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Novel contributions of the thesis

1. Mott transitions in three-component Falicov-Kimball model

Metal-insulator transitions are studied within a three-component
Falicov-Kimball model, which mimics a mixture of one-component
and two-component fermionic particles with local repulsive
interactions in optical lattices. Within the model, the two-component
fermionic particles are able to hop in the lattice, while the one-
component fermionic particles are localized. The model is studied by
using the dynamical mean-field theory with exact diagonalization. Its
homogeneous solutions establish Mott transitions for both
commensurate and incommensurate fillings between one-third and
two-thirds. At commensurate one-third and two-thirds fillings, the
Mott transition occurs for any density of hopping particles, while at
incommensurate fillings, the Mott transition can occur only for density
one-half of hopping particles. At half-filling, depending on the
repulsive interactions, the reentrant effect of the Mott insulator is
observed. As increasing local interaction of hopping particles, the first
insulator-metal transition is continuous, whereas the second metal-
insulator transition is discontinuous. The second metal-insulator
transition crosses a finite region where both metallic and insulating
phase coexist. At third-filling, the Mott transition is established only
for strong repulsive interactions. A phase separation occurs together
with the phase transition.

We consider a three-component FKM that describes a mixture of
one-component heavy fermionic particles and two-component light

fermionic particles loaded in an optical lattice. The heavy particles are
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localized, whereas the light particles can hop in the lattice. Its

Hamiltonian reads

H= —tYijo CLTGCja + Ucc 2 C;Circiﬁcu
+E Y f i+ Uer Bio £ fichCion

where ¢is' (Cio) is the creation (annihilation) operator for a fermionic
particle with hyperfine multiplet (or spin) o at site i. ¢ takes two values
+1. t is the hopping parameter of the two-component fermionic
particles, and we take into account only the hopping between nearest-
neighbor sites. U is the local Coulomb interaction between the two-
component states of those particles. fi" (;) is the creation (annihilation)
operator for a one-component (or spinless) fermionic particle at site i.
Ucr is the local Coulomb interaction between the two-component
particles and one-component particles. The one-component particle
does not move, and its energy level is Er. Ercan also be considered as

the chemical potential of the localized particles and controls the filling
of the localized particles ny = Y fiT fi) /N, where N is the number of
lattice sites. A common chemical potential p is introduced to control
the total particle filling ny = Y5 n¢s + ng, where ne; = Zi(c;;cw) /

N.

1

Particles reads G(K, iw,) = Tontp ez
n k n

wherew, is the Matsubara frequency, ek is the dispersion of the two

component particles, andX(i@n) is the self-energy.
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FIG. 1. Diagram of particle ﬁllings for the MIT. The solid lines show

the filling values of (n,nf) at which the MIT can occur, and the dotted

line shows the filling values of (n,ny) for the occurrence of the inverse

MIT. The black point indicates the filling value (n = 3/2,ns= 1/2) for
the reentrant effect of the MIT
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FIG. 2. The hopping particle filling n., as a function of the chemical
potential u at ny = 1/2 for different values of U, and fixed U.s =

2. The horizontal dotted lines show n., = 1/4,n., = 1/2, and
N =3/4(T =0.01,D =1).

FIG. 3. The imaginary part of the light particle self-energy at half-
filling for different values of U and fixed U= 1.6. (T=0.01,D =

).
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FIG. 4. Phase diagram at half-filling n.s = ns= 1/2. In the grey area,

both metallic and insulating phases coexist.
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FIG. 4. Phase diagram for third-filling nes=ns= 1/3. (T=0.01,D =
D).

2. Metal-insulator transition induced by mass imbalance in a
three-component Hubbard model
We consider a three-component Hubbard model, the Hamiltonian of

which reads
_ t u T
H= 'Z(i,j),a taciacja + ;Zi,a,a taciacja:ta”
Where C;ra (ciq) 1s the creation (annihilation) operator for the

fermionic particle with hyperfine multiplet o at site i. o takes three

different values, for instance, o =1, 2, 3.
Nig = cjacia is the number operator of the a-component

fermionic particles at site i. t, is the hopping parameter of the a-
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component fermionic particles. U is the local interaction between the
three component states of particles. A common chemical potential i is
also introduced to control the total particle density n = }};,(n;q)/N,
where N is the number of lattice sites. The three-component Hubbard
model can be realized by loading ultracold fermionic atoms with three
hyperfine multiplets or fermion-fermion mixtures of different atomic
species into optical lattices. However, in the Hamiltonian in Eq, the
trapping potentials in the optical lattices are not considered.

