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Introduction

Consider a polynomial ring R = K[x1, ..., xn] defined in n variables over a field K. Let M

be a finitely generated graded R-module. Such a module decomposes into its homogeneous

components Mi indexed by integers i. The Hilbert series associated with M is then defined

as the generating function for the sequence {dimK(Mi)}i2Z, where the dimensions of these

components as K-vector spaces. The classical Hilbert-Serre theorem states that the Hilbert

series of any finitely generated graded module is a rational function, meaning it can be

expressed as the quotient of two polynomials. The Hilbert series serves as a fundamental

invariant of graded rings and modules, aiding in the determination of essential invariants

such as the dimension and degree of projective varieties.

Motivated by applications in algebraic statistics [1, 2] and representation theory [3],

recent research has focused on studying ideals in a polynomial ring in infinitely many

indeterminates, which are stable under the action of a monoid. Specifically, fix an integer

c � 1 and let K[X] = K[xij] be a polynomial ring in the variables xij, where 1  i  c

and j � 1. Let Inc(N) be the monoid of strictly increasing maps p : N ! N, with the

composition operator. Let Sym(N) be the set of maps from N ! N, fixing all but a finite

number of positive integers, with the composition operator. In other words, Sym(N) is

the direct limit of symmetric groups on n elements Sym(n), with the natural embedding

Sym(n) ! Sym(n + 1). There are many research focus on the ideals I in the infinite

dimensional ring K[X], which are stable under the action of Inc(N) or Sym(N). We know

that K[X] is not a noetherian ring, since there are non-finitely generated ideals. However,

a result settled by Cohen, Aschenbrenner-Hillar, Hillar-Sullivant states that K[X] is a

Sym(N)-noetherian ring, that is every Sym(N)-invariant ideal is generated by the orbits of

finitely many elements. The same result is true when we replace Sym(N) by Inc(N). This

is the infinite dimensional version of the Hilbert’s basis theorem.

A natural question arising is whether the classical Hilbert-Serre theorem can be ex-

tended to the infinite dimensional case, in particular, for Inc(N)-invariant ideals?
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This question is not trivial because even defining the Hilbert series for the ring K[X]/I

is not straightforward. A method to study these ideals is to consider the ascending chain

of truncated ideals In = I \K[Xn], where Xn is the set of variables {xij | 1  i  c, 1 
j  n}. From this perspective, the equivariant (bigraded) Hilbert series of K[X]/I can

be defined as the generating function of the sequence of Hilbert series of K[Xn]/In for

varying n.

This method was introduced by Nagel and Römer in [4], who proved that for any

homogeneous ideal I ⇢ K[X], the equivariant Hilbert series of K[X]/I is also a rational

function. This thesis will focus on studying the Nagel-Römer theorem.

This thesis has three chapters.

1. Chapter 1 explains the theories of graded rings and graded modules, which are

essential for establishing the classical Hilbert-Serre theorem. Additionally, we review

the theory of Gröbner bases and monomial ideals, along with their properties.

2. Chapter 2 establishes the framework to prove the finiteness up to symmetry of

equivariant Gröbner bases. Then we apply this framework to prove the Hilbert’s

basis theorem for infinite dimensional polynomial rings, which is due to Cohen [5],

Aschenbrenner-Hillar [1] and Hillar-Sullivant [2]. The main results of this chapter

are Kruskal’s tree theorem (Theorem 2.14), Higman’s lemma (Corollary 2.15) and

Hilbert’s basis theorem for infinite dimensional polynomial rings (Corollary 2.33).

3. Chapter 3 presents the principal theorems concerning the equivariant Hilbert se-

ries, along with its implications and several detailed computational examples of the

equivariant Hilbert series. The main theorem of this thesis is Theorem 3.6:

Theorem 3.6. Assume I = (In)n2N is an Inc(N)i-invariant chain of homogeneous

ideals, where i � 0 is an integer. Then

HI(s, t) =
g(s, t)

(1� t)a ·
Qb

j=1[(1� t)cj � s · fj(t)]
,

where a, b, cj � 0 are integers, g(s, t) 2 Z[s, t], and each fj(t) 2 Z[t] such that

fj(1) > 0.

The reference for our main result is [4, Theorem 7.2].



Chapter 1

Preliminaries

Throughout this thesis, by "a ring" we always mean a commutative ring with identity

element. The primary focus of this work involves graded rings and modules. Our main

references are Atiyah-Macdonald [6], Bruns-Herzog [7], and Cox-Little-O’shea [8].

1.1 Graded Rings and Modules

Definition 1.1. A ring R is called Z-graded (or simply, graded) if there is a family of

additive subgroups
�
Rn

 
n2Z of R, such that

(a) R =
L

n2Z Rn, and

(b) RnRm ✓ Rn+m for all m,n 2 Z.

An element x 2 R \ {0} is said to be a homogeneous element of degree n if x 2 Rn.

Additionally, R is called N-graded if Rn = 0 for all n < 0.

Every ring R admits a trivial grading, which is obtained by defining R0 = R and

Rn = 0 for all n 6= 0. Other non-trivial graded rings are given in the following examples.

Example 1.2. (a) The polynomial ring R = K[x] is N-graded with the n-th graded

part Rn = {↵xn : n � 0, ↵ 2 K}.

(b) Similarly, the Laurent polynomial ring R = K[x, x�1] is Z-graded with the n-th

graded part Rn = {↵xn : n 2 Z, ↵ 2 K}.

(c) Let S = R[x1, . . . , xd] be a polynomial ring over a ring R. S is an N-graded ring

with the n-th graded part

Sn =
n X

m2Nd

rmx
m1
1 . . . x

md
d

��rm 2 R,m1 + · · ·+md = n

o
,
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where m = (m1, . . . ,md) 2 Nd. By letting deg(xi) = 1 for all i, this gradation is

called the standard grading of S.

Proposition 1.3. Let R =
L

n2Z Rn be a Z-graded ring, then we have

(a) R0 is a subring of R, containing 1;

(b) Rn is a R0-module for every n 2 Z.

Proof. By definition, R0R0 ✓ R0 so R0 is closed under multiplication. It suffices to show

that 1 2 R0. Suppose that 1 =
Pn

i=�n xi for some large n and homogeneous elements xi,

for all m we have

xm = 1.xm =
nX

i=�n

xixm.

Comparing the degrees gives xm = xmx0 for all m. Now we have

x0 = 1.x0 =
nX

i=�n

xix0 =
nX

i=�n

xi = 1.

Hence 1 = x0 2 R0.

The second part is trivial since R0Rn ✓ Rn for all n.

Definition 1.4. Let R =
L

n2Z Rn be a graded ring.

(a) A subring S ✓ R is called a graded subring if S =
L

n2Z(S \Rn).

(b) An ideal I ✓ R is called a graded ideal (or homogeneous ideal) if I =
L

n2Z(I \Rn).

Proposition 1.5. For an ideal I in a graded ring R =
L

n2Z Rn, the following two

conditions are equivalent:

(a) I is a homogeneous ideal.

(b) I = hSi for some set S containing only homogeneous elements of R.

Proof. Suppose that I is generated by a set of homogeneous elements S. For each x 2 I,

we have

x =
X

j

rjsj,

where rj 2 R, sj 2 S. Decompose rj as a sum of homogeneous elements and let xn be

the sum of homogeneous elements of degree n in the resulting expression of x. We get

x =
P

n xn. Since S is a generating set of I, xn 2 I for all n. Thus xn 2 I \ Rn for all

n, this implies I ✓
L

n2Z(I \Rn). Hence I =
L

n2Z(I \Rn). The converse implication is

trivial.



5

The above proof also implies that if I is a homogeneous ideal of a graded ring R and

an element x 2 I is presented as a sum of homogeneous elements, then these homogeneous

elements are belonged to I. The following corollary stems from this observation.

Corollary 1.6. Let R be a graded ring and I, J be homogeneous ideals of R. Then the

ideals IJ, I + J, I \ J are homogeneous.

Lemma 1.7. Let R =
L

n2Z Rn be a graded ring and I ✓ R be a homogeneous ideal of R.

Then I is a prime ideal if and only if xy 2 I implies x 2 I or y 2 I for all homogeneous

elements x, y.

Proof. Let xy 2 I and suppose that y /2 I. We write x and y as sums:

x = xm + · · ·+ xm+d,

y = yn + · · ·+ yn+r,

where xi 2 Ri, yj 2 Rj, xm 6= 0, yn 6= 0. If there is some yj 2 I, we may replace y by y�yj.

Hence we may assume that yn, . . . , yn+r /2 I. Now

xy = xmyn + (xmyn+1 + xm+1yn) + · · ·+ xm+dyn+r 2 I.

Since I is homogeneous, all homogeneous elements xmyn, (xmyn+1 + xm+1yn), . . . are con-

tained in I. Now xmyn 2 I and yn /2 I imply xm 2 I. Next

xm+1yn = (xmyn+1 + xm+1yn)� xmyn+1 2 I and yn /2 I,

hence xm+1 2 I. Continuing this process repeatedly gives xm, . . . , xm+d 2 I, thus x 2 I.

The converse implication is trivial.

Definition 1.8. Let R, S be Z-graded rings and consider a ring homomorphism f : R ! S.

The map f is said to be a homogeneous homomorphism if f(Rn) ✓ Sn for all n 2 Z. A

homogeneous homomorphism is also called a graded homomorphism.

Definition 1.9. Let R be a Z-graded ring and M an R-module. M is called a graded

R-module if there is a family of subgroups {Mn}n2Z of M such that

(a) M =
L

n2Z Mn, and

(b) RmMn ✓ Mm+n for all m,n 2 Z.
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Each subgroup Mn is called a homogeneous component of degree n; a non-zero element

x 2 Mn is called a homogeneous element of degree n.

Definition 1.10. Let M =
L

n2Z Mn be a graded R-module and N a submodule of M .

For each n 2 Z, let Nn = N \Mn. If N =
L

n2Z Nn then N is called a graded submodule

of M .

Definition 1.11. Let M,N be Z-graded modules and consider a module homomorphism

f : M ! N . The map f is called a homogeneous morphism of modules if f(Mn) ✓ Nn for

all n 2 Z. A homogeneous morphism of modules is also called a graded morphism.

Proposition 1.12. Let M be a graded R-module and N an arbitrary submodule of M .

Then N is a graded submodule if and only if N is generated by homogeneous elements of

M .

Proof. The argument is identical to the proof of Proposition 1.5.

Corollary 1.13. Let M be a graded module and N,P be graded submodules of M . Then

the modules N + P,N \ P are graded.

Definition 1.14. Let M =
L

n2Z Mn be a graded module. For an integer s, we define

the new graded module M(s) by shifting the degree of each homogeneous component by

s, that is

M(s) =
M

n2Z

Mn+s.

This means that the homogeneous component of degree n of M(s) is M(s)n = Mn+s.

Clearly, M(s) and M are equal as sets.

1.2 Monomial Ideals and Dickson’s Lemma

We now focus on monomial ideals within polynomial rings in n variables over an arbitrary

field K. This section explores some of their fundamental properties, beginning with a key

definition.

Definition 1.15. A monomial in n variables x1, . . . , xn is a product of the form

x
a1
1 x

a2
2 . . . x

an
n ,

where a1, . . . , an are non-negative integers.
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Let N0 be the set of non-negative integers. The notation for monomials can be simpli-

fied by denoting x
↵ = x

a1
1 . . . x

an
n where ↵ = (a1, . . . , an) 2 Nn

0 . Note that x(0,...,0) = 1.

Denoting by K[x1, . . . , xn] the polynomial ring in n variables over K. For a subset of

polynomials S ⇢ K[x1, . . . , xn], the notation hSi denotes the ideal generated by S.

Definition 1.16. An ideal I ⇢ K[x1, . . . , xn] is called a monomial ideal if I is generated

by a set of monomials.

Any monomial ideal I admits a representation I = hx↵ : ↵ 2 Ai, where A is a subset of

Nn
0 . The next proposition gives a criterion when a monomial is contained in a monomial

ideal.

Proposition 1.17. Suppose I is a monomial ideal generated by the set of monomials

{x↵ | ↵ 2 A}. Then, for any monomial x�, membership x
� 2 I holds if and only if x� is

a multiple of a generator x
↵ for some ↵ 2 A.

Proof. Let x� 2 I, we write x� =
Ps

i=1 hix
↵i , hi 2 K[x1, . . . , xn] and ↵i 2 A. Expand each

of hi as a linear combination of monomials. Each term of the right hand side is divisible

by x
↵ for some ↵ 2 A. Hence x

� on the left hand side must share the same property due

to equality.

The generating set of a monomial ideal I in the above definition is not necessarily

finite. However, Dickson’s Lemma establishes that I always admits a finite set of monomial

generators.

Lemma 1.18 (Dickson’s Lemma). Every monomial ideal in K[x1, . . . , xn] is finitely gen-

erated.

The proof for this lemma will be given in Chapter 2, after its second version (Corol-

lary 2.8).

1.3 Gröbner Bases

The theory of Gröbner bases is the study of the division algorithm among polynomials,

in which monomial ordering is the key. In the one variable case, this ordering is simply

comparing the degree of monomials. The complexity arises while working with more than

one variable. For instance, between x
3
y and y

5, which monomial should be the "larger"
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to do the division algorithm for the polynomial f = x
3
y+ y

5? This leads us to the notion

of monomial ordering.

Consider the polynomial ring K[x1, . . . , xn].

Definition 1.19. [8, Definition 2.1] A relation on the set of monomials x
↵
,↵ 2 Nn

0 , or,

equivalently, a relation � on Nn
0 is called a monomial ordering if

(a) � is a total ordering;

(b) for all ↵, �, � 2 Nn
0 , if ↵ � �, then ↵ + � � � + �;

(c) every nonempty subset of Nn
0 has a smallest element with respect to �.

There are many monomial orders. We study some representative examples, the first

one will be lexcographic order (or lex order, in short).

Definition 1.20. Given ↵ = (a1, . . . , an), � = (b1, . . . , bn) 2 Nn
0 . We say that ↵ is less

than � with respect to lex order (denoted by ↵ �lex �) if the leftmost non-zero entry of

the vector ↵� � 2 Zn is negative. Further, we write x
↵ �lex x

� if ↵ �lex �.

Example 1.21. (a) (0, 5) �lex (1, 3), and x
5
2 �lex x1x

3
2.

(b) (2, 5, 4) �lex (2, 5, 8), and x
2
1x

5
2x

4
3 �lex x

2
1x

5
2x

8
3.

(c) In the polynomial ring K[x1, . . . , xn], we have xn �lex xn�1 �lex · · · �lex x1, since

(0, . . . , 0, 1) �lex (0, . . . , 0, 1, 0) �lex · · · �lex (1, 0, . . . , 0).

In the lex order, we do not regard the degree of monomials. For example, if we let

x �lex y �lex z, then y
5
z
2 �lex x. In some cases, we may need to take the degree of

monomials into account. This leads us to define graded lexicographic order (or grlex order,

in short).

Definition 1.22. Given ↵ = (a1, . . . , an), � = (b1, . . . , bn) 2 Nn
0 . We say that ↵ is less

than � with respect to grlex order (denoted by ↵ �grlex �) if

|↵| =
nX

i=1

ai < |�| =
nX

i=1

bi, or |↵| = |�| and ↵ �lex �.

Example 1.23. (a) (1, 2, 4) �grlex (1, 4, 5).

(b) (1, 3, 5) �grlex (1, 4, 4).
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(c) The ordering of variables in the ring K[x1, . . . , xn] in the grlex order is the same as

in the lex order.

Definition 1.24. Let f =
P

↵ a↵x
↵, ↵ 2 Nn

0 be a non-zero polynomial in K[x1, . . . , xn]

and let � be a monomial order.

(a) The multidegree of f is mdeg(f) = max{↵ : a↵ 6= 0}.

(b) The leading coefficient of f is LC(f) = amdeg(f) 2 K.

(c) The leading monomial of f is LM(f) = x
mdeg(f).

(d) The leading term of f is LT(f) = amdeg(f) · xmdeg(f).

Here the maximum is taken under �.

For example, take f = 4x6 + y
4
z
3 + 7xz8 � 5xy � 1 and consider grlex ordering where

x = x1, y = x2, z = x3. Then

mdeg(f) = (1, 0, 8),

LM(f) = xz
8
,

LC(f) = 7,

LT(f) = 7xz8.

Let S ⇢ K[x1, . . . , xn] be a set of polynomials. We denote LT(S) = {LT(f) : f 2 S},
this is called the set of leading terms of S. Furthermore, for an ideal I ⇢ K[x1, . . . , xn],

the ideal hLT(I)i is called the ideal of leading terms (or initial ideal) of I with respect to

the given monomial ordering.

Definition 1.25. Fix a monomial order. A finite subset G = {g1, . . . , gt} of an ideal

I ✓ K[x1, . . . , xn] is called a Gröbner basis of I if hLT(I)i = hLT(g1), . . . ,LT(gt)i.

Theorem 1.26 (Hilbert’s Basis Theorem). Every ideal in K[x1, . . . , xn] is finitely gener-

ated.

We may use Dickson’s Lemma to prove Hilbert’s Basis Theorem. Here is a proof

that Dickson’s Lemma (Lemma 1.18) implies that every ideal in K[x1, . . . , xn] has a finite

Gröbner basis, then satisfied the Hilbert’s Basis Theorem.
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Proof. Let I ✓ R = K[x1, . . . , xn] be an ideal. We first consider the ideal hLT(I)i.
By applying Dickson’s Lemma, there exist a finite set of monomials {m1, . . . ,mt} that

generate hLT(I)i. Since each mk is a leading term of some polynomial in I, we can

choose a corresponding polynomial gk 2 I such that LT(gk) = mk for each k = 1, . . . , t.

The objective is to prove that this finite set of polynomials, {g1, . . . , gt}, constitutes a

generating set for the original ideal I. Observe that the inclusion hg1, . . . , gti ✓ I is

immediate.

For the converse, suppose there exists a polynomial f 2 I \ hg1, . . . , gti. We can choose

such an f whose the leading term LT(f) is minimal among all elements in I \ hg1, . . . , gti.
We have

LT(f) 2 hLT(I)i = hLT(g1), . . . ,LT(gt)i.

