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INTRODUCTION
1. Motivation of the dissertation

he rapid development of data science and artificial intelligence (Al) in education has
created new opportunities to improve teaching and learning effectiveness in the context
of digital transformation. A prominent application is predicting students’ academic
performance based on data collected during the learning process, which helps identify
early risks of failure and implement timely interventions. This approach directly supports
the goals of modern education, including personalized learning experiences and improved
graduation rates.

However, many current studies still rely on traditional machine learning models such
as linear regression, logistic regression, SVM, decision trees, KNN, and Naive Bayes.
While these models are simple, interpretable, and easy to implement, they often fall short
in capturing the nonlinear and time-dependent relationships commonly found in
educational data. Learning data is typically sequential, reflecting a student’s academic
progress over time, yet most traditional models only use static features like final grades.

In addition, students' academic performance is influenced by various
multidimensional factors, including personal characteristics (such as gender, study habits,
part-time jobs, and ability to afford tuition fees), family background (parents’ educational
level), as well as entry-level academic results such as high school graduation scores,
scores from subject combinations used in university admissions (e.g., Math — Chemistry
— Biology; Literature — History — Geography), and English proficiency scores. Moreover,
admission methods (e.g., transcript-based admission, national exam scores, or priority-
based admission) are also important factors that affect students’ suitability for and
adaptability to the university environment. Contextual factors, such as campus facilities,
scholarship policies, teaching quality, and the level of institutional support, also
contribute to shaping academic outcomes. The complex and nonlinear relationships
among these factors make it difficult for traditional models to fully capture their
interactions, thereby requiring the adoption of more advanced analytical methods, such
as machine learning and deep learning for more accurate prediction.

Deep learning has emerged as a promising solution due to its ability to automatically
learn rich data representations and detect complex patterns without manual feature
engineering. Architectures such as LSTM and Transformers are particularly suited to
handling sequential data, making them ideal for analyzing learning behavior over time.
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However, a major challenge is that deep learning models usually require large amounts
of training data, while educational data tends to be small-scale, fragmented, and
inconsistently collected across systems.

A promising approach is the use of pre-trained models or transfer learning
techniques, which have demonstrated outstanding performance in fields such as computer
vision and natural language processing. However, in the context of educational research,
a major barrier remains the lack of standardized datasets and domain-specific pre-trained
models. To date, the research community has not yet established a shared database or
reusable pre-trained model system tailored to academic problems in the field of
education.

To address these challenges, this study adopts deep learning as a foundation, while
incorporating techniques such as data augmentation, feature selection, and
hyperparameter optimization. Additionally, developing hybrid models, combining deep
learning with traditional machine learning or integrating multiple deep architectures,
offers a promising direction by leveraging the strengths of both: powerful data
representation and better interpretability.

The goal of this research is to develop models capable of processing sequential
learning data, integrating personal, academic, and social factors, and maintaining
predictive effectiveness under data constraints. This contributes to the advancement of
Learning Analytics, supports decision-making in higher education, and promotes the
application of Al in educational research.

2. Research objectives
General Objective: To research and develop machine learning and deep

learning models for analyzing educational data with the goal of early prediction of student
academic outcomes.
Specific Objectives:

(1) To propose and compare the performance of modern machine learning and
deep learning models: k-Nearest Neighbors (KNN), Decision Trees (DT), Support Vector
Machines (SVM), Logistic Regression (LR), Random Forests (RF),Convolutional Neural
Networks (CNN), Recurrent Neural Networks (RNN), Long Short-Term Memory
(LSTM), Transformers,...for predicting academic performance (e.g., semester GPA,
graduation classification), with an emphasis on improving accuracy and generalizability.
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(2) To construct hybrid deep learning models, perform appropriate feature
selection, and apply data augmentation techniques to address the challenges of small-
scale and heterogeneous educational datasets.

The experimental evaluation will be conducted using training datasets collected
from both domestic and international universities and colleges.

3. Research subjects and scope

Research Subjects: Early prediction problems related to student academic
performance can be categorized into several specific types, depending on the objectives
and scope of the analysis. Specifically:

- Grade prediction problems: including the prediction of semester Grade
Point Average (GPA), annual GPA, cumulative GPA, individual course
scores, short-term course results, continuous assessment scores, etc.

- Classification prediction problems: including the prediction of academic
classifications for individual courses, semesters, stages of study, or final
graduation classifications.

These prediction tasks play an important role in academic early warning systems,
helping institutions identify students at risk of failing courses, repeating semesters, or
being unable to graduate on time. They also support the recommendation of interventions
to improve student performance and provide data-driven evidence for educational
administrators to make informed decisions.

In the context of this dissertation, we focus on two core prediction problems:

- The early prediction of semester GPA,

- The early prediction of final graduation classification.

Hereinafter, the term "academic performance” as used in this dissertation refers
specifically to "semester GPA" or "graduation classification™.

Research Scope: Modern machine learning and deep learning models, including
hybrid model architectures.

Datasets collected from Hanoi Metropolitan University (HNMU), Vietnam National
University (VNU), and selected publicly available international datasets for reference and
benchmarking.

