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INTRODUCTION

Urgency of the Dissertation Topic

Feature selection, also known as attribute selection, is an important step in data analysis and
statistical machine learning. This process involves selecting a subset of relevant attributes from
the original attribute set in such a way that important information is maximally preserved. Feature
selection offers many significant benefits: 1) reducing computational complexity, 2) improving
model interpretability, and 3) enhancing predictive performance. The main goal is to find a sub-
set of features, from the original set, that still ensures the retention of information or accurate
decision-making capability. Important applications of feature selection are widespread in areas
such as pattern recognition and data mining, including text classification [1], [2], image process-
ing [3]-[5], and speech processing [6]-[9].

In 1982, Pawlak introduced the Rough Set (RS) theory [10], which has been highly regarded
by the scientific community for its ability to analyze data under incomplete and inconsistent
conditions. Thanks to this ability, RS-based attribute selection has attracted significant inter-
est among researchers in the field of rough set theory for many years [4], [11]-[16]. Based on
the concept of Approximation Space (AP) in RS, many measures have been proposed to define
reducts and support attribute selection. Recent studies show that traditional RS-based attribute
reduction methods yield remarkable results in reducing the number of attributes while still pre-
serving the classification ability of decision tables [1], [8], [14]-[17].

However, traditional rough sets are mainly suitable for decision tables with discrete value do-
mains [18]. Therefore, it is necessary to discretize the data in numerical decision tables (with
continuous value domains) before performing attribute selection. This process incurs additional
computational cost, may compromise the natural form of the data, and poses a risk of losing
important information. To address these limitations, researchers have proposed extending RS to
fuzzy approximation spaces, leading to the Fuzzy Rough Set (FRS) model [19]-[21], and fur-
ther to intuitionistic fuzzy approximation spaces, resulting in the Intuitionistic Fuzzy Rough Set
(IFRS) model [22]. These models allow the development of attribute selection methods directly
on original decision tables without the need for discretization.

The fuzzy approximation space of FRS uses the concept of similarity relation instead of equiv-
alence relation to construct relational spaces among objects. As a result, relationships in the fuzzy
approximation space become more flexible than traditional equivalence-based relationships. The
degree of relationship among objects is represented by values in the range [0, 1] instead of just 0
or 1 as in traditional rough sets. Currently, the development of attribute selection methods based
on measures built in fuzzy approximation spaces is very active, with several notable measures
proposed, including FPOS measures [20], [21], [23]-[28], FIE measures [4], [29]-[32], and FD
measures [6], [11], [33]-[35]. In Vietnam, the dissertation by Dr. Nguyén Van Thién extended
several measures in fuzzy approximation space for attribute reduction in numerical decision ta-
bles.

Although studies have shown that attribute selection methods based on FRS measures work
effectively with numerical datasets, their performance may degrade when applied to highly sensi-
tive datasets with high misclassification rates (i.e., noisy data). Therefore, the Variable Precision
Fuzzy Rough Sets (VPFRS) model [19], [31], [36]-[50] and measures developed in the intuition-
istic fuzzy approximation space of the IFRS model [13], [20], [22], [41], [46], [S1]-[54] have
been proposed to address this issue.

In the VPFRS approach, adjusting the components in the lower approximation set affects
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the positive region of the attribute, leading to changes in the attribute’s dependency degree. In
contrast, IFRS-based measures entirely depend on the intuitionistic fuzzy approximation space.
In this space, each element represents degrees of similarity and dissimilarity between two ob-
jects. Thus, the intuitionistic fuzzy approximation space describes multi-dimensional relation-
ships among objects more comprehensively than FRS [52]. Research [51] has shown that the
IFRS approach can improve reduct quality in noisy datasets, though it incurs higher computa-
tional costs (twice that of FRS). In Vietnam, Dr. Tran Thanh Dai’s dissertation proposed the
Intuitionistic Fuzzy Distance (IFD) measure for attribute selection in numerical decision tables
containing noise. However, its computational cost remains high due to the complexity of defining
membership and non-membership functions for the AP. Hence, the first research objective of this
dissertation is to study and extend the VPFRS model to improve the efficiency of approximation
set computations. This objective belongs to the group of attribute selection methods for static
decision tables, meaning decision tables whose content does not change over time.

In practice, machine learning applications often require model updates to adapt to changes
in data over time. Therefore, developing efficient attribute selection methods for updated data
is an urgent need [55]. So far, many incremental computation methods have been proposed to
efficiently update reducts [3], [6], [S5]-[92]. These incremental techniques only evaluate new
information and combine it with previous results to update reducts.

There are three main scenarios of data change: changes in attribute sets [55], [56], [58], [60],
[61], changes in object sets [3], [6], [64], [69], [70], [74], [78]-[80], and changes in the content
of objects [3].

In Vietnam, the doctoral dissertation by Nguyén B4 Quéng proposed an incremental compu-
tation method based on distance measures, built on the monotonicity of union and intersection
operations between two sets. Recently, Yang and colleagues proposed an incremental method us-
ing an information-theoretic granular measure approach [70]. Unlike distance-based measures,
information-theoretic granular measures rely on the coarseness and fineness of partitions, lead-
ing to simpler formula construction and faster computation. However, Zhang et al.’s work has
only developed this measure in the crisp approximation space, not in the fuzzy approximation
space.

Therefore, the second research objective of this dissertation is to study and extend the information-
theoretic granular measure in fuzzy approximation space and apply it to develop an attribute
update method for numerical decision tables with changing object sets. This second objective
belongs to the group of attribute selection methods for decision tables with changing objects.

Duéi day 1a phan tiép theo ctia ban dich tiéng Anh ctia chuong "Giéi thiéu" trong luan vin,
tiép ndi sau phan "Urgency of the Dissertation Topic":

“‘latex Objectives of the Dissertation

The dissertation focuses on proposing new attribute selection methods in fuzzy approximation
spaces for numerical decision tables in two groups of problems: (1) static decision tables, and
(2) decision tables with changing object sets. These methods are based on extending the VPFRS
model and the fuzzy information-theoretic granular measure. Specifically, the dissertation aims
to address the following main objectives:

* Objective 1: Research and extend the VPFRS model to improve the performance of approx-
imation set computations in numerical decision tables.

* Objective 2: Research and extend the fuzzy information-theoretic granular measure to pro-
pose an attribute update method for numerical decision tables with changing object sets.

Scope of the Dissertation
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The dissertation focuses on studying and proposing attribute selection methods for numerical
decision tables (tables with continuous attribute values) based on fuzzy approximation spaces.
The study emphasizes two main directions:

» Attribute selection for static decision tables, where the content of the table remains un-
changed.

* Attribute update for decision tables with changing object sets, using incremental computa-
tion.

The scope of the dissertation does not cover attribute selection methods for tables with chang-
ing attribute sets or changing object values.

Research Methods
The research methodology of the dissertation includes:

* Analyzing and extending existing theoretical models (VPFRS, fuzzy granular measures) to
enhance attribute selection capabilities.

 Constructing new evaluation measures and attribute selection algorithms in fuzzy approxi-
mation spaces.

* Designing and implementing algorithms for static and dynamic datasets.

* Conducting experiments on standard datasets from machine learning repositories to evaluate
the performance of the proposed methods.

