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Introduction

Consider a polynomial ring R = K|z, ..., x,] defined in n variables over a field K. Let M
be a finitely generated graded R-module. Such a module decomposes into its homogeneous
components M; indexed by integers 7. The Hilbert series associated with M is then defined
as the generating function for the sequence {dimg (M;)}icz, where the dimensions of these
components as K-vector spaces. The classical Hilbert-Serre theorem states that the Hilbert
series of any finitely generated graded module is a rational function, meaning it can be
expressed as the quotient of two polynomials. The Hilbert series serves as a fundamental
invariant of graded rings and modules, aiding in the determination of essential invariants
such as the dimension and degree of projective varieties.

Motivated by applications in algebraic statistics |1, 2| and representation theory [3],
recent research has focused on studying ideals in a polynomial ring in infinitely many
indeterminates, which are stable under the action of a monoid. Specifically, fix an integer
¢ > 1 and let K[X] = KJz;;] be a polynomial ring in the variables z;;, where 1 < i < ¢
and j > 1. Let Inc(N) be the monoid of strictly increasing maps p: N — N, with the
composition operator. Let Sym(N) be the set of maps from N — N, fixing all but a finite
number of positive integers, with the composition operator. In other words, Sym(N) is
the direct limit of symmetric groups on n elements Sym(n), with the natural embedding
Sym(n) — Sym(n + 1). There are many research focus on the ideals I in the infinite
dimensional ring K[X], which are stable under the action of Inc(N) or Sym(N). We know
that K[X] is not a noetherian ring, since there are non-finitely generated ideals. However,
a result settled by Cohen, Aschenbrenner-Hillar, Hillar-Sullivant states that K[X] is a
Sym(N)-noetherian ring, that is every Sym(N)-invariant ideal is generated by the orbits of
finitely many elements. The same result is true when we replace Sym(N) by Inc(N). This
is the infinite dimensional version of the Hilbert’s basis theorem.

A natural question arising is whether the classical Hilbert-Serre theorem can be ex-

tended to the infinite dimensional case, in particular, for Inc(N)-invariant ideals?



This question is not trivial because even defining the Hilbert series for the ring K[X]/I
is not straightforward. A method to study these ideals is to consider the ascending chain
of truncated ideals I,, = I N K[X,,], where X,, is the set of variables {z;; | 1 <i <¢, 1 <
j < n}. From this perspective, the equivariant (bigraded) Hilbert series of K[X]|/I can
be defined as the generating function of the sequence of Hilbert series of K[X,]/I, for
varying n.

This method was introduced by Nagel and Rémer in [4], who proved that for any
homogeneous ideal I C K[X], the equivariant Hilbert series of K[X]/I is also a rational
function. This thesis will focus on studying the Nagel-Romer theorem.

This thesis has three chapters.

1. Chapter 1 explains the theories of graded rings and graded modules, which are
essential for establishing the classical Hilbert-Serre theorem. Additionally, we review

the theory of Grobner bases and monomial ideals, along with their properties.

2. Chapter 2 establishes the framework to prove the finiteness up to symmetry of
equivariant Grobner bases. Then we apply this framework to prove the Hilbert’s
basis theorem for infinite dimensional polynomial rings, which is due to Cohen [5],
Aschenbrenner-Hillar [1] and Hillar-Sullivant [2]. The main results of this chapter
are Kruskal’s tree theorem (Theorem 2.14), Higman’s lemma (Corollary 2.15) and

Hilbert’s basis theorem for infinite dimensional polynomial rings (Corollary 2.33).

3. Chapter 3 presents the principal theorems concerning the equivariant Hilbert se-
ries, along with its implications and several detailed computational examples of the

equivariant Hilbert series. The main theorem of this thesis is Theorem 3.6:

Theorem 3.6. Assume Z = (I,)nen ts an Inc(N)'~invariant chain of homogeneous

ideals, where © > 0 is an integer. Then

9(s1)
(L= t) - TTo (L = )% — s - f5(t)]
where a,b,c; > 0 are integers, g(s,t) € Z[s,t], and each f;j(t) € Z[t] such that

HI(S, t) =

The reference for our main result is [4, Theorem 7.2].



Chapter 1

Preliminaries

Throughout this thesis, by "a ring" we always mean a commutative ring with identity
element. The primary focus of this work involves graded rings and modules. Our main

references are Atiyah-Macdonald [6], Bruns-Herzog [7], and Cox-Little-O’shea [8].

1.1 Graded Rings and Modules

Definition 1.1. A ring R is called Z-graded (or simply, graded) if there is a family of
additive subgroups {R”}nGZ of R, such that

(a) R =&D,ez Bn, and
(b) R.Ry C Ry for all m,n € Z.

An element x € R\ {0} is said to be a homogeneous element of degree n if v € R,.

Additionally, R is called N-graded if R,, = 0 for all n < 0.

Every ring R admits a trivial grading, which is obtained by defining Ry = R and

R, =0 for all n # 0. Other non-trivial graded rings are given in the following examples.

Example 1.2. (a) The polynomial ring R = K|[z] is N-graded with the n-th graded
part R, = {az":n >0, a € K}.

(b) Similarly, the Laurent polynomial ring R = Klz,x '] is Z-graded with the n-th
graded part R, = {az": n€Z, a € K}.

(¢) Let S = R[xq,...,x4] be a polynomial ring over a ring R. S is an N-graded ring
with the n-th graded part

Sn:{ ZrmmTl---$?d TmER,m1+"‘+md:n},

meNd



where m = (my,...,myg) € N% By letting deg(z;) = 1 for all 4, this gradation is
called the standard grading of S.

Proposition 1.3. Let R=@&, _, R, be a Z-graded ring, then we have

ne”

(a) Ry is a subring of R, containing 1;
(b) R, is a Ro-module for every n € 7.

Proof. By definition, RgRy C Ry so Ry is closed under multiplication. It suffices to show
that 1 € Ry. Suppose that 1 =>""  x; for some large n and homogeneous elements z;,

for all m we have

Comparing the degrees gives z,, = x,,7¢ for all m. Now we have

n n
ZE():l.ZEO: E T;iTloy = E ZL’Z:]_

Hence 1 = z¢ € Ry.
The second part is trivial since RyR,, C R, for all n. O

Definition 1.4. Let R =@, _, R, be a graded ring,.

neE”L

(a) A subring S C R is called a graded subring if S = @, ., (SN R,).

(b) Anideal I C R is called a graded ideal (or homogeneous ideal) if I = @, .,(INR,).

Proposition 1.5. For an ideal I in a graded ring R = @, _, R,, the following two

nel

conditions are equivalent:

(a) I is a homogeneous ideal.

(b) I =(S) for some set S containing only homogeneous elements of R.
Proof. Suppose that I is generated by a set of homogeneous elements S. For each x € I,
xr = Z ’I“ij,

J
where r; € R,s; € S. Decompose r; as a sum of homogeneous elements and let z, be

we have

the sum of homogeneous elements of degree n in the resulting expression of x. We get
xr =Y, X, Since S is a generating set of I, z,, € I for all n. Thus z, € I N R, for all
n, this implies I € @, .,(I N R,,). Hence I = @,,.,(I N R,). The converse implication is
trivial. O



The above proof also implies that if I is a homogeneous ideal of a graded ring R and
an element x € [ is presented as a sum of homogeneous elements, then these homogeneous

elements are belonged to I. The following corollary stems from this observation.

Corollary 1.6. Let R be a graded ring and I, J be homogeneous ideals of R. Then the
wdeals 1J, I+ J, I N J are homogeneous.

Lemma 1.7. Let R = @, ., R, be a graded ring and I C R be a homogeneous ideal of R.
Then I is a prime ideal if and only if xy € I implies x € I ory € I for all homogeneous

elements x,y.

Proof. Let xy € I and suppose that y ¢ I. We write z and y as sums:

Jf:Im+"'+ZEm+d,

Y="Yn+ F Yntrs

where z; € R;,y; € Rj, x, # 0,y, # 0. If there is some y; € I, we may replace y by y —y;.

Hence we may assume that y,, ..., Y, ¢ I. Now

TY = TmYn + (xmyn+1 + xm—f—lyn) + -+ Ty dYnar € 1

Since I is homogeneous, all homogeneous elements z,,Yn, (TmYni1 + Tmi1Yn), - - . are con-

tained in I. Now x,,y, € I and y,, ¢ I imply z,, € I. Next

Tm+1Yn = (xmynJrl + xm+1yn) — TmYn+1 € I and Yn ¢ I,

hence z,,,1 € I. Continuing this process repeatedly gives x,,,...,Tpmiq € I, thus z € I.

The converse implication is trivial. O

Definition 1.8. Let R, S be Z-graded rings and consider a ring homomorphism f: R — S.
The map f is said to be a homogeneous homomorphism if f(R,) C S, for all n € Z. A

homogeneous homomorphism is also called a graded homomorphism.

Definition 1.9. Let R be a Z-graded ring and M an R-module. M is called a graded
R-module if there is a family of subgroups {M,, } ez of M such that

(a) M =&p,,c;, My, and

(b) R,M, C M., for all m,n € Z.



Each subgroup M, is called a homogeneous component of degree n; a non-zero element

x € M, is called a homogeneous element of degree n.

Definition 1.10. Let M = @, _, M,, be a graded R-module and N a submodule of M.
For eachn € Z,let N, = NNM,. Ift N = @nez N,, then N is called a graded submodule
of M.

Definition 1.11. Let M, N be Z-graded modules and consider a module homomorphism
f: M — N. The map f is called a homogeneous morphism of modules if f(M,) C N, for

all n € Z. A homogeneous morphism of modules is also called a graded morphism.

Proposition 1.12. Let M be a graded R-module and N an arbitrary submodule of M.
Then N s a graded submodule if and only if N is generated by homogeneous elements of

M.
Proof. The argument is identical to the proof of Proposition 1.5. m

Corollary 1.13. Let M be a graded module and N, P be graded submodules of M. Then
the modules N + P, N N P are graded.

Definition 1.14. Let M = €, _, M,, be a graded module. For an integer s, we define

nez
the new graded module M (s) by shifting the degree of each homogeneous component by

s, that is

M(s) = P My

neZ

This means that the homogeneous component of degree n of M(s) is M(s), = M.

Clearly, M (s) and M are equal as sets.

1.2 Monomial Ideals and Dickson’s Lemma

We now focus on monomial ideals within polynomial rings in n variables over an arbitrary
field K. This section explores some of their fundamental properties, beginning with a key

definition.

Definition 1.15. A monomial in n variables x4, ..., z, is a product of the form

ai .a2
T Ty

an
n

where ay, ..., a, are non-negative integers.



Let Ny be the set of non-negative integers. The notation for monomials can be simpli-

where a = (ay,...,a,) € NI. Note that z(®0) = 1.

an

fied by denoting z* = z{* ... x%
Denoting by K|z, ...,x,] the polynomial ring in n variables over K. For a subset of

polynomials S C K|z, ...,x,], the notation (S) denotes the ideal generated by S.

Definition 1.16. An ideal I C K{z1,...,z,] is called a monomial ideal if I is generated

by a set of monomials.

Any monomial ideal I admits a representation I = (z*: o € A), where A is a subset of
N§. The next proposition gives a criterion when a monomial is contained in a monomial

ideal.

Proposition 1.17. Suppose I is a monomial ideal generated by the set of monomials
{2 | a € A}. Then, for any monomial x°, membership z° € I holds if and only if 2° is

a multiple of a generator x* for some a € A.

Proof. Let 27 € I, we write 2% = Y7 | hja®i, h; € K[z1,...,7,] and o; € A. Expand each
of h; as a linear combination of monomials. Each term of the right hand side is divisible
by ¢ for some o € A. Hence 2 on the left hand side must share the same property due

to equality:. O]

The generating set of a monomial ideal I in the above definition is not necessarily
finite. However, Dickson’s Lemma establishes that I always admits a finite set of monomial

generators.

Lemma 1.18 (Dickson’s Lemma). Every monomial ideal in K|xy,...,x,)| is finitely gen-

erated.

The proof for this lemma will be given in Chapter 2, after its second version (Corol-

lary 2.8).

1.3 Grobner Bases

The theory of Grobner bases is the study of the division algorithm among polynomials,
in which monomial ordering is the key. In the one variable case, this ordering is simply
comparing the degree of monomials. The complexity arises while working with more than

one variable. For instance, between 23y and y°, which monomial should be the "larger"



to do the division algorithm for the polynomial f = 23y + y®? This leads us to the notion
of monomial ordering.

Consider the polynomial ring K|z, ..., z,].

Definition 1.19. [8, Definition 2.1] A relation on the set of monomials %, o € Nj, or,

equivalently, a relation < on Ny is called a monomial ordering if
(a) =< is a total ordering;
(b) for all a, 8,7 € Ny, if a < 3, then a +~v < 8+ ;
(c) every nonempty subset of N{ has a smallest element with respect to <.

There are many monomial orders. We study some representative examples, the first

one will be lezcographic order (or lex order, in short).

Definition 1.20. Given a = (ay,...,a,), f = (b1,...,b,) € Nj. We say that « is less
than 8 with respect to lex order (denoted by « <, ) if the leftmost non-zero entry of

the vector a@ — 3 € Z" is negative. Further, we write 2% <., 2° if o <eq B
Example 1.21. (a) (0,5) <, (1,3), and x5 <, 7175,
(b) (2,5,4) <ex (2,5,8), and 22523 <jer Tix575.
(¢) In the polynomial ring K{z1, ..., x,], we have &, <jez Tn_1 <jex -+ <ijex T1, SiNCE
(0,...,0,1) <z (0,...,0,1,0) <jez + -+ <pex (1,0,...,0).

In the lex order, we do not regard the degree of monomials. For example, if we let
T lew Y >iex 2, then y°22 <., x. In some cases, we may need to take the degree of
monomials into account. This leads us to define graded lezicographic order (or grlez order,

in short).

Definition 1.22. Given a = (ay,...,a,), 8 = (b,...,b,) € Nj. We say that « is less
than 8 with respect to grlex order (denoted by o <geq, 5) if

n n
la| = Zai < |8 = Zbi’ or |a| = |B8] and a <e, .
i=1 i=1

Example 1.23. (a) (1,2,4) <y (1,4,5).

(b) (1,3,5) <griex (1,4,4).



(¢) The ordering of variables in the ring K[z,...,x,] in the grlex order is the same as

in the lex order.

Definition 1.24. Let f = ) a,2®, o € N} be a non-zero polynomial in Kz, ..., z,]

and let < be a monomial order.
(a) The multidegree of f is mdeg(f) = max{a: a, # 0}.
(b) The leading coefficient of f is LC(f) = amaeg(s) € K.
(c) The leading monomial of f is LM(f) = amdes(f),
(d) The leading term of f is LT(f) = amdes(y) - ™).
Here the maximum is taken under <.

For example, take f = 425 + y*23 4+ 722® — 52y — 1 and consider grlex ordering where

r =21,y = T9,z=1x3. Then

mdeg(f) = (1,0,8),
LM(f) = 22°,
LC(f) =1,
LT(f) = a2

Let S C Klz1,...,x,] be a set of polynomials. We denote LT(S) = {LT(f): f € S},
this is called the set of leading terms of S. Furthermore, for an ideal I C Klzy,...,x,],
the ideal (LT(1)) is called the ideal of leading terms (or initial ideal) of I with respect to

the given monomial ordering.

Definition 1.25. Fix a monomial order. A finite subset G = {¢1,...,¢:} of an ideal
I C Klxy,...,x,] is called a Gréobner basis of I if (LT(I)) = (LT(g1),...,LT(gr)).

Theorem 1.26 (Hilbert’s Basis Theorem). Every ideal in K|xy, ..., x,)] is finitely gener-
ated.