The data used in this research includes:

. Student grade records, collected from university academic management

systems.
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. Survey data on factors related to students, such as personal information,
preferences, academic background prior to university, family circumstances,
and socio-occupational factors that may influence academic performance, etc.
3 Institutional data from higher education institutions, including facilities,
curriculum, and faculty-related information, etc.
4. Research methodology
The research adopts a combination of theoretical study, literature review, empirical
research, and survey-based investigation.

5. Key contributions of the dissertation
(1) Two novel methods, NeutroDL and NeutroGNT models, are proposed,

integrating the neutrosophic process into deep learning models to enhance early GPA
prediction performance.

(2) Two novel hybrid models are proposed: LATCGAd, and AWG-GC for the
prediction of graduation classification for students.

(3) Development of 03 multi-attribute datasets from diverse sources and proposal of
analytical frameworks tailored to educational data.

From an information systems perspective, where an integrated architecture of data,
software, hardware, people, and processes works together to collect, process, and provide
information for decision-making, the dissertation makes the following contributions: (i)
developing and standardizing educational datasets to support Educational Data Mining
(EDM) and Learning Analytics (LA); (ii) designing a rigorous data processing pipeline
to ensure data quality and model reliability; (iii) applying advanced deep learning
frameworks to develop and optimize predictive models; (iv) leveraging CPU and GPU
infrastructures for data processing and real-time analysis; (v) positioning students at the
center while providing data-driven insights to support instructors and administrators in
improving teaching quality and policy-making; and (vi) integrating 1S components to
build an intelligent, adaptive educational analytics system, moving toward a data-driven
model of higher education management.

6. Layout of the dissertation

This dissertation is presented with a structure that includes an introduction, three
main chapters, a conclusion and future development, a list of publications, and references,
as follows:

The Introduction outlines the scientific significance and urgency of the topic, as
well as the reasons for choosing the research topic. It also presents the objectives, subject,
scope, methods, key contributions of the dissertation, and contents of the study.
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Chapter 1 provides an overview of educational data analysis, highlighting machine
learning and deep learning applications in predicting student outcomes. It reviews related
research to establish the dissertation’s motivation and introduces three key datasets
(HNMU1, HNMUZ2, VNU) from Hanoi Metropolitan University and Vietnam National
University, which form the experimental basis for the models developed in later chapters.

Chapter 2 focuses on SGPA prediction using deep learning models combined with
Neutrosophy theory to manage data uncertainty. Models such as DNN, CNN, RNN,
LSTM, and Transformer are implemented in neutrosophic environments (Neutrosophic
DLs) to predict next-semester GPA from historical academic data. To further enhance
performance, the chapter introduces NeutroGNT, a hybrid model integrating data
neutrosophicization, CGAN-based data generation, noise injection, and Transformer,
improving prediction accuracy and adaptability in uncertain conditions.

Chapter 3 shifts to predicting students’ graduation classification, a more long-term
and system-level task. It introduces LATCGAd and AWG-GC, which leverage graph-
based models (Graphformer), advanced GANs (CGAN, WGAN), and Autoencoders,
along with AdaLN for stability, to handle small and imbalanced datasets. These models
expand data and improve predictive performance, offering higher accuracy, robustness,
and scalability for educational analytics systems.

In the Conclusion and Future development, the dissertation synthesizes the
achieved results and draws several conclusions, while also outlining future research
directions based on the findings.

List of publications: The dissertation includes a list of 08 papers authored by the
researcher, which have been published or accepted for publication in domestic and
international journals and conference proceedings.

Finally, a list of references used in the dissertation is provided.

7. Overview of main content flow

Apart from Chapter 1, which provides an overview and introduces the research
problem and datasets, Chapters 2 and 3 form a cohesive structure, presenting two
complementary approaches to the early prediction of student academic performance
based on both academic and non-academic data. Chapter 2 tackles a regression task to
predict semester GPA, a continuous indicator of short-term academic performance.
Chapter 3 focuses on a classification task to predict graduation classification, a discrete,
long-term outcome. These tasks are closely linked, as multi-semester GPA results serve
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as key input for the graduation model. Early GPA prediction thus enhances later
classification accuracy.

Methodologically, Chapter 2 introduces deep learning models (DNN, LSTM,
Transformer) alongside techniques for uncertainty handling (Neutrosophy) and data
augmentation (CGAN), laying the groundwork for Chapter 3. Building on this, Chapter
3 develops extended models like LATCGAd and AWG-GC by integrating WGAN,
Graphformer, and Autoencoder to handle imbalanced and complex classification data.

The chapters are strongly connected through both data dependencies and a
progressive modeling pipeline tailored to the nature of each prediction task.

8. Significance of the dissertation

Academic Significance:

The research contributes to advancing the field of Educational Data Mining (EDM)
by integrating deep learning models into educational information systems. The proposed
models for predicting GPA and graduation classification, trained on real-world data with
high accuracy, provide a strong scientific foundation for applying artificial intelligence
in analyzing student learning behaviors.

Practical Applications:

The findings of the dissertation have high applicability in educational management,
particularly in:

Personalized learning: supporting academic advising and customized learning
pathways for students;

Early identification of at-risk learners: enabling timely interventions by educational
institutions;

Data-driven decision-making: assisting in educational planning, evaluation, and
policy development.

