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INTRODUCTION 

1. Urgency of the Thesis 
In the 4.0 industrial revolution, the demand for fully automated factories 

has made mobile robots an essential component. Mobile robots help optimize 
workflows, minimize human intervention, increase efficiency, and ensure 
accuracy. Among the common types of mobile robots today, omnidirectional 
mobile robots have the advantage of moving flexibly in all directions without 
being dependent on the robot's orientation, making them ideal for working 
in confined spaces. 

Typically, omnidirectional mobile robots use either omni-wheels or 
mecanum wheels. Among them, mobile robots with mecanum wheels can 
carry heavy loads, work flexibly in complex, narrow, and crowded 
environments such as warehouses, hospitals, industrial production areas, or 
urban environments. However, these environments are often subject to 
continuously changing factors (obstacles, uneven floors, etc.), especially 
when the load varies or when situations arise that cause instability (for 
example, when the robot carries uneven materials). In such cases, the center 
of gravity of the robot changes, which can significantly affect the movement 
and trajectory tracking capabilities. Therefore, the research into adaptive 
control algorithms that enable robots to operate more accurately and stably 
in real working environments is crucial. 

Trajectory tracking control for mecanum-wheeled omnidirectional 
mobile robots is a critical and urgent problem. It requires systems capable of 
controlling the robot to maintain its trajectory without deviation or 
instability, particularly when the robot model is nonlinear with uncertain 
components influenced by the working environment or when moving on 
uneven terrain. The development of trajectory tracking control algorithms 
helps minimize errors and stabilize the operation process. Key research 
directions include using conventional PID control algorithms, fuzzy PID 
control, or some studies using sliding mode controllers. Recently, advanced 
control algorithms such as MPC (Model Predictive Control), LQR (Linear 
Quadratic Regulator), and machine learning methods have been applied and 
proven to be effective. 
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A major challenge during the research is the development of control 
algorithms that can adapt to unstable environmental factors, such as the 
uncertain center of gravity of the robot when transporting heavy goods or 
when moving on uneven terrain. Machine learning, reinforcement learning, 
and deep learning algorithms based on artificial neural networks have also 
been researched for trajectory tracking control, achieving better control 
quality. 

With the above trends in mind, the research topic chosen is: "Research 
on the development of an adaptive algorithm and reinforcement 
learning based on Actor-Critic structure for trajectory tracking control 
of omnidirectional mecanum mobile robots". The thesis focuses on 
developing adaptive and reinforcement learning algorithms to improve the 
quality of trajectory tracking control for four-wheeled mecanum 
omnidirectional mobile robots with changing center of gravity. The thesis 
applies traditional control algorithms and machine learning algorithms for 
comparison and verification of the proposed control algorithm's quality. 
2. Objectives of the Thesis 

The objective of this thesis is to research adaptive control and 
reinforcement learning algorithms to improve the quality of trajectory 
tracking for omnidirectional mecanum robots, under the influence of 
changing center of gravity and external disturbances. The thesis sets the 
following main research tasks: 

- Study adaptive control algorithms to enhance the quality of trajectory 
tracking for omnidirectional mecanum robots with changing center of 
gravity. 

- Study the Actor-Critic reinforcement learning algorithm structure for 
trajectory tracking control of omnidirectional mecanum robots with 
changing center of gravity. 
3. Research Content 

 Overview of omnidirectional robots, related research in the world, and 
the research direction of the thesis. 

 Mathematical modeling for four-wheeled mecanum mobile robots with 
changing center of gravity. 
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 Apply algorithms for trajectory tracking control for mecanum robots 
such as PID, SMC, Backstepping-SMC, DSC. 

 Propose an adaptive control algorithm based on fuzzy logic systems to 
improve trajectory tracking quality for omnidirectional mecanum robots with 
changing center of gravity and external disturbances. 

 Propose an Actor-Critic reinforcement learning algorithm for trajectory 
tracking control of omnidirectional mecanum robots under the influence of 
external disturbances and model uncertainties. 

