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           Novel contributions of the thesis 

 

1. Mott transitions in three-component Falicov-Kimball model 

Metal-insulator transitions are studied within a three-component 
Falicov-Kimball model, which mimics a mixture of one-component 
and two-component fermionic particles with local repulsive 
interactions in optical lattices. Within the model, the two-component 
fermionic particles are able to hop in the lattice, while the one-
component fermionic particles are localized. The model is studied by 
using the dynamical mean-field theory with exact diagonalization. Its 
homogeneous solutions establish Mott transitions for both 
commensurate and incommensurate fillings between one-third and 
two-thirds. At commensurate one-third and two-thirds fillings, the 
Mott transition occurs for any density of hopping particles, while at 
incommensurate fillings, the Mott transition can occur only for density 
one-half of hopping particles. At half-filling, depending on the 
repulsive interactions, the reentrant effect of the Mott insulator is 
observed. As increasing local interaction of hopping particles, the first 
insulator-metal transition is continuous, whereas the second metal-
insulator transition is discontinuous. The second metal-insulator 
transition crosses a finite region where both metallic and insulating 
phase coexist. At third-filling, the Mott transition is established only 
for strong repulsive interactions. A phase separation occurs together 
with the phase transition. 

We consider a three-component FKM that describes a mixture of 

one-component heavy fermionic particles and two-component light 

fermionic particles loaded in an optical lattice. The heavy particles are 
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localized, whereas the light particles can hop in the lattice. Its 

Hamiltonian reads 

  
𝐻 = −𝑡 ∑  ⟨௜,௝⟩,ఙ   𝑐௜ఙ

ற 𝑐௝ఙ + 𝑈௖௖ ∑  ௜   𝑐௜↑
ற 𝑐௜↑𝑐௜↓

ற 𝑐௜↓

 +𝐸௙ ∑  ௜  𝑓௜
ற𝑓௜ + 𝑈௖௙ ∑  ௜ఙ  𝑓௜

ற𝑓௜𝑐௜ఙ
ற 𝑐௜ఙ,

 

where ciσ
† (ciσ) is the creation (annihilation) operator for a fermionic 

particle with hyperfine multiplet (or spin) σ at site i. σ takes two values 

±1. t is the hopping parameter of the two-component fermionic 

particles, and we take into account only the hopping between nearest-

neighbor sites. Ucc is the local Coulomb interaction between the two-

component states of those particles. fi
† (fi) is the creation (annihilation) 

operator for a one-component (or spinless) fermionic particle at site i. 

Ucf is the local Coulomb interaction between the two-component 

particles and one-component particles. The one-component particle 

does not move, and its energy level is Ef . Ef can also be considered as 

the chemical potential of the localized particles and controls the filling 

of the localized particles 𝑛௙ = ∑ 〈𝑓௜
ற𝑓௜〉௜ /𝑁, where N is the number of 

lattice sites. A common chemical potential μ is introduced to control 

the total particle filling 𝑛௙ = ∑ 𝑛௖ఙ + 𝑛௙ఙ , where 𝑛௖ఙ = ∑ 〈𝑐௜ఙ
ற 𝑐௜ఙ〉௜ /

𝑁.  

Particles reads 𝐺(𝐤, 𝑖𝜔௡) =
ଵ

௜ఠ೙ାఓ ఌ𝐤 ஊ(௜ఠ೙)
 

whereωn is the Matsubara frequency, εk  is the dispersion of the two 

component particles, and ) is the self-energy. 
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FIG. 1. Diagram of particle fillings for the MIT. The solid lines show 
the filling values of (n,nf) at which the MIT can occur, and the dotted 
line shows the filling values of (n,nf) for the occurrence of the inverse 
MIT. The black point indicates the filling value (n = 3/2,nf = 1/2) for 

the reentrant effect of the MIT 
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FIG. 2. The hopping particle filling 𝑛௖ఙ as a function of the chemical 

potential 𝜇 at 𝑛௙ = 1/2 for different values of 𝑈௖௖ and fixed 𝑈௖௙ =

2. The horizontal dotted lines show 𝑛௖ఙ = 1/4, 𝑛௖ఙ = 1/2, and 

𝑛௖ఙ = 3/4(𝑇 = 0.01, 𝐷 = 1). 

 

 

 

 

 

 

 

 

 

FIG. 3. The imaginary part of the light particle self-energy at half-

filling for different values of Ucc and fixed Ucf = 1.6. (T = 0.01, D = 

1). 
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FIG. 4. Phase diagram at half-filling ncσ = nf = 1/2. In the grey area, 

both metallic and insulating phases coexist. 

 

 

 

 

 

 

 

FIG. 4. Phase diagram for third-filling ncσ = nf = 1/3. (T = 0.01, D = 
1). 