The mass imbalance solely depends on the hopping parameters t,.
In the three-component Hubbard model, the mass imbalance actually
means the difference of the hopping parameters. In optical lattices, the
particle hopping is established by the particle tunneling between
nearest- neighbor lattice potential wells. It can be tuned by the lattice

lat

potential amplitude V,* and the recoil energy E., of each component

state of particles

3
te = % Erqv} exp(—Z\/v_a)

lat 2
. k .
<. The recoil energy E,,= P where k is the wave
a

\%
where vy =
Er(x

number of the laser forming the optical lattice, and m, is the mass of
the a-component particles. The lattice potential amplitude V2t can be
different for different hyperfine states of particles. As a result, the
hopping parameters can also be different even for the hyperfine states
of the same particles with identical masses. In the following, we will

consider the hopping imbalance t; # t> = t3. This case can be interpreted
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as a fermion-fermion mixture of two different particle species. One
species is particles with a single hyperfine state (o = 1), while the other
is particles with two hyperfine states (o = 2,3). Such mixture can be
realized by loading fermion atoms “°K and °Li, or of light atoms °Li or
40K with heavy fermion isotopes of Sr or Yb, into optical lattices. We

parametrize the hopping amplitudes by

ti+t
=tt
2
t—t
At=-2"1

t is the average hopping amplitude of two particle species, and At
describes the mass imbalance between them.

It is clear that -1 < At < 1. At = £1 are the extreme mass imbalance,
where one particle species is extremely heavy and localized

The Green’s function of the a-component particles reads

1
iop+pt+teer—Yqlioy)’

Gk, i0,) =

where @, is the Matsubara frequency, & = 2(:.j SXPLiK -

(ri—rj)] is the lattice structure factor, and Zo(i®y) is the self-energy.



A

OMC (U=3.5t) .
ED (U=3.51)
P —

QMC (U=2.01)
ED (U=2.0t)

2 0 2
(n-U)/t

4

FIG.1. The total particle density n, calculated by DMFT+ED (lines)
and by DMFT+QMC (symbols), as a function of the chemical potential

p for different values of interaction U in the balanced mass case

At = 0(T = 0.0257), The DMFT+QMC results are reproduced from Ref.
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FIG. 2. (Color online) The double occupancy as a function of the

chemical potential p, calculated by DMFT+ED (lines) and by
DMFT+QMC (symbols) for different values of interaction U in the
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balanced mass caseAt = 0(T = 0.025t). The DMFT+QMC results are

reproduced from Ref.

DOS

FIG. 3. (Color online) The density of states (DOS), calculated by
DMFT+ED (lines) and by DMFT+QMC (symbols) for different
chemical potentials p in the balanced mass case At =0 (U =3t, T =
0,05t). The DMFT+QMC results are reproduced from Ref.

11



0.10

008_ ntra 1L inter 4
U=2.5t U=4.0t o
[ ]
0.06 1t e
[ ]
™ L
0.04p I || >
- n
"sag q
0.02 o1 o®
@ ® -
0.00, s il L ibdalioiiri], YO
To1L0 -0.5 00 0.5 1.0
At

FIG. 4. (Color online) The intraspecies double occupancy Dinga (red
filled circles) and the interspecies double occupancy Diner (blue filled
squares) at fixed total density n =1 (T = 0.02t). The left panel plots the
region of At <0 (U = 2,5t), while the right panel plots the region of At
>0 (U =41).

3. COMPETITION BETWEEN THE SOFT GAP AND THE
MOLECULAR KONDO SINGLETS IN FLAT-BAND
LATTICES

One of the simplest flat-band lattices is the Lieb lattice. The Lieb
lattice is a square lattice with additional sites at the middle of every
square edge (see Fig. 1). The Lieb lattice has attracted research
attention since the discovery of high-temperature superconductivity
because it is the basic structure of CuO; plane of the cuprate
superconductors. The Lieb lattice can be also artificially made by

optical lattices, ultracold atoms, and molecular design.
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We consider a magnetic impurity, which is placed at a corner
site (A site in Fig. 1), and hybridizes with conduction electrons at site
A as well as at the nearest neighbor sites. The Hamiltonian of the

model reads

H=- z cl-Tcha + eZnﬁo + U”ﬁT"ﬁl

(i.j)o o
+VOZO' C,Io-an +

H.c. +V1 Zi(A),o' Cjo-on- + H.c

where CiTa Cis 1s the creation (annihilation) operator of conduction
electron at site 7 with spin o. ¢ is the hopping parameter. Here we take

into account only the nearest neighbor hopping

Fig. 1. The Lieb lattice structure. The magnetic impurity (red dot) is
hybridized with conduction electrons at the corner site (A site) as
well as at the edge center sites, surrounding the corner site (B and C

sites).
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of conduction electrons. fATa(an) is the creation (annihilation)

operator of impurity with spin o at site 4. nf:o = fATa(an) is the
number operator of the magnetic impurity. eis the energy level of the
magnetic impurity, and U is the Coulomb interaction of electrons at
the impurity site. The magnetic impurity hybridizes with conduction
electrons at site 4 by strength V5, and with conduction electrons at
nearest neighbor sites by strength ;. When V1= 0, Hamiltonian in Eq.
(1) reduces to the one of the soft-gap Kondo problem [6, 7]. When V%,
= 0, Hamiltonian in Eq. (1) basically describes the molecular Kondo
problem [2]. For finite hybridizations V5, Vi, Hamiltonian in Eq. (1)
would describe the competition between the soft-gap and the
molecular Kondo effect, which may occur in the system. We

parameterize these hybridization strengths by

Vo=2(1+ )V,
1
Vi=2(1-a)V.