There exist 1  i  t such that LT(f) = ↵m.LT(gi), where m is a monomial and ↵ 2 K.

Thus f � ↵mgi 2 I \ hg1, . . . , gti. But we also have LT(f � ↵mgi) < LT(f), which

contradicts the minimality of LT(f). Hence I = hg1, . . . , gti.

This elegant proof immediately yields a standard fact about Gröbner bases.

Corollary 1.27. Any Gröbner basis of an ideal I ✓ K[x1, . . . , xn] is a generating set of

I, i.e., if G = {g1, . . . , gt} is a Gröbner basis of I, then

I = hg1, . . . , gti.

The preceding discussion naturally leads to the question of how to compute a Gröbner

basis for a given ideal. Bruno Buchberger first addressed this in his 1965 Ph.D. disser-

tation, introducing the theoretical notion of Gröbner bases alongside his algorithm for

their calculation. This thesis will not delve into the mechanics of Buchberger’s algorithm;

interested readers can consult Cox-Little-O’Shea [8, Chapter 6] for a full treatment.

1.4 The Classical Hilbert-Serre Theorem

1.4.1 Length and Krull Dimension of Modules

Definition 1.28. Let R be a ring and M an R-module. The length of R-module M is

lR(M) = sup{n : 9M0 ( M1 ( · · · ( Mn},
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where all Mi are R-submodules of M . It may happen that lR(M) = 1. Further, a chain

of submodules of M

M0 ( M1 ( · · · ( Mn

is said to be a composition series of M if n = lR(M) < 1.

Clearly, if n = lR(M) < 1, a composition series of length n of M must has M0 = 0

and Mn = M . We may simply write lR(M) = l(M) when the ring R is clear.

Proposition 1.29 (Additivity of length). Let M,N, P be R-modules that fit into a short

exact

0 // N
f
//M

g
// P // 0

Assume that N and P have finite lengths, then so does M and l(N) + l(P ) = l(M).

Proof. Let n = l(N) and m = l(P ), consider the composition series of N and P

0 = N0 ⇢ N1 ⇢ · · · ⇢ Nn = N,

0 = P0 ⇢ P1 ⇢ · · · ⇢ Pm = P.

One checks that the series

0 = f(N0) ⇢ f(N1) ⇢ · · · ⇢ f(Nn) = im(f)

= ker(g) = g
�1(P0) ⇢ g

�1(P1) ⇢ · · · ⇢ g
�1(Pm) = M

is a composition series of M with length n+m. For this, note that Ni/Ni�1 and Pj/Pj�1

are simple modules, says Ni/Ni�1
⇠= R/mi, Pj/Pj�1

⇠= R/mj for some maximal ideals

mi,mj of R. This implies f(Ni)/f(Ni�1), g�1(Pj)/g�1(Pj�1) are simple R-modules. Thus

we get the statement on the composition series.

Corollary 1.30. Let N be a submodule of an R-module M of finite length, then

l(M) = l(N) + l(M/N).

Proof. Applying the above proposition to the short exact sequence

0 �! N �! M �! M/N �! 0,

we obtain the equality.
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Proposition 1.31. Let 0
f0
//M0

f1
//M1

f2
// · · · fn

//Mn
fn+1

// 0 be an exact sequence

of R-modules. Assume that l(Mi) < 1 for all i, then
nX

i=0

(�1)il(Mi) = 0.

Proof. Let Ni = im(fi). For each i, we have an induced short exact sequence

0 �! Ni �! Mi �! Ni+1 �! 0.

By the additivity of length, we have l(Mi) = l(Ni) + l(Ni+1). Now the alternating sum

becomes
nX

i=0

(�1)il(Mi) = (l(N0) + l(N1))� (l(N1) + l(N2)) + · · ·+ (�1)n(l(Nn) + l(Nn+1))

= l(N0) + (�1)nl(Nn+1) = 0,

as claimed.

For an R-module M , recall that supp(M) = {prime ideals P of R : MP 6= 0}.

Definition 1.32. Let M be a finitely generated R-module. The Krull dimension of M is

dim(M) = dim(supp(M)) = sup{n : 9P0 ( P1 ( · · · ( Pn, where Pi 2 supp(M)}.

Remark 1.33. Let M be a finitely generated R-module and ann(M) = {x 2 R : xM = 0}.
Note that

supp(M) = V (ann(M)) := {prime ideals P of R : P � ann(M)}

hence we have

dim(M) = dim(supp(M)) = dim(V (ann(M))) = dim(R/ann(M)).

This formula is useful for computing the dimension of M .

Proposition 1.34. Let M be an R-module.

(a) M has finite length if and only if M satisfying both artinian (descending chain con-

dition) and noetherian (ascending chain condition).

(b) If the ring R is artinian, then any finitely generated R-module M must have finite

length over R.
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Proof. (a) Assume M has finite length, say l(M) = n. Consider an ascending chain

M1 ✓ M2 ✓ M3 ✓ · · · . The lengths of these submodules form a non-decreasing

sequence of non-negative integers l(M1)  l(M2)  l(M3)  · · · , bounded above by

l(M) = n. Thus, the sequence of lengths stabilizes, i.e., there exists d such that for

all i � d, l(Mi) = l(Mi+1). Since Mi ✓ Mi+1 and l(Mi) = l(Mi+1), we must have

Mi = Mi+1 for all i � d. Hence, the ascending chain stabilizes, and M is noetherian.

Given the descending chain M1 ◆ M2 ◆ · · · , the corresponding sequence of lengths

l(M1) � l(M2) � · · · is necessarily non-increasing. Since module lengths are non-

negative integers, this sequence is bounded below by 0 and therefore must eventually

become constant. Thus, the sequence of lengths stabilizes, i.e., there exists d such

that for all i � d, l(Mi) = l(Mi+1). Since Mi+1 ✓ Mi and l(Mi) = l(Mi+1), we must

have Mi = Mi+1 for all i � d. Hence, the descending chain stabilizes, and M is

artinian.

For the converse, suppose M is both artinian and noetherian. The case M = 0 is

trivial, giving l(M) = 0. Assume M 6= 0. As M is noetherian, the collection of

proper submodules is non-empty and contains a maximal element (with respect to

inclusion), say M1. By maximality, the quotient M/M1 is a simple module. If M1 is

non-zero, it inherits the noetherian property from M . Therefore, M1 also contains

a maximal proper submodule, M2. Continuing this construction inductively, we

generate a sequence of submodules M = M0 � M1 � M2 � . . . where each Mi+1

is a maximal proper submodule of Mi. This forms a strictly descending chain of

submodules. Since M is artinian, it satisfies the descending chain condition, meaning

this sequence must terminate. Termination of a strictly descending chain requires

that Mn = 0 for some integer n. This process yields a finite chain {0} = Mn ⇢
Mn�1 ⇢ · · · ⇢ M1 ⇢ M0 = M , where each quotient Mi/Mi+1 is simple. This is a

composition series for M of length n. Consequently, M has finite length.

(b) Induction on the number of generators of M . Firstly, suppose that M is generated

by x 2 M . Consider the map

f : R ! M

a 7! ax.

By the isomorphism theorem, R/ ker(f) = R/ann(x) ⇠= M . Now since R is an
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artinian ring, R is also noetherian, hence R has finite length over itself. Then so is

R/ann(x).

Next, we suppose that x1, . . . , xn are the generators of M , for n > 1. Putting

N = Rx1 + · · ·+Rxn�1, consider the exact sequence

0 �! N �! M �! M/N �! 0.

Observe that M/N ⇠= Rxn, thus by the induction hypothesis, N and M/N have

finite lengths. Ultimately, M has finite length by the additivity of length.

We complete the proposition.

1.4.2 Numerical Functions on Z

Now we delve into a numerical method, which is useful for deducing the classical Hilbert-

Serre. We will use the symbol n � 0, that means n > n0 for some n0 > 0 (n0 is typically

large). The symbol n ⌧ 0 is defined similarly.

Definition 1.35. Let F : Z ! Z be a numerical function. F is called of polynomial type

of degree d if there is a polynomial P (x) 2 Q[x] with deg(P ) = d such that F (n) = P (n)

for n � 0.

As a convention, the degree of the zero polynomial is �1.

Definition 1.36. The map � on the set of numerical functions, defined by

(�F )(n) = F (n+ 1)� F (n),

is called the difference operator . We also define �d
F recursively by �d

F = �d�1(�F ).

By convention, �0
F = F .

We study some crucial properties of numerical function.

Lemma 1.37. Let F : Z ! Z be a numerical function and d be a non-negative integer.

The following are equivalent:

(a) (�d
F )(n) is a non-zero constant, for n � 0;

(b) F is of polynomial type of degree d .



15

Proof. The implication (a) ) (b) uses induction on d. For d = 0,

(�0
F )(n) = F (n) = c 6= 0,

then clearly P (x) = c is the polynomial we are looking for. Now for d > 0,

(�d
F )(n) = �d�1(F (n+ 1)� F (n)) = c 6= 0,

for n � 0. By induction hypothesis, there is n0 > 0 and P (x) 2 Q[x], deg(P ) = d � 1

satisfying F (n+ 1)� F (n) = P (n) for all n � n0. We need some computation as follows

F (n+ 1) = F (n) + P (n)

= F (n� 1) + P (n� 1) + P (n)

. . .

= F (n0) +
nX

k=n0

P (k)

= F (n0) +
n�n0X

k=0

P (n� k)

= F (n0) + (n� n0 + 1)nd�1 + (lower degree terms with respect to n).

This confirms that the preceding sum defines a polynomial in n of degree d.

Conversely, recall that the difference operator � acts on polynomials by reducing their

degree by exactly one (provided the polynomial is non-constant). Consequently, if F is

a numerical function agreeing with a polynomial of degree d for n � 0, applying the

operator � d times must result in a constant function; let (�d
F )(n) = c. To establish

that c 6= 0, it is sufficient to analyze the base case where F is linear. Therefore, we can

assume F (n) = an+ b holds for all n � 0, with a 6= 0. Proceeding under this assumption:

(�F )(n) = F (n+ 1)� F (n) = a 6= 0.

This complete the proof.

For a, b 2 Z, the combinatorial polynomial is defined by

✓
x+ a

b

◆
=

8
>><

>>:

0 for b < 0,

1 for b = 0,
1

b!
· (x+ a)(x+ a� 1) . . . (x+ a� (b� 1)) for b > 0.
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Lemma 1.38. Let P (x) 2 Q[x], deg(P ) = d. Then for all n 2 Z, P (n) 2 Z if and only

if there are integers a0, . . . , ad such that

P (x) =
dX

i=0

ai

✓
x+ i

i

◆
.

Proof. The implication ()) is trivial. Conversely, let P (x) = bdx
d + · · · + b0. Note that

�
x+i
i

�
is a polynomial of degree i, thus we may write

P (x) = bd.d!

✓
x+ d

d

◆
+ cd�1x

d�1 + · · ·+ c0

= bd.d!

✓
x+ d

d

◆
+ cd�1.(d� 1)!

✓
x+ d� 1

d� 1

◆
+ (lower degree terms)

. . .

=
dX

i=0

ai

✓
x+ i

i

◆
,

for some a0, . . . , ad 2 Q. Next, we claim that aj = (�j
P )(�j � 1) for all j, using the

familiar identity ✓
x+ j + 1

j

◆
�
✓
x+ j

j

◆
=

✓
x+ j

j � 1

◆
.

Indeed, for j = 0,

(�j
P )(�j � 1) = P (�1) = a0.

For j � 1, assume that aj has the given form, we have

�P (x) = P (x+ 1)� P (x)

=
dX

i=0

ai

✓✓
x+ 1 + i

i

◆
�
✓
x+ i

i

◆◆

=
dX

i=0

ai

✓
x+ i

i� 1

◆

=
d�1X

i=0

ai+1

✓
x+ i+ 1

i

◆
=: Q(x+ 1)

=) Q(x) =
d�1X

i=0

ai+1

✓
x+ i

i

◆
.
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By induction hypothesis, aj+1 = (�j
Q)(�j � 1), continuing the computation

�j
Q(�x� 1) = �j�1(Q(�x)�Q(�x� 1))

= �j�1(�P (�x� 1)��P (�x� 2))

= �j�1(�(�P (�x� 2)))

= �j+1
P (�x� 2)

= �j+1
P (�(x+ 1)� 1).

Replacing x by j gives aj+1 = (�j+1)P (�(j + 1)� 1), which is the desired form.

Lemma 1.39. Let H(t) =
P

n ant
n 2 Z[[t, t�1]] be a formal Laurent series with an = 0

for n ⌧ 0. Let d be a positive integer. The following are equivalent:

(a) the sequence {an}n2Z is of polynomial type of degree d� 1;

(b) H(t) = Q(t)/(1� t)d where Q(t) 2 Z[t, t�1] and Q(1) 6= 0.

Before turning to the proof, we need an observation.

Claim. Let F (n) = an for all n 2 Z, then

(1� t)dH(t) =
X

n

(�d
F )(n� d)tn.

Proof. Induction on d, for d = 1,

(1� t)H(t) =
X

n

�
ant

n � ant
n+1
�

=
X

n

�
ant

n � an�1t
n
�

=
X

n

(�F )(n� 1)tn

Assume the equation holds for d� 1 > 0, then by induction hypothesis, we have

(1� t)dH(t) = (1� t)
⇣
(1� t)d�1

H(t)
⌘

= (1� t)
X

n

(�d�1
F )(n� d+ 1)tn

=
X

n

(�d�1
F )(n� d+ 1)tn �

X

n

(�d�1
F )(n� d+ 1)tn+1

=
X

n

(�d�1
F )(n� d+ 1)tn �

X

n

(�d�1
F )(n� d)tn

=
X

n

(�(�d�1
F ))(n� d)tn

=
X

n

(�d
F )(n� d)tn.
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This completes the claim.

Proof of Lemma. For (a) ) (b), since F (n) = an is of polynomial type of degree d � 1,

then by Lemma 1.37, (�d�1
F )(n) = c for n � 0. Thus (�d

F )(n) = 0 for all n large

enough. Combining with our claim give

(1� t)dH(t) 2 Z[t, t�1].

Putting Q(t) = (1 � t)dH(t) =
P

n(�
d
F )(n � d)tn. We need to clarify that Q(1) 6= 0.

Assume that Q(1) = 0, then

0 =
X

n

(�d
F )(n� d)

=
X

n

�
(�d�1

F )(n� d+ 1)� (�d�1
F )(n� d)

�

= (�d�1
F )(N)� (�d�1

F )(M) for N � 0 and M ⌧ 0

= (�d�1
F )(N) for N � 0.

this contradicts to Lemma 1.37.

For (b) ) (a), suppose (b), we have (1� t)dH(t) = Q(t) 2 Z[t, t�1]. The claim above

implies

(1� t)dH(t) =
X

n

(�d
F )(n� d)tn 2 Z[t, t�1].

This implies

(�d
F )(n� d) = 0 for n � 0

) (�d�1
F )(n� d+ 1) = (�d�1

F )(n� d) for n � 0

) (�d�1
F )(n) = c for n � 0

Finally, we need to show c 6= 0. Now by Q(1) 6= 0, we have

0 6= Q(1) =
X

n

(�d
F )(n� d) = (�d�1

F )(N) for N � 0.

This concludes the proof.
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1.4.3 Hilbert Functions and Hilbert Series

Definition 1.40. Let R =
L

n2Z Rn be a graded ring and M =
L

n2Z Mn a finitely

generated graded R-module.

(a) The map hM(·) : Z ! Z defined by hM(n) = lR0(Mn) is called the Hilbert function

of M .

(b) If hM(n) < 1 for all n, we say that M has a Hilbert series, and the formal power

series

HM(t) =
X

n2Z

hM(n)tn

is called the Hilbert series of M .

Proposition 1.41. (a) If 0 //M
f
// N

g
// P // 0 is a short exact sequence of

graded modules and homogeneous maps, then

HN(t) = HM(t) +HP (t).

(b) If M is a graded R-module and x 2 Rd, d � 1, is a non-zero divisor on M , then

HM/xM(t) = (1� t
d)HM(t).

Proof. (a) For each n, the exact sequence of R0-modules 0 ! Mn ! Nn ! Pn ! 0

implies

hN(n) = hM(n) + hP (n)

=) hN(n)t
n = hM(n)tn + hP (n)t

n
.

Taking sum over all n gives
X

n2Z

hN(n)t
n =

X

n2Z

hM(n)tn +
X

n2Z

hP (n)t
n

=) HN(t) = HM(t) +HP (t).

(b) Since x is a non-zero divisor on M , we have a short exact sequence

0 //M(�d) ·x //M //M/xM // 0 ,

where ·x denotes the multiplication by x. Now (a) gives

HM(�d)(t) +HM/xM(t) = HM(t).
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Note that

HM(�d)(t) =
X

n2Z

hM(�d)(n)t
n

=
X

n2Z

hM(n)tn+d

= t
d ·
X

n2Z

hM(n)tn

= t
d ·HM(t).

Substituting back to the equation gives HM/xM(t) = (1� t
d)HM(t).

For the subsequent discussion in this section, we impose the following standard con-

ditions: the graded ring R is generated as an R0-algebra by a finite set of elements

{x1, . . . , xd} residing in degree 1, so R takes the form R0[x1, . . . , xd]; furthermore, the

base ring R0 is assumed to be an artinian local ring. We recall the fundamental charac-

terization that a ring is artinian if and only if it is noetherian and has Krull dimension

zero [6, Theorem 8.5]. Since R0 being artinian implies it is noetherian, Hilbert’s Basis

Theorem ensures that the polynomial ring R = R0[x1, . . . , xd] is also noetherian.

Let M be a finitely generated graded R-module. Since R is a noetherian ring, M is a

noetherian module.

Lemma 1.42. With the above assumptions, there is a chain

0 = M0 ⇢ M1 ⇢ · · · ⇢ Mk = M

such that Mi+1/Mi
⇠= (R/Pi)(ai) for some homogeneous prime ideals Pi 2 supp(M) and

integers ai.

Proof. The proof relies on induction and the noetherian property of M . If M = 0, the

chain is simply 0 = M0 = M , and the condition is trivially satisfied.