 

 
2. Metal-insulator transition induced by mass imbalance in a 

three-component Hubbard model 

We consider a three-component Hubbard model, the Hamiltonian of 

which reads 

 H = -∑ 𝑡ఈ𝑐௜ఈ
ற 𝑐௝ఈ〈௜,௝〉,ఈ +

௎

ଶ
∑ 𝑡ఈ𝑐௜ఈ

ற 𝑐௝ఈஷఈᇲ௜,ఈ,ఈ ,  

Where 𝑐௜ఈ
ற (𝑐௜ఈ) is the creation (annihilation) operator for the 

fermionic particle with hyperfine multiplet α at site i. α takes three 

different values, for instance, α = 1, 2, 3.  

niα = 𝑐௜ఈ
ற 𝑐௜ఈ is the number operator of the α-component 

fermionic particles at site i. tα is the hopping parameter of the α-
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component fermionic particles. U is the local interaction between the 

three component states of particles. A common chemical potential μ is 

also introduced to control the total particle density n = ∑ 〈𝑛௜௔〉/𝑁௜ఈ , 

where N is the number of lattice sites. The three-component Hubbard 

model can be realized by loading ultracold fermionic atoms with three 

hyperfine multiplets or fermion-fermion mixtures of different atomic 

species into optical lattices. However, in the Hamiltonian in Eq, the 

trapping potentials in the optical lattices are not considered. 

The mass imbalance solely depends on the hopping parameters tα. 

In the three-component Hubbard model, the mass imbalance actually 

means the difference of the hopping parameters. In optical lattices, the 

particle hopping is established by the particle tunneling between 

nearest- neighbor lattice potential wells. It can be tuned by the lattice 

potential amplitude Vα
lat and the recoil energy Erα of each component 

state of particles  

tα ≈ 
ସ

√గ
 𝐸௥ఈ𝑣ఈ

య

ర exp൫−2ඥ𝑣ఈ൯ 

where vα = 
୚ಉ

ౢ౗౪

୉౨ಉ
. The recoil energy Erα = 

௞మ

ଶ௠ഀ
, where k is the wave 

number of the laser forming the optical lattice, and mα is the mass of 

the α-component particles. The lattice potential amplitude V஑
୪ୟ୲ can be 

different for different hyperfine states of particles. As a result, the 

hopping parameters can also be different even for the hyperfine states 

of the same particles with identical masses. In the following, we will 

consider the hopping imbalance t1 ≠ t2 = t3. This case can be interpreted 
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as a fermion-fermion mixture of two different particle species. One 

species is particles with a single hyperfine state (α = 1), while the other 

is particles with two hyperfine states (α = 2,3). Such mixture can be 

realized by loading fermion atoms 40K and 6Li, or of light atoms 6Li or 
40K with heavy fermion isotopes of Sr or Yb, into optical lattices. We 

parametrize the hopping amplitudes by 

 t = 
௧భା௧మ

ଶ
  

 ∆t = 
௧మି௧భ

௧భା௧మ
.  

t is the average hopping amplitude of two particle species, and ∆t 

describes the mass imbalance between them. 

 It is clear that -1 ≤ ∆t ≤ 1. ∆t = ±1 are the extreme mass imbalance, 

where one particle species is extremely heavy and localized 

The Green’s function of the α-component particles reads 

 Gα(k, iωn) = 
ଵ

௜ఠ೙ାఓା௧ഀఌೖି∑ (௜ఠ೙)ഀ
,  

where ωn is the Matsubara frequency,  

(ri − rj)] is the lattice structure factor, and ) is the self-energy.  

 



10 
 

  

 

 

 

FIG.1. The total particle density n, calculated by DMFT+ED (lines) 
and by DMFT+QMC (symbols), as a function of the chemical potential 
μ for different values of interaction U in the balanced mass case

). The DMFT+QMC results are reproduced from Ref.  

 

 

 

 

 

 

 

 

FIG. 2. (Color online) The double occupancy as a function of the 

chemical potential μ, calculated by DMFT+ED (lines) and by 

DMFT+QMC (symbols) for different values of interaction U in the 
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balanced mass case ). The DMFT+QMC results are 

reproduced from Ref. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
FIG. 3. (Color online) The density of states (DOS), calculated by 

DMFT+ED (lines) and by DMFT+QMC (symbols) for different 
chemical potentials μ in the balanced mass case ∆t = 0 (U = 3t, T = 
0,05t). The DMFT+QMC results are reproduced from Ref.  
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FIG. 4. (Color online) The intraspecies double occupancy Dintra (red 

filled circles) and the interspecies double occupancy Dinter (blue filled 
squares) at fixed total density n = 1 (T = 0.02t). The left panel plots the 
region of ∆t < 0 (U = 2,5t), while the right panel plots the region of ∆t 
> 0 (U = 4t). 

