the protocol execution, they cannot accurately determine the exact

values of v3 and v4 held by U3 and U4. The only information that A can deduce is the

final sum (output), not the individual contributions of v3 and v4.

The protocol Π is considered secure if the adversary A gains no additional

knowledge from participating in the protocol beyond what can be inferred from the

final output (e.g., the sum). This means that the adversary’s view, VIEW, can be com-

putationally simulated using only the result of the function f , ensuring no unintended

information is exposed.

As a result, the protocol safeguards the privacy of the inputs v3 and v4, even in

scenarios where A collaborates with U1 and U2 in an attempt to breach security.

Additionally, the composition theorem plays a central role in designing SMC

protocols under the semi-honest model (see Theorem 1.3.1). This theorem provides a

foundational framework for establishing protocol security by proving the security of

each constituent sub-protocol [62].

Theorem 1.3.1. Let g and f be functions such that g is privately reducible to f -

meaning that g can be expressed in terms of f while maintaining privacy. If there

exists a secure protocol for privately computing f , then there exists a secure protocol

for privately computing g.

Since g is privately reducible to f , there exists a privacy-preserving transfor-

mation that maps the inputs and outputs of g to those of f without leaking any ad-

ditional information. Given that f can be securely computed using a protocol that

satisfies privacy and correctness, this secure protocol can be used in conjunction with

the private reduction to compute g securely. The composition theorem for secure mul-

tiparty computation ensures that combining these two steps maintains the privacy and

correctness properties, thereby yielding a secure protocol for g.

To construct SMC protocols, we often rely on fundamental cryptographic prim-

itives such as Oblivious Transfer Protocols, Homomorphic Encryption, and Secret
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Sharing. These building blocks play a crucial role in ensuring the security, privacy,

and correctness of SMC protocols.

1.3.2.4. Oblivious Transfer Protocols

OT protocols are considered a viable approach in constructing SMC protocols,

as indicated by the work of [73]. In their elementary manifestation, these protocols

provide a specific problem scenario whereby the sender possesses two distinct mes-

sages. At the same time, the receiver desires to obtain only one of them without dis-

closing the specific message picked from the sender. The protocol, commonly called

the 1-out-of-2 definition, is important in developing more intricate protocols [74].

The protocol is depicted in Figure 1.9.

Figure 1.9: Oblivious Transfer Protocols

The protocol outlined in [75] extends its functionality to allow the receiver to

request retrieval of a specific quantity, denoted as k, of messages from a pool of n

messages stored by the sender. In this setup, it’s ensured that (1) the sender remains

unaware of the precise content the recipient will ultimately access, and (2) the re-

cipient is limited to receiving a maximum of k units of the intended message. This

protocol finds applications across various domains including sample and anonymous

searches, database queries, and SMC [76].

1.3.2.5. Homomorphic Encryption

Homomorphic Encryption (HE) is a sophisticated cryptographic method en-

abling computations to be executed directly on encrypted data. The resulting en-

crypted outputs, when decrypted, align perfectly with the results of the same opera-



31

tions applied to the original plaintext [77]. This unique feature preserves the structure

and integrity of the data while maintaining its confidentiality throughout the compu-

tation process.

For instance, in a homomorphic encryption scheme that supports addition, one

can compute the sum of two encrypted messages, m1 and m2, by evaluating the expres-

sion E(m1 +m2). Crucially, this calculation is performed using only the encrypted

values, E(m1) and E(m2), without ever needing to decrypt them or access the orig-

inal plaintexts. Here, the function E denotes the encryption operation within the

homomorphic encryption scheme. The concept of homomorphic encryption is fun-

damentally tied to the idea of preserving the algebraic operations of plaintexts within

the encrypted domain. To formalize this, we define a cryptographic system as homo-

morphic if it maintains a specific relationship between operations on the plaintexts

and their corresponding ciphertexts. This relationship is captured in the following

definition:

Definition 1.3.5. [78] A cryptographic system is said to be homomorphic with re-

spect to the operation ’◦2’ if it fulfills the following equation:

E(m1)◦1 E(m2) = E(m1 ◦2 m2), ∀m1,m2 ∈M, (1.3.5)

where E is the HE scheme and M is the plaintext space or set of all possible messages.

HE can be categorized in the literature into three distinct types: partially ho-

momorphic [79], strong (or somewhat) [80], and fully homomorphic [81]. Partial

homomorphic encryption (PHE) is a cryptographic scheme that maintains the prop-

erty of preserving homomorphism in ciphertexts with a single type of operation, such

as addition or multiplication, performed an unlimited number of times. The RSA

cryptosystem exhibits the property of homomorphism with multiplication operations

performed on encrypted data, enabling what is commonly referred to as multiplication

homomorphic encryption [82]. As described by Paillier in [83], the Pallier cryptosys-

tem exhibits homomorphic properties specifically with addition operations, thereby

earning the designation of addition homomorphic encryption. The BGN cryptosys-

tem, also known as the Boneh-Goh-Nissim cryptosystem, is widely recognized as

one of the most renowned HE schemes to date [84]. BGN exhibits homomorphism
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properties to both addition and multiplication operations. However, it is important to

note that the range of permissible operations is limited, hence classifying it as a some-

what homomorphic encryption scheme rather than a fully homomorphic one. Gentry

conducted the initial investigation towards fully homomorphic encryption [81]. After

this initial study, several investigations have been conducted on fully homomorphic

encryption schemes rooted in lattice theory, specifically focusing on the Learning

With Errors (LWE) problem [85–87]. The Ring-LWE problem has also been ex-

plored in this context [88, 89]. Furthermore, other cryptosystems have been devel-

oped on the greatest common divisor problem [90, 91]. The implementation cost of

these cryptosystems is substantial, hence restricting their current utility to a consider-

able extent. However, the application of HE has been significantly enhanced with the

introduction of HE-supported cryptographic tools such as HElib [92], FHEW [93],

and HEEAN [94]. These tools have facilitated the expansion of HE’s application in

several domains, including enhancing security in cloud computing services [95–98]

or PPML [99]. According to the cited source, the computational costs of HE asso-

ciated with current deep learning models remain significant, making their practical

implementation challenging.

1.3.2.6. Secret sharing scheme

The secret sharing scheme with a threshold of (t,n), where t and n are integers

that satisfy 0≤ t < n, offers a mechanism for securely distributing a confidential data

element s among a set of n data pieces denoted as s1,s2, . . . ,sn. This distribution is

intended to be shared with n participants so that no group of less than t untrusted

members can reconstruct the original confidential information s. In contrast, any

group of t+1 or more participants can successfully reconstruct the shared confidential

information s [67].

In a theoretical scenario, it is crucial to highlight that possessing t sharing

components does not ensure knowledge of the secret value s. As a result, obtaining

such information does not automatically grant access to confidential data. In simpler

terms, if an attacker has no prior knowledge before acquiring the t sharing, they will

not gain any useful information. Furthermore, even if an adversary obstructs partic-
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ipant t ′, where n− t ′ ≥ t + 1, retrieving the secret value with a minimum of t + 1

remaining participants is still feasible.

The concept of secret sharing schemes was initially introduced by Adi Shamir

and Blakley as a solution to address the issue of a single point of failure [67]. Fur-

thermore, these methods possess the capability to be employed in a multitude of

issues and serve as a fundamental component in threshold cryptography and SMC

[100, 101].

SMC protocols offer a robust level of security and guarantee a heightened level

of privacy. Nevertheless, the advancement of the protocols needs to be improved by

performance-related concerns. To effectively utilize SMC in PPDL, addressing the

computational burden associated with nonlinear activation functions like Sigmoid or

Softmax is imperative. The cost of these functions is prohibitively high.

1.3.3. Data obfuscation techniques

Data obfuscation techniques encompass manipulating or creating data instances

obtained from the primary dataset, subsequently employed to train a comprehensive

model. This category encompasses several tactics, including additive perturbation,

multiplicative perturbation, generative obfuscation, and data synthesis.

1.3.3.1. Additive perturbation

Additive obfuscation is commonly linked to differential privacy (DP) in the

academic literature [102, 103]. DP is a formal and quantifiable measure to assess the

efficacy of safeguarding data privacy. This solution addresses the issue of sharing

private data in situations where participants need to analyze the statistical character-

istics of the data while maintaining confidentiality regarding specific records within

the dataset. DP enables estimating the privacy level associated with the training data

utilized by the technique employed [104, 105]. Developing a model or algorithm that

aims to reduce the potential danger and extent of data privacy disclosure based on

a specified threshold becomes feasible by employing DP. From a mathematical per-

spective, the concept of DP guarantees that the data analysis outcomes, when applied
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to DP, remain consistent regardless of the presence or absence of a specific individual

or object inside the dataset.

Definition 1.3.6. [104] A randomized mechanism M : D → R, where D is the

domain of inputs and R is the range of outputs, satisfies (ε,δ )-differential privacy if,

for all pairs of adjacent datasets d,d′ ∈ D (datasets that differ in at most one data

point) and for any subset of possible outputs S⊆R, the following condition holds:

Pr[M (d) ∈ S]≤ eε Pr[M (d′) ∈ S]+δ ,

where Pr represents the probability of an event. If this condition is satisfied with δ = 0,

then the mechanism M provides ε-differential privacy, which ensures a stricter form

of privacy by bounding the likelihood ratio of outputs without any additional error

term.

In the definition above, the symbol ε represents the metric used to quantify

privacy loss. A decrease in the value of epsilon corresponds to a decrease in the extent

to which privacy is violated. Nevertheless, this phenomenon results in a decrease in

accuracy. The symbol δ represents the likelihood that an attacker can accurately guess

data within the given range ε . In practical applications, DP is commonly implemented

by augmenting the original dataset with a specific quantity of noise data. In general,

random noise is generated using Gaussian or Laplacian distributions to maintain the

statistical characteristics of the data. The Laplace transform has been prevalent in

contemporary applications of DP for numerical data.

Definition 1.3.7. [102] Given a target function f and a parameter ε ≥ 0, the ran-

dom algorithm A f (D) = f (D)+ x, where x is a random variable sampled from the

Laplace distribution with parameters (µ,∆ f ), is referred to as the Laplace random

transformation mechanism. This mechanism satisfies ε-differential privacy (ε-DP).

Here, ∆ f represents the global sensitivity of the function f , defined as:

∆ f = sup | f (D)− f (D′)|,

where the supremum is taken over all datasets D and D′ that differ by at most one

element.
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The noise addition technique is simple to implement, offering high computa-

tional efficiency and minimal communication overhead. As a result, it has become

a popular choice in privacy-preserving machine learning applications, including al-

gorithms like Decision Trees [106], Support Vector Machines, and Logistic Regres-

sion [107].

The core idea behind differentially private deep learning lies in training a

model using raw data while introducing noise-based perturbations at various stages

of computation (e.g., gradients during optimization). In deep learning, noise can be

added at five critical points: the input, loss function, gradient, training parameters,

and output label [108]. When noise is added to data before it is collected, this method

is referred to as Local Differential Privacy (LDP). LDP is widely used for aggregat-

ing statistical data [109], with notable implementations such as Google’s RAPPOR,

introduced by Erlingsson et al. [50], to gather user privacy statistics through web

browsers.

DP is favored for its efficiency and simplicity compared to other privacy-

preserving techniques [110,111]. However, a significant limitation of DP-based mod-

els is the inherent trade-off between privacy and accuracy. Achieving strong privacy

requires smaller values of the parameter ε which reduces model accuracy. Conversely,

increasing ε enhances accuracy but compromises privacy protection.

1.3.3.2. Multiplicative Perturbation

Random projection is a widely used technique in the realm of multiplicative

perturbation [112–115]. Certain random projection methods, as explored in [112],

have been shown to preserve the dimensionality of data effectively. However, these

methods are not without their vulnerabilities; as highlighted in [116], they are suscep-

tible to approximate reconstruction attacks. To enhance privacy, various approaches

have been proposed in the literature, focusing on reducing data size while maintain-

ing privacy [113–115]. For instance, the study in [115] implements a standardized

projection matrix R applied universally to all participants in the dataset.

Despite its simplicity, this approach raises significant privacy concerns, partic-
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ularly if participants collaborate to reverse-engineer sensitive data. To mitigate this

risk, studies like [113, 114] have proposed using distinct private projection matrices

for each participant. While this enhances privacy, it comes at the cost of preserving

the Euclidean distances in the perturbed data, leading to a noticeable decline in the

performance of distance-based classifiers.

To address this limitation, the methodology in [114] employs regression tech-

niques to reconstruct pairwise distances between original data vectors. This recon-

struction leverages publicly shared data samples and their projections to infer dis-

tances indirectly. However, a potential privacy risk arises, as the coordinator can ex-

ploit the public data and its projections to recover individual random projection matri-

ces. In contrast, the approach in [113] uses deep neural networks (DNNs) to identify

complex patterns within the projected data from multiple participants, offering an al-

ternative to regression for estimating distances while enhancing the robustness of the

system.

1.3.3.3. Generative Obfuscation

Similar to additive and multiplicative perturbation methods, generative models

can produce obfuscated data to mask raw sensitive information. However, the concept

of generative obfuscation introduces greater complexity. Huang et al. [117] proposed

an innovative approach known as the Generative Adversarial Privacy algorithm. This

technique employs a privatizer module in conjunction with an adversary network,

forming a framework based on minimax game theory.

In this setup, the privatizer aims to transform the original dataset X in such a

way that the adversary network is unable to accurately classify a specific sensitive

attribute Y , thereby preserving privacy. The training process for both the privatizer

and the adversary is conducted iteratively, with each component refining its strategy

to either enhance obfuscation or improve classification accuracy. This dynamic inter-

action captures the essence of adversarial training and highlights the balance between

privacy preservation and adversarial robustness.
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1.3.3.4. Data Synthesis

Data synthesis methods leverage generative models to replicate the underly-

ing distribution of sensitive datasets, enabling the creation of synthetic data samples

that closely mirror the original data. This approach ensures that the generated data

maintains general patterns while protecting information unique to individuals.

An example of this is the application of differentially private k-means cluster-

ing, as discussed in [118]. In this method, generative models are trained specifically

on data from their respective clusters using differentially private gradient descent.

This ensures both privacy preservation and the effective learning of cluster-specific

characteristics while adhering to differential privacy guarantees [118].

1.4. An Overview of Research in Privacy-Preserving Deep Learning

The privacy-preserving primitives discussed have shown great utility in tradi-

tional machine learning models, including association rule mining, decision trees,

k-means clustering, and logistic regression [119]. However, applying these tech-

niques to deep learning models in practical scenarios introduces significant chal-

lenges. The inherent complexity of deep learning, with its sophisticated nonlinear

functions, makes adapting traditional methods both cumbersome and intricate. Ad-

ditionally, unique components of deep learning architectures, such as convolutional

layers in CNNs and regularization strategies like normalization and dropout, require

specialized adaptations when implementing privacy-preserving techniques.

This thesis introduces a classification framework for privacy-preserving deep

learning (PPDL) approaches, based on the nature of data exchange during the process.

One category focuses on transforming and distributing input data to maintain confi-

dentiality while ensuring that the data can still be used effectively for training and

inference. Another approach involves sharing the predictions generated by indepen-

dently trained models. These predictions are then aggregated to reach a consensus

for final outputs, often employing ensemble learning techniques to construct a new

model. A third method revolves around distributed learning, where participants col-

laboratively build a global model by sharing model parameters or gradients derived
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from their private datasets.

To safeguard the shared data, researchers commonly rely on cryptographic

methods, data obfuscation techniques, secure enclave-based strategies, or a combi-

nation of these approaches. This framework encapsulates the current methodologies

for implementing privacy-preserving mechanisms in deep learning, as visualized in

Figure 1.10.

Figure 1.10: A Review of Privacy-Preserving Deep Learning Methodologies

1.4.1. Input Sharing Approach

In this setup, a service provider’s server is responsible for both training and

deploying the model. User input data is preprocessed using various security protocols,

such as SMC and HE, to modify, encrypt, or perturb the data before transmitting it to

the server. All training and prediction operations are then performed centrally on the

server.

The centralized learning model offers several practical advantages, including:

• This approach significantly reduces the computational rounds on clients, as it

eliminates the need for data contributors to actively participate in the training

process. Instead, their role is limited to preprocessing and sharing transformed

data with the entity responsible for training, simplifying the process and remov-
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ing the need for any additional steps.

• The approach enables collaboration within a fluctuating network framework,

which is especially beneficial in situations where users frequently connect to

and disconnect from the network.

• This functionality facilitates executing operations on models with non-identically

dispersed data (non-iid).

• This approach enables meaningful collaboration on models even when partici-

pants have minimal data, which would otherwise be insufficient for independent

model creation. A notable example is fully distributed data models, where each

participant holds only a single data point [120].

• The shared data serves as a foundation for building models that can address a

wide variety of purposes and challenges. For instance, a centralized training

server can utilize the same dataset to develop a credit scoring system, evaluate

insurance needs, detect financial fraud, and perform other related tasks, offering

versatile applications to all users.

Thanks to its inherent advantages, this model has gained substantial attention

in empirical research. In this framework, data transmission is initiated by users, while

the server performs all computational tasks. The interaction between participants

and the server revolves around sharing user input data, with a strong emphasis on

safeguarding confidentiality through input transformation strategies.

Data collected from participants is first transformed and then transmitted to

the server for computation and training purposes. This transformation process en-

sures that sensitive information remains secure before being shared [121,122]. Com-

monly used preprocessing techniques include HE algorithms [123, 124], SMC proto-

cols [125], secret sharing schemes [51], and noise addition methods [126].

The Data Sharing Approach, a method extensively utilized in research on

PPDM [127] and PPML [128], allows for its application during both the training and

prediction stages. Despite its advantages, this method faces significant challenges,

particularly concerning its efficiency and the precision of outcomes.
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One major issue is the high communication and computational overhead in-

volved in distributing large datasets among participants for training, rendering this

approach impractical for deep learning privacy measures [129]. Additionally, meth-

ods that transform data often involve a compromise, introducing or permitting noise

that negatively affects the accuracy of training and prediction [126, 130]. In cryp-

tographic approaches, SMC necessitate conversion to large numerical values, neces-

sitating adjustments for deep neural network operations to accommodate these large

integers. For instance, approximations of nonlinear functions in neural networks have

been proposed using polynomial functions to adapt to these requirements [131].

Further adaptations include Chabanne et al.’s substitution of the ReLU acti-

vation function with a quadratic function and opting for sum-pooling layers over

max-pooling to suit cryptographic constraints [132]. Similarly, nonlinear function re-

placements with Chebyshev polynomial approximations have been explored to main-

tain model functionality under these constraints [133]. However, these modifications

compromise model accuracy and adaptability. Cryptographic security measures de-

mand operations on large integers, inflating data sizes and computational demands,

and diminishing model performance [134]. The necessity for secure key exchange

or distribution among participants also adds to the computational and communication

burdens.

In contrast, non-cryptographic models employing data perturbation or artifi-

cial data generation offer lower computational and communication costs and greater

versatility across different network architectures and models [135]. However, the

trade-off between security and accuracy limits their effectiveness, as incorporating

noise to protect data privacy invariably impacts model accuracy. While minimizing

noise can preserve accuracy, it also leaves the model vulnerable to attacks aimed at

inferring or reversing the data.

1.4.2. Output Sharing Approach

The Private Aggregation of Teacher Ensembles (PATE) method offers a privacy-

centric strategy for deep learning by focusing on the use of aggregated insights rather
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than direct data sharing [136]. In this model, individual participants, referred to as

”teachers,” train their models independently on their datasets. Instead of sharing these

datasets, they transmit prediction results to a central ”student” or aggregation server.

This server then employs ensemble learning to derive general predictions from these

results and applies additional training techniques to refine models further. A key

benefit of the PATE approach is its flexibility; it doesn’t necessitate uniform model

structures or identical hyperparameters among participants, and it safeguards model

confidentiality to protect intellectual property by preventing disclosure of network

structures or hyperparameters.

However, PATE can significantly reduce accuracy, requiring a balance between

privacy and performance, even for simple tasks like MNIST. Scalable PATE [137]

and other enhancements have attempted to address these limitations by improving

confidence in the teachers’ consensus and integrating novel methods such as weighted

ERM [138] and individualized privacy [139] adjustments to preserve data utility while

maintaining privacy.

To overcome the challenges of high-dimensional data, PATE-GAN [140] and

G-PATE [141] have been developed to train generative models under the PATE frame-

work, enhancing data utility for machine learning applications without compromising

privacy. Moreover, adaptations like PATE-AAE [142] for voice classification and Se-

qPATE [143] for text generation show the versatility of PATE in handling diverse data

types and complex model outputs.

Despite significant advancements, data obfuscation techniques often come with

trade-offs, such as a reduction in model accuracy, and they remain susceptible to

threats like model inversion attacks, which pose persistent privacy concerns. While

the integration of cryptographic methods such as homomorphic encryption (HE) and

secure multi-party computation (SMC) has enhanced security, these approaches in-

troduce substantial computational overhead. This underscores the ongoing need for

more efficient and scalable privacy-preserving solutions in practical applications.

Integrating cryptography into frameworks like PATE has notably strengthened

their security measures. Techniques such as HE and SMC enable the aggregation of
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teacher models’ outputs without exposing sensitive information, effectively mitigat-

ing the risk of information leakage. These cryptographic safeguards ensure that even

if aggregated data is compromised, attackers cannot reconstruct the private training

data.

For instance, the SPEED framework applies noise to the teachers’ outputs and

employs homomorphic encryption to ensure the aggregator cannot infer sensitive in-

formation while still allowing for necessary computations [144]. Similarly, the CaPC

learning platform combines HE, SMC, and private aggregation methods to facilitate

secure and confidential collaborative learning across multiple parties. This approach

preserves privacy without compromising the flexibility and utility of the machine

learning models involved [145].

These cryptographic techniques, however, introduce new challenges. The com-

putational cost of processing encrypted data can be substantial, particularly for com-

plex machine learning models and large datasets. This computational burden limits

the practical deployment of such privacy-preserving methods, especially in scenarios

where processing power is constrained.

Moreover, while these methods provide robust security against external and

non-colluding adversaries, they are less effective if insiders or collaborators decide to

breach privacy protocols. For instance, in systems where the aggregator and student

can collaborate, they may potentially exploit the system to access sensitive teacher

data, posing a significant insider threat.

Overall, while cryptography offers a powerful tool for enhancing privacy in

machine learning, it must be balanced with considerations of computational efficiency

and potential insider risks to be viable in real-world applications.

1.4.3. Model Sharing Approach

The third method, known as model sharing or distributed learning, has proven

to be highly effective and is widely used in various applications, including Google

Keyboard [146]. In this approach, participants independently train models on their

own local data and then share the resulting intermediate parameters or gradients with
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a central aggregation server or directly among each other.

Model sharing addresses several key challenges found in earlier methods. First

and foremost, it minimizes the need for large-scale data transfers, as only the model

parameters or gradients—much smaller than the raw data—are communicated. This

significantly reduces both communication costs and bandwidth demands. Further-

more, because the raw data never leaves the local environment, the privacy of sensitive

information is maintained, as no direct exposure of private data occurs. This approach

includes techniques such as split learning [147] and federated learning (FL) [148],

which are designed to safeguard data privacy while enabling collaborative model

training.

1.4.3.1. Split learning

In split learning [147], as outlined, participants train portions of a model up

to a certain layer before forwarding the weights to a central server, which completes

the training. This process, which alternates between client and server based on back-

propagation, limits the direct exposure of sensitive data.

Transfer learning has been adapted into a hybrid approach, allowing clients to

pre-train certain layers of a model before the cloud server finalizes the training [149,

150]. This method splits the model into segments that separately handle sensitive data

on the client side and more generic training on the server side, thus enhancing data

privacy.

The efficacy of these approaches hinges on the complexity of inverting the

transformed data back to its original form, especially through layers of non-linear

activation functions, making direct data reconstruction challenging. This model de-

composition method requires less bandwidth than other distributed learning strategies

and mitigates the risk of indirect data leakage, despite potential accuracy reductions

due to limited shared information.
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1.4.3.2. Federated learning

The federated learning protocols operate within a network of nodes, denoted

as U = U1,U2, . . . ,Un, where each node, Ui, maintains a unique private dataset, Di.

The goal of this collaborative framework is to develop a shared global model while

safeguarding the privacy of each node’s data. The process begins with a central server

initializing a global model, W 0, and distributing key hyperparameters, such as the

number of local epochs E and the batch size |B|, to all participating nodes.

At each communication round, indexed by t, the nodes update the current

model, W t , using their local datasets, following the specified parameters E and |B|.

After training, each node sends its updated model, W t
i , to the server, where the models

are aggregated to form a new global model, W t+1. This updated model is then redis-

tributed to all nodes, continuing the iterative training process. The federated learning

framework operates in a cyclical manner, ensuring constant refinement of the global

model while preserving the privacy of the raw data at each node.

• Selection and Deployment of the Global Model: The process begins with the

selection of a robust pre-trained machine learning (ML) model, referred to as the

”global model,” which is equipped with initial parameters. This model serves

as the foundation that is distributed across the FL client network, initiating the

collaborative learning process.

• Local Training: Each client, armed with the global model, conducts local train-

ing using their own private dataset. This localized training leads to the de-

velopment of individual model versions, enriching the overall learning process

through diverse data sources and personalized updates.

• Aggregation and Refinement of Knowledge: The cycle culminates when each

client sends their locally trained model updates back to the central server. The

server then aggregates these updates, refining and enhancing the global model

by combining the knowledge from all clients. Once integrated, the updated

global model is redistributed to all participants, restarting the cycle with im-

proved intelligence.
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Figure 1.11: Federated Learning Framework

This process forms an ongoing cycle of continuous refinement, where the

global model remains constantly updated and synchronized with the evolving data

from each client. A visualization of the federated learning architecture is shown in

Figure 1.11.