If M 6= 0, it has at least an associated prime P = ann(x) for some non-zero homoge-

neous element x 2 M . Let deg(x) = �a, consider the submodule Rx ✓ M . Since x is

homogeneous, Rx is a graded submodule. Define a map

' : R ! Rx, '(r) = rx.

This map is clearly a surjective R-module homomorphism. The kernel of ' is ker(') =

{r 2 R | rx = 0} = ann(x) = P . By the isomorphism theorem,

R/P = R/ ker(') ⇠= im(') = Rx.
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Now, consider the grading. If r 2 R has degree d, then '(r) = rx has degree d+deg(x) =

d�a. In order to make this a degree-preserving isomorphism, we need to shift the grading

of R/P by a, which gives

Rx ⇠= (R/P )(a).

Clearly, P 2 supp(Rx) ✓ supp(M).

Letting M1 = Rx, consider the module M/M1. This is a quotient of M hence also a

finitely generated graded R-module. If M/M1 6= 0, then apply the inductive hypothesis

to it; there is a submodule M1 ⇢ M2 ✓ M such that M2/M1
⇠= (R/P

0)(a0) for some

homogeneous prime ideal P 0 2 supp(M/M1) ✓ supp(M) and integer a
0. Keep doing this

process, since M is noetherian, we must have a number k > 0 such that Mk = Mk+1.

Choose the smallest k, we obtained the desired chain.

Lemma 1.43. Let M be a finitely generated graded R-module with dimM = 0. Then

there exists an integer n0 such that for all n � n0, the homogeneous component Mn = 0.

Let m0 denote the unique prime ideal of R0. Denote m := m0 �R1 �R2 � · · · . Clearly

m is an ideal of R and R/m ⇠= R0/m0 is a field, so m is a graded maximal ideal of R. We

begin the proof with a claim.

Claim. m is the unique graded maximal ideal of R.

Proof of the claim. Let m0 be any graded maximal ideal of R. Since m0 is a prime ideal

of R, m0 \ R0 is a prime ideal of R0, which forces m0 \ R0 = m0. Furthermore, any

homogeneous element y 2 m0 of positive degree i � 1 belongs to Ri. Therefore,

m0 = (m0 \R0)�
M

i�1

(m0 \Ri) ✓ m0 �
M

i�1

Ri = m.

Thus, m is the unique graded maximal ideal of R.

Proof of Lemma 1.43. Since dimM = 0, supp(M) has Krull dimension zero. Thus,

supp(M) = V (ann(M)) ✓ {m}, where m is the unique graded maximal ideal of R. This im-

plies that any prime ideal containing ann(M) must contain m, and hence
p

ann(M) = m.

Thus there exists an integer N > 0 such that mN ✓ ann(M), implies that mN ·M = 0.

A product of n elements from m belongs to mn, so every monomial of degree n is in mn.

Hence for n � N we have Rn ✓ mN . Let D be the highest degree of a minimal homogeneous

generator of M . For any n � N + D, any element in Mn can be written as a sum
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r1g1+ ...+ rkgk, where g1, ...., gk are homogeneous generators of M with deg(gi) = di  D,

and ri 2 Rn�di .

Now deg(ri) = n � di � n � D � N , so ri 2 mN and rigi = 0. Thus Mn = 0 for all

n � N + D. Hence, the homogeneous components Mn must eventually become zero for

sufficiently large n.

Theorem 1.44. [7, Theorem 4.1.3] Let M be a finitely generated graded R-module of

dimension d. The Hilbert function of M is of polynomial type of degree d� 1.

Proof. Let QM(x) 2 Q[x] be a polynomial such that hM(n) = QM(n) for n � 0. Using

the filtration in Lemma 1.42, for each i 2 {0, 1, . . . , k � 1}, the quotient module Mi+1/Mi

is isomorphic, as a graded R-module, to (R/Pi)(ai) for some homogeneous prime ideal

Pi 2 Spec(R) and some integer shift ai 2 Z. This filtration induces short exact sequences

0 �! Mi �! Mi+1 �! Mi+1/Mi �! 0.

For each n � 0, applying the additivity of length repeatedly yields

hM(n) =
k�1X

i=0

hMi+1/Mi(n) =
k�1X

i=0

h(R/Pi)(ai)(n).

Thus, if for each i, h(R/Pi)(ai)(n) agrees with a polynomial Qi(n) 2 Q[n] of degree di � 1

for sufficiently large n, where di = dim(R/Pi). Since Qi(n) � 0 for all n � 0, each Qi(n)

has non-negative highest coefficient. Then the degree of QM(n) is

deg(QM) = max
0ik�1

{deg(Qi)}.

It is also clear that d = dim(M) = max
0ik�1

{dim(Mi+1/Mi)} = max
0ik�1

{dim(R/Pi)(ai)}.
Hence we have

hM(n) =
k�1X

i=0

Qi(n) for n � 0.

Now we may assume that M = (R/P )(a), P 2 Spec(R) homogeneous, a 2 Z. We

can further reduce to the case M = R/P , P 2 Spec(R) homogeneous, since R/P and

(R/P )(a) differ only by degree shifts.

If d = 0, by Lemma 1.43, Mn = 0 for n � 0, so the Hilbert function of M is of

polynomial type of degree �1.

Assume d > 0. Since dim(R/P ) = d > 0, P does not contain the ideal m = m0 �R1 �
R2 � . . . of R. Since P \ R0 2 Spec(R0) = {m0}, we deduce m0 ✓ P . Hence 9x 2 Rs,
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s � 1 such that x /2 P . Since R is generated over R0 by R1, we may assume that s = 1.

Hence 9x 2 R1 and x /2 P , and thus x is R/P -regular. Consider the exact sequence

0 �! M(�1)
·x�! M �! M/xM �! 0.

Using the additivity of Hilbert functions on short exact sequences, we have

hM(n)� hM(�1)(n) = hM/xM(n).

Since hM(�1)(n) = hM(n� 1), we get

hM(n)� hM(n� 1) = hM/xM(n) =) �hM(n) = hM/xM(n).

By our inductive hypothesis, since dim(M/xM) = d�1, the Hilbert function hM/xM(n) is

of polynomial type of degree dim(M/xM)� 1 = d� 2. Therefore, hM(n) is of polynomial

type of degree (d� 2) + 1 = d� 1.

Corollary 1.45 (Hilbert-Serre Theorem). Let M 6= 0 be a finitely generated graded R-

module such that dim(M) = d. There is a unique Laurent polynomial Q(t) 2 Z[t, t�1] with

Q(1) 6= 0 such that

HM(t) =
Q(t)

(1� t)d
.

Proof. In the case d = 0, by Lemma 1.43, Mn = 0 for n � 0. Hence the Hilbert function

of M is of polynomial type of degree �1.

If d > 0, let HM(t) =
P

n F (n) · tn. Thanks to Theorem 1.44, F (n) is of polynomial

type of degree d� 1. Then from Lemma 1.39 we obtain the required form of HM(t).

Lemma 1.46. If R = K is a field and M is a finitely generated K-vector space, then

lK(M) = dimK M.

Proof. Since M is a finitely generated vector space over a field K, it is both an artinian

and noetherian K-module. Therefore, M has a composition series. Let

0 = M0 ( M1 ( · · · ( Ml = M

be a composition series of M , where lK(M) = l.

Each factor module Mi/Mi�1 in the composition series is isomorphic to K as a K-

module. This means dimK(Mi/Mi�1) = dimK K = 1. We use the property that for
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any subspace U ✓ V of a K-vector space V , we have dimK V = dimK U + dimK(V/U).

Applying this property to our composition series, we have:

dimK M = dimK Ml = dimK Ml�1 + dimK(Ml/Ml�1) = dimK Ml�1 + 1,

dimK Ml�1 = dimK Ml�2 + dimK(Ml�1/Ml�2) = dimK Ml�2 + 1,

. . .

dimK M1 = dimK M0 + dimK(M1/M0) = dimK{0}+ dimK(M1/M0) = 1.

By repeatedly substituting, we get:

dimK M = dimK Ml�1 + 1 = (dimK Ml�2 + 1) + 1 = · · · = dimK M0 + l = l.

Thus, dimK M = lK(M).

Corollary 1.47. Let R = K[x1, . . . , xd] be a polynomial ring over a field K. Consider the

N-grading (not necessarily standard) R = K �R1 �R2 � . . . . Then for all n � 0,

hR(n) = dimK(Rn),

where dimK is considered as dimension of K-vector space.

Proof. Let Sn = {f1, . . . , fm} be the set of monomials of degree n. Each Rn is an R0-

module, hence a K-vector space with a basis Sn. By the above lemma, dimK(Rn) =

lR0(Rn) = hR(n).

For each given degrees of xi, the number m can be computed via n and d. This problem

is called the Euler’s candy division problem. For example, regarding the standard grading,

we have m =
�
n+d�1
d�1

�
.

Example 1.48. Let K be a field. If R = K[x1, . . . , xd] endowed with the standard

grading, then

HR(t) =
1

(1� t)d
.

Proof. Induction on d. For d = 1, we have

HK[x1](t) = 1 + t+ t
2 + . . .

=
1

1� t
.
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Let S = K[x1, . . . , xd�1] and suppose that HS(t) =
1

(1�t)d�1 . By Proposition 1.41, we have

HR/hxdi(t) = (1� t) ·HR(t).

Note that S ⇠= R/hxdi, hence

(1� t) ·HR(t) = HS(t) =
1

(1� t)d�1
.

Dividing both sides by (1� t), we obtain the desired form.

We prove a fundamental result of Hilbert series of ideals of leading terms.

Lemma 1.49. Let R = K[x1, . . . , xd] be a polynomial ring over K and I ✓ R be a

homogeneous ideal. For each monomial ordering �, the quotient rings R/I and R/hLT(I)i
have the same Hilbert series.

Proof. We will show that there is a K-vector space isomorphism between the graded

components of R/I and R/hLT(I)i in each degree, which implies the equality of their

Hilbert series.

Let J = hLT(I)i be the ideal of leading terms of I, and

B = {m 2 R | m is a monomial and m /2 J}.

We show that B induces a K-basis for both R/J and R/I.

1. B induces a K-basis for R/J : Consider any polynomial f 2 R. If we perform

monomial reduction of f modulo J (which is straightforward since J is a monomial

ideal), we can express f as f = r + g, where g 2 J and r is a K-linear combination

of monomials such that no monomial in r is divisible by any monomial generator of

J . This means every monomial in r is in B. Thus, the residue class of f in R/J is

r + J . Therefore, B spans R/J .

Suppose
Pk

i=1 cimi = 0 in R/J , where ci 2 K and mi 2 B are monomials. This

means
Pk

i=1 cimi 2 J . However, since
Pk

i=1 cimi is a K-linear combination of mono-

mials in B, and by definition no monomial in B is in J , this is only possible if all

ci = 0. Thus, B is linearly independent in R/J . Hence, B is a K-basis for R/J .

2. B induces a K-basis for R/I: Let G = {g1, . . . , gm} be a Gröbner basis of I with

respect to �. For any f 2 R, the division algorithm gives f =
Pm

i=1 aigi + r,
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where ai 2 R and r is the remainder. The remainder r has the property that no

term in r is divisible by any LT(gi). This means that every monomial in r is not in

hLT(g1), . . . ,LT(gm)i = J . Hence, every monomial in r is in B. Thus, r is a K-linear

combination of elements in B, and the residue class of r in R/I is the same as the

residue class of f . Therefore, B spans R/I.

Suppose
Pk

i=1 cimi = 0 in R/I, where ci 2 K and mi 2 B are monomials. This

means h =
Pk

i=1 cimi 2 I. If h 6= 0, then LT(h) must be in hLT(I)i = J . Note that

LT(h) = mi for some i, we must have mi 2 J = hLT(I)i, which is a contradiction.

Thus, h must be 0, implying all ci = 0. Therefore, B is linearly independent in R/I.

Hence, B is a K-basis for R/I.

Ultimately, B induces a K-basis for both R/J and R/I. Thus for each degree j, the set

Bj = {m 2 B | deg(m) = j} is a basis for the degree j homogeneous components of both

R/J and R/I, i.e.,

dimK(R/I)j = |Bj| = dimK(R/J)j.

This implies that their Hilbert series are equal.



Chapter 2

Inc(N)-Equivariant Gröbner Bases

Chapter 2 delves into the theory of Inc(N)-equivariant Gröbner bases, starting with the

fundamental concept of well-partial-orders. It explores crucial properties of these or-

ders, including the existence of infinite ascending subsequences and the behavior under

component-wise ordering. In this chapter, we establish the connection to Dickson’s Lemma

and extends these ideas to infinite settings with Kruskal’s Tree Theorem and Higman’s

Lemma. Then we introduce the monoid Inc(N) and its submonoids Inc(N)i, crucial for

studying symmetries in infinite dimensional polynomial rings. A key result is the proof

for the existence of finite Inc(N)-equivariant Gröbner bases under specific monomial or-

derings. Finally, we define the Inc(N)-divisibility relation and demonstrates that the

divisibility relation on Inc(N) and Inc(N)i are well-partial-orders, laying the background

for the Hilbert-Serre theorem in the infinite dimensional context.

2.1 Well-Partial-Orders

The original references for Kruskal’s Tree Theorem as well as Higman’s Lemma are [9] and

[10], respectively. The key concept for these results is that of a well-partial-order.

Definition 2.1. Let S be a set. A partial order � on S is called a well-partial-order if

for any infinite sequence s1, s2, . . . of elements in S, there exist i < j such that si � sj.

We call (S,�) a well-partially-ordered set if � is a well-partial-order on S.

Definition 2.2. Let S be a set with a partial order �. An infinite sequence s1, s2, . . . of

elements in S is called a bad sequence if si � sj for all pairs of indices i < j.

From the above definitions, � is not a well-partial-order unless S has no bad sequence.

The following give precisely examples.
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Example 2.3. (a) The usual relation  on the set of non-negative integers is a well-

partial-order.

(b) The usual relation  on Q is not a well-partial-order since the sequence

1, 1/2, 1/4, . . . is bad.

We observe the following key properties of well-partial-orders.

Lemma 2.4. Let (S,�) be a well-partially-ordered set and given an infinite sequence

s1, s2, . . . of elements in S. Then there exists i � 1 such that there are infinitely many

indices j > i with the property that si � sj.

Proof. Assume not, then for all i � 1 there exist i < N(i) such that si � sj for all j � N(i).

We may check that the sequence s1, sN(1), sN(N(1)), . . . is bad, a contradiction.

Lemma 2.5. Let (S,�) be a well-partially-ordered set, any infinite sequence s1, s2, . . . of

elements in S has an ascending subsequence si0 � si1 � · · · with i0 < i1 < · · · .

Proof. By Lemma 2.4, there exists i0 � 1 such that for a sequence of indices i0 < i01 <

i02 < · · · we have si0 � si0j for all j � 1. Consider the sequence si01 , si02 , . . . , again,

by Lemma 2.4, there exists i1 2 {i01, i02, . . . } such that for a subsequence of indices

i1 < i11 < i12 < · · · of i01, i02, . . . it holds that si1 � si1j for all j � 1. Repeating this

process, we get a subsequence

si0 � si1 � si2 � · · ·

where i0 < i1 < i2 < · · · , as claimed.

The Cartesian product S ⇥ T can be equipped with a partial order �, derived from

the partial orders �S on S and �T on T . This order is defined component-wise, meaning

(s, t) � (s0, t0) holds when both s �S s
0 and t �T t

0 hold.

Proposition 2.6. Let (S,�S) and (T,�T ) be two well-partially-ordered sets. Then the

component-wise partial order � on S ⇥ T is also a well-partial-order.

Proof. Consider an infinite sequence (s1, t1), (s2, t2), . . . in S ⇥ T . Applying Lemma 2.5

for the set S, there is an infinite subsequence

si0 �S si1 �S · · · .

Applying Lemma 2.5 again for the subsequence ti0 , ti1 , . . . in T , the proposition holds.
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Corollary 2.7. The component-wise partial order on the finite Cartesian product of well-

partially-ordered sets is a well-partial-order.

Since the usual relation  on N0 is a well-partial-order, we now deduce a crucial

property.

Corollary 2.8. Fix an integer n � 2, the component-wise partial order on Nn
0 is a well-

partial-order.

Corollary 2.8 and Lemma 1.18 are two equivalent versions of Dickson’s Lemma. The

following proof shows the equivalence.

Proof. Suppose that there is a monomial ideal I 2 K[x1, . . . , xn] such that I is not finitely

generated. There are x
↵1 , x

↵2 , · · · 2 I such that x
↵m /2 hx↵1 , . . . , x

↵m�1i, this implies

↵i � ↵m for all i = 1, . . . ,m� 1. Hence ↵1,↵2, . . . is a bad sequence, a contradiction.

Conversely, suppose that (Nn
0 ,�) is not well-partially-ordered, then there exists a bad

sequence ↵1,↵2, · · · 2 Nn
0 . Consider the ideal

I = hx↵i : i � 1i.

Since I is a finitely generated monomial ideal, there are i1, . . . , in � 1 such that I =

hx↵i1 , . . . , x
↵in i. Set m = max{i1, . . . , in}, since x

↵m+1 2 I = hx↵i1 , . . . , x
↵in i, there is

j 2 {i1, . . . , in} such that x↵j |x↵m+1 . Hence ↵j � ↵m+1, a contradiction.

2.2 Kruskal’s Tree Theorem and Higman’s Lemma

The infinite dimensional case of Dickson’s Lemma is Kruskal’s Tree Lemma, which is useful

to prove the finiteness up to symmetry.

Definition 2.9. Let A be a set. The set B is called a multi-subset of A if every element

of B is an element of A and elements of B need not be distinct. The ordering of elements

in B is not important.

For example, let A = {1, 2, 3, 4, 5}, the set B = {1, 2, 2, 5} is a 4-element multi-subset

of A. Also the multi-subset {1, 2, 5, 2} is the same as B.

Definition 2.10. Let �S be a partial order on a set S and Ŝ be the set of finite multi-

subsets of S. We define the partial order � on Ŝ by for any A,B 2 Ŝ, A � B if and only

if there is an injective map f : A ! B such that a �S f(a) for all a 2 A.
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Remark 2.11. If there is a bad sequence A1, A2, . . . of finite multi-subsets of S, then

there are no Ai = ;.