Scientific Contributions of the Dissertation
The dissertation makes the following main contributions:

* Proposing an improved fuzzy rough set model based on the variable precision concept
(VPFRS) to enhance attribute selection effectiveness in numerical decision tables.

» Extending the fuzzy information-theoretic granular measure for attribute selection and propos-
ing an attribute update method for decision tables with changing object sets.

» Developing new algorithms that achieve competitive results in terms of accuracy and effi-
ciency when compared to existing methods on benchmark datasets.

Structure of the Dissertation
The dissertation is structured as follows:

* Chapter 1: Presents an overview of rough sets, fuzzy rough sets, and related theories in
attribute selection.

* Chapter 2: Analyzes and proposes a VPFRS-based model and related measures for static
decision tables.

» Chapter 3: Studies and proposes a fuzzy information-theoretic granular measure and incre-
mental attribute update method for changing object sets.

¢ Conclusion: Summarizes the main contributions and outlines future research directions.



CHAPTER 1. Overview of Attribute Reduction Methods in Fuzzy
Approximation Spaces

Chapter 1 of the dissertation focuses on providing an overview of the attribute selection prob-
lem (also known as attribute reduction or feature selection) and the foundational knowledge
necessary for subsequent chapters [1]. This chapter presents an overview of attribute selection
methods in fuzzy approximation spaces, focusing on two main approaches: improving classifi-
cation accuracy on noisy numerical decision tables and incremental computation on numerical
decision tables updated with new objects [1, 2].

1.1. Introduction

The introduction highlights the urgency of the dissertation topic, emphasizing that attribute
selection is a critical step in data preprocessing for data analysis and machine learning tasks, par-
ticularly in the context of increasingly large and complex datasets [3, 4]. This process involves
selecting a subset of relevant attributes from the original attribute set, preserving the informa-
tion and classification capability of the original data while reducing computational complexity,
improving model interpretability, and enhancing predictive performance [4, 5].

1.1.1. Overview of the Attribute Selection Problem Using the Rough Set Approach

The dissertation revisits Pawlak’s introduction of the Rough Set (RS) theory in 1982, a power-
ful tool for analyzing incomplete and inconsistent data [6, 7]. Leveraging this capability, attribute
selection using the RS approach has garnered widespread attention [5, 6]. Unlike dimensionality
reduction methods such as PCA or SVD, this approach directly selects attributes without altering
the natural characteristics of the reduced data [5].

The attribute selection problem using the rough set approach involves the following key steps

[8]:
* Defining the search space: The set of all possible subsets of the original attribute set.

 Constructing an attribute evaluation function: Using measures based on the concept of ap-
proximation spaces in RS to assess the importance of individual attributes or attribute sub-
sets. Common measures include positive region measure, dependency measure, and dis-
crimination measure.

» Applying search strategies: Employing various search algorithms (e.g., exhaustive search,
greedy search, genetic algorithms) to identify the optimal attribute subset based on the con-
structed evaluation function.

* Validating the correctness of the subset: Ensuring that the selected attribute subset preserves
the information and classification capability of the original data.

The sht dissertation also discusses three main approaches to attribute selection [8]:

* Filter approach: Relies on the inherent properties of the data (e.g., information, correlation)
to evaluate and select attributes independently of any specific machine learning algorithm
[8, 9]. Common strategies include adding important attributes (Figure 1.1 [10]) or removing
redundant attributes (Figure 1.2 [11]).
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» Wrapper approach: Uses a specific machine learning algorithm as the evaluation function.
The search for the optimal attribute subset is performed by training and evaluating the per-
formance of the machine learning algorithm on different attribute subsets (Figure 1.3 [12]).
This approach typically offers higher accuracy but incurs greater computational complexity,
especially with exhaustive search strategies [9].

* Hybrid filter-wrapper approach: Combines the advantages of both filter (fast computation)
and wrapper (high accuracy) methods [13].

1.1.2. Some Applications of the Attribute Selection Problem

This section discusses the importance and wide applicability of attribute selection across var-
1ous domains [13]:

* Data classification: Improves the performance of classification models by selecting the most
discriminative attributes and reducing the risk of overfitting [14].

» Data regression: Identifies the most influential predictive factors and simplifies the model
while maintaining predictive capability [14].

* Data clustering: Enhances the efficiency of clustering algorithms by eliminating irrelevant
or redundant attributes, leading to more meaningful clusters [14].

e Information security: Filters out harmful or risky features, such as in web spam detection
(reducing computation time and cost [15, 16]) and malware detection (selecting critical API
functions [16]).

1.2. Dependency Measures of Attributes in Fuzzy Approximation Spaces

To address the limitations of traditional rough sets with continuous-valued data, researchers
have developed the Fuzzy Rough Set (FRS) model in fuzzy approximation spaces [17, 18]. In
FRS, the degree of relationship between objects is represented by values in the interval [19],
enabling better handling of ambiguity and uncertainty in numerical data [20]. Several measures
have been proposed to define reducts and support attribute selection in fuzzy approximation
spaces [20, 21]. These measures are typically built upon extensions of traditional rough set mod-
els [21].

1.2.1. Fuzzy Positive Region Measure

The positive region measure is a statistical measure based on the values of lower approxi-
mation sets in rough set theory [21]. The fuzzy positive region measure extends this concept to
fuzzy approximation spaces, representing the dependency of decision attributes on conditional
attributes through the statistical positive region values [21, 22]. This measure enables the eval-
uation of the consistency of a decision table (a table is considered consistent if the dependency
of the decision attribute is maximized, i.e., equal to 1) [22]. Table 1.1 [23] summarizes stud-
ies related to the development of fuzzy positive region measures for different data types and
approximation space models [22, 24].



1.2.2. Fuzzy Entropy Measure

Shannon’s entropy measure is widely used in machine learning, particularly in decision trees,
to determine the amount of information required to classify each element [24]. In fuzzy approxi-
mation spaces, the entropy measure is extended to evaluate the information gain of each attribute,
serving as a criterion for ranking their importance in decision tables [25]. Table 1.2 [26] lists
studies on fuzzy entropy measures across different data types and approximation spaces [25, 27].

1.2.3. Information Granularity Measure

The information granularity measure is a key concept in granular computing [27]. In tradi-
tional rough sets, the granularity measure is based on statistical values of a partition or cover, re-
flecting the coarseness or fineness of the partition [27]. The dependency measure based on gran-
ular computing is used to evaluate attribute dependency in decision tables through the coarseness
or fineness of dependent information granules [27, 28]. This measure has been extended to fuzzy
approximation spaces to support attribute selection on numerical data [28]. Table 1.3 [26] sum-
marizes studies related to fuzzy information granularity measures [28, 29].

1.3. Attribute Selection Methods for Improving Accuracy in Fuzzy Approximation Spaces

The growth of big data has increased instances of missing, incomplete, and inconsistent data,
often containing noisy attributes [29]. Identifying and eliminating these attributes is crucial for
reducing training time and improving model accuracy [29, 30].

1.3.1. Related Studies

For decision tables with discrete and incomplete values, the Variable Precision Rough Set
(VPRS) model has been proposed to adjust the components of approximation sets based on
membership degrees, enabling better noise handling [30, 31].