We may use Dickson’s Lemma to prove Hilbert’s Basis Theorem. Here is a proof
that Dickson’s Lemma (Lemma 1.18) implies that every ideal in K[z, ..., z,]| has a finite

Grobner basis, then satisfied the Hilbert’s Basis Theorem.
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Proof. Let I C R = Klxy,...,x,] be an ideal. We first consider the ideal (LT(])).
By applying Dickson’s Lemma, there exist a finite set of monomials {my,...,m;} that
generate (LT([)). Since each my is a leading term of some polynomial in I, we can
choose a corresponding polynomial g € I such that LT(gy) = my for each k = 1,... t.
The objective is to prove that this finite set of polynomials, {g1,...,¢:}, constitutes a

generating set for the original ideal I. Observe that the inclusion (gi,...,¢q:) C I is

immediate.

For the converse, suppose there exists a polynomial f € I'\ (g1, ..., ;). We can choose
such an f whose the leading term LT(f) is minimal among all elements in I\ (g1, ..., g).
We have

LT(f) € (LT(1)) = (LT(g1), - -, LT(g1))-

There exist 1 < i <t such that LT(f) = am.LT(g;), where m is a monomial and a € K.
Thus f —amg; € I\ {(g1,...,9:). But we also have LT(f — amg;) < LT(f), which
contradicts the minimality of LT(f). Hence I = (g1,..., ). O

This elegant proof immediately yields a standard fact about Grobner bases.

Corollary 1.27. Any Grobner basis of an ideal I C Klx1,...,x,] is a generating set of
I,i.e,ifG={g1,...,9:} is a Grébner basis of I, then

I = <gl7"'7gt>‘

The preceding discussion naturally leads to the question of how to compute a Grobner
basis for a given ideal. Bruno Buchberger first addressed this in his 1965 Ph.D. disser-
tation, introducing the theoretical notion of Grobner bases alongside his algorithm for
their calculation. This thesis will not delve into the mechanics of Buchberger’s algorithm;

interested readers can consult Cox-Little-O’Shea [8, Chapter 6] for a full treatment.

1.4 The Classical Hilbert-Serre Theorem

1.4.1 Length and Krull Dimension of Modules

Definition 1.28. Let R be a ring and M an R-module. The length of R-module M is

ZR(M) = Sup{n: ElMO g Ml g s _,C,_ Mn};
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where all M; are R-submodules of M. It may happen that [g(M) = oo. Further, a chain
of submodules of M
MyC M C - C M,

is said to be a composition series of M if n = lp(M) < co.

Clearly, if n = [gr(M) < oo, a composition series of length n of M must has My = 0
and M,, = M. We may simply write {r(M) = I[(M) when the ring R is clear.

Proposition 1.29 (Additivity of length). Let M, N, P be R-modules that fit into a short

exact

0 N pm—2,p 0

Assume that N and P have finite lengths, then so does M and [(N) + [(P) = l(M).

Proof. Let n =I(N) and m = [(P), consider the composition series of N and P

0=NyCN,C--CN, =N,
0=PRCPC---CP,=P.

One checks that the series

0= f(Ny) C f(Ny) C---C f(N,) =im(f)
=ker(g) =g '(R) Cyg () C---Cg (Pn)=M

is a composition series of M with length n + m. For this, note that N;/N;_; and P;/P;_,
are simple modules, says N;/N;_1 = R/m;, P;/P,_1 = R/m; for some maximal ideals
m;,m; of R. This implies f(N;)/f(Ni_1), g~ (P;)/g *(P;j_1) are simple R-modules. Thus

we get the statement on the composition series. ]

Corollary 1.30. Let N be a submodule of an R-module M of finite length, then
(M) =1I1(N)+I(M/N).
Proof. Applying the above proposition to the short exact sequence
00— N-—M-— M/N — 0,

we obtain the equality. O
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fo f1 f2 fn

Proposition 1.31. Let 0 My M,y M, Jota 0 be an exact sequence

of R-modules. Assume that [(M;) < oo for all i, then

> (=1)1(M;) = 0.

=0

Proof. Let N; = im(f;). For each i, we have an induced short exact sequence
O—>NZ—>MZ—>NZ+1—>O

By the additivity of length, we have [(M;) = I(N;) + (N;+1). Now the alternating sum

becomes

n

SO =1UM,) = (U(No) + 1(N)) — (AN + 1(N2)) + -+ (=) (UN,) + 1(Npi)
i=0
= 1(No) + (=1)"1(Nnt1) = 0,
as claimed. ]
For an R-module M, recall that supp(M) = {prime ideals P of R: Mp # 0}.
Definition 1.32. Let M be a finitely generated R-module. The Krull dimension of M is

dim(M) = dim(supp(M)) = sup{n: 3B C P, C --- C P,, where P; € supp(M)}.

Remark 1.33. Let M be a finitely generated R-module and ann(M) = {x € R: M = 0}.
Note that

supp(M) = V(ann(M)) := {prime ideals P of R: P D ann(M)}
hence we have
dim(M) = dim(supp(M)) = dim(V (ann(M))) = dim(R/ann(M)).
This formula is useful for computing the dimension of M.
Proposition 1.34. Let M be an R-module.

(a) M has finite length if and only if M satisfying both artinian (descending chain con-

dition) and noetherian (ascending chain condition).

(b) If the ring R is artinian, then any finitely generated R-module M must have finite
length over R.
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Proof. (a) Assume M has finite length, say [(M) = n. Consider an ascending chain

M, C My C M3 C ---. The lengths of these submodules form a non-decreasing
sequence of non-negative integers (M) < I(My) < (M3) < ---, bounded above by
[(M) = n. Thus, the sequence of lengths stabilizes, i.e., there exists d such that for
all i > d, I(M;) = l(M;11). Since M; C M,y and l[(M;) = [(M;41), we must have

M; = M, for all i > d. Hence, the ascending chain stabilizes, and M is noetherian.

Given the descending chain M; O M, O -- -, the corresponding sequence of lengths
[(My) > I(My) > --- is necessarily non-increasing. Since module lengths are non-
negative integers, this sequence is bounded below by 0 and therefore must eventually
become constant. Thus, the sequence of lengths stabilizes, i.e., there exists d such
that for all ¢ > d, I(M;) = [(M;41). Since M; 1 € M; and I(M;) = I(M;;1), we must
have M; = M, for all ¢ > d. Hence, the descending chain stabilizes, and M is

artinian.

For the converse, suppose M is both artinian and noetherian. The case M = 0 is
trivial, giving [(M) = 0. Assume M # 0. As M is noetherian, the collection of
proper submodules is non-empty and contains a maximal element (with respect to
inclusion), say M;. By maximality, the quotient M /M is a simple module. If M, is
non-zero, it inherits the noetherian property from M. Therefore, M; also contains
a maximal proper submodule, M,. Continuing this construction inductively, we
generate a sequence of submodules M = My D M; D M, D ... where each M,
is a maximal proper submodule of M;. This forms a strictly descending chain of
submodules. Since M is artinian, it satisfies the descending chain condition, meaning
this sequence must terminate. Termination of a strictly descending chain requires
that M, = 0 for some integer n. This process yields a finite chain {0} = M, C
M,y C--- C M; C My = M, where each quotient M;/M;, is simple. This is a
composition series for M of length n. Consequently, M has finite length.

Induction on the number of generators of M. Firstly, suppose that M is generated

by x € M. Consider the map

f:R—M

a— ax.

By the isomorphism theorem, R/ker(f) = R/ann(z) = M. Now since R is an
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artinian ring, R is also noetherian, hence R has finite length over itself. Then so is

R/ann(x).

Next, we suppose that zi,...,z, are the generators of M, for n > 1. Putting

N = Rxy + -+ + Rx,_1, consider the exact sequence
0—N-—M— M/N—0.

Observe that M/N = Rux,, thus by the induction hypothesis, N and M/N have
finite lengths. Ultimately, M has finite length by the additivity of length.
We complete the proposition. O

1.4.2 Numerical Functions on 7Z

Now we delve into a numerical method, which is useful for deducing the classical Hilbert-
Serre. We will use the symbol n > 0, that means n > ng for some ng > 0 (ng is typically

large). The symbol n < 0 is defined similarly.

Definition 1.35. Let F': Z — Z be a numerical function. F'is called of polynomial type
of degree d if there is a polynomial P(z) € Q[z] with deg(P) = d such that F'(n) = P(n)
for n > 0.

As a convention, the degree of the zero polynomial is —1.
Definition 1.36. The map A on the set of numerical functions, defined by
(AF)(n) = F(n+1)— F(n),

is called the difference operator. We also define AYF recursively by AYF = AYL(AF).
By convention, AF = F.

We study some crucial properties of numerical function.

Lemma 1.37. Let F: Z — Z be a numerical function and d be a non-negative integer.

The following are equivalent:
(a) (AYF)(n) is a non-zero constant, for n > 0;

(b) F is of polynomial type of degree d .
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Proof. The implication (a) = (b) uses induction on d. For d = 0,
(A"F)(n) = F(n) = c #0,
then clearly P(x) = ¢ is the polynomial we are looking for. Now for d > 0,
(A'F)(n) = AN (F(n+1) = F(n)) = c £0,

for n > 0. By induction hypothesis, there is ng > 0 and P(z) € Q[z], deg(P) = d — 1
satisfying F'(n + 1) — F(n) = P(n) for all n > ny. We need some computation as follows

F(n+1)= F(n)+ P(n)
=F(n—-1)4+Pn—-1)+ P(n)

=F(no)+ Y _ P(k)

n—ng

=F(no)+ »_ P(n—k)

= F(ng) + (n — ng + 1)n?! + (lower degree terms with respect to n).

This confirms that the preceding sum defines a polynomial in n of degree d.

Conversely, recall that the difference operator A acts on polynomials by reducing their
degree by exactly one (provided the polynomial is non-constant). Consequently, if F' is
a numerical function agreeing with a polynomial of degree d for n > 0, applying the
operator A d times must result in a constant function; let (AYF)(n) = c¢. To establish
that ¢ # 0, it is sufficient to analyze the base case where F' is linear. Therefore, we can

assume F'(n) = an+ b holds for all n > 0, with a # 0. Proceeding under this assumption:
(AF)(n)=F(n+1)—F(n)=a#0.
This complete the proof. n

For a,b € Z, the combinatorial polynomial is defined by
for b < 0,

0

rray ) for b =0,
b 1
b!

(r+a)(z+a—-1)...(x+a—(b—1)) forb>0.
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Lemma 1.38. Let P(x) € Q|z], deg(P) = d. Then for alln € Z, P(n) € Z if and only

if there are integers ag, . ..,aq such that

P(:B):Zd:ai<x;_i>.

=0

Proof. The implication (=) is trivial. Conversely, let P(x) = bgz? + -+ - + by. Note that

(I;”) is a polynomial of degree i, thus we may write
d
P(Z‘) = bdd' <x —Cii_ ) + Cdfll’dil + -4
d d—1
= bg.d! <x ;r ) + cq-1.(d = 1)! (I i ) + (lower degree terms)

d—1
d (x+z)
= a; . s
¢ 1
=0

7

for some ay,...,aq € Q. Next, we claim that a; = (A/P)(—j — 1) for all j, using the

(5565

(ATP)(—j — 1) = P(~1) = ap.

familiar identity
Indeed, for 5 =0,

For j > 1, assume that a; has the given form, we have

AP(z) = P(z + 1) — P(x)

:gai((x+z'1+i) - (sz»
>
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By induction hypothesis, a;,1 = (A7Q)(—j — 1), continuing the computation
NQ(—z 1) = AHQ(~1) — @~z — 1))
=AY AP(—1 —1) — AP(—z — 2))
= N THA(AP(-2 - 2)))
= AT P(—2 —2)
= AT P(—(z+1) - 1).
Replacing « by j gives a;j11 = (A7) P(—(j + 1) — 1), which is the desired form. O

Lemma 1.39. Let H(t) = > a,t™ € Z[[t,t7']] be a formal Laurent series with a, = 0
forn < 0. Let d be a positive integer. The following are equivalent:

(a) the sequence {a,}nez is of polynomial type of degree d — 1;
(b) H(t) =Q(t)/(1 — ) where Q(t) € Z[t,t™'] and Q(1) # 0.
Before turning to the proof, we need an observation.

Claim. Let F(n) = a, for alln € Z, then
(L= t)'H(t) = (A"F)(n— d)t".

n

Proof. Induction on d, for d =1,
Q=) HE) = (ant" — a,t"™)
= Z (ant” — an_lt")
= (AF)(n—1)t"

Assume the equation holds for d — 1 > 0, then by induction hypothesis, we have
(1= t'H(E) = (1-8)((1 - " H()
=(1-1t)) (A" F)(n—d+1)t"
- Z(Ad_?F)(n —d+1)t" =Y (A" F)(n —d+ 1"
- Zn:(Ad—lp)(n —d+1)t" - Zn:(Ad—lF)(n —d)t”
= Z A(AIE)) (0 — d)t" :

Y@
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This completes the claim. m

Proof of Lemma. For (a) = (b), since F(n) = a, is of polynomial type of degree d — 1,
then by Lemma 1.37, (A% 1F)(n) = ¢ for n > 0. Thus (A?F)(n) = 0 for all n large

enough. Combining with our claim give
(1—t)*H(t) € Z[t, t7].

Putting Q(¢t) = (1 — )4H(t) = Y, (AYF)(n — d)t". We need to clarify that Q(1) # 0.
Assume that Q(1) = 0, then

0="> (A"F)(n—d)
=> ((A™'F)(n—d+1) = (A"'F)(n - d))

= (AT (N) — (AYPFY (M) for N > 0 and M < 0
(AT PF)(N) for N > 0.

this contradicts to Lemma 1.37.
For (b) = (a), suppose (b), we have (1 —t)?H(t) = Q(t) € Z[t,t1]. The claim above
implies
(L=t)'H(t) =) (A"F)(n—dt" € Z]t,t7"].

This implies

(A“FY(n—d) =0 forn >0
- (AR n—d+1) = (A F)(n—d) for n >0
N (AdilF)(n) —c forn>0

Finally, we need to show ¢ # 0. Now by Q(1) # 0, we have

0#Q(1) =) (A'F)(n—d) = (A" F)(N) for N > 0.

n

This concludes the proof. O
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1.4.3 Hilbert Functions and Hilbert Series

Definition 1.40. Let R = @ __, R, be a graded ring and M = @ __, M, a finitely

neZ neL

generated graded R-module.

(a) The map hy(-): Z — Z defined by hy;(n) = lg,(M,) is called the Hilbert function
of M.

(b) If hp(n) < oo for all n, we say that M has a Hilbert series, and the formal power

series

Hy(t) = has(n)t"

nez
is called the Hilbert series of M.

f

Proposition 1.41. (a) If 0 M N—25P 0 s a short exact sequence of

graded modules and homogeneous maps, then
Hn(t) = Hu(t) + Hp(t).
(b) If M is a graded R-module and x € Ry, d > 1, is a non-zero divisor on M, then
Hrren(t) = (1 =t Har ().

Proof. (a) For each n, the exact sequence of Rg-modules 0 — M,, — N, — P, — 0

implies

hy(n) = ha(n) + hp(n)

Taking sum over all n gives

> byt =Y " hy ()" + Y hp(n)t"

nez neL neL

— Hy(t) = Hy(t) + Hp(t).
(b) Since x is a non-zero divisor on M, we have a short exact sequence
0—— M(—d)——M——M/zM ——0,
where -z denotes the multiplication by x. Now (a) gives

Hyp—ay(t) + Hurjan (t) = Hur(1).
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Note that

Substituting back to the equation gives Hp/,ar(t) = (1 — t4)Ha (t). O

For the subsequent discussion in this section, we impose the following standard con-
ditions: the graded ring R is generated as an Ryp-algebra by a finite set of elements
{1,...,24} residing in degree 1, so R takes the form Rylzy,...,xz4]; furthermore, the
base ring R, is assumed to be an artinian local ring. We recall the fundamental charac-
terization that a ring is artinian if and only if it is noetherian and has Krull dimension
zero |6, Theorem 8.5]. Since Ry being artinian implies it is noetherian, Hilbert’s Basis
Theorem ensures that the polynomial ring R = Ro[x1,. .., 24| is also noetherian.

Let M be a finitely generated graded R-module. Since R is a noetherian ring, M is a

noetherian module.
Lemma 1.42. With the above assumptions, there is a chain
OZM()CMlCCMk:M

such that M; 1/M; = (R/P;)(a;) for some homogeneous prime ideals P; € supp(M) and
mntegers a;.
Proof. The proof relies on induction and the noetherian property of M. If M = 0, the
chain is simply 0 = My = M, and the condition is trivially satisfied.