System-level Contribution:

The dissertation exemplifies the integration of deep learning technologies with core
components of educational information systems (data - hardware - software - people -
processes), aiming to build a smart, adaptive, and efficient learning environment in the
era of artificial intelligence.

The results of this dissertation have been presented at:
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1. FS&IS Seminar, School of Information and Communications Technology, Hanoi
University of Industry.
2. VNICT Conference, 2024.
3. MCO Conference, 2025.

CHAPTER 1. OVERVIEW OF LEARNING OUTCOME PREDICTION

FROM MACHINE LEARNING AND DEEP LEARNING APPROACHES

This chapter outlines the research context and motivation (Section 1.1),
emphasizing the importance of early prediction of student performance. Section 1.2
reviews key machine learning and deep learning foundations. Section 1.3 synthesizes
related domestic and international studies, highlighting research gaps. Section 1.4
introduces experimental datasets, including three from Vietnamese universities ([CT1],
[CT3], and [CT4]) and several international datasets for benchmarking. Finally, Section
1.5 presents the evaluation metrics used to assess and compare model performance in
later chapters.

1.1. Research context and motivation: In the Fourth Industrial Revolution, data
drives personalized learning and informed decisions in education. With the growth of
educational technologies, academic performance prediction using ML and DL has
become central. This dissertation explores DL-based educational data mining to enhance
prediction and support strategic management.

Educational Data Mining (EDM) and Learning Analytics (LA) use computational
methods to analyze learning data, enabling early intervention, performance prediction,
and personalized support. EDM focuses on understanding learning behaviors, while LA
tracks and reports learning processes. Together, they drive data-informed educational
improvements, despite challenges like data privacy and system integration.

1.2. Machine learning and deep learning methods: ML is categorized into four
main types: supervised learning, unsupervised learning, semi-supervised learning, and
reinforcement learning. KNN, SVM, LR, DT and RF are short introduced in this
subsection. DL models like DNNs, CNNs, RNNs, LSTMs and Transformers are designed
for complex tasks.

1.3. Overview of related research

Recent international research in EDM and LA highlights the increasing
application of ML and DL techniques to predict academic performance and support
learning processes. Various ML algorithms have been employed to analyze educational
data from LMS and online courses like MOOCs. These methods are effective in
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predicting student outcomes, including grades, dropout risk, and graduation likelihood.
Moreover, DL techniques are gaining traction for their ability to capture complex, non-
linear relationships and enhance prediction accuracy. Hybrid models address challenges
like imbalanced datasets and incomplete data. Despite promising results, limitations
persist, such as the lack of validation across different education systems, small sample
sizes, and the need for improved handling of sequential data and course relationships.

In the context of domestic studies in Vietnam, the application of ML in education is
still in its early stages. Notable works have focused on using ML for course selection,
academic performance prediction, and identifying at-risk students. Additionally, many
studies in Vietnam have faced challenges related to small sample sizes and the need for
more comprehensive models that account for both structured and unstructured data.

Research gaps: Current methods rely on static data and traditional ML, making it
difficult to capture the sequential nature of learning. Challenges include small,
fragmented datasets and missing temporal context. Future research should focus on
building standardized sequential datasets and developing hybrid DL models suited to
diverse educational data.

1.4. Datasets

HNMUL1 Dataset: Collected from HNMU (2021-2022), includes 2,763 records of
Primary Education students; after preprocessing, 933 records with 39 attributes remain.
HNMU2 Dataset: From HNMU (2023-2024), with 2,613 records of Math and Physics
Education students; after cleaning, 551 Math student records with 88 attributes are
retained. VNU Dataset: Survey-based data from Literature Education students at VNU
(2023), with 521 records and 91 attributes; 271 samples are labeled. International
Datasets: Five datasets from various global institutions were also used.

Privacy Challenges: Educational data often contain sensitive personal and
behavioral information. Issues like inconsistent curricula, frequent updates, and varying
digitization levels hinder standardization. Research must ensure privacy, consent, and
model adaptability to small, diverse datasets.

1.5. Evaluation metrics for predictive models: Classification models are evaluated
using metrics such as Accuracy, Precision, Recall, and F1-Score. For regression models,
key metrics include MSE, RMSE, MAE, and R2.

CHAPTER 2. EARLY PREDICTION OF SEMESTER GRADE POINT
AVERAGE USING DEEP LEARNING APPROACHES
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In modern education, predicting students’ semester Grade Point Average
(SGPA) is important for tracking learning outcomes, identifying students at risk, and
guiding personalized study plans. However, SGPA is not an exact or stable measure. It
can change over time under the influence of many factors, such as grading methods,
teaching approaches, students’ mental conditions, and differences between institutions.
Therefore, SGPA should be considered a flexible indicator that reflects both uncertainty
and variability. From this view, this chapter presents predictive models that apply deep
learning together with uncertainty-based methods to improve accuracy and better
represent the complexity of real educational environments.