Proof. Indeed, if there exists Ai = ;, the map ; ! Aj is injective for all j, thus Ai � Aj,

a contradiction.

Lemma 2.12. If (S,�S) is a well-partially-ordered set, then (Ŝ,�) is a well-partially-

ordered set.

Proof. Proof by contradiction. Assume the set Ŝ contains at least one infinite bad se-

quence. We can select such a sequence A1, A2, . . . , by making minimal choices iteratively

based on set cardinality. Choose A1 such that |A1| is minimized among all possible initial

elements of infinite bad sequences; then, given A1, choose A2 such that A1, A2, . . . is an

infinite bad sequence and |A2| is minimized; continue this process, selecting Ak with min-

imal cardinality |Ak| subject to the condition that A1, . . . , Ak, . . . remains an infinite bad

sequence, given the previously chosen A1, . . . , Ak�1.

By the definition of a bad sequence, the constructed sequence A1, A2, . . . allows us to

select an element ai 2 Ai for each i � 1. For each i, define the set Bi = Ai \ {ai}. By

Lemma 2.5, there exist indices i0 < i1 < . . . such that

ai0 �S ai1 �S · · · .

Now consider the sequence A1, A2, . . . , Ai0�1, Bi0 , Bi1 , . . . , we prove that it is a bad se-

quence. Indeed, we have Ai � Aj for all i < j  i0 � 1. As Ai � Aj for all i < j, it

follows that Ai � Bj for all i  i0 � 1, j 2 {i0, i1, . . . } (since the set of all the injective

maps from Ai to Bj is just a subset of the set of all the injective maps from Ai to Aj).

Finally, we have Bi � Bj with i, j 2 {i0, i1, . . . }, i < j. Indeed, if Bi � Bj, the injective

map f : Bi ! Bj could be extended to a map g : Ai ! Aj by mapping g(a) = f(a) for all

a 2 Bi and g(ai) = aj, this implies that Ai � Aj, which cannot happen. Hence, the se-

quence A1, A2, . . . , Ai0�1, Bi0 , Bi1 , . . . is a bad sequence, which contradicts the minimality

of the cardinality |Ai0 |.

Definition 2.13. [11] Let S be a well-partially-ordered set. An S-labelled trees is the set

of (isomorphism classes of) finite, rooted trees whose vertices are labelled with elements

in S.

We now inductively define the partial order � (representing homeomorphic embedding)

on the set of finite S-labelled trees. Given two S-labelled trees, T and T
0, we say T � T

0

if there exists a vertex v in T
0 such that:
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1. The S-label of v is greater than or equal to the S-label of the root of T (with respect

to the order on S).

2. Let B1, . . . , Bp be the subtrees rooted at the children of the root of T , and let

B
0
1, . . . , B

0
p0 be the subtrees rooted at the children of v. There must exist an injective

map ⇡ : {1, . . . , p} ! {1, . . . , p0} such that Bi � B
0
⇡(i) holds recursively for all

i 2 {1, . . . , p}.

It is a consequence of this definition that T � T
0 corresponds to the existence of an

injective, label-order-preserving, structure-preserving map from the nodes of T into the

nodes of T 0.

Figure 2.1: Two N-labelled trees with the partial-order divides "|", rooted at 1.

In the figure, it is clear that the left tree is "less than" the right tree. Now by using

the partial-order above, we discover the Kruskal’s tree theorem.

Theorem 2.14. [11, Theorem 1.2] If S is a well-partially-ordered set, then the set of

S-labelled trees is well-partially-ordered by the partial order defined above.

Proof. Proof by contradiction. Assume the set Ŝ contains at least one infinite bad se-

quence. We can select such a sequence T1, T2, . . . by making minimal choices iteratively

based on set cardinality. Choose T1 such that |T1| is minimized among all possible initial

elements of infinite bad sequences; then, given T1, choose T2 such that (T1, T2, . . . ) is an

infinite bad sequence and |T2| is minimized; continue this process, selecting Tk with mini-

mal cardinality |Tk| subject to the condition that (T1, . . . , Tk, . . . ) remains an infinite bad

sequence, given the previously chosen T1, . . . , Tk�1. At its root, Ti branches into a finite

multi-set Ri of smaller trees, which we shall called branches. Let

R =
[

i�1

Ri.
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We claim that R cannot contains a bad sequence. Indeed, assume that there is a bad

sequence Bi0 , Bi1 , . . . in R, with Bi 2 Ri, i0 < i1 < . . . . Consider the sequence

T1, . . . , Ti0�1, Bi0 , Bi1 . . . , proving as the above lemma, we deduce this sequence is bad.

By taking the identity mapping, we have Bi � Ti for all i 2 {i0, i1, . . . }, which contradicts

to the minimality of Ti0 among all the sequences starting with T1, T2, . . . , Ti0�1. Hence R

is well-partially-ordered. Applying Lemma 2.12, the sequence R1, R2, . . . of finite multi-

subsets of R cannot be bad (with respect to the partial order defined in the lemma). Let

si be the label of the root of Ti for each i � 1. Since S is well-partially-ordered, by

Lemma 2.5, we may also assume that s1 < s2 < s3 < · · · . Hence there is an injective map

Ri ! Rj with i < j, mapping each branch B of Ti to a branch B
0 of T 0 with B � B

0. This

means that Ti � Tj, a contradiction.

Let �S be a partial order on the set S, define a partial order � on S
⇤ =

S
n�1 S

n of

finite sequences over S by saying that (s1, . . . , sp) � (s01, . . . , s
0
q) if there exists a strictly

increasing map ⇡ : {1, . . . , p} ! {1, . . . , q}, si �S s
0
⇡(i) for all i. We next prove the

Higman’s Lemma, which uses Kruskal’s Tree Theorem.

Corollary 2.15 (Higman’s Lemma). If S is a well-partially-ordered set, then (S⇤
,�) is a

well-partially-ordered set, where the partial order � is defined above.

Proof. We demonstrate Higman’s Lemma by applying Kruskal’s Tree Theorem. Define a

mapping � from the set of finite sequences S
⇤ to the set of finite S-labelled trees: for a

sequence � = (s1, . . . , sq) 2 S
⇤, let �(�) be the tree consisting of a single path of length

q � 1, rooted at a node labelled s1, whose child is labelled s2, and so on, terminating at

the leaf node labelled sq.

Now, consider any infinite sequence �1, �2, . . . of elements from S
⇤. This corresponds

to an infinite sequence of trees T1 = �(�1), T2 = �(�2), . . . . According to Kruskal’s Tree

Theorem, the set of finite S-labelled trees is well-partial-ordered under the relation of

homeomorphic embedding �. Therefore, this infinite sequence of trees must contain an

embedding, i.e., there exist indices i < j such that Ti � Tj. This embedding between the

tree representations implies the divisibility condition required by Higman’s Lemma, thus

proving the lemma.
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2.3 The Monoid Inc(N) and Its Subsets Inc(N)i

Let K be a field and X = {xij | i 2 [c], j 2 N} an infinite countable collection of variables.

We consider the associated polynomial ring K[X]. Interest in the ideal structure of such

infinite polynomial rings arises from challenges in areas like algebraic statistics, tensor

theory, and representation theory, especially when dealing with structures in indefinitely

large dimensions.

A key aspect of recent research involves ideals in K[X] that exhibit specific symmetries.

Often, the focus is on ideals stable under the action of the symmetric group or under the

action of submonoids derived from the monoid of strictly increasing functions on the

positive integers. This latter monoid, denoted Inc(N), consists of all maps ⇡ : N ! N such

that ⇡(i) < ⇡(i+ 1) holds for every i � 1:

Inc(N) = {⇡ : N ! N | ⇡(i) < ⇡(i+ 1) for all i � 1}.

Delving deeper into these monoids, we examine the submonoids Inc(N)i that fix the

initial elements

Inc(N)i = {⇡ : N ! N | ⇡(j) = j for all j  i},

where i � 0 is an integer. By convention, Inc(N)0 = Inc(N).
An element �i 2 Inc(N)i for a given i > 0, is defined by

�i(j) =

(
j if 1  j  i,

j + 1 if j > i,

and �0(j) = j + 1. By definition, �i 2 Inc(N)j for all j  i.

We state some basic decompositions.

Proposition 2.16. For i � 0 and ⇡ 2 Inc(N)i, there exist ⌧ 2 Inc(N)i+1 satisfying

�i � ⇡ = ⌧ � �i.

Furthermore, if ⇡(m)  n, then ⌧(m+ 1)  n+ 1.

Proof. For i = 0, we may take

⌧(j) =

(
1 if j = 1,

⇡(j � 1) + 1 if j � 2.
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And for i > 0, we take

⌧(j) =

(
j if 1  j  i,

⇡(j � 1) + 1 if j � i+ 1.

A straightforward computation implies the first part of the lemma. For the second part,

consider 2 cases:

• If m  i, then ⇡(m) = m  n, ⌧(m+ 1) = m+ 1  n+ 1.

• If m � i+ 1, then ⌧(m+ 1) = ⇡(m) + 1  n+ 1.

In conclusion, the lemma holds.

Corollary 2.17. �i � �j�1 = �j � �i for every j > i � 0.

Proof. Apply the above lemma for ⇡ = �j�1 2 Inc(N)i. Follow the proof of Proposi-

tion 2.16, for i = 0,

⌧(j) =

(
1 if j = 1,

�j�1(j � 1) + 1 if j � 2,

=

(
1 if j = 1,

j if j � 2,

= j if j � 1

= �j(j).

For i > 0, the computation is identically the same.

Lemma 2.18. For any ⇡ 2 Inc(N)i \ Inc(N)i+1, there exists ⌧ 2 Inc(N)i+1 such that

⇡ = ⌧ � �i.

Proof. We may check that the map

⌧(j) =

(
j if 1  j  i+ 1,

⇡(j � 1) if j � i+ 2

satisfies our lemma. Indeed, let us consider 3 cases:

• For j  i, ⌧(�i(j)) = ⌧(j) = j = ⇡(j).

• For j = i+ 1, ⌧(�i(j)) = ⌧(i+ 2) = ⇡(i+ 1) = ⇡(j).
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• For j � i+ 2, ⌧(�i(j)) = ⌧(j + 1) = ⇡(j).

Thus ⇡ = ⌧ � �i.

Definition 2.19. For integers i � 0, m  n, the set Inc(N)im,n is defined by

Inc(N)im,n = {⇡ 2 Inc(N)i | ⇡(m)  n}.

Furthermore, we define

Inc(N)jm,n � Inc(N)ik,m = {⌧ � ⇡ | ⌧ 2 Inc(N)jm,n and ⇡ 2 Inc(N)ik,m}

where k  m  n and i, j � 0.

Proposition 2.20. Consider integers i � 0 and n > m � 1. We have a decomposition

Inc(N)im,n = Inc(N)i+1
m+1,n � Inc(N)im,m+1, (2.1)

as subsets of Inc(N). In particular,

Inc(N)im,n = Inc(N)im+1,n � Inc(N)im,m+1.

Proof. Let ⇡ 2 Inc(N)i+1
m+1,n and ⌧ 2 Inc(N)im,m+1. For any integer j  m, we have

⌧(j)  m+ 1

=) ⇡(⌧(j))  ⇡(m+ 1)  n.

Thus ⇡ � ⌧ 2 Inc(N)im,n and hence the inclusion (◆) of (2.1) holds.

Conversely, let ⇡ 2 Inc(N)im,n. If ⇡ = id, the inclusion holds. If ⇡ is not the identity,

we may find a j � i such that ⇡ 2 Inc(N)j \ Inc(N)j+1. From the proof of Lemma 2.18,

the map ⌧ given by

⌧(s) =

(
s if 1  s  j + 1,

⇡(s� 1) if s � j + 2

satisfies ⇡ = ⌧ � �j. Note that

⌧ 2 Inc(N)j+1
m+1,n ⇢ Inc(N)i+1

m+1,n (since j � i),

and

�j 2 Inc(N)jm,m+1 ⇢ Inc(N)im,m+1.

Thus the Equation (2.1) holds. The last formula follows from the same proof, with the

reminder that Inc(N)i+1
m,m+1 ⇢ Inc(N)im,m+1.



36

2.4 The Existence of Finite Inc(N)-Equivariant Gröbner
Bases

We begin by recalling standard order-theoretic concepts. A total order � on a set S is

a partial order satisfying the comparability condition: for any x, y 2 S, either x � y or

y � x. With respect to such an order, an element x 2 S is called minimal if no element

y 2 S, distinct from x, satisfies y � x . A total order � on S is called a well order if the

property holds that every non-empty subset of S contains a minimal element with respect

to �.

Let Mon denote the set of monomials of variables in X = {xij|i 2 [c], j 2 N}.

Definition 2.21. A monomial ordering � on Mon is a well order such that 1 � u for all

u 2 Mon and u � v implies uw � vw for all u, v, w 2 Mon.

Proposition 2.22. Every well-partially-ordered set (S,�) has only finitely many minimal

elements.

Proof. If |S| is finite, we are done. If |S| is infinite, suppose that there are infinitely many

minimal elements in S. Consider the sequence which all the elements inside are minimal.

Clearly, this is a bad sequence by definition of minimal element, a contradiction to the

assumption that S is well-partially-ordered.

Fix a monomial order on Mon. Let ⇧ be a monoid acting on Mon and assume that

the action preserves strict inequalities, that is if u � v then ⇡(u) � ⇡(v) for all ⇡ 2 ⇧ and

u, v 2 Mon.

Note that K[X] = KMon the polynomial ring in the variables in X, or equivalently,

the K-algebra on Mon. The action of ⇧ on K[X] is additivity, that is for any ↵, � 2 K,

⇡ 2 ⇧ and u, v 2 Mon, we have ⇡(↵u+ �v) = ↵⇡(u) + �⇡(v).

Definition 2.23. An ideal I ✓ K[X] is called a ⇧-invariant ideal if ⇡I ✓ I for all ⇡ 2 ⇧.

Definition 2.24. A subset B of a ⇧-invariant ideal I ✓ K[X] is called a ⇧-Gröbner

basis , or equivariant Gröbner basis of I if for every non-zero polynomial f 2 I, its leading

monomial LM(f) must be divisible by LM(⇡(g)) for some element g 2 B and some ⇡ 2 ⇧.

Lemma 2.25. If I = hm1,m2, . . . i ✓ K[X] is an ideal generated by the monomials mi,

and f 2 K[X] is a monomial, then f 2 I if and only if mi|f for some i � 1.
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Proof. The "if" part is obvious. For the "only if" part, let f 2 K[X]. Choose p, q such

that every term of f only involves the variables x11, x12, . . . , x1,q+1, x21, x22, . . . , xp+1,q+1.

Moreover, since f is a monomial, then

f = ↵

p+1Y

i=1

q+1Y

j=1

x
aij
ij 2 K

⇥
xij|i 2 [p+ 1], j 2 [q + 1]

⇤
,

where ↵ 2 K, aij 2 N. Now since f 2 I, there are monomials mn1 , . . . ,mnk
which we may

assume to involve only the variables xij, i 2 [p+ 1], j 2 [q + 1] such that f =
Pk

i=1 gimni .

Hence f is a monomial of the ideal hmn1 , . . . ,mnk
i ✓ K

⇥
xij|i 2 [p+ 1], j 2 [q + 1]

⇤
, where

{mn1 , . . . ,mnk
} is a subset of {m1,m2, . . . }. This means that there is a ms divides f , as

claimed.

Proposition 2.26. Let I ✓ K[X] be a ⇧-invariant ideal. If B is a ⇧-Gröbner basis of I,

then h⇧Bi = I.

Proof. Since I is a ⇧-invariant ideal, ⇧B is a subset of I, hence h⇧Bi ✓ I. Conversely,

suppose that there is f 2 I \ h⇧Bi. Choose f such that LT(f) is minimal. We have

LT(f) 2 hLT(I)i = hLT(g)|g 2 ⇧Bi.

By Lemma 2.25, there is g 2 ⇧B such that LT(f) = ↵mLT(g), where m is a monomial

and ↵ 2 K. Thus f � ↵mg 2 I \ h⇧Bi. But we also have LT(f � ↵mg) < LT(f), a

contradiction to the minimality of LT(f). Hence I = h⇧Bi.

A ⇧-Gröbner basis need not be finite. To determine the finiteness, we first define the

relation ⇧-divisibility.

Definition 2.27. Let u, v 2 Mon. We define u|⇧v if there is a ⇡ 2 ⇧ such that ⇡(u)|v.

This relation is well-defined. Indeed

• The reflexivity is obtained by taking ⇡ = id;

• If ⇡(u)|v and �(v)|w, then (�⇡)u|w, then |⇧ is transitive;

• If ⇡(u)|v and �(v)|u then u � ⇡(u) � v � �(v) � u so that u = v, then |⇧ is

antisymmetric.

Proposition 2.28. [2, Theorem 2.12] Given a monomial order on Mon and assume ⇧

preserves the strict ordering of monomials. Every ⇧-invariant ideal I ✓ K[X] has a finite

⇧-Gröbner basis if and only if |⇧ is a well-partial-order.
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Proof. Suppose that |⇧ is not a well-partial-order, then there is a bad sequence u1, u2, . . .

of monomials in K[X]. Consider the ideal ⇧-invariant ideal I = h⇧u1,⇧u2, . . . i. Suppose

that I has a finite ⇧-Gröbner basis, say v1, . . . , vn. If v1, . . . , vn are monomials, then

uj 2 I = h⇡vi|⇡ 2 ⇧, i = 1, . . . , ni. Therefore for all j � 0, there exists vij 2 {v1, . . . , vn}
such that vij |⇧uj.

Since {v1, . . . , vn} is a finite set, for some 1  i  n, there exists an infinite sequence

i1 < i2 < · · · such that vi is ⇧-divisor of uij for every j.

Since vi 2 I = h⇧u1,⇧u2, . . . i there is an index r such that ur is a ⇧-divisor of vi.

Hence ur is a ⇧-divisor of uij for every j. Choose j such that r < ij, we get a contradiction

to the assumption that the sequence u1, u2, . . . is bad.