If M # 0, it has at least an associated prime P = ann(z) for some non-zero homoge-

neous element z € M. Let deg(x) = —a, consider the submodule Rz C M. Since z is

homogeneous, Rx is a graded submodule. Define a map
¢:R— Rz, p(r)=rzx.

This map is clearly a surjective R-module homomorphism. The kernel of ¢ is ker(y) =

{r € R|rx =0} =ann(z) = P. By the isomorphism theorem,

R/P = R/ ker(y) = im(p) = Rx.
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Now, consider the grading. If r € R has degree d, then ¢(r) = rz has degree d+ deg(z) =
d—a. In order to make this a degree-preserving isomorphism, we need to shift the grading
of R/P by a, which gives

Rz = (R/P)(a).

Clearly, P € supp(Rx) C supp(M).

Letting M; = Rz, consider the module M/M;. This is a quotient of M hence also a
finitely generated graded R-module. If M/M; # 0, then apply the inductive hypothesis
to it; there is a submodule M; C My C M such that My/M; = (R/P’)(a’) for some
homogeneous prime ideal P’ € supp(M/M;) C supp(M) and integer a’. Keep doing this
process, since M is noetherian, we must have a number £ > 0 such that M, = My,;.

Choose the smallest k, we obtained the desired chain. O

Lemma 1.43. Let M be a finitely generated graded R-module with dim M = 0. Then

there exists an integer ng such that for all n > ng, the homogeneous component M, = 0.

Let my denote the unique prime ideal of Ry. Denote m :=my® R @ Ry @ - - -. Clearly
m is an ideal of R and R/m = Ry/my is a field, so m is a graded maximal ideal of R. We

begin the proof with a claim.
Claim. m s the unique graded mazimal ideal of R.

Proof of the claim. Let m’ be any graded maximal ideal of R. Since m’ is a prime ideal
of R, m' N Ry is a prime ideal of Ry, which forces m’ N Ry = my. Furthermore, any

homogeneous element y € m’ of positive degree i > 1 belongs to R;. Therefore,

m':(m’ﬂRo)@@(m’ﬂRi) gmo@@Ri:m.

i>1 i>1

Thus, m is the unique graded maximal ideal of R. n

Proof of Lemma 1.43. Since dim M = 0, supp(M) has Krull dimension zero. Thus,
supp(M) = V(ann(M)) C {m}, where m is the unique graded maximal ideal of R. This im-
plies that any prime ideal containing ann(M) must contain m, and hence \/ann(M) = m.
Thus there exists an integer N > 0 such that m" C ann(M), implies that m" - M = 0.
A product of n elements from m belongs to m”, so every monomial of degree n is in m”.
Hence for n > N we have R,, C m"¥. Let D be the highest degree of a minimal homogeneous

generator of M. For any n > N + D, any element in M, can be written as a sum
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191+ ... + e gk, where gy, ...., g, are homogeneous generators of M with deg(g;) = d; < D,
and r; € R,_g,.

Now deg(r;) =n—d; >n—D > N, sor; € m" and r;g; = 0. Thus M, = 0 for all
n > N + D. Hence, the homogeneous components M, must eventually become zero for

sufficiently large n. O

Theorem 1.44. |7, Theorem 4.1.3| Let M be a finitely generated graded R-module of
dimension d. The Hilbert function of M is of polynomial type of degree d — 1.

Proof. Let Qu(z) € Q[z] be a polynomial such that hy(n) = Qu(n) for n > 0. Using
the filtration in Lemma 1.42, for each i € {0,1,...,k — 1}, the quotient module M;,,/M;
is isomorphic, as a graded R-module, to (R/P;)(a;) for some homogeneous prime ideal

P; € Spec(R) and some integer shift a; € Z. This filtration induces short exact sequences
0— M, — Mi+1 — Mi—}—l/Mi — 0.

For each n > 0, applying the additivity of length repeatedly yields

k-1
Z Poagr v, (0 Z h(r/P)(
=0

Thus, if for each i, h(g/p),)(n) agrees with a polynomial Q;(n) € Q[n] of degree d; — 1
for sufficiently large n, where d; = dim(R/P;). Since Q;(n) > 0 for all n > 0, each @Q;(n)
has non-negative highest coefficient. Then the degree of Qys(n) is

deg(Qy) = max {deg(Qy)}-

It is also clear that d = dim(M) = max {dim(M,;1/M;)} = 0<m<akxl{dim(R/Pi)(ai)}.

0<i<k—1
Hence we have

k—1
= ZQ’(TL) for n > 0.
i=0

Now we may assume that M = (R/P)(a), P € Spec(R) homogeneous, a € Z. We
can further reduce to the case M = R/P, P € Spec(R) homogeneous, since R/P and
(R/P)(a) differ only by degree shifts.

If d = 0, by Lemma 1.43, M,, = 0 for n > 0, so the Hilbert function of M is of
polynomial type of degree —1.

Assume d > 0. Since dim(R/P) = d > 0, P does not contain the ideal m = my @ R; &
Ry ® ... of R. Since PN Ry € Spec(Ry) = {my}, we deduce my C P. Hence 3z € Rj,
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s > 1 such that x ¢ P. Since R is generated over Ry by R, we may assume that s = 1.
Hence 3z € Ry and = ¢ P, and thus x is R/ P-regular. Consider the exact sequence

0— M(-1) 5 M — M/xM — 0.
Using the additivity of Hilbert functions on short exact sequences, we have

Since hpr—1y(n) = hay(n — 1), we get

By our inductive hypothesis, since dim(M/xM) = d —1, the Hilbert function hpz/zn(n) is
of polynomial type of degree dim(M/xM)—1 = d — 2. Therefore, hy(n) is of polynomial
type of degree (d —2)+1=d— 1. ]

Corollary 1.45 (Hilbert-Serre Theorem). Let M # 0 be a finitely generated graded R-
module such that dim(M) = d. There is a unique Laurent polynomial Q(t) € Z[t, t~'] with

Q(1) # 0 such that
Q(t)
(1=t)"

Proof. In the case d = 0, by Lemma 1.43, M,, = 0 for n > 0. Hence the Hilbert function

of M is of polynomial type of degree —1.
If d >0, let Hy(t) =), F(n)-t". Thanks to Theorem 1.44, F(n) is of polynomial
type of degree d — 1. Then from Lemma 1.39 we obtain the required form of Hy/(t). [

Lemma 1.46. If R = K is a field and M s a finitely generated K -vector space, then

Proof. Since M is a finitely generated vector space over a field K, it is both an artinian

and noetherian K-module. Therefore, M has a composition series. Let
O0=MyC M C---CM=M

be a composition series of M, where [ (M) = 1.
Each factor module M;/M;_; in the composition series is isomorphic to K as a K-

module. This means dimg(M;/M;—1) = dimg K = 1. We use the property that for
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any subspace U C V of a K-vector space V, we have dimy V' = dimg U + dimg (V/U).

Applying this property to our composition series, we have:

dimyg M = dimg M; = dimg M1 + dimg (M;/M;_1) = dimg M;_1 + 1,
dlmK lel = lelK Ml72 + dimK(lel/Ml,Q) = dlmK Ml72 + 1,

dimg My = dimg My + dimg (M, /M) = dimg{0} + dimg (M, /M) = 1.
By repeatedly substituting, we get:
dimg M =dimg M; 1+ 1= (dimg M; o+ 1)+ 1=--- =dimg My +1 = 1.
Thus, dimyg M = [ (M). O

Corollary 1.47. Let R = K|x1,...,zq] be a polynomial ring over a field K. Consider the
N-grading (not necessarily standard) R = K @ Ry ® Ry @ .... Then for alln > 0,

where dimg is considered as dimension of K-vector space.

Proof. Let S, = {f1,..., fm} be the set of monomials of degree n. Each R, is an Ry-

module, hence a K-vector space with a basis S,. By the above lemma, dimg(R,) =

lRo(Rn) = hR(n) [l

For each given degrees of x;, the number m can be computed via n and d. This problem

is called the Euler’s candy division problem. For example, regarding the standard grading,

n+d—1) )

we have m = ( A

Example 1.48. Let K be a field. If R = Klxy,..., 24 endowed with the standard
grading, then

Proof. Induction on d. For d = 1, we have

Hglg(t) =1+t +2+ ...
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Let S = Klzy,...,24-1] and suppose that Hg(t) = W By Proposition 1.41, we have

Hpjxy(t) = (1 —1) - Hp(t).

Note that S = R/(x,), hence

1
1—1%)-Hr(t) = Hs(t) = —————.
(1= 1) Halt) = Hs(t) = (7=
Dividing both sides by (1 — t), we obtain the desired form. O

We prove a fundamental result of Hilbert series of ideals of leading terms.

Lemma 1.49. Let R = Klxy,...,24] be a polynomial ring over K and I C R be a
homogeneous ideal. For each monomial ordering <, the quotient rings R/I and R/(LT(I))

have the same Hilbert series.

Proof. We will show that there is a K-vector space isomorphism between the graded
components of R/I and R/(LT(I)) in each degree, which implies the equality of their
Hilbert series.

Let J = (LT(Z)) be the ideal of leading terms of I, and

B ={m € R | m is a monomial and m ¢ J}.

We show that B induces a K-basis for both R/J and R/I.

1. B induces a K-basis for R/J: Consider any polynomial f € R. If we perform
monomial reduction of f modulo J (which is straightforward since J is a monomial
ideal), we can express f as f =r + g, where g € J and r is a K-linear combination
of monomials such that no monomial in r is divisible by any monomial generator of
J. This means every monomial in r is in B. Thus, the residue class of f in R/J is

r + J. Therefore, B spans R/J.

Suppose Zle c¢im; = 0 in R/J, where ¢; € K and m; € B are monomials. This
means Zle c;m; € J. However, since Zle c¢;m; is a K-linear combination of mono-
mials in B, and by definition no monomial in B is in J, this is only possible if all

¢; = 0. Thus, B is linearly independent in R/J. Hence, B is a K-basis for R/.J.

2. B induces a K-basis for R/I: Let G = {g1,...,9m} be a Grobner basis of I with
respect to <. For any f € R, the division algorithm gives f = > a;g; + r,
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where a; € R and r is the remainder. The remainder r has the property that no
term in r is divisible by any LT(g;). This means that every monomial in 7 is not in
(LT(g1),.-.,LT(gm)) = J. Hence, every monomial in 7 is in B. Thus, r is a K-linear
combination of elements in B, and the residue class of 7 in R/I is the same as the

residue class of f. Therefore, B spans R/I.

Suppose Zle cim; = 0in R/I, where ¢; € K and m; € B are monomials. This
means h = Zle cim; € 1. If h # 0, then LT (h) must be in (LT(I)) = J. Note that
LT(h) = m; for some 4, we must have m; € J = (LT(I)), which is a contradiction.
Thus, A must be 0, implying all ¢; = 0. Therefore, B is linearly independent in R/I.
Hence, B is a K-basis for R/I.

Ultimately, B induces a K-basis for both R/J and R/I. Thus for each degree j, the set
B; = {m € B | deg(m) = j} is a basis for the degree j homogeneous components of both
R/J and R/I, iec.,

dimg (R/I); = |B;| = dimg(R/J);.

This implies that their Hilbert series are equal. O



Chapter 2

[nc(N)-Equivariant Grobner Bases

Chapter 2 delves into the theory of Inc(N)-equivariant Grobner bases, starting with the
fundamental concept of well-partial-orders. It explores crucial properties of these or-
ders, including the existence of infinite ascending subsequences and the behavior under
component-wise ordering. In this chapter, we establish the connection to Dickson’s Lemma
and extends these ideas to infinite settings with Kruskal’s Tree Theorem and Higman’s
Lemma. Then we introduce the monoid Inc(N) and its submonoids Inc(N)?, crucial for
studying symmetries in infinite dimensional polynomial rings. A key result is the proof
for the existence of finite Inc(N)-equivariant Grobner bases under specific monomial or-
derings. Finally, we define the Inc(N)-divisibility relation and demonstrates that the
divisibility relation on Inc(N) and Inc(N)’ are well-partial-orders, laying the background

for the Hilbert-Serre theorem in the infinite dimensional context.

2.1 Well-Partial-Orders

The original references for Kruskal’s Tree Theorem as well as Higman’s Lemma are [9] and

[10], respectively. The key concept for these results is that of a well-partial-order.

Definition 2.1. Let S be a set. A partial order < on S is called a well-partial-order if

for any infinite sequence s1, s2,... of elements in .S, there exist 7 < j such that s; < s;.
We call (S, <) a well-partially-ordered set if < is a well-partial-order on S.

Definition 2.2. Let S be a set with a partial order <. An infinite sequence si, So,... of

clements in S is called a bad sequence if s; £ s; for all pairs of indices ¢ < j.

From the above definitions, < is not a well-partial-order unless S has no bad sequence.

The following give precisely examples.
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Example 2.3. (a) The usual relation < on the set of non-negative integers is a well-

partial-order.

(b) The usual relation < on Q is not a well-partial-order since the sequence
1,1/2,1/4,... is bad.

We observe the following key properties of well-partial-orders.

Lemma 2.4. Let (S, =) be a well-partially-ordered set and given an infinite sequence
S1,82,... of elements in S. Then there exists i > 1 such that there are infinitely many

indices j > 1 with the property that s; = s;.

Proof. Assume not, then for all ¢ > 1 there exist ¢ < N () such that s; A s; forall j > N (i).

We may check that the sequence s1, sy(1), Snv(v(1)), - - - 18 bad, a contradiction. O
Lemma 2.5. Let (S, =) be a well-partially-ordered set, any infinite sequence sy, S, ... of
elements in S has an ascending subsequence s;, =X s;; = -+ with ig <113 < ---.

Proof. By Lemma 2.4, there exists ¢y > 1 such that for a sequence of indices ig < 791 <

igg < -+ we have s;, = s;, for all 7 > 1. Consider the sequence sy, Sy, ..., again,
by Lemma 2.4, there exists iy € {ig1,%02,...} such that for a subsequence of indices
11 < i1 < 112 < --- of 4g1,702,... it holds that s;; = Siy, for all 7 > 1. Repeating this

process, we get a subsequence
Sio j Sil j SZ'Q j T
where 79 < i1 < 19 < ---, as claimed. O

The Cartesian product S x T' can be equipped with a partial order <, derived from
the partial orders <5 on S and <7 on 7. This order is defined component-wise, meaning

(s,t) =< (¢,t') holds when both s <g s and ¢ <7 ¢’ hold.

Proposition 2.6. Let (S, =<s) and (T, =) be two well-partially-ordered sets. Then the

component-wise partial order =< on S X T is also a well-partial-order.

Proof. Consider an infinite sequence (s,t1), (s2,t2),... in S x T. Applying Lemma 2.5

for the set S, there is an infinite subsequence
Sip 28 8iy Zg -

Applying Lemma 2.5 again for the subsequence t¢;,,¢;,,... in T, the proposition holds. [
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Corollary 2.7. The component-wise partial order on the finite Cartesian product of well-

partially-ordered sets is a well-partial-order.

Since the usual relation < on Nj is a well-partial-order, we now deduce a crucial

property.

Corollary 2.8. Fix an integer n > 2, the component-wise partial order on Nij is a well-

partial-order.

Corollary 2.8 and Lemma 1.18 are two equivalent versions of Dickson’s Lemma. The

following proof shows the equivalence.

Proof. Suppose that there is a monomial ideal I € K|z, ..., z,]| such that I is not finitely

generated. There are x®, x*2 ... € [ such that z® ¢ (z* ... x*" 1) this implies

a; A apy foralli=1,...,m—1. Hence ay,as,... is a bad sequence, a contradiction.
Conversely, suppose that (Nj, <) is not well-partially-ordered, then there exists a bad

sequence i, oy, - -+ € Nj. Consider the ideal

I=(x%:i>1).