Expanding on this idea, McMahan et al. [3, 4] introduced the Federated Aver-

aging (FedAvg) algorithm, which refines the federated learning (FL) process. In this

framework, training data is kept on local devices, and only the model parameters are

shared with the central server. The server then aggregates these parameters to update

the global model, which is periodically redistributed to participants for further train-

ing. By reducing the frequency of communication between the clients and the server,

FedAvg helps mitigate the risk of data leakage and alleviates the strain on network

resources.

However, the averaging process, while efficient, can compromise model per-

formance, particularly when data is unevenly distributed across clients or in the pres-

ence of network instability. The authors also point out that this approach places a

significant computational burden on participants, as it requires complete local pro-



46

cessing of the data. To address the substantial bandwidth demands, data compression

techniques have been proposed. Despite its advantages, the model’s lack of specific

security measures when sharing parameters raises concerns about potential vulnera-

bilities, particularly from inversion or inference attacks [8].

Rather than directly sharing local model parameters, some training approaches,

such as Stochastic Gradient Descent (SGD) with large aggregate batch sizes, focus on

sharing gradients calculated from one or more batches of participants. These gradi-

ents are aggregated to form a global gradient, which is then used to update the global

model’s parameters. This approach ensures high accuracy, as the parameter updating

process closely mirrors the standard deep learning training method [151, 152]. How-

ever, the process requires substantial data exchange between clients and the server,

leading to significant network resource consumption, which can be even higher than

in other sharing techniques. Additionally, since gradients are shared in plaintext, there

is a risk of data leakage.

To address this privacy concern, Reza Shokri et al. [153] proposed the concept

of selective learning. In this model, participants train their local models based on

their respective datasets and then share selected portions of their gradients with the

aggregation server. Rather than transmitting the entire gradient vector, participants

only share a fraction of it, which helps protect privacy by making it more difficult

for an attacker to extract sensitive information. The server then updates the global

model’s parameters using the SGD algorithm, and the updated model is sent back to

all participants. This selective sharing significantly improves privacy protection, but

it does come with trade-offs. The reduced gradient information can negatively impact

the accuracy of the model, and the sequential nature of the parameter updates results

in high latency. Additionally, the selective learning model does not support concur-

rent execution among participants, further exacerbating the delay. Despite these mea-

sures, some residual information may still be vulnerable to attacks, allowing potential

adversaries to infer data from individual clients [23].

To mitigate these risks, researchers have turned to data obfuscation and crypto-

graphic techniques, which protect the parameters and gradients before they are shared



47

with others.

1.4.3.3. Data Obfuscation techniques

Abadi et al. introduced a method for enhancing privacy in parameter sharing

by incorporating noise into the gradient vector based on Gaussian or Laplace distribu-

tions, a technique further expanded upon in various network architectures to safeguard

privacy [154]. Additionally, Truex et al. developed the LDP-Fed federated learning

system, which employs local differential privacy (LDP) to provide formal privacy as-

surances [155]. Given that LDP traditionally focuses on discrete datasets, adapting it

to the continuous, high-dimensional data typical in federated learning presented chal-

lenges. LDP-Fed addresses this by ensuring differential privacy during the iterative

collection of training parameters across extensive neural networks, supplemented by

selective parameter update strategies to maintain privacy.

This approach necessitates a balance between model accuracy and privacy pro-

tection. To mitigate the impact on accuracy, enhancements like normalization and

gradient clipping have been implemented, boosting efficiency with minimal compu-

tational and communication demands [154]. Despite these improvements, the intro-

duction of significant noise can adversely affect model precision. While reducing the

likelihood of reverse or interference attacks, this method remains susceptible to Gen-

erative Adversarial Network (GAN) attacks [23], illustrating the ongoing trade-offs

in privacy-preserving techniques in machine learning.

1.4.3.4. Cryptography-based techniques

In federated learning systems, the aggregation algorithm plays a pivotal role

by merging the updates from local models, provided by various clients, into a sin-

gular, improved global model. Google’s federated learning framework employs the

Federated Averaging (FedAvg) algorithm [3], which designates the central server as

the orchestrator of the training process. This server initially disseminates the global

model and its parameters to a select subset of clients, or a ”mini-batch”. These clients

proceed to train the global model locally with their data, after which they return their

model’s weights to the server. The central server then integrates these local updates
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into the global model by performing a weighted averaging of all the local model up-

dates. This process effectively combines the learning from across the network to

refine and update the global model.

W t+1←
n

∑
i=1

mi

M
W t

i (1.4.6)

In this context, mi represents the number of data records held by party Ui, M

denotes the total number of records across the entire system, and W t
i ∈ Rmodel size

refers to the model parameter vectors of party Ui at the global epoch t.

The configurable criterion, specifically the number of training rounds, serves

as the stopping condition for the coordinator to conclude the training rounds and

proceed with averaging the local model updates.

Various adaptations of FedAvg exist, such as FedProx [156], FedMA [157],

Scaffold [158], and FedBCD [159], each tailored to optimize specific parameters

within the implementation of Federated Learning. However, in practical applications,

FedAvg consistently demonstrates notably effective performance, often surpassing

or at least matching the performance of other variants across a range of Federated

Learning scenarios [160].

The primary objective of this thesis is to compute the weighted average of pa-

rameter vectors in a shared deep learning model among participating parties denoted

as Ui within the FedAvg framework. This computation is based on Formula 1.4.6

above. The number of samples each participating party holds is assumed to be pre-

determined, and the total number of data records remains constant. In essence, the

central problem addressed here is to aggregate the parameter vectors securely:

W t+1←
n

∑
i=1

W t
i (1.4.7)

The current challenge revolves around resolving the secure vector sum prob-

lem:
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V =
n

∑
i=1

W t
i (1.4.8)

The thesis aims to calculate the total vector V without disclosing the individual

vectors W t
i of the participating parties at each global epoch t.

Further research in PPDL is dedicated to addressing this multi-party secure

computation challenge. The SMC protocols designed to safeguard the parameter ag-

gregation process in Federated Learning are primarily categorized into two distinct

techniques: secret sharing and homomorphic encryption.

a. Secure Multi-party Sum Protocols based on secret sharing techniques

The secret-sharing technique is the simplest among various secure multiparty

computation techniques. It enables parties to share their secret values into several

parts for computations and then aggregate them to obtain the final calculation result.

In the context of the federated learning model, where secret values are the parameters

of the local training model at each step of the participants, the application of secret-

sharing techniques is often calibrated and optimized to ensure the efficiency of the

computation process.

Hosseini et al. [161] provide a technique for randomly dividing the model’s

parameters and distributing the resulting weights multiplied by the model’s parame-

ters among other participants. This strategy is the most straightforward technique for

utilizing the secret sharing mechanism in PPDL. In the context of a multiparty sys-

tem, the protocol incurs significant expenses in terms of transmission and processing.

This procedure is appropriate for systems with a limited number of players.

The notion of secure aggregation in the context of FL was first presented by

Bonawitz et al. in their influential publication [162]. The protocol is designed to

endure client disconnections and utilizes obfuscating, unpredictable values, Shamir’s

Secret Sharing (SSS) [163], and symmetric encryption to prevent unwanted access

to local models. Nevertheless, the process of aggregating necessitates a minimum of

four instances of interaction between each client and the aggregator during each cy-

cle, which can be burdensome for clients, particularly those connected via a wide area
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network (WAN) with restricted resources. Moreover, the protocol’s significant com-

munication overhead and complexity, combined with its limitations around handling

real-number data, complicate its practical application in real-world parameter sharing

scenarios, underscoring the ongoing challenges in achieving both efficient and secure

privacy-preserving machine learning methods.

The protocols utilized by VerifyNet [164] and VeriFL [165] are derived from

the protocol introduced by Bonawitz et al. [162]. Both protocols augment the veri-

fiability feature of the current protocol [162] to guarantee the aggregation process’s

precision. Nevertheless, they rely on a trustworthy entity to generate public/private

key pairs for all participating clients.

In recent studies, researchers in [166] and [167] have proposed secure aggre-

gation protocols that exhibit polylogarithmic communication and computing com-

plexity. These protocols effectively minimize the overhead compared to the approach

presented in [162]. The primary concept proposed by the authors is to substitute

the star topology of the communication network as described in reference [162] with

random subgroups of clients. Additionally, they suggest employing secret sharing ex-

clusively for a subset of clients rather than for all pairs of clients. Both methodologies

necessitate three iterations of communication between the server and clients.

FastSecAgg [168] offers a safe aggregation mechanism that relies on the Fast

Fourier Transform multi-secret sharing technique. The protocol exhibits robustness

against adaptive attackers, who can adaptively corrupt clients during the execution of

the protocol. FastSecAgg is a three-round interactive protocol designed for private

federated learning.

The Turbo-Aggregate method, as described in reference [169], effectively mit-

igates the burdens of communication and computation associated with secure aggre-

gation compared to the approach presented in reference [162]. This method employs

a circular communication topology to achieve its objectives. The primary limitation

of Turbo-Aggregated lies in its round complexity, which is O( n
logn), where n is the

number of updates or clients involved.

The SAFER framework [170] aims to minimize communication expenses in
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federated learning (FL) by implementing update compression techniques. Addition-

ally, it incorporates a secure aggregation protocol that relies on arithmetic sharing to

ensure data privacy and security. Nevertheless, SAFER exclusively considers training

sessions involving fewer than ten customers and excludes any instances of clients dis-

continuing the program. Furthermore, the SAFER model was exclusively evaluated

on datasets that follow the independent and identically distributed (IID) assumption.

Consequently, it remains to be seen if SAFER can effectively handle the non-IID data

commonly employed in federated learning (FL) scenarios.

Tran et al. [171] split model parameters into various parts and sent each to a

group of members. This method can enhance privacy and reduce the communication

and computation cost of the model. This protocol ensures relatively high security

because any group of members can only receive a part of the shared parameters, so

recovering all the local model parameters will require the participating members to

all collude. In addition, sending only a part to a few members significantly reduces

the communication and computational costs needed compared to sharing the entire

model. However, each participant needs to send his or her parameter set to a group

of other members before sending it again to the aggregation server, making this pro-

tocol’s computation and communication costs still very high.

In [172], the authors proposed CE-Fed to secret share the model parameter to

reduce the communication cost incurred in traditional MPC-enabled Federated Learn-

ing. The CE-Fed, as suggested, designates a limited number of clients to serve as

committee members. These committee members utilize the MPC service to consoli-

date the local models of all FL clients hierarchically. As a result, it circumvents the

dissemination of model parameters from individual clients to all other participants

on the Federated Learning roster. The suggested CE-Fed is implemented using a

two-phase approach. During the initial stage, the FL clients in close proximity are

organized into groups. The models of FL clients within a given group are securely

aggregated using MPC to create an intra-group model. The aggregation commit-

tee is formed by selecting one client from each group based on latency. During the

subsequent stage, the committee members collaborate to consolidate the inter-group

models utilizing secret sharing techniques.
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In [173], Tran et al. proposed an effective FL protocol based on secret sharing.

Instead of sharing secret parameters with many parties, they add masking noises and

send them twice over 2 phases through different anonymous channels. These param-

eters’ origin values are then hidden from any other party. Thus, the protocol ensures

privacy while reducing the number of communication phases significantly. However,

this protocol has the disadvantage of requiring the participants to be highly stable and

not allowed to leave the training process at any time. In addition, the latency due

to the anonymous channel and the security of the anonymous channel are also some

issues to consider.

The authors of [174] and [175] use additional cryptographic algorithms and

DP to improve the security of secret parameter sharing. The authors have thoroughly

analyzed different attack cases and their effects on the FL model and proposed using

cryptographic solutions and DP to solve these problems. However, the proposed pro-

tocol is also not resistant to the model in which the parties collude with the aggregator

server.

b. Secure Multi-party Sum Protocols based on encryption

To enhance the privacy of local models beyond differential privacy (DP), vari-

ous cryptographic tools have been suggested. Phong et al. [176] introduced a scheme

using Learning With Errors (LWE) homomorphic encryption to secure gradient vec-

tors exchanged between clients and a semi-trusted aggregation server. This server

conducts addition calculations solely on the encrypted data, thus avoiding the need

for decryption. All computations are performed directly on the encrypted data, en-

suring that the values of the gradient vectors remain concealed. Post-computation,

the resulting encrypted output is returned to the clients for decryption, enabling sub-

sequent round calculations. This protocol establishes a secure environment devoid

of collaboration between any individual participant and the aggregator. This method,

however, necessitates that all participants be semi-trusted entities possessing a com-

mon decryption key to access the model. The privacy protection breaks down if any

participant decides to work with the server, highlighting a potential vulnerability.

However, a notable limitation of this protocol and all SMC protocols employ-
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ing HE is that any collusion may lead to the aggregation server gaining access to

decryption keys. Consequently, the security of the gradient vector values could be

compromised. This drawback is significant in this protocol and the broader scope of

SMC protocols that rely on HE.

Truex et al. [177] employ a combination of additive HE and DP. However, their

approach is not resilient to client dropouts. The utilization of HE incurs a notable

increase in runtime execution time, and their system necessitates three successive

rounds of communication. These factors render the application of FL in real-world

scenarios unfeasible.

The EaSTFfly framework [178] uses either additive homomorphic encryption

(HE) with packing or Shamir’s secret sharing (SSS) [163] in conjunction with quan-

tization. Instead of utilizing FL’s FedAvg mechanism [162], the clients share their

gradients following each training iteration, resulting in a notable increase in the to-

tal number of training iterations. The application of FedAvg is hindered in scenarios

where additive HE or SSS prevents the division operation from being performed.

Moreover, EaSTFfly’s HE protocol requires all clients to possess the same secret key.

All updates can be decrypted if there is a collision between a client and the aggregator.

The technique, BatchCrypt [179] effectively decreases the encryption and com-

munication overhead associated with aggregation based on Homomorphic Encryption

(HE). This is achieved by utilizing a batch encryption method, which requires only

one round of communication. Once again, the utilization of costly hardware accel-

erators (e.g., [177], [178]) renders it impractical to employ for real-world training in

the context of federated learning.

The HybridAlpha framework, described in reference [180], incorporates func-

tional encryption and differential privacy techniques. Functional encryption involves

deriving public keys for all clients from a private/public master key pair. The pro-

posed method enhances the runtime of [177] by a factor of 2× and exhibits tolerance

toward dropouts. Nonetheless, HybridAlpha depends on a reliable entity that pos-

sesses the primary keys and routines control over the manipulation of aggregation

weights by the aggregator.



54

The encryption method employed by POSEIDON [181] encompasses the en-

tire FL process, including the local training conducted by the clients. Consequently,

this introduces a substantial computing burden on the devices of each client. The

authors propose modifying the existing communication structure for clients, advo-

cating for adopting a tree-like network configuration instead of the conventional star

topology. In the proposed network, clients are interconnected hierarchically, with

communication occurring through intermediate nodes rather than direct communi-

cation with a central aggregator. Furthermore, utilizing a distributed bootstrapping

technique effectively updates ciphertexts while implementing an alternating packing

strategy improves the efficiency of training neural networks while preserving encryp-

tion. However, the support for clients’ dropouts in POSEIDON is limited to cases

when decentralized bootstrapping is not utilized.

The SAFELearn framework [182] is implemented by the integration of vari-

ous protocols in Multi-Party Computation (MPC) and Secure Two-Party Computation

(STPC). Specifically, Boolean sharing is employed to evaluate the Argmin operation

securely, while arithmetic sharing is utilized to evaluate multiplication and addition

operations securely.

As referenced in [44]–[47], various studies incorporate secure computation

methodologies and differential privacy into machine learning approaches. Notably,

these designs are often customized for specific machine learning (ML) algorithms

without a specific emphasis on federated learning (FL). Consequently, they may not

effectively address scenarios involving client dropouts, may not scale efficiently when

dealing with a large number of clients, might employ costly cryptographic techniques,

and may not be suitable for dispersed training scenarios.

1.5. Comparison of the PPDL Approach and Existing Limitations

Drawing from the analysis in the preceding sections, Table 1.1 outlines the

distinct features, advantages, and limitations of various methodological approaches.

The approach of input sharing, designed to bolster security, typically necessitates the

incorporation of techniques such as noise addition or cryptography. However, this
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approach’s reliance on noise addition tends to compromise its security, rendering it

susceptible to data inference attacks, and significantly diminishes the model’s accu-

racy due to alterations in the statistical properties of the data. On the other hand, inte-

grating SMC enhances security but at the cost of accuracy, as adapting deep learning

models to cryptographic primitives presents substantial challenges. This integration

also imposes considerable computational and communication demands owing to the

complexity of both the data and the models. Additionally, the necessity for key shar-

ing among participants means that the model’s security is guaranteed only in scenarios

involving two-party computation (2PC); in more collaborative models with numerous

participants, security assurances wane, rendering it predominantly suitable for the

prediction phase rather than the training phase.

Methods Privacy Utility Reduction Cost Requirements

Input sharing - No Low -

Input sharing + SMC High High High
- Share the same keys

- Convert model and params

Input sharing + DP Medium High Low NO

Output sharing Low High Low
- Local models have good performance

- Public dataset

Output sharing + DP Medium High Low
- Local models have good performance

- Public dataset

Output sharing + SMC High High High
- Local models have good performance

- Public dataset

Split Learning Medium High High - 2 parties

FL Low Low Low NO

FL + SMC High Low Medium NO

FL + DP Medium High Low NO

Table 1.1: Comparing PPDL approaches

The method of output sharing has a notable effect on model performance, pri-

marily due to prediction errors that arise when passing data through teacher models.

While this approach offers great flexibility, it relies heavily on access to public data

and high-quality local models, which can be challenging to obtain, especially in sce-

narios where data is distributed and participants have limited data availability.
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The focus then shifts to the ”model sharing” strategy, which can be further

divided into split learning and federated learning. Split learning, which involves shar-

ing parameters only across specific layers of the network, is constrained by a limited

number of participants and often suffers from accuracy degradation due to potential

information leakage. In contrast, federated learning proves to be the most effective

and practical solution for training distributed deep learning models across multiple

parties. It successfully mitigates direct data leakage, strikes a balance between model

accuracy and computational efficiency, and allows for parallel processing. However,

it is still susceptible to indirect data leakage through the exposure of model parame-

ters. To address these risks, techniques like DP and SMC are proposed. While DP

offers enhanced privacy at the cost of some accuracy—potentially leaving the system

vulnerable to attacks such as inversion through methods like GANs—the combined

use of Federated Learning and SMC presents a promising research avenue. This com-

bination can help preserve both the integrity and accuracy of the model, and the thesis

aims to further investigate this approach.

Figure 1.12: Thesis’s Objective
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Nevertheless, the integration of FL and SMC presents several significant chal-

lenges:

• Existing models under development require participants to either directly ex-

change cryptographic keys or rely on a trusted intermediary for key distribu-

tion. This security model, however, is susceptible to compromise if participants

collude, either among themselves or with the central aggregation server.

• Additionally, these models often involve converting real numbers into large in-

tegers, a process that notably increases both computational overhead and the

time required for calculations and data transmission.

Therefore, this thesis proposes the development of secure aggregation proto-

cols for real-valued vectors. The goal is to ensure the safety and efficiency of the

parameter aggregation process in Federated Learning while addressing the aforemen-

tioned challenges, striking a balance between security, performance, and practicality.

1.6. Chapter Summary

This chapter has provided an overview of the privacy challenges in deep learn-

ing and current solutions. It emphasizes Federated Learning as a promising approach

for protecting privacy during deep neural network training, while cryptographic tech-

niques show potential for secure parameter sharing. However, these approaches face

two key issues: key sharing, which risks collusion, and the handling of real numbers,

which requires encoding and may reduce model accuracy.

To address these challenges, this dissertation proposes new training protocols

for distributed deep learning networks, incorporating SMC for enhanced security and

efficiency, even in the presence of collusion. The innovative methods developed will

be discussed in Chapters 2 and 3. The work in this chapter is published in Publication

1.
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CHAPTER 2. PROPOSING SOME FLOATING POINT REAL

NUMBER SECURE MULTI-PARTY VECTOR SUM

PROTOCOLS

This chapter starts with some basic concepts of Cryptography used to construct

the proposed protocol, specifically Elgamal and Elliptic Curve Cryptography (ECC).

Following that, the subsequent sections sequentially introduce and detail three novel

SMC protocols developed for privacy-preserving federated learning. These protocols

include: secure multi-party vector summation with floating point real numbers using

integer quantization, secure multi-party summation of floating point real number vec-

tors with a masking matrix and Elliptic Curve Cryptography (ECC), and secure multi-

party summation of floating point real numbers without the need for pre-established

secure/authenticated channels. These proposed protocols are documented in Publi-

cations 3, 5, 6, and 7.

2.1. Cryptography preliminaries

2.1.1. Discrete logarithm problems

In cryptographic protocols, the discrete logarithm problem plays a crucial role.

This section explores the key concepts underlying this problem, as discussed in [183].

Let G represent a cyclic group of order q. This means that for any element h∈G, there

exists a unique value x ∈ Zq such that gx = h. In this setting, the expression x = logg h

denotes that x is the discrete logarithm of h with base g. The computationally difficult

discrete logarithm problem is formally defined as follows:

Definition 2.1.1. Let G be a cyclic group of order q, generated by an element g,

and let h ∈ G be a chosen element. The discrete logarithm problem in G involves

determining the value of logg h, which is the exponent x such that gx = h.

The discrete logarithm problem is considered hard in G if, for any probabilistic

polynomial-time algorithm A, the probability of A successfully solving the problem is

negligible. In other words, even with access to (G,q,g,h), the likelihood of A finding
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an x ∈ Zq such that gx = h is extremely low.

This difficulty also underpins other problems such as the Computational Diffie-

Hellman (CDH) and Decisional Diffie-Hellman (DDH) problems.

• Computational Diffie-Hellman (CDH) problem

Given the parameters (G,q,g) and two elements h1 = gx1 and h2 = gx2 in G, the

operation DHg(h1,h2) is defined as gx1x2 . The Computational Diffie-Hellman (CDH)

problem involves computing DHg(h1,h2) from h1 and h2.

It is clear that if the discrete logarithm problem in G can be easily solved, then

the CDH problem can also be solved. However, the reverse is not necessarily true; the

difficulty of the CDH problem does not imply that the discrete logarithm problem is

also hard. As a result, the CDH assumption is rarely used in cryptographic contexts.

• Decisional Diffie-Hellman (DDH) problem

Given the parameters (G,q,g) and three elements X = gx, Y = gy, and Z = gz,

where x, y, and z are randomly chosen from Zq, the hard decisional Diffie-Hellman

(DDH) problem is formally defined as follows:

Definition 2.1.2. The decisional Diffie-Hellman (DDH) problem is considered hard

with respect to G if, for all probabilistic polynomial-time algorithms A, there exists a

negligible function µ(n) such that

|Pr [A(G,q,g,gx,gy,gz) = 1]−Pr [A(G,q,g,gx,gy,gxy) = 1]|< µ(n)

This definition asserts that the tuples (gx,gy,gz) and (gx,gy,gxy) are compu-

tationally indistinguishable, where x, y, and z are randomly selected from Zq. In

essence, the difficulty of solving the DDH problem implies that no polynomial-time

algorithm can reliably distinguish between these two tuples with a probability signif-

icantly greater than a negligible function µ(n).

Thus, the hard decisional Diffie-Hellman (DDH) assumption remains a foun-

dational and widely used assumption in modern cryptography.
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2.1.2. ElGamal public-key cryptosystem

This section presents a well-known variant of the ElGamal encryption scheme

[184], which is based on the hardness of discrete logarithm problems. Due to its

cryptographic strengths, ElGamal encryption is an essential building block for the

proposals in this thesis and the broader field of SMC.

Consider a cyclic group G of prime order q, where computing discrete log-

arithms is computationally difficult. Let g be a generator of G, x be a private key

uniformly chosen from {1,2, . . . ,q−1}, and the corresponding public key be h = gx.

During the encryption phase, the sender uses the public key h to generate the

ciphertext C from the plaintext message m. The process involves selecting a random

k from {1,2, . . . ,q− 1}, and computing the ciphertext C = (C1 = mhk,C2 = gk). To

decrypt the ciphertext C, the receiver uses their private key x to compute the plaintext

message as m =C1(Cx
2)
−1.

Under the DDH assumption, ElGamal encryption ensures semantic security,

making it resistant to chosen-plaintext attacks. This cryptosystem has been widely

used to build secure cryptographic protocols, including the ElGamal digital signature

[184] and the Schnorr signature scheme [185].

Moreover, ElGamal encryption possesses homomorphic properties, which are

critical in the design of SMC protocols.

• Multiplicative homomorphic property: ElGamal encryption supports multiplica-

tive homomorphism. Specifically, if C(m1)= (m1hk1,gk1) and C(m2)= (m2hk2,gk2)

are the ciphertexts of messages m1 and m2, then their product C(m1)C(m2) =

(m1m2hk1+k2,gk1+k2) corresponds to the ciphertext of the product m1m2.

• Additive homomorphic property: When the plaintexts are not excessively large

(as in typical SMC applications), ElGamal encryption also exhibits additive ho-

momorphism. If the ciphertexts of m1 and m2 are given by C(m1)= (gm1hk1,gk1)

and C(m2)= (gm2hk2,gk2), then the product C(m1)C(m2)= (gm1+m2hk1+k2,gk1+k2)

represents the ciphertext of m1 +m2.
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These homomorphic properties make ElGamal encryption an invaluable tool

for secure computations in the SMC context, where operations on encrypted data are

essential for maintaining privacy and security.

2.1.3. Elliptic Curve Cryptography

Additionally, an elliptic curve variant of the ElGamal cryptosystem is proposed

in [186], which can be described as follows:

Let E(Fq) denote an elliptic curve defined over a finite field Fq, with a point O

representing infinity. Assume that q is a large prime, ensuring the intractability of the

elliptic curve discrete logarithm problem. Let G be a base point on the curve E with

order q, meaning that qG = O.

The private key d is a randomly chosen integer from [1,q− 1], and the corre-

sponding public key Q is computed as Q = dG, where d is the private key.