Two modeling approaches are proposed. NeutroDLs: Embeds neutrosophic
logic into standard deep learning models. NeutroGNT: A hybrid model combining
Transformer, CGAN, and neutrosophic representation to handle data imbalance and
uncertainty. Experiments on seven real datasets show that the models significantly
improve prediction accuracy, with NeutroGNT achieving MSE = 0.018 and R2 = 96.05%.
The content of this chapter is based on the publications [CT5] and [CT6].

2.1. Introduction

Evaluating student performance is complex due to uncertainty in assessments,
diverse grading standards, and influences like teaching styles and student psychology.
The rise of online learning adds further variability through digital interaction metrics.
These factors make educational data noisy and hard to standardize, limiting traditional
ML/DL models. To address this, the dissertation integrates fuzzy and neutrosophic logic
into DL models, with neutrosophic logic adding an indeterminacy component for better
handling of uncertain and incomplete data.

2.2. Overview of Neutrosophy theory

Definition 2.1. A neutrosophic set (NS) A, defined on the universe of discourse X
and denoted generally by x, can be represented in following form:

A= {(x, T, (x), L, (x), FA(x)):x € X} (2.1)
where each element x in the set X is associated with three membership functions: the truth
membership function, T,:X — [0; 1]; the indeterminacy membership function, I,: X —
[0;1]; and F,:X — [0;1]: the falsity membership function. The sum of these
membership values must satisfy the condition 0 < T,(x) + I,(x) + F,(x) < 3 for all
x € X.

2.3. Problem formulation
Let X be nonempty subset in R™. x = (xy, Xy, ..., X,) € X. In this chapter, the
dissertation investigates the following three scenarios:
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Case 1: Predict the learning outcomes of the nth semester if the learning outcome of
the n — 1 semester is given. That is, knowing the value of x,_,, predict the value of
Xp,l<n<m.

Case 2: Predict the student's nth term learning results when the learning results of
the previous 2 semesters are given. That is, knowing the values of x,,_,, x,,_;, predict the
value of x,,,2 <n <m.

Case 3: Predict the student's nth semester learning results when knowing the learning
results of the previous 3 semesters. That is, knowing the value of x,,_s, x,,_, x,,_1, predict
the value of x,,,3 < n < m.

2.4. NeutroDL models

Focus on the SGPA prediction problem, this dissertation proposes a novel approach
that integrates these uncertainty theories into DL models to improve prediction accuracy,
especially with incomplete or ambiguous educational data.

Prediction student's score

Student  nputlayer  Neutrosophilicization Hidden layers for DNN, RNN,
datasets layer LSTM, or Transformer

Output layers

Figure 2. 4. The NeutroDL models
Figure 2.4 illustrates the general architecture of the neutrosophic neural networks
(DNN, CNN, RNN, LSTM, and Transformer). The data is processed using neutrosophic
functions to model uncertainty, enhancing prediction accuracy. Each data sample is
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characterized by a vector of 18 attributes, with 6 neutrosophic factors corresponding to

performance levels. By accounting for uncertain factors, the proposed models aim to offer
more flexible and realistic evaluations of student performance.

Algorithm 1. NeutroDLs - SGPA prediction with Neutrosophic logic and Deep

learning models

15
16
17
18
19
20

Input: X are Historical student records; H is prediction horizon;
F,: Neutrosophic membership functions;
Model € {DNN, CNN, RNN, LSTM, Transformer};
Hyperparameters: learning rate n, dropout rate d, epochs E
Output: ¥ Predicted student performance score
Preprocess the raw student data: clean, normalize, order by time
For each input x; € X do
Encode x; using neutrosophic trapezoidal function:
[T, 1(x), F(x)] <« E0O
end for
Construct model with:
Input layer (neutrosophic vector [T, I, F])
Encoder (neutrosophic transformation)
Hidden layers based on selected model (model € {DNN, CNN, RNN,
LSTM, Transformer})
Decoder (neutrosophic defuzzification)
Output layer (regression head)
Train the model using Adam optimizer with MAE loss
Run training for E epochs on training data
Evaluate model on test data using RMSE, MAE, R?2
Return y

The data used in this chapter is HNMUL. Six neutrosophic sets are used: Excellent,
Very Good, Good, Medium, Poor, and Very Poor. The DL methods employed for data
analysis include classical DNN, CNN, RNN, LSTM, and Transformer models. Comparison
results estimate the errors (average after 10 tests) of the algorithms as shown in Table 2.9.
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Table 2. 9. Average error comparison for cases 1, 2, 3

RMSE MAE R2 (%)
Model/Metric Real input Alzf)l:g:c.h Real input Al\pl)i)Lrlt)r;c.h Real input Alzf)l:’g:c.h

4 DNN 1.06 £0.33 0.89 + 0.09 1.07+0.11 0.75+0.06 48.26 + 32.00 12.76 £4.90
o CNN 0.92 £ 0.06 0.90+ 0.07 0.73+£0.04 0.74+0.04 8.52 +4.65 11.40 £5.06
8 RNN 0.89+ 0.05 0.92 £0.07 0.72+0.04 0.73+0.04 12.6 +8.49 12.39 £ 6.06
LSTM 0.90 £0.05 0.91 £0.07 0.74+£0.03 | 0.74+£0.04 9.72 £5.39 12.73 £ 4.97
Transformer | 0.90 £ 0.04 0.89 £ 0.08 0.74+£0.03 | 0.74+£0.04 26+ 5.40 13.13+7.65