Since [ is a finitely generated monomial ideal, there are iy,...,4, > 1 such that I =
(x% ... x%n). Set m = max{iy,...,i,}, since z%+1 € [ = (x%1, ..., x%n) there is
J € {i1,...,i,} such that % |z*+. Hence a; < up41, & contradiction. ]

2.2 Kruskal’s Tree Theorem and Higman’s Lemma

The infinite dimensional case of Dickson’s Lemma, is Kruskal’s Tree Lemma, which is useful

to prove the finiteness up to symmetry.

Definition 2.9. Let A be a set. The set B is called a multi-subset of A if every element
of B is an element of A and elements of B need not be distinct. The ordering of elements

in B is not important.

For example, let A = {1,2,3,4,5}, the set B ={1,2,2,5} is a 4-element multi-subset
of A. Also the multi-subset {1,2,5,2} is the same as B.

Definition 2.10. Let <g be a partial order on a set S and S be the set of finite multi-
subsets of S. We define the partial order < on S by for any A, B € S, A= Bifand only
if there is an injective map f : A — B such that a <g f(a) for all a € A.
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Remark 2.11. If there is a bad sequence Ai, A,, ... of finite multi-subsets of S, then

there are no A4; = 0.

Proof. Indeed, if there exists A; = (), the map ) — A; is injective for all j, thus A; < A;,

a contradiction. O

Lemma 2.12. If (S, =<gs) is a well-partially-ordered set, then (S, <) is a well-partially-

ordered set.

Proof. Proof by contradiction. Assume the set S contains at least one infinite bad se-
quence. We can select such a sequence Aq, As, ..., by making minimal choices iteratively
based on set cardinality. Choose A; such that |A;| is minimized among all possible initial
elements of infinite bad sequences; then, given A;, choose Ay such that A;, As,... is an

infinite bad sequence and |A;| is minimized; continue this process, selecting A; with min-

imal cardinality |Ag| subject to the condition that A;,..., A, ... remains an infinite bad
sequence, given the previously chosen Ay, ..., Ax_1.
By the definition of a bad sequence, the constructed sequence Aq, A,, ... allows us to

select an element a; € A; for each i > 1. For each i, define the set B; = A; \ {a;}. By

Lemma 2.5, there exist indices 79 < 7; < ... such that
Qi 2§ iy 3§ -+ -

Now consider the sequence A;, A, ..., A1, By, Biy, ..., we prove that it is a bad se-
quence. Indeed, we have A; A A; for all i < j <ip—1. As A; £ A; for all i < j, it
follows that A; £ B; for all i < iy — 1, j € {io,?1,...} (since the set of all the injective
maps from A; to B; is just a subset of the set of all the injective maps from A; to A;).
Finally, we have B; A B; with 4,5 € {ig,%1,...}, i < j. Indeed, if B; < Bj, the injective
map f : B; — Bj could be extended to a map ¢ : A; — A; by mapping g(a) = f(a) for all
a € B; and g(a;) = aj, this implies that A; < A;, which cannot happen. Hence, the se-
quence Ay, As, ..., A;j—1, Biy, Bi,, ... is a bad sequence, which contradicts the minimality

of the cardinality |A;,|. O

Definition 2.13. [11]| Let S be a well-partially-ordered set. An S-labelled trees is the set
of (isomorphism classes of) finite, rooted trees whose vertices are labelled with elements
in S.

We now inductively define the partial order < (representing homeomorphic embedding)

on the set of finite S-labelled trees. Given two S-labelled trees, T and 1", we say T < T’

if there exists a vertex v in 7" such that:
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1. The S-label of v is greater than or equal to the S-label of the root of T (with respect
to the order on S).

2. Let By,...,B, be the subtrees rooted at the children of the root of 7', and let
By, ..., B}, be the subtrees rooted at the children of v. There must exist an injective
map 7 : {1,...,p} — {1,...,p'} such that B; < B;(i) holds recursively for all
ie{l,...,p}.

It is a consequence of this definition that 7" < T” corresponds to the existence of an
injective, label-order-preserving, structure-preserving map from the nodes of 7' into the
nodes of T".

Figure 2.1: Two N-labelled trees with the partial-order divides "|", rooted at 1.

In the figure, it is clear that the left tree is "less than" the right tree. Now by using

the partial-order above, we discover the Kruskal’s tree theorem.

Theorem 2.14. [11, Theorem 1.2] If S is a well-partially-ordered set, then the set of
S-labelled trees is well-partially-ordered by the partial order defined above.

Proof. Proof by contradiction. Assume the set S contains at least one infinite bad se-
quence. We can select such a sequence 71,75, ... by making minimal choices iteratively
based on set cardinality. Choose T} such that |7}| is minimized among all possible initial
elements of infinite bad sequences; then, given T}, choose Ty such that (77,75,...) is an
infinite bad sequence and |7»| is minimized; continue this process, selecting T} with mini-
mal cardinality |T}| subject to the condition that (7},...,T},...) remains an infinite bad
sequence, given the previously chosen T7,...,T,_1. At its root, T; branches into a finite
multi-set R; of smaller trees, which we shall called branches. Let

R:U&.

i>1
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We claim that R cannot contains a bad sequence. Indeed, assume that there is a bad
sequence B;,,B;,... in R, with B; € R;, i9p < 4 < .... Consider the sequence
Ty,...,T;—1,B;,, B;, ..., proving as the above lemma, we deduce this sequence is bad.
By taking the identity mapping, we have B; < T; for all i € {ig, 1, ...}, which contradicts
to the minimality of 7;, among all the sequences starting with 77,75,...,7;,—1. Hence R
is well-partially-ordered. Applying Lemma 2.12, the sequence Ry, Rs,... of finite multi-
subsets of R cannot be bad (with respect to the partial order defined in the lemma). Let
s; be the label of the root of T; for each i« > 1. Since S is well-partially-ordered, by
Lemma 2.5, we may also assume that s; < sy < s3 < ---. Hence there is an injective map
R, — R; with ¢ < j, mapping each branch B of T} to a branch B’ of 7" with B < B’. This

means that 7T; < Tj, a contradiction. O

Let <g be a partial order on the set S, define a partial order < on S* = J,,5; 5" of
finite sequences over S by saying that (si,...,s,) =< (s},...,s;) if there exists a strictly
increasing map = : {1,...,p} — {1,...,q¢}, 8 =5 s;(i) for all i. We next prove the

Higman’s Lemma, which uses Kruskal’s Tree Theorem.

Corollary 2.15 (Higman’s Lemma). If S is a well-partially-ordered set, then (S*, <) is a

well-partially-ordered set, where the partial order < is defined above.

Proof. We demonstrate Higman’s Lemma by applying Kruskal’s Tree Theorem. Define a
mapping ¢ from the set of finite sequences S* to the set of finite S-labelled trees: for a
sequence 0 = (s1,...,5,) € S*, let ¢(co) be the tree consisting of a single path of length
q — 1, rooted at a node labelled sy, whose child is labelled s, and so on, terminating at
the leaf node labelled s,.

Now, consider any infinite sequence o1, 05, ... of elements from S*. This corresponds
to an infinite sequence of trees 71 = ¢(01),Ty = ¢(02),.... According to Kruskal’s Tree
Theorem, the set of finite S-labelled trees is well-partial-ordered under the relation of
homeomorphic embedding <. Therefore, this infinite sequence of trees must contain an
embedding, i.e., there exist indices ¢ < j such that T; < T};. This embedding between the
tree representations implies the divisibility condition required by Higman’s Lemma, thus

proving the lemma. ]



33

2.3 The Monoid Inc(N) and Its Subsets Inc(N)’

Let K be a field and X = {z;; | i € [],j € N} an infinite countable collection of variables.
We consider the associated polynomial ring K[X]. Interest in the ideal structure of such
infinite polynomial rings arises from challenges in areas like algebraic statistics, tensor
theory, and representation theory, especially when dealing with structures in indefinitely
large dimensions.

A key aspect of recent research involves ideals in K[X] that exhibit specific symmetries.
Often, the focus is on ideals stable under the action of the symmetric group or under the
action of submonoids derived from the monoid of strictly increasing functions on the
positive integers. This latter monoid, denoted Inc(N), consists of all maps 7 : N — N such

that 7(i) < (i + 1) holds for every i > 1:
Inc(N) ={n:N—= N |7(i) <m(i+1) for all i > 1}.

Delving deeper into these monoids, we examine the submonoids Inc(N)i that fix the

initial elements
Inc(N)' = {7: N = N | 7(j) = j for all j < i},

where 7 > 0 is an integer. By convention, Inc(N)? = Inc(N).

An element o; € Inc(N)" for a given 7 > 0, is defined by

' jH1 if >,

and o¢(j) = j + 1. By definition, o; € Inc(N)’ for all j < 4.

We state some basic decompositions.
Proposition 2.16. For i > 0 and 7 € Inc(N)?, there exist T € Inc(N)™™ satisfying
00T =TO0;.
Furthermore, if m(m) < n, then 7(m +1) <n+ 1.

Proof. For v = 0, we may take

T(j)_{1 itj=1,

m(j—1)+1 ifj>2
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And for 7« > 0, we take

= if1<j<i,
7(G—1)+1 ifj>i+1.

A straightforward computation implies the first part of the lemma. For the second part,

consider 2 cases:

o Ifm<i thenm(m)=m<n,7(m+1)=m+1<n+1

e Ifm>i+1,then 7(m+1)=n(m)+1<n+1.
In conclusion, the lemma holds. ]
Corollary 2.17. 0,001 = 0j o 0; for every j > i > 0.

Proof. Apply the above lemma for 7 = 0;_; € Inc(N)". Follow the proof of Proposi-
tion 2.16, for ¢ = 0,

, 1 if j =1,
7(j) = . L
oj(j—1+1 ifj=2
1 ity =1,
U iz
=jitj>1
= 0;(j)-
For ¢+ > 0, the computation is identically the same. O]

Lemma 2.18. For any 7 € Inc(N)* \ Inc(N)""! | there exists 7 € Inc(N)"™! such that
T =7To00;.

Proof. We may check that the map

() = J if1<y<i+1,
m—1) ifj>i+2

satisfies our lemma. Indeed, let us consider 3 cases:
o For j <i, 7(0i(j)) = 7(j) = j = 7(j)-

e Forj=i+1,7(0;(5)=7(i4+2)=n(i+1) =7(j).



35

o For j >i+2, m(0,(f)) = 7(j + 1) = n(j).
Thus 7 = 7o 0;. ]
Definition 2.19. For integers i > 0, m < n, the set Inc(N)},  is defined by
Inc(N);, . = {m € Inc(N)" | w(m) < n}.

Furthermore, we define

Inc(N)7, , o In¢(N)j,,,, = {ron | 7 € Inc(N)}  and 7 € Inc(N)j,}
where £k <m <n and 7,5 > 0.
Proposition 2.20. Consider integers i > 0 and n > m > 1. We have a decomposition
Inc(N),, . = Inc(N):oL o Ine(N)L, 4, (2.1)

as subsets of Inc(N). In particular,

Inc(N), ,, = Inc(N);, | ,, o Inc(N)!

m,n m,m-+1"
Proof. Let w € Inc(N)it!, | and 7 € Inc(N), ;. For any integer j < m, we have
7(j) <m+1

— 7(7(j) < 7m+1) <n.

Thus 7o 7 € Inc(N)}, ,, and hence the inclusion (2) of (2.1) holds.

Conversely, let 7 € Inc¢(N);, .. If m = id, the inclusion holds. If 7 is not the identity,
we may find a j > 7 such that 7 € Inc(N)7 \ Inc(N)/*!. From the proof of Lemma 2.18,
the map 7 given by

o fl1<s<j+1,
T(s) =
m(s—1) ifs>j5+42

satisfies m = 7 0 ;. Note that
T E Inc(N)i,ﬂm C Inc(N)it}, ,, (since j > i),
and

oj € Inc(N)j . C Inc(N)i

m,m-+ m,m-+1"

Thus the Equation (2.1) holds. The last formula follows from the same proof, with the
reminder that Inc(N):! . C Inc(N)! O

m,m+1 m,m-+1-*
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2.4 The Existence of Finite Inc(N)-Equivariant Grobner
Bases

We begin by recalling standard order-theoretic concepts. A total order < on a set S is
a partial order satisfying the comparability condition: for any x,y € S, either x < y or
y = z. With respect to such an order, an element z € S is called minimal if no element
y € S, distinct from z, satisfies y < x . A total order < on S is called a well order if the
property holds that every non-empty subset of S contains a minimal element with respect
to <.

Let Mon denote the set of monomials of variables in X = {x;;|i € [c],j € N}.

Definition 2.21. A monomial ordering < on Mon is a well order such that 1 < u for all

u € Mon and u < v implies uw =< vw for all u, v, w € Mon.

Proposition 2.22. Fvery well-partially-ordered set (S, <) has only finitely many minimal

elements.

Proof. 1f | S| is finite, we are done. If |S| is infinite, suppose that there are infinitely many
minimal elements in S. Consider the sequence which all the elements inside are minimal.
Clearly, this is a bad sequence by definition of minimal element, a contradiction to the

assumption that S is well-partially-ordered. O

Fix a monomial order on Mon. Let Il be a monoid acting on Mon and assume that
the action preserves strict inequalities, that is if u < v then 7(u) < 7(v) for all 7 € IT and
u,v € Mon.

Note that K[X] = KMon the polynomial ring in the variables in X, or equivalently,
the K-algebra on Mon. The action of IT on K[X] is additivity, that is for any «, 5 € K,
7 € II and u,v € Mon, we have 7(au + fv) = am(u) + fr(v).

Definition 2.23. An ideal I C K[X] is called a II-invariant ideal if 71 C I for all = € II.

Definition 2.24. A subset B of a Il-invariant ideal I C K[X] is called a II-Grébner
basis, or equivariant Grobner basis of I if for every non-zero polynomial f € I, its leading

monomial LM(f) must be divisible by LM(7(g)) for some element g € B and some 7 € II.

Lemma 2.25. If I = (my,my,...) C K[X] is an ideal generated by the monomials m;,
and f € K[X] is a monomial, then f € I if and only if m;|f for some i > 1.
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Proof. The "if" part is obvious. For the "only if" part, let f € K[X]. Choose p,q such
that every term of f only involves the variables x11, %12, ..., 1 ¢4+1, T21, T22, . - -, Tpt1,g+1-

Moreover, since f is a monomial, then

p+1g+1
f= aHHm?f € Klzyliep+1],j€g+1]],
i=1 j=1
where a € K, a;; € N. Now since f € I, there are monomials m,,,, ..., m,, which we may

assume to involve only the variables z;,i € [p+ 1],j € [¢ + 1] such that f = Y% | gimy,.
Hence f is a monomial of the ideal (m,,,...,m,,) C K [z;]i € [p+1],j € [¢+ 1]], where
{Mmup,,...,my, } is a subset of {my, ma,...}. This means that there is a mg divides f, as

claimed. O

Proposition 2.26. Let [ C K[X] be a I-invariant ideal. If B is a II-Grébner basis of I,
then (IIB) = I.

Proof. Since I is a Il-invariant ideal, IIB is a subset of I, hence (IIB) C I. Conversely,
suppose that there is f € I\ (IIB). Choose f such that LT(f) is minimal. We have

LT(f) € {LT(1)) = (LT(g)lg € 11B).

By Lemma 2.25, there is g € IIB such that LT(f) = amLT(g), where m is a monomial
and o € K. Thus f —amg € I\ (IIB). But we also have LT(f — amg) < LT(f), a
contradiction to the minimality of LT(f). Hence I = (ILB). O

A TI-Grobner basis need not be finite. To determine the finiteness, we first define the

relation II-divisibility.

Definition 2.27. Let u,v € Mon. We define u|pv if there is a m € II such that 7(u)|v.
This relation is well-defined. Indeed
e The reflexivity is obtained by taking = = id;
o If m(u)|v and o(v)|w, then (om)ujw, then |r is transitive;

o If w(u)|v and o(v)|u then u < 7(u) = v = o(v) = u so that u = v, then | is

antisymmetric.