Next assume that there is vi 2 I such that vi is not a monomial. Let J be the ideal

generated by the ⇧-orbits of all the terms of v1, . . . , vn. We have I ✓ J . Since I is

generated by monomials and v1, . . . , vn are in I, by Lemma 2.25, J ✓ I. Hence I = J and

I is generated by the orbits of finitely many monomials. Repeating the above proof we

will imply that Mon can’t contain a bad sequence. Hence |⇧ is a well-partial-order.

For the converse direction, assume I is a ⇧-invariant ideal within K[X]. Consider the

set of all leading monomials associated with non-zero elements of I, i.e., L = {LM(f) |
f 2 I \ {0}}. Let M be the subset of L containing only the |⇧-minimal elements. By

Proposition 2.22, M is a finite set; let us write M = {u0, . . . , up�1}. For each ui 2 M , we

can select a corresponding polynomial fi 2 I \ {0} such that LM(fi) = ui. It then follows

that the finite collection {f0, . . . , fp�1} forms a ⇧-Gröbner basis for the ideal I.

In Theorem 2.31 below we use the set of variables X = {xij | i 2 [c], j 2 N} with the

lexicographic order on X: xij � xi0j0 if i < i
0 or i = i

0 and j < j
0. And we use ⇧ := Inc(N),

the set of strictly increasing maps N ! N. The set Inc(N) acts on X by ⇡xij = xi⇡(j).

A monomial order � for which u � v implies ⇡u � ⇡v for all ⇡ 2 ⇧ is called a monomial

order preserved by ⇧. For example, the afore-mentioned lexicographic order is preserved

by Inc(N).
Consider the ring K[xij|i 2 [c], j 2 N]. The following result employs Higman’s Lemma

in the case S = Nc with the component-wise partial order, which is a well-partial-order by

Dickson’s Lemma.

Lemma 2.29. |Inc(N) is a well-partial-order.

Proof. Let S = Nc
0. We define a mapping � that encodes each monomial u 2 K[X] into
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a finite sequence in S
⇤. For u =

Qc
i=1

Q1
j=1 x

eij
ij (where only finitely many eij > 0), let

p = max{j | 9i, eij > 0} be the largest column index involved in u. The encoding is

�(u) = s = (s1, . . . , sp), where each sj 2 S is the vector sj = (e1j, e2j, . . . , ecj) 2 Nc
0. For

example, if c = 3 and u = x
2
11x

1
12x

6
13x

3
22x

1
32, then p = 3 and s = ((2, 0, 0), (1, 3, 1), (6, 0, 0)).

Now, take any infinite sequence of monomials u1, u2, . . . . Applying the encoding yields

an infinite sequence of words �(u1),�(u2), . . . in S
⇤. By Higman’s Lemma, S

⇤ is well-

partial-ordered under the order �. Therefore, there must exist indices k < l such that

�(uk) � �(ul). Let s = �(uk) with length p, and s
0 = �(ul) with length p

0. The condition

s � s
0 implies the existence of an injective, strictly order-preserving map ⇡ : {1, . . . , p} !

{1, . . . , p0} such that sj � s
0
⇡(j) holds component-wise for all j 2 {1, . . . , p}.

We now show this implies ⇡(uk)|ul, where ⇡(uk) is the monomial obtained by replacing

each xij in uk with xi,⇡(j). Consider an arbitrary variable xi,j0 . We need to compare its

exponent in ⇡(uk) and ul.

• Case 1: j0 = ⇡(j) for some j 2 {1, . . . , p}. Then the exponent of xi,⇡(j) in ⇡(uk) is, by

definition of ⇡(uk) and s, exactly (sj)i. The exponent of xi,⇡(j) in ul is (s0⇡(j))i. The

component-wise inequality sj � s
0
⇡(j) gives (sj)i  (s0⇡(j))i, establishing the required

exponent inequality.

• Case 2: j
0 is not in the image of ⇡. Then the exponent of xi,j0 in ⇡(uk) is 0, which

is less than or equal to its non-negative exponent in ul. Since the exponent of every

variable in ⇡(uk) is less than or equal to its exponent in ul, we conclude that ⇡(uk)

divides ul.

Thus ⇡(uk)|ul, as desired.

By an argument similar to the proof of Lemma 2.29, we can show that the following

is true.

Corollary 2.30. For each integer i > 0, |Inc(N)i is a well-partial-order.

Theorem 2.31. [11, Theorem 2.3] Let I be an Inc(N)-invariant ideal in the polynomial

ring R = K[xij | i 2 [c], j 2 N], where c � 1 is a fixed integer. If � is any monomial order

on R that is preserved by the action of Inc(N), then I possesses a finite Inc(N)-Gröbner

basis with respect to �. Additionally, every such Inc(N)-invariant ideal I is generated by

finitely many Inc(N)-orbits of polynomials.
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Proof. By Proposition 2.28, we only need to show that |Inc(N) is a well-partial-order, which

is given in Lemma 2.29.

2.5 Hilbert’s Basis Theorem for Infinite Dimensional
Polynomial Rings

Let Sym(j) denote the symmetric group acting on the set {1, . . . , j}. The infinite

symmetric group is defined by Sym(N) :=
S

j2N Sym(j), using the standard inclusions

Sym(j) ,! Sym(j + 1) where permutations in Sym(j) are extended to fix the ele-

ment j + 1. This group Sym(N) acts naturally on the polynomial ring K[X] (where

X = {xij | i 2 [c], j 2 N}) by permuting the column indices of the variables: for any

⇡ 2 Sym(N), its action on a variable xij is defined as ⇡ · xij = xi,⇡(j).

Lemma 2.32. Let f 2 K[X] be any polynomial. Then the Inc(N)-orbits of f is a subset

of the Sym(N)-orbits of f .

Proof. Let ⇡ 2 Inc(N) and n the maximal column index of f . Since ⇡xij = xi⇡(j), ⇡(f)

just involves the first ⇡(n) columns. Since the map i 7! ⇡(i) on {1, . . . , ⇡(n)} is injective,

there exists � 2 Sym(⇡(n)) satisfying �(i) = ⇡(i) for all 1  i  n. One checks that

⇡(f) = �(f).

Consequently, if an ideal is Sym(N)-invariant, it must be Inc(N)-invariant. The follow-

ing result is the infinite dimensional version for the Hilbert’s basis theorem.

Corollary 2.33. Every Sym(N)-invariant ideal in K[X] can be generated by a finite col-

lection of Sym(N)-orbits.

Example 2.34. Let I be the ideal hxj | j 2 Ni of the ring K[x1, x2, . . . ]. The Inc(N)-orbit

of a variable xi is Inc(N) ·xi = {x⇡(i) | ⇡ 2 Inc(N)} = {xk | k � i}. In particular, the orbit

of x1 is Inc(N) · x1 = {xk | k � 1}. Clearly, the orbit of x1 generates I.

2.6 Inc(N)i-Invariant Chains of Ideals

We study Inc(N)i-invariant ideals following these construction. Consider the set of vari-

ables X = {xij | i 2 [c], j 2 N} as in Section 2.3. For each integer n � 0, put

Xn = {xi,j | i 2 [c], j 2 [n]} if n > 0, and X0 = ;.
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For each ideal Im 2 K[Xm], we will write hInc(N)im,n(Im)i instead of hInc(N)im,n(Im)iK[Xn]

if the ring K[Xn] is clear.

Definition 2.35. [4, Definition 5.1] Fix an integer i.

(a) An Inc(N)i-invariant chain is a chain I = (In)n2N of ideals In ✓ K[Xn] such that,

as subsets of K[X], one has

Inc(N)im,n(Im) ✓ In whenever m  n.

(b) An Inc(N)i-invariant chain I = (In)n2N is said to stabilize if there exist an integer r

such that

hInc(N)ir,n(Ir)iK[Xn] = In whenever r  n.

The least integer r � 1 with this property is called the i-stability index indi(I) of I.

The number ind(I) = ind0(I) is called the stability index of I.

Example 2.36. Let X = {xi|i 2 N} be a variable set; so c = 1 and we set xi := x1,i.

Consider the chain I = (In)n2N, where In = hx1, x2, . . . , xni. For each � 2 Inc(N)0m,n =

Inc(N)m,n, we have �(m) 2 {m,m+ 1, . . . , n}. Now

Inc(N)m,n(Im) = hx1, . . . , xni = In.

Thus the Inc(N)-invariant chain I has stability index 1.

Remark 2.37. Note that, for any Inc(N)i-invariant chain I = (In)n2N. As subsets of

K[X], we have

I1 ✓ I2 ✓ I3 ✓ . . . .

This chain is obtained by taking the identity element id 2 Inc(N)i.

Proposition 2.38. Let I = (In)n2N be an Inc(N)i-invariant chain. For any pair integers

n > m > 0,

hInc(N)im,n(Im)i = hInc(N)im+1,n � Inc(N)im,m+1(Im)i ✓ hInc(N)im+1,n(Im+1)i.

Proof. By Proposition 2.20, the first equality is clear. For the inclusion, we only need to

observe that Inc(N)im,m+1(Im) ✓ Im+1.

Lemma 2.39. Let I = (In)n2N be an Inc(N)i-invariant chain. For any integer r > 0, the

following are equivalent:
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(a) I stabilizes and indi(I)  r;

(b) For n � m � r, we have

hInc(N)im,n(Im)iK[Xn] = In;

(c) For any n � r, we have
[

jr

hInc(N)ij,n(Ij)iK[Xn] = In.

Proof. The directions (b) ) (a) and (a) ) (c) are trivial by definition of the stability

index. Now assume (c), by Proposition 2.38 we have

In =
[

jr

hInc(N)ij,n(Ij)i

= hInc(N)i1,n(I1)i [ hInc(N)i2,n(I2)i [ · · · [ hInc(N)ir�1,n(Ir�1)i [ hInc(N)ir,n(Ir)i

✓ hInc(N)i2,n(I2)i [ hInc(N)i3,n(I3)i [ · · · [ hInc(N)ir,n(Ir)i

. . .

✓ hInc(N)ir,n(Ir)i ✓ In

=) In = hInc(N)ir,n(Ir)iK[Xn].

Thus (c) ) (a) holds. Now, if (a) holds, we have if r  m  n,

In = hInc(N)ir,n(Ir)i ✓ hInc(N)im,n(Im)i ✓ In.

Hence (a) ) (b).

The following corollary, which is based on the equivalence between (a) and (b) in the

above lemma, implies a useful information on the stability index.

Corollary 2.40. Let I = (In)n2N be a stabilizes Inc(N)i-invariant chain. Then

indi(I) = inf{r | hInc(N)im,n(Im)iK[Xn] = In whenever r  m  n}.

By Remark 2.37, an Inc(N)i-invariant chain I = (In)n2N induces the following chain of

ideals of K[X]

hI1iK[X] ⇢ hI2iK[X] ⇢ . . . . (2.2)

These ideals are not necessarily Inc(N)i-invariant. But Remark 2.37 together with the

chain (2.2) give
[

n�1

hIniK[X] =
[

n�1

In =: I,

which implies the following invariant property.
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Lemma 2.41. The ideal I defined above is an Inc(N)i-invariant ideal.

Proof. Let f 2 I =
S

n�1 In. Thus f must belong to Im for some integer m � 1. Assume

m is smallest. Let ⇡ 2 Inc(N)i, then ⇡ can be viewed as an element of Inc(N)im,⇡(m). Since

I is an Inc(N)i-invariant chain, we have

⇡(f) 2 Inc(N)im,⇡(m)(Im) ✓ I⇡(m) ✓ I.

Thus I is an Inc(N)i-invariant ideal.

Lemma 2.42. Let i � 0 be an integer and I = (In)n2N be an Inc(N)i-invariant chain.

Then the chain LT(I) = (LT(In))n2N also is an Inc(N)i-invariant and the i-stability index

of LT(I) is at least indi(I).

Proof. Using Proposition 3.20, for r  n, we have

hInc(N)ir,n(LT(Ir))i ✓ hLT(Inc(N)ir,n(Ir))i ✓ LT(In).

Hence LT(I) is an invariant chain.

Let r = indi(LT(I)), by definition, we have LT(In) = hInc(N)ir,n(LT(Ir))i. To prove

the second assertion, we only need to show that for all r � n, the equality below holds:

In = hInc(N)ir,n(Ir)i.

The inclusion (◆) is trivial. Conversely, take f 2 In \ {0}. Then LT(f) 2
hInc(N)ir,n(LT(Ir))i, thus

LT(f) = q1 · LT(⇡1(g1)),

for some monomial q1 2 K[Xn] and for some ⇡1 2 Inc(N)ir,n, g1 2 Ir. Consider the

polynomial f 0 = f � q1 · ⇡1(g1), there exist a monomial q2 2 K[Xn] and for some ⇡2 2
Inc(N)ir,n, g2 2 Ir such that

LT(f 0) = q2 · LT(⇡2(g2)) � LT(f).

Continuing this procedure eventually leads to termination after finitely many steps. Thus

we may find an m > 0 such that

f = q1 · ⇡1(g1) + · · ·+ qm · ⇡m(gm),

for some monomials qk 2 K[Xn] and for some ⇡k 2 Inc(N)ir,n and gk 2 Ir. This means

that f 2 hInc(N)ir,n(Ir))i, which implies the reverse inclusion.
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The above lemma is [4, Lemma 7.1]. The original proof of this lemma uses [4, Remark

5.5], which is a wrong property unless the chain I is saturated, i.e., In = I \K[Xn] for all

n > 0 and for some Inc(N)i-invariant ideal I of K[X] (see Definition 2.44 below).

The fallacy of [4, Remark 5.5] can be exposed by a counterexample, inspired by [12,

Example 6.5], but simpler: let c = 1, we use xj ⌘ x1,j for simplification. Consider the

chain I = (In)n2N where

In =

8
><

>:

hx2
1, . . . , x

2
ni for n  9,

hx1, x
2
2, . . . , x

2
10i for n = 10,

hInc(N)10,n(I10)i for n � 11.

Now we have I =
S

n�1 In = hx1, x2, . . . i = hInc(N)(x1)i. Clearly, the set {x1} is an

Inc(N)-equivariant Gröbner basis of I, hence r = 1, while the stability index of I is

ind(I) = 10. Thus, the inequality r � ind(I) in this remark is wrong.

Corollary 2.43. Each Inc(N)i-invariant chain stabilizes.

Recall that Mon is the set of monomials in K[X]. In the proof, we sometimes write

the monomial ordering � in place of |Inc(N)i for convenience. We will prove that (Mon,�)

is a well-partially-ordered set by using Higman’s lemma, then imply the stability of the

Inc(N)i-invariant chain. We consider the case i = 0, namely Inci(N) = Inc(N); the case

i > 0 can be treated similarly.

Proof. Let Mon(K[Xn]) be the set of monomials in K[Xn]. For each n 2 N, observe

that there is a bijection between Mon(K[Xn]) and the set (Nc
0)

n in which each monomial

x
↵ 2 Mon(K[Xn]) get mapped to

(↵1,1,↵2,1, . . . ,↵c,1, . . . ,↵1,n,↵2,n, . . . ,↵c,n).

Thus it extended to a bijection between

M :=
G

n�1

Mon(K[Xn]) and (Nc
0)

⇤ =
[

n�1

(Nc
0)

n
,

where the first union is disjoint union. By Dickson’s lemma, Nc
0 is well-partially-ordered

by the standard component-wise partial order. Thus (Nc
0)

⇤ is well-partially-ordered by

Higman’s lemma, or, equivalently, (M,�) is a well-partially-ordered set.

The partial-order of (Mon,�) is as follows: for m  n, bm 2 Mon(K[Xm]) and

bn 2 Mon(K[Xn]), we have bm � bn if and only if there exists an increasing map
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⇡ : {1, 2, . . . ,m} ! {1, 2, . . . , n} such that ⇡(bm)|bn. Clearly ⇡ can be viewed as an

element of Inc(N)im,n. Here Mon can be considered as a subset of M since there is an

injection from Mon to M , we must have (Mon,�) is well-partially-ordered.

Let I = (In)n2N be an Inc(N)i-invariant chain. By the above lemma, the chain LT(I) =
(LT(In))n2N is also Inc(N)i-invariant.

Now if the chain LT(I) stabilizes, then by Lemma 2.42, the i-index of I is bounded

above by indi(LT(I)). Thus I must stabilizes. By this observation, we may assume that

I is a chain of monomial ideals, and we aim to prove that I is stabilizes.

Proof by contradiction. Assume that the chain I does not stabilize. Then for any

integer m, there exists some n > m such that hInc(N)im,n(Im)i ( In. This allows us to

construct an infinite sequence of indices n1 < n2 < n3 < . . . and an infinite sequence of

monomials u1, u2, u3, . . . such that for all k � 1:

1. uk 2 Ink
.

2. uk /2 hInc(N)ink�1,nk
(Ink�1

)i. This means uk is not divisible by any monomial ⇡(m)

for any m 2 Ink�1
and ⇡ 2 Inc(N)ink�1,nk

.

Consider the infinite sequence u1, u2, u3, . . . . Since (Mon,�) is well-partially-ordered,

there must exist indices j < k such that uj � uk. This means 9⇡ 2 Inc(N)inj ,nk
satisfying

⇡(uj)|uk. Now ⇡(uj) 2 Inc(N)inj ,nk
(Inj) implies that uk 2 hInc(N)inj ,nk

(Inj)i.
Since j < k, we have nj  nk�1, thus Inj ✓ Ink�1

. By Proposition 2.38

hInc(N)inj ,nk
(Inj)i ✓ hInc(N)ink�1,nk

(Ink�1
)i.

Therefore, uk 2 hInc(N)ink�1,nk
(Ink�1

)i. This contradicts the condition (2) in the construc-

tion of the sequence {uk}. Thus the chain I must stabilize.

Definition 2.44. (a) Two Inc(N)i-invariant chains I = (In)n2N and J = (Jn)n2N are

called equivalent chains if
S

n�1 In =
S

n�1 Jn.

(b) For an Inc(N)i-invariant ideal I of K[X], the saturated chain of I is the Inc(N)i-
invariant chain (I \K[Xn])n2N.