For numerical decision tables, the VPRS model has been extended to the Variable Precision
Fuzzy Rough Set (VPFRS) in fuzzy approximation spaces [31]. In VPFRS, lower and upper
approximation operations can be adjusted to vary the precision of approximation sets, affect-
ing attribute dependency [31, 32]. However, this method heavily relies on the selection of the
adjustment threshold (), which varies across datasets and requires significant expertise [32].

Another approach involves using Intuitionistic Fuzzy Rough Sets (IFRS) in fuzzy approxima-
tion spaces [32, 33]. IFRS imposes stricter constraints based on membership and non-membership
functions, describing object relationships in a more multidimensional manner than FRS [33-35].
IFRS has been shown to improve reduct quality on noisy data but incurs higher computational
costs [35]. Constructing independent membership and non-membership functions also poses a
challenge [33].

Table 1.4 [17] summarizes studies related to attribute selection methods for improving classi-
fication accuracy, including VPRS, VPFRS, and IFRS approaches [36, 37].

1.3.2. Existing Issues

Recent studies on attribute selection methods for improving classification accuracy, particu-
larly those based on VPFRS, are limited in terms of computational efficiency [38, 39]. Evaluat-
ing all objects in a decision table during precision adjustment leads to high computational costs
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[39]. The dissertation aims to improve computational efficiency by optimizing approximation
operations based on the fundamental properties of variable precision fuzzy rough sets [36, 40].

1.4. Incremental Attribute Selection Methods in Fuzzy Approximation Spaces

In many real-world applications, data is continuously updated and changed over time, requir-
ing classification models to be adjusted accordingly [40]. Incremental attribute selection plays
a critical role in reducing data preprocessing time during changes, thereby improving the effi-
ciency of model updates [40, 41].

1.4.1. Related Studies

Attribute selection methods based on measures derived from lower approximation sets are typ-
ically suitable for static decision tables [41]. However, in practice, decision tables are frequently
updated, requiring efficient computation based solely on new information [41, 42].

Incremental computation methods have been proposed to efficiently update reducts when data
changes [43]. There are three main data change scenarios [42, 43]:

* Object set changes: Adding or removing data samples [42, 44]. Numerous studies have
focused on developing incremental formulas and algorithms for updating reducts in this
scenario, using measures such as information granularity [44], information entropy [44],
and functional dependency [44]. Table 1.5 [20] summarizes incremental methods for object
set changes [42, 44].

* Attribute set changes: Adding or removing attributes [42, 45]. Studies in this area also focus
on developing efficient methods for updating reducts when the attribute set changes, often
using the information granularity measure [45]. Table 1.6 [46] lists incremental methods for
attribute set changes [45].

* Attribute value changes.

* Mixed changes: Combinations of multiple change types [42, 45].

1.4.2. Existing Issues

Incremental computation methods based on knowledge distance measures often have complex
formulas, making them difficult to prove and verify [45, 47]. In contrast, incremental computa-
tion formulas based on knowledge information granularity measures have simpler structures and
are easier to prove in cases of object addition or removal [47]. However, current knowledge in-
formation granularity measures are primarily developed for crisp approximation spaces and have
not been extended to fuzzy approximation spaces [48]. The dissertation aims to study and extend
the knowledge information granularity measure to fuzzy approximation spaces, applying it to
develop attribute update methods for numerical decision tables with object changes [48, 49].

1.5. Foundational Knowledge

This section provides basic definitions and concepts that serve as the foundation for subse-
quent chapters [7].



1.5.1. Traditional Rough Sets

Pawlak’s rough set model is a mathematical approach for handling incomplete, inaccurate,
and ambiguous data, based on the concept of set approximation [47].

* Information System (IS): Defined as a pair S = (U,A), where U is a finite set of objects and
A is a finite set of attributes [50]. Each attribute a € A is a function a : U — V,,, assigning a
value from the value set V, to each object.

e Decision Table (DT): An information system NDT = (U,CUD), where C is the set of
conditional attributes and D is the set of decision attributes [51].

* Indiscernibility Relation: For a subset of attributes B C A, the indiscernibility relation IND(B)
is an equivalence relation on U defined as follows: (x,y) € IND(B) if and only if a(x) = a(y)
for all a € B. This relation partitions U into equivalence classes [x|p = {y € U|(x,y) €
IND(B)} [50].

» Lower Approximation: For X C U, the lower approximation of X with respect to B, denoted
BX, is the set of all objects that certainly belong to X based on the information in B: BX =
{x e Ul|x]p C X} [50].

» Upper Approximation: For X C U, the upper approximation of X with respect to B, de-
noted BX, is the set of all objects that possibly belong to X based on the information in B:
BMulX = {x € Ul|[x]pNX # 0} [50, 52].

* Boundary Region: The boundary region of X with respect to B, denoted BNp(X), contains
objects that cannot be definitively classified as belonging or not belonging to X: BNp(X) =
BX — BX [52].

« Rough Set: A set X is called a rough set if BX # BX, i.e., the boundary region is non-empty
[52]. The rough set theory model is illustrated in Figure 1.4 [11, 52].
1.5.2. Traditional Fuzzy Sets

Fuzzy set theory, introduced by Zadeh, addresses ambiguity in data [53].

* Fuzzy Set: A fuzzy set A in a universe U is defined by a membership function s : U —
[0, 1], where p4 (x) represents the degree of membership of element x in the fuzzy set A [43,
53].

» Basic Fuzzy Set Operators: Table 1.8 [3] describes basic operators such as complement,
union, and intersection of fuzzy sets, with different T-norm (e.g., min, product) and T-
conorm (e.g., max, algebraic sum) operations [43].

1.5.3. Fuzzy Approximation Spaces

A fuzzy approximation space combines an object space with a fuzzy equivalence relation
[43].

* Fuzzy Equivalence Relation: A fuzzy relation R: U x U — [0, 1] is called a fuzzy equiva-
lence relation if it satisfies three properties [49, 54, 55]:



1. Reflexivity: R(x,x) =1 forall x € U.
2. Symmetry: R(x,y) = R(y,x) forall x,y € U.
3. Min-Transitivity: R(x,z) > min{R(x,y),R(y,z)} for all x,y,z € U.

* Fuzzy Equivalence Relation Matrix of an Attribute: For a decision table NDT = (U,C, D),
the relation matrix S(a,U) of an attribute a € C represents the degree of similarity between
objects based on attribute a. An example of constructing a relation matrix from numerical
data is presented in [55].

* Fuzzy Equivalence Relation Matrix of an Attribute Set: For P C C, the relation matrix
S(P,U) is the intersection of the relation matrices of each attribute in P, typically using
the min operation: sp, = min{s,;; : @ € P} [55].

 Fuzzy Partition: For a fuzzy equivalence relation R on U, the fuzzy partition of R on U is
U/R = {[x]gr : x € U}, where [x]g is the fuzzy equivalence class of x [56]. Similarly, the
fuzzy partition of U with respect to an attribute a € C is U /R, [56], and with respect to an
attribute set P C C is U /Rp [56, 57].

1.5.4. Fuzzy Rough Sets

Fuzzy rough sets are an extension of traditional rough sets in fuzzy approximation spaces
[18].