 

3. COMPETITION BETWEEN THE SOFT GAP AND THE 

MOLECULAR KONDO SINGLETS IN FLAT-BAND 

LATTICES 

One of the simplest flat-band lattices is the Lieb lattice. The Lieb 

lattice is a square lattice with additional sites at the middle of every 

square edge (see Fig. 1). The Lieb lattice has attracted research 

attention since the discovery of high-temperature superconductivity 

because it is the basic structure of CuO2 plane of the cuprate 

superconductors. The Lieb lattice can be also artificially made by 

optical lattices, ultracold atoms, and molecular design. 



13 
 

We consider a magnetic impurity, which is placed at a corner 

site (A site in Fig. 1), and hybridizes with conduction electrons at site 

A as well as at the nearest neighbor sites. The Hamiltonian of the 

model reads 

𝐻 = −𝑡 ෍ 𝑐௜ఙ
ற 𝑐௝ఙ

〈௜,௝〉,ఙ

+ 𝜀 ෍ 𝑛஺ఙ
௙

ఙ

+ 𝑈𝑛஺↑
௙

𝑛஺↓
௙  

 +V0∑ 𝑐஺ఙ
ற 𝑓஺ఙఙ +

𝐻. 𝑐. +𝑉ଵ ∑ 𝑐஺ఙ
ற 𝑓஺ఙ௜(஺),ఙ + 𝐻. 𝑐   

where 𝑐௜ఙ
ற 𝑐௜ఙ  is the creation (annihilation) operator of conduction 

electron at site i with spin σ. t is the hopping parameter. Here we take 

into account only the nearest neighbor hopping 

 

Fig. 1. The Lieb lattice structure. The magnetic impurity (red dot) is 

hybridized with conduction electrons at the corner site (A site) as 

well as at the edge center sites, surrounding the corner site (B and C 

sites). 
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of conduction electrons. 𝑓஺ఙ
ற (𝑓஺ఙ) is the creation (annihilation) 

operator of impurity with spin σ at site A. 𝑛஺ఙ
௙

= 𝑓஺ఙ
ற (𝑓஺ఙ) is the 

number operator of the magnetic impurity. εis the energy level of the 

magnetic impurity, and U is the Coulomb interaction of electrons at 

the impurity site. The magnetic impurity hybridizes with conduction 

electrons at site A by strength V0, and with conduction electrons at 

nearest neighbor sites by strength V1. When V1 = 0, Hamiltonian in Eq. 

(1) reduces to the one of the soft-gap Kondo problem [6, 7]. When V0 

= 0, Hamiltonian in Eq. (1) basically describes the molecular Kondo 

problem [2]. For finite hybridizations V0, V1, Hamiltonian in Eq. (1) 

would describe the competition between the soft-gap and the 

molecular Kondo effect, which may occur in the system. We 

parameterize these hybridization strengths by 

V0 = 
ଵ

ଶ
 (1 + α)V, 

V1 = 
ଵ

ଶ
 (1 - α)V. 

When α = 1, V0 = Vand V1 = 0. When α = −1, V0 = 0 and V1 = V. 

When −1 < α < 1, both V0 and V1 are finite. The parameter α describes 

the difference relation between V0 and V1, while V is the total 

hybridization strength. 

The Kondo problem totally depends on the hybridization function  

 ∆(ω) = 
ଵ

ே
∑ Γ௞

ற[𝜔 − ℎ଴(𝑘)]ିଵΓ௞௞ , 
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Where Γ௞
ற = (V0, 2V1cos (kx/2), 2V1cos(ky/2)), and h0(k) is the Bloch 

Hamiltonian of conduction 

electrons 

h0(k) =

⎝

⎜
⎛

0                        − 2𝑡𝑐𝑜𝑠 ቀ
௞ೣ

ଶ
ቁ             − 2𝑡𝑐𝑜𝑠 ቀ

௞೤

ଶ
ቁ 

−2𝑡𝑐𝑜𝑠 ቀ
௞ೣ

ଶ
ቁ                      0                                0        

−2𝑡𝑐𝑜𝑠 ቀ
௞೤

ଶ
ቁ                      0                                0        

⎠

⎟
⎞

. 

 

Fig. 2. The impurity entropy as a function of temperature for 

different values of α. U=0.5, Γ= 0.001, η= 10−9. 
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Fig. 3. The impurity spin susceptibility as a function 

of temperature for different values of η. U= 0.5, Γ= 

0.001, α=−1. 
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Fig. 4. The impurity spin susceptibility as a function 

of temperature for different values of α. U= 0.5, Γ= 

0.001, η= 10−9. 