 Simulate and experiment with the algorithms on a real robot model, then 
evaluate the quality and practical applicability of the proposed algorithm. 
4. Scientific and Practical Significance of the Thesis 

Currently, the trajectory tracking control problem for omnidirectional 
mecanum robots is urgent. This research not only serves industries and 
manufacturing but also contributes to the development of automation 
technology, enhancing the application of robots in rescue, security, and 
autonomous transportation fields. 

The thesis proposes an adaptive control method, reinforcement learning 
based on fuzzy logic rules, and artificial neural networks as a new approach 
to the trajectory tracking problem for omnidirectional four-wheeled 
mecanum robots, adapting to the effects of changing center of gravity and 
uncertain model disturbances. 

The research results serve as a scientific basis for practical application, 
along with building a robot prototype to verify the algorithm, opening up 
possibilities for practical deployment 
5. Contributions of the Thesis 

The contributions of the thesis include: 
 Proposing a dynamic sliding mode adaptive fuzzy control algorithm 

to improve the trajectory tracking quality for omnidirectional mecanum 
robots with changing center of gravity. 

 Proposing an Actor-Critic reinforcement learning algorithm for 
trajectory tracking control of omnidirectional mecanum robots with 
changing center of gravity. 
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CHAPTER 1. OVERVIEW OF OMNIDIRECTIONAL 
MOBILE ROBOTS 

1.1. Overview of Four-Wheeled Mecanum Omnidirectional Mobile 
Robots 

Mecanum-wheeled omnidirectional mobile robots (FMWR) are designed 
with four mecanum wheels, each independently driven by its own motor. The 
wheels are arranged symmetrically in pairs, creating a balanced posture for 
the robot and ensuring kinematic compatibility for each wheel. Each 
mecanum wheel is constructed with passive satellite rollers inclined at an 
angle of 45° to the main wheel axis, in Figure 1.  

 

Figure 1.1 Four- Wheeled Mecanum Autonomous Robot Model 

When the robot operates, the wheels are driven to rotate in directions 
perpendicular to the drive axis, and the passive rollers convert part of the 
longitudinal force into lateral slip force. This allows the robot to move 
sideways or in any direction independently of its orientation. Thanks to these 
advantages—flexible movement and high load capacity- FMWRs are widely 
used in industrial settings, such as warehouse lifting robots, production line 
transportation robots, and inspection robots in hazardous environments (e.g., 
radioactive, space, underwater). 

In applications like warehouse transportation robots or collaborative arm-
integrated robots, carrying additional loads changes the total weight and the 
center of gravity (CoG) of the robot. A shifted CoG (e.g., when rotating or 
moving diagonally) may lead to imbalance and affect stability. This 
highlights the need for control algorithms capable of adapting to such 
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changes and automatically adjusting parameters (like velocity, direction, and 
wheel force) to maintain robot stability and accurate trajectory tracking. 

 

 

Figure 0.2 The Change in the Center of Mass of a Robot Integrated with a 
Collaborative Arm 

1.2. Kinematic Equations of Mecanum-Wheeled Mobile Robots 
The FMWR model is designed with four mecanum wheels arranged 

symmetrically in pairs. Each wheel is driven independently, allowing the 
robot to create both longitudinal and lateral forces to move forward, 
sideways, or in any direction without changing its heading Figure. 3. 

The kinematic model in the global coordinate frame is expressed as 
follows: 

 

Figure 0.3 Mecanum Omnidirectional Mobile Robot Model 
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The kinematic equation of the FMWR in the global coordinate system is 
defined as follows: 

cos sin 0

sin cos 0

0 0 1

R

R

R

x x

y y

 
 

 

     
           
          

 
 
 

 (1.1) 

The kinematic equation written in matrix form is as follows:  

( )R η H η   (1.2) 

Where: 
T

R R R Rx y    η     - it represents the velocity along the x and 

y axes and the orientation angle of the robot in the coordinate system attached 

to the robot. 
T

x y    η    - it represents the velocity along the x and y 

axes and the orientation angle of the robot relative to the global coordinate 
system. 