N DNN 1.10+0.11 0.57 £0.05 1.1340.12 0.47 £0.05 186.07 +19.20 48.42 +5.74
§ CNN 0.53 +0.05 0.58 +0.04 0.41+0.03 | 0.46+0.02 46.39 + 6.51 47.03 +5.80
O RNN 0.55 +0.07 0.60 £ 0.05 0.42+0.05 | 0.45+0.03 37.12+18.19 46.16 + 6.82
LSTM 0.52+0.04 0.57 £0.04 0.40+0.03 | 0.45+0.03 52.42 +9.95 49.51 +5.40
Transformer | 0.63 +0.07 0.59 +0.06 0.48+0.04 | 0.47 £0.06 26.83 +5.96 45,54 +8.92

- DNN 2.44+0.16 0.87 £0.05 231+0.16 | 0.74+0.04 | -211.39+75.45 59.45 + 4.00
% CNN 0.86 +0.08 0.80+£0.08 0.67+0.07 | 0.62+0.07 59.01 + 7.00 62.04 +5.36
O RNN 0.82£0.13 0.80 £0.08 0.62+0.12 0.60+ 0.06 60.69 +£9.20 62.14 + 7.67
LSTM 0.88+0.13 0.76 £0.11 0.71+0.15 | 0.59+0.07 58.51 + 1.54 65.28 + 8.93
Transformer 0.93+0.07 0.79 £ 0.06 0.77+£0.06 | 0.59+0.05 53.05 + 7.60 65.95 + 4.33

The numerical results that are highlighted in “bold” indicate that the corresponding forecasting method has better results than the
other method. Three case studies of HNMU1 dataset showed that the proposed approach outperformed traditional neural network
approaches when working with real numbers. The RNN and Transformer models, as used in the dissertation, consistently yielded better

results than other models in the same experimental setup.
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2.5. NeutroGNT model
This section proposes a hybrid DL framework that integrates the Transformer,
Conditional GAN (CGAN), and neutrosophic input representation. A noise-injection
strategy is also introduced to improve model generalization.

Netrosophic sets
Xeye

Xy, 1) S L) Mﬁw
- NI | -
[ Ty fy 1| -
Gauss Noise
G ]
| — *
[0 +

] 3 % ]} % 1Y GhbllAngoolmg
iy Feed-Forward Network

ejep

spukg  JoNRUD

EUIULIOSIC]

i

Jensen-Shannon
divergence

Figure 2. 10. NeutroGNT model

The functioning of the model illustrated in Figure 2.10 is as follows: Given the real
dataset (X, y,.), we apply trapezoidal neutrosophic functions to capture uncertainty,
indeterminacy, and inconsistency in the data to construct a new dataset denoted as (X,,,
vn). To fully leverage DL effectiveness, we further incorporate a CGAN to generate
synthetic samples and augment the training dataset, forming (X¢,y¢). The two datasets
(Xn, yn) and (X, ys) are then concated to form (X, y.). On this consolidated dataset (X,
Y.), a noise-injection strategy is incorporated to improve the robustness and generalization
capabilities of the predictive model, forming (X,,y,). The Transformer model operates
combined to capture complex patterns and dependencies within the data (Xg,y,). Finally,
performs defuzzification to convert neutrosophic values back to real values and outputs the

final prediction.
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Algorithm 2. NeutroGNT - SGPA prediction with Neutrosophic logic, CGAN, Noise-
injection strategy and Transformer

: Input: D,.,;: Real dataset of student academic records and SGPA

: Z : Latent noise vector for CGAN

: G : Number of synthetic neutrosophic samples to generate

: Tyeutrot Transformer model with neutrosophic encoding and noise injection
: Output: ¥ : Predicted SGPA values for test set

: [X,., y-] < Preprocess(D,..q;) > Clean, scale, sort by semester
 Xyeutro — NeutrosophicTransform(X,.) using trapezoidal membership functions
2 [Gegany Dogan] < Train CGAN([Xyeutros V], Z)

:fori = 1toG do

10:  z;« Sample(Z)

11:  y;< SampleLabelDistribution(y,)

120 X¢[i] < Gegan(zi, y;) > Generate synthetic neutrosophic input
130 yelile—

14: end for

15: Daug — Concatenate([XNeutro ’ yr]l [(XfJ yf])

16: Dy g < InjectNoise(Dg,4) > Gaussian noise injection

17: Tyeutro < TrainTransformer(Dyy, )

18: ¥ «— Predict(Tyeutror Xeest )

19: return Y

O© 00O NO|oT B~ WN P

Results and discussions

In this section, we use 06 datasets.