In the encryption process, the sender uses the public key Q to generate the

ciphertext C corresponding to the plaintext m. This involves selecting a random

integer k from [1,q− 1], and computing the ciphertext components as C = (C1 =

Pm+kQ,C2 = kG), where Pm is a point on the elliptic curve such that the x-coordinate

of Pm encodes the plaintext message m.

To decrypt the ciphertext C using the private key d, the receiver computes

m = xM, where M =C1 +(−dC2), and extracts the plaintext from the x-coordinate of

the resulting point M.

As with the classical ElGamal encryption, this elliptic curve variant also guar-

antees semantic security, provided the decisional Diffie-Hellman (DDH) assumption

holds for the elliptic curve E. This ensures that the cryptosystem is resistant to

chosen-plaintext attacks, maintaining a high level of security for elliptic curve-based

cryptographic protocols.
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2.1.3.1. Solving discrete logarithm problems with small space of solutions

The ElGamal and ECC are widely regarded as secure due to the inherent dif-

ficulty of solving discrete logarithm problems. However, when the ciphertexts are

confined to a small range, exhaustive search techniques can be used to recover the

plaintext. This characteristic is particularly relevant in the context of SMC protocols.

For smaller plaintexts, such as m, deriving values like gm or mG is compu-

tationally feasible without requiring significant resources. Algorithms like Shanks’

baby-step giant-step method [187] are effective in solving these computations in an

efficient manner. However, as the size of the plaintext m increases, the difficulty of

solving such problems grows substantially, making the process far more challenging.

• Notation

In the subsequent sections, this dissertation will adhere to the notations out-

lined in Table 2.1, which serve as the foundational symbols and terminologies through-

out the analysis. These notations provide a consistent framework for discussing key

concepts and computational models, ensuring clarity and precision in the presentation

of the research findings.

2.2. Secure Multi-Party Vector Sum Protocol with Integer quantization

This section presents a novel secure multiparty vector sum protocol for floating

point real numbers based on a modified version of the ElGamal cryptosystem. This

proposal is associated with Publication 3, Publication 5 and Publication 6.

The proposed protocol utilizes a modified version of the ElGamal encryption

scheme to facilitate secure multiparty vector computation. This approach enables

multiple clients to collaboratively calculate the sum of their encrypted vectors, while

ensuring the confidentiality of their individual contributions from both the server and

other participating clients. The protocol’s security is founded upon the computational

intractability of the discrete logarithm problem.

Due to the input requirement being floating-point real number vectors, the

transformation and processing of these numbers to make them compatible with tradi-
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Table 2.1: Notation and Explanation

Notation Explanation

Ui User i

U User

S Aggregation server

n Number of participants

M Number of training samples

W Model parameter vector

V Sum of n vectors

W t Global model parameter vector at round t

W t
i Model parameter vector of party i at round t

mi Number of data samples for user Ui

m Total training data from all parties

W ( j)
i Vector W of party i with elements indexed by j

xi,yi Secret key vectors for ElGamal encryption of party i

Xi,Yi Public key vectors for ElGamal encryption of party i

ci,di, pi,qi Secret key vectors for ECC encryption of party i

Ci,Di,Pi,Qi Corresponding public key vectors for ECC encryption of party i

tional cryptographic algorithms would demand extensive and inefficient computations

due to their large size. Motivated by the natural resilience of deep neural networks to

low-precision fixed-point representations [188], the thesis proposes an integer encod-

ing method that rounds the client’s model weights to reduce the cost during commu-

nication. The thesis employs a preliminary transformation of the input. The floating

real numbers will be scaled and normalized to a suitable value range [0, 1]. After nor-

malization, these real numbers will be multiplied by a coefficient known as precision,

corresponding to the number of decimal places used to represent the number. This

process assists in converting the numbers into appropriate integers for encryption op-

erations. Optimal precision selection balances computational speed and efficiency,

albeit at the cost of precision. Describe three steps of the procedure in detail as fol-

lows.
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2.2.1. Proposed protocol

The proposed protocol consists of two phases illustrated as in Figure 2.1.

Input:

• Each party Ui has private vector Wi = {W ( j)
i ,1≤ j ≤ model size}.

• Each party Ui has two private key vectors: xi = {x( j)
i },yi = {y( j)

i }.

• System parameters: the exponential factor (γ), Zp and generator g.

Output: Approximate vector sum: W̃ = ∑
n
i=1Wi.

Phase 1: Initialization Phase

• Each party Ui sends its public key vectors {X ( j)
i }= {gx( j)

i },{Y ( j)
i }= {gy( j)

i },

and normalization factor (minWi +σi,maxWi +σ ′i ) to server.

• The server computes: X =

{
n
∏
i=1

X ( j)
i

}
; Y =

{
n
∏
i=1

Y ( j)
i

}
for 1≤ j ≤ model size

and Wmax = maxn
i=i(maxWi +σ ′i ) and Wmin = minn

i=i(minWi +σi)

then sends them back to all clients.

Phase 2: Main phase

• Each client quantize parameter vectors W̃ ( j)
i ← W ( j)

i −Wmin
Wmax−Wmin

10γ , for 1≤ j ≤ model size.

• Each party Ui encrypts his model’s secret parameter vectors:{
V ( j)

i = X( j)y( j)
i

Y ( j)x( j)
i

gW̃ ( j)
i

}
for 1≤ j ≤ model size and sends to the server.

• The server then computes {V ( j)}=
{

∏
n
i=1V ( j)

i

}
for 1≤ j ≤ model size.

• The server performs Shank’s algorithm to find S( j) with:

gS( j)
=V ( j) for 1≤ j ≤ model size.

• The server computes the vector sum by computes: S( j)

10γ (Wmax−Wmin)+Wmin

Figure 2.1: Secure Vector Sum Protocol based on Integer quantization and Elgamal

cryptosystem

Initialization phase

To initiate the protocol, the following parameters are required:

• In the initial step, before the protocol begins, the central aggregator selects a

precision level, known as the exponential factor (γ), and broadcasts it to all

clients. This factor determines the number of decimal places preserved in the

quantization process.
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• A prime p and another prime q are chosen such that p−1 is a multiple of q. Let

g be a generator of the cyclic group Zp, with the conditions that g ̸= 1 and gq

mod p = 1. All computations in the proposed protocol are carried out within

Zp, and the parameters (p,q,g) are public, shared by the central server and all

clients.

• Each client Pi possesses two private key vectors:

xi = {x(1)i , . . . ,x(model size)
i }, yi = {y(1)i , . . . ,y(model size)

i },

where each x(i)i ,y(i)i ∈ {1,2, . . . , p−1}, along with the corresponding public key

vectors:

Xi = {gx(1)i , . . . ,gx(model size)
i }, Yi = {gy(1)i , . . . ,gy(model size)

i }.

Here, the private key yi is used only once. Each client Pi submits the public

keys Mi = {Xi,Yi} to the central server. In addition to the public key, the client

also sends the normalization factors (minWi +σi,maxWi +σ ′i ), with σi < 0 and

σ ′i > 0, to the server. The server then precomputes:

X =

{
n

∏
i=1

X ( j)
i

}
, Y =

{
n

∏
i=1

Y ( j)
i

}
for 1≤ j ≤ model size,

and computes Wmax = maxn
i=1(maxWi + σ ′i ) and Wmin = minn

i=1(minWi + σi).

These values, along with the computed public parameters M = {X ,Y} and

Wmax,Wmin, are then broadcast to all clients through the public network.

Secure n-clients sum computation phase

After the necessary parameters have been initialized, the main phase of the

secure sum protocol begins. This phase consists of two steps, which are outlined in

detail below:

Step 1: Client Operations

Each client Ui performs the following tasks:

• First, the client applies several operations to convert floating-point parameters

into integers. The private parameters are normalized to the range [0,1], and then
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scaled by multiplying them by 10γ , where γ is the exponential factor received

from the central aggregator. Specifically, for each parameter W ( j)
i at model

dimension j, the client computes:

W̃ ( j)
i ←

W ( j)
i −Wmin

Wmax−Wmin
·10γ , for 1≤ j ≤model size.

• Next, the client encrypts its model’s secret parameters using the public keys

M = {X ,Y} and its private keys xi and yi. The encrypted model parameters are

encoded into a vector Vi as follows:

Vi =

{
V ( j)

i =
Xy( j)

i

Y x( j)
i

·gW̃ ( j)
i

}
, for 1≤ j ≤model size,

where Xy( j)
i ,Y x( j)

i , Xy( j)
i

Y x( j)
i
∈ Zp. Once the vector Vi is computed, the client sends it

to the central server.

Step 2: Server Operations

Upon receiving the encrypted vectors Vi from all clients, the server performs

the following operations:

• The server computes the aggregated vector V by multiplying the corresponding

components of all received Vi’s:

V ( j) =
n

∏
i=1

V ( j)
i , for 1≤ j ≤model size.

• The server then applies Shanks’ algorithm to compute the vector S = {S( j)},

where each component S( j) satisfies the equation:

gS( j)
=V ( j), for 1≤ j ≤model size.

Since the values of S( j) are not large, solving the discrete logarithm problem is

computationally feasible.

• Finally, the server computes the vector sum by reversing the scaling process and

applying the normalization:

S( j)

10γ
· (Wmax−Wmin)+Wmin, for 1≤ j ≤model size.
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2.2.2. Estimation error evaluation

In this section, instead of directly computing the exact sum of the vectors, the

protocol employs integer quantization, which introduces rounding errors into the final

aggregated sum. The following theorem provides an in-depth analysis of the relative

error involved and establishes the maximum allowable threshold for this error during

the computation.

Theorem 2.2.1. The protocol described in Figure 2.1 can approximate the sum of n

vectors, with the error bound for each j-th component given by the formula:

∆S( j) =

√
(δ

( j)
1 )2 +(δ

( j)
2 )2 + . . .+(δ

( j)
n )2 ≤ εd(n+1),

where εd denotes the error incurred when using d decimal digits for rounding, ∆S( j)

represents the total relative error for the j-th component of the summed vector, and

δ
( j)
i is the relative error of the j-th component of the local vector after rounding.

Proof. Since the components of the vector are computed independently, we can, with-

out loss of generality, prove that if the central server calculates a value S( j) such that

the equation gS( j)
=V ( j) holds, then S( j) is an estimate of the sum of all clients’ secret

values. To simplify the exposition, we omit the index ( j) in the following discussion,

though it is understood that the proof applies to the j-th component of the vector.

Assume that gS =V . We can then express V as:

gS =V =
n

∏
i=1

Vi =
n

∏
i=1

gW̃iXyi

Y xi
= g∑

n
i=1W̃i

n

∏
i=1

(∏n
k=1 Xk)

yi

(∏n
k=1Yk)

xi

= g∑
n
i=1W̃i

n

∏
i=1

(
g∑

n
j=1 x j

)yi(
g∑

n
j=1 y j

)xi
= g∑

n
i=1W̃i

g∑
n
j=1 x j ∑

n
i=1 yi

g∑
n
j=1 y j ∑

n
i=1 xi

= g∑
n
i=1W̃i.

Let S( j) = ∑
n
i=1W̃ ( j)

i , meaning S = {S( j)} represents the approximate sum of

the vectors after the rounded private vectors have been summed.

By the definition of relative error for rounding, let δ
( j)
i represent the relative

error in rounding the j-th component from client Ui. Consequently, the relative error

in summing these components is given by:

∆S( j) =

√
(δ

( j)
1 )2 +(δ

( j)
2 )2 + . . .+(δ

( j)
n )2.
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Following the rounding error threshold rule, we have:

∆S( j) ≤ εd(n+1).

2.2.3. Privacy analysis

In this section of the dissertation, we will provide a thorough proof demonstrat-

ing that the multi-party secure summation protocol we have introduced guarantees the

privacy of each semi-honest client. This is in accordance with the following theorem:

Theorem 2.2.2. The secure summation protocol for n clients, as presented in Figure

2.1, ensures that the privacy of each honest client is protected against the server and

up to (n−2) corrupted clients in a semi-honest model.

Proof. Similarly to the aforementioned section, due to the independent computation

of vector components and the use of distinct keys, we can, without loss of general-

ity, demonstrate the security of the protocol for any component j. Firstly, the thesis

proves that the multi-party secure summation protocol ensures the privacy of each par-

ticipant’s input in the semi-honest model without colluding among the participants,

under the DDH assumptions.

During phase 1, party Ui transmits X ( j)
i = gx( j)

i and Y ( j)
i = gy( j)

i , where x( j)
i and

y( j)
i are randomly selected values, uniformly distributed over [1, p−1]. Therefore, the

probability of choosing any given value is equal and is 1
p . Consequently, X ( j)

i and Y ( j)
i

are also random variables in accordance with the ElGamal encryption algorithm. As

per the Diffie-Hellman decisional assumption:∣∣∣∣Pr
[

A
(
G,q,g,gx( j)

i ,gy( j)
i

)
= 1
]
−Pr

[
A
(
G,q,g,x( j)

i ,y( j)
i

)
= 1
]∣∣∣∣< µ(n) =

∣∣∣∣1p
∣∣∣∣ .

Similarly, σi and σ ′i are randomly chosen numbers with a uniform distribution,

thus minWi +σi and maxWi +σ ′i also have a uniform distribution. Therefore, both of

these sequences are computationally indistinguishable.

At step 2, Vi =

{
V ( j)

i = Xy( j)
i

Y x( j)
i

gW̃ ( j)
i

}
is transmitted, but as proven above with
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x( j)
i and y( j)

i being randomly chosen values with a uniform distribution, V ( j)
i also has

a uniform distribution and is thus also computationally indistinguishable:

∣∣∣∣Pr
[

A
(
G,q,g,gx( j)

i ,gy( j)
i ,V ( j)

i ,γ

)
= 1
]
−Pr

[
A
(
G,q,g,x( j)

i ,y( j)
i ,W̃ ( j)

i ,σi,σ
′
i

)
= 1
]∣∣∣∣< µ(n).

Hence, the proposed protocol guarantees the privacy of each participant’s input

in the actual model.

Subsequently, the thesis establishes that the multi-party secure sum protocol

preserves the privacy of honest users, even in the case where n−2 out of n users, who

are assumed to be semi-honest, collude.

To prove that the protocol protects the privacy of the honest parties against col-

lusion by up to n−2 semi-honest parties and the computation party, one must present

a simulator M that can simulate what the dishonest parties and the computation party

can observe during the protocol execution using a polynomial-time algorithm. Specif-

ically, it is necessary to exhibit a polynomial-time algorithm that computes the joint

view of the computation party and the dishonest parties using only the knowledge

of the semi-honest parties, the outputs, the public keys, and a number of ElGamal

ciphertexts on the prime field Zp.

Without the loss of generality, we assume that two clients U1 and U2 do not

collude while the central server and the others Ui∥i ∈ I = {3,4, . . . ,n} collude with

each other. In the secure protocol, each client only sends the encrypted value V ( j)
i

and two public keys X ( j)
i ,Y ( j)

i to the server. X ( j)
i ,Y ( j)

i are random values because

the private keys x( j)
i ,y( j)

i are uniformly random. To prove the theorem, we must con-

struct a probabilistic polynomial-time algorithm that can simulate the computation for

the messages W̃1 and W̃2 using only the final sum S( j), corrupted clients’ knowledge

{x( j)
i ,y( j)

i ,V ( j)
i } and public keys X ( j)

1 ,Y ( j)
1 ,X ( j)

2 ,Y ( j)
2 .

We denote the algorithm that satisfies the above assumption as M. Algorithm

M uses (u12,v12) = (gW̃ ( j)
1 gx( j)

2 y( j)
1 ,gx( j)

2 ), (u21,v21) = (gW̃ ( j)
2 gx( j)

1 y( j)
2 ,gx( j)

1 ) as its input to
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simulate W̃ ( j)
1 ,W̃ ( j)

2 as follows:

U ( j)
1 =

u12.Y
∑i∈I x( j)

i
1 .gS( j)−∑i∈I W̃ ( j)

i

u21.X
∑i∈I y( j)

i
1

U ( j)
2 =

u21.Y
∑i∈I x( j)

i
2 .gS( j)−∑i∈I W̃ ( j)

i

u12.X
∑i∈I y( j)

i
2

And so:

{
M(I,x( j)

I , fI(x( j)))
}
=
{[

X ( j)
i ,Y ( j)

i

]n

i=1
,X ( j),Y ( j),

[
V ( j)

i

]n

i=1
,S( j),V ( j),U ( j)

1 ,U ( j)
2

}
.

(2.2.1)

Whereas:

{
V IEW π

A,I(x
( j))
}
=
{[

X ( j)
i ,Y ( j)

i

]n

i=1
,X ( j),Y ( j),

[
V ( j)

i

]n

i=1
,S( j),V ( j)

}
. (2.2.2)

Therefore, we can see that:
{

V IEW π
A,I(x

( j))
}

and
{

M(I,x( j)
I , fI(x( j)))

}
differ

only in their U ( j)
1 ,U ( j)

2 values.

Given that x( j)
1 ,x( j)

2 ,y( j)
1 ,y( j)

2 are randomly selected from Z∗p, under the Deci-

sional Diffie-Hellman (DDH) assumption, the elements u12,u21,v12,v21 along with

x( j)
1 ,x( j)

2 ,y( j)
1 ,y( j)

2 are computationally indistinguishable.

According to the definition, U1 and U2 are dependent random variables deter-

mined by u12, u21, v12, and v21. These variables, in turn, depend on the independent

random variables x( j)
1 , x( j)

2 , y( j)
1 , and y( j)

2 , which are uniformly distributed as they are

randomly selected from the set (1, p−1). Consequently, U1 and U2 are also uniformly

distributed and thus thay and x( j)
1 ,x( j)

2 ,y( j)
1 ,y( j)

2 are indistinguishable. This implies that

even with additional knowledge about U1 and U2, corrupted parties and the aggrega-

tion server gain no further information beyond the publicly shared parameters and the

data derived from collusion.

According to Definition 1.3.4, the protocol is semantically secure against the

collusion of the adversarial party and up to n−2 semi-honest parties.
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On the other hand, the parameters shared among the parties are based on the

discrete logarithm problem over the prime field Zp. This problem currently belongs

to the NP-hard class; therefore, reconstructing the secret parameters from the pub-

licly shared parameters is also an NP-hard problem. Given the current computational

capabilities, when the secret parameters are randomly chosen from (1, p−1) in accor-

dance with safety conditions, the protocol also ensures computational security based

on the difficulty of the discrete logarithm problem in the finite prime field Zp.

2.2.4. Performance Evaluation

2.2.4.1. Computational cost

In this section, the thesis mainly focuses on the time complexity. To facilitate

the discussion, the following notations in Table 2.2 will be used:

Table 2.2: Computational complexity notations

Notation Time required to perform

TE A exponentiation operation on Zp.

TM A multiplication operation on Zp.

TI An inversion operation on Zp.

TS The Shanks’ baby-step giant-step algorithm.

We analyze the time complexity the proposed protocol by each phase:

• Initialization phase:

Each client. In the system preparation stage, each client computes public keys

by performing exponentiation operation on Zp. This performance takes each

client model size×TE for each key. Since each client possesses two public keys,

the time taken by each client to prepare both public keys is 2×model size×TE .

Server. The server calculates the public parameters X , and Y by multiplying the

corresponding public keys of all clients, where each public key corresponds to
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a matrix of points. As a result, the time taken by the server in this phase can be

expressed as 2×n×model size×TM.

• Main phase:

Each client. Each client generates Vi with 2×model size multiplication opera-

tions model size inversion operations and 3×model size exponentiation opera-

tions. So, this cost: 2×model size×TM+model size×TI+3×model size×TE

Server. For server side, server first consumes model sizeTM for computing V .

Server then takes model size× TS for finding s that satisfy gs = V j. Finally,

server consumes model size(TM +TS) since performing operations among inte-

ger matrices.

In the calculations mentioned, the exponentiation of two numbers over Zp

requires the highest computational cost, significantly more than both the inversion

and multiplication of elements in Zp. The execution time for Shank’s algorithm is

also directly derived from the run-time of the exponentiation algorithm and requires

performing many exponentiations to achieve the desired value. Therefore, for the

client, the encryption time will approximate the time for calculating exponentiations,

while for the server, the decryption time will approximate the time it takes to execute

Shank’s algorithm.

To investigate the impact of decimal precision on encryption time, we con-

ducted an experiment using identical computer configurations across all cases. This

involved a single-threaded Python client running on an i7 processor without GPU sup-

port, and we excluded communication latency from our measurements. The results

are summarized in Figure 2.2. The amount of time needed to compute the encryption

of a particular parameter is measured and correlated to the model size.

Our findings demonstrate a clear trend: encryption time decreases as the dec-

imal precision of the model parameters is reduced, while the size of the private vec-

tors remains constant. This provides strong evidence that our proposed compression

technique effectively enhances encryption efficiency. Furthermore, for each level of

decimal precision, encryption time increases as the size of the private vectors in the



73

Figure 2.2: The average client encryption time at decimal precision levels of 2, 3,

and 5

framework grows, likely due to the greater computational demands associated with

larger private vectors. It is evident that the encryption time at the client side remains

consistent across different nodes and is independent of the number of participating

nodes. This is more efficient than the secret-sharing-based protocols proposed in

works such as [162], where the computational complexity at the client side depends

on the number of participating nodes. Consequently, these protocols often struggle to

scale effectively in models with many participants.

The observed reduction in encryption time has a significant impact on the scal-

ability of deployments, particularly for large federated learning networks where com-

putational efficiency is paramount. By reducing encryption time, our approach can

enable the implementation of FL in scenarios where computational resources might

be limited.

The sum computational time is the time taken to execute Shank’s algorithm on

the obtained results. The complexity of this algorithm is exponential, therefore the

execution is relatively slow for large numbers. The decryption execution time on the

server is presented in Figure 2.3.
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Figure 2.3: The computational time required for the decryption of different model

size at decimal precision levels of 3, 4, and 5

The results clearly demonstrate that as the required precision level increases,

the time needed to compute the sum at the server rises significantly, following an

exponential trajectory. This finding highlights the intrinsic computational challenges

associated with higher precision, as it necessitates a substantial enhancement in the

server’s processing capabilities. Furthermore, while the growth in the number of

participating parties naturally leads to a larger aggregate sum and consequently an

increase in the server’s computation time, this relationship is linear rather than expo-

nential. This linear increase, characterized by a simple expansion in the volume of

values to be processed, remains well within manageable limits, ensuring the system’s

scalability and efficiency.

2.2.4.2. Communication cost

We denote the size in bits of a private vector (Wi) as sizem and the size of public

keys in Elgamal protocols as sizek.

In the initialization phase, each client needs to send its public keys to the server.

This process requires a total bandwidth of 2×model size×sizek bits. The server then

broadcasts X ,Y to every client, which requires the server to establish n connections,
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each with a bandwidth of 2×model size× sizek bits. Therefore, the total bandwidth

for the initialization phase is 4×n×model size× sizek bits.

Moving on to the main phase, each client is required to send Vi to the server.

The transmission of Vi messages requires model size× sizek bits of bandwidth for

each message. In the second computation phase, sever needs to send the sum S all

clients, which requires a bandwidth of sizem bits for each message. The total band-

width for this phase is n× sizem bits.

For instance, with a private vector of 50,000 dimensions and an Elgamal en-

cryption key of 256 bits, the total communication bandwidth during each round of the

protocol is summarized in Table 2.3.

Table 2.3: Communication bandwidth of the proposed quantization-based protocol

with model size is 50,000 and Elgamal key size if 256 bit

Client i Server

Initialization Phase 3.07 MB 3.07 MB×n

Computation Phase 1.53 MB 0.38 MB×n

While it is evident that the overall communication cost has increased signif-

icantly compared to the original federated learning framework, this added expense

is justified when considering the enhanced privacy and security guarantees provided

by the protocol. Importantly, despite the rise in communication overhead, the total

cost remains far more efficient than what is typically incurred in secret-sharing-based

protocols, such as those discussed in [162]. These protocols, while secure, often

require a much greater volume of data exchange between parties, leading to substan-

tially higher communication costs. In contrast, the approach presented here achieves

a more balanced trade-off between security and efficiency, ensuring robust protection

of sensitive data without imposing prohibitive communication overheads.
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2.2.5. Discussion

Building on the analysis presented, it becomes clear that the first proposed

protocol is particularly effective when dealing with lower precision requirements. As

the precision level increases, the computational demands on the server side escalate

significantly, reflecting the exponential nature of the computational burden associ-

ated with higher precision. In contrast, the client-side costs remain relatively stable,

showing only a linear increase with the size of the private vector.

Communication costs for clients are fixed and primarily determined by the size

of the private vector and the encryption key used. Meanwhile, the server’s bandwidth

requirements are influenced by both the precision of the numerical representations and

the number of participants involved. Although the precision of the vector summation

may decrease due to the compression technique, the impact on the overall accuracy of

the federated learning model is minimal. In fact, in some instances, this slight loss in

precision may contribute positively by introducing additional randomization during

the training process, which can enhance the model’s ability to generalize. A more

detailed evaluation of these factors and their implications on federated learning will

be thoroughly explored in Chapter 3.

To address the challenges of declining accuracy in computations and the sig-

nificant computational costs required for high precision, this dissertation presents a

second protocol designed for securely computing the summation of multiple private

real number vectors. This protocol leverages a masking matrix technique and a modi-

fied ECC encryption scheme. A comprehensive discussion of this protocol is provided

in the following section of the dissertation.

2.3. Secure multi-party sum protocol using mask matrix with Modified ECC

protocol

To develop the second new SMC protocol, it is crucial to address the limi-

tations of existing approaches. The first protocol faces a significant drawback: its

computational cost increases substantially with the required accuracy. This is largely

due to the time-intensive nature of implementing Shank’s algorithm, especially when
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dealing with large integers correlated with high decimal precision. While separating

a number into its real and integer parts can potentially simplify computations, this

method inadvertently exposes the decimal components, compromising privacy. To

overcome this challenge, a more effective solution involves multiplying the decimal

parts by a masking matrix, thereby concealing them and ensuring privacy. This ap-

proach not only reduces computational costs but also enhances the security of the

protocol, making it a more robust solution for secure computations involving real

number vectors.