Remark 2.45. If (In)n2N is an Inc(N)i-invariant chain, then it is a subchain of the satu-

rated chain induced by the ideal I =
S

n�1 In.
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Given an arbitrary ideal Ir ⇢ K[Xr], then the set

\

Ir✓J⇢K[X]
J2{Inc(N)i-invariant ideals}

J

is the smallest Inc(N)i-invariant ideal that contains Ir.

Lemma 2.46.
\

Ir✓J⇢K[X]
J2{Inc(N)i-invariant ideals}

J = hInc(N)i(Ir)iK[X].

Proof. Let I
⇤
r = hInc(N)i(Ir)iK[X]. Assume that there is an Inc(N)i-invariant ideal Q of

K[X] such that

Ir ✓ Q ✓ I
⇤
r .

Then we should have

hInc(N)i(Ir)iK[X] ✓ hInc(N)i(Q)iK[X] ✓ hInc(N)i(I⇤r )iK[X]

Thus I
⇤
r ✓ Q ✓ I

⇤
r or, equivalently, Q = hInc(N)i(Ir)iK[X].

The above ideal I⇤r is called the Inc(N)i-closure of Ir. There are many smaller Inc(N)i-
invariant chains, equivalent to the saturated chain of the Inc(N)i-closure. The construction

below provides one such instance.

Lemma 2.47. Let i � 0 be an integer and 0 6= Ĩ 2 K[Xr] be an ideal, consider two chains

I = (In)n2N and J = (Jn)n2N defined by

In =

8
><

>:

h0i if 1  n < r,

Ĩ if n = r,

hInc(N)in�1,n(In�1)i if n > r,

and

Jn =

(
h0i if 1  n < r,

hInc(N)ir,n(Ĩ)i if n � r.

Then

(a) I and J are Inc(N)i-invariant chains,

(b) In = Jn for all n � 1,
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(c) indi(I) = indi(J ) = r,

(d) J =
S

n2N Jn is the Inc(N)i-closure of Ĩ.

Proof. (a) It suffices to prove that J is an Inc(N)i-invariant chain. Indeed, since

Inc(N)im,n(Jm) ⇢ Inc(N)im,n(hInc(N)ir,m(Ĩ)i) ✓ Jn whenever n � m � r, the chain

(Jn)n is Inc(N)i-invariant.

(b) We have In = Jn = 0 for 1  n < r; and for n = r, In = Jn = Ĩ. For n > r, applying

Proposition 2.20 repeatedly, we get

Jn = hInc(N)ir,n(Ĩ)i = hInc(N)in�1,n � Inc(N)in�2,n�1 � · · · � Inc(N)ir,r+1(Ĩ)i ✓ In.

Conversely, using induction on n � r. For n = r,

In = Ĩ = hInc(N)in,n(Ĩ)i = Jn.

For n > r,

In = hInc(N)in�1,n(In�1)i = hInc(N)in�1,n(Jn�1)i ✓ Jn.

Hence Jn = In for all n � r.

(c) By definition of In, indi(I) = r, then by part (b), indi(I) = indi(J ).

(d) Note that indi(J ) = r, then we have

J =
[

n2N

Jn =
[

n�r

Jn =
[

n�r

hInc(N)ir,n(Ĩ)i

=
[

⇡2Inc(N)i
hInc(N)ir,⇡(r)(Ĩ)i

= hInc(N)i(Ĩ)iK[X]

= Ĩ
⇤
.

Thus J =
S

n2N Jn is the Inc(N)i-closure of Ĩ.

Corollary 2.48. With the notation of the above lemma, for all n � r, we have

J \K[Xn] = In = Jn.



Chapter 3

Hilbert-Serre Theorem for Infinite

Dimensional Polynomial Rings

In this chapter, we begin by introducing the q-invariant, a measure of complexity designed

to prove the rationality of the equivariant Hilbert series for Inc(N)i-invariant chains of

ideals. We then formally states and proves Theorem 3.6, demonstrating that under certain

conditions, the equivariant Hilbert series is indeed a rational function of a specific form.

Key techniques involve the use of certain chains involving colon and sum and the analysis of

ideals of leading terms. Finally, Chapter 3 concludes with a detailed example to illustrate

the computation of the equivariant Hilbert series for a concrete Inc(N)-invariant chain.

3.1 The q-Invariant

The purpose of introducing the q-invariant is to prove the rationality of the bigraded

Hilbert series. The induction using the q-invariant as a measure of complexity, is designed

to show that the Hilbert series has the desired rational form when the q-invariant is finite.

First, we define the equivariant Hilbert series.

Definition 3.1. The equivariant Hilbert series of a chain I = (In)n2N where I0 = h0i,
In ⇢ K[Xn] is homogeneous for each n, is defined as

HI(s, t) =
X

n�0,j�0

dimK(K[Xn]/In)j · sntj.

Since I0 = 0 and X0 = ;, we have K[X0]/I0 ⇠= K. We examine two simple examples.

Example 3.2. (a) Consider the zero chain I = (In)n2N, where In = 0 for all n. By
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Example 1.48, we have

HI(s, t) =
X

n�0

 
X

j�0

dimK(K[Xn])j · tj
!
s
n

=
X

n�0

HK[Xn](t) · sn

=
X

n�0

1

(1� t)cn
· sn

=
X

n�0

✓
s

(1� t)c

◆n

=
(1� t)c

(1� t)c � s
.

(b) Consider the chain I = (In)n2N, with In = hXni. Since K[Xn]/In ⇠= K, we have

dimK(K[Xn]/In)j = dimK(K)j =

(
1 if j = 0,

0 if j > 0.

Now its equivariant Hilbert series is

HI(s, t) =
X

n�0

 
X

j�0

dimK(K[Xn]/In)j · tj
!
s
n

=
X

n�0

 
X

j�0

dimK(K)j · tj
!
s
n

=
X

n�0

s
n

=
1

1� s
.

Let J ⇢ K[Xn] be a monomial ideal, we know that J is generated by monomials. We

now define the minimal system of monomial generators of J .

Definition 3.3. Let J ⇢ K[Xn] be a monomial ideal. The minimal system of monomial

generators of J is the set of monomials G(J) = {g1, g2, . . . } such that J = hG(J)i; and

gi /2 hG(J) \ {gi}i for all gi 2 G(J).

Furthermore, we denote by e
+(J) the maximum degree of a minimal homogeneous gener-

ator of a homogeneous ideal J 2 K[Xn].
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Definition 3.4. The q-invariant of an Inc(N)i-invariant chain I = (In)n2N, denoted as

q(I), is defined by

q(I) =
e+(Ir)X

j=0

dimK [K[Xr]/Ir]j,

where r = indi(I).

Example 3.5. Let c = 2 be the row index of variables, thus X1 = {x1,1, x2,1}. Define the

chain I = (In)n2N, where

In =

(
hx2

1,1, x2,1i if n = 1,

hInc(N)1,n(I1)i if n > 1.

This creates an Inc(N)-invariant chain with stability index r = ind0(I) = 1. Since x
2
1,1

and x2,1 are minimal monomial generators of I1, it follows that e
+(I1) = max{2, 1} = 2.

We compute dimensions dimK(K[X1]/I1)j for j up to e
+(I1) = 2:

• Degree j = 0: (K[X1]/I1)0 ⇠= K because in degree 0, K[X1]0 = K and (I1)0 = 0.

So,

dimK(K[X1]/I1)0 = 1.

• Degree j = 1: A basis for (K[X1])1 is {x1,1, x2,1}. Simplifying, we imply that a basis

for (K[X1]/I1)1 is given by the class of {x1,1}. So,

dimK(K[X1]/I1)1 = 1.

• Degree j = 2: A basis for (K[X1])2 is {x2
1,1, x1,1x2,1, x

2
2,1}. In K[X1]/I1, we have

x
2
1,1 ⌘ 0 and x2,1 ⌘ 0. Consequently, x1,1x2,1 ⌘ 0 and x

2
2,1 ⌘ 0 as well. Thus,

(K[X1]/I1)2 = 0, and

dimK(K[X1]/I1)2 = 0.

Hence, q(I) = 1 + 1 + 0 = 2.

3.2 The Hilbert-Serre Theorem for Inc(N)i-Invariant
Chains of Ideals

The following theorem is the main result of this thesis.
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Theorem 3.6. [4, Theorem 7.2] Assume I = (In)n2N is an Inc(N)i-invariant chain of

homogeneous ideals, where i � 0 is an integer. Then

HI(s, t) =
g(s, t)

(1� t)a ·
Qb

j=1[(1� t)cj � s · fj(t)]
,

where a, b, cj � 0 are integers, g(s, t) 2 Z[s, t], and each fj(t) 2 Z[t] such that fj(1) > 0.

We will first prove Theorem 3.6 for invariant chains of monomial ideals by induction.

The q-invariant is useful as an invariant to make sure that the induction process will

terminate. Then we use the fact Hilbert series is invariant under Gröbner deformation,

i.e., the Hilbert series of an arbitrary ideal and its initial ideal with respect to some

monomial ordering are the same (Lemma 1.49). This will allow us to deduce the case of

arbitrary invariant chains from the case of monomial invariant chains.

Lemma 3.7. Let A be an N-graded ring with A0 = K, then

HA[x1,...,xn](t) =
1

(1� t)n
·HA(t)

Proof. Let X = {x1, . . . , xn} and R = A[x1, . . . , xn]. We use the fact that

R/hx1, . . . , xdi
hx1, . . . , xd+1i/hx1, . . . , xdi

⇠=
R

hx1, . . . , xd+1i
,

combining with Proposition 1.41, part (b), we get

HR(t) =
1

1� t
·HR/x1R(t) =

1

(1� t)2
·HR/hx1,x2iR(t) · · · =

1

(1� t)n
·HR/hXiR(t).

This completes the proof since HR/hXiR(t) = HA(t).

For the proof of Theorem 3.6, we firstly encounter a simpler case.

Lemma 3.8. Let i � 0 be an integer and I = (In)n2N be a non-trivial Inc(N)i-invariant

chain with r = indi(I)  i. Then

HI(s, t) =
g(s, t)

(1� t)a · [(1� t)c � s]
,

where a = max{dimK[Xn]/In | 1  n < r}, g(s, t) 2 Z[s, t], and deg(g(s, 1))  r.

Moreover, if Ir = K[Xr], then g(s, t) is a multiple of (1� t)c � s.
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Proof. Since r = indi(I)  i, Inc(N)ir,n(Ir) = IrK[Xn]. For n � r, we need a useful

transformation:

K[Xn]/In ⇠= K[Xn]/hInc(N)ir,n(Ir)iK[Xn]

⇠= K[Xn]/hIriK[Xn]

⇠= (K[Xr]/Ir)[Xn \Xr].

Letting An = K[Xn]/In, by Lemma 3.7, we get

HAn(t) =
1

(1� t)c(n�r)
·HAr(t).

Hence, we have

HI(s, t) =
r�1X

n=0

HAn(t) · sn +
X

n�r

HAn(t) · sn

=
r�1X

n=0

HAn(t) · sn +
X

n�r

HAr(t) ·
s
n

(1� t)c(n�r)

=
r�1X

n=0

HAn(t) · sn + (1� t)cr ·HAr(t) ·
X

n�r

✓
s

(1� t)c

◆n

=
r�1X

n=0

HAn(t) · sn + (1� t)cr ·HAr(t) ·
✓

s

(1� t)c

◆r

· (1� t)c

(1� t)c � s

=
r�1X

n=0

gn(t)

(1� t)dn
· sn + gr(t) · sr

(1� t)dr�c · [(1� t)c � s]
, (3.1)

where HAn(t) =
gn(t)

(1� t)dn
with dn = dimAn. Letting the common denominator be (1 �

t)a · [(1� t)c � s] where a = max{d0, . . . , dr�1}, we get

HI(s, t) =
(1� t)a+c�d0g0(t) +

Pr
j=1(1� t)a�dj�1

⇥
(1� t)c+dj�1�djgj(t)� gj�1(t)

⇤
s
j

(1� t)a · [(1� t)c � s]

=
1

(1� t)a · [(1� t)c � s]

rX

j=0

pj(t)s
j

=
g(s, t)

(1� t)a · [(1� t)c � s]

where p0(t) = (1� t)a+c�d0g0(t), and pj(t) = (1� t)a�dj�1
⇥
(1� t)c+dj�1�djgj(t)� gj�1(t)

⇤
,

for j 2 [r].

Note that c+ dj�1 � dj since the inclusion Ij�1K[Xj] ✓ Ij induces a surjection

Aj�1[Xj \Xj�1] =
K[Xj]

Ij�1K[Xj]
⇣ K[Xj]

Ij
= Aj,
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hence dj = dimAj  dimAj�1[Xj \Xj�1] = dj�1 + c.

Clearly, the degree in s of g(s, t) is at most r. Finally, if Ir = K[Xr] then K[Xr]/Ir is

the zero ring, thus gr(t) = 0. Now look at (3.1), since then we choose (1� t)a[(1� t)c � s]

as the denominator, g(s, t) must be a multiple of (1� t)c � s.

Consider a ring R, an ideal I ⇢ R and a subset S ✓ R. We recall the colon ideal

(I : S) is an ideal of R such that (I : S) = {r 2 R | rS ✓ I}.

Lemma 3.9. Let I = (In)n2N be an Inc(N)i-invariant chain of monomial ideals such that

i < indi(I). For any variable xk,i 2 Xi \Xi�1 and any integer e > 0, consider two chains

(I, xk,i) and (I : xe
k,i) whose n-th ideals are hIn, xk,ii and hIn : xe

k,ii, respectively, if n � i

and zero if n < i. Then

(a) (I, xk,i) is Inc(N)i-invariant, and indi(I, xk,i)  indi(I),

(b) (I : xe
k,i) is Inc(N)i-invariant, and indi(I : xe

k,i)  indi(I).

Proof. (a) Let Jn = hIn, xk,ii. We first show that (I, xk,i) = (Jn)n2N is Inc(N)i-invariant.

Consider n � m � i and ⇡ 2 Inc(N)im,n. Let f 2 Jm = hIm, xk,ii. Then f = g+hxk,i

where g 2 Im and h 2 K[Xm]. Applying ⇡, we get

⇡(f) = ⇡(g + hxk,i) = ⇡(g) + ⇡(h)⇡(xk,i) = ⇡(g) + ⇡(h)xk,i.

Since I is Inc(N)i-invariant, ⇡(g) 2 In. Also, ⇡(h) 2 K[Xn]. Thus, ⇡(f) = ⇡(g) +

⇡(h)xk,i 2 (In, xk,i) = Jn. Hence, (I, xk,i) is Inc(N)i-invariant.

Now we show the stability index inequality. Let r = indi(I). We need to show that

for n � r, hInc(N)ir,n(Ir, xk,i)iK[Xn] = hIn, xk,iiK[Xn]. Note that In = hInc(N)ir,n(Ir)i,
we have

hIn, xk,ii = hInc(N)ir,n(Ir), xk,ii

= hInc(N)ir,n(Ir), Inc(N)ir,n(xk,i)i

= hInc(N)ir,n(Ir, xk,i)i.

Hence indi(I, xk,i)  r = indi(I).

(b) Let Jn = hIn : xe
k,ii. We first show that (I : xe

k,i) = (Jn)n2N is Inc(N)i-invariant.

Consider n � m � i and ⇡ 2 Inc(N)im,n. Let f 2 Jm = hIm : xe
k,ii. Then fx

e
k,i 2 Im.

We want to show ⇡(f) 2 Jn, i.e., ⇡(f)xe
k,i 2 In. Consider ⇡(f)xe

k,i = ⇡(f)⇡(xe
k,i) =
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⇡(fxe
k,i). Since fx

e
k,i 2 Im and I is Inc(N)i-invariant, ⇡(fxe

k,i) 2 In. Thus ⇡(f)xe
k,i 2

In, so ⇡(f) 2 hIn : xe
k,ii = Jn. Hence, (I : xe

k,i) is Inc(N)i-invariant.

Now we show the stability index inequality. Let r = indi(I). We need to prove that

for n � r, hInc(N)ir,n(Ir : xe
k,i)iK[Xn] = hIn : xe

k,iiK[Xn].

(✓): Let f 2 hInc(N)ir,n(Ir : xe
k,i)i. Then f =

P
j ⇡j(gj)mj where gj 2 hIr : xe

k,ii,
⇡j 2 Inc(N)ir,n, mj 2 K[Xn]. We need to show f 2 hIn : xe

k,ii, i.e., fxe
k,i 2 In. We

have

fx
e
k,i =

 
X

j

⇡j(gj)mj

!
x
e
k,i

=
X

j

⇡j(gj)mjx
e
k,i

=
X

j

⇡j(gj)⇡j(x
e
k,i)mj

=
X

j

⇡j(gjx
e
k,i)mj.

Since gj 2 (Ir : xe
k,i), gjxe

k,i 2 Ir, hence ⇡j(gjxe
k,i) 2 In. Thus fx

e
k,i 2 In.

(◆): Let u 2 hIn : xe
k,ii be a monomial. Then ux

e
k,i 2 In = hInc(N)ir,n(Ir)i. Then

ux
e
k,i = ⇡(v)m for some monomial v 2 Ir, ⇡ 2 Inc(N)ir,n, and monomial m 2 K[Xn].

Write v = wx
a
k,i where xk,i - w. Then

ux
e
k,i = ⇡(wxa

k,i)m = ⇡(w)xa
k,im.

Since ⇡ fixes [i] and xk,i - w, ⇡(w) is not divisible by xk,i. Thus x
e
k,i|(xa

k,im), which

implies ⇡(w)|u. If a  e, then wx
e
k,i 2 hvi ✓ Ir, so w 2 Ir : xe

k,i, therefore u 2
h⇡(w)i ✓ hInc(N)ir,n(Ir : xe

k,i)i.

If a > e, then u = ⇡(w)xa�e
k,i m = ⇡(wxa�e

k,i )m. Again, wx
a�e
k,i · xe

k,i = v 2 Ir, so

wx
a�e
k,i 2 Ir : xe

k,i, and u is a multiple of ⇡(wxa�e
k,i ) 2 hInc(N)ir,n(Ir : xe

k,i)i.
Thus, the equality holds. Therefore, indi(I : xe

k,i)  r = indi(I).

The following is a direct consequence.