* For a decision table NDT = (U,C,D, f) and a fuzzy equivalence relation R on U, for any
fuzzy set A € F(U), the membership degree of an object x € U to the fuzzy lower approxi-
mation RA(x) and fuzzy upper approximation RA(x) of A with respect to R is determined as
follows [58]:

- RA(x) = infyey I(R(x,y),A(y))
- RA(x) = sup,cymin(R(x,),A(7))

where [ is a fuzzy implication function. An example of calculating fuzzy approximations is
illustrated in [58].

1.6. Process of Developing and Evaluating Feature Selection Algorithms
This section describes the general process for developing and evaluating feature selection
algorithms, applicable to both traditional and extended rough sets [59].

1.6.1. Steps for Developing Feature Selection Methods

The basic steps include [59]:

* Developing methods for evaluating, classifying, and selecting attributes: Using approaches
such as discrimination matrices (classifying attributes based on discrimination levels) or
measure-based approaches (evaluating dependency, information content, or information gran-
ule size) [59].

* Constructing reducts: Based on necessary conditions (preserving classification capability)
and sufficient conditions (minimizing the number of attributes) defined [59].
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* Designing algorithms: Using filter methods (addition or removal strategies), wrapper meth-
ods (combined with evolutionary algorithms), or hybrid methods to search for reducts [60].
Algorithm 1.1 [60] describes a general model for most reduction algorithms.

1.6.2. Data and Data Standardization

When building machine learning models, data standardization is a critical step to ensure
model performance and accuracy [61, 62]. Basic standardization tasks include [61, 62]:

 Unit standardization: Converting units to the same value domain or measurement unit [61].
* Handling missing values: Imputing or removing missing values [61].
* Time standardization: Synchronizing temporal information [62].
* Scale standardization: Ensuring variables have the same scale to avoid disproportionate
impacts on the model [62].
1.6.3. Classification Models and Evaluation Methods

The dissertation discusses the use of standard data classification models for numerical data
to evaluate the classification capability of obtained reducts [63]. Some common models include
[64]:

* K-Nearest Neighbors (k-NN)

 Support Vector Machines (SVM)

To evaluate the performance of classification models, commonly used metrics include [63,
64]:

» Accuracy: The proportion of correctly classified instances.
* Precision: The proportion of instances predicted as positive that are actually positive.
* Recall: The proportion of actual positive instances correctly predicted as positive.

* Fl-score: The harmonic mean of precision and recall.

Table 1.9 [3] illustrates the binary confusion matrix, the basis for calculating these metrics [63].

The k-fold cross-validation method is a key technique for objectively and accurately evaluating
models [63, 65, 66]. This process involves dividing the data into k parts, repeating the training
and evaluation process k times, each time using one part as the test set and the remaining k-1
parts as the training set [66, 67]. The average accuracy is calculated after k iterations [67]. This
method helps mitigate overfitting and underfitting [68]. The dissertation specifically mentions
the 10-fold cross-validation method [68].

1.7. Conclusion of Chapter 1

Chapter 1 has provided an overview of the feature selection problem, its significance, and its
role in machine learning and data mining [69]. It reviews related studies on two main groups of
methods: improving classification accuracy and incremental feature selection [69].
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Analysis of recent studies indicates that methods for improving classification accuracy based
on VPFRS are limited in computational efficiency due to the need to evaluate all objects [69,
70]. The IFRS approach has higher complexity, and constructing suitable membership/non-
membership functions is challenging [70, 71]. Therefore, the dissertation plans for Chapter 2 to
study the extension of the VPFRS model to improve classification accuracy and computational
efficiency [71].

For incremental feature selection methods when decision tables change in terms of objects, the
knowledge information granularity measure has simpler formulas compared to distance-based
measures [72]. However, this measure has not been extended to fuzzy approximation spaces [72,
73]. Thus, the dissertation plans for Chapter 3 to study and extend the knowledge information
granularity measure in fuzzy approximation spaces to develop incremental computation formulas
[73].

CHAPTER 2. Attribute Reduction Using an Extended Variable Precision
Fuzzy Rough Set Approach in Fuzzy Approximation Spaces

Chapter 2 of the dissertation focuses on the problem of attribute selection to improve classi-
fication accuracy for noisy numerical decision tables [1]. Stemming from the computational
time limitations of methods based on the Variable Precision Fuzzy Rough Set (VPFRS)
model and the complexity of Intuitionistic Fuzzy Rough Set (IFRS) approximation spaces, this
chapter proposes a new approach by extending the VPFRS model in fuzzy approxima-
tion spaces [1, 2]. The primary objective is to improve computational efficiency during at-
tribute reduction while enhancing classification accuracy on noisy datasets [2]. The pro-
posed method, named VPOFRS (Variable Precision Optimized Fuzzy Rough Set), promises to
significantly reduce computational time compared to previous methods [2]. The research results
have been published in works [CT2, CT3] [2].

2.1. Preliminary Knowledge

This section reviews key concepts that form the foundation for the proposals in this chapter.
First is the Variable Precision Rough Set (VPRS) model, proposed by Ziarko in 1993, applied
to attribute reduction to improve classification accuracy for incomplete classification decision
tables [3]. Next is the Variable Precision Fuzzy Rough Set (VPFRS) model, introduced by
Zhao in 2009 [4], an extension of VPRS in fuzzy approximation spaces, proven effective for
attribute reduction on numerical datasets [3]. However, the approximation set computation for-
mulas in VPFRS (formulas 2.8 and 2.9 in the dissertation) are not yet optimized, as they require
evaluating all objects [5].

2.2. Proposed Improvement to the Variable Precision Fuzzy Rough Set Model

To address the limitations of the existing approximation set computation formulas in VPFRS,
this section presents an improved method for operations related to object membership degrees
and determining object boundaries [6].



12

2.2.1. Proposed Fuzzy Approximation Space

Definition 2.7 (Fuzzy Equivalence Relation): Let U be a non-empty set of objects. A fuzzy
relation R: U x U — [0, 1] is called a fuzzy equivalence relation if it satisfies three properties:

* Reflexivity: R(x,x) =1,Vx € U.
e Symmetry: R(x,y) = R(y,x),Vx,y € U.

* T-norm Transitivity: 7 (R(x,y),R(v,z)) < R(x,z),Vx,y,z € U, where T is a T-norm. Typi-
cally, T (a,b) = min(a, b) is used [5].

Definition 2.8 (Fuzzy Approximation Space): A pair (U, R) is called a fuzzy approximation
space, where U is a non-empty set of objects and R is a fuzzy equivalence relation on U [5, 8].

Definition 2.9 (Fuzzy Partition): For a decision table NDT = (U,C,D), and R a fuzzy equiv-
alence relation on U, the fuzzy partition of R on U is defined as follows:

U/R={x]g:xeU}

where [x]g is the fuzzy equivalence class containing x, defined by [x]z(y) = R(x,y),Vy € U [8].

Definition 2.10 (Fuzzy Partition of an Attribute): For a decision table NDT = (U,C,D),
and R a fuzzy equivalence relation on U, the fuzzy partition of U with respect to an attribute
a € C on R is denoted by U /R, and is determined by formula (2.12) [8].