In this section, the dissertation introduces the second proposed protocol, which

utilizes a masking matrix technique combined with a variant of the ECC cryptosys-

tem. In this protocol, the real part of the vector is concealed using the masking matrix,

while the integer part is secured with ECC encryption. During the aggregation pro-

cess on the server side, the masking matrices cancel out, allowing the desired sum to

be obtained.

The ECC scheme is a public-key cryptography system that leverages the prop-

erties of elliptic curves. In the ECC system, encryption and decryption are performed

using elliptic curve point operations rather than the modular arithmetic operations

used in the traditional ElGamal system. This approach enhances the efficiency of

ECC compared to the traditional Elgamal system, as elliptic curve point operations

are significantly faster than modular arithmetic operations. The security of ECC relies

on the complexity of the Elliptic Curve Discrete Logarithm Problem (ECDLP), which

involves determining the private key associated with a given public key. This com-

plexity makes ECC not only more efficient but also more secure than the traditional

ElGamal system, which has led to its widespread use in modern cryptography.

It is worth noting that the ECC encryption system can be replaced with the tra-

ditional ElGamal encryption system. However, this substitution would require alter-

ing the operations from elliptic curve point multiplication to modular exponentiation

and would necessitate longer key lengths to achieve the same level of security.
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2.3.1. Proposed Protocol

We propose a SMC protocol that leverages the additively homomorphic prop-

erty, which enables multiple parties to collaboratively compute the sum of their pri-

vate messages without disclosing the actual values to one another. This protocol

utilizes an elliptic curve analog of the ElGamal cryptographic system, enhancing se-

curity and efficiency. The implementation of our protocol necessitates a preparatory

stage where all necessary parameters are established. It is structured into three dis-

tinct phases: an initial setup phase, followed by two computational phases, where

the participants engage in secure computations. Figure 2.4 provides a comprehen-

sive overview of the protocol, illustrating its structure and the flow between different

phases.

Initialization phase

• All parties choose an elliptic curve E(Zq) with a point O at infinity and q to

be a large prime, in which the elliptic curve discrete logarithm problem is hard.

In addition, G is a generator point of the elliptic curve E with order q (i.e.,

q ·G = 0). The curve E(Zq) and the generator point G are public to the server

and all clients.

• Every client possesses a confidential vector Wi in the form of a vector compris-

ing floating-point real numbers. Let Wi be a vector of dimension model size. We

transform this vector into a matrix W of size d× d, where d = ⌈
√

model size⌉

is the ceiling of the square root of model size. The elements of the vector Wi

are arranged sequentially across the rows to form the corresponding matrix W .

Formally, if Wi = [w1,w2, . . . ,wmodel size], then the matrix W can be expressed

as:

W =


w1 w2 . . . wd

wd+1 wd+2 . . . w2d
...

... . . . ...

w(d−1)d+1 w(d−1)d+2 . . . wmodel size


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Input:

• Each party Ui has private matrix W i = [W (k j)
i ];1≤ j,k ≤ d.

• Each party Ui has four private key matrices: pi = [p(k j)
i ],qi = [q(k j)

i ],ci = [c(k j)
i ],di = [d(k j)

i ].

• Each party Ui has four private random matrices: Mi,Ni,ri,si.

• System parameters: Elliptic Curve E(Zq) with order q and generator point G.

Output: Sum vector: W = ∑
n
i=1Wi.

Phase 1: Initialization Phase

• Set up system parameters E(Zq) and generator point G.

• Each party Ui sends its public keys Pi = {p(k j)
i G},Qi = {q(k j)

i G},

and Ci = {c(k j)
i G},Di = {d(k j)

i G} to server.

• The server computes and broadcasts: P =
n
∑

i=1
Pi,Q =

n
∑

i=1
Qi,C =

n
∑

i=1
Ci,D =

n
∑

i=1
Di.

Phase 2: Main phase

• Each party Ui computes and send his model’s public parameter vectors to the server:

Ai = Mi + ri,Bi = Ni + si,

Ri = {r(k j)
i G+q(k j)

i P(k j)− p(k j)
i Q(k j)},Si = {s(k j)

i G+ c(k j)
i D(k j)−d(k j)

i C(k j)}

• The server then computes R =
n
∑

i=1
Ri,S =

n
∑

i=1
Si and find r and s that each element satisfy

r(k j)G = R(k j) and s(k j)G = S(k j) and send M =
n
∑

i=1
Ai− r,N =

n
∑

i=1
Bi− s to all clients

• Each party computes Ti =Wi +MiN−MNi and sends Ti to the server

• The server obtain the sum of all clients’ messages as T =
n
∑

i=1
Ti =

n
∑

i=1
Wi =W .

Figure 2.4: Secure Vector Sum Protocol based on Mask matrix combine with ECC

cryptosystem

If model size is not a perfect square, the remaining elements of the matrix W

are padded as necessary, typically with zeros, to fill the matrix completely.

• Each client Ui has already chooses four private keys pi,qi,ci,di where each pri-

vate key is a matrix of dimensions d×d with each element in the range [1,q−1].

Client Ui then computes the corresponding public keys:
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Pi = {P(k j)
i }d×d = {p(k j)

i ·G}d×d,

Qi = {Q(k j)
i }d×d = {q

(k j)
i ·G}d×d,

Ci = {C(k j)
i }d×d = {c

(k j)
i ·G}d×d,

Di = {D(k j)
i }d×d = {d

(k j)
i ·G}d×d.

Each client then sends public keys Pi,Qi,Ci,Di to the central server.

• Receiving Pi,Qi,Ci,Di (i = 1, . . . ,n), the server compute the public parameters

P =
n
∑

i=1
Pi, Q =

n
∑

i=1
Qi, C =

n
∑

i=1
Ci, D =

n
∑

i=1
Di and then broadcast P,Q,C,D to

every client.

Secure sum computation phase

• Each client Ui chooses four private matrices Mi, Ni, ri, si of size d × d and

computes the flowing messages

Ai = Mi + ri

Bi = Ni + si

Ri = {R(k j)
i }d×d = {r

(k j)
i G+q(k j)

i P(k j)− p(k j)
i Q(k j)}d×d

Si = {S(k j)
i }d×d = {s

(k j)
i G+ c(k j)

i D(k j)−d(k j)
i C(k j)}d×d

and sends these computed messages {Ai,Bi,Ri,Si} to the server.

• At the second step, the central server computes R =
n
∑

i=1
Ri and S =

n
∑

i=1
Si. The

server then finds r and s that each element r(k j) and s(k j) satisfy r(k j)G = R(k j)

and s(k j)G = S(k j). From r and s, the central server obtains

M =
n

∑
i=1

Ai− r =
n

∑
i=1

Mi,

N =
n

∑
i=1

Bi− s =
n

∑
i=1

Ni

Finally, the central server broadcasts M and N to all clients.

• Each client computes Ti =Wi +MiN−MNi and sends Ti to the server.
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• The central server obtains the sum of all clients’ private messages as the flowing

formula:

T =
n

∑
i=1

Ti =
n

∑
i=1

Wi =W. (2.3.3)

2.3.2. Proof of correctness

Theorem 2.3.1. The proposed protocol in the Figure 2.4 can calculate the sum of n

vectors.

Proof. We have:

R =
n

∑
i=1

Ri =

{
n

∑
i=1

(r(k j)
i G+q(k j)

i P(k j)− p(k j)
i Q(k j))

}
d×d

.

Using the distributive property of scalar multiplication, we can write this as:

R = {rG}d×d = {(r
(k j)
1 + r(k j)

2 + · · ·+ r(k j)
n )G+(q(k j)

1 +q(k j)
2 + · · ·+q(k j)

n )P

− (p(k j)
1 + p(k j)

2 + · · ·+ p(k j)
n )Q}d×d

= {(r(k j)
1 + r(k j)

2 + · · ·+ r(k j)
n )G+Q(k j)P(k j)−P(k j)Q(k j)}d×d

= {(r(k j)
1 + r(k j)

2 + · · ·+ r(k j)
n )G}d×d

Therefore, we have:

r(k j) = r(k j)
1 + r(k j)

2 + · · ·+ r(k j)
n for all 1≤ k, j ≤ d.

In another hand, we have:

M =
n

∑
i=1

Ai− r =
n

∑
i=1

(Mi + ri)− r =
n

∑
i=1

Mi +
n

∑
i=1

ri− r

Thus

M =
n

∑
i=1

Mi.

The proof of correctness is similar with

N =
n

∑
i=1

Ni.
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Using the formula for Ti, we have:

Ti =Wi +MiN−MNi

Summing over all Ti:

n

∑
i=1

Ti =
n

∑
i=1

(Wi +MiN−MNi) =
n

∑
i=1

Wi +
n

∑
i=1

MiN−M
n

∑
i=1

Ni

=
n

∑
i=1

Wi +MN−MN

=
n

∑
i=1

Wi

Therefore, we have shown that
n
∑

i=1
Ti is equal to

n
∑

i=1
Wi, which implies that T =

n
∑

i=1
Wi.

2.3.3. Privacy analysis

In this section, the thesis aims to analyze the security of the proposed protocol

under the assumption that all participating clients are semi-honest and fully comply

with the protocol, along with all of the previously mentioned assumptions.

Theorem 2.3.2. The protocol for secure n-clients sum presented in Figure 2.4 protects

each honest client’ privacy against the server and up to (n−2) corrupted clients (and

colluding with the server) in semi-honest model.

Proof. Firstly, the thesis demonstrates the computational security of the proposed

protocol by relying on the difficulty of the elliptic curve discrete logarithm problem.

During the initialization phase, each client utilizes their private keys to gen-

erate the corresponding public keys, which are then sent to the central server. An

attacker could theoretically deduce the private keys pi,qi,ci,di from the public keys

Pi,Qi,Ci,Di if they manage to solve the elliptic curve discrete logarithm problem

(ECDLP). However, the proposed protocol is based on the premise that the ECDLP
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is challenging to solve, which implies that an attacker cannot efficiently recover pri-

vate keys from public keys. Therefore, the protocol maintains computational security

against any semi-honest client attempting to discover other clients’ private keys dur-

ing this phase.

In the second phase, user Ui sends the values Ai,Bi,Ri, and Si to the server.

The component R(k j)
i includes two elements randomly distributed over q(k j)

i P(k j) and

p(k j)
i Q(k j), and an additional value derived from point multiplication on an elliptic

curve. Given the computational challenges posed by the elliptic curve discrete loga-

rithm problem (ECDLP), it is infeasible to determine r(k j)
i , q(k j)

i , and p(k j)
i from Ri, as

well as s(k j)
i , c(k j)

i , and d(k j)
i from Si for all 1≤ k, j ≤ d. Consequently, since r(k j)

i and

s(k j)
i cannot be determined within a polynomially feasible time frame, neither Ni nor

Mi can be derived from Ai and Bi. This phase of the protocol is thus computationally

secure. Similarly, the variables Mi, Ni, and Wi derived from Ti remain secure, as they

are random variables uniformly distributed, further enhancing the protocol’s security.

Subsequently, the thesis proves that the multi-party secure summation proto-

col ensures the privacy of each participant’s input in the semi-honest model without

colluding among the participants, under the Decisional Diffie-Hellman (DDH) as-

sumption. Due to the independent computation of vector components and the use

of distinct keys, we can, without loss of generality, demonstrate the security of the

protocol for any component (k j) with all 1≤ k, j ≤ d.

During phase 1, party Ui transmits P(k j)
i = p(k j)

i G, Q(k j)
i = q(k j)

i G, C(k j)
i =

c(k j)
i G, and D(k j)

i = d(k j)
i G where p(k j)

i , q(k j)
i , c(k j)

i , and d(k j)
i are randomly selected

independent values, uniformly distributed over [1,q− 1]. Therefore, the probability

of choosing any given value is equal and is 1
q . Consequently, P(k j)

i , Q(k j)
i , C(k j)

i , and

D(k j)
i are also random variables in accordance with the ECC encryption algorithm. As

per the ECDLP assumption:

|Pr [A(E(Zq),Pi,Qi,Ci,Di) = 1]−Pr [A(E(Zq), pi,qi,ci,di) = 1]|< µ(n)

with µ(n) being a negligible function.

At step 2, Ai,Bi,Ri,Si are transmitted. Here, Mi,Ni,ri,si are independent ran-
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dom matrices with each element uniformly distributed over a specified range. There-

fore, Ai and Bi also have a uniform distribution and hence, Ai,Bi are computationally

indistinguishable from Mi,ri,Ni,si.

On the other hand, Ri follows the distribution of ri according to the ECDLP

assumption of the ECC encryption algorithm. Thus, Ri is also computationally indis-

tinguishable from ri. The same holds true for Si and si. From this, we can see:

|Pr [A(Ai,Bi,Ri,Si,P,Q,C,D) = 1]−Pr [A(Mi,Ni,ri,si, pi,qi,ci,di) = 1]|< µ(n).

with µ(n) being a negligible function.

At the final step, each client sends Ti =Wi +MiN−MNi. Since Mi and Ni are

matrices where each element is independent and uniformly distributed, Ti also has a

uniform distribution. Therefore, Ti, Mi, and Ni are computationally indistinguishable.

Hence, the proposed protocol guarantees the privacy of each participant’s input

in the actual model.

Subsequently, the thesis establishes that the multi-party secure sum protocol

preserves the privacy of honest users, even in the case where n−2 out of n users, who

are assumed to be semi-honest, collude.

To demonstrate that the protocol ensures the privacy of honest parties against

collusion involving up to n− 2 semi-honest parties and the computation party, one

must introduce a simulator M. This simulator should be able to replicate what the dis-

honest parties and the computation party observe during the execution of the protocol

using a polynomial-time algorithm. Specifically, it is crucial to provide a polynomial-

time algorithm that generates the joint view of the computation party and the dishon-

est parties based solely on the knowledge of the semi-honest parties, the outputs, the

public keys, and a set of ECC ciphertexts on the elliptic curve field E(Zq).

Without loss of generality, we assume that two clients U1 and U2 do not col-

lude, while the central server and the other clients Ui, for i ∈ I = {3,4, . . . ,n}, collude

with each other. In the secure protocol, each client sends only the encrypted value

Ti, public shared values Ai,Bi,Ri,Si, and public keys Pi,Qi,Ci,Di to the server. The

public keys Pi,Qi,Ci,Di are uniformly random because the corresponding private keys
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pi,qi,ci,di are also uniformly random. Similarly, Ai,Bi,Ri,Si are uniformly random

values because Mi,Ni,ri,si,qi, pi,ci,di,P,Q,C,D are uniformly random.

To prove the theorem, we must construct a probabilistic polynomial-time al-

gorithm that can simulate the computation of the messages W1 and W2 using only

the final sum T , the corrupted clients’ knowledge {pi,qi,ci,di,Mi,Ni,ri,si,Wi}, and

the public values P1,Q1,C1,D1,A1,B1,R1,S1, along with the shared public values:

P,Q,C,D,R,S,M,N.

We denote the algorithm that satisfies the above assumption as M. Algorithm

M uses (u11,v11), (u12,v12), (u21,v21), and (u22,v22) as follows:

(u11,v11) = (r1G+ p2q1G, p2G) (2.3.4)

(u12,v12) = (s1G+ p2c1G, p2d1G) (2.3.5)

(u21,v21) = (r2G+ p1c2G, p1d2G) (2.3.6)

(u22,v22) = (s2G+ p1q2G, p1G) (2.3.7)

To start, we compute the values of (R′1,S
′
1) and (R′2,S

′
2) as follows:

R′1 = u11 +∑
i∈I

piQ1 +

(
r−∑

i∈I
ri

)
G−

(
u21 +∑

i∈I
qiP1

)
(2.3.8)

R′2 = u21 +∑
i∈I

piQ2 +

(
r−∑

i∈I
ri

)
G−

(
u11 +∑

i∈I
qiP2

)
(2.3.9)

S′1 = u12 +∑
i∈I

piC1 +

(
s−∑

i∈I
si

)
G−

(
u22 +∑

i∈I
ciP1

)
(2.3.10)

S′2 = u22 +∑
i∈I

piC2 +

(
s−∑

i∈I
si

)
G−

(
u12 +∑

i∈I
ciP2

)
(2.3.11)

Therefore:

{M(I, v̄I, fI(v̄), f (v̄))}=
{
[Pi,Qi,Ci,Di]

n
i=1,P,Q,C,D, [Ri,Si]

n
i=3, [R

′
i,S
′
i]

2
i=1,s,r

}
and

{
V IEW Π

A,I(v̄),OUTPUTΠ(v̄)
}
= {[Pi,Qi,Ci,Di]

n
i=1,P,Q,C,D, [Ri,Si]

n
i=1,s,r}
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Therefore, we can see that:
{

V IEW Π
A,I(v̄),OUTPUTΠ(v̄)

}
and {M(I, v̄I, fI(v̄), f (v̄))}

differ only in their [R′i,S
′
i]

2
i=1 and [Ri,Si]

2
i=1 values.

Given that ri,si,qi, pi,ci,di are randomly selected from Z∗q, under the ECDLP

assumption, the elements u12,u21,v12,v21 along with ri,si,qi, pi,ci,di are computa-

tionally indistinguishable.

According to the definition, the random variables R′1, R′2, S′1, and S′2 are de-

pendent on u12, u21, v12, and v21. These variables, in turn, are functions of the inde-

pendent random variables ri, si, qi, pi, ci, and di, which are uniformly distributed as

they are randomly selected from the set {1, . . . ,q−1}. Consequently, R′1, R′2, S′1, and

S′2 are also uniformly distributed. This uniform distribution implies that R′1, R′2, S′1,

and S′2 are indistinguishable. Therefore, even with additional knowledge about these

variables, corrupted parties and the aggregation server gain no further information

beyond the publicly shared parameters and the data derived from collusion.

According to Definition 1.3.4, the protocol is semantically secure against the

collusion of the adversarial party and up to n−2 semi-honest parties.

On the other hand, the parameters shared among the parties are based on the

discrete logarithm problem over the elliptic curse prime field E(Zq). This problem

currently belongs to the NP-hard class; therefore, reconstructing the secret param-

eters from the publicly shared parameters is also an NP-hard problem. Given the

current computational capabilities, when the secret parameters are randomly chosen

from (1, p− 1) in accordance with safety conditions, the protocol also ensures com-

putational security based on the difficulty of the discrete logarithm problem in the

elliptic curse prime field E(Zq).

2.3.4. Performance evaluation

2.3.4.1. Computational cost

In this section, the thesis mainly focuses on the time complexity. To facilitate

the discussion, the following notations in table 2.4 will be used.

We analyze the time complexity the proposed protocol by each phase:
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Table 2.4: Notations of the time complexity of operations in the mask matrix protocol

Notation Time required to perform

T IP
M A multiplication operation between a integer and a point on the

elliptic curve.

T PP
A An addition operation between two points on the elliptic curve.

T PP
M A multiplication operation between two points on the elliptic

curve.

TS The Shanks’ baby-step giant-step algorithm.

T II
M A multiplication operation between two integers.

T II
A An addition operation between two integers.

T FF
A An addition operation between two float numbers.

• System preparation:

In the system preparation stage, each client computes a public key by multiply-

ing a integer matrix with a point on the elliptic curve. This performance takes

each client d×d×T IP
M for each key. Since each client possesses two public keys,

the time taken by each client to prepare both public keys is 2×d×d×T IP
M .

• Initialization phase:

During this phase, the server calculates the public parameters P,Q,C, and D by

summing the corresponding public keys of all clients, where each public key

corresponds to a matrix of points. As a result, the time taken by the server in

this phase can be expressed as 4× (n−1)×d×d×TAP, where n is the number

of clients, d is the dimension of the matrix.

• First computation phase:

Each client generates their message consisting of four components, Ai, Bi, Ri,

and Si. Since Ai and Bi are obtained by adding two integer matrices then client

spends 2×d×d×T II
A in the process. Ri is obtained by multiplying an integer

matrix with a point to get riG, and qiP and piQ are obtained by element-wise

multiplying two matrices of points. Thus, each client spends d×d×T IP
M +2×
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d×d×T PP
M +3×T PP

A in computing Ri. Therefore, the total time spent by each

client to compute Ai, Bi, Ri, and Si is

2×d×d×T II
A +2×d×d×T IP

M +4×d×d×T PP
M +6×T PP

A .

For server side, server first consumes 2×(n−1)×d×d×T PP
A for computing R

and S. Server then takes 2×TS for finding r and s that satisfy rG=R and sG= S.

Finally, server consumes 2×n×d×d×T II
A since performing operations among

integer matrices.

• Second computation phase:

For the client side, each client computes Ti which contains element-wise multi-

plication and addition operations on integer matrices. This computation requires

total 2×d×T II
A +2×d×T II

M .

For the server side, we takes (n−1)×d×d×T II
A .

Figures 2.5 and 2.6 offer a detailed assessment of the computational costs as-

sociated with the proposed protocol, revealing the demands placed on both the client

and server sides. Figure 2.5 illustrates the average computation time required per

client, and it is evident that the computational burden on each client is higher com-

pared to the first protocol. This increased cost is primarily due to the need for clients

to compute multiple key matrices and intermediate values. These operations involve

significant matrix-based calculations, which are inherently more resource-intensive

than the simpler computations in the first protocol.

In contrast, Figure 2.6 shows the time required for the secure aggregation phase

at the server. Here, we observe that the secure aggregation process itself is relatively

efficient because it mainly involves basic matrix addition and multiplication. These

operations are generally fast, especially when compared to more complex crypto-

graphic processes. However, while the secure aggregation phase on the server side

benefits from this simplicity, it is important to recognize that the server’s computa-

tional responsibilities extend beyond aggregation. Specifically, the server also needs

to assist in computing the shared values R and S, which introduces a substantial com-

putational overhead.
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Figure 2.5: Average computation time at client with Secure multiparty sum vector

protocol based on masked matrix

The calculation of these shared values requires the execution of the Shank al-

gorithm, a computationally expensive process, particularly when large numbers or

high levels of precision are involved. The Shank algorithm is a critical part of ensur-

ing the security of the protocol, but its complexity adds significant overhead to the

server’s workload. As a result, the overall computational cost of the protocol is high

on both the client and server sides.

On the client side, the increased complexity arises from the need to manage

multiple key-related computations and the handling of intermediate results. On the

server side, although the secure aggregation phase itself is relatively lightweight, the

supporting operations for secure value sharing, particularly those involving the Shank

algorithm, contribute to a significant increase in the overall computational burden.

In conclusion, while the protocol achieves its intended security and function-

ality, it imposes considerable computational costs. Clients face increased workloads

due to matrix-based operations, and the server’s role in secure value sharing adds to

the overall complexity. These costs, while justifiable for the level of security achieved,

indicate that the protocol requires careful consideration of computational resources,
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Figure 2.6: Secure aggregation cost at server with Secure multiparty sum vector pro-

tocol based on masked matrix

particularly in environments with limited processing power or bandwidth.

2.3.4.2. Communication cost

We denote the size in bits of a private message (Wi) as sizem and the size of

public keys in Elliptic Curve Cryptography (ECC) protocols as sizek. The messages

exchanged between clients and the server can be classified into two groups according

to their size:

• Messages with size sizem: Ai,Bi,M,N,Ti.

• Messages with size sizek: Pi,Qi,Ci,Di,P,Q,C,D,Ri,Si

In the initialization phase, each client needs to send its public keys to the server.

This process requires a total bandwidth of 4× sizem bits. The server then broadcasts

P,Q,C,D to every client, which requires the server to establish n connections, each

with a bandwidth of 4×sizek bits. Therefore, the total bandwidth for the initialization

phase is 8×n× sizek bits.

Moving on to the first computation phase, each client is required to send four
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messages (Ai,Bi,Ri,Si) to the server. The transmission of Ai,Bi messages requires

sizem bits of bandwidth for each message, while sending Ri,Si requires sizek bits of

bandwidth for each message. Additionally, the server sends M,N to each client, which

incurs n connections with 2× sizem bits of bandwidth for each connection. Thus, the

total bandwidth for this phase is 2×n× sizem+2×n× sizek bits.

In the second computation phase, each client needs to send Ti to the server,

which requires a bandwidth of sizem bits for each message. The total bandwidth for

this phase is n× sizem bits.

For instance, with a private vector of 50,000 dimensions and an ECC encryp-

tion key of 256 bits (with sec256k1 curve), the total communication bandwidth during

each round of the protocol is summarized in Table 2.5.

Table 2.5: Communication bandwidth of the proposed masking-based protocol with

model size is 50,000 with 64bit precision and ECC key size if 256 bit

(sec256k1)

Client i Server

Round 1
12.49MB (not archive)

6.2 MB (archive)

12.49MB ×n

6.2 MB ×n

Round 2
7.7 MB

4.6 MB
0.76 MB ×n

Round 3 3.2 MB 0.38 MB ×n

Although the communication costs have increased significantly in compari-

son to the original federated learning framework, this increase is justifiable due to

the stronger privacy and security guarantees offered by the new protocol. Despite

the rise in communication overhead, the total costs remain substantially lower than

those typically associated with secret-sharing-based protocols, such as those outlined

in [162]. These protocols, while offering a high level of security, generally demand a

far greater exchange of data between parties, which results in much higher communi-
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cation overhead. In contrast, the proposed approach strikes a more effective balance

between security and efficiency. It offers strong protection for sensitive information

while keeping communication costs manageable, avoiding the excessive overhead of-

ten seen in other high-security protocols.