Corollary 3.10. Keep the assumptions as in Lemma 3.9. Let e1, . . . , ec � 0 be integers,

consider a sequence

J = hI : xe1
1,i · · · xec

c,i, x1,i, . . . , xc,ii



55

with the n-th ideal

Jn =

(
h0i if n < i,

hIn : xe1
1,i · · · xec

c,i, x1,i, . . . , xc,ii if n � i.

Then J is an Inci(N)-invariant chain, and indi(J )  indi(I).

Lemma 3.11. Assume I = (In)n2N is an Inc(N)i-invariant chain of monomial ideals,

where i � 0 is an integer. Then for n > m � 1, we have the following inclusions of ideals

of K[Xn]:

hInc(N)im,n(Im)i ⇢ hInc(N)i+1
m+1,n(Im+1)i ⇢ hInc(N)im+1,n(Im+1)i.

Proof. By Proposition 2.20, the first inclusion is true. The second inclusion is also clear

since Inc(N)i+1 ⇢ Inc(N)i.

Below are two consequences about the stability index of invariant chains.

Corollary 3.12. If I = (In)n2N is an Inc(N)i-invariant chain of monomial ideals, then I
is also Inc(N)i+1-invariant, and the (i+ 1)-index of I is at most 1 + indi(I).

Proof. Since Inc(N)i+1
m,n ✓ Inc(N)im,n for every m < n, then the first claim is true.

Assume n > m � indi(I), the above lemma gives

In = hInc(N)im,n(Im)i ✓ hInc(N)i+1
m+1,n(Im+1)i ✓ hInc(N)im+1,n(Im+1)i ✓ In.

This implies the equality In = Inc(N)i+1
m+1,n(Im+1), which gives

indi+1(I)  m+ 1,

hence indi+1(I)  indi(I) + 1.

Corollary 3.13. Assume I = (In)n2N is an Inc(N)i-invariant chain of monomial ideals,

where i � 0 is an integer. Let xk,i be a variable such that xk,i 2 Xi \Xi�1. Then the chain

(I, xk,i) whose n-th ideal is (In, xk,i) is an Inc(N)i+1-invariant chain and

indi+1(I, xk,i)  1 + indi(I).

Proof. Combining Lemma 3.9 and Corollary 3.12, the inequality holds.

Recall that, a linear form ` 2 K[X] is a finite sum ` =
X

i,j

aijxij where aij 2 K.
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Lemma 3.14. Let I ✓ R = K[Xn] be a homogeneous ideal, and let ` 2 K[Xn] be a linear

form satisfying I : `d = I : `d+1 for some integer d > 0. Then

HR/I(t) =
d�1X

e=0

HR/hI:`e,`i(t) · te +HR/hI:`d,`i(t) ·
t
d

1� t
.

Proof. Consider d+ 1 sequences as follows, where ·` is the multiplication by `:

0 �! [R/I : `](�1)
·`�! R/I

g�! R/hI, `i �!0

0 �! [R/I : `2](�1)
·`�! R/I : ` �! R/hI : `, `i �!0

...
...

...

0 �! [R/I : `d](�1)
·`�! R/I : `d�1 �! R/hI : `d�1

, `i �!0

0 �! [R/I : `d+1](�1)
·`�! R/I : `d �! R/hI : `d, `i �!0

For the first sequence, we have

Im(·`) = {x`+ I | x 2 R} = `R + I,

while

Ker(g) = {x+ I | x 2 R, x 2 hI, `i} = `R + I.

Moreover, ·` is injective and g is surjective. Thus this is an exact sequence. Using the

same method, all the above sequences are exact. Now by exactness of the first d sequences,

we obtain

HR/I(t) = t ·HR/I:`(t) +HR/hI,`i(t)

HR/I:`(t) = t ·HR/I:`2(t) +HR/hI:`,`i(t)

. . .

HR/I:`d�1(t) = t ·HR/I:`d(t) +HR/hI:`d�1,`i(t).

Substituting inductively into the first equation, we deduce that

HR/I(t) =
d�1X

e=0

HR/hI:`e,`i(t) · te +HR/I:`d(t) · td.

The last exact sequence combining with the assumption I : `d = I : `d+1 gives

HR/I:`d(t) = t ·HR/I:`d+1(t) +HR/hI:`d,`i(t)

= t ·HR/I:`d(t) +HR/hI:`d,`i(t)

=) HR/hI:`d,`i(t) = (1� t) ·HR/I:`d(t).

Replacing this formula to the earlier equation, we imply our claim.
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Corollary 3.15. Let i � 0 be an integer and I = (In)n2N be an Inc(N)i+1-invariant chain

of homogeneous ideals. Assume that there are two integers r � i + 1, d > 0 and a linear

form ` 2 K[Xi+1] satisfying

In : `d = In : `d+1 for every n � r.

For each e 2 {0, . . . , d}, we define a chain (I : `e, `) = (Jn,e)n2N by

Jn,e =

(
h0i if n < r,

hIn : `e, `i if n � r.

Then each (Jn,e) is an Inc(N)i+1-invariant chain, and there is g(s, t) 2 Z[s, t], g(s, 1) =
�s

r�1 such that

HI(s, t) =
d�1X

e=0

H(I:`e,`)(s, t) · te +H(I:`d,`)(s, t) ·
t
d

1� t
+

g(s, t)

(1� t)(r�1)c+1
.

Proof. Since ` 2 K[Xi+1], for each ⇡ 2 Inc(N)i+1 we have ⇡(`) = `. Thus `⇡(f) = ⇡(`f)

for any polynomial f 2 K[X]. Any element � 2 hIn : `e, `i has the form

� = a1y + a2`,

where a1, a2 2 K[Xn], y 2 hIn : `ei. Applying ⇡ 2 Inci+1
n,m(N) on both sides gives

⇡(�) = ⇡(a1y) + `⇡(a2) 2 K[Xm].

Since y`
e 2 In, ⇡(y)`e = ⇡(y`e) 2 In+1. Therefore (Jn,e) is an Inc(N)i+1-invariant chain.

Applying Lemma 3.14 to each ideal In with n � r. We have

HI(s, t) =
r�1X

n=0

HK[Xn]/In(t) · sn +
X

n�r

HK[Xn]/In(t) · sn

=
X

n�r

 
d�1X

e=0

HK[Xn]/hIn:`e,`i(t) · te +HK[Xn]/hIn:`d,`i(t) ·
t
d

1� t

!
· sn +

r�1X

n=0

HK[Xn]/In(t) · sn

=
d�1X

e=0

H(I:`e,`)(s, t) · te +H(I:`d,`)(s, t) ·
t
d

1� t

�
r�1X

n=0

d�1X

e=0

HK[Xn]/Jn,e(t) · sn · te �
r�1X

n=0

HK[Xn]/Jn,d
(t) · sn · t

d

1� t

+
r�1X

n=0

HK[Xn]/In(t) · sn.
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For every 1  n  r � 1, dim(K[Xn]/In) and dim(K[Xn]/Jn,e) = dim(K[Xn]/h0i) =

dim(K[Xn]) is at most c(r � 1), then we have the following equality:

�
r�1X

n=0

d�1X

e=0

HK[Xn]/Jn,e(t) · sn · te �
r�1X

n=0

HK[Xn]/Jn,d
(t) · sn · t

d

1� t
+

r�1X

n=0

HK[Xn]/In(t) · sn

= �
r�1X

n=0

d�1X

e=0

s
n · te

(1� t)cn
�

r�1X

n=0

s
n

(1� t)cn
· t

d

1� t
+

r�1X

n=0

HK[Xn]/In(t) · sn

=
(1� t) · g1(s, t)� s

r�1
t
d + (1� t) · g2(s, t)

(1� t)c(r�1)+1
,

for some g1(s, t), g2(s, t) 2 Z[s, t]. Putting t = 1, the numerator is equal to �s
r�1. Now

our assertion follows.

Lemma 3.16. Let a, x 2 K[Xn] be monomials and In ⇢ K[Xn] a monomial ideal. Assume

that 1  i  c, 1  j  n, gcd(x, x1jx2j . . . xij) = 1. The following equality holds

hIn : ax, x1,j, . . . , xi,ji = hIn : a, x1,j, . . . , xi,ji : x.

Proof. Since In is a monomial ideal, both sides are monomial ideals. We only need to

prove: for any monomial f 2 K[Xn], f belongs to the right hand side (RHS) if and only

if it belongs to the left hand side (LHS).

If f 2 RHS, fx 2 hIn : a, x1,j, . . . , xi,ji. If fx 2 hx1,j, . . . , xi,ji, since

gcd(x, x1jx2j . . . xij) = 1, we have f 2 hx1,j, . . . , xi,ji. If fx 2 In : a, then f 2 In : ax.

Hence f 2 LHS.

If f 2 LHS, so f 2 hIn : ax, x1,j, . . . , xi,ji. If f is a multiple of some xt,j, 1  t  i,

then clearly f 2 RHS. If not, f 2 In : ax, so fx 2 In : a, namely f 2 RHS. This concludes

the proof.

The following is [4, Lemma 6.10]. We correct the following typos:

1. Change the condition r > indi(I) � i to r � indi(I) > i.

2. Correct the index of the first non-zero ideal of the colon-sum chain from r to r + 1.

3. Change indi+1(Ie) = r to indi+1(Ie) = r + 1.

Lemma 3.17. Assume I = (In)n2N is an Inc(N)i-invariant chain of monomial ideals,

where i � 0 is an integer. Select an integer r such that r � indi(I) > i. Let G(Ir)

be a minimal generating set for the monomial ideal Ir. Choose a positive integer d with
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the property that for all k 2 [c], the monomial x
d+1
k,i+1 does not divide any element of

G(Ir). Given these prerequisites, for an arbitrary sequence of non-negative integers e =

(e1, . . . , ec), we define a sequence

Ie = hI : xe1
1,i+1 · · · xec

c,i+1, x1,i+1, . . . , xc,i+1i

with its n-th ideal is

Ie,n =

(
h0i if 1  n  r,

hIn : xe1
1,i+1 · · · xec

c,i+1, x1,i+1, . . . , xc,i+1i if n � r + 1.

Then

(a) Ie is an Inc(N)i+1-invariant chain with indi+1(Ie) = r + 1.

(b) there exist g(s, t) 2 Z[s, t], g(s, 1) = �d
c�1

s
r�1 satisfying

HI(s, t) =
1

(1� t)c
·

X

e=(e1,...,ec)2Zc

0eld

fe(t) ·HIe(s, t) +
g(s, t)

(1� t)rc
,

where

fe(t) = t
|e|(1�t)�(e) with |e| = e1+ · · ·+ec, �(e) = #{l | el = d and 1  l  c}.

Proof. (a) By Corollary 3.12, the sequence I is an Inc(N)i+1-invariant chain with index

indi+1(I)  r + 1. Now by Corollary 3.10, the ideal Ie is an Inc(N)i+1-invariant

chain with indi+1(Ie)  indi+1(I)  r + 1. By definition, Jn = h0i for all n < r + 1,

thus indi+1(Ie) � r + 1, which implies (a).

(b) By assumption, the monomial xd+1
k,i+1 does not divide any element of G(Ir). Thus

for all k 2 [c] and n � r � indi+1(I), xd+1
k,i+1 does not divide any element of G(In).

Hence

hIn : xd
k,i+1i = hIn : xd+1

k,i+1i,

which implies

hIn : xe1
1,i+1 · · · x

ek�1

k�1,i+1x
d
k,i+1, x1,i+1, . . . , xk�1,i+1i

= hIn : xe1
1,i+1 · · · x

ek�1

k�1,i+1x
d+1
k,i+1, x1,i+1, . . . , xk�1,i+1i, (3.2)
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where 0  ej  d and 1  k  c. Next, Lemma 3.16 gives

hIn : xe1
1,i+1 . . . x

ek�1

k�1,i+1x
ek
k,i+1, x1,i+1, . . . , xk�1,i+1i

= hIn : xe1
1,i+1 . . . x

ek�1

k�1,i+1, x1,i+1, . . . , xk�1,i+1i : xek
k,i+1. (3.3)

For each 1  k  c, consider chains

hI : xe1
1,i+1 . . . x

ek�1

k�1,i+1x
ek
k,i+1, x1,i+1, . . . , xk�1,i+1i,

where the n-th ideal is hIn : xe1
1,i+1 . . . x

ek�1

k�1,i+1x
ek
k,i+1, x1,i+1, . . . , xk�1,i+1i if n � r + 1

and h0i if n  r.

We proceed by induction on k, where 1  k  c. We will prove the statement P (k):

For any non-negative integers e1, . . . , ek,

HI(s, t) =
1

(1� t)k
·

X

e=(e1,...,ek)2Zk

0eld

fe(t) ·HhI:xe1
1,i+1...x

ek�1
k�1,i+1x

ek
k,i+1,x1,i+1,...,xk�1,i+1i

(s, t)

+
gk(s, t)

(1� t)(r�1)c+k
,

where fe,k(t) = t
|e|(1� t)�k(e) with |e|k =

Pk
j=1 ej, �k(e) = #{j 2 [k] | ej = d}, and

gk(s, t) 2 Z[s, t] with gk(s, 1) = �d
k�1

s
r�1.

Base Case k = 1: Consider the chain hI : xe1
1,i+1i. By assumption,

hIn : xd
1,i+1i = hIn : xd+1

1,i+1i

for n � r. Thus, Corollary 3.15 implies that 9g1(s, t) 2 Z[s, t], g1(s, 1) = �s
r�1 such

that

HI(s, t) =
d�1X

e=0

HhI:xe
1,i+1,x1,i+1i(s, t) · td +HhI:xd

1,i+1,x1,i+1i(s, t) ·
t
d

1� t
+

g1(s, t)

(1� t)(r�1)c+1
.

=
1

1� t
·
 

dX

e=0

fe,1(t) ·HhI:xe
1,i+1,x1,i+1i(s, t)

!
+

g1(s, t)

(1� t)(r�1)c+1
,

where fe,1(t) = t
e(1� t) for 0  e  d� 1 and fd,1(t) = t

d. This establishes the base

case P (1).

Inductive Step: Let 1 < k < c. Note that from (3.2) we have

hIn : xe1
1,i+1 · · · x

ek�1

k�1,i+1x
d
k,i+1, x1,i+1, . . . , xk�1,i+1i

= hIn : xe1
1,i+1 · · · x

ek�1

k�1,i+1x
d+1
k,i+1, x1,i+1, . . . , xk�1,i+1i.
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Applying Corollary 3.15 to the chain hI : xe1
1,i+1 · · · x

ek�1

k�1,i+1i deduce that there is

g̃e,k�1(s, t) 2 Z[s, t] with g̃e,k�1(s, 1) = �s
r�1 such that

HhI:xe1
1,i+1···x

ek�1
k�1,i+1,x1,i+1,...,xk�1,i+1i

(s, t)

=
d�1X

ek=0

HhI:xe1
1,i+1···x

ek
k,i+1,x1,i+1,...,xk,i+1i(s, t) · t

ek

+HhI:xe1
1,i+1···xd

k,i+1,x1,i+1,...,xk,i+1i(s, t) ·
t
d

1� t
+

g̃e,k�1(s, t)

(1� t)(r�1)c+1

=
1

(1� t)
·

dX

ek=0

f̃ek(t) ·HhI:xe1
1,i+1···x

ek
k,i+1,x1,i+1,...,xk,i+1i(s, t) +

g̃e,k�1(s, t)

(1� t)(r�1)c+1
, (3.4)

where f̃ek(t) = t
ek(1� t) for 0  ek  d� 1 and f̃d(t) = t

d.

The induction hypothesis P (k � 1) yields

HI(s, t) =
1

(1� t)k�1
·

X

e=(e1,...,ek�1)2Zk�1
�0

0eid

fe,k�1(t) ·HhI:xe1
1,i+1···x

ek�1
k�1,i+1,x1,i+1,...,xk�1,i+1i

(s, t)

+
gk�1(s, t)

(1� t)(r�1)c+k�1
,

where

fe,k�1(t) = t
|e|k�1(1� t)�k�1(e)

and gk�1(s, t) 2 Z[s, t] with gk�1(s, 1) = �d
k�2

s
r�1.

Replacing (3.4) into the last equation gives

HI(s, t) =
1

(1� t)k
·

X

e=(e1,...,ek�1)2Zk�1

0eid

 
dX

ek=0

fe,k�1(t)f̃ek(t) ·HhI:xe1
1,i+1···x

ek
k,i+1,x1,i+1,...,xk,i+1i(s, t)

!

+
1

(1� t)(r�1)c+k
·

X

e=(e1,...,ek�1)2Zk�1

0eid

fe,k�1(t)g̃e,k�1(s, t) +
gk�1(s, t)

(1� t)(r�1)c+k�1

=
1

(1� t)k
·

X

e=(e1,...,ek)2Zk

0eid

fe,k(t) ·HhI:xe1
1,i+1···x

ek
k,i+1,x1,i+1,...,xk,i+1i(s, t)

+
gk(s, t)

(1� t)(r�1)c+k
,

where

f(e1,...,ek),k(t) = f(e1,...,ek�1),k�1(t) · f̃ek(t) = t
|e|k(1� t)�k(e)
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and

gk(s, t) =
X

e=(e1,...,ek�1)2Zk�1
�0

0eid

fe,k�1(t)g̃e,k�1(s, t) + gk�1(s, t) · (1� t) 2 Z[s, t].

Finally, we must check gk(s, t) at t = 1:

gk(s, 1) =
X

e=(e1,...,ek�1)2Zk�1
�0

0eid

fe,k�1(1)g̃e,k�1(s, 1)

=
X

e=(e1,...,ek�1)2Zk�1
�0

0eid, �k�1(e)=0

(�s
r�1)

= �d
k�1

s
r�1

.

We complete the proof.

Lemma 3.18. Assume I = (In)n2N is an Inc(N)i-invariant chain of monomial ideals,

where i � 0 is an integer. Assume further that indi(I) � i + 1. Let r � indi(I) be an

integer, �i 2 Inc(N)i and set

Jr+1 = (�i(Ir), x1,i+1, . . . , xc,i+1).

Let J = (Jn)n2N be a chain satisfying

Jn =

(
h0i if 1  n  r,

hInc(N)i+1
r+1,n(Jr+1)i if n � r + 1.