1.3. Dynamic Model of Four-Wheeled Mecanum Mobile Robots 
In this model, the actual center of gravity does not coincide with the 

geometric center of the robot. This deviation affects the robot's dynamics and 
control characteristics. The FMWR-ME model considers the CoG shift as a 
variable relative to the robot's frame. The CoG may be fixed or variable due 
to uncertain or distributed loads Fig.1.4. Where, the center of mass position 

[ ]TP x y  is considered as the center of mass according to the robot's 

reference frame, and the position 1 2' [ ]TP x d y d    is the changing 

center of mass of the robot, which is considered relative and expressed 
according to the robot's coordinate system. The center of mass position can 
be fixed or vary in the case of carrying cargo with a center of mass that is 
difficult to determine (or uncertain).  To ensure the FMWR remains balanced 
and can operate stably without tipping over during movement, the thesis 
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limits the offset of the robot's center of mass to not exceed: 1

1

2
d g  and 

2

1

2
d h . 

 

Figure 0.4  The FMWR model takes into account the uncertainty of the 
center of mass 

The dynamic equations can be derived by differentiating the Lagrange 
equations: 

 
d

, 1, 2,3
d i

i i

L L
i

t

  
     

Q
η η

 (1.3) 

where: iη - is the generalized coordinate of the i; 

The dynamic equations of the FMWR are written in matrix form as follows: 

M(η)η + C(η, η)η Dδ = Dτ    (1.4) 

whre:     T T

1 2 3 4 1 2 3 4,         τ   
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The dynamic equation (1.4) of the FMWR includes parameters 1 2,d d  that 

represent the deviation of the actual center of mass from the geometric center 
of the robot. These results are used to implement control algorithms to assess 
the impact of the center of mass deviation on the trajectory tracking control 
quality. Based on this, adaptive control algorithms are proposed to adjust to 
changes in model parameters and improve control performance.   
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CHAPTER 2. TRAJECTORY TRACKING CONTROL 
ALGORITHM FOR OMNIDIRECTIONAL MECANUM MOBILE 

ROBOT 

After establishing the kinematic and dynamic models for the FMWR, the 
thesis applies several trajectory tracking control algorithms to evaluate the 
robot model and analyze the strengths and weaknesses of each method. 
Based on this, new control algorithms are proposed to enhance effectiveness. 

2.1. Dynamic Surface Control Algorithm for FMWR 
The DSC algorithm is developed using multi-sliding surface and 

Backstepping techniques to handle model uncertainties. It reduces chattering 
by incorporating a low-pass filter. The DSC consists of two main 
components: a multi-sliding surface (MSS) and a low-pass filter. The MSS 
processes current system states and filtered control signals to smooth the 
control actions and avoid chattering. Each sliding surface corresponds to a 
specific control state. 

The control signal of the designed DSC algorithm, the control signal is 
determined:  

1 2 2
2 2,

( ) [ ( ) ]T T d K


 
    

x x
τ D DD M S Cη Dδ                 (2.1) 

Choose Lyapunov function:  1 1 2 2
T TV  S S S S   (2.2) 

Derivative (2.2) and using the inequality we get: 

1 1 1 2 2 2

1 1
( ) ( )

2 2
T TV K I K I   S S S S  (2.3) 

where 1K and 2K are control parameters designed so that the function V is 

negative definite. Hence, if 1

1

2
K I and 2

1

2
K I then, 0V   for all 1S
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and 2S . Hence, 1 0S and 2 0S when time t  , the asymptotic 

stability of the system follows the Lyapunov stability criterion. In particular, 
if the deviations are nonzero, the DSC control method will reduce the energy 

of the system ( 0V  ), thereby correcting the deviations. The system if 1x

and 2x follows the desired trajectory 1dx and 2dx , respectively, when time

t  . 