Name M S K Ca | Input feature Output
se
1 1 GPA Semester 1 SGPA2
2 GPA Semester 1, SGPA3
GPA Semester 2
HNMU2 551 52 88 GPA Semester 1, SGPA4
3 GPA Semester 2,
GPA Semester 3
2 2 GPA Semester 1, SGPA3
GPA Semester 2
VNU 271 43 91 GPA Semester 1, SGPA4
3 GPA Semester 2,
GPA Semester 3
3 | Malaya- 493 | 24 16 |3 HSC, SSC, Last Overall
Stud
4 | Portugal- G1, G2 G3
Math 395 3 33 |2
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5 | Portugal- 619 |3 3 |2 G1, G2 G3
Lang
6 Covenant- First Year GPA, Fourth Year
Priv 1841 | 6 9 3 Se(_:ond Year GPA, GPA
Third Year GPA

Data’s name, Sample size (M), Number of score-related features (S), the total of
features (k)

Prior to experimentation, all records were preprocessed to remove missing values and

eliminate scores outside the 0-10 range. The datasets were then split into 80% for training

and 20% for testing.

The experimental results (averaged over 10 runs) indicate that the NeutroGNT model

consistently outperforms all other evaluated models.

Table 2.7. Demonstrated errors for HNMU?2 (averaged over 10 runs - case 1)

Real T Neutro_T NeutroCT NeutroGNT
MSE 0.519+0.028  0.474 £0.040 0.469 + 0.031 0.458 £ 0.011
MAE 0.576 £0.014  0.560 + 0.029 0.558 + 0.022 0.548 £ 0.010
R2 -0.087+0.058  0.008 + 0.085 0.017 £ 0.064 0.041 £ 0.022

In Table 2.7, NeutroGNT achieved the lowest MSE (0.458 + 0.011) and a 12.8%

improvement in R2 compared to the Real_T model; however, the R2 value remains low

(0.041 £ 0.022), indicating limited generalization and explanatory capability, particularly

in real-world scenarios with high noise and uncertainty such as the HNMU2 dataset.




Table 2.8. Demonstrated errors (averaged over 10 runs — case 2)
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Dataset Real_T Neutro_T NeutroCT NeutroGNT
HNMU2 MSE  0.323+0.101 0.183 £ 0.024 0.208 + 0.052 0.181 +0.030
MAE  0.459 £ 0.085 0.339 £0.025 0.363 £ 0.053 0.338 £0.035
R? 0.077 £ 0.288 0.478 + 0.069 0.407 £ 0.147 0.482 + 0.084
MSE  0.302 +0.031 0.320 £0.042 0.321 £0.044 0.260 £ 0.046
VNU MAE  0.441 +0.032 0.453 £ 0.039 0.451 £ 0.042 0.381 £ 0.054
R? 0.201 £+ 0.083 0.153+0.112 0.150 +0.116 0.202 £ 0.140
Portugal- MSE 2536 +2.129 1.263 £ 0.080 1.409 £ 0.135 1.197 £ 0.074
Math MAE  1.065 * 0.567 0.770 £ 0.069 0.844 £0.077 0.725 £ 0.043
R? 0.505 £ 0.415 0.754 £ 0.016 0.725 £ 0.026 0.767 £ 0.014
Portugal- MSE  0.704 £ 0.550 0.423 £0.014 0.435 £ 0.032 0.440 £0.033
Lang MAE  0.528 +0.241 0.403 £ 0.004 0.413 £ 0.027 0.425 £ 0.027
R? 0.711 £ 0.225 0.826 + 0.006 0.822 £ 0.013 0.820 £ 0.013

In Case 2, the proposed models exhibit superior and stable performance across all 04 benchmark datasets. In particular, the
NeutroGNT model delivers outstanding results in terms of both MSE (MAE) and R? metrics.

Table 2.9. Demonstrated errors (averaged over 10 runs — case 3)

Dataset Real T Neutro_T NeutroCT NeutroGNT
MSE 0.212 +0.088 0.208 + 0.081 0.175 £ 0.082 0.152 £ 0.025

HNMU2 MAE 0.374 £0.078 0.382 £0.083 0.347 £0.081 0.322 £ 0.029
R2 0.047 £ 0.393 0.068 + 0.364 0.216 £ 0.367 0.319£0.111
MSE 0.119 +0.037 0.109 £ 0.041 0.121 £ 0.061 0.088 £ 0.017

VNU MAE 0.281 +0.039 0.271 £ 0.051 0.282 £ 0.074 0.242 £0.026
R2 0.549 + 0.140 0.588 + 0.154 0.541 £ 0.230 0.666 + 0.064
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Mal MSE 0.495 + 0.563 0.342 +0.038 0.412 +0.063 0.400 + 0.055
alaya -
Stud Y MAE 0.505 + 0.249 0.434 £0.025 0.485 +0.048 0.473 +0.036
u
R2 0.788 £ 0.241 0.854 +0.016 0.824 +£0.027 0.829 +0.024
MSE 0.023 £ 0.001 0.022 +0.001 0.023 +0.003 0.019 +0.002
Covenant -
ori MAE 0.116 +£0.003 0.114 +0.002 0.118 +0.008 0.107 +0.005
riv
R2 0.949 + 0.002 0.952 +0.001 0.950 + 0.007 0.958 +0.003
RMSE 0.152 +£0.003 0.147 £ 0.002 0.150 +0.009 0.138 +0.005

Among the evaluated models, NeutroGNT stands out for achieving the best balance between accuracy and robustness. On the
Covenant-PrivateEng dataset, it recorded the highest average R2 score, clearly outperforming other models. Notably, its average RMSE
is 0.138 lower than that of the Real_T model. Furthermore, it achieved a minimum RMSE of 0.1342, which is lower than the best result
previously reported by Aderibigbe et al (2019). Additionally, its minimum MSE of 0.018 is the lowest across the entire study, and the

maximum R2 of 96.05% surpasses all prior benchmarks. These results confirm the superior predictive performance and effectiveness

of the NeutroGNT model.