Then J is an Inc(N)i+1-invariant chain, and there is g(s, t) 2 Z[s, t], g(s, 1) = s
r such

that

HJ (s, t) = s ·HI(s, t) +
g(s, t)

(1� t)rc
.

Proof. By Lemma 2.47, J is an Inc(N)i+1-invariant chain with indi+1(J ) = r + 1.

We first prove that for any n � r, we have

Jn+1 = h�i(In), x1,i+1, . . . , xc,i+1i.

Induction on n. If n = r, the statement Jn+1 = h�i(In), x1,i+1, . . . , xc,i+1i becomes

Jr+1 = h�i(Ir), x1,i+1, . . . , xc,i+1i,

which is exactly the definition of Jr+1 given in the lemma.
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Let n > r. We have

h�i(In), x1,i+1, . . . , xc,i+1i = h�i(Inc(N)ir,n(Ir)), x1,i+1, . . . , xc,i+1i

✓ hInc(N)i+1
r+1,n+1(�i(Ir)), x1,i+1, . . . , xc,i+1i

(by Proposition 2.16)
= hInc(N)i+1

r+1,n+1(Jr+1)i = Jn+1,

For the reverse inclusion. Since n � r + 1 = indi+1(I), the induction hypothesis yields

Jn+1 = hInc(N)i+1
n,n+1(Jn)i

= hInc(N)i+1
n,n+1(h�i(In�1), x1,i+1, . . . , xc,i+1i)i

= hInc(N)i+1
n,n+1(�i(In�1)), x1,i+1, . . . , xc,i+1i.

We note that Inc(N)i+1
n,n+1(�i(In�1)) = {�i+1, . . . , �n+1}(�i(In�1)) since for every f 2 K[Xn]

and every ⇡ 2 Inc(N)n,n+1, there exists �j 2 Inc(N)j with i + 1  j  n + 1 satisfying

⇡(f) = �j(f). By Corollary 2.17, we imply that

Jn+1 ✓ h�i(Inc(N)n�1,n(In�1)), x1,i+1, . . . , xc,i+1i

✓ h�i(In), x1,i+1, . . . , xc,i+1i.

Hence Jn+1 = (�i(In), x1,i+1, . . . , xc,i+1), which completes the induction.

Observe that �i(In) is obtained from In by replacing xk,l by xk,l+1 for 1  k  c and

i + 1  l. In particular, no element in G(�i(In)) is divisible by any xk,i+1 for 1  k  c.

Thus, for n � r, the folowing map

K[Xn]/In �! K[Xn+1]/Jn+1, xk,l 7!
(
xk,l if l  i,

xk,l+1 if i+ 1  l  n,

is a graded K-algebra isomorphism, implying HK[Xn]/In(t) = HK[Xn+1]/Jn+1(t) for n � r.
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Thus,

HJ (s, t) =
rX

n=0

HK[Xn]/Jn(t)s
n +

1X

n=r+1

HK[Xn]/Jn(t)s
n

=
rX

n=0

HK[Xn](t)s
n +

1X

n=r

HK[Xn]/In(t)s
n+1 (by the above isomorphism)

=
rX

n=0

HK[Xn](t)s
n + s

1X

n=r

HK[Xn]/In(t)s
n

=
rX

n=0

HK[Xn](t)s
n + s

 
HI(s, t)�

r�1X

n=0

HK[Xn]/In(t)s
n

!

= s ·HI(s, t) +
rX

n=0

HK[Xn](t)s
n � s

r�1X

n=0

HK[Xn]/In(t)s
n

= s ·HI(s, t) +
rX

n=0

s
n

(1� t)cn
�

r�1X

n=0

s
n+1

gn(t)

(1� t)dn
,

where HK[Xn]/In(t) =
gn(t)

(1� t)dn
, dimK[Xn]/In = dn  (r � 1)c. Letting the common

denominator of the last two sums be (1� t)rc, we have

HJ (s, t) = s ·HI(s, t) +
g(s, t)

(1� t)rc
,

where

g(s, t) =
rX

n=0

(1� t)c(r�n)
s
n �

r�1X

n=0

s
n+1

gn(t) · (1� t)cr�dn 2 Z[s, t].

and g(s, 1) = s
r.

We have established all the necessary preliminaries to prove Theorem 3.6 when I is a

chain of monomial ideals.

Theorem 3.19. [4, Theorem 6.2] Assume I = (In)n2N is an Inc(N)i-invariant chain of

monomial ideals, where i � 0 is an integer. Let r = indi(I) be the i-index of I and

q = q(I) =
Pe+(Ir)

j=0 dimK(K[Xr]/Ir)j be the q-invariant of I. Then

HI(s, t) =
g(s, t)

(1� t)a ·
Qb

j=1[(1� t)cj � s · fj(t)]
,

where a, b, cj � 0 are integers, g(s, t) 2 Z[s, t], and each fj(t) 2 Z[t] such that fj(1) > 0.

Proof. The proof uses double induction. Firstly, we show by the outer induction on p � 0

that, for an Inc(N)i-invariant chain I = (In)n2N, such that indi(I) � i  p, HI(s, t) is of
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the desired form. Then for each p, the inner induction on the q-invariant of I implies that

HI(s, t) is rational, as we need.

Outer Induction on p:

1. Base Case p = 0: indi(I)  i. This is Lemma 3.8.

2. Inductive Step: Let p � 1. Now we use a second induction on q � 0 to show: if

an Inc(N)i-invariant chain I = (In)n2N satisfies r� i = indi(I)� i  p and q(I)  q,

then HI(s, t) has the necessary form as in the theorem. By the first induction, we

assume that indi(I)� i = p.

Inner Induction on q:

• Base case q = 0: dimK [K[Xr]/Ir]j = 0 for all 0  j  e
+(Ir). Thus Ir = Kr,

then K[Xn]/In = 0 for all n � r. Hence

HI(s, t) =
r�1X

n=0

HK[Xn]/In(t) · sn

=
r�1X

n=0

gn(t)

(1� t)dn
s
n

=

Pr�1
n=0 gn(t)(1� t)a�dn · sn

(1� t)a
,

where dn = dimK[Xn]/In, gn(1) > 0 and a = max{dn | 1  n  r � 1}. Thus

in this case, HI(s, t) has the desired form as in the theorem.

• Inductive step: Let q � 1, assume that q(I) = q. Thanks to Corollary 3.12,

the sequence I is an Inc(N)i+1-invariant chain with indi+1(I)  r + 1. If

indi+1(I)  r, then HI(s, t) has the given form by the outer induction hypoth-

esis.

Assume indi+1(I) = r+1. For each non-negative c-tuples e = (e1, . . . , ec) 2 Nc
0,

consider a chain

Ie = (I : xe1
1,i+1 · · · xec

c,i+1, x1,i+1, . . . , xc,i+1) = (Ie,n)n2N

where

Ie,n =

(
h0i if n  r,

hIn : xe1
1,i+1 · · · xec

c,i+1, x1,i+1, . . . , xc,i+1i if n � r + 1.
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By Lemma 3.17, Ie is an Inc(N)i+1-invariant chain with indi+1(Ie) = r + 1.

Suppose that 0  ek  d, where

d = max{e | xe
k,i+1 divides some element of G(Ir) for some k 2 [c]}.

Because

�i(Ir) ⇢ Ir+1 ⇢ Ir+1 : x
e1
1,i+1 · · · xec

c,i+1

and, note that r + 1 = p+ i+ 1 > i+ 1, we have

K[Xr+1]/h�i(Ir), x1,i+1, . . . , xc,i+1i ⇠= K[Xr]/Ir.

Then for each j � 0, we have the dimension inequality

dimK [K[Xr+1]/Ie,r+1]j  dimK [K[Xr]/Ir]j.

Since r = indi(I), we have e
+(Ir+1) = e

+(Ir), thus e
⇤ = e

+(Ie,r+1)  e
+(Ir).

Hence, we get

q(Ie) =
e⇤X

j=0

dimK [K[Xr+1]/Ie,r+1]j 
e+(Ir)X

j=0

dimK [K[Xr]/Ir]j = q. (3.5)

If q(Ie) < q, then by the inner induction hypothesis, we implies that Ie is an

Inc(N)i+1-invariant chain which has a Hilbert series of rational form, as desired.

If (3.5) becomes equality, it implies

Ie,r+1 = h�i(Ir), x1,i+1, . . . , xc,ii.

Applying Lemma 3.18 to the ideal in the right hand side, we have

HIe(s, t) = s ·HI(s, t) +
ge(s, t)

(1� t)rc
, (3.6)

where ge(s, t) 2 Z[s, t], ge(s, 1) = s
r.

Now we use Lemma 3.17. Using equation (3.6) for all chains with the q-invariant

equal to q, it gives

HI(s, t) =
h(s, t)

(1� t)(r+1)c
+

1

(1� t)c
·

X

e=(e1,...,ec)2Zc

0eld
q(Ie)<q

fe(t) ·HIe(s, t)

+
1

(1� t)c
·

X

e=(e1,...,ec)2Zc

0eld
q(Ie)=q

fe(t) ·

s ·HI(s, t) +

ge(s, t)

(1� t)rc

�
, (3.7)
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where h(s, 1) = �d
c�1

s
r and fe(t) = t

|e|(1 � t)�(e). Bringing the term HI(s, t)

in one side gives

HI(s, t) ·

1� s

(1� t)c
f̃(t)

�
=

1

(1� t)c
·

X

e=(e1,...,ec)2Zc

0eld
q(Ie)<q

fe(t) ·HIe(s, t)

+
g̃(s, t)

(1� t)(r+1)c
, (3.8)

where

f̃(t) =
X

e=(e1,...,ec)2Zc

0eld
q(Ie)=q

t
|e|(1� t)�(e) = (1� t)c̃f(t)

with 0  c̃  c, f(t) 2 Z[t] with f(1) � 0.

By inductive hypothesis, all the equivariant Hilbert series HIe(s, t) in (3.8) with

q(Ie) < q is rational. Thus we must have

HI(s, t) =
1

(1� t)c � s · f̃(t)
·

0

BBBB@
g̃(s, t)

(1� t)rc
+

X

e=(e1,...,ec)2Zc

0eld
q(Ie)<q

fe(t) ·HIe(s, t)

1

CCCCA
,

which is the desired form of HI(s, t).

Thus, we proved the inductive step of the outer induction, which ends the proof.

Next, we use the lexicographic ordering as in Theorem 2.31, that is xpj � xp0j0 if p < p
0

or p = p
0 and j < j

0. Since Inc(N) preserves this monomial ordering, we must have

LT(⇡(g)) = ⇡(LT(g)), for all ⇡ 2 Inci(N) and for all g 2 K[X]. The following results takes

ideals of leading terms with respect to �.

Proposition 3.20. Let Ir ✓ K[Xr] be an ideal. For any integers i � 0 and r  n, the

following inclusion holds:

hInc(N)ir,n(LT(Ir))i ✓ hLT(Inc(N)ir,n(Ir))i.

Proof. Consider a generator v 2 hInc(N)ir,n(LT(Ir))i. Such a generator is of the form

v = ⇡(u), where u 2 LT(Ir) is a monomial, ⇡ 2 Inc(N)ir,n. Since u 2 LT(Ir), there exists

g 2 Ir such that LT(g) = u. Now, consider the polynomial f = ⇡(g) 2 hInc(N)ir,n(Ir)i, the

leading monomial of f is

LT(f) = LT(⇡(g)) = ⇡(LT(g)) = ⇡(u) = v.
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The second equality is since Inc(N)i respects the given monomial order. Now, since f =

⇡(g) 2 hInc(N)ir,n(Ir)i, its leading monomial LT(f) = v must be in the ideal of leading

terms of hInc(N)ir,n(Ir)i, i.e., v 2 hLT(Inc(N)ir,n(Ir))i. Thus, the inclusion holds.

Below is Theorem 3.6, which is the main result of this thesis.

Theorem 3.6. [4, Theorem 7.2] Assume I = (In)n2N is an Inc(N)i-invariant chain of

homogeneous ideals, where i � 0 is an integer. Then

HI(s, t) =
g(s, t)

(1� t)a ·
Qb

j=1[(1� t)cj � s · fj(t)]
,

where a, b, cj � 0 are integers, g(s, t) 2 Z[s, t], and each fj(t) 2 Z[t] such that fj(1) > 0.

Proof. Consider the chain of ideals of leading terms LT(I) = (LT(In))n2N. By Lemma 2.42,

LT(I) is also an Inc(N)i-invariant chain. Furthermore, LT(I) is an Inc(N)i-invariant chain

of monomial ideals. Thus the equivariant Hilbert series HLT(I)(s, t) is a rational function

of the same form as in Theorem 3.19. Now, by Lemma 1.49

HI(s, t) = HLT(I)(s, t),

which finally implies the theorem.

3.3 An Example

Before turning to the last example, we need a useful isomorphism.

Lemma 3.21. For c = 2 and In = hx2
1,1, x2,1, x

2
1,2, x2,2, . . . , x

2
1,n, x2,ni. The following iso-

morphism holds:

K[Xn]/In ⇠=
nO

j=1

K[x1,j, x2,j]/hx2
1,j, x2,ji,

where tensor product is taken over K.

This follows from a simple lemma.

Lemma 3.22. Let A = K[x1, . . . , xd] and B = K[y1, . . . , ye] be polynomial rings over K,

I ✓ A, J ✓ B be ideals. Let R = A⌦K B ⇠= K[x1, . . . , xd, y1, . . . , ye]. Then

A

I
⌦K

B

J

⇠=
R

IR + JR
.
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Proof. Tensor product over a field is exact, so M ⌦K
U

V

⇠=
M ⌦K U

M ⌦K V
for K-modules

M,U, V . Thus

A

I
⌦K

B

J

⇠=

A

I
⌦K B

A

I
⌦K J

⇠=

A⌦K B

I ⌦K B

A⌦K J

I ⌦K J

⇠=

A⌦K B

I ⌦K B

A⌦K J

(I ⌦K B) \ (A⌦K J)

⇠=

A⌦K B

I ⌦K B

A⌦K J + I ⌦K B

I ⌦K B

⇠=
A⌦K B

I ⌦K B + A⌦K J

⇠=
R

IR + JR

This completes the proof.

Applying this lemma repeatedly, we get the conclusion of Lemma 3.21.

Proposition 3.23. Let R =
L1

n=0 Rn and S =
L1

m=0 Sm be two graded K-algebras.

Consider their tensor product T = R⌦K S, which is also a graded K-algebra with grading

(R⌦K S)l =
L

i+j=l(Ri ⌦K Sj). Then the Hilbert series of the tensor product is

HR⌦KS(t) = HR(t) ·HS(t)

Proof. Let HR(t) =
P1

n=0 dimK(Rn)tn and HS(t) =
P1

m=0 dimK(Sm)tm be the Hilbert

series of R and S, respectively. Then

HR⌦KS(t) =
1X

l=0

dimK((R⌦K S)l)t
l

=
1X

l=0

dimK

 
M

i+j=l

(Ri ⌦K Sj)

!
t
l

=
1X

l=0

 
X

i+j=l

dimK(Ri ⌦K Sj)

!
t
l

=
1X

l=0

 
X

i+j=l

dimK(Ri) · dimK(Sj)

!
t
l
.

Now consider the product

HR(t) ·HS(t) =

 1X

n=0

dimK(Rn)t
n

!
·
 1X

m=0

dimK(Sm)t
m

!

=
1X

l=0

 
X

n+m=l

dimK(Rn) · dimK(Sm)

!
t
l
.

Therefore, HR⌦KS(t) = HR(t) ·HS(t).
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We compute the equivariant Hilbert series of the chain defined in Example 3.5.

Example 3.24. Let Xn = {Xi,j | i 2 [2], j 2 [n]} and define the chain I = (In)n2N by

In =

(
hx2

1,1, x2,1i if n = 1,

hInc(N)1,n(I1)i if n > 1.

Thus, for n � 1, In = hx2
1,j, x2,j | j 2 [n]i ⇢ K[Xn].

For n = 0, HK[X0]/I0(t) = HK(t) = 1. For n = 1, HK[X1]/I1(t) = 1 + t. For n � 1, by

Lemma 3.21 we have the isomorphism:

K[Xn]/In ⇠=
nO

j=1

(K[X1]/I1).

Therefore by Proposition 3.23, we have

HK[Xn]/In(t) =
�
HK[X1]/I1(t)

�n
= (1 + t)n.

Finally, the equivariant Hilbert series of I is

HI(s, t) = HK[X0]/I0(t)s
0 +

1X

n=1

HK[Xn]/In(t)s
n

= 1 · s0 +
1X

n=1

(1 + t)nsn

= 1 +
(1 + t)s

1� (1 + t)s

=
1

1� s� st
.



Conclusion

We have presented the following in this thesis:

1. In the preliminary part, we presented fundamental properties of graded rings and

graded modules, especially the theory of Gröbner bases and monomial ideals, and

the classical Hilbert-Serre theorem.

2. We introduced the concept of well-partial-orders and presented Kruskal’s tree the-

orem and Higman’s lemma. We then explored the monoid Inc(N) and its sub-

sets Inc(N)i, demonstrating the existence of finite Inc(N)-equivariant Gröbner bases

and the Hilbert’s basis theorem for infinite dimensional polynomial rings of the

type K [xi,j|1  i  c, j � 1] with the action of Inc(N) on the variables given by

⇡(xi,j) = xi,⇡(j). We also discussed chains of Inc(N)i-invariant ideals.

3. Finally, we established the Hilbert-Serre theorem for infinite dimensional polynomial

rings, proving the rationality of the equivariant Hilbert series for Inc(N)i-invariant

chains of monomial ideals. We introduced the q-invariant as a measure of complexity

and employed induction on this invariant to demonstrate the rationality. We also

provided a detailed example to illustrate the computation of the equivariant Hilbert

series.

In summary, this thesis provides a significant step towards extending classical results

in commutative algebra concerning Noetherian ring to the infinite dimensional setting,

specifically for ideals invariant under the action of the monoid Inc(N). The use of equiv-

ariant Gröbner bases and the q-invariant offers a new framework for studying these infinite

dimensional polynomial rings.
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