Definition 2.11 (Fuzzy Partition of an Attribute Set): For a decision table NDT = (U,C, D)
and P C C a subset of conditional attributes, the fuzzy equivalence relation Rp is defined as the
intersection of the fuzzy equivalence relations corresponding to each attribute in P:

RP(x7y) = méi{)l{Ra(x,y)},Vx,y ceU
a

The fuzzy partition of U with respect to the attribute set P on R is denoted by U /Rp and is defined
by U/Rp = {[x]g, : x € U} [8]. Propositions 2.1 and 2.2 in the dissertation prove properties
related to the relationship between fuzzy partitions under attribute set inclusion [9].

Definition 2.12 (Finest Fuzzy Partition): For a decision table NDT = (U,C,D) and P a
fuzzy partition of U with P C C, P is called the finest partition if for every x € U, [x]p = {x} [9].

Definition 2.13 (Coarsest Fuzzy Partition): For a decision table NDT = (U,C,D) and Q a
fuzzy partition of U with Q C C, Q is called the coarsest partition if for every x € U, [x]p =U

[9].

2.2.2. Proposed Variable Precision Fuzzy Rough Set Model

Based on the limitations of the existing approximation set computation formulas (2.8 and 2.9),
this section presents an improved method for calculating the membership degree of x € U and
determining the boundaries of y € U [6].

Definition 2.14 (Improved Membership Degree of x € U): Let U be a non-empty set of
objects, for all x,y c U,A C U.

* The B-membership of x to the lower approximation of A with respect to relation R on U is
defined as follows:

RpA(x) = min{ inf I(R(x,y),A(y)), B}

where I(a,b) = 1 —a—+a- b is the Lukasiewicz implication function.
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e The B-membership of x to the upper approximation of A with respect to relation R on U is
defined as follows:

FﬁA(x) = max{;telgmin(R(x,y),A(y)), 1-B}

The thresholds B € [0, 1] allow adjustment of the pessimistic/optimistic degree in determining
approximation sets [6].

Proposition 2.3 (Improved Boundary of y € U): For a decision table NDT = (U,C,D),
with an attribute set B C C and a decision class Dy, the B-precision fuzzy lower and upper
approximations of D; can be computed more efficiently by considering only objects y belonging

to the decision class D; or objects with a fuzzy relation to objects in D; exceeding a certain
threshold [6, 10].

Definition 2.15 (Regions of the Extended Variable Precision Fuzzy Rough Set): For a
fuzzy approximation space (U,R) and a fuzzy set A € F(U), with threshold 8 € [0, 1].

» The B-positive region (certainly belonging region) of A is defined by:
POSgA = {x € U : RgA(x) > 1 - B}

* The -boundary region (uncertain region) of A is defined by:
BNDBA:{)CEUC 1—ﬁ ZRBA(X) >ﬁ}

or equivalently BNDgA = {x € U : RgA(x) > 1 — B and RgA(x) < 1 — B}. The boundary
region represents the overlap between the lower and upper approximations with an error rate

B [10].
 The B-negative region (negation region) of A is defined by:

NEGgA ={x € U : RgA(x) < B}

2.2.3. Proposed Dependency Measure

Based on the extended VPOFRS model, a dependency measure is developed for application
in decision table data analysis.

Definition 2.16 (B-Positive Region of a Decision Table): For a decision table NDT =
(U,C,D), the B-positive region of a conditional attribute set P C C with respect to the decision
attribute set D is defined as the union of the B-positive regions of each decision class Dy € D:

POSg(P,D) = | ) POSg(Rp,Dy)
DyeD
where POSﬁ (Rp,Dk) = {X ceU: RPBDk(x) > 1 —ﬁ} [10].
Definition 2.17 (8-Dependency of Decision Attributes on Conditional Attributes): The

B-dependency of the decision attribute set D on the conditional attribute set P C C is defined as
the proportion of objects in the B-positive region of P with respect to D:

|POSE(P,D)|
W(PD) = ——

The value y3(P,D) € [0, 1] reflects the consistency level of the decision table from the perspec-
tive of B-precision fuzzy rough sets [10, 11]. Proposition 2.6 proves the monotonicity of this
dependency measure: if P C Q C C, then 3 (P,D) < ’}/lg(Q,D) [11].
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2.3. Proposed Attribute Reduction Method for Improving Classification Ac-
curacy

Based on the proposed decision table consistency measure, this section presents an attribute
reduction method to handle noise using the VPOFRS approach.

2.3.1. Proposed Model

Leveraging the proven monotonicity of the consistency measure ¥, an attribute importance
evaluation measure is constructed as follows:

Definition 2.18 (Attribute Importance): For a decision table NDT = (U,C,D) and a subset
of attributes B C C, the importance of an attribute ¢ € C\ B with respect to B at level 3 is defined
as the change in dependency when adding c to B:

Sig[i(ch) = YB(BU {c}.D)— YB(B>D)

An attribute ¢ € C'\ B is considered unimportant with respect to B if Sigg(c, B) = 0, meaning that
adding c to B does not change the dependency [12].

Definition 2.20 (3-Reduct): For a decision table NDT = (U,C,D), a subset B C C is called
a B-reduct if it satisfies the following conditions:

1. Necessary Condition (Preservation): y3(B,D) = y3(C,D). The reduced attribute set must
preserve the consistency of the original attribute set.

2. Sufficient Condition (Minimality): For every b € B, (B \ {b},D) # v3(B,D). No at-
tribute in the reduct is redundant.

[12, 13].

2.3.2. Proposed Algorithm

The VPOFRS_ARD (Variable Precision Optimized Fuzzy Rough Set based Attribute Re-
duction for improving classification accuracy) algorithm is proposed using the filter attribute
approach with a strategy to find the reduct through the following steps [13, 14]:

1. Initialize the reduct set B = 0.
2. Compute the initial dependency y3(C, D).
3. Repeat until y3(B,D) = y3(C,D):

(a) For each attribute ¢ € C'\ B, compute the importance Sigg(c,B) = yg(BU {c},D) —
’}/[3 (B , D) .

(b) Select the attribute b € C \ B with the highest importance. If multiple attributes have
equal importance, choose one randomly.

(c) Add the attribute b to the reduct set B= BU {b}.

4. Return the reduct set B.

Complexity analysis shows that the computational complexity of the VPOFRS_ARD algo-
rithm is O(|D||Dy||U||C|?), where |U| is the number of objects, |C| is the number of conditional



15

attributes, |D| is the number of decision classes, and |Dy| is the number of objects in the k-th
class [15]. Theoretically, since |Di| < |U|, the VPOFRS_ARD algorithm executes faster than the
traditional VPFRS algorithm [16].

2.3.3. Numerical Example Illustrating the Algorithm

This section presents a numerical example to illustrate the steps of the VPOFRS_ARD algo-
rithm [16].

2.4. Experiments and Evaluation

This section presents experimental results to evaluate the effectiveness of the proposed algo-
rithm in terms of attribute reduction time, classification accuracy, and the size of the obtained
reduct [17].

2.4.1. Experimental Scenarios and Environment

The experimental scenarios include [17, 18]:

* Investigating the optimal 3 value range for each dataset to achieve the best balance between
reduct size and classification accuracy.

e Comparing the VPOFRS_ARD algorithm with existing attribute reduction algorithms for
improving accuracy, namely VPFRS [4] and IFD [19], based on three criteria: attribute
reduction time, classification accuracy, and reduct size.