2.4. Appendix to Chapter 2: This section gives the summary of GAN, CGAN and Transformer model for the SGPA

prediction task.
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CHAPTER 3: ENHANCING THE PERFORMANCE OF EARLY
GRADUATION CLASSIFICATION MODELS

To further improve the performance of early graduation prediction models for
university students, this chapter presents two advanced hybrid deep learning models:
LATCGAd and AWG-GC. Both models are designed to address the challenges of limited
and imbalanced educational data by automatically augmenting training data and
leveraging state-of-the-art deep learning architectures to improve predictive capability.
LATCGAd combines Transformer, CGAN, and Adaptive Layer Normalization (AdaLN)
to improve data quality, stabilize training, and reduce overfitting, reaching 96.97%
accuracy and 73.66% F1-score. AWG-GC integrates Autoencoder, Wasserstein GAN,
and Graphormer for joint representation learning, data augmentation, and classification,
achieving 98.54% accuracy and 99.25% F1-score, significantly surpassing baseline
models.

The contents of this chapter are based on the research presented in publications
[CT7] and [CTS].
3.1. Introduction

The LAGT method, which significantly outperformed traditional models by
combining GCN and Transformer architectures in a semi-supervised framework, was
introduced in [CT2]. Building on this, the chapter explores recent advances in generative
models (e.g., CGAN, WGAN) and graph-based architectures (e.g., GAT, Graphformer)
and Transformer, which address challenges like small, imbalanced datasets. It proposes
LATCGAd and AWG-GC, which integrate data generation and DL models to improve
early graduation prediction with higher accuracy and robustness.
3.2. The LATCGAd model

This model uses CGAN to generate synthetic samples for underrepresented
labels, addressing data imbalance. The expanded dataset is then processed by a
Transformer Encoder to capture complex feature relationships. AdaLN is integrated into
each Transformer layer to adapt normalization to input characteristics, reducing bias,

improving convergence, and minimizing overfitting on small datasets.
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Figure 4. 1. The LATCGAd model
Algorithm 3. LATCGAd - Learning Analysis with Transformer, CGAN, and
Adaptive Layer Normalization
:Input: Dg,.,;: Real dataset of labeled student features and labels
: Z : Latent noise vector for CGAN
1 G: Number of synthetic samples to generate
: TagaLn: Transformer model with Adaptive Layer Normalization
: Output: Y: Predicted graduation classification labels for test set
: [Xr' yr] - Preprocess(Dreal)

: [Geeans Degan] < Trainggan ([Xr, -1, Z)
:fori = 1toG do

z;<— Sample(Z)
y; < Sample Label Distribution(y,.)
110 X¢[i] < Gegan(ziy;) > Generate synthetic sample
12: yp[i] <
13: end for
14: Dy g« Concatenate( [X,, ¥ ], [Xr, ¥¢] ) > Augmented dataset
15: Tpgarn< Train_Transformer(Dgy, )
16: ¥ « Predict(Tagain, Xtest)
17: return ¥

The experiment is conducted on three datasets: HNMUZ1, HNMU2, and VNU. The

O© 00 NOoT A~ WN B

[EN
o -

dataset is divided into train, validation, and test sets, with 60% of the data used for

training, 15% for validation, and 25% for testing.
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On HNMUL1, LATCGAd achieves 95.56% accuracy, outperforming all baseline
models. It also improves Precision (72.50%), Recall (74.78%), and F1-score (73.61%),
showing strong true positive classification.
On HNMUZ2, LATCGAd leads in accuracy (96.97%) but lags behind DT in Precision

and Recall, indicating good generalization but limited sharpness in identifying target

classes.
Table 3. 1. Prediction results on the HNMU?2 dataset
Method Accuracy Precision Recall F1-Score
DT 89.70 94.65 79.26 82.48
SVM 80.29 41.38 41.81 40.55
LR 71.74 64.57 62.25 60.46
DNN 87.05 69.32 60.92 63.75
GAT 89.05 53.52 57.95 55.16
Transformer 95.62 12.77 60.99 64.79
LATCGAd 96.97 73.26 74.09 73.66

On the VNU dataset, LATCGAd achieves an accuracy of 87.65%, lightly
outperforming DT (83.95%), and standard Transformer (86.76%).
3.3. The AWG-GC model

AWG-GC is an extended version of LATCGAd, keeping its strengths in data
generation and training while adding components to handle complex features, limited
labels, and multidimensional relationships in educational data. After preprocessing, the
raw data forms an initial sample set consisting of (L + U) samples, where (X;,y;) are
labeled samples and Xy are unlabeled samples. Note that each sample in this set has a
dimensionality of n. This dataset is used to train a deep Autoencoder neural network to
learn the latent space representation. At the same time, the (L + U) sample set is also
used to train a WGAN to generate an additional synthetic sample set, X, consisting of G
new samples. This expanded sample set (L + U + G ) is then fed into the encoder part of
the Autoencoder to extract features and reduce the data dimension from n to m. Thus,
each sample in the L+ U+ G set has two representations: one in the original n-
dimensional space and one in the m-dimensional feature space. The neighborhood graph
of the samples in the (L + U + G) set is built using the KNN algorithm based on this

combined feature space. The resulting graph is then fed into the Graphormer model.
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Using global attention mechanism weighted by graph distance, Graphormer can
efficiently learn the relationships between nodes, thus improving the accuracy in

predicting students' graduation classifications.