The designed algorithms are simulated on Matlab/Simulink software to 
compare and evaluate the results. The simulation parameters of the FMWR 
model are selected as follows: 

 

2

2

2

30( ); 0.9( ); 5( . );

0.1( . ); 0.2( ), 0.3( ); 0.075( );

9.8( ); 0.05 0.05 0.05 0.05 ( )

w b

w

T

m kg m kg J kg m

J kg m g m h m r m

g m s f N

  

   

 

   (2.4) 

- PID algorithm:    15,15,15 ; 20,20,20 ; 1I P DK K K    

- SMC algorithm:    15,5,5 ; 10,10,10K   

-  DSC algorithm:    1 25,5,5 ; 10,10,10 ;K K   

Simulation with FMWR-ME model with eccentricity 1 2 0.1d d m  , and 

variable mass 5m kg   

 

Figure 0Simulation results of circular trajectory tracking 
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The simulation results show that the DSC control algorithm has control 

parameters 1K and 2K affects the robot's trajectory tracking quality. 

Specifically, the parameters 1K determine the speed of approaching the 

sliding surface, while 2K affecting the stability of the system on the sliding 

surface. However, the selection of appropriate parameters to achieve optimal 
performance is often complicated and depends on many factors. In order to 
improve the adaptability and enhance the control performance, it is proposed 
to use a fuzzy tuner to optimize the control parameters. The fuzzy tuner can 

continuously adjust 1K and 2K follow the current state of the robot and the 

effects of the environment, thereby ensuring better trajectory tracking 
quality. 

2.2. Proposing a fuzzy adaptive tuning dynamic sliding surface control 
algorithm for omnidirectional mecanum mobile robot (Fuzzy-DSC-
FMWR) 

2.2.1. Thiết kế thuật toán Fuzzy-DSC-FMWR 
A fuzzy logic controller is integrated into the system to automatically 

adjust the parameters 1K and 2K of the DSC control algorithm. During the 

trajectory movement, the input signals of the regulator include position error 

e and velocity error e . Based on these signals, the fuzzy logic controller will 

adjust the parameters to suit each stage of the control process. The fuzzy 
adaptive tuning dynamic sliding surface control (Fuzzy-DSC) algorithm has 
been designed to optimize the trajectory tracking control process. The 
structure diagram of the algorithm is shown in Figure 2.2 

The input of the fuzzy controller is the tracking error of the robot 

trajectory 1e and the derivative of the error with respect to time 1e . 
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Figure 0.1 Fuzzy-DSC control algorithm structure 

2.2.2. Simulation and evaluation of results 
Simulation of Fuzzy-DSC and conventional DSC algorithms with a robot 

model with variable center of gravity and mass (FMWR-ME). Experiment 

with Gaussian noise: ( )0,50, ( )Gaus normrnd size t   

     
       2

1 0.05 0.8 0.025 1.5 0.03 2.5

0.03 0.3 0.06 1.2 0.05 2.8 0.02

5

3.5

d

g

sin t cos t sin t

si

m

n t cos cd o

k

t sin t s t

  



 

     (2.5) 

The simulation results in Figures 2.3-2.4 show that when noise is 
introduced into the model, both algorithms control the robot to follow the set 
trajectory. However, there is still the influence of noise, leading to 
oscillation. 

 

Figure 0.2 FMWR trajectory and deviations 
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Figure 0.3 Control signals and calibration parameters 

Table  0-1: Robot trajectory error evaluation table 

Time 
(s) 

Error DSC (%) Error Fuzzy-DSC (%) 

x-axis y-axis x-axis y-axis 

1 1.35% 3.30% 0.28% 1.42% 

2 0.87% 1.41% 0.33% 1.00% 

2.5 0.67% 3.33% 0.25% 1.39% 

3 0.31% 2.18% 0.08% 0.74% 

4 0.50% 3.23% 0.25% 1.44% 

 