The experiments were conducted on datasets with low classification accuracy (indicating the
presence of noise) [18] using the Python programming language on a Windows 10 platform with
an i5 processor and 8GB RAM [20].

2.4.2. Evaluation of the Proposed Algorithm

This section evaluates the relationship between the 8 threshold, reduct size, and classification
accuracy (using SVM and k-NN models) [20-28]. The results show that the reduct size tends to
decrease as 3 increases, though there are differences across datasets [23, 24]. Notably, on the
UFDC and SHDC datasets, classification accuracy does not decrease and even improves as 3
changes, demonstrating the algorithm’s ability to effectively eliminate noisy attributes [25-28].

2.4.3. Comparison of Attribute Reduction Algorithms for Improving Classification Accuracy
2.4.3.1. Comparison of Reduct Sizes Obtained from the Algorithms

Figure 2.5 compares the reduct sizes among VPOFRS_ARD, VPFRS, and IFD [29-31]. IFD
tends to produce the smallest reducts, but VPOFRS_ARD outperforms on the UFDC and UFDD
datasets (the two with the lowest initial accuracy) [29, 30]. This indicates that VPOFRS_ARD is
more effective at identifying and eliminating noisy attributes [30].
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2.4.3.2. Comparison of Classification Accuracy of Reducts Obtained from the Algorithms

Figures 2.6 (SVM) and 2.7 (k-NN) compare the classification accuracy of the reducts [31-35].
Overall, the accuracy differences among the algorithms are minimal, but on the UFDC dataset,
VPOFRS_ARD achieves significantly higher accuracy than IFD and VPFRS while reducing
reduct size [32-35]. This further confirms VPOFRS_ARD’s ability to handle noisy data.

2.4.3.3. Comparison of Execution Times of the Algorithms

Figure 2.8 compares the execution times of VPOFRS_ARD and VPFRS [35-38]. VPOFRS_ARD
demonstrates superior time efficiency across all datasets, particularly on large datasets [36, 37].
This improvement is likely due to optimizations in the VPOFRS model, reducing the number of
required computations [37].

2.5. Conclusion of Chapter 2

Chapter 2 has presented a new attribute reduction method based on extending the Variable
Precision Fuzzy Rough Set (VPOFRS) model in fuzzy approximation spaces [38, 39]. The
proposed method constructs an attribute importance measure based on dependency using the
VPOFRS approach, enabling the selection of the most relevant attributes and the elimination of
less relevant or noisy attributes [39].

Experimental results show that the VPOFRS_ARD algorithm executes faster than VPFRS and
IFRS, producing smaller reducts with higher classification accuracy on certain noisy datasets,
particularly UFDC [2, 38]. This confirms the effectiveness of the proposed method in mitigating
the impact of noise and improving computational performance [2].

Beyond its application in attribute reduction, the VPOFRS model holds significant potential
for broader applications in data analysis problems involving fuzzy and uncertain data [40].

CHAPTER 3. Incremental Computation Methods for Reduct Updates
Using Information Granularity in Fuzzy Approximation
Spaces

Chapter 3 of the dissertation focuses on addressing the problem of incremental attribute se-
lection in dynamic data environments, specifically when the decision table undergoes changes in
the object set [1]. This chapter stems from the limitations of traditional methods, which primarily
rely on distance measures between partitions, in efficiently handling dynamic data. The disser-
tation proposes a new approach based on extending the concept of knowledge information
granularity to construct a measure in fuzzy approximation spaces [1].

The main highlight of the chapter is the development of incremental computation formulas
to efficiently update the reduced attribute set when there are changes in the object set (adding
or removing objects) without recomputing from scratch [1]. The chapter also introduces corre-
sponding algorithms for these updates, evaluated through experiments on real-world datasets
[1, 2]. The results demonstrate that the proposed method is not only computationally efficient
but also capable of improving the quality of the reduced attribute set [2].
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3.1. Preliminary Knowledge

This section reviews some fundamental concepts regarding the fuzzy equivalence relation
matrix of an attribute and the fuzzy equivalence relation matrix of an attribute set [3]. These
relation matrices serve as the foundation for constructing computational tools in the subsequent
sections of the chapter [4]. Details of these foundational concepts can be found in works [5], [6].

Definition 3.1 (Similarity Relation of Two Objects on an Attribute) [4]: For a decision
table NDT = (U,C, D), the similarity relation of two objects i, j € U with respect to attribute
a € C is defined by the formula:

sajj=1—la(i) —a(j)| (3.1) (3.1)
where |a(i) — a(j)] is typically normalized to the interval [0, 1].

From the similarity relation of two objects on an attribute, the fuzzy equivalence relation
matrix for each attribute and for an attribute set can be constructed by taking the intersection of
the corresponding fuzzy equivalence relations [4].

3.2. Fuzzy Information Granularity Measure

This section introduces the extension of the information granularity measure from crisp ap-
proximation spaces to a measure in fuzzy approximation spaces, referred to as the Fuzzy Infor-
mation Granule (FIG) measure [8]. First, the concept of the fuzzy information granule of an
attribute 1s defined, followed by the construction of measures on fuzzy information granules, and
finally, an attribute reduction algorithm based on the fuzzy information granularity measure for
the decision table NDT is proposed [8].

3.2.1. Fuzzy Information Granule

Definition 3.4 (Fuzzy Information Granule) [8]: For a decision table NDT = (U,C, D) and
an attribute set P C C, the fuzzy information granule of P on U is defined by:

[i]p = {0, 1, (J)]j €U} (3.2)

where W, (j) = up(i, j) is the fuzzy similarity between objects i and j based on the attribute
set P. The fuzzy similarity up(i, j) is typically computed by taking the minimum (or another
T -norm operator) of the similarities across each attribute in P:

up(i, j) = gleilr)l{saij} (3.3)

The size of the fuzzy information granule [i]p can be defined as the sum of the membership
degrees of all objects j € U to the granule [i]p:

el =Y m,p(4) (3.4)
jeu
3.2.2. Fuzzy Information Granularity Measure

Based on the concept of the fuzzy information granule, the Fuzzy Information Granule
(FIG) measure of an attribute set P on U when considering the decision attribute D is defined
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as follows [9]:

U]
FIG(PUD,U)=1— |U|2 Z| lpuD| (3.5)

This measure reflects the coarseness of the partition of the object set U based on the attribute
set PUD. The smaller the value of FIG(PUD,U), the finer the partition, and thus, the more
informative it is.

Similarly, the fuzzy information granularity measure of P on U when considering only the
conditional attribute set P is:

|U|
FIG(P,U) |2 Z [ile| (3.6)

The dependency of the decision attribute D on the conditional attribute set P based on the
fuzzy information granularity measure is defined as:

u|
FIG(D|P,U) = FIG(P,U)— FIG(PUD,U) |U|2 Z {rup)) (3.7)

This measure indicates the extent to which knowing information from P reduces the coarseness
of the partition when considering both P and D. The larger the value of FIG(D|P,U), the higher
the dependency.