2.3.5. Discussion

The secure multiparty vector sum protocol based on the mask matrix offers a

notable improvement in accuracy compared to the first protocol, which relies on in-

teger quantization. The key strength of the second protocol is its ability to compute

exact sums, avoiding the approximation errors that can arise in the first protocol. This

level of accuracy is especially important in applications where even small deviations

in the computed sum could lead to significant errors or inaccuracies in downstream

tasks. However, this precision comes at the cost of increased computational over-

head. Despite this, the second protocol still proves more efficient than the first when

high precision is required. In the first protocol, as the need for accuracy increases,

the Shank algorithm must be applied to much larger numbers, leading to an exponen-

tial increase in computational complexity. In contrast, the second protocol handles

smaller noise values, which keeps computation time lower and more manageable.

The computational complexity of the second protocol scales linearly with the size of

the model and the number of participants, which is a significant improvement over

the first protocol, where complexity grows exponentially with increased precision de-

mands.

That said, the second protocol does have its drawbacks. While its linear com-

plexity makes it more efficient in terms of scalability, it still incurs significant com-

putational costs. Moreover, it lacks an integrated authentication mechanism, meaning

that it does not ensure the security of communication between parties. This absence

of built-in authentication requires the establishment of external authentication chan-

nels, adding complexity and cost to the system. These factors motivate the need for

a more refined solution, which leads to the introduction of the third protocol in the

dissertation. The third protocol not only retains the advantages of the mask matrix

technique but also addresses its key weaknesses. By incorporating an authentication
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mechanism directly within the protocol, it eliminates the need for separate authentica-

tion channels, reducing both cost and complexity. This integrated solution is designed

to provide a more balanced trade-off between security, efficiency, and computational

overhead, and will be explored in detail in the next section of the dissertation.

2.4. Secure multi-party sum protocol using mask matrix with Authentication

2.4.1. Proposed protocol

The thesis proposes a protocol that utilizes the ElGamal scheme to accomplish

a multi-party sum. This protocol leverages the advantage of homomorphic encryp-

tion, which enables multiple parties to collectively calculate the sum of their private

messages while maintaining the confidentiality of their actual values. The security of

the protocol is based on the difficulty of the Discrete Logarithm Problem. Addition-

ally, the protocol demonstrates excellent performance when applied to floating-point

numbers. The proposed protocol is summarized in Fig. 2.7.

Input:

• Each party Ui has private matrix W i = [W (k j)
i ];1≤ j,k ≤ d.

• Each party Ui has two private key matrices: xi = [x(k j)
i ],yi = [y(k j)

i ].

• System parameters: Finite Field Zp, generator g and invertible matrix H of size d×d.

Output: Sum vector: W = ∑
n
i=1Wi.

Phase 1: Initialization Phase

• Each party Ui sends its public keys {X ( jk)
i }= {gx( jk)

i },{Y ( jk)
i }= {gy( jk)

i } to server.

• The server computes: {X ( jk)}=
{

n
∏
i=1

X ( jk)
i

}
; {Y ( jk)}=

{
n
∏
i=1

Y ( jk)
i

}
and

sends them back to all clients.

Phase 2: Main phase

• Each party Ui the public mask: R( jk)
i = gr( jk)

i X( jk)y( jk)
i

Y ( jk)x( jk)
i

and messages Ti = viH + ri

then sends to the server.

• The server then computes {M( jk)
s }= {

n
∏
i=1

R( jk)
i } and find Q satisfy gQ( jk)

= M( jk)
s .

• The server obtains the vector sum by compute: V =
n
∑

i=1
vi = (T −Q)H−1.

Figure 2.7: SVS Protocol based on mask matrix and ElGamal cryptosystem
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In this section, we enhance the previously secure multi-party computation pro-

tocol by integrating an additional sub-protocol designed explicitly for user authen-

tication. This sub-protocol leverages the robustness of the Schnorr signature based

authentication mechanism, thereby strengthening the entire security protocol. This

integration not only strengthens the trustworthiness of each participating user but also

adds an extra layer of security to the entire computation process, ensuring a more se-

cure and reliable system.

Initialization phase

Before beginning the protocol, several assumptions and requirements regard-

ing the public parameters are shared between the server and clients and the client’s

public and private keys.

• Preparation: Each client holds a secret message containing a list of floating-

point numbers. To conform to the protocol, we convert this message into a

square matrix vi of size d× d by arranging the numbers in the list into matrix

rows. If the matrix is incomplete, we add 0s to fill it out.

• Public Parameters: We choose a cyclic group G = Zp where the Discrete Log-

arithm Problem is NP-hard, with p being a large prime number and g being a

generator of G. We also select an uniform random invertible matrix H of size

d× d. The parameters H, p, and g are known to all participating clients. For

simplicity in notation, operations within the Zp field are assumed to be modulo

operations.

• Public keys, private keys and parameters of clients: Each client Ui has two

matrices of size d×d of secret keys, named {xi} and {yi}. The elements of these

matrices, x( jk)
i and y( jk)

i , are selected randomly from 1,2, . . . , p−1. Client Ui

then computes their public keys by computing two matrices {Xi} and {Yi} with

each element is calculated by the formula X ( jk)
i = gx( jk)

i and Y ( jk)
i = gy( jk)

i , where

j is the row index and k is the column index of the matrix. In addition, client

Pi creates a random mask matrix ri with dimensions d× d with each element

is selected randomly from 1,2, . . . , p−1. This mask matrix will be removed

during the aggregation process at the server.
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• Compute shared keys: The participating clients Ui send their public key matrices

Mi = {Xi,Yi} to the central server S. Then, the central server computes the X and

Y matrices with entries X ( jk),Y ( jk) respectively:

X ( jk) =
N

∏
i=1

X ( jk)
i ; Y ( jk) =

N

∏
i=1

Y ( jk)
i

Then the server sends public matrices M = {X ,Y} back to each participating

client.

Computation phase

The computation phase contains the following steps:

• Using their secret mask ri, each participating client Ui computes the public mask

Ri where, each element of Ri is computed by R( jk) = gr( jk)
i

X ( jk)y( jk)
i

Y ( jk)x( jk)
i

, where each

entries of the matrix R( jk)
i is computed based on the corresponding entries of the

matrices r( jk)
i ,X ( jk),Y ( jk), x( jk)

i ,y( jk)
i .

• Each client Ui computes a message Ti = viH + ri.

• Then Ui, is tasked with the computation of a matrix signature, Sigi. The follow-

ing formula determines the entries of this matrix:

Sig( jk)
i ≡ y( jk)

i − x( jk)
i H(Y ( jk)

i ||T ( jk)
i )

In this equation, x( jk)
i and y( jk)

i represent the elements of the private key matrices

xi and yi respectively. Y ( jk)
i is an element of the public key matrix Yi, and T ( jk)

i is

an element of the encrypted message matrix Ti. As a result of this computation,

client Ui sends three messages, namely Ri, Ti, and Sigi, to the central server.

• At the central server, the server performs the calculation of the matrix Ms, where

each entry is calculated by using the following formula

M( jk)
s =

N

∏
i=1

R( jk)
i

From the matrix Ms, the server could calculate the sum of the masks Q such that

each element S( jk) satisfies gQ( jk)
mod p = M( jk)

s by using the baby step-giant

step algorithm.
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• The central server then computes the sum of matrices Ti, represented as T =
N
∑

i=1
Ti. Finally, the server obtains the sum of the private messages vi of clients as

V =
N

∑
i=1

vi = (T −Q)H−1.

• The central server initiates the user authentication process. This involves the

computation of the matrix Y
′
i and the verification of the equation Yi = Y

′
i . The

successful validation of this equation authenticates the client Ui. The detail

formula of Y
′
i is as follow:

{Y ′i }= {gSigiX γi
i (mod p)}

where γi = H(Yi||Ti).

2.4.2. Proof of correctness

In this section, we prove that the final output result V after performing the

protocol is the sum of the private messages vi of the participating clients.

Theorem 2.4.1. The proposed protocol in the Figure 2.7 can calculate the sum of n

vectors.

Proof. We have:

T =
N

∑
i=1

Ti =
N

∑
i=1

(ViH + ri) =
N

∑
i=1

(ViH)+
N

∑
ii

ri.

In order to simplify the notation, we will prove the theorem for each element

individually while omitting the indices and only using symbolic representation for

the matrix. It is important to remember that these are any arbitrary entries within the
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matrix. We prove Q =
N
∑

i=1
ri. We have

Ms =
N

∏
i=1

Ri = g

N
∑

i=1
ri X

K
∑

i=1
yi

Y

K
∑

i=1
xi

= g

N
∑

i=1
ri

(
N
∏
i=1

gxi

)
∑

N
i=1 yi

(
N
∏
i=1

gyi

)
∑

N
i=1 xi

= g

N
∑

i=1
ri

g

N
∑

i=1
xi

∑
N
i=1 yi

g

N
∑

i=1
yi

∑
N
i=1 xi

= g

N
∑

i=1
ri g

N
∑

i=1
xi ∑

N
i=1 yi

g

N
∑

i=1
yi ∑

N
i=1 xi

= g

N
∑

i=1
ri

Thus, if we obtain Q( jk) satisfying gQ( jk)
mod p = M( jk)

s then Q( jk) =
N
∑

i=1
r( jk)

i ,

or Q =
N
∑

i=1
ri.

Thus, we have:

T =
N

∑
i=1

(viH)+Q =

(
N

∑
i=1

vi

)
H +Q

From the above equation, we can obtain

V = (T −Q)H−1 =

(
N

∑
i=1

vi

)
HH−1 =

N

∑
i=1

vi.

2.4.3. Privacy analysis

In this section, we analyze the security of the proposed protocol. We assume

that all participating clients are semi-honest and comply fully with the protocol and

the previously mentioned assumptions.

Theorem 2.4.2. The multi-party sum protocol using El-Gamal is secure against any

semi-honest participating clients.

Proof. We consider three cases of data leakage from the protocol:

• Leakage of secret keys through key recovery attack.
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• Leakage of mask matrix ri.

• Leakage of the secret matrix vi.

In the initialization phase, each client Pi sends their public key matrices Xi and

Yi with each element calculated from secret keys chosen at random with uniform dis-

tribution from {1,2, . . . , p−1}. Due to the properties and assumption of the discrete

logarithm problem, it is difficult to recover the secret keys from these corresponding

public keys.

In the computation phase, each party only sends two messages, Ri and Ti. On

the other hand, each entry of Ri has a formula.

Ri = gri
Xyi

Y xi
.

Determining the secret elements in this expression is equivalent to solving discrete

logarithmic problems. As a result, the values of entries in the mask matrix remain

secure and cannot be deduced from the public value sent out.

Considering the expression Ti = viH+ri. Since ri is a secret matrix, recovering

the matrix vi is equivalent to solving a system of linear equations 2×d×d variables

with only d× d equations. Since the elements of ri are integers, the probability of

predicting all these integer values with
1

kd×d , where k is the selected integer space.

Given a sufficiently large value of d and k, accurately reconstructing the secret matrix

vi from the public value is highly challenging, if not practically impossible. In other

words, retrieving the value of the secret matrix vi from the shared public value is

impossible.

In short, from the shared public values, it is not possible for a passive attacker

or any semi-honest client to recover the secret key matrices xi,yi, mask matrix ri, and

secret message matrix vi of any participating client Ui.

Theorem 2.4.3. The multi-party sum protocol using El-Gamal protects the confiden-

tial data of any participating client even if there are n-2 colluding members (and

colluding with the server).
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Proof. To prove that the protocol protects the privacy of the honest parties against col-

lusion by up to n−2 semi-honest parties and the computation party, one must present

a simulator M that can simulate what the dishonest parties and the computation party

can observe during the protocol execution using a polynomial-time algorithm. Specif-

ically, it is necessary to exhibit a polynomial-time algorithm that computes the joint

view of the computation party and the dishonest parties using only the knowledge

of the semi-honest parties, the outputs, the public keys, and a number of ElGamal

ciphertexts on the prime field Zp.

Without the loss of generality, we assume that two clients U1 and U2 do not

collude while the central server and the others Ui∥i ∈ I = {3,4, . . . ,n} collude with

each other. In the secure protocol, each client only sends the encrypted value V ( j)
i

and two public keys X ( j)
i ,Y ( j)

i to the server. X ( j)
i ,Y ( j)

i are random values because

the private keys x( j)
i ,y( j)

i are uniformly random. To prove the theorem, we must con-

struct a probabilistic polynomial-time algorithm that can simulate the computation for

the messages W̃1 and W̃2 using only the final sum S( j), corrupted clients’ knowledge

{x( j)
i ,y( j)

i ,V ( j)
i } and public keys X ( j)

1 ,Y ( j)
1 ,X ( j)

2 ,Y ( j)
2 .

We denote the algorithm that satisfies the above assumption as M. Algorithm

M uses (u12,v12) = (gW̃ ( j)
1 gx( j)

2 y( j)
1 ,gx( j)

2 ), (u21,v21) = (gW̃ ( j)
2 gx( j)

1 y( j)
2 ,gx( j)

1 ) as its input to

simulate W̃ ( j)
1 ,W̃ ( j)

2 as follows:

U ( j)
1 =

u12.Y
∑i∈I x( j)

i
1 .gS( j)−∑i∈I W̃ ( j)

i

u21.X
∑i∈I y( j)

i
1

U ( j)
2 =

u21.Y
∑i∈I x( j)

i
2 .gS( j)−∑i∈I W̃ ( j)

i

u12.X
∑i∈I y( j)

i
2

And so:

{
M(I,x( j)

I , fI(x( j)))
}
=
{[

X ( j)
i ,Y ( j)

i

]n

i=1
,X ( j),Y ( j),

[
V ( j)

i

]n

i=1
,S( j),V ( j),U ( j)

1 ,U ( j)
2

}
.

(2.4.12)

Whereas:
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{
V IEW π

A,I(x
( j))
}
=
{[

X ( j)
i ,Y ( j)

i

]n

i=1
,X ( j),Y ( j),

[
V ( j)

i

]n

i=1
,S( j),V ( j)

}
. (2.4.13)

Therefore, we can see that:
{

V IEW π
A,I(x

( j))
}

and
{

M(I,x( j)
I , fI(x( j)))

}
differ

only in their U ( j)
1 ,U ( j)

2 values.

Given that x( j)
1 ,x( j)

2 ,y( j)
1 ,y( j)

2 are randomly selected from Z∗p, under the Deci-

sional Diffie-Hellman (DDH) assumption, the elements u12,u21,v12,v21 along with

x( j)
1 ,x( j)

2 ,y( j)
1 ,y( j)

2 are computationally indistinguishable.

According to the definition, U1 and U2 are dependent random variables deter-

mined by u12, u21, v12, and v21. These variables, in turn, depend on the independent

random variables x( j)
1 , x( j)

2 , y( j)
1 , and y( j)

2 , which are uniformly distributed as they are

randomly selected from the set (1, p−1). Consequently, U1 and U2 are also uniformly

distributed and thus thay and x( j)
1 ,x( j)

2 ,y( j)
1 ,y( j)

2 are indistinguishable. This implies that

even with additional knowledge about U1 and U2, corrupted parties and the aggrega-

tion server gain no further information beyond the publicly shared parameters and the

data derived from collusion.

According to Definition 1.3.4, the protocol is semantically secure against the

collusion of the adversarial party and up to n−2 semi-honest parties.

We have: Ti = viH + ri. Here, ri is a matrix whose elements are randomly dis-

tributed uniformly within the range [1,k]. Therefore, Ti also has a uniform distribution

and the probability of predicting the matrix Ti as well as ri is uniformly distributed

and equal to 1
kd×d . Even if Ti, ri, and vi for i= {3, . . . ,n} are known, the two remaining

values of vi cannot be distinguished with equivalent probability.

On the other hand, the parameters shared among the parties are based on the

discrete logarithm problem over the prime field Zp. This problem currently belongs

to the NP-hard class; therefore, reconstructing the secret parameters from the pub-

licly shared parameters is also an NP-hard problem. Given the current computational

capabilities, when the secret parameters are randomly chosen from (1, p−1) in accor-

dance with safety conditions, the protocol also ensures computational security based

on the difficulty of the discrete logarithm problem in the finite prime field Zp.
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2.4.4. Performance evaluation

2.4.4.1. Computational cost

In this section, the thesis mainly focuses on the time complexity. To facilitate

the discussion, the following notations in table 2.6 will be used.

Table 2.6: Notation of operation time complexity in the Mask matrix with

authentication protocol

Notation Time required to perform

TE A exponential operation on Zp.

TI An inversion operation between two matrix.

TM A multiplication operation on Zp.

TS The Shanks’ baby-step giant-step algorithm.

T M
M A multiplication operation between two matrix.

T M
I An inversion operation of matrix.

T M
A An addition operation between two matrix.

We analyze the time complexity the proposed protocol by each phase:

• Compute shared values phase:

In the system preparation stage, each client computes a public key by perform-

ing exponential operation all entries of a integer matrix on prime field Zp. This

performance takes each client d× d×TE for each key. Since each client pos-

sesses two public keys, the time taken by each client to prepare both public keys

is 2×d×d×TE .

The server calculates the public parameters X , and Y by multiplying the cor-

responding public keys of all clients, where each public key corresponds to a

matrix of integer. As a result, the time taken by the server in this phase can be

expressed as 2× (n−1)×d×d×TM, where n is the number of clients, d is the

dimension of the matrix.
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Table 2.7: Time cost with different model size and number of clients

Number of clients Model Size Time to Encrypt (s) Time to Decrypt (s)

5

100×100 2.4134 0.4651

250×250 17.1407 2.8035

500×500 60.6846 11.7244

10

100×100 2.5161 1.1419

250×250 16.8426 5.5484

500×500 60.7214 22.4258

20

100×100 2.5009 2.7467

250×250 17.1056 11.2812

500×500 60.6121 44.9112

• Secure aggregation phase:

Each client generates their message Ri and Ti, where Ri costs (3×TE +TI +2×

TM)(d×d) and Ti costs T M
M +T M

A

For server side, server first consumes (n− 1)× d× d×TM for computing MS.

Server then takes TS for finding Q that satisfy gQ =MS. Finally, server consumes

T M
A +T M

M +T M
I since performing operations on matrices.

The Table 2.7 below illustrates the evaluation results of execution time based

on the number of clients and the size of the model. It can be observed that the decryp-

tion time is extremely short and efficient due to the mask matrix being chosen from a

range of small numbers.

Figure 2.8 presents the average encryption time per client during the public

value sharing phase. Meanwhile, Figure 2.9 illustrates the time required for the se-

cure aggregation phase. It is observed that the computation time on the client side

is independent of the number of participants, assuming communication latency and

server processing time are excluded. However, the aggregation time is influenced by

the number of clients. As the number of clients increases, the time required to execute

the Shank algorithm rises, consequently extending the overall computation time.
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Figure 2.8: Avarage client encryption time with Secure multiparty sum with sub-

authentication protocol

However, it should be noted that the execution time of this third protocol is

significantly less than that of the first and second protocols. The reason is that, in

the first protocol, to ensure calculation accuracy, the parameters must be chosen large

enough, which leads to the Shank algorithm being performed on very large numbers.

This becomes particularly challenging as the model size and the number of partici-

pants increase. In contrast, with the third protocol, we can select relatively small in-

tegers (typically not exceeding 100), greatly reducing the time required for the Shank

algorithm’s computations.

As for the second protocol, it involves the computation of four key values, and

the Shank algorithm must be executed twice to determine the R and S values. This

results in higher computational overhead compared to the third protocol.

2.4.4.2. Communication cost

We denote the size in bits of a private message (Wi) as sizem and the size of

public keys in Elgamal protocols as sizek.

In the initialization phase, each client needs to send its public keys to the server.
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Figure 2.9: Time cost in aggregation phase with Secure multiparty sum with sub-

authentication protocol

This process requires a total bandwidth of 2× d× d× sizek bits. The server then

broadcasts X ,Y to every client, which requires the server to establish n connections,

each with a bandwidth of 2×d×d×sizek bits. Therefore, the total bandwidth for the

initialization phase is 4×n×d×d× sizek bits.

Moving on to the first computation phase, each client is required to send (Ri,Ti)

to the server. The transmission of Ti messages requires sizem bits of bandwidth for

each message, while sending Ri requires d × d × sizek bits of bandwidth for each

message. Thus, the total bandwidth for this phase is n× (d×d× sizek+sizem) bits.

For instance, with a private vector of 50,000 dimensions with 64bit precision

and an Elgamal encryption key of 256 bits, the total communication bandwidth during

each round of the protocol is summarized in Table 2.8.

Although it is clear that the overall communication cost has increased consid-

erably compared to the original federated learning framework, this additional expense

is warranted when taking into account the improved privacy and security assurances

offered by the protocol. Notably, despite the rise in communication overhead, the

total cost remains significantly more efficient than that of secret-sharing-based proto-



105

Table 2.8: Communication bandwidth of the proposed SMC with authentication pro-

tocol with model size is 50,000 and Elgamal key size is 256 bit

Client i Server

Round 1 3.07 MB 3.07 MB ×n

Round 2 3.45 MB 0.38 MB ×n

cols, such as those mentioned in [162]. While these protocols provide strong security,

they often involve much higher data exchange between parties, resulting in notably

higher communication expenses. In contrast, the approach proposed here strikes a

better balance between security and efficiency, ensuring robust data protection with-

out imposing excessive communication costs.

2.4.5. Discussion

The proposed secure multi-party summation protocol with authentication of-

fers several key advantages that make it an attractive solution for large-scale privacy-

preserving computations. This analysis will break down these advantages and trade-

offs in greater detail, providing a deeper understanding of its potential compared to

the other protocols.

First, computational time and bandwidth efficiency emerge as two crucial areas

where this third protocol outperforms the second one, which relies on a masking ma-

trix. In the context of secure multi-party computations, these improvements are vital

because they directly influence the scalability of the system. By reducing the time it

takes for clients to process their computations and decreasing the amount of data that

needs to be transmitted between parties, the third protocol allows for faster and more

efficient execution. This can be especially important in environments where real-time

or near-real-time results are required, such as in distributed machine learning systems

or federated learning scenarios.

However, when compared to the first protocol, this new approach introduces a

higher communication cost. This means that more data must be exchanged between

the parties during the execution of the protocol. Communication costs are a significant
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factor in secure multi-party computations because they often represent a bottleneck,

especially in systems with limited bandwidth or high network latency. Nevertheless,

the increase in communication costs in the third protocol is offset by improvements

in other areas.

The first protocol, while lower in communication overhead, relies heavily on

integer quantization techniques. Integer quantization is a method used to approximate

real numbers by mapping them to a finite set of integers, which simplifies computa-

tion but can introduce errors. To maintain high accuracy, this protocol requires very

large integers, which in turn necessitate expensive computational operations, such as

handling large number arithmetic and performing operations over large finite fields.

This increases the overall computational complexity and makes the protocol less ef-

ficient, particularly as the number of participants and the size of the model grow.

Additionally, the use of large integers can introduce a loss of precision, which is es-

pecially problematic in sensitive applications where even small errors can propagate

and lead to incorrect results.

In contrast, the third protocol achieves a more favorable trade-off between

communication and computation. Although it incurs higher communication costs

than the first protocol, it drastically reduces the computational overhead. This is par-

ticularly advantageous in systems where computation, rather than communication, is

the primary limiting factor. For instance, in environments with powerful networks but

limited computing resources on individual nodes (e.g., mobile devices in federated

learning), the third protocol’s computational efficiency would outweigh its increased

communication cost.

A major strength of the third protocol is its built-in authentication mechanism,

which allows participating parties to be authenticated within the protocol itself with-

out the need for an external authentication channel. This is a critical improvement,

as establishing external authentication channels can introduce additional complexity,

overhead, and potential security vulnerabilities. By integrating authentication directly

into the protocol, the third protocol simplifies the system’s architecture and enhances

its security. This built-in authentication also ensures that parties involved in the com-
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putation are verified securely, reducing the risk of malicious actors disrupting the

process or tampering with the data.

Another significant potential enhancement of the third protocol is the ability to

replace the Elgamal cryptosystem with Elliptic Curve Cryptography (ECC). Elgamal

is a widely used cryptosystem that provides strong security guarantees, but it relies

on large key sizes and expensive operations such as modular exponentiation. ECC,

on the other hand, offers the same level of security with much smaller key sizes and

more efficient cryptographic operations. By switching to ECC, the protocol could

replace exponentiation operations with point addition on elliptic curves, which are

computationally more efficient. This change would lead to faster execution times and

reduced resource consumption, especially in environments with constrained compu-

tational power, such as IoT devices or mobile systems.

Additionally, ECC is known to be more secure against modern cryptographic

attacks. The smaller key sizes used in ECC not only improve performance but also

enhance security by making it harder for attackers to break the cryptosystem. This

dual benefit of increased efficiency and enhanced security makes ECC an ideal choice

for secure multi-party computation protocols that need to balance performance and

robustness.

In summary, the third protocol presents a compelling option due to its balance

of computation and communication costs, integrated authentication, and potential for

optimization using ECC. While it has higher communication costs than the first pro-

tocol, these costs are mitigated by the significant reduction in computational overhead

and the elimination of external authentication requirements. Furthermore, the possi-

bility of switching from Elgamal to ECC presents a clear path toward further improv-

ing both the efficiency and security of the protocol. This makes the third protocol

particularly well-suited for large-scale, distributed systems where privacy, efficiency,

and security are of utmost importance.
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2.5. Chapter Summary

This chapter offers an overview of the topic of SMC and comprehensively an-

alyzes the most prominent prior research pertaining to this study. Based on the analy-

sis results, three novel protocols have been proposed for privacy-preserving federated

learning. These protocols include secure multi-party sum with decimal compression,

secure multi-party floating point real number vector with masking matrix and a vari-

ant of ECC, and secure multi-party floating point real number vectors without need-

ing pre-established secure/authenticated channels. Empirical evidence substantiates

the assertion that the proposed protocols exhibit high security inside the semi-honest

paradigm. The evaluations also demonstrate its effectiveness. Hence, the aforemen-

tioned protocols have the potential to be implemented in real-world scenarios.
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CHAPTER 3. DEVELOPING SECURE FEDERATED

LEARNING SCHEME BASED ON PROPOSED SECURE

MULTI-PARTY SUM PROTOCOLS

In this chapter, the thesis delves into the integration of the protocols intro-

duced in Chapter 2 within the framework of Federated Learning models. Specifically,

it advocates for the application of secure multi-party computation (MPC) protocols

tailored for real-number operations during the training phase of Federated Learning,

applicable to both centralized and decentralized network environments. A compre-

hensive evaluation is conducted across various datasets and deep neural network ar-

chitectures to demonstrate the robustness and efficiency of the proposed protocols.