Comment: The Fuzzy-DSC algorithm is superior to conventional DSC in 
handling noise and center of gravity deviation thanks to its ability to self-
adjust parameters and flexibly adapt to noise signals. Specifically, the Fuzzy 
fuzzy controller can quickly change control parameters such as through 
established fuzzy rules, helping the control system adapt to unexpected 
changes in the environment or noise. This helps optimize the performance of 
the control system and maintain stability throughout the robot's movement. 
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 CHAPTER 3. REINFORCEMENT LEARNING ALGORITHM FOR 
TRAJECTORY TRACKING CONTROL OF OMNIDIRECTIONAL 

MECANUM MOBILE ROBOT 

 In chapter 2, the proposed Fuzzy-DSC algorithm is a powerful 
solution in trajectory tracking control for omnidirectional mobile robots, 
especially when the system is nonlinear and has uncertain factors. The 
algorithm has a fast convergence speed and is stable with small disturbances 
when the parameters and fuzzy rules are designed appropriately. However, 
the algorithm has limited adaptability in changing environments or 
unpredictable uncertain disturbances, because the fuzzy rules are often 
designed in advance and are difficult to automatically adjust in real time. 
Therefore, the proposed reinforcement learning algorithm applies trajectory 
tracking control to FMWR, to improve the ability to adapt to changes in 
changing environments or to withstand uncertain disturbances of the robot 
model. The reinforcement learning algorithm uses the Actor-Critic structure 
to help the robot learn from real-life experiences and optimize actions to 
achieve the trajectory tracking goal without knowing exactly about the 
uncertain factors of the model.  

3.1. Design of the Reinforcement Learning Algorithm for Trajectory 
Tracking Control of FMWR  

Transform the dynamic model of FMWR into the following form: 

( ) ( ) z F z G z u  (3.1) 

with: 
'( ) ( ) ( )

( )
( )

r r r

r r

f h g

h

  
  
 

x x x τ
F z

x
,  

6 4

( )
( )

g



 
  
 

x
G z

0
 

To achieve the goal of orbit tracking, we consider the trajectory set for the 
robot as follows:   

( )r r rx h x     (3.2) 
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where, ( , )T T T

r r qrx η v and , ( )r r r rhη v x   is a continuous function of the 

Lipschitz matrix, defined re x x as the tracking error, the trajectory 

tracking speed is described as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )r r r rf g h f h g g      e x x τ x x x x τ x u  (3.3) 

In there: r u τ τ , ( ) ( )( ( ) ( ))r r r r r rg h f τ x x x x      (3.4) 

Set ( , )T T T
rz e x as new state variable 

The control structure diagram is shown in Figure 3.1: 

 

Figure 0.1 FMWR control scheme using actor-critic structure 

To optimally control the system (3.1) we consider the following cost 
function: 

( )( ( )) ( ( ), ( ))s t

t
V t s s ds

   z e U z u    (3.5) 

The Hamiltonian equation is given by: 

2( , , ) ( ) ( ) ( ) ( ) ( )( ( ) ( ) ( ))T T T
M        H z u V z z Qz u z Ru z V z V z F z G z u z       (3.6) 

From there we can determine the optimal cost function as follows: 
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 ( ) 2

(Ω)
( ) min ( )s t T T

Mt

 


  


  u

V z e z z Qz u Ru           (3.7) 

From this, the optimal control signal is determined as follows: 

 
 

     * * 1 *

Ω

1
arg min , ,

2
T







     u
u z H z u V z R G z V z        (3.8) 

To get the optimal control signal, (3.8)we need to solve the extremum 
problem in the HJB equation. Solving this problem is extremely difficult, so 
we apply the actor-critic algorithm to solve this equation. 

The Actor-Critic algorithm combines with a real-time neural network 
to perform the approximate solution of the HJB equation. Based on the 

Weierstrass higher-order approximation theorem, the cost function *( )V z

can be approximated using a single-layer neural network as follows: 

( ) ( ) ( )T
v  V z W z ε z  (3.9) 

The optimal control signal becomes: 

        11

2
T T

v   *u z R G z z W ε z   (3.10) 

Based on the formula (3.9) and (3.10)the approximate critic NN for the 
optimal cost function and the approximate actor NN for the optimal policy 
are given as follows: 

  )ˆ ˆ, ˆ (T
c c V z W W z  (3.11) 