Proposition 3.2 [9] proves the monotonicity of the fuzzy information granularity measure:
If PC QCC,then FIG(PUD,U) < FIG(QUD,U). This means that adding attributes to the
conditional set reduces or maintains the coarseness of the partition (when considering both con-
ditional and decision attributes).

3.2.3. Construction of the Attribute Reduction Algorithm

Based on the monotonicity of the fuzzy information granularity measure, Definition 3.6 [9]
defines the importance of an attribute a € C\ S with respect to an attribute set S C C as:

Sigy(a,S) = FIG(D|SU{a},U) — FIG(D|S,U) (3.8)

The attribute with the highest importance is prioritized for inclusion in the reduct.
Definition 3.7 [10] defines an attribute set R C C as a reduct if it satisfies two conditions:

* FIG(D|R,U) = FIG(D|C,U) (preservation of dependency).
* Forevery a € R, FIG(D|R\ {a},U) < FIG(D|C,U) (minimality).

The FIG (Fuzzy Information Granule) algorithm [10] is proposed to find the reduct when
the decision table NDT remains static. This algorithm is a Greedy algorithm using the filter
attribute approach with an attribute addition strategy. The main steps of the algorithm include:

1. Initialize the reduct set S = 0.
2. Compute FIG(D|C,U) (dependency of the decision on the entire conditional attribute set).
3. Repeat until the stopping condition is met:

(a) Compute the importance Sigy (a,S) for each attribute a € C'\ S.
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(b) Select the attribute s € C'\ S with the highest importance.
(c) Add s to the reduct set S = SU {s}.

(d) Check the stopping condition (e.g., FIG(D|S,U) ~ FIG(D|C,U) or a desired number
of attributes is reached).

4. Return the reduct set S.

The complexity of the FIG algorithm is analyzed as O(|U|?|C|?) [11]. To optimize the reduct
size, a threshold difference 9 (e.g., 0.5%) between FIG(D|S,U) and FIG(D|C,U) can dissatis-
fied be used as the stopping condition [11].

3.3. Construction of the Reduct Update Algorithm for Adding Object Sets

This section presents the method for constructing an algorithm to update the reduct when
the decision table NDT has an additional object set Au = {uy,up,...,u;} [12]. The main steps
include: developing an incremental computation formula for the fuzzy information granularity
measure when adding a single object, extending it to the case of adding a set of objects, and
finally proposing the corresponding reduct update algorithm (FIGAMO - Fuzzy Information
Granule based Attribute reduction for Adding Multiple Objects) [12].

3.3.1. Incremental Formula for Adding a Single Object

Proposition 3.3 (Incremental Fuzzy Information Granule for Adding a Single Object)
[12]: For a decision table NDT = (U,C, D) and a new object up,,, added, forming the object set
U’ = U U{upew}, the fuzzy information granule of the attribute set P C C on U’ is computed as
follows:

1 ) . .
FIG(P7 U/) =1- T2 Z |[l]P| + |[unew]P| + Z [.Lp(l, unew) + Z .uP(uneW7 l) + .uP(uneWa unew)
|U | iceU €U iceU
(3.9)

Similarly, the incremental formula for FIG(PUD,U’) is constructed [12]. From this, the incre-
mental formula for the dependency FIG(D|P,U’) when adding a single object can be derived.

3.3.2. Incremental Formula for Adding a Set of Objects

Proposition 3.4 (Incremental Fuzzy Information Granule for Adding a Set of Objects)
[13, 14]: For a decision table NDT = (U, C, D) and a set of objects to be added Au = {u;,uy, ..., ux },
the fuzzy information granule of P on U U Au is computed using an incremental formula based
on FIG(P,U) and the similarities between existing and new objects [14].

Proposition 3.5 (Incremental Fuzzy Information Granule Dependency for Adding a Set
of Objects) [14, 15]: The incremental formula for FIG(D|P,U U Au) is constructed based on
FIG(D|P,U) and the similarities involving the new objects [15].

3.3.3. Proposed Incremental Algorithm for Adding a Set of Objects

Proposition 3.6 [15, 16] provides the formula for computing the importance of an attribute
a € C\ B with respect to an attribute set B on U U Au based on the importance on U and the
similarities involving the new objects [16].



20

The FIGAMO algorithm [16, 17] is proposed to update the reduct when adding the object set
Au. The main steps of the algorithm are:

1. Let RU be the reduct obtained on the decision table with the initial object set U. Initialize
the new reduct set S = RU.

2. Compute FIG(D|S,U UAu) (Fs) and FIG(D|C,U UAu) (Fc) using the incremental formu-
las.

3. If the difference between F's and F'c is less than a threshold € (e.g., 0.5%), return S.

4. Otherwise, iterate by selecting the attribute with the highest importance (computed us-
ing the incremental formula) from C\ S and adding it to S until the difference between
FIG(D|S,U UAu) and FIG(D|C,U U Au) reaches the allowed threshold.

5. Remove redundant attributes from S by checking if removing an attribute significantly re-
duces the dependency.

6. Return the updated reduct set S.

The complexity of the FIGAMO algorithm is analyzed as approximately O(|Au|?|C|) in the
ideal case when the reduct does not change significantly [17].

3.4. Construction of the Reduct Update Algorithm for Removing Object
Sets

This section presents the method for constructing an algorithm to update the reduct when the
decision table NDT removes a set of objects Au [18]. Similar to the addition case, the main steps
include: developing an incremental computation formula for the fuzzy information granularity
measure when removing a single object, extending it to the case of removing a set of objects, and
finally proposing the corresponding reduct update algorithm (FIGDMO - Fuzzy Information
Granule based Attribute reduction for Deleting Multiple Objects) [18].

3.4.1. Incremental Formula for Removing a Single Object

Proposition 3.7 (Incremental Fuzzy Information Granule for Removing a Single Object)
[18]: For a decision table NDT = (U,C,D) and an object u¢moveq removed, forming the object
set U' = U \ {Uemovea }» the fuzzy information granule of the attribute set P C C on U’ is com-
puted by subtracting the contribution of u,e0veq from the total [18]. Similarly, the incremental
formulas for FIG(PUD,U’) and the dependency FIG(D|P,U’) when removing a single object
are constructed.

3.4.2. Incremental Formula for Removing a Set of Objects

Proposition 3.8 (Incremental Fuzzy Information Granule for Removing a Set of Ob-
jects) [19]: For a decision table NDT = (U,C,D) and a set of objects to be removed Au =
{ur,uz,...,u; }, the fuzzy information granule of P on U \ Au is computed using an incremental
formula based on FIG(P,U) and the similarities involving the removed objects [20].

Proposition 3.9 (Incremental Fuzzy Information Granule Dependency for Removing a
Set of Objects) [20]: The incremental formula for FIG(D|P,U \ Au) is constructed based on
FIG(D|P,U) and the similarities involving the removed objects.
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3.4.3. Proposed Incremental Algorithm for Removing a Set of Objects

Proposition 3.10 [20] provides the formula for computing the importance of an attribute
a € C\ B with respect to an attribute set B on U \ Au based on the importance on U and the
similarities involving the removed objects.