Proposition 2.28. |2, Theorem 2.12| Given a monomial order on Mon and assume 11
preserves the strict ordering of monomials. Every I-invariant ideal I C K[X] has a finite

II-Grébner basis if and only if | is a well-partial-order.
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Proof. Suppose that | is not a well-partial-order, then there is a bad sequence uy, us, . ..
of monomials in K[X]. Consider the ideal [I-invariant ideal I = (ITuy, [Tuy,...). Suppose
that I has a finite II-Grobner basis, say vq,...,v,. If v1,...,v, are monomials, then
uj € I = (mvg|m € II,i = 1,...,n). Therefore for all j > 0, there exists v;, € {vi,..., v}
such that vy, ;.

Since {vy,...,v,} is a finite set, for some 1 < i < n, there exists an infinite sequence
i1 <1y < --- such that v; is II-divisor of u;; for every j.

Since v; € I = (Iluy, ug,...) there is an index r such that u, is a II-divisor of v;.
Hence u, is a II-divisor of u;; for every j. Choose j such that r < i;, we get a contradiction
to the assumption that the sequence uy, us, ... is bad.

Next assume that there is v; € I such that v; is not a monomial. Let J be the ideal
generated by the Il-orbits of all the terms of vy,...,v,. We have I C J. Since [ is
generated by monomials and vy, ..., v, are in I, by Lemma 2.25, J C I. Hence [ = J and
I is generated by the orbits of finitely many monomials. Repeating the above proof we
will imply that Mon can’t contain a bad sequence. Hence |1 is a well-partial-order.

For the converse direction, assume [ is a Il-invariant ideal within K[X]. Consider the
set of all leading monomials associated with non-zero elements of I, i.e., L = {LM(f) |
f €1\ {0}}. Let M be the subset of L containing only the |g-minimal elements. By
Proposition 2.22, M is a finite set; let us write M = {uy,...,u,_1}. For each u; € M, we
can select a corresponding polynomial f; € I'\ {0} such that LM(f;) = u;. It then follows
that the finite collection {fy,..., fo—1} forms a II-Grébner basis for the ideal 1. O

In Theorem 2.31 below we use the set of variables X = {z;; | ¢ € [¢],j € N} with the
lexicographic order on X: z;; < xy; ifi < ori =1 and j < j'. And we use II := Inc¢(N),
the set of strictly increasing maps N — N. The set Inc(N) acts on X by mx;; = Zix(j).

A monomial order < for which v < v implies 7u < 7o for all w € Il is called a monomial
order preserved by II. For example, the afore-mentioned lexicographic order is preserved
by Inc(N).

Consider the ring K[z;;]i € [¢],j € N]. The following result employs Higman’s Lemma
in the case S = N° with the component-wise partial order, which is a well-partial-order by

Dickson’s Lemma.
Lemma 2.29. | 45 a well-partial-order.

Proof. Let S = N§. We define a mapping ¢ that encodes each monomial v € K[X] into
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a finite sequence in S*. For v = [[_, [[}Z, ZBZJ (where only finitely many e;; > 0), let
p = max{j | 3i,e;; > 0} be the largest column index involved in u. The encoding is
¢(u) = s = (s1,...,5p), where each s; € S is the vector s; = (e, €zj,...,€,) € Ni. For
example, if ¢ = 3 and u = 23 x],28;23,21,, then p = 3 and s = ((2,0,0), (1,3, 1), (6,0,0)).

Now, take any infinite sequence of monomials uq, us, . ... Applying the encoding yields
an infinite sequence of words ¢(uq), ¢(uz),... in S*. By Higman’s Lemma, S* is well-
partial-ordered under the order <. Therefore, there must exist indices £ < [ such that
d(ur) = d(uy). Let s = ¢(ug) with length p, and s" = ¢(u;) with length p’. The condition
s = &' implies the existence of an injective, strictly order-preserving map = : {1,...,p} —
{1,...,p'} such that s; < s;m holds component-wise for all j € {1,...,p}.

We now show this implies 7(uy)|u;, where m(ug) is the monomial obtained by replacing
each w;; in u; with x; (). Consider an arbitrary variable z; ;. We need to compare its

exponent in 7(uy) and wu;.

e Case 1: j' = 7(j) for some j € {1,...,p}. Then the exponent of x; ~(;) in 7(uy) is, by
definition of 7(ux) and s, exactly (s;);. The exponent of ;) in w is (s} ;)i- The
component-wise inequality s; < s;( j) gives (55)i < (s;( j))i, establishing the required

exponent inequality.

e Case 2: j' is not in the image of 7. Then the exponent of z; j; in m(uy) is 0, which
is less than or equal to its non-negative exponent in w;. Since the exponent of every
variable in 7(uy) is less than or equal to its exponent in u;, we conclude that 7(uy)

divides ;.
Thus 7(ug)|u;, as desired. O

By an argument similar to the proof of Lemma 2.29, we can show that the following

is true.
Corollary 2.30. For each integer i > 0, |eyi @5 a well-partial-order.

Theorem 2.31. [11, Theorem 2.3| Let I be an Inc(N)-invariant ideal in the polynomial
ring R = K[z;; | i € [¢],j € N|, where ¢ > 1 is a fived integer. If < is any monomial order
on R that is preserved by the action of Inc(N), then I possesses a finite Inc(N)-Grobner
basis with respect to <. Additionally, every such Inc(N)-invariant ideal I is generated by
finitely many Inc(N)-orbits of polynomials.
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Proof. By Proposition 2.28, we only need to show that |1,y is a well-partial-order, which

is given in Lemma 2.29. O

2.5 Hilbert’s Basis Theorem for Infinite Dimensional
Polynomial Rings

Let Sym(j) denote the symmetric group acting on the set {1,...,j7}. The infinite
symmetric group is defined by Sym(N) := [J;cySym(j), using the standard inclusions
Sym(j) < Sym(j + 1) where permutations in Sym(j) are extended to fix the ele-
ment j + 1. This group Sym(N) acts naturally on the polynomial ring K[X] (where
X = {x;; | i € [c],j € N}) by permuting the column indices of the variables: for any

7 € Sym(N), its action on a variable x;; is defined as 7 - z;; = x; ().

Lemma 2.32. Let f € K[X] be any polynomial. Then the Inc(N)-orbits of f is a subset
of the Sym(N)-orbits of f.

Proof. Let m € Inc(N) and n the maximal column index of f. Since 7x;; = iz, 7(f)
just involves the first m(n) columns. Since the map i — m(¢) on {1,...,7(n)} is injective,

there exists o € Sym(w(n)) satisfying o(i) = m(¢) for all 1 < ¢ < n. One checks that

w(f) = o(f)- B

Consequently, if an ideal is Sym(N)-invariant, it must be Inc(N)-invariant. The follow-

ing result is the infinite dimensional version for the Hilbert’s basis theorem.

Corollary 2.33. Every Sym(N)-invariant ideal in K[X] can be generated by a finite col-
lection of Sym(N)-orbits.

Example 2.34. Let I be the ideal (z; | j € N) of the ring K[z, xa,...]. The Inc(N)-orbit
of a variable x; is Inc(N) - z; = {#;) | 7 € Inc(N)} = {= | £ > i}. In particular, the orbit
of z1 is Inc(N) - x; = {z, | K > 1}. Clearly, the orbit of z; generates I.

2.6 Inc(N)-Invariant Chains of Ideals

We study Inc(N)’-invariant ideals following these construction. Consider the set of vari-

ables X = {x;; | i € [c],j € N} as in Section 2.3. For each integer n > 0, put

Xon=A{wzi;j|i€lc,j€n]}ifn>0,and X, =0.
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For each ideal I, € K[X,,], we will write (Inc(N)7,  (I,)) instead of (Inc(N), . (1)) k(x,)
if the ring K[X,,] is clear.

Definition 2.35. |4, Definition 5.1| Fix an integer i.

(a) An Inc(N)'-invariant chain is a chain Z = (I,,),en of ideals I, C K[X,] such that,
as subsets of K[X], one has

Inc(N)! (I,,) €I, whenever m <n.

m,n

(b) An Inc(N)“invariant chain Z = (I,,) ey is said to stabilize if there exist an integer r
such that
(Inc(N). (1)) k(x,) = In whenever r < n.

n

The least integer » > 1 with this property is called the i-stability index ind* (Z) of T.
The number ind(Z) = ind°(Z) is called the stability index of T.

Example 2.36. Let X = {z;|i € N} be a variable set; so ¢ = 1 and we set z; := 1.

Consider the chain Z = (I,,),en, where I, = (z1, %o, ..., 2,). For each ¢ € Inc(N)? = =

m,n

Inc(N),, ,, we have o(m) € {m,m+1,...,n}. Now
Ine(N)pn(Iin) = (21, ..., T0) = L.
Thus the Inc(N)-invariant chain Z has stability index 1.

Remark 2.37. Note that, for any Inc(N)invariant chain Z = (I,),en. As subsets of
K[X], we have
LCLCI;C....

This chain is obtained by taking the identity element id € Inc(N)".

Proposition 2.38. Let Z = (I,,)nen be an Inc(N)i-invariant chain. For any pair integers

n>m >0,

(Inc(N);, (L)) = (Ine(N);, 1y, 0 Ine(N);, 1 41 (Zn)) © (Ine(N)y, 4y (L))

Proof. By Proposition 2.20, the first equality is clear. For the inclusion, we only need to
observe that Inc(N) (I,) C Lnia. O

m,m-+1

Lemma 2.39. Let Z = (I,)nen be an Inc(N)'-invariant chain. For any integer r > 0, the

following are equivalent:
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(a) T stabilizes and ind" (Z) < r;
(b) Forn>m >r, we have
(Ine(N)y, o (L)) K] = Ins

(¢) For any n > r, we have

U(IDC(N)§,n(Ij)>K[Xn] = I,.

j<r
Proof. The directions (b) = (a) and (a) = (c) are trivial by definition of the stability
index. Now assume (c), by Proposition 2.38 we have

1, = |J(me(N):, (1))

j<r

= (Ine(N)}, (1)) U (Inc(N), (1)) U -+ U (Ine(N):_, (£, 1)) U (Ine(N):,, (1))
C (Ine(N);,, (I2)) '

-
—~
—{
=]
)
—~
Z
SN—
Py
3
—~
&
SN—
S~
-
-
—
—
=]
)
—~
Z,
3=
~—~
5~
S~—
S~

C (Inc(N):, (I.)) C I,

— I, = (Inc(N)! (1)) K1x)-

Tn

Thus (c¢) = (a) holds. Now, if (a) holds, we have if r < m < n,

I, = (Ine(NY: ,(1,)) € (Inc(N):, ,(In)) C L.

rn m,n

Hence (a) = (b). O

The following corollary, which is based on the equivalence between (a) and (b) in the

above lemma, implies a useful information on the stability index.
Corollary 2.40. Let T = (I,)nen be a stabilizes Inc(N)'-invariant chain. Then

ind"(Z) = inf{r | Inc(N)!, (1)) k(x,] = In whenever r < m < n}.

m,n

By Remark 2.37, an Inc(N)‘-invariant chain Z = (I,,) ey induces the following chain of

ideals of K[X]
<[1>K[X} C <[2>K[X} C.... (22)

These ideals are not necessarily Inc(N)-invariant. But Remark 2.37 together with the

U kx=J =1

n>1 n>1

chain (2.2) give

which implies the following invariant property.
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Lemma 2.41. The ideal I defined above is an Inc(N)'-invariant ideal.

Proof. Let f el = Un21 I,,. Thus f must belong to I,, for some integer m > 1. Assume

m is smallest. Let 7 € Inc(N)’, then 7 can be viewed as an element of Inc(N);, .. Since
7 is an Inc(N)’invariant chain, we have

7(f) € e(N);, 2oy (Im) € Lnmy S 1.
Thus I is an Inc(N)’-invariant ideal. O

Lemma 2.42. Let i > 0 be an integer and T = (I,)nen be an Inc(N)'-invariant chain.
Then the chain LT(Z) = (LT(I,,))nen also is an Inc(N)i-invariant and the i-stability index
of LT(Z) is at least ind"(T).

Proof. Using Proposition 3.20, for » < n, we have

(Inc(N);.,,(LT(Z,))) € (LT(Inc(N);.,, (1)) € LT(L,).

Hence LT(Z) is an invariant chain.
Let r = ind(LT(Z)), by definition, we have LT(I,) = (Inc(N);.,(LT(Z,))). To prove

the second assertion, we only need to show that for all » > n, the equality below holds:

I, = (Inc(N);,,(L,)).

n

The inclusion (D) is trivial.  Conversely, take f € I, \ {0}. Then LT(f) €
(Inc(N);,(LT(I,))), thus
LT(f) = qu - LT(m(g1)),

for some monomial ¢; € K[X,] and for some m; € Inc(N);,, g1 € I.. Consider the

polynomial f' = f — q; - m1(g1), there exist a monomial ¢» € K[X,] and for some m €

Inc(N).,, g2 € I, such that

LT(f) = g2 - LT(m2(g2)) = LT(f).

Continuing this procedure eventually leads to termination after finitely many steps. Thus
we may find an m > 0 such that
f=a m(g)+ -+ @ Tmlgm),

rn

that f € (Inc(N)L., (1)), which implies the reverse inclusion. O

for some monomials ¢, € K[X,] and for some 7, € Inc(N). and g, € I.. This means
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The above lemma is [4, Lemma 7.1|. The original proof of this lemma uses |4, Remark
5.5], which is a wrong property unless the chain 7 is saturated, i.e., [,, = I N K[X,,] for all
n > 0 and for some Inc(N)'-invariant ideal I of K[X] (see Definition 2.44 below).

The fallacy of [4, Remark 5.5] can be exposed by a counterexample, inspired by [12,
Example 6.5], but simpler: let ¢ = 1, we use x; = z;; for simplification. Consider the

chain Z = (I,,)nen where

(x2,...,22) for n <9,

I, = ¢ (xy,23,...,2%,)  for n= 10,
<IDC(N)10’H(110)> for n Z 11.

Now we have I = |5, I = (z1,72,...) = (Inc(N)(21)). Clearly, the set {z;} is an
Inc(N)-equivariant Grobner basis of I, hence r = 1, while the stability index of Z is

ind(Z) = 10. Thus, the inequality » > ind(Z) in this remark is wrong.
Corollary 2.43. Each Inc(N)‘-invariant chain stabilizes.

Recall that Mon is the set of monomials in K[X]. In the proof, we sometimes write
the monomial ordering < in place of |pey: for convenience. We will prove that (Mon, <)
is a well-partially-ordered set by using Higman’s lemma, then imply the stability of the
Inc(N)*invariant chain. We consider the case i = 0, namely Inc’(N) = Inc(N); the case

¢ > 0 can be treated similarly.

Proof. Let Mon(K[X,]) be the set of monomials in K[X,]. For each n € N, observe
that there is a bijection between Mon(K[X,]) and the set (N§)™ in which each monomial
z®* € Mon(K[X,]) get mapped to

(04171, A1y Qelyee, ALy Ay e e ,aw).

Thus it extended to a bijection between

M = |_| Mon(K[X,]) and (N§)* = U(Ng)”,

n>1 n>1

where the first union is disjoint union. By Dickson’s lemma, N is well-partially-ordered
by the standard component-wise partial order. Thus (N§)* is well-partially-ordered by
Higman’s lemma, or, equivalently, (M, <) is a well-partially-ordered set.

The partial-order of (Mon, <) is as follows: for m < n, b, € Mon(K[X,,]) and

b, € Mon(K[X,]), we have b,, =< b, if and only if there exists an increasing map
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7 {1,2,....m} — {1,2,...,n} such that 7(b,,)|b,. Clearly m can be viewed as an
element of Inc(N)! . Here Mon can be considered as a subset of M since there is an
injection from Mon to M, we must have (Mon, <) is well-partially-ordered.

Let Z = (I,)nen be an Inc(N)*-invariant chain. By the above lemma, the chain LT(Z) =
(LT(1,,))nen is also Inc(N)*invariant.

Now if the chain LT(Z) stabilizes, then by Lemma 2.42, the i-index of Z is bounded
above by ind’(LT(Z)). Thus Z must stabilizes. By this observation, we may assume that
7 is a chain of monomial ideals, and we aim to prove that Z is stabilizes.