  1ˆ ˆˆ
1

, ( ) ( )
2

T T
a a u z W R G z z W  (3.12) 

Where, ˆ ˆ,a cW W is the estimate of the ideal weights W. From which the 

trajectory tracking controller for FMWR can be obtained as follows:   
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      11
( ) ( ˆ)

2
T T

a r r r rg x h x f x    τ R G z z W      (3.13) 

To solve the control optimization problem, we use the least squares 
method designed to train the ctitic neural network to minimize the integral 

error  2
0
t

cE s ds  as follows: 

   
 2

ˆ
c c

t
t

m t


  W Γ  (3.14) 

Determine the estimated bias of the critic weights as ˆ
c c W W W and 

the estimated bias of the actor weights as ˆ
a a W W W from which the 

Bellman bias can be determined: 

1

1

4
T T
c a a H   δ W W D W ε    (3.15) 

Simulation with robot model parameters as (2.5)  
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Figure 0.2 Comparison of FMWR and FMWR-ME orbits 

During the first period, the robot moves closer to the set trajectory and 
automatically learns to adjust its actions, helping to follow the trajectory 
more accurately. During this process, the reinforcement learning algorithm 
allows the robot to adjust the control weights accordingly, gradually 
improving its ability to follow the desired trajectory, despite some small 
deviations, namely [0.00062, −0.00374, 0.00318] m along the x, y and 
rotation axes. The control signal form is shown in Figure 3.2.  

 

Figure 0.3 Convergence of Actor-Critic Neuron Weights 

FMWR control scheme using actor-critic structure 

To optimally control the system, (3.1)we consider the following cost 
function: 
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( )( ( )) ( ( ), ( ))s t

t
V t s s ds

   z e U z u    (3.16) 

The Hamiltonian equation is given by : 

2( , , ) ( ) ( ) ( ) ( ) ( )( ( ) ( ) ( ))T T T
M        H z u V z z Qz u z Ru z V z V z F z G z u z       

(3.17) 

From there we can determine the optimal cost function as follows: 

 ( ) 2

(Ω)
( ) min ( )s t T T

Mt

 


  


  u

V z e z z Qz u Ru           (3.18) 

From this, the optimal control signal is determined as follows: 

 
 

     * * 1 *

Ω

1
arg min , ,

2
T







     u
u z H z u V z R G z V z        

(3.19) 

To get the optimal control signal, (3.8)we need to solve the extremum 
problem in the HJB equation. Solving this problem is extremely difficult, so 
we apply the actor-critic algorithm to solve this equation. 

The Actor-Critic algorithm combines with a real-time neural network 
to perform the approximate solution of the HJB equation. Based on the 

Weierstrass higher-order approximation theorem, the cost function *( )V z

can be approximated using a single-layer neural network as follows: 

( ) ( ) ( )T
v  V z W z ε z  (3.20) 

The optimal control signal becomes: 

        11

2
T T

v   *u z R G z z W ε z   (3.21) 
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Based on the formula (3.9)and (3.10)the approximate critic NN for the 
optimal cost function and the approximate actor NN for the optimal policy 
are given as follows: 

  )ˆ ˆ, ˆ (T
c c V z W W z  (3.22) 

  1ˆ ˆˆ
1

, ( ) ( )
2

T T
a a u z W R G z z W  (3.23) 

Where, ˆ ˆ,a cW W is the estimate of the ideal weights W . From which the 

trajectory tracking controller for FMWR can be obtained as follows: 

      11
( ) ( ˆ)

2
T T

a r r r rg x h x f x    τ R G z z W      (3.24) 

To solve the control optimization problem, we use the least squares 
method designed to train the ctitic neural network to minimize the integral 

error  2
0
t

cE s ds  as follows: 

   
 2

ˆ
c c

t
t

m t


  W Γ  (3.25) 