3.1. Secure federated learning framework with semi-trusted aggregator server

3.1.1. Proposed framework

In this setting, a central server orchestrates the collaboration among multiple

clients. The server’s primary role is to aggregate the local models generated by in-

dividual clients, typically utilizing algorithms like Federated Averaging (FedAvg) to

compute a unified global model. Once the global model is updated, the server redis-

tributes it to all participating clients, ensuring a continuous and collaborative learning

process. Thus, the server acts as a central hub, facilitating the exchange of model

parameters among clients while safeguarding the privacy of each client’s data.

The operational specifics of this setting are detailed in Framework 1.

Framework 1: Federated learning framework with semi-trusted aggregator server

Input: A semi-trusted aggregator server and set of n clients U = U1,U2, . . . ,Un with private

datasets Di of sizes mi.

F : Fraction of clients participating per communication round.

Hyperparameters: T (number of communication rounds), E (number of local epochs), B (local

mini-batch size), W 0 (initial global model).

Output: Trained global model W .

Training Procedure:
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The training phase entails T communication rounds. Each round, denoted as t, comprises the

following operations:

• The server selects nt = F×n clients for participation in the current training round.

• Client-side operations (executed by nt clients in parallel):

– Each client Ui trains the model W t on its data Di over E epochs, yielding W t+1
i .

– Client Ui transmits W t+1
i to the server.

• Server operations:

– The server combines the received models according to the Fed-Avg algorithm:

W t+1←
n

∑
i=1

mi

M
W t+1

i .

– The updated global model W t+1 is then sent to all clients.

In this model, the direct transmission of local model parameters from each

participant to the central server introduces the risk of inversion attacks, which could

potentially compromise the privacy of the participants’ training data. To address this

vulnerability, the thesis proposes the adoption of three secure multiparty vector sum

protocols, as outlined in Chapter 2, to safeguard the sharing of local models. These

protocols effectively replace the traditional parameter aggregation process described

in Framework 1. By leveraging these protocols, participants can collaboratively com-

pute a global model in a manner that ensures the privacy of their individual contribu-

tions. The enhanced training framework, incorporating these protective measures, is

detailed below in Framework 2.

Framework 2: Secure federated learning framework with semi-trusted aggregator server

Input: A semi-trusted aggregator server and set of n clients U = U1,U2, . . . ,Un each with a

corresponding private dataset Di of sizes mi.

F : Fraction of clients participating per communication round.

Hyperparameters: T (number of communication rounds), E (number of local epochs), B (local

mini-batch size), W 0 (initial global model).

Output: Trained global model W .

Training Procedure:

The training phase entails T communication rounds. Each round, denoted as t, comprises the

following operations:
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• The server selects nt = F×n clients for participation in the current training round.

• Phase (1) - Compute public share values:

– Client-side (executed by nt clients in parallel): Send the public values correspond-

ing to the client’s private values to the server.

– The semi-trusted aggregator server: Compute the public shared values and dis-

tribute them, along with the global model W t , to all clients participating in the

round.

• Phase (2) - Secure Sum Computation:

– Client-side (executed by nt clients in parallel):

* Trains the model W t on its data Di over E epochs, yielding W t+1
i .

* Transmits the masked W t+1
i : Mask(W t+1

i ), after applying transformations

based on secret values, to the server.

– The semi-trusted aggregator server:

* Execute the secure sum computation phase with Mask(W t+1
i ),1 ≤ i ≤ nt to

obtain the global model:

W t+1←
n

∑
i=1

mi

M
W t+1

i .

* Send the updated global model W t+1 to all clients.

The operation of the framework is illustrated in Figure 3.1. Here, Phase (1)

- Compute Public Share Values and Phase (2) - Secure Sum Computation corre-

spond to the execution phases in the SMC protocols proposed in Chapter 2.

In this framework, the integration of the proposed SMC protocols is employed

to obfuscate the information related to the parameters shared with the semi-trusted ag-

gregator server. This approach effectively safeguards the privacy of the participants’

local data without compromising the accuracy of the training process. The enhance-

ment in security is significant, though it does come at the cost of increased computa-

tional and communication overhead. A comprehensive evaluation of the framework,

including these trade-offs, will be discussed in the subsequent section.
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Figure 3.1: Secure federated learning framework with semi-trusted aggregator server

3.1.2. Experimental setup

3.1.2.1. Datasets

Three datasets, namely CSIC 2010, MNIST, and UCI SMS Spam Collection,

are utilized to evaluate the effectiveness of the proposed framework.

• CSIC 2010 Dataset: This dataset is a widely recognized benchmark in web

security, consisting of HTTP traffic data collected from a website. It includes

both normal traffic and traffic generated by various web attacks, such as SQL

injection, cross-site scripting (XSS), and command injection. The CSIC 2010

dataset contains over 36,000 HTTP requests, each labeled as either normal traf-

fic or anomalous traffic. It is commonly used to evaluate the accuracy of ma-

chine learning models in detecting web attacks.

• MNIST Dataset: This dataset is a well-known benchmark for image recogni-

tion tasks, consisting of a large collection of 28x28 pixel images of handwritten

digits, each labeled with the corresponding digit [189]. The MNIST dataset

contains 60,000 training images and 10,000 test images, divided into ten classes
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representing the digits from 0 to 9. It is frequently used to evaluate the accuracy

and performance of machine learning models in image classification tasks.

• UCI SMS Spam Collection: This dataset consists of 5,572 English SMS mes-

sages, each labeled as either ”spam” or ”ham” (non-spam) [190]. It includes

4,826 ham messages (86.6%) and 746 spam messages (13.4%). The dataset

is widely used to evaluate the performance of machine learning models in text

classification tasks, particularly in distinguishing spam from non-spam mes-

sages.

3.1.2.2. Data Partitioning Strategies

In the experiments, two data partitioning strategies—IID (Independent and

Identically Distributed) and non-IID—are used to distribute the dataset among mul-

tiple clients. The IID strategy involves randomly shuffling the entire dataset and di-

viding it into non-overlapping subsets, each with similar statistical properties, which

are then distributed equally among the clients. This ensures that each client receives

a balanced dataset that reflects the overall distribution of the entire dataset.

In contrast, the non-IID strategy employs a quantity-based label imbalance

approach. Here, each client is randomly assigned a specific number of labels, and the

corresponding data samples for these labels are distributed equally among the clients

assigned those labels. This results in clients having data that is concentrated around

specific labels, mimicking real-world scenarios where data distributions vary across

different entities. This method ensures that no data samples overlap between clients,

leading to diverse and specialized datasets for each client.

For instance, in the MNIST dataset, the IID partitioning would involve shuf-

fling and equally dividing the digit images so that each client receives data containing

all digit classes (0-9) with similar proportions. In the non-IID partitioning, however,

clients might be assigned only a few digit classes, such as one client receiving data for

digits 0 and 1, while another client has data for digits 7 and 8, leading to significant

differences in label distribution across clients.

For the CSIC 2010 dataset, which has two labels (normal vs. anomalous re-
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quests), the IID partitioning would distribute a balanced mix of normal and anoma-

lous HTTP requests to each client. In the non-IID scenario, some clients might pre-

dominantly receive normal requests, while others receive mostly anomalous requests,

resulting in a specialized distribution of data across clients.

Similarly, with the SMS Spam dataset, which also has two labels (spam vs.

ham), IID partitioning ensures that each client receives a balanced set of both spam

and ham messages. However, under the non-IID strategy, some clients might receive

mostly spam messages, while others might receive predominantly ham messages,

leading to an imbalanced distribution across clients.

3.1.2.3. Neural Network Architectures

The federated learning framework are considering assumes that all participat-

ing clients agree on the same model architecture for training a global model. The the-

sis has built three distinct models to conduct experiments on the CSIC 2010, MNIST,

and UCI SMS Spam Collection datasets.

• The Convolutional Neural Network (CNN) model employed for the MNIST

dataset is meticulously architected around two fundamental blocks. Each block

integrates a convolutional layer, succeeded by a ReLU activation function and a

max-pooling operation, forming a robust feature extraction pipeline. The intri-

cate features captured by these layers are then funneled into a fully connected

layer, which is subsequently followed by a final fully connected layer with ten

nodes to execute the classification task. The model’s architecture, as detailed

in Table 3.1, comprises a total of 155,606 parameters, reflecting the model’s

complexity and capability.

• The model chosen for the CSIC 2010 dataset is a Character-Level Convolutional

Neural Network (CLCNN), meticulously designed to handle the intricacies of

raw HTTP requests. After preprocessing, where URL strings are meticulously

filtered from the HTTP requests, these strings are transformed into vectors of in-

tegers, which serve as the input to the model. The CLCNN architecture begins

with an embedding layer that elegantly maps each integer to a 32-dimensional
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Table 3.1: Model Summary of CNN architecture for MNIST dataset

Layer (Type) Output Shape Number of Params #

Conv2d (conv1) [32, 1, 5, 5] 832

ReLU (relu1) - 0

MaxPool2d (maxpool1) - 0

Conv2d (conv2) [64, 32, 5, 5] 51,264

ReLU (relu2) - 0

MaxPool2d (maxpool2) - 0

Linear (fc1) [100, 1024] 102,500

ReLU (relu3) - 0

Linear (fc2) [10, 100] 1,010

Softmax - 0

Total number of parameters 155,606

Trainable params 155,606

Non-trainable params 0

vector. This is followed by a series of two 1-D convolutional layers, each paired

with max-pooling operations, to effectively capture the essential features of the

data. The extracted features are then fed into a fully connected layer with 32

nodes, where a 50% dropout is strategically applied to enhance generalization.

The final layer, a two-node fully connected layer equipped with a Softmax func-

tion, performs the classification, distinguishing between benign and anomalous

requests. Table 3.2 provides a comprehensive summary of the model architec-

ture, which comprises 50,242 parameters.

• The Long Short-Term Memory (LSTM) model designed for the SMS Spam

Collection dataset is an advanced architecture that employs bidirectional LSTM

layers to fully harness the contextual richness of text sequences. After the pre-

processing stage, the input sequences—composed of integers representing word

indices—are first transformed through an embedding layer, which maps these

indices into dense vector representations. These embeddings are then fed into
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Table 3.2: Model Summary of CLCNN for CSIC 2010 dataset

Layer (Type) Output Shape Number of Params #

Embedding [70, 128] 8,960

Conv1d(conv1) [64, 128, 3] 24,640

ReLU(relu1) - 0

MaxPool1d(maxpool1) - 0

Conv1d(conv2) [64, 64, 3] 12,352

ReLU(relu2) - 0

MaxPool1d(maxpool2) - 0

Linear(fc1) [64, 64] 4,160

ReLU(relu3) - 0

Dropout - 0

Linear(fc2) [2, 64] 130

Softmax - 0

Total number of parameters 50,242

Trainable params 50,242

Non-trainable params 0

two layers of bidirectional LSTMs, enabling the model to capture nuanced de-

pendencies from both preceding and succeeding words in the sequence. The

output from the final timestep of the second LSTM layer is funneled into a

fully connected layer, where a softmax activation function generates a proba-

bility distribution over the possible output classes. This sophisticated model is

meticulously crafted for text classification tasks, ensuring robust performance.

The architecture’s detailed summary is presented in Table 3.3, with a total of

1,009,282 parameters.

3.1.2.4. Computing Framework

The experiments were conducted on a desktop computer with the following

specifications: an Intel Core i9-10900F CPU @ 2.80 GHz (10 cores, 20 threads),
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Table 3.3: Model Summary of LSTM architecture for SMS Spam Collection dataset

Layer (Type) Output Shape Number of Params #

Embedding [6972, 128] 892,416

LSTM(lstm 1) - 66,560

tanh - 0

LSTM(lstm 2) - 50,176

Linear(fc) [2, 64] 130

Softmax - 0

Total number of parameters 1,009,282

Trainable params 1,009,282

Non-trainable params 0

32GB of RAM, and an NVIDIA GeForce RTX 3060 GPU with 12GB of GDDR6

VRAM, running on Windows 10 Pro 64-bit. The software environment for the im-

plementation included Python version 3.11.9, along with several libraries: PyTorch

version 2.3.0 for deep learning model development, gmpy2 version 2.1.2 for arbitrary-

precision arithmetic, and ecdsa version 0.17.0 for elliptic curve cryptography. Py-

Torch is a flexible and widely-used machine learning library that provides dynamic

computation graphs and GPU acceleration, enabling efficient training and experimen-

tation of neural networks. The setup was chosen to ensure efficient processing and

reliable performance throughout the training and evaluation of the proposed frame-

work.

3.1.3. Experimental results and evaluation

3.1.3.1. The overall model performance

The thesis utilizes the datasets and the three corresponding network architec-

tures discussed earlier to evaluate the impact of several factors on the performance of

the global model. The specific objectives of the study are to:

• Examine the impact of the number of clients involved in the training pro-

cess: This objective focuses on understanding how the varying number of clients
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participating in training affects the performance of the global model.

• Evaluate the effect of dropout rates on client participation during each

communication round: This objective emphasizes the importance of assessing

how different dropout rates influence the number of clients that remain active

in the training process. In practical federated learning scenarios, client dropout

may occur due to various factors such as network instability, limited computa-

tional resources, or lack of participation incentives.

• Investigate the performance of the framework under varying levels of pre-

cision within a secure multi-party sum protocol using integer quantization

techniques: The goal is to assess the effectiveness of the protocol when client

parameters are limited to different precision thresholds, thereby determining the

trade-offs between communication efficiency and model accuracy.

• Analyze the effect of data distribution across multiple clients on the global

model’s performance: The study considers two scenarios for data distribution

among clients: independent and identically distributed (IID) and non-IID. The

objective is to evaluate how these different distributions impact the model’s ac-

curacy and generalization capabilities.

Note. In this section, the secure vector aggregation protocol using a masking matrix

and the authenticated secure vector aggregation protocol both preserve the accuracy

of the summation. Therefore, their accuracy will be evaluated together. However, the

secure vector aggregation protocol that employs integer quantization introduces vari-

ations in accuracy. As a result, this protocol will be assessed separately, considering

different choices of decimal precision. The detailed evaluation results are presented

in the subsequent sections.

a. The impact of the number of clients involved in the training process

The first experiment examines the performance of the global model across dif-

ferent numbers of clients. Framework 2, incorporating two secure multiparty vector

sum protocols based on masking matrices, was employed to train the model over 50

communication rounds. The figure below presents the outcomes of this study using
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three datasets: CSIC2010, MNIST, and SMS Spam Collection. The model’s accuracy

and loss metrics throughout the training process, tracked across each global epoch, are

illustrated in Figure 3.2.

Figure 3.2: The results on accuracy and loss with different number of clients.

The experimental results from varying the number of clients (5, 10, 20, 40, and

50 clients) yield several insightful observations:
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Firstly, as the number of clients increases, there is a noticeable decline in the

initial accuracy of the global model. This outcome is anticipated, as a larger number

of clients inherently reduces the amount of data each client contributes in the early

stages, diluting the global model’s initial learning process. For example, when only

5 clients are involved, the model achieves an initial accuracy of 0.7307. In contrast,

with 50 clients, the initial accuracy drops significantly to 0.5403. This reduction can

be attributed to the fact that with more clients, the global model’s initial training is

based on smaller, potentially noisier subsets of data, leading to a less accurate starting

point.

Furthermore, the final performance of the model, measured after 50 commu-

nication rounds, generally improves when fewer clients are involved. This is likely

because with fewer clients, each one contributes a more substantial share of data to

the global model, thereby enabling more meaningful and robust local updates. These

richer updates help the global model learn more effectively, leading to better overall

performance. The disparity in final accuracy highlights the impact of data volume per

client on the model’s ability to generalize effectively.

However, an important dynamic emerges as the number of clients increases:

the convergence rate of the global model slows down. This phenomenon is evident

when examining the number of communication rounds required to reach a certain ac-

curacy threshold. For instance, with only 5 clients, the model rapidly converges to an

accuracy of around 0.95 within just 15 communication rounds. In contrast, with 50

clients, the model requires approximately 45 rounds to achieve a similar level of ac-

curacy. The slower convergence can be explained by the increased heterogeneity and

reduced data per client, which introduces greater variability in the model’s updates,

thereby necessitating more rounds for the model to stabilize and converge.

This trend is further complicated when working with unbalanced datasets, such

as CSIC 2010 and SMS Spam Collection. Compared to a balanced dataset like

MNIST, where labels are uniformly distributed, unbalanced datasets make conver-

gence even more challenging. The uneven distribution of labels in such datasets ex-

acerbates the difficulty of achieving consistent updates from clients, as some clients



121

might contribute disproportionately to certain classes. This can lead to slower con-

vergence and a more arduous path to reaching satisfactory accuracy levels. Despite

these challenges, the model still achieves respectable final accuracies: 0.9923 for the

MNIST dataset, 0.9654 for the CSIC 2010 dataset, and 0.9692 for the SMS Spam

Collection dataset. This underscores the model’s ability to ultimately converge to a

high level of accuracy, provided sufficient training epochs and careful management

of client contributions.

Moreover, the use of IID (Independent and Identically Distributed) datasets

plays a critical role in ensuring a fair and meaningful comparison of model perfor-

mance across different client configurations. By distributing the dataset in an IID

manner, each client receives a representative sample of the entire dataset, which mit-

igates the risk of biased or skewed contributions to the global model. This balanced

data distribution allows for reliable evaluation of the model’s performance, irrespec-

tive of the number of clients involved, and ensures that the observed differences in

accuracy and convergence rates are truly reflective of the underlying dynamics of the

proposed framework rather than artifacts of data imbalance.

In conclusion, the experiment underscores the subtle yet significant impact of

varying the number of clients within the proposed framework. Although an increase

in the number of clients and the presence of unbalanced datasets may lead to slower

convergence and reduced initial accuracy, the global model consistently converges to

a satisfactory accuracy level given sufficient training rounds. The final accuracy lev-

els—reaching 0.9923 for MNIST, 0.9654 for CSIC 2010, and 0.9692 for SMS Spam

Collection—highlight the model’s robustness. The proposed framework proves to be

efficient, effectively balancing the trade-offs between client count, dataset balance,

convergence speed, and overall model accuracy.

b. The effect of dropout rates on client participation during each communication

round

A comprehensive series of experiments was undertaken to evaluate the perfor-

mance of the proposed frameworks in a centralized setting with a semi-trusted aggre-

gation server, utilizing two secure multiparty vector sum protocols based on masking
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matrices. The focus was particularly on assessing the impact of varying dropout rates.

The objective was to understand how these dropout rates affect the accuracy and sta-

bility of the proposed frameworks. Systematic evaluations were conducted across a

range of dropout rates—0%, 10%, 20%, 30%, 40%, and 50%. The resulting accuracy

and loss metrics, tracked throughout the training process at each global epoch, are

vividly illustrated in Figure 3.3.

Figure 3.3: The results on accuracy and loss with different dropout rates.
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Through extensive experimental analysis, the thesis has uncovered several crit-

ical insights into the effects of dropout rates on model performance. The results

clearly indicate that the model’s performance consistently improves as the number of

training epochs increases, regardless of the dropout rate applied. This trend under-

scores the model’s ability to effectively learn and adapt to the dataset over time, grad-

ually refining its internal representations and improving its predictive accuracy. In-

terestingly, while it might be intuitively assumed that a 0% dropout rate—essentially

training without dropout—would yield the best performance, the findings challenge

this assumption. The analysis reveals that moderate dropout rates, such as 10% or

20%, can sometimes lead to superior outcomes. This highlights the role of dropout as

a regularization technique that enhances the model’s generalization capabilities by in-

troducing a controlled level of randomness during training. By preventing the model

from becoming too reliant on specific features of the training data, dropout reduces

the risk of overfitting, thereby improving the model’s ability to generalize to unseen

data.

However, the analysis also cautions against the use of excessively high dropout

rates. When dropout rates are too high, the model’s convergence slows down, and

its ability to generalize may be compromised. This is largely due to fewer clients

participating in each round of global model updates, which results in less data being

utilized in the training process. Consequently, the model may struggle to converge

efficiently and may require more epochs to reach an optimal state. Additionally, with

fewer clients contributing data, there is an increased risk of the model overfitting to the

specific data subsets of the participating clients, further diminishing its generalization

performance. This trade-off highlights the importance of carefully selecting dropout

rates to balance convergence speed and model robustness. Notably, with unbalanced

data, the model’s convergence behavior is even more volatile and is more significantly

impacted by dropout rates. The inherent imbalance in the data amplifies the sensitivity

of the model to dropout, making it more challenging to find the optimal balance that

ensures both convergence and generalization.

The interplay between IID (Independent and Identically Distributed) data and

dropout rates provides additional nuance to this analysis. The results suggest that
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when data is IID, the negative effects of high dropout rates—such as slower conver-

gence and reduced performance—can be somewhat mitigated. In an IID setting, each

client’s dataset remains representative of the overall population, ensuring that even

with higher dropout, the global model updates still capture a broad and informative

view of the data. This helps maintain performance levels by mitigating the risk of

biased updates. However, it is crucial to recognize that even with IID data, extremely

high dropout rates still pose challenges, as the model may experience slower con-

vergence and reduced overall performance compared to scenarios with lower dropout

rates. This underscores the need for careful consideration of dropout levels, even in

favorable data conditions.

c. The performance of the framework under varying levels of precision within a

secure multi-party sum protocol using integer quantization techniques

In this section, the thesis delves into the evaluation of the proposed framework

utilizing the secure multiparty vector sum protocol with an integer quantization tech-

nique. This approach necessitates the encoding of the neural network’s floating-point

parameters into integer values, which are then processed by the SMC protocol. The

central aim of this experiment is to rigorously investigate how varying levels of en-

coding precision influence the model’s overall accuracy and performance. To achieve

this, the framework was subjected to 50 communication rounds, with client parame-

ters encoded to 3, 5, and 10 decimal places. These results were benchmarked against

a control scenario where no quantization was applied, retaining the full precision of

15 decimal places.

As depicted in Figure 3.4, the results clearly show that reducing the precision

of model parameters to just 3 decimal places leads to a substantial decline in accuracy.

This is expected, as lower precision introduces significant quantization noise, which

disrupts the model’s ability to learn effectively from the data. On the other hand,

higher precision settings—such as 5 and 10 decimal places—result in only minimal

variations in performance compared to the control scenario. This suggests that mod-

erate levels of quantization can be implemented without significantly compromising

the model’s accuracy.
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Figure 3.4: The result on accuracy for different precision levels.

An intriguing and somewhat counter-intuitive finding from this study is that

using a precision of 10 decimal places actually resulted in slightly better accuracy

than when no quantization was applied. This outcome can be attributed to the subtle

introduction of randomness through quantization, which enhances the model’s gener-

alization ability. By incorporating this slight degree of randomness, the model is less

likely to overfit to the training data, thereby improving its performance on unseen

data. This phenomenon mirrors the effectiveness of dropout techniques commonly

used in traditional neural networks.
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However, the analysis also highlights the risks associated with excessively low

precision. When only 3 decimal places are used, the noise introduced by quantization

becomes too large, significantly degrading the model’s accuracy. This effect is espe-

cially pronounced in the case of unbalanced datasets, such as the SMS Spam dataset,

where the model’s ability to generalize is further compromised. In such cases, the

errors introduced by low precision exceed the model’s capacity to effectively learn

from the data, leading to a dramatic reduction in accuracy.

Conversely, using 5 decimal places strikes a balance where the quantization

noise is small enough not to disrupt the model’s learning process, allowing it to main-

tain accuracy close to that of the unquantized scenario. This finding underscores the

importance of carefully selecting the level of precision in quantization. While a cer-

tain level of noise can be beneficial, enhancing the model’s generalization ability, too

much noise can be detrimental.

Moreover, it is important to consider the trade-offs associated with different

levels of quantization. While lower precision can lead to faster computations and

reduced storage requirements, it also increases the complexity of achieving conver-

gence. The model may require more communication rounds to reach an optimal state,

especially when dealing with unbalanced data. Additionally, the increased computa-

tional burden of managing higher precision, particularly in terms of time and process-

ing power, grows exponentially. Thus, while the secure multiparty vector sum proto-

col with quantization can, in certain circumstances, offer superior accuracy compared

to traditional federated learning methods without privacy guarantees, this comes at

the cost of significantly higher computational expenses.

The analysis reveals that the use of quantization in secure multiparty com-

putation introduces a delicate balance between enhancing model generalization and

managing computational complexity. The choice of precision must be made carefully,

taking into account the specific characteristics of the dataset, the number of participat-

ing clients, and the desired balance between accuracy and computational efficiency.

These findings provide a nuanced understanding of the trade-offs involved and will

be further explored in the subsequent sections of this thesis, where the computational
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costs associated with different levels of quantization are analyzed in greater detail.

Additionally, the accuracy of the model is heavily influenced by the number of

participating clients. As highlighted in Chapter 2, the error in the summation process

is directly affected by the number of clients involved. Recognizing this, the thesis also

explores how varying the number of participants impacts the model’s performance.

The results of this analysis, specifically examining the scenario with 3 decimal places

and different numbers of clients, are presented in Figure 3.5.