Proof by contradiction. Assume that the chain Z does not stabilize. Then for any

integer m, there exists some n > m such that (Inc(N)! (I,,)) € I,. This allows us to

m,n
construct an infinite sequence of indices n; < ny < n3z < ... and an infinite sequence of
monomials w1, us, us, ... such that for all £ > 1:

1. u € ]nk.
2. u ¢ (Inc(N);, . (In,_,)). This means uy is not divisible by any monomial 7 (m)
for any m € I, _, and 7 € Inc(N);, .
Consider the infinite sequence wuy,us,us,.... Since (Mon, <) is well-partially-ordered,

i
nj,Nk

m(u;)|ug. Now m(u;) € Inc(N);, . (I,,) implies that u; € (Inc(N), . (I,)))-

nj,Mk ng,Nk

there must exist indices j < k such that u; < ug. This means 37 € Inc(N) satisfying

Since j < k, we have n; < ny_y, thus I, C I,,,_,. By Proposition 2.38

(Inc(N);, 5, (In;)) € (Inc(N); (Tnj,1))-

NG ,Nk Np—1,Nk

Therefore, uy, € (Inc(N)! (I

vy (Ini_))- This contradicts the condition (2) in the construc-

tion of the sequence {u}. Thus the chain Z must stabilize. O

Definition 2.44. (a) Two Inc(N)“invariant chains Z = (I,,)ney and J = (J,)nen are
called equivalent chains if Un21 I, = Un21 I

(b) For an Inc(N)'-invariant ideal I of K[X], the saturated chain of I is the Inc(N)-
invariant chain (I N K[X,])nen.

Remark 2.45. If (I,,),ey is an Inc(N)'-invariant chain, then it is a subchain of the satu-

rated chain induced by the ideal I =, 5, I
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Given an arbitrary ideal I, C K[X,], then the set

A J
I,CJCK[X]
J€{Inc(N)i*-invariant ideals}

is the smallest Inc(N)’-invariant ideal that contains I,.

Lemma 2.46.

N J = (Ine(N)/ (L)),

I.CJCK[X]
Je{Inc(N)i-invariant ideals}

Proof. Let I = (Inc(N)'(I,))k[x]. Assume that there is an Inc(N)-invariant ideal @ of
K[X] such that

LCQcr.
Then we should have

(Inc(N)'(1:)) xpxy € (Ine(N)'(@))pxy € (Ine(N)' (1)) px)
Thus IF C Q C I} or, equivalently, @ = (Inc(N)"(I,)) x[x]. O

The above ideal I* is called the Inc(N)'-closure of I.. There are many smaller Inc(N)-
invariant chains, equivalent to the saturated chain of the Inc(N)’-closure. The construction

below provides one such instance.

Lemma 2.47. Let i > 0 be an integer and 0 # I € K[X,] be an ideal, consider two chains
Z = (Ip)neny and J = (Jp)nen defined by

(0) if1<n<r,
I,=X1 ifn=r,
<InC(N);—Ln<I’H—1)> an >,
and
7 (0) if1<n<r,
" {Ine(N)i, (D)) ifn >
Then

(a) Z and J are Inc(N)'-invariant chains,

(b) I, = J, foralln >1,
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(¢) ind"(Z) = ind"(J) =,
(d) J =U,cy Jn is the Inc(N)i-closure of I.

Proof. (a) It suffices to prove that J is an Inc(N)%invariant chain. Indeed, since

Inc(N)!, . (Jm) C Inc(N)7, ,((Inc(N)%, (1)) € J,, whenever n. > m > r, the chain

m,n ,m

(Jp)n is Inc(N)'-invariant.

(b) We have I, = J, =0for 1 <n < r; and forn =r, I, = J, = I. For n > r, applying
Proposition 2.20 repeatedly, we get

J, = (Inc(N)? (f)> = (Inc(N)! o Inc(N); om0 O Inc(N)f,,TH(f)) C I,.

r,n n—1n n

Conversely, using induction on n > r. For n = r,

I, =1 = (Inc(N): (1)) = J,.

n,n

For n > r,
Ly = (Inc(N), _y 5, (In-1)) = (Inc(N);,_; ,(Ju-1)) € Ja.

Hence J,, = I, for all n > r.
(¢) By definition of I,,, ind*(Z) = r, then by part (b), ind"(Z) = ind*(J).

(d) Note that ind'(J) = r, then we have

7= 0= 5= e, ()

neN n>r n>r
= (e (B
m€lnc(N)?
= (Inc(N)'(1)) k(x]
=1
Thus J = U,y Jn is the Inc(N)'-closure of I O

Corollary 2.48. With the notation of the above lemma, for all n > r, we have

JNK[X,] =1, = J,.



Chapter 3

Hilbert-Serre Theorem for Infinite
Dimensional Polynomial Rings

In this chapter, we begin by introducing the g-invariant, a measure of complexity designed
to prove the rationality of the equivariant Hilbert series for Inc(N)*invariant chains of
ideals. We then formally states and proves Theorem 3.6, demonstrating that under certain
conditions, the equivariant Hilbert series is indeed a rational function of a specific form.
Key techniques involve the use of certain chains involving colon and sum and the analysis of
ideals of leading terms. Finally, Chapter 3 concludes with a detailed example to illustrate

the computation of the equivariant Hilbert series for a concrete Inc(N)-invariant chain.

3.1 The ¢-Invariant

The purpose of introducing the g¢-invariant is to prove the rationality of the bigraded
Hilbert series. The induction using the g-invariant as a measure of complexity, is designed
to show that the Hilbert series has the desired rational form when the g-invariant is finite.

First, we define the equivariant Hilbert series.

Definition 3.1. The equivariant Hilbert series of a chain Z = (I,,)nen where Iy = (0),

I, C K[X,] is homogeneous for each n, is defined as

Since Iy = 0 and Xy = ), we have K[X,]/Ip = K. We examine two simple examples.

Example 3.2. (a) Consider the zero chain Z = (I,,)nen, where I, = 0 for all n. By
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Example 1.48, we have

Hy(s,t) = <Z dim g (K[X,.]); - tj) s"

(b) Consider the chain Z = (I,,)nen, with I,, = (X,,). Since K[X,]/I, = K, we have

1 ifj=0,

dim g (K[X,]/ 1) ; = dime (K); = {0 if j > 0.

Now its equivariant Hilbert series is

(Z dimg (K[X,)/1,); - )

7>0

(Z dll’IlK(K)] . tj> s"
n>0 \j>0

Let J C K[X,] be a monomial ideal, we know that .J is generated by monomials. We

now define the minimal system of monomial generators of J.

Definition 3.3. Let J C K[X,] be a monomial ideal. The minimal system of monomial

generators of J is the set of monomials G(J) = {g1, g2, . .. } such that J = (G(J)); and

gi & (G(J) \{g:}) for all g; € G(J).

Furthermore, we denote by e™(J) the mazimum degree of a minimal homogeneous gener-

ator of a homogeneous ideal J € K[X,,].
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Definition 3.4. The g-invariant of an Inc(N)*-invariant chain Z = (I,,),en, denoted as

q(Z), is defined by

et (1)

Z dimg K [X,]/1,];,
where r = ind"(Z).

Example 3.5. Let ¢ = 2 be the row index of variables, thus X; = {z11,221}. Define the

chain Z = (I,,)nen, where

I — <l’il,$271> if n= 1,
" Ine(N), (1)) ifn> 1

This creates an Inc(N)-invariant chain with stability index r = ind’(Z) = 1. Since 2%,
and x; are minimal monomial generators of Iy, it follows that et (/;) = max{2,1} = 2.

We compute dimensions dimg (K[X,]/11); for j up to et (I;) = 2:

e Degree j = 0: (K[X4]/I1)o = K because in degree 0, K[X;]o = K and (I)y = 0.
So,
dlmK(K[Xl]/]l)O =1.

e Degree j = 1: A basis for (K[Xi]); is {z11, 221} Simplifying, we imply that a basis
for (K[X1]/I1); is given by the class of {z11}. So,

dlmK(K[Xl]/Il)l =1.

e Degree j = 2: A basis for (K[X1])s is {27, 21,1221,23,}. In K[X1]/I1, we have
33%,1 = 0 and 237 = 0. Consequently, z; 1227 = 0 and 95371 = 0 as well. Thus,
(K[X1]/I)2 =0, and

dimg (K[X1]/11)2 = 0.

Hence, ¢(Z)=1+1+4+0=2.

3.2 The Hilbert-Serre Theorem for Inc(N)-Invariant
Chains of Ideals

The following theorem is the main result of this thesis.
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Theorem 3.6. [4, Theorem 7.2| Assume Z = (I,)nen s an Inc(N)'-invariant chain of

homogeneous ideals, where 1 > 0 is an integer. Then

q(s, 1)
1=t T (1=t —s- f5(8)]

where a,b,c; > 0 are integers, g(s,t) € Z[s,t], and each f;(t) € Z|[t] such that f;(1) > 0.

HI<S, t) =

We will first prove Theorem 3.6 for invariant chains of monomial ideals by induction.
The g¢-invariant is useful as an invariant to make sure that the induction process will
terminate. Then we use the fact Hilbert series is invariant under Grébner deformation,
i.e., the Hilbert series of an arbitrary ideal and its initial ideal with respect to some
monomial ordering are the same (Lemma 1.49). This will allow us to deduce the case of

arbitrary invariant chains from the case of monomial invariant chains.

Lemma 3.7. Let A be an N-graded ring with Ag = K, then

H(t)

Proof. Let X = {x1,...,2z,} and R = A[xy,...,x,]. We use the fact that

R/(x1,...,xq) R

o~

(x1, .. war1)/{x1, . xa) (L1, Tay1)

combining with Proposition 1.41, part (b), we get
1 1 1

Hr(t) = —— - Hp/p,r(t) = ——= - Hr/tzy ap)r(t) -+ = ——— - H t).

R( ) 1—+¢ R/ 1R( ) (1 _ t)2 R/{z1, 2>R< ) (1 _ t)” R/<X>R( )

This completes the proof since Hg,x\r(t) = Ha(t). O
For the proof of Theorem 3.6, we firstly encounter a simpler case.

Lemma 3.8. Let i > 0 be an integer and T = (I,)nen be a non-trivial Inc(N) -invariant

chain with r = ind" (Z) <i. Then

g9(s, )
(I—=t)a-[(1—t)e—s]

HI(S, t) =

where a = max{dim K[X,]/I, | 1 < n < r}, g(s,t) € Z[s,t], and deg(g(s,1)) < r.
Moreover, if I, = K[X,], then g(s,t) is a multiple of (1 —t)° — s.



52

Proof. Since r = ind"(Z) < i, Inc(N)%,(I,) = ,K[X,]. For n > r, we need a useful
transformation:
K[X,]/ 1, = K[X,]/{Inc(N);. (1) xx.,
K[Xn]/<IT>K[Xn]
= (KX /1) [Xn \ Xo ]

Letting A,, = K[X,]/I,, by Lemma 3.7, we get

1
Ha, (1) = A—fn Ha, (1)
Hence, we have
r—1
Hy(s,t) = Ha,(t)-s"+Y Ha(t) s
n=0 n>r
r—1 5"
= Ha,(t)-s"+ > Ha,(t) —1 —
n=0 n>r
r—1 s n
=St -0 0 Y ()
n=0 n>r (1 - t)
r—1 r
s (1 —1t)°
=N " Ha, (t)- 5"+ (1—t)" - Ha (1) - :
Yo+ 0-07 0 () s
r—1 r
_N ) s"+ g:(t) 5 ; (3.1)
(L=t (1 —t)=c-[(1—t) =]
t
where Hy, (t) = % with d,, = dim A,,. Letting the common denominator be (1 —

t) - [(1 —t)° — s| where a = max{dy,...,d,_1}, we get
(1 =) dgo(t) + 305, (1= )bt [(1 = )b 7Dgi(t) — gja ()] s
(1 —=t)e-[(1=1)° — 3]
T A=t [(1-b)e ij
_ 9(8, t)
(I =) [(1 =) — 5]

where po(t) = (1 — )" %go(t), and p;(t) = (1 — )41 [(1 — 1)1 dg,(t) — g, (t)]
for j € [r].

HI(S, t) =

Note that ¢ + dj_; > d; since the inclusion [, ;1 K[X;] C I; induces a surjection

Aj—l[Xj\Xj—l] = f[i-[’?[‘;](j] - K[Ij(j] = 4j,

j—




53

hence d]' = dim Aj S dim Aj—l[Xj \Xj—l] = ;-1 +c.
Clearly, the degree in s of g(s,t) is at most r. Finally, if I, = K[X,] then K[X,]/I, is
the zero ring, thus g,(t) = 0. Now look at (3.1), since then we choose (1 —1)*[(1 — )¢ — s]

as the denominator, g(s,t) must be a multiple of (1 —#)¢ — s. O

Consider a ring R, an ideal I C R and a subset S C R. We recall the colon ideal
(I :95) is an ideal of R such that (/:S)={re R|rS CI}.

Lemma 3.9. Let Z = (I,)nen be an Inc(N)'-invariant chain of monomial ideals such that
1< indi(I). For any variable xy,; € X; \ X;—1 and any integer e > 0, consider two chains
(Z,21,:) and (T : xf;) whose n-th ideals are (I, xy;) and (I, : xf;), respectively, if n > i

and zero if n < i. Then
(a) (Z,x4,) is Inc(N)i-invariant, and ind"(Z, z,;) < ind*(Z),
(b) (Z : x5;) is Inc(N)"-invariant, and ind’(Z : x¢ ;) < ind"(Z).

Proof. (a) Let J, = (I, x;). We first show that (Z, z4;) = (Jn)nen is Inc(N)*-invariant.
Consider n > m > i and m € Inc(N);,, .. Let f € Jp, = (I, 213). Then f = g+ hay;
where g € I,,, and h € K[X,,]. Applying 7, we get

m(f) =m(g + hwyg) = 7(9) + w(h)7 (ki) = 7(g) + 7(h)zp -

Since Z is Inc(N)%invariant, 7(g) € I,. Also, w(h) € K[X,]. Thus, n(f) = m(g) +
m(h)xk; € (In, 2;) = Jn. Hence, (Z,zy;) is Inc(N)™-invariant.

Now we show the stability index inequality. Let r = ind’(Z). We need to show that
for n > 7, (Inc(N)}.,, (L, Zk4)) k(x,] = (In: Thi)k(x,)- Note that I, = (Inc(N)., (1)),

rn

we have

(Iny 2g3) = (Ine(N), , (1), k1)
(Inc(N);. (L), Inc(N);,,(z,0))
(Inc(N) (I, 2x.5)).

Hence ind"(Z,z;,) < r = ind"(Z).

(b) Let J, = (I, : xf;). We first show that (Z : 2f;) = (Jn)nen is Inc(N)*-invariant.
Consider n > m > i and 7 € Inc(N)}, .. Let f € Jy, = (I, : 2f;). Then faf,; € Iy,
We want to show 7(f) € Jy, i.e., n(f)xg,; € I,. Consider 7(f)af,; = n(f)m(zf ;) =
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m(fxf,;). Since faf; € I, and T is Inc(N)*-invariant, 7(fxf,;) € I,. Thus 7(f)af,; €
I, son(f) € (I, : xf;) = Jn. Hence, (Z : xf ;) is Inc(N)'-invariant.

Now we show the stability index inequality. Let 7 = ind*(Z). We need to prove that
forn > r, <Inc(N)m(] xzﬂ-)}K[Xn] = (I, : $2,¢>K[Xn1-

(C): Let f € (Inc(N);n(IT :xg,)). Then f = ij(gj)mj where g; € (I : x;),
m; € Inc(N).,,, m; € K[X,]. We need to show f € (I,: zf,), i.e.,, fog, € I,. We

have
fag, = (Z m (g»mj) 5,
j

= " milg))mas,
j

= m(gj)m;( )m
j

= " m(gias)m
j

Since g; € (I, : x3,;), 955, € I, hence m;(g;ry ;) € I,,. Thus fr; € I,

(2): Let w € (I, : zf,;) be a monomial. Then uaf; € I, = (Inc(N); (I.)). Then

uxf, ; = m(v)m for some monomial v € I,, 7 € Inc(N);,,, and monomial m € K[X,].

rn?