Whena=1, Vo=Vand V1=0. Whena=—1, Vo=0and V1= V.
When —1 < a < 1, both Vyand V; are finite. The parameter a describes
the difference relation between V, and Vi, while V' is the total

hybridization strength.

The Kondo problem totally depends on the hybridization function

A(@) =+ X T [ = ho (k)] T,
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Where I}, = (Vo, 2Vicos (ky/2), 2Vicos(ky/2)), and ho(k) is the Bloch

Hamiltonian of conduction

electrons
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Fig. 2. The impurity entropy as a function of temperature for

different values of a. U=0.5, T'=0.001, = 107°.
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Fig. 3. The impurity spin susceptibility as a function
of temperature for different values of #. U= 0.5, I'=
0.001, a=—1.
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Fig. 4. The impurity spin susceptibility as a function
of temperature for different values of a. U= 0.5, I'=

0.001, = 10".

4. Selective Kondo strong coupling in magnetic impurity flat-
band lattices

In this thesis we investigate a possibility of the selective
Kondo strong coupling in the magnetic impurity flat-band lattices.
One of the simplest flat-band lattices is the Lieb lattice, where the
electron structure of the tight-binding model features both the band
flatness and the Dirac linear dispersion at low energy. With the such
electron structure the Lieb lattice allows us to study the competition
between the molecular and the soft-gap Kondo strong couplings. As
a result of the competition a selective Kondo strong coupling may
occur. For the purpose we study the periodic Anderson model (PAM)
on the Lieb lattice. The model essentially describes the hybridization
between the magnetic impurities and conduction electrons of both the
flat and the Dirac-cone bands. The competition between the
molecular and the soft-gap Kondo strong couplings could emerge at
strong electron correlations. We will adopt the slave-boson mean-
field approximation to study the competition . The slaveboson mean-
field approximation is simple, and it can well describe the essential
features of the strong coupling(SC) and local moment (LM) regimes

in the PAM. Recently, the slave-boson mean-field approximation was
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also used to study the interlay between the Kondo effect and
topology. We find very rich phase diagrams depending on the
impurity parameters. In general, the full local moment (FLM) regime,
where all magnetic impurities are decoupled from conduction
electrons, appears at high temperature. At low temperature and strong
hybridization, the full strong coupling (FSC) regime, where all
magnetic moments form the Kondo singlets with conduction
electrons, exists. Between the FLM and the FSC regimes, various
selective Kondo strong coupling regimes occur. The stability of the
selective Kondo strong coupling is essentially due to the low-energy
properties of conduction bands, which hybridize with magnetic
impurities. The obtained results predict the selective Kondo strong
coupling in heavy-fermion materials, topological semimetals,
systems with nonuniform lattice coordination number, where either a
flat band exists or the bands of conduction electrons have

qualitatively different low-energy properties.

Fig. 1. The Lieb lattice structure.
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The present thesis is organized as follows. In Section 2 we
describe the PAM on the Lieb lattice. In this section we also present
the slave-boson approach and its mean-field approximation. The
numerical results for depleted lattices are presented in Section 3, and
in Section 4 the phase diagrams for uniform hybridizations are

presented. Finally, discussion and conclusion are presented in Section

The PAM is a lattice generation of the single impurity
Anderson model. It describes a lattice of localized electrons hybridized
with conduction electrons. The PAM is a suitable model for studying

heavy fermion compounds. Its Hamiltonian reads

H=—t¥i o CiTgCia +Yio gifizfia +UY; n}rnnﬁi +

Zia ViClTGfia + H. C.,

where C;ra (cis) 1s the creation (annihilation) operator for conduction
electron with spin o at lattice site i. ¢ is the nearest neighbor hopping
parameter. flz (fis) represents the creation (annihilation) operator for
the magnetic impurity with spin o at site i. g; is the energy level of the
magnetic impurity = fi;T fi-1s the impurity number at site i. U is local

Coulomb interaction of impurity electrons. 7y, operator.
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Some results.

Fig. 2 . Depleted lattice with V,= V, and Vz= Vc= 0. Left panel:
Phase diagram for different values of ¢, (the solid, dotted and dashed
lines for e4=—0.05, —0.1, and —0.2, respectively). Right panel: LDOS
of conduction electrons (solid line) and of magnetic impurities
(dotted line) at A4 site in the SC phase for V2= 0.25, and &,=—0.1 (T =
0.1). The broadening parameter 7 = 107",
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Fig. 3. Depleted lattice with V4= 0 and Vz= V= V. Left panel: Phase
diagram for ez =—0.2, ec =—0.1. Right panel: LDOS of conduction
electrons (solid line) and of magnetic impurities (dotted line) at the C
site in the FSC and the SSC phases for V?=0.15, e5=—0.2, ec=—0.1.
The broadening parameter 7 = 107,
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Fig. 4. Phase diagram for uniform hybridizations V,= Vz= Vc= V.

Left panel: case €4=—0.1, eg=—0.05, ec=—0.15. Right panel: case ¢4
=—0.15, 5=—0.05, ec=—0.1.
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