 
4. Selective Kondo strong coupling in magnetic impurity flat-
band lattices 

In this thesis we investigate a possibility of the selective 

Kondo strong coupling in the magnetic impurity flat-band lattices. 

One of the simplest flat-band lattices is the Lieb lattice, where the 

electron structure of the tight-binding model features both the band 

flatness and the Dirac linear dispersion at low energy. With the such 

electron structure the Lieb lattice allows us to study the competition 

between the molecular and the soft-gap Kondo strong couplings. As 

a result of the competition a selective Kondo strong coupling may 

occur. For the purpose we study the periodic Anderson model (PAM) 

on the Lieb lattice. The model essentially describes the hybridization 

between the magnetic impurities and conduction electrons of both the 

flat and the Dirac-cone bands. The competition between the 

molecular and the soft-gap Kondo strong couplings could emerge at 

strong electron correlations. We will adopt the slave-boson mean-

field approximation to study the competition . The slaveboson mean-

field approximation is simple, and it can well describe the essential 

features of the strong coupling(SC) and local moment (LM) regimes 

in the PAM. Recently, the slave-boson mean-field approximation was 
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also used to study the interlay between the Kondo effect and 

topology. We find very rich phase diagrams depending on the 

impurity parameters. In general, the full local moment (FLM) regime, 

where all magnetic impurities are decoupled from conduction 

electrons, appears at high temperature. At low temperature and strong 

hybridization, the full strong coupling (FSC) regime, where all 

magnetic moments form the Kondo singlets with conduction 

electrons, exists. Between the FLM and the FSC regimes, various 

selective Kondo strong coupling regimes occur. The stability of the 

selective Kondo strong coupling is essentially due to the low-energy 

properties of conduction bands, which hybridize with magnetic 

impurities. The obtained results predict the selective Kondo strong 

coupling in heavy-fermion materials, topological semimetals, 

systems with nonuniform lattice coordination number, where either a 

flat band exists or the bands of conduction electrons have 

qualitatively different low-energy properties. 
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The present thesis is organized as follows. In Section 2 we 

describe the PAM on the Lieb lattice. In this section we also present 

the slave-boson approach and its mean-field approximation. The 

numerical results for depleted lattices are presented in Section 3, and 

in Section 4 the phase diagrams for uniform hybridizations are 

presented. Finally, discussion and conclusion are presented in Section 

The PAM is a lattice generation of the single impurity 

Anderson model. It describes a lattice of localized electrons hybridized 

with conduction electrons. The PAM is a suitable model for studying 

heavy fermion compounds. Its Hamiltonian reads 

H = −𝑡 ∑ 𝑐௜ఙ
ற 𝑐௜ఙ〈௜,௝〉ఙ + ∑ 𝜀௜𝑓௜ఙ

ற 𝑓௜ఙ௜ఙ + 𝑈 ∑ 𝑛௙௜↑
ற 𝑛௙௜↓௜ +

∑ 𝑉௜𝑐௜ఙ
ற 𝑓௜ఙ௜ఙ + 𝐻. 𝑐., 

where 𝑐௜ఙ
ற (𝑐௜ఙ) is the creation (annihilation) operator for conduction 

electron with spin σ at lattice  site i. t is the nearest neighbor hopping 

parameter. 𝑓௜ఙ
ற (𝑓௜ఙ) represents the creation (annihilation) operator for 

the magnetic impurity with spin σ at site i. εi is the energy level of the 

magnetic impurity = fiσ† fiσ is the impurity number at site i. U is local 

Coulomb interaction of impurity electrons. nfiσ operator. 
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Some results. 

 
Fig. 2 . Depleted lattice with VA ≡ V, and VB = VC = 0. Left panel: 
Phase diagram for different values of εA (the solid, dotted and dashed 
lines for εA =−0.05, −0.1, and −0.2, respectively). Right panel: LDOS 
of conduction electrons (solid line) and of magnetic impurities 
(dotted line) at A site in the SC phase for V2 = 0.25, and εA =−0.1 (T = 
0.1). The broadening parameter η = 10−4. 
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Fig. 3. Depleted lattice with VA = 0 and VB = VC ≡ V. Left panel: Phase 
diagram for εB =−0.2, εC =−0.1. Right panel: LDOS of conduction 
electrons (solid line) and of magnetic impurities (dotted line) at the C 
site in the FSC and the SSC phases for V2 = 0.15, εB =−0.2, εC =−0.1. 
The broadening parameter η = 10−4. 

 

Fig. 4. Phase diagram for uniform hybridizations VA = VB = VC = V. 
Left panel: case εA =−0.1, εB =−0.05, εC =−0.15. Right panel: case εA 

= −0.15, εB =−0.05, εC =−0.1. 
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