Figure 3.5: The accuracy with 3 decimal places when varying the number of clients.
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The results reveal a clear and concerning pattern: as the number of clients

increases, the model’s accuracy steadily declines. This reduction in accuracy is pri-

marily driven by the accumulation of computational errors during the parameter ag-

gregation phase at the central server. As more clients contribute to the aggregation,

the cumulative error grows, leading to a noticeable degradation in the model’s per-

formance. This issue is particularly severe when dealing with highly unbalanced

datasets, such as the SMS Spam dataset. In such cases, when the number of clients

reaches 50, the model’s accuracy plummets dramatically, to the point where it nearly

loses all predictive power. This sharp decline is likely due to the aggregation error

surpassing a critical threshold, beyond which the model can no longer compensate,

resulting in a significant loss of accuracy.

These findings underscore the critical balance required between the number

of participating clients and the model’s accuracy. While increasing the number of

clients can theoretically improve the model’s generalization by incorporating more

diverse data, it also amplifies the aggregation errors, especially in scenarios involv-

ing unbalanced data. This trade-off is particularly pronounced in secure federated

learning environments, where the precision of aggregated results is crucial. The anal-

ysis highlights the necessity of carefully managing the number of clients to maintain

an optimal balance between model accuracy and the robustness of the aggregation

process.

d. The effect of non-IID data distribution on the global model’s performance

This dissertation aims to evaluate the accuracy of a training model within the

context of Framework 2 when dealing with Non-IID (Non-Independent and Identi-

cally Distributed) data distribution. The primary focus is on understanding how the

number of participating clients and their dropout rates impact the model’s perfor-

mance under different accuracy aggregation protocols. Specifically, the study exam-

ines two key protocols that utilize a masking matrix. Additionally, the dissertation

investigates the effects of rounding precision within the protocol that involves vector

quantization techniques for approximate summation on the overall accuracy of the

model. The objective is to comprehensively assess how these factors—client number,
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dropout rates, and quantization precision—interact and influence the training out-

comes in a distributed setting.

Figure 3.6: The results on accuracy and loss with different number of clients with

Non-IID data distribution.

The findings, as illustrated in Figure 3.6, reveal that Non-IID data distribution

can significantly increase the variance in model performance, particularly when the

model is trained with a larger number of clients, such as 20, 40, and 50, as tested

on the unbalance dataset (SMS Spam Collection). The results demonstrate that sim-

ply increasing the number of clients does not necessarily lead to better performance.

Although a higher number of clients can enhance data diversity, this benefit is of-

ten outweighed by the increased complexity in coordinating clients and aggregating

their updates. This complexity is particularly problematic in the scenario involving

50 clients, where the model exhibits difficulties in achieving consistent convergence.

Conversely, a more moderate number of clients, such as the 10-client scenario high-
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lighted in this thesis, strikes a better balance between data diversity and coordination

complexity, leading to superior overall performance. Moreover, the study indicates

that as the number of clients increases, the convergence rate of the global model tends

to slow down, further emphasizing the trade-offs involved in managing larger dis-

tributed systems.

Figure 3.7: The results on accuracy and loss with different dropout rates with

Non-IID data distribution

The evaluation of node dropout rates at each training round, as shown in Fig-

ure 3.7, provides significant insights into how dropout rates affect model accuracy,

particularly in different types of datasets. When the dropout rate is high, there is

a noticeable decline in accuracy, especially with unbalanced datasets like the SMS

Spam Dataset. This decline can be attributed to the fact that in unbalanced datasets,

certain classes are already underrepresented. A high dropout rate exacerbates this

issue by further reducing the availability of data from these underrepresented classes
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during training. As a result, the model struggles to learn effectively, leading to poorer

performance.

In contrast, when the dataset labels are balanced, the impact of dropout rates

on model performance is much less pronounced. Balanced datasets ensure that all

classes are equally represented, so even with some dropout, the remaining data still

provide a sufficiently diverse and representative sample for the model to learn from.

Therefore, the model’s performance remains relatively stable despite variations in

dropout rates.

The influence of dropout rates is particularly significant in the early rounds of

training when the model is still forming its foundational understanding of the data.

During these initial stages, if dropout is high, the model’s learning process is dis-

rupted, leading to a slower convergence and less accurate predictions. This is espe-

cially true for unbalanced datasets, where the early misrepresentation of classes can

have a lasting negative impact on the model’s ability to generalize well. Thus, it is

crucial to carefully manage dropout rates and consider the balance of the dataset to

ensure that the model can achieve optimal accuracy and robustness throughout the

training process.

In this experiment, the neural network’s floating-point parameters were en-

coded into integers to be compatible with the Secure Multi-Party Computation (SMC)

protocol. This thesis thoroughly examines how the precision of this encoding influ-

ences the overall accuracy of the resulting model. Specifically, the study involved con-

ducting experiments over 50 communication rounds, where client parameters were

encoded to 3, 5, and 10 decimal places. The outcomes of these experiments were

then compared to a control scenario where the parameters remained unencoded, re-

taining the full 15 decimal places of precision.

The results, as depicted in Figure 3.8, reveal a clear pattern: when the model

parameters are rounded to just 3 decimal places, there is a notable drop in accuracy.

This decline can be attributed to the significant loss of numerical precision, which

hinders the model’s ability to capture subtle variations in the data, leading to poorer

performance. Conversely, when higher encoding precision is used—such as 5 or
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10 decimal places—the impact on accuracy is minimal. This suggests that beyond

a certain threshold, additional precision does not contribute significantly to model

improvement, as the model can effectively learn and generalize even with slightly

reduced precision.

Figure 3.8: The result on accuracy for different precision levels with Non-IID data

distribution

However, it’s important to highlight that lower encoding precision not only

diminishes accuracy but also slows down the convergence rate, requiring the model

to take longer to reach optimal performance. This is because reduced precision can

introduce more noise into the training process, making it harder for the model to

stabilize during learning.

Interestingly, while these trends are consistent with those observed in IID (In-

dependent and Identically Distributed) data distributions, there is a distinct difference

in the non-IID scenario. In the IID case, 10 precision decimal consistently leads to

better accuracy. However, in the non-IID context, the model’s accuracy with 10 dec-

imal places no longer surpasses that of the model without integer quantization. This

could be due to the inherent challenges of non-IID data, where the uneven distribu-

tion of data across clients exacerbates the effects of even minor quantization errors.

In non-IID scenarios, the diversity and imbalance in the data distribution may cause

the model to be more sensitive to the loss of precision, making it difficult to achieve

the same level of accuracy as in the IID case, even with higher decimal places.
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This finding suggests that in non-IID settings, the benefits of higher encoding

precision may be limited, as the interplay between data distribution and encoding pre-

cision becomes more complex. The model’s performance might be more influenced

by the distribution characteristics than by the encoding precision alone, highlighting

the need for careful consideration of these factors when using the proposed frame-

work.

Figure 3.9: The accuracy value with 3 decimal places when varying the number of

clients with Non-IID data distribution

When evaluating the impact of the number of participating clients on the proto-

col using integer quantization, the results reveal a more pronounced effect compared

to scenarios with IID (Independent and Identically Distributed) data distribution. As

shown in Figure 3.9, the model’s accuracy significantly declines when only 3 decimal

places are used, especially as the number of clients increases. While a similar trend

is observed in IID cases, the effect is less severe. This pronounced accuracy drop be-

comes particularly evident when dealing with unbalanced datasets, such as the SMS

Spam dataset.

The reason behind this can be attributed to the challenges introduced by both

the limited precision and the increased number of clients in a non-IID setting. With

more clients, especially in unbalanced datasets, the diversity in the data distribution

becomes more extreme, leading to greater discrepancies in the local models trained

by each client. When these local models are aggregated with reduced precision due to
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integer quantization, the errors introduced by the quantization process are amplified,

particularly when the data distribution is uneven. This results in a more substantial

degradation in overall model accuracy compared to the IID scenario, where the data

distribution is more uniform, and the effects of quantization are less pronounced.

In summary, the impact of integer quantization is significantly more detrimen-

tal in non-IID settings, particularly with unbalanced data, where both the increased

number of clients and reduced precision contribute to a marked decline in model ac-

curacy. This highlights the need for careful consideration of quantization precision

and client participation when using the proposed framework, especially when dealing

with non-IID data.

3.1.3.2. Privacy

In the traditional landscape of distributed deep learning, we encounter a clear

divide between data owners—those who possess valuable, often sensitive data—and

the entities that drive the learning process, typically centralized servers or third par-

ties. This separation presents significant privacy risks, as data owners must hand over

their information to a learning party without having control over how it’s used or what

the final model looks like. They contribute their data but are disconnected from the

actual learning and outcomes, leading to potential exposure of sensitive information

during both the training and usage phases. This arrangement can lead to significant

privacy dilemmas during both the development and deployment stages of the models.

In the training phase, when data owners submit their data to the learning server,

there is always the risk that their raw information could be accessed directly by the

server, compromised by attackers, or even handed over to authorities through legal or

extralegal means.

In the usage phase, the problem persists. To use the trained model, data owners

typically need to send new input data to the server that controls the model, risking

exposure not only of their fresh data but also the results generated by the model.

These vulnerabilities underscore a fundamental problem: the lack of privacy

and control over one’s data in the existing distributed deep learning frameworks.
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The framework developed in this thesis redefines privacy in the context of dis-

tributed deep learning, offering a novel approach to safeguarding sensitive informa-

tion. It is meticulously designed to provide robust protection at every stage of the

learning process, from initial training to final deployment. By ensuring the confiden-

tiality of both input data and the resulting model outputs, this framework establishes a

new standard for privacy preservation, addressing critical vulnerabilities and enhanc-

ing trust in distributed AI systems.

a. Addressing Direct Leakage

During the training phase, rather than requiring data owners to submit raw data,

the proposed framework introduces an innovative mechanism where only encrypted

intermediate model parameters are shared. This ensures that the actual training data

remains securely stored on local devices, never exposed to the learning server or any

external entity. By preserving full control over their data, owners can confidently

contribute to the collaborative learning process without compromising their privacy,

allowing them to participate in model training without the risk of sensitive informa-

tion being revealed.

In the usage phase: Once the global model is trained, all participants gain

access to it and can deploy it locally. This means they no longer need to send any data

to a central server to get predictions. Both their input data and the model’s outputs

remain completely private, eliminating any risk of data leakage at this stage.

b. Addressing Indirect Leakage

Even in scenarios where attackers attempt to extract sensitive information by

intercepting shared model parameters from participants, our framework employs ad-

vanced cryptographic protocols to neutralize such threats. These protocols facilitate

the secure aggregation of model parameters, ensuring that no extra information is

leaked, even in cases where up to n−2 parties collude. The security properties of this

approach have been rigorously proven in Chapter 2, demonstrating its robustness in

protecting privacy under adversarial conditions.

By adopting this approach, the proposed framework can effectively safeguard
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against both direct and indirect privacy threats, ensuring that data owners can par-

ticipate in distributed learning without compromising the confidentiality of their in-

formation. The proposed framework represents a significant leap forward in privacy-

preserving distributed deep learning. It empowers data owners by allowing them to

keep their data private and under control throughout the training and usage phases,

while still benefiting from the collective power of a global model.

3.1.3.3. Computational Cost

In the proposed protocol, each round involves the utilization of a semi-trusted

aggregation server for parameter aggregation. Furthermore, during any training round,

the necessity for joint participation is limited to nt parties instead of all n parties, sig-

nificantly reducing computational and communication costs within the protocol.

Given that time complexity is a crucial aspect of a training framework, it is

denoted:

• Ti is the time for party i get the model updated at training round t.

• T train
i is the time required for i-th party training his local model on his local

data at training round t.

• T enc
i is the time for computing shared parameters by Secure Vector Sum Pro-

tocol at training round t.

• T upload
i is the time for uploading the masked models at training round t.

• T download
i is the time for downloading the global model from the master node

at training round t.

• T aggregation is the time for aggregation server compute the final global model

at each round.

• nRound is the total number of training rounds.

In a training round t, nt parties parallelly train their local models, and the total

time required for all of them to complete the protocol is given by

ntmax
j=1
{T train

j +T enc
j +T upload

j }. (3.1.1)
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The time complexity of the system for a party i is estimated using the following

formula:

Ti = T train
i +T enc

i +T upload
i +T download

i +T aggregation (3.1.2)

Subsequently, the aggregation server computes and returns the global model to

all parties. Thus, the time complexity for a party i to fully perform a training round t

is computed using Equation 3.1.2.

Table 3.4: Comparison of the protocol protocols and datasets.
Protocol Dataset Number of

data sam-

ples

Number of

Params

Avg. Lo-

cal training

time (s)

Avg. Com-

pute share

values time

(s)

Avg. Aggre-

gation time

(s)

Total train-

ing time (s)

SMC1 (3 digit)

CSIC2010 27610 50242 2.1 3.82 428.32 434.24

MNIST 60000 155606 4.6 12.43 1568.34 1585.37

SMS Spam 5572 1009282 15.5 89.16 11864.21 11968.87

SMC2

CSIC2010 27610 50242 2.1 746.27 0.29 748.66

MNIST 60000 155606 4.6 2216.26 0.48 2221.34

SMS Spam 5572 1009282 15.5 16031.31 3.72 16050.53

SMC3

CSIC2010 27610 50242 2.1 3.7 46.54 52.34

MNIST 60000 155606 4.6 7.8 144.5 156.9

SMS Spam 5572 1009282 15.5 71.5 942.62 1029.62

The table highlights the performance of three Secure Multi-party Computation

(SMC) protocols—SMC1, SMC2, and SMC3—across different datasets: CSIC2010,

MNIST, and SMS Spam. The local training time for all three protocols remains con-

stant within each dataset. The most significant differences lie in the compute share

values time and the aggregation time, which vary widely between protocols.

For example, SMC1 shows a reasonable compute share time for the smaller

CSIC2010 dataset (3.82 seconds) but struggles significantly with the SMS Spam

dataset, where it spikes to 89.16 seconds. Even more problematic for SMC1 is its

excessive aggregation time on the SMS Spam dataset, ballooning to 11,864.21 sec-

onds, making its total training time inefficient.
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SMC2, while reducing aggregation time dramatically to almost negligible lev-

els (0.29 to 3.72 seconds), introduces a significant compute share values time, espe-

cially on the SMS Spam dataset (16,031.31 seconds), which results in overall higher

training times for larger datasets like SMS Spam.

On the other hand, SMC3 manages to optimize both compute share values and

aggregation times. For the same SMS Spam dataset, SMC3 reduces the compute share

values time to 71.5 seconds and aggregation to 942.62 seconds, resulting in a much

lower total training time (1,029.62 seconds) compared to both SMC1 and SMC2.

In conclusion, while all protocols exhibit similar local training times, SMC3

stands out as the most balanced and efficient protocol overall, particularly for large

datasets, due to its significantly reduced compute share values and aggregation times.

This makes SMC3 the best choice for practical applications requiring efficient train-

ing across distributed parties.

3.1.3.4. Comparing the framework with other strategies

A comparative analysis was conducted to evaluate the accuracy of the proposed

framework in relation to six alternative approaches. These include:

• Standalone training: In this scenario, each client trains their model utilizing

only their local data, without any collaboration.

• Centralized training: This method involves the aggregation of clients’ data at

a centralized location, where the training process takes place.

• Selective learning-based training: Here, each client selectively shares a lim-

ited subset of their model’s crucial parameters during the training process.

• Generalized Average Federated Learning with differential privacy: This

approach is implemented in two variations, characterized by the inclusion of

differential privacy and the application of either a small or large amount of noise.

The obtained results are shown in Table. 3.5.

The accuracy results across different datasets and data distributions highlight
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Table 3.5: The accuracy comparison after 50 communication rounds.
Model

Data

distri-

bution

Dataset
Standalone Centralized

Fed-Avg

(Small

noise)

Fed-Avg

(Large

noise)

Selective

learning

Fed-Avg

with El-

Gamal

Fed-Avg

with ECC

Fed-Avg with

compress

method

IID

MNIST 0.9658 0.9943 0.9741 0.9659 0.9629 0.9923 0.9923 0.9942

CSIC 2010 0.9448 0.9676 0.9469 0.8745 0.9575 0.9654 0.9654 0.9685

SMS Spam 0.9203 0.9806 0.9147 0.6397 0.9619 0.9692 0.9692 0.9728

Non-IID

MNIST 0.314 0.9943 0.9454 0.8954 0.9724 0.9869 0.9869 0.9882

CSIC 2010 0.6103 0.9676 0.9442 0.7214 0.8534 0.9621 0.9621 0.9433

SMS Spam 0.8821 0.9806 0.8173 0.5634 0.9662 0.9793 0.9793 0.9762

the effectiveness of various Federated Learning (Fed-Avg) approaches, particularly

those involving cryptographic techniques and data compression. Under the IID data

distribution, the Fed-Avg with compression method consistently performs at a level

very close to centralized training, with accuracy rates of 99.42% for MNIST and

96.85% for CSIC 2010, indicating that efficient data communication strategies can

nearly replicate the performance of centralized models. In comparison, Fed-Avg with

ElGamal and Fed-Avg with ECC also show strong performance, with accuracy lev-

els matching or closely following the compression method across most datasets. For

instance, both Fed-Avg with ElGamal and ECC achieve 99.23% accuracy on MNIST

and 96.54% on CSIC 2010 under IID conditions, demonstrating their capability to

maintain high accuracy while ensuring data security through encryption. However,

the compression method’s slight edge suggests that reducing the data size without

losing critical information may provide a marginal advantage over encryption tech-

niques alone. This trend is consistent even in the Non-IID setting, where Fed-Avg

with the compression method achieves an accuracy of 98.82% on MNIST, outper-

forming both ElGamal and ECC, which attain 98.69%. This indicates that while

cryptographic methods like ElGamal and ECC are effective in securing data, the

compression method may offer better efficiency in federated learning by minimiz-

ing communication overhead while maintaining high model performance.

Analyzing the above results leads to the following conclusions:

• Impact of data distributions:

IID: In the case of IID (Independent and Identically Distributed) data, all three
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proposed methods outperform standalone training and provide competitive re-

sults to centralized training. This suggests that these methods can leverage the

benefits of federated learning while maintaining good accuracy. The proposed

methods also outperform Fed-Avg with small noise and large noise in most

cases, highlighting their potential advantages in privacy-preserving federated

learning.

Non-IID: The performance of the proposed methods generally decreases in

non-IID scenarios. This is a common issue in federated learning due to the

statistical heterogeneity of the data. Despite this, the proposed methods still

outperform standalone training and Fed-Avg with noise, demonstrating their ro-

bustness to data heterogeneity.

• Comparing to Standalone Training:

The results clearly indicate that all proposed methods outperform standalone

training, especially in the non-IID scenario. This shows the advantage of col-

laborative training in federated learning, as it allows models to learn from a

diverse range of data across multiple clients.

• Comparing to Centralized Training:

Centralized training usually offers higher accuracy as it has access to all the

data. However, it lacks privacy as all data needs to be aggregated in one place.

Comparatively, the proposed methods provide competitive results, especially in

the IID scenario. This indicates that three proposed methods can achieve near-

centralized performance while preserving client privacy.

• Comparing to Selective Learning-Based Training and Fed-Avg with Noise:

All three proposed methods generally outperform Selective learning and Fed-

Avg with noise, demonstrating their effectiveness in privacy-preserving feder-

ated learning. They also provide strong privacy protection via encryption or

data compression.



141

3.2. Secure federated learning framework in decentralized network settings

3.2.1. Proposed framework

Bottleneck in federated learning

Federated learning is a powerful approach for training global models on dis-

tributed data while preserving privacy. However, its reliance on a central server for

the aggregation process has raised several concerns. A central server, the focal point

for aggregating model updates, can inadvertently become a single point of failure and

create performance bottlenecks due to the inherent limitations of centralized learning

architectures. To address these issues, the thesis proposes a decentralized training

framework that is designed to increase robustness and scalability.

Problem state

Consider a set of n distinct clients, with each client n possessing an exclusive

local dataset denoted by Di. These clients collectively partake in the training process

of a universal deep learning or machine learning model pertinent to a specific problem

domain. Notably, this process unfolds devoid of a central server functioning as an

aggregator or as a focal point for communication.

Decentralized federated learning framework

In the proposed framework, there are n parties collaborating to train a global

model. The process is structured as follows:

During each communication round, a master node is chosen randomly or via a

voting scheme. At the local site, each client trains their local models on private data

for E local epochs. Once the training is complete, clients send their models to the

master node which is responsible for aggregating the received models. In an effort

to minimize communication costs, the master node not only aggregates the models

but also actively engages in the training process by contributing its local model to

the global update. After the aggregation, the master node shares the updated global

model with all clients, who proceed to the next communication round.

This decentralized approach significantly enhances the resilience and efficiency
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of federated learning systems. Distributing the aggregation responsibility and mit-

igating the risks associated with a single point of failure, this framework offers a

promising alternative to traditional centralized learning architectures.

Framework 3: Decentralized federated learning framework

Input: Set of n clients U =U1,U2, . . . ,Un with private datasets Di of sizes mi. F : Fraction of

clients participating per communication round. Hyperparameters: T (number of communica-

tion rounds), E (number of local epochs), B (local mini-batch size), W 0 (initial global model).

Output: Trained global model W .

Training Procedure:

The training phase entails T communication rounds. Each round, denoted as t, comprises the

following operations:

• Clients engage in a voting process to find a master node, Umaster. The master node then

selects nt = F×n clients for participation in the current training round.

• Client-side operations (executed by nt clients in parallel):

– Each client Ui trains the model W t on its data Di over E epochs, yielding W t+1
i .

– Client Ui transmits W t+1
i to Umaster.

• Master Node Operations:

– Umaster locally trains the model W t on its data Dmaster over E epochs, producing

W t+1
master.

– Umaster combines the received models and its own model according to the Fed-Avg

algorithm:

W t+1←
nt

∑
i=1

mi

m
W t+1

i +
mmaster

m
W t+1

master

– The updated global model W t+1 is sent to all clients.

Decentralized federated learning framework with secure sum protocol

To provide more details, these protocols are incorporated by integrating secure

sub-modules into Framework 3, ensuring secure computations in each communica-

tion round. The secure multi-party summation protocol comprises two complemen-

tary sub-modules: an encryption sub-module used by the clients and a corresponding

decryption sub-module employed by the master node. Consequently, a decentralized,

federated learning framework supported by secure protocols is established. Here is a

summary of the protocols:



143

Framework 4: Decentralized federated learning framework with secure multi-party sum

protocol

Input: Set of n clients U =U1,U2, . . . ,Un with private datasets Di of sizes mi. F : Fraction of

clients participating per communication round. Hyperparameters: T (number of communica-

tion rounds), E (number of local epochs), B (local mini-batch size), W 0 (initial global model).

Output: Trained global model W .

Training Procedure:

The training phase entails T communication rounds. Each round, denoted as t, comprises the

following operations:

• Clients engage in a voting process to find a master node, Umaster. The master node

chooses nt = F×n clients for the current round.

• Phase (1) - Compute public share values:

– Client-side operations (executed by nt clients in parallel): Send the public values

corresponding to the client’s private values to the master node.

– Master node operations: Compute the public shared values and distribute them,

along with the global model W t , to all other clients participating in the round.

• Phase (2) - Secure Sum Computation:

– Client-side operations (executed by nt clients in parallel):

* Locally train the model W t on its data Di over E epochs, yielding W t+1
i .

* Compute mask values for W t+1
i using the corresponding client i private keys.

* Transmit the masked local model Mask(W t+1
i ) to Umaster.

– Master node operations:

* Locally train the model W t on its data Dmaster over E epochs, producing

W t+1
master.

* Combine the received masked models and its own model, and execute the

secure sum computation phase to obtain the global model:

W t+1←
nt

∑
i=1

mi

m
W t+1

i +
mmaster

m
W t+1

master.

* Transmit the global model W t+1 to all clients.

3.2.2. Experimental setup

Experiments were conducted using the MNIST and UCI SMS Spam datasets

to assess the proposed framework. This section presents the efficiency of the pro-
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Table 3.6: Size of the training and test datasets

MNIST SMS SPAM

Training size 60,000 4,457

Testing size 10,000 1,115

posed framework in handling IID, Non-IID, and imbalanced data with a low cost of

communication bandwidth and high accuracy. The remaining part of this section is

structured as follows: a description of the experiment, the experimental results, and

the evaluation.

3.2.2.1. Datasets

The evaluation of the proposed framework involves two major datasets com-

monly used as benchmarks in deep learning research.

• MNIST Dataset: The first dataset is the MNIST dataset [189], which consists

of images of handwritten digits. Each digit is formatted as a 32x32 image,

normalized, centered, and resized to 28x28 pixels. The dataset contains 60,000

training examples and 10,000 test examples, making it a standard benchmark

for image classification tasks in machine learning.

• UCI SMS Spam Collection: The second dataset is the UCI SMS Spam Collec-

tion [190], an imbalanced dataset comprising SMS messages labeled as either

ham (legitimate) or spam. The dataset includes a total of 5,572 messages, of

which 746 are spam and 4,826 are ham. For the purpose of this evaluation, the

dataset was randomly split into 80% for training and 20% for testing, resulting

in 4,457 training samples and 1,115 test samples.

Table 3.6 provides a summary of the number of training and test samples used

in the evaluation.

3.2.2.2. Data Partitioning Strategies

To evaluate the performance of the proposed framework, two data partitioning

methods are explored: IID (Independent and Identically Distributed) and Non-IID
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(Non-Independent and Identically Distributed).

The IID approach ensures that the data is randomly shuffled and evenly dis-

tributed across all clients, providing each client with a representative subset of the

entire dataset. For example, when applying the IID method to the MNIST dataset, if

the data is partitioned among 100 clients, each client would receive an equal share of

600 examples, ensuring a balanced mix of digit images across all clients. Similarly,

with the UCI SMS Spam Collection, the IID strategy would distribute both spam and

ham messages equally among the 40 clients, maintaining a uniform distribution.

Conversely, the Non-IID approach reflects more realistic scenarios where data

may not be evenly distributed across clients. In this method, the data is partitioned

based on specific characteristics, such as class labels or message types, leading to

imbalanced distributions. For instance, in the case of the MNIST dataset, the Non-

IID partitioning might involve sorting the data by digit labels and dividing it into 200

shards, each containing 300 examples. Each of the 100 clients would then receive

two shards, resulting in some clients having a higher concentration of certain digit

images than others. Similarly, for the UCI SMS Spam Collection, applying a Non-IID

partitioning strategy would mean some clients receive predominantly spam messages,

while others receive mostly ham messages, thereby creating a varied distribution of

data that mirrors real-world imbalances.