Write v = wxf, ; where x3; { w. Then
ule = ﬂ(wxzﬂ-)m = W(w)x%im

Since r fixes [i] and wy; { w, 7(w) is not divisible by x;. Thus zf ;| (2§ ;m), which
implies 7(w)|u. If @ < e, then waf,; € (v) C I, so w € I,: xf;, therefore u €
(m(w)) € (Inc(N);,, (L = 25,)).

If a > e, then u = w(w)zy;*m = m(way;“)m. Again, wry;* - 2%, = v € I, s0
wry,;© € I,: x5 ,;, and u is a multiple of 7(wz}©) € (Inc(N)m(I 5 ))-
Thus, the equality holds. Therefore, ind*(Z : xh ) <7 nd"(7). O
The following is a direct consequence.
Corollary 3.10. Keep the assumptions as in Lemma 3.9. Let eq,...,e. > 0 be integers,
consider a sequence
T =T aly 2 Ty Te)
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with the n-th ideal

Jn:{<0> ifn < i,

(I, : T T Ty Teq) ifn >
Then J is an Inc'(N)-invariant chain, and ind (J) < ind"(Z).

Lemma 3.11. Assume Z = (I,)nen is an Inc(N)‘-invariant chain of monomial ideals,
where © > 0 is an integer. Then for n > m > 1, we have the following inclusions of ideals

of K[X,):

(Inc(N);, 5 (1m)) € (Ine(N)H3 1 (Tmg1)) € (Ine(N)j oy 5 (Tms)).

Proof. By Proposition 2.20, the first inclusion is true. The second inclusion is also clear

since Inc(N)™! C Inc(N)". O
Below are two consequences about the stability index of invariant chains.

Corollary 3.12. If T = (I,)nen is an Inc(N)-invariant chain of monomial ideals, then T

is also Inc(N)-invariant, and the (i + 1)-index of T is at most 1+ ind"(Z).

Proof. Since Inc(N)ii! C Inc(N):, , for every m < n, then the first claim is true.

Assume n > m > ind*(Z), the above lemma gives

L = (Inc(N);, (1)) € (Ine(N) 74 1 (Tins1)) € (Ine(N);, 41 5 (Tingr)) € Lo
This implies the equality 7, = Inc(N);"!; | (I;n41), which gives
ind™NZ) <m+1,

hence ind™(Z) < ind"(Z) + 1. O

Corollary 3.13. Assume Z = (I,,)nen 8 an Inc(N)'-invariant chain of monomial ideals,
where i > 0 is an integer. Let xy,; be a variable such that xy,; € X;\ X;_1. Then the chain

(Z, x1;) whose n-th ideal is (I, z;) is an Inc(N)™ ' -invariant chain and
ind™(Z, z1.;) < 1+ ind"(Z).
Proof. Combining Lemma 3.9 and Corollary 3.12, the inequality holds. O

Recall that, a linear form ¢ € K[X] is a finite sum ¢ = Z a;;x;; where a;; € K.

1]
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Lemma 3.14. Let I C R = K[X,,] be a homogeneous ideal, and let ¢ € K[X,] be a linear
form satisfying I : (¢ = I : (4% for some integer d > 0. Then

4l
1—t

d—1
Hp/(t) = Z Hpgy (1,0 (t) - t° + Hp o 0(t) -
e=0

Proof. Consider d + 1 sequences as follows, where -¢ is the multiplication by ¢:

0— R/I:0(-1) 5 R/I % R/{I,0) =0
0— R/I:0%(-1) 5 R/I:( = R/{I:0,0) =0
0— [R/T: ¢ (=1) 5  R/I:¢*' = R/I:0*' 0 =0
0— [R/I:0"(-1) 5 R/T: 07 R/I: 040 =0

For the first sequence, we have
Im()={al+1|xe R} =(R+1,
while
Ker(g) ={z+I|ze R, xe (I, {)} =(R+ 1.

Moreover, -¢ is injective and g is surjective. Thus this is an exact sequence. Using the
same method, all the above sequences are exact. Now by exactness of the first d sequences,

we obtain

Hpyi(t) =t Hpyro(t) + Hryo(t)
Hp/ro(t) =t Hgjree(t) + Hpyree(t)

Hpyppa1(t) =t Hpyppa(t) + Hpyroa0(t).

Substituting inductively into the first equation, we deduce that
d—1
Hpyr(t) = Hpyregp(t) - £+ Hpypga(t) - 7.
e=0

The last exact sequence combining with the assumption I : ¢4 = I : %+ gives

Hproa(t) =t Hpyran (t) + Hppri (t)
=t Hp/re(t) + Hpy0,0(t)
= Hpyuan(t) = (1 —1t) - Hgr(t).

Replacing this formula to the earlier equation, we imply our claim. O
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Corollary 3.15. Let i > 0 be an integer and Z = (I,)nen be an Inc(N) -invariant chain
of homogeneous ideals. Assume that there are two integers r > i+ 1, d > 0 and a linear

form ¢ € K[X,1] satisfying
I, 0t =T, : 04 for every n > 7.

For each e € {0,...,d}, we define a chain (Z : £¢,0) = (J,e)nen bY

- (0) if n <,
YTV e 0 ifn >

Then each (J,.) is an Inc(N)"-invariant chain, and there is g(s,t) € Z[s,t], g(s,1) =

—s"1 such that

- . ! g(s.t)
HI(Sv t) - Z H(I:ZE,£)<57 t) T+ H(I:Ed,é) (57 t) ’ 1—¢ + (1 _ t)(r—l)c-l-l :
e=0

Proof. Since ¢ € K[X;,1], for each m € Inc(N)" we have w(¢) = ¢. Thus ¢r(f) = n(Lf)
for any polynomial f € K[X]. Any element v € (I, : ¢, ) has the form

v =ay + (1267
where ay, a2 € K[X,], y € (I, : £°). Applying 7 € Inc},!,} (N) on both sides gives
m(y) = m(ary) + ln(asz) € K[X,,].

Since yl¢ € I,,, w(y)t¢ = w(yl°) € I,41. Therefore (J,.) is an Inc(N)"*-invariant chain.
Applying Lemma 3.14 to each ideal I, with n > r. We have

Hy(s,t) = > Hipe () 8"+ > Hixy,(t) - s

n>r
d—1 td r—1
- Z (Z HK[Xn]/Un:fe,@ (t) 1°+ HK[Xn]/Un:Zd,é} (t) : 11— t) - 8"+ Z HK[Xn]/In(t) . g"
n>r e=0 n—0
d—1 td
= ZHZZS,Z)(Sgt) 'te‘i‘H(Z:gd’g)(S,t) . 1_¢
e=0
r—1 d—1 _ td
HK[Xn]/Jne .Sn.te_ZHK[Xn]/Jn’d(t) 'Sn' ]__t
n=0 e=0 n=0
r—1

+ HK[Xn]/In(t) - s
0

3
|
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For every 1 < n < r — 1, dim(K[X,]/],) and dim(K[X,]/J,.) = dim(K[X,]/(0)) =
dim(K[X,]) is at most ¢(r — 1), then we have the following equality:

r—1 d—1 r—1 d r—1
t
- g g Hyx,)/ 0,0 (t) - 8™ - 1° — g Hicix,/0,.4(t) - 8™ 1 ¢ + E Hrcix, ), (t) - 8"
n=0 e=0 n=0 n=0
r—1 d—1 r—1 r—1
s" - t¢ s" td
- _ - . H t)-s"
22 i 2 (g 1 &m0

0e
(1 — t) ) gl(svt) — s + (1 _ t) ) 92(87t)
(1 _ t)c(r—l)—i—l ’

for some ¢;(s,t), g2(s,t) € Z[s,t]. Putting ¢t = 1, the numerator is equal to —s"~'. Now

our assertion follows. O

Lemma 3.16. Leta,z € K[X,] be monomials and I,, C K[X,] a monomial ideal. Assume

that 1 <i<e¢, 1 <j<mn,ged(x, ;@9 ...2;5) = 1. The following equality holds
<In L ar,ry , ... ,iL‘i7j> = <In S, T, 7$i,j> L.

Proof. Since I, is a monomial ideal, both sides are monomial ideals. We only need to
prove: for any monomial f € K[X,], f belongs to the right hand side (RHS) if and only
if it belongs to the left hand side (LHS).

If f € RHS, fx € (I,: a,x1j,...,%: ). If fx e (x14,...,2;;), since
ged(z, xyjx05 ... xi5) = 1, we have f € (w1,,...,2;;). If fo € I,: a, then f € I,: ax.
Hence f € LHS.

If feLHS,so fe (I,:ax,x1,...,2;;). If fis a multiple of some z;;, 1 <t <,
then clearly f € RHS. If not, f € I,,: ax, so fx € I,,: a, namely f € RHS. This concludes
the proof. m

The following is [4, Lemma 6.10]. We correct the following typos:

1. Change the condition r > indi(I) >qitor > indi(I) > q.

2. Correct the index of the first non-zero ideal of the colon-sum chain from r to r + 1.
3. Change ind"™(Z.) = r to ind"™(Z,) = r + 1.

Lemma 3.17. Assume T = (I,)nen is an Inc(N)'-invariant chain of monomial ideals,
where i > 0 is an integer. Select an integer r such that v > ind(Z) > i. Let G(I,)

be a minimal generating set for the monomial ideal I.. Choose a positive integer d with
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the property that for all k € [c|, the monomial xﬁ}rl does not divide any element of

G(I,). Given these prerequisites, for an arbitrary sequence of non-negative integers e =

(e1,...,¢e.), we define a sequence

_ . €1 €
Te =T a1 Tiu1, Thitls - - - Tejih1)
with 1ts n-th ideal is

7 10O ifl<n<r
en .
(In t 2y T, it - - Teipn) fn>r+ L

Then
(a) Ze is an Inc(N)™-invariant chain with ind™™(Z,) = r + 1.

(b) there exist g(s,t) € Z[s,t], g(s,1) = —dts"~1 satisfying

1 g(s,?)
H t) = . E e(t) - Hz (s,t) + ————,
I(S’ ) (1 - t)c e=( N/ f ( ) Ie(s ) * (1 - t)rc
“0de/<a

where

folt) =11 =1)%©)  with |e|=e+---4e, b6e)=#{l|es=dand1<1<c}.

Proof. (a) By Corollary 3.12, the sequence Z is an Inc(N)*"linvariant chain with index
ind""'(Z) < r + 1. Now by Corollary 3.10, the ideal Z is an Inc(N)"*!-invariant
chain with ind™'(Z,) < ind"™(Z) < r + 1. By definition, J, = (0) for all n < r + 1,
thus ind"*(Z,) > r + 1, which implies (a).

(b) By assumption, the monomial a:gj;il does not divide any element of G(I,). Thus

for all k € [c] and n > 7 > ind"™(Z), xzﬁl does not divide any element of G(I,,).

Hence

(I : $Z,i+1> = (In: xﬁiﬁa

which implies

. .€e1 €k—1 d
<[n 1 P11 ki1 L1y - - ,xk71,i+1>

_ . el €r—1 d+1 . .
= (I, : Lriv1 " Tr-141Tkgr10 TLitly - - - s Th—1,i41)) (3.2)
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where 0 <e; < dand 1 <k <ec. Next, Lemma 3.16 gives

. €1 €k—1
(I : Liit1 - Tpq z+1% i1 Tl - - s Th—1,i41)

— . €1 - A . . €k
= (Lo 2y T Tt Ty T (3.3)

For each 1 < k < ¢, consider chains

. €1 €k—1
(Z: Lyt Tpq z+1wk i1 TLitls - - s Th—1i41),
. . e .
where the n-th ideal is ([, : 27, .. Ty 111+1xk 1 Tl ls - - Tp—1ig1) 0 > 41

and (0) if n <.

We proceed by induction on k, where 1 < k < ¢. We will prove the statement P(k):

For any non-negative integers ey, ..., ey,
1
HI(S’ t) N (1 - t)k . Z Jie<t) ' le i1 mkk 111+1 2l+1,r1 i1 Th—1 z+1>(s’ t)
=(e1,mmrer)EZ
e (6013612636
+ gk<87 t)

(1 _ t)(rfl)chk: ’

where fo 5 (t) = tlel(1 — ¢)%(©) with |e|, = Z?:l e;, 0p(e) = #{j € [k] | ¢ = d}, and
gr(s,t) € Z[s, t] with g(s,1) = —d*1s7L.

Base Case k = 1: Consider the chain (Z : 27, ). By assumption,
(In $(1i,z‘+1> = (I, : xﬁ}rﬁ

for n > r. Thus, Corollary 3.15 implies that 3¢, (s, t) € Z[s,t], g1(s,1) = —s"~! such
that

td g1(s, 1)
_ d )
Hz(s, 1) = Z H<I:IT,¢+1»I1,i+1>(57t) T H<I:$f,i+17m1«i+1>(57t) 1t * (1 —¢)(r—Det1”

=0
d
1 g1(s,t)
- m (Z fel( ) (Liat it 1071, z+1>(8’t)> + W’

e=0

where f.1(t) =t¢(1 —t) for 0 < e < d—1and f;,(t) = t%. This establishes the base
case P(1).

Inductive Step: Let 1 < k£ < c¢. Note that from (3.2) we have

. €1 €k—1 d
(In T1it1 " T 1,i41Pkit+1s TLitly -+ o) Th—1 itl)

_ . €l €k—1
= (I Li+1 " T z+15’7k z+17 T1it1y - Tholif1)-
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Applying Corollary 3.15 to the chain (Z: zf%,, - 2;"7,,,) deduce that there is
Gek—1(8,t) € Z[s,t] with G _1(s,1) = —s"~! such that

H<Z::D(15,1i+1"'mzli_1711+1)$17i+1,~~733k71,i+1> (S’ t)
d—1
= Z H<IZ$;1¢+1"“Z’Zlfi+17x1,i+lv---7-7:k,i+l>(87 t) . tek
ek=0
td ge,k—1<37 t)
+ H(I:xi}iﬂ---zi,iﬂ7x1,¢+17~--,rk,i+1>(5’ t) - 13 + (1 — ¢)(r=Dett
d ~
1 ~ ge,k—1(37 t)
N (1 — t) . Z:O fEk (t) . H<Zmi,1i+1"‘lefi-s-lvxl,iﬂv--ka,i-&-l)<S7 t) + (1 — t)(T_l)C'H’ (3‘4>
€=
where f,, (1) = t*(1 —t) for 0 < e, <d — 1 and fy(t) = t?.
The induction hypothesis P(k — 1) yields
1
HI(S’ t) N (1 - t)k_l ' Z k—1 fe,k—l(t) ' H<Ii$i}i+1"'leiz,1¢+1vxl,i+1v~--’zk71,z‘+1>(S’ t)
e=(e1,....ex—1)€ZLI,
' Ogcigld =0
gk—1(87 t)

+ (]_ _ t)(r—l)c—f—k—l’

where

fepa(t) = 11 (1 — )01
and g_1(s,t) € Z[s, 1] with gp_(s,1) = —d* 25" 1.