The FIGDMO algorithm [21] is proposed to update the reduct when removing the object set
Au. Similar to FIGAMO, this algorithm uses incremental formulas to recompute the dependency
and attribute importance, thereby efficiently updating the reduct [21].

3.5. Experiments and Evaluation of the Algorithms

This section presents experimental results to demonstrate the efficiency in terms of time and
quality of the incremental attribute reduction algorithms FIGAMO and FIGDMO [22]. However,
the experiments primarily focus on FIG and FIGAMO [22, 23].

3.5.1. Experimental Scenarios and Environment

The algorithms were implemented in Python on a Windows 10 platform with an i5 proces-
sor and 8GB RAM [24]. Standard datasets from the UCI Repository were used to evaluate the
performance of the algorithms [24, 25]. The evaluation process included comparing execution
time, reduct size, and classification accuracy (using SVM and k-NN models with 10-fold cross-
validation) [24].

3.5.2. Evaluation of the FIG Algorithm
The FIG algorithm was compared with the FD (Fuzzy Dependency based attribute reduction)
algorithm [6] on static datasets [24].

Execution Time

Figure 3.3 [26] shows that the FIG algorithm has better execution time than the FD algo-
rithm across all tested datasets [26]. This demonstrates that the stopping condition (threshold
difference in the information granularity measure) designed in the FIG algorithm helps reduce
computation time [26].

Reduct Size

Figure 3.4 [27] shows that the reduct size of the FIG algorithm is typically smaller or
comparable to that of the FD algorithm [27]. This confirms the FIG algorithm’s ability to
effectively reduce attributes [27]. A trade-off between execution time and reduct size is observed
when varying the threshold difference [28].

Classification Accuracy

Figures 3.5 and 3.6 [28-31] compare the classification accuracy (using SVM and k-NN) of
the reducts obtained from FIG and FD against the original attribute set. The results show:

* On small datasets, the classification accuracy shows no significant difference [29].
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* On large datasets (CMSC, BCWD), the reducts from FIG generally achieve higher clas-
sification accuracy than those from FD [29, 30].

These results indicate that the FIG algorithm is effective in selecting important attributes and
maintaining or improving classification performance [31].

3.5.3. Evaluation of the FIGAMO Algorithm

The FIGAMO algorithm was compared with the FDMAO (incremental FD) algorithm [6]
when adding object sets [32].

Execution Time

Figure 3.7 [33] shows that the FIGAMO algorithm has better execution time than the FD-
MAQ algorithm across all tested datasets when adding objects [33]. The stopping condition
in FIGAMO continues to play a critical role in improving time efficiency [33]. The difference
in execution time across different addition levels is generally small, but FIGAMO demonstrates
greater stability than FDMAO on large datasets [34].

Reduct Size

Figure 3.8 [35] shows that the reduct size of the FIGAMO algorithm is typically smaller
or comparable to that of the FDMAOQ algorithm after adding objects [35]. This indicates
that FIGAMO maintains effective data compression in dynamic data environments [36].

Classification Accuracy

Figures 3.9 and 3.10 [37-40] compare the classification accuracy (using SVM and k-NN) of
the reducts obtained from FIGAMO and FDMAO against the original attribute set after adding
objects. The results show:

* On many datasets, FIGAMO maintains classification accuracy equivalent to or higher
than the original attribute set and often outperforms FDMAO (38, 39].

» However, the effectiveness of attribute reduction may depend on the specific dataset [40,
41].

Overall, FIGAMO demonstrates the ability to maintain or improve classification accuracy after
attribute reduction in environments with object set changes [41].

3.6. Conclusion of Chapter 3

Chapter 3 of the dissertation has presented an efficient incremental attribute reduction
method using the information granularity approach in fuzzy approximation spaces [41, 42]. This
method is designed to handle large datasets efficiently, particularly when data is continuously
updated or changed [42].

The highlight of the method is the extension of the information granularity measure to
fuzzy approximation spaces, which simplifies incremental computation formulas and signif-
icantly reduces the time required to update the reduct [42]. Experimental results have demon-
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strated that the proposed algorithms (FIG and FIGAMO) not only have more efficient compu-
tation times compared to other methods but also produce reducts with smaller sizes and improved
classification accuracy on some large datasets [43].

However, the dissertation also points out that the selection of the adjustment threshold for
the difference is critical to balancing incremental computation time and the classification accu-
racy of the final reduct [43, 44]. This balance needs careful consideration in practical applications
[44].

CONCLUSION

A. Main Results of the Dissertation

The dissertation contributes to the research stream on data preprocessing, applied to data
mining and machine learning fields, focusing on attribute selection problems for numerical deci-
sion tables. Initially, the dissertation surveys the research gaps of existing methods and presents
several key contributions as follows:

First, the dissertation proposes an attribute selection method for decision tables based on an
extended variable precision fuzzy rough set approach in fuzzy approximation spaces.

The core of the method lies in constructing a measure to evaluate the importance of each
attribute. This measure is based on dependency, defined using the VPOFRS approach, which
enables precise determination of each attribute’s impact on the data classification process. This
facilitates the selection of the most important attributes while eliminating those that are less
relevant or noisy.

To validate the effectiveness of the proposed method, the dissertation conducted experiments
on various datasets. The results demonstrate that the new attribute reduction algorithm not only
significantly improves computational time but also produces reducts with higher classification
accuracy and smaller sizes compared to traditional algorithms. This indicates that the proposed
method is not only faster but also more effective in simplifying models and enhancing their
generalization capability.

Beyond its application to attribute reduction, the dissertation also highlights that the VPOFRS
model has significant potential for broader applications in other data analysis problems. With its
ability to handle fuzzy and uncertain data, VPOFRS can serve as a powerful tool in various
domains, from pattern recognition to forecasting and decision-making, opening up numerous
research and application avenues in the future.

Second, the dissertation proposes an incremental computation method for reduct updates us-
ing the information granularity approach in fuzzy approximation spaces.

The highlight of this method is the extension of the information granularity measure to fuzzy
approximation spaces. By leveraging the concept of information granules, the computation for-
mulas are simplified, significantly reducing the time required for incremental computations and
reduct updates. This is particularly crucial when processing large datasets, where computational
time becomes a critical factor.

Although the proposed algorithm shows promise in attribute reduction for large datasets, the
research also indicates the need to investigate and adjust the threshold for difference adjustment
before application. This is to ensure a balance between the computational time for incremental
reduct updates and the classification accuracy of the final reduct. This balance is critical to
achieving optimal performance in practical applications.

B. Future Directions of the Dissertation

The current research results of the dissertation are built upon fuzzy approximation spaces,
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where numerical decision tables serve as input data. However, a limitation of this approach is that,
in practice, many data analysis problems involve more complex decision tables that include not
only numerical (continuous) attributes but also categorical attributes interspersed. The presence
of both types of attributes in the same decision table poses unique challenges in the attribute
reduction process.

Therefore, a potential direction for further development of the dissertation’s research results
is to extend the approach to neighborhood spaces. This extension would enable the application
of the developed attribute reduction methods to mixed decision tables, encompassing both nu-
merical and categorical attributes.

By extending to neighborhood spaces, the dissertation can address a broader range of real-
world problems. This will enhance the applicability and practical value of the research results,
as real-world data is often heterogeneous and contains various types of attributes.
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