By employing both IID and Non-IID partitioning strategies, we can thoroughly

evaluate the robustness and effectiveness of the proposed framework across differ-

ent data distribution scenarios, from balanced to highly skewed distributions. This

comprehensive approach allows us to better understand the framework’s performance

under diverse and realistic conditions.

3.2.2.3. Neural Network Architectures

In this experiment, two distinct neural network architectures were utilized: a

Convolutional Neural Network (CNN) for the MNIST dataset and a Long Short-Term

Memory (LSTM) network for the SMS spam detection dataset. CNNs are partic-

ularly well-suited for image recognition tasks due to their ability to capture spatial
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hierarchies in data through layers with sparse connectivity [191]. LSTMs, a type

of Recurrent Neural Network (RNN), are designed to effectively model sequential

dependencies, making them ideal for tasks involving time series or text data [192].

For the MNIST dataset, the network takes input images of handwritten digits,

each represented as a 28x28 pixel grid, flattened into a single vector of 784 units.

The network’s goal is to accurately classify these inputs into one of ten possible digit

categories, which defines the output layer with 10 units.

Figure 3.10: CNN Model for MNIST dataset Summary.

In the case of the SMS Spam dataset, the input size is determined by the use

of the top 10,000 most frequent words as features, resulting in an input vector of size

10,000. The classification task is to distinguish between spam and ham (non-spam)

messages, necessitating an output layer with 2 units to represent these two classes.

Figures 3.10 (for CNN) and 3.11 (for LSTM) provide a visual summary of

the network architectures, implemented using the Keras library. The CNN model

contains 600,810 parameters, optimized for the image classification task, while the

LSTM model, with 337,761 parameters, is tailored to handle the sequential nature of

text data.
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Figure 3.11: LSTM Model Summary.

3.2.2.4. Computing Framework

The training of the proposed framework was conducted on a desktop computer

equipped with an Intel i3-9100F CPU, 16GB of RAM, and a GTX1060 GPU, all

running on the Windows 10 Pro operating system. This setup provided a balanced

combination of processing power and graphical capability suitable for deep learning

tasks.

The software stack included Anaconda version 4.7.12 for environment man-

agement, TensorFlow version 1.15.0 for backend computations, and Keras version

2.2.5 as the primary high-level API for neural network development. Keras [193]

is widely recognized for its intuitive interface and modular design, which facilitates

rapid prototyping and experimentation. It integrates seamlessly with TensorFlow,

CNTK, and Theano, allowing researchers to leverage the strengths of these power-

ful backend engines. Keras supports an extensive array of neural network models,

including both convolutional networks (CNNs) and recurrent networks (RNNs), and

can easily combine these models to tackle complex tasks.

Moreover, Keras is optimized for both CPU and GPU performance, enabling

efficient training and inference across different hardware setups. Its compatibility

with nearly all Python versions from 2.7 to 3.6 further enhances its flexibility and

accessibility, making it an ideal choice for diverse research environments and experi-

mental needs.
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3.2.3. Experimental results and evaluation

3.2.3.1. Model performance

Overall model performance. The performance of the Secure Decentralized

Training Framework (SDTF) is illustrated in Table 3.7. After 100 communication

rounds, the proposed framework archived an accuracy of 97.6% on IID dataset, while

the figure for Non-IID dataset was 93%. Despite the changes in the local parameters,

the framework can be seen as a high-performance, and high accuracy model.

In this experiment, K = 100 is chosen as the full node for joint model training

to showcase the performance of the proposed framework. The evaluation is conducted

by varying the local batch size and local training epochs. Considering resource con-

straints, two batch sizes are considered: 10 and 50. Furthermore, local training epochs

of 1, 5, and 20 are selected sequentially across 100 communication rounds. The im-

pact on the model’s accuracy is assessed at five checkpoints: the 5th, 10th, 20th, 50th,

and 100th rounds.

With a local batch size of 50 and 1 local training epoch, the accuracy for both

IID and non-IID data starts at 85% and 76% in the 5th communication round. After

20 rounds of training, a significant change in accuracy is observed for both the IID

and non-IID MNIST datasets.

In the IID partition, the accuracy of the global model at a certain round is

reported, considering a baseline accuracy of 97%. This baseline is chosen as it is

significantly higher than the accuracy achievable through standalone local training

(i.e., 95%). It is observed that with increased computation per client in each round,

the communication costs to reach the baseline decrease. In all cases, the baseline

accuracy of 97% is achieved in less than 100 communication rounds. However, sce-

narios with small batch sizes, large local epochs, and large batch sizes with small local

epochs may lead to slower achievement. Linear interpolation between discrete points

is used to compute the number of rounds needed for the model to achieve the target

accuracy. As detailed in the next section, the framework achieves the 97% baseline

approximately five times faster than Downpour SGD.
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Table 3.7: The results on accuracy for different local training parameters on MNIST

CNN (IID and Non-IID)

MNIST CNN IID MNIST CNN Non-IID

After 100 rounds, the achieved accuracy baseline for non-IID partitioned data

is 92% for all cases, instead of 97% as in the IID partition. However, in this case, local

hyperparameters have less impact on model accuracy as the communication rounds

increase. Although the performance in this scenario is inferior to the IID partition

scenario, it is still better than standalone training, highlighting the robustness of the

framework.

The next experiment compares the accuracy of the proposed framework and

several training strategies.

Model accuracy comparison. The second experiment compares the proposed

framework’s accuracy with six other training strategies for a CNN model during the

first 100 communication rounds. The CNN standalone version represents the training

process in which each party uses only their local dataset for training, and the CNN

centralized version involves storing and training the entire dataset centrally. These

serve as two baseline cases for the experiment. The objective is to demonstrate that

the framework achieves significantly higher model accuracy than standalone train-

ing. The comparison includes Selective learning and FedAVG with different hyper-

parameters. Two cases of 10% and 50% model parameter sharing are considered

for Selective learning. With FedAVG, the framework is compared with its large and

small noise versions. These strategies are chosen as they are known to be efficient in

practice. Other cryptographic techniques may achieve accuracy similar to the model,

but they are unsuitable for the semi-honest model and have high communication and

computation costs. The cooperation results are presented in Table 3.8.
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Table 3.8: Model accuracy comparison: balanced dataset

Selective

10%

Selective

50%

FedAVG Downpour

SGD

CNN

Centralize

CNN

Standalone
SDTF

Large

Noise

Small

Noise

5 0.7436 0.8141 0.75 0.899 0.8913 0.9756 0.9061 0.9616

10 0.7902 0.8417 0.802 0.901 0.9295 0.9824 0.9341 0.9798

20 0.8171 0.8686 0.866 0.934 0.9518 0.9889 0.9354 0.9803

50 0.8214 0.8991 0.871 0.945 0.9768 0.9901 0.9355 0.9843

100 0.8862 0.9105 0.88 0.96 0.9817 0.9912 0.9479 0.9857

The CNN Centralize model clearly outperformed others, with the highest ac-

curacy of 99.12% after 100 rounds. Centralizing the entire dataset for training can

achieve higher accuracy levels than other approaches. However, this comes at the cost

of privacy, as the whole dataset is centralized. To maintain privacy, selective learning

and FedAVG with noise are employed. These models exhibited lower accuracy, even

below the CNN Standalone model, in the first 100 rounds. Selective learning experi-

ences a significant reduction in accuracy due to the loss of information in parameter

sharing, leading to slower convergence and lower accuracy in the initial rounds. This

behaviour is similar to Downpour SGD, which also shows slower convergence. No-

tably, the proposed framework with a batch size 32 and local epochs of 10 achieves

the 97% baseline five times faster than Downpour SGD. FedAVG with noise, using

a differential privacy approach, results in a substantial reduction in model accuracy,

especially in the case of the large noise version. Selective learning and Downpour

SGD also send raw parameters to other parties, compromising security.

The proposed framework performed better than most of the provided CNN

model in this scenario with the accuracy of 98.57% after 100 communication rounds.

Impact of Dropped Nodes Ratio on Performance. In this section, the pro-

posed framework’s performance is evaluated in the presence of node dropout, con-

sidering varied dropout ratios. The batch size is fixed at 5, and the number of local

epochs is set to 10. The evaluation is conducted at five checkpoints: the 5th, 10th,

20th, 50th, and 100th rounds. The dropout ratios investigated include 1%, 5%, 10%,
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Table 3.9: Results on the framework’s performance for the dropped nodes on the

MNIST dataset. The proposed framework’s performance have been tested

in four scenarios of dropping 1%, 5%, 10% and 20% number of nodes

through 5, 10, 20, 50 and 100 communication rounds

MNIST CNN IID MNIST CNN Non-IID

and 20%, corresponding to 99%, 95%, 90%, and 80% of nodes participating in each

round, respectively. The results are summarized in Table 3.9.

The model’s performance improves with an increase in communication rounds.

In the IID case, a small dropout ratio has a minor impact on performance, while larger

dropout ratios (above 10%) lead to decreased performance. However, after a suffi-

ciently large number of training rounds, the performance increases and approaches

that of the case with no dropout. In all cases, the model’s accuracy surpasses the

baseline of the standalone model, set at 95%.

The model’s performance improves with increased communication rounds for

the Non-IID case. However, due to the impact of heterogeneous data, there is a de-

crease in performance compared to the IID case. Nevertheless, it remains significantly

higher than standalone training.

The experiment highlights that the number of nodes dropped out is insignifi-

cant in the performance of the proposed framework in the IID data case. However, in

the Non-IID data case, it can incur additional costs and affect convergence. Nonethe-

less, the framework achieves baseline performance with a sufficiently large number

of communication rounds. The dropout ratio primarily influences the model’s conver-

gence, necessitating more training rounds to achieve satisfactory performance. The

proposed framework demonstrates resilience in network volatility, requiring only a
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Table 3.10: Model accuracy comparison: imbalanced dataset

Selective

10%

Selective

50%

Downpour

SGD
FedAVG (DP)

LSTM

Centralize

LSTM

standalone
SDTF

5 0.9499 0.9507 0.9634 0.9568 0.9676 0.8645 0.9658

10 0.9551 0.9542 0.9641 0.9563 0.9689 0.867 0.9677

20 0.9559 0.9561 0.9684 0.9683 0.9782 0.9052 0.9686

50 0.9623 0.9678 0.9719 0.9696 0.9788 0.9134 0.9695

100 0.9688 0.9692 0.9726 0.9719 0.9813 0.9257 0.9721

certain number of nodes to participate in each round and allowing others to leave the

network without compromising model accuracy.

Imbalanced datasets. The final experiment evaluates how the proposed frame-

work handles imbalanced data, specifically using the UCI Spam Collection dataset

with an 80:20 training-to-testing sets ratio. The Long Short-Term Memory (LSTM)

model is employed for this scenario.

A comparison is drawn between the Secure Decentralized Training Framework

(SDTF) and five different training strategies: selective learning with 10%, selective

learning with 50%, DownpourSGD, federated learning, and LSTM centralized. The

results are presented in Table 3.10.

In this experiment, the accuracy of these models is assessed over 100 commu-

nication rounds, with specific evaluation points at the 5th, 10th, 20th, 50th, and 100th

rounds. The proposed model achieves an accuracy of 97.21% by the 100th round,

outperforming most of the provided models. While the LSTM Centralized model

retains the highest accuracy of 98.73% after 100 rounds, the proposed framework

demonstrates remarkable accuracy in handling imbalanced data.

The experimental results also show that the proposed framework work well not

only in IID data distribution but also in Non. IID data distribution. The model can

obtain the 97% baseline of accuracy after only 10 rounds of communication in IID

setting, that is 5× faster than Downpour SGD. The accuracy of the model in MNIST

Non.IID settings and unbalance data with UCI SMS Spam dataset is much higher
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than any standalone training version. All these results can be obtained with only 10%

of parties joint in each training rounds. This show that the framework is efficient even

if many parties drop out training. So that it is very suitable for heterogeneous systems

in which each party can drop out at any training round.

The system aims to address several privacy threats associated with deep learn-

ing. Next, the privacy of the framework is analyzed, demonstrating its capability

to secure inputs, outputs, and local models from both direct and indirect leakage.

Furthermore, a comparative assessment of the framework in terms of security, im-

plementation performance, and utility is conducted using three approaches from the

literature: the data-sharing approach, the ensemble method, and the model-sharing

approach.

3.2.3.2. Privacy

In traditional distributed deep learning framework, the data owners and learn-

ing party are separate from each other. The data owners hold their local data and the

learning party collects data from the owners to perform a deep model training pro-

cess. Data owners neither control over the learning objective nor access the trained

model directly. They need to contribute their data without any controls over it to a

third party who acts as a learning server. In this case, privacy threats occur in both

training phase and using phase.

In training phase, the local training data from the data owners may reveal di-

rectly to the learning server itself, to attackers who compromised the server’s data

storage, and to law enforcement and intelligence outfits due to legal and extra-legal

means.

In using phase, when the data owners want to use the trained model, they must

send their inputs to the model owner who often is the learning party itself. This may

expose not only their local data but also the output results.

This section demonstrates the Secure Decentralized Training Framework for

deep learning models to address various privacy threats effectively. The framework

ensures the privacy of input data in both the training and usage phases, safeguards
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the output results during the usage phase, and protects all local intermediate models

throughout the training process.

As mention above, the thesis consider the semi-honest model in which all par-

ties are not actively malicious and follow the protocol exactly but may attempt to infer

sensitive information from other parties’ data.

• Direct leakage

In training phase. In the framework, instead of sharing local training data, all

parties share their intermediate model parameters with noise. So that the training data

are stored locally and do not reveal to any one. The data owners have full permissions

with their data itself, thus ensures strong privacy of the model.

In using phase. After training process of the framework, all participants can

get a collaborative global model and so that can use it locally and privately without

sending any more data to the network. This makes both input data and predictive

results private. There is absolutely no leakage in the using phase.

• Indirect leakage

Indirect leakage occurs when adversaries can collect intermediate model pa-

rameters from a honest party. The framework can eliminate the indirect leakage by

using one of the three proposed protocols. The three proposed protocols can perform

computing sum of all paramater vectors without revealing any other information even

in the case of there are n−2 parties collude each other.

In conclusion, the proposed framework for deep learning models can protect

the local privacy of all semi-honest parties from both direct and indirect leakage in

training phase and using phase.

3.2.3.3. Computational complexity

In the proposed protocol, each round involves the utilization of a master node

for both parameter aggregation and training a version of the local master server be-

fore aggregation. Furthermore, during any training round, the necessity for joint

participation is limited to K parties instead of all N parties, significantly reducing
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computational and communication costs within the protocol. Additionally, the proto-

cols operate with floating-point real numbers of at most 64-bit precision, significantly

smaller than any homomorphic encryption scheme, thereby markedly decreasing the

implementation cost.

Given that time complexity is a crucial aspect of a training framework, it is

denoted:

• T (i)
t is the time for party i get the model updated at training round t.

• T (i)
train is the time required for i-th party training his local model on his local

data.

• T (i)
enc is the time for computing shared parameters by Secure Vector Sum Pro-

tocol.

• T (i)
upload is the time for uploading the encrypted models.

• T (i)
download is the time for downloading the global model from the master node.

• T (i)
master is the time for master node compute the final global model at each

round.

• nRound is the total number of training rounds.

The time complexity of the system for a party i is estimated using the following

formula:

T (i)
t =

K
max
j=1
{T ( j)

train +T ( j)
enc +T ( j)

upload}+T (i)
download +Tmaster (3.2.3)

In a training round t, K parties parallelly train their local models, and the total time re-

quired for all of them to complete the protocol is given by maxK
j=1 T ( j)train+T ( j)enc+T ( j)

upload .

Subsequently, the master node computes and returns the global model to all parties.

Thus, the time complexity for a party i to fully perform a training round t is computed

using Equation 3.2.3. The total cost of the framework is then:

Ttotal =

[
K

max
j=1
{T ( j)

train +T ( j)
enc +T ( j)

upload}+
N

max
i=1

T (i)
download +Tmaster

]
nRound. (3.2.4)
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Among the operations, the computational cost of the local training operation

T (i)
train is the most expensive. But it is the imperative step in all the research of model

sharing approach in literature. In the protocol, the only extend time is the time for

computing shared parameters T (i)
enc but it is much less than training time and can be

negligible.

3.2.3.4. Comparing the framework with other strategies

Employing model sharing, as in federated learning [3], instead of a data sharing

approach, such as in [122, 123], offers advantages in terms of accuracy measures.

Unlike data sharing approaches, model sharing eliminates the need for estimating

techniques and transforming methods to accommodate data encryption algorithms.

In many applications in the big data era, the data volume can be enormous, making

sharing impractical. Additionally, data sharing typically requires a central server to

collect and train the model, introducing potential issues like single points of failure

or bottleneck problems.

PATE [137] requires most of the teacher parties have high quality local model.

So it enquires each party need to have many labelled data. And further, it do not work

well with statistical heterogeneity system. The combination of PATE and differential

privacy also make reduce in accuracy of the global model.

With cryptography, the model can protect the privacy of all sharing model

during training process without accuracy reduction. Moreover, the proposed secure

sum protocol can reduce the communication and computation cost of cryptography

approach. This protocol also can ensure the privacy of all local model even if there are

n−2 parties collude with each other that is not able to obtain in tradition cryptography

approach [162,176]. A comparison of the proposed framework with other approaches

is shown detail in Table 3.11.

The proposed framework address the trade-off among users privacy, imple-

mentation cost, and model utility by combination of Federated Averaging techniques

and the secure decentralized training framework. It not only ensures the privacy of

local parties but also retains the accuracy of the original Federated Averaging on De-
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Models Bottleneck Privacy Collusion Utility Reduction Heterogeneity Data Heterogeneity System Performance cost Training Latency

Traditional Deep Learning YES - - No YES High Low -

Downpour SGD YES Low - No YES Low Low Medium

Data Sharing with HE YES High YES High YES High High Medium

Data Sharing with DP YES Medium NO High YES High Low Low

Ensemble Learning PATE YES Medium NO Medium NO Low Low Low

Selective learning YES Low - Low YES Low Low High

Selective learning + HE YES High YES High YES Low Medium High

FedAVG YES Low - Low YES High Low Low

FedAVG + HE YES High YES Low YES High Medium Medium

FedAVG + DP YES Medium NO High YES High Low Low

Blockchain base NO High YES High YES High High Medium

Proposed Framework NO High NO Low YES High Low Low

Table 3.11: Comparison among privacy preserving deep learning approaches

centralize network without any third party server. Moreover, the model also work

well with the systems and statistical heterogeneity in a high performance.

3.3. Chapter Summary

In this thesis section, the application of secure multiparty computation proto-

cols, as detailed in Chapter 2, has been explored for training distributed deep learning

models, encompassing both centralized and decentralized approaches. The results

highlight the effectiveness of the mentioned protocols in various settings, covering

diverse datasets and deep neural network models. The research findings presented in

this chapter have been documented in the publications [2,3,4,5,6,7].
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CONCLUSION AND FUTURE WORK

Deep learning has surfaced as an immensely potent methodology across di-

verse machine learning domains, encompassing, among others, image classification,

speech recognition, natural language processing (NLP), and bioinformatics. The ef-

fectiveness of deep learning approaches is inherently connected to the amount of data

available for training purposes. There is a significant interest among multiple entities

to train a global model using their respective datasets collaboratively. Nevertheless,

such data collection frequently involves sensitive user information, giving rise to sev-

eral privacy concerns. In order to address this issue, Google Brain has implemented

federated learning, which allows for the storage of training data on local devices and

the learning of a shared model through the aggregation of locally calculated updates.

In order to use the Federated learning technique, participants are obligated to

engage in the process of parameter vector averaging. The act of sharing parameters in

this procedure may inadvertently lead to the unintended disclosure of data, compro-

mising the participants’ privacy. The current body of research primarily focuses on

addressing this matter through integrating methodologies such as differential privacy,

which involves the introduction of random noise, or cryptographic-based approaches

like SMC, to augment the security of the parameter-sharing procedure. Nevertheless,

despite the numerous advancements made in cryptographic approaches and differen-

tial privacy, there is still a need to enhance the security and efficiency of exchanging

local models.

Although differential privacy methods frequently result in reduced model ac-

curacy, necessitating a trade-off between privacy and efficiency, cryptographic-based

approaches, specifically secure multiparty computation protocols, offer promising so-

lutions for enhancing both security and efficiency. However, considering the existing

constraints, the present scenario requires additional study endeavors that can profi-

ciently utilize cryptographic techniques to attain practical efficacy. One of the dis-

advantages of this approach is the requirement to convert floating-point real numbers

into big integers, which is a computationally demanding procedure. This conversion
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introduces a loss of accuracy during the training of the model. Furthermore, imple-

menting a protocol is essential to guarantee the utmost level of security in situations

where collusion poses a substantial obstacle. This thesis focuses on the proposition

and enhancement of secure multiparty computation protocols to address and over-

come the aforementioned shortcomings.

This thesis presents three multiparty secure sum techniques as potential solu-

tions to the aforementioned problems. The security aspect and performance of each

idea were investigated and evaluated in the thesis. The findings of the thesis can be

succinctly described in the following manner:

• The thesis has proposed three secure multi-party sum protocols that work well

on floating-point real number vectors in semi-honest collision scenarios. The

first protocol used a method that segregated the integer and decimal compo-

nents and a modified version of the ElGamal cryptographic system. The frac-

tional component is compressed using varied levels of precision. This protocol

ensures the preservation of differential privacy by utilizing the inherent ran-

domness in estimation errors and attains computational security by employing

cryptographic methods. The federated learning protocol guarantees the learned

model’s precision by utilizing an appropriate compression ratio. Nevertheless,

it is necessary to meticulously select the compression ratios for each particular

problem inside the experiment in order to uphold the intended level of precision.

Moreover, the execution of two cryptographic computation phases results in a

substantial increase in both the computing and communication expenses asso-

ciated with this protocol. Hence, this thesis presents an alternative protocol that

utilizes the masking matrix approach in conjunction with a modified version

of the ECC cryptosystem. The objective of this protocol is to attain a signifi-

cant level of precision while concurrently minimizing the expenses associated

with communication and processing. The efficacy of the two proposed proto-

cols is seen in their ability to achieve high levels of efficiency when applied to

diverse datasets and neural network topologies. The attained level of accuracy

demonstrates just a slight decline compared to conventional federated learning

methods. Nevertheless, the two methods lack data authentication and are vul-
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nerable to membership spoofing attacks. Therefore, the thesis presents a novel

protocol as a potential solution to tackle this particular problem. The proposed

protocol utilizes a composite approach consisting of a random noise masking

matrix, different iterations of the Elgamal cryptosystem, hashing methods, and

digital signatures in order to guarantee the secrecy, privacy, and validity of the

data belonging to the involved parties. The proposed secure sum protocols con-

sist of three unique approaches that facilitate the collective computation of a

sum of private inputs by a substantial group of n participants while operating

under the assumption of semi-honest behavior. These protocols are designed to

withstand collusion among n−2 parties. The aforementioned protocols demon-

strate efficacy when applied to floating point numbers, rendering them highly

compatible with the implementation of federated learning.

• The thesis proposes the utilization of these protocols for training federated

learning models in both centralized and decentralized network contexts, with the

aim of assessing their effectiveness. The thesis undertakes a theoretical evalu-

ation of the privacy and communication expenses linked to the training pro-

cedure. The research entails the implementation of empirical examinations on

multiple datasets, namely the MNIST dataset, characterized by its equitable dis-

tribution of class images; the SMS Spam dataset, recognized for its imbalanced

class text data; and the CSIC 2010 dataset, which specifically concentrates on

the identification of web attacks. This research employs various deep neural

network architectures, including Convolutional Neural Networks (CNN), Con-

volutional Long Short-Term Memory (CLCNN), and Long Short-Term Mem-

ory (LSTM). The experiments conducted as part of this study provide empirical

evidence that supports the claim that the proposed methodology has the poten-

tial to attain a significant level of accuracy. For example, the model attained

a baseline accuracy of 97% following ten training iterations using the MNIST

dataset and fifty training iterations using the SMS Spam dataset. Moreover, the

methodology shows robustness in diverse, distributed networks characterized

by non-identically and independently distributed (non-IID) and imbalanced data

distributions. Moreover, empirical evidence demonstrates a fivefold reduction
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in the required number of training iterations to achieve the accuracy baseline

compared to Downpour SGD.

The proposed methodology demonstrates the ability to attain robust privacy

at the cryptographic level while preserving a higher level of model utility than dif-

ferential privacy methodologies. Including this feature enhances the efficiency and

practicality of the proposed protocols, rendering them suitable for implementation in

real-world scenarios. The protocols offered are novel, as they are designed to operate

with floating-point real numbers. Their primary objective is to safeguard local models

from any party who may possess honest intentions but is curious. This protection is

ensured even when collusion occurs among n−2 out of n parties, specifically within

the context of privacy-preserving deep learning.

Subsequently, the thesis examines prospective challenges that may arise within

the broader domain of SMC in the forthcoming period.

• The genesis of the field of SMC may be traced back to distributed computing

scenarios and practical challenges, as discussed in Chapter 2. Therefore, it is

imperative for the research community to explore new secure multi-party com-

putation protocols in response to evolving distributed computing situations and

the demands of real challenges.

• Furthermore, it is imperative that secure multi-party computation protocols are

founded upon contemporary cryptographic methods, such as post-quantum cryp-

tographic approaches. This is crucial in order to safeguard against potential

threats posed by upcoming advancements in computing technology that are

rapidly approaching.

• The application of SMC can be integrated into the input sharing approach and

ensemble learning for greater efficiency, as well as to solve some training model

cases under certain conditions.
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