Replacing (3.4) into the last equation gives

d
1 ~
HI(S’ t) - (1 _ t)k ' Z (Z fe’k_1<t)fek <t) ) H<I:xi1i+l“'lefi-kl7xl,i+1v--»$k,i+1>(8’ t))

e=(e1,...,ep_1)EZF1 ex=0
0<e;<d
1 ~ gk—l(sv t)
+ ]_ — 1 (T—l)C-HC ) Z fe,k—l(t)ge,k_l(s, t) + 1 —t (T‘—l)c-i—k‘—l
( ) e=(e1,...,ep_1)ELF1 ( )
0<e; <d
1
- TG . Z Jer(t) - H<I:w‘{‘}i+1---wZ’fm,zl,m,..-,xk,m)<S>t)
e:(eééé;egkgezk
+ gk(57 t)

(1 _ t) (r—1)c+k’

where

Fermer) b (t) = flerennyia (8) - fo (8) = (1 = 1)
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and

gk(87t) = Z fe,k—l(t)ge,k—l(‘s?t) + gk‘—1<87t) ’ (1 - t) € Z[S7t]'

k-1
e=(e1,....ex—1)€ZI,
0<e;<d

Finally, we must check gi(s,t) at t = 1:

gk(‘Sv 1) = Z fe,k—l(l)ge,k—l(sv 1)

e=(€1,..., ek_l)ezlg)l
0<e; <d

- Y

e=(€1,..., Ek—l)EZg)l
0<e;<d, dp_1(e)=0

— _dkflsrfl )
We complete the proof. O

Lemma 3.18. Assume Z = (I,,)nen is an Inc(N)'-invariant chain of monomial ideals,
where i > 0 is an integer. Assume further that indi(I) >4+ 1. Letr > indi(I) be an
integer, o; € Inc(N)" and set

Jrp1 = (Ui(lr), T1id1y .- 7$c,z‘+1)-
Let J = (Jn)nen be a chain satisfying

I = (0) if1<n<r,
T {IneNRE L (Be)) i >

Then J is an Inc(N)"-invariant chain, and there is g(s,t) € Z[s,t], g(s,1) = s" such

that
g(s,t)

HJ(S,'[J) =S HI(S,t) + (1_—?5)7"0

Proof. By Lemma 2.47, J is an Inc(N)"*!-invariant chain with ind™"(J) =r + 1.

We first prove that for any n > r, we have

Jnp1 = <Uz‘(In)> L1415 - - - ;-Tc,i—l-l)-
Induction on n. If n = r, the statement J,,+1 = (0;(15.), 1441, - - - s Teip1) becomes
Jrp1 = <0i([r)a T1i41y .- - ,ch,i+1>,

which is exactly the definition of J,,; given in the lemma.
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Let n > r. We have

(0i(In), T1ig1s - s Teip1) = <0‘i(InC(N)im(L~)), T1it1s o Teitl)
- <InC<N)iill’n+1 (Ui([r)>7 T1i41y - 7x8,i+1>

(by Proposition 2.16)
= (Inc(N); 5 1 (Jr1)) = s

For the reverse inclusion. Since n > r + 1 = ind""'(Z), the induction hypothesis yields

1 = <IHC(N);J,F7~}+1<Jn>>

= (Inc(N)3 ((0i(Tn1), Tty - Teien)))
= <IHC(N);?+1(%(I1%1)): T1it1s - - o s Teyitd)-

We note that Inc(N).E (03(L,-1)) = {0441, - - ., 01 }(0i(L-1)) since for every f € K[X,,]
and every m € Inc(N), 11, there exists o; € Inc(N)? with i +1 < j < n + 1 satisfying
7(f) = o;(f). By Corollary 2.17, we imply that

Jn—l—l g <0i(InC(N)n—1,n([n—l))7 x17i+17 oo 7xc,i+1>

C(oi(In), T1i41, - - Teyig1)-

Hence J,11 = (0:(1n), T1441, - - -, Teit1), which completes the induction.
Observe that o;(1,,) is obtained from I,, by replacing xy; by x ;1 for 1 < k < ¢ and
i+ 1 <. In particular, no element in G(0;(I,)) is divisible by any ;41 for 1 < k <.

Thus, for n > r, the folowing map

T i<,

K[X,)/I, — K[Xpi1]/Jns1, Tid = ,
[Xn]/ [(Xog1]/Tns1, T {ka fitl<i<n

is a graded K-algebra isomorphism, implying Hy(x,)/1,(t) = Hk[x,1]/Jn.. (t) for n > r.
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Thus,

Hy(s,t) =Y  Hix, 0, (0" + Y Hiix,)0, ()"

n=0 n=r+1

= Z Hgx,)(t)s™ + Z Hyxm, (08" (by the above isomorphism)
= Z HK[XTL](t)Sn + s Z HK[Xn]/In (t)S
_ZHK[X]( )S +S<HISt ZHK[Xn]/In )

n=0
r—1
=S~ HI 8 t ZHKX" Sn—SZHK[Xn}/[n(t)Sn

n=0
s™ r—1 nt1

s"gu(t)

= s Hz(s1) +Z— PR T

—(L=t)m = (1-t)h

G B .
where Hy[x,j/1,(t) = a—pi dim K[X,]/I, = d, < (r — 1)c. Letting the common

denominator of the last two sums be (1 — )™, we have

Hy(s.t) = 5 Hy(s,t) + 250

(1—¢)e
where )
g(s,t) =Y (=) s" =3 "5 g, (t) - (1 — )7~ € Zs, 1].
n=0 n=0
and g(s,1) = s". O

We have established all the necessary preliminaries to prove Theorem 3.6 when Z is a

chain of monomial ideals.

Theorem 3.19. [4, Theorem 6.2] Assume Z = (I,)nen is an Inc(N)i-invariant chain of
monomial ideals, where v > 0 is an integer. Let r = indi(I) be the i-index of T and

q=q() = Z;;E)m dimg (K[X,]/1,); be the g-invariant of Z. Then

Hy(s.1) = g(s,1)
(1=t [Tl =t —s- f5(1)]

where a,b,c; > 0 are integers, g(s,t) € Z[s,t], and each f;(t) € Z[t] such that f;(1) > 0.

Proof. The proof uses double induction. Firstly, we show by the outer induction on p > 0

that, for an Inc(N)*-invariant chain Z = (I,,),en, such that ind*(Z) — i < p, Hz(s,t) is of
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the desired form. Then for each p, the inner induction on the ¢-invariant of Z implies that
Hz(s,t) is rational, as we need.

Outer Induction on p:
1. Base Case p = 0: ind"(Z) <. This is Lemma 3.8.

2. Inductive Step: Let p > 1. Now we use a second induction on ¢ > 0 to show: if
an Inc(N)’-invariant chain Z = (I, ),en satisfies 7 —i = ind*(Z) —i < p and ¢(Z) < q,
then Hz(s,t) has the necessary form as in the theorem. By the first induction, we

assume that ind"(Z) — i = p.

Inner Induction on g¢:

e Base case ¢ = 0: dimg[K[X,]/I,]; =0 forall 0 < j <e*(l,). Thus I, = K,,
then K[X,]/I, =0 for all n > r. Hence

r—1
HI<S,t) = Z HK[Xn]/In (t) . Sn
n=0

r—1

- ; 11—t

b1 = s
(]_ _ t)a ;

where d,, = dim K[X,,]/1,, gn(1) > 0 and a = max{d, | 1 <n <r —1}. Thus

in this case, Hz(s,t) has the desired form as in the theorem.

e Inductive step: Let ¢ > 1, assume that ¢(Z) = ¢. Thanks to Corollary 3.12,
the sequence Z is an Inc(N)™l-invariant chain with ind*"(Z) < r + 1. If
ind"*'(Z) < r, then Hz(s,t) has the given form by the outer induction hypoth-
esis.

Assume ind"™(Z) = r+1. For each non-negative c-tuples e = (ey, ..., e.) € N§,

consider a chain

Ie - (I : xilz‘_ﬂ e xzci.i_l? L1441y - - 7$c,i+1) — (Ie,n)nGN

where

Lo = {<0> ifn <r,

. €1 e .
<[n RSN 'xcf¢+1, L1441y - - 7xc,i+1> ifn>r+1
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By Lemma 3.17, Z, is an Inc(N)™ ' invariant chain with ind"*"(Z,) = r + 1.
Suppose that 0 < e, < d, where
d = max{e | 7y ;, divides some element of G(I,) for some k € [c]}.

Because

. el e
0i(ly) C Ira C Loy s @75 - 2554

and, note that r+1=p+1i+4+ 1>+ 1, we have
K[Xr+1]/<0i<[r)7 T1i41y--- ,l'c,z'+1> = K[Xr]/[r-
Then for each j > 0, we have the dimension inequality
dimg [K[ X 1]/ e ria]; < dimg[K[X,]/ 1]

Since r = ind’(Z), we have et (I,,1) = e*(1,), thus e* = e*(Io,11) < et (1)

Hence, we get

e* e+(b)
0(Te) = 3 dimil KXol Lapaly € 3 dimilKIX)/1) = (35)

If ¢(Z.) < g, then by the inner induction hypothesis, we implies that Z, is an
Inc(N)"*-invariant chain which has a Hilbert series of rational form, as desired.

If (3.5) becomes equality, it implies

Iori1=(0i(L), @141, - - Teyi)-

Applying Lemma 3.18 to the ideal in the right hand side, we have

ge(s,t)

H t)=s-H t —_—
Ie(s7 ) S 1(87 )+ (1_t>rc’

(3.6)

where go(s,t) € Z[s,t], ge(s,1) = s".
Now we use Lemma 3.17. Using equation (3.6) for all chains with the g-invariant

equal to g, it gives

HI(S,t) = (1 ﬁ(:)’(ill)c + (1 _1 t)c : Z fe(t) ’ HIe(Svt)

L2
+ (1 _1 t)e Z fe(t) - {3 - Hz(s, 1) + % , (3.7)
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where h(s,1) = —d*'s” and f,(t) = tl*/(1 — )°©). Bringing the term Hz(s,t)

in one side gives

Hz<s,t>-[1—<1_8—t>cf<t>} e X R0

9(s:1)

+ (1 _ t)(r+1)c’

(3.8)

where

fy=" Y  €0-0"@ =10

with 0 < ¢ <, f(t) € Z[t] with f(1) > 0.
By inductive hypothesis, all the equivariant Hilbert series Hz,(s,t) in (3.8) with

q(Ze) < q is rational. Thus we must have

B 1 | s, t) . .
B = G e 2 O ]

which is the desired form of Hz(s,t).
Thus, we proved the inductive step of the outer induction, which ends the proof. O

Next, we use the lexicographic ordering as in Theorem 2.31, that is x,; <z, if p < p'
or p =p and j < j. Since Inc(N) preserves this monomial ordering, we must have
LT(7(g)) = n(LT(g)), for all 7 € Inc’(N) and for all g € K[X]. The following results takes

ideals of leading terms with respect to <.

Proposition 3.20. Let I, C K[X,] be an ideal. For any integers i > 0 and r < n, the

following inclusion holds:
(Inc(N);.,,(LT(1,))) € (LT(Inc(N);.,,(1,))).

Proof. Consider a generator v € (Inc(N)., (LT(I.))). Such a generator is of the form
v = 7(u), where u € LT(/,) is a monomial, 7 € Inc(N).,. Since u € LT(I,), there exists
g € I, such that LT(g) = u. Now, consider the polynomial f = 7(g) € (Inc(N).,,(I,)), the

leading monomial of f is

LT(f) = LT(x(g)) = n(LT(g)) = 7(u) = v.
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The second equality is since Inc(N)? respects the given monomial order. Now, since f =
7(g9) € (Inc(N): (I,)), its leading monomial LT(f) = v must be in the ideal of leading

rmn

terms of (Inc(N);, (1,.)), i.e., v € (LT(In¢(N);, ,(I))). Thus, the inclusion holds. O

Below is Theorem 3.6, which is the main result of this thesis.

Theorem 3.6. [4, Theorem 7.2| Assume T = (I,)nen i an Inc(N)'-invariant chain of

homogeneous ideals, where © > 0 is an integer. Then

q(s, 1)
1=t T (1 =) —s- f5(8)]

where a,b,c; > 0 are integers, g(s,t) € Z[s,t], and each f;(t) € Z[t] such that f;(1) > 0.

HI<S, t) =

Proof. Consider the chain of ideals of leading terms LT(Z) = (LT(/,,))nen- By Lemma 2.42,
LT(Z) is also an Inc(N)’invariant chain. Furthermore, LT(Z) is an Inc(N)“invariant chain
of monomial ideals. Thus the equivariant Hilbert series Hyr(z)(s,t) is a rational function

of the same form as in Theorem 3.19. Now, by Lemma 1.49
Hz(s,t) = Hipo (s, 1),

which finally implies the theorem. O]

3.3 An Example

Before turning to the last example, we need a useful isomorphism.

Lemma 3.21. For ¢ = 2 and I,, = (23, 22,1, 27 5, T2, ..., 23 ,, T2 ). The following iso-
morphism holds:
K[X,)/ 1 2= Q) K[r1, w21/ (3, 02),
j=1

where tensor product is taken over K.
This follows from a simple lemma.

Lemma 3.22. Let A = K|xy,...,24] and B = K[y1,...,y.| be polynomial rings over K,
I CA, JCBbeideals. Let R=A®k B= Klxy,...,24,Y1,-..,Ye]. Then

é® B, R
I %7 IR+ JR

2
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U M U
Proof. Tensor product over a field is exact, so M ®g — = 2 SO O for K-modules

\% M@k V
M, U, V. Thus
A A®g B ARk B
é@ §u7®KBg[®KBg I ®k B
I KJ—§® ; AsxT "~ Ay J
7ok [9xJ (I®xB)N(A@kJ)
~ I ®K B ~ A®k B .~ R
- AQxJ+I®xkB Ik B+A®xJ IR+ JR
I ®x B

This completes the proof.
Applying this lemma repeatedly, we get the conclusion of Lemma 3.21.

Proposition 3.23. Let R = @,- R, and S = D,._,Sm be two graded K-algebras.

Consider their tensor product T = R ®g S, which is also a graded K-algebra with grading
(R@K S) =D, j—(Ri @k Sj). Then the Hilbert series of the tensor product is

Hpgs(t) = Hg(t) - Hs(t)

Proof. Let Hg(t) = > 7 dimg(R,)t" and Hg(t) = > °_,dimg(S,)t"™ be the Hilbert
series of R and S, respectively. Then

Hpgyes(t) = dimg((R®k S))t!
i <@<Rz QK Sj)> t
1=0 itj=l
i <Z dlmK R ®KS>> tl
=0 \it+j=l

> dimg(Ry) - dimK(Sj)> ¢,

I
M 1
=7
B
=
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We compute the equivariant Hilbert series of the chain defined in Example 3.5.

Example 3.24. Let X, = {X;; | i € [2],75 € [n]} and define the chain Z = (,,),en by

I - (x%l,le) ifn=1,
" (Inc(N)y (L)) ifn>1.

Thus, for n > 1, I,, = (27 ;, 22 | j € [n]) C K[X,].
For n = 0, Hgix,/1,(t) = Hx(t) = 1. For n = 1, Hgx,)/r,(t) = 1 +t. For n > 1, by
Lemma 3.21 we have the isomorphism:

n

K[X,]/1, = QK[X\]/1).

J=1

Therefore by Proposition 3.23, we have

Finally, the equivariant Hilbert series of Z is

HI(S, t) = HK[XO]/[O(t)SO + Z HK[XH}/In(t)Sn

n=1

=1-8"4> (141)"s"
n=1

(1+1)s
T—(1+1)s
1
1—s5—st

=1+



Conclusion

We have presented the following in this thesis:

1. In the preliminary part, we presented fundamental properties of graded rings and
graded modules, especially the theory of Grébner bases and monomial ideals, and

the classical Hilbert-Serre theorem.

2. We introduced the concept of well-partial-orders and presented Kruskal’s tree the-
orem and Higman’s lemma. We then explored the monoid Inc(N) and its sub-
sets Inc(N)?, demonstrating the existence of finite Inc(N)-equivariant Grébner bases
and the Hilbert’s basis theorem for infinite dimensional polynomial rings of the
type K [z;|1 <i<e¢,j > 1] with the action of Inc(N) on the variables given by

() = Tix(). We also discussed chains of Inc(N)*-invariant ideals.

3. Finally, we established the Hilbert-Serre theorem for infinite dimensional polynomial
rings, proving the rationality of the equivariant Hilbert series for Inc(N)-invariant
chains of monomial ideals. We introduced the ¢-invariant as a measure of complexity
and employed induction on this invariant to demonstrate the rationality. We also
provided a detailed example to illustrate the computation of the equivariant Hilbert

series.

In summary, this thesis provides a significant step towards extending classical results
in commutative algebra concerning Noetherian ring to the infinite dimensional setting,
specifically for ideals invariant under the action of the monoid Inc(N). The use of equiv-
ariant Grobner bases and the g-invariant offers a new framework for studying these infinite

dimensional polynomial rings.
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