Determine the estimated bias of the critic weights as ˆ
c c W W W and 

the estimated bias of the actor weights as ˆ
a a W W W from which the 

Bellman bias can be determined: 1

1

4
T T
c a a H   δ W W D W ε    (3.26) 

Simulation with robot model parameters as(2.5)  
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Figure 0. 4 Comparison of FMWR and FMWR-ME orbits 

During the first period, the robot moves closer to the set trajectory and 
automatically learns to adjust its actions, helping to follow the trajectory 
more accurately. During this process, the reinforcement learning algorithm 
allows the robot to adjust the control weights accordingly, gradually 
improving its ability to follow the desired trajectory, despite some small 
deviations, namely [0.00062, −0.00374, 0.00318] m along the x, y and 
rotation axes. The control signal form is shown in Figure 3.2. 
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Figure 0. 5 Convergence of Actor-Critic Neuron Weights 

After about 6 seconds, the process of self-learning and adapting to the 
noise signal is completed, then the weights in the NNs network have 
converged in Figure 3.3 and the robot has started to move stably to follow 
the set trajectory. 

Comments: The results show that the algorithm not only ensures effective 
trajectory tracking but also has high stability, even when there is the impact 
of uncertain noise from the model. Furthermore, this algorithm is capable of 
adapting to changes in the robot's mass and center of gravity. 

Comparing the Fuzzy-DSC algorithm and actor-critic reinforcement 
learning, both algorithms have their own advantages and disadvantages, and 
are suitable for different applications. If the robot is required to have long-
term optimization capabilities and the ability to learn from the environment, 
the RL-AC algorithm is the right choice, although the learning process can 
be long and requires a large computer configuration. On the other hand, if 
immediate stability and strong adaptability to disturbances are required, the 
Fuzzy-DSC algorithm is a good choice, especially in applications that require 
high stability and less changing environments. 
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CHAPTER 4. EXPERIMENTS WITH THE OMNIDIRECTIONAL 
MECANUM MOBILE ROBOT MODEL 

The FMWR model is designed and fabricated for use in the laboratory. 

4.1.  Design and manufacture of FMWR model 
The robot model is designed with total robot weight: 30kg, moving speed: 

0.5m/s, load capacity 20kg, operating time 30 minutes. 

Control circuit uses Jetson_Tx2, running ROS operating system, STM32 

 

Figure 0.1 FMWR Experimental Model 

4.2.  Experimental results 

The proposed Fuzzy-DSC algorithm is applied to the robot model to run 
experiments with good results, showing its practical applicability 

  

Figure 0.2 Experimental Results of the FMWR Model 
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CONCLUSION AND RECOMMENDATIONS 

The thesis presents research and proposes algorithms to improve the 

quality of trajectory tracking control for four-wheeled omnidirectional 

mobile robots with variable center of gravity. The main contributions of the 

thesis: 

 Proposed sliding mode control algorithm with fuzzy adaptive 

tuning to improve trajectory tracking control quality for 

omnidirectional mecanum mobile robots with an uncertain center of 

mass. The algorithm is designed with the input of the fuzzy tuning unit being 

the position and velocity errors through the sugeno fuzzy model, to online 

tune the control parameters of the dynamic sliding surface control algorithm. 

 Proposed reinforcement learning algorithm with Actor-Critic 

structure applied to trajectory tracking control for omnidirectional 

mecanum mobile robots with an uncertain center of mass. The algorithm 

uses a neural network with an Actor-Critic structure to approximate the HJB 

equation. In which, the Actor NNs network is used to approximate the 

optimal control law, and the Critic NNs are used to approximate the Bellman 

function. The algorithm is proven to be stable according to the Lyapunov 

function criterion. The simulation results of the algorithm applied to control 

trajectory tracking for FMWR show that the robot's trajectory tracking ability 

is stable even with the robot's center of gravity changing, can withstand the 

influence of external disturbances and operates stably with small deviations. 

 Thesis development direction: In the future, the research on 

algorithms can be developed as follows: Developing algorithms with ADP 

algorithm using multi-layer artificial neural networks. Researching the 

application of reinforcement learning algorithms to real models and 

evaluating the results for practical application. 
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