Raw data

XL-U+G,YL-U+G

Xy

Xu

Graph with labeled
nodes

Y1 X2,

J01BUIWLISI(]

Graph with
sample set

Wasserstein
Distance

Figure 3. 1. The AWG-GC model

Algorithm 4: AWG-GC - Integrating an Autoencoder, Wasserstein
GAN, and Graphormer for Graduation Classification

1: Input: D, : Labeled dataset of student features and labels

2: Dy. : Unlabeled dataset of student features

3: m : Number of samples in Dy
4
5
6

n : Number of samples in Dy,
z : Latent feature dimension from Autoencoder
s : Number of synthetic samples generated by WGAN
7: Output: ¥ < Predicted graduation classification labels
8: [X.,y.] « Preprocess(D,)
9: Xy« Preprocess(Dy)
10: Train Autoencoder on X, U X,
11: Z; < Encode(X}), Zy <« Encode(Xy)
12: [G, C] < TrainWGAN(X,, y;)
13:fori = 1tosdo
14: z; « SampleNoise()
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15:  y;«< SampleLabel(y,)

16 X" Gz, 1)

17 Ds«—Ds U (x7",y)

18: end for

19:Dyy « D, U Dy U Dy

20: Z,;; < Encode(Dyy)

21: Fompinea < Concatenate(X,y, Zq11)
22: Gypy < ConstructGraph(F,ompined)
23: Train Graphormer on (Gypn, Y1)

24: ¥ «— Predict(Graphormer, X;.;)

25: return Y
We use three real datasets, HNMU2, VNU, and SATDAP, to evaluate the

performance of the proposed model. The SATDAP, Portugal, consists of 4,424 records
and 36 features. The HNMU2 and VNU dataset is divided into train, validation, and test
sets, with 60% of the data used for training, 15% for validation, and 25% for testing. The
SATDAP dataset is divided into three subsets: training, validation, and testing, with 65%

of the data used for training, 15% for validation, and 20% for testing.
Table 3. 2: Prediction results on the HNMU?2 dataset:

Method Accuracy  Precision  Recall F1-Score
KNN 80.29 40.68 41.58 40.59
RF 95.62 47.79 48.31 48.34
Transformer 95.62 72.77 60.99 64.79
GAT 89.05 53.52 57.95 55.16
Graphomer 97.08 73.45 73.97 73.67
AutoGAT 93.43 59.84 59.74 59.74
AWG_GAT 97.08 98.50 86.41 90.37
AWG-GC 98.54 99.25 99.25 99.25

Prediction results obtained on the VNU dataset: The AWG-GC model consistently

outperforms all other methods across all evaluation metrics.
Table 3. 3. Prediction results obtained on the VNU dataset

Method Accuracy  Precision  Recall F1-Score
KNN 86.76 51.45 54.98 53.12
RF 82.35 54.03 46.91 49.39
Transformer 86.76 69.72 71.73 70.72
GAT 80.88 51.60 50.52 51.00
Graphomer 88.24 80.11 63.93 64.97
AutoGAT 85.29 74.50 58.59 53.96
AWG-GAT 89.71 70.95 95.98 78.64

AWG-GC 94.12 81.67 97.70 88.17
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Results obtained on SATDAT dataset: The AWG-GC model achieved the highest
overall performance across all evaluation metrics. AWG-GC outperformed XGBoost of
Martins et al. (2021) by 8.81% in accuracy and 9.21% in F1-score. This comparison
further underscores the superiority of AWG-GC in both predictive accuracy and balanced

classification performance.
Table 3. 4. Prediction results obtained on the SATDAP dataset

Method Accuracy  Precision  Recall F1-Score
KNN 66.67 57.66 54.73 55.35

RF 79.32 70.78 68.65 69.37
Transformer 80.34 71.87 70.99 71.34
Graphomer 80.79 74.08 70.30 71.67
AWG-GC 81.81 74.74 73.89 74.21
XGBoost 73.00 - - 65.00
(Martin et al,

2021)

These results indicate that the integration of Autoencoder, WGAN, and
Graphormer architectures enables the model to better capture the underlying structure of
educational data and effectively address challenges such as small sample sizes and class
imbalance.

3.4. Appendix to Chapter 3: Wasserstein GANs (WGAN) and Graphormer are
introduced in this section.

CONCLUSION AND FUTURE DEVELOPMENT

A. Key contributions of the dissertation

This dissertation has addressed the challenge of predicting student academic
outcomes under the conditions of uncertainty, data scarcity, and imbalance that
characterize real-world educational environments.

First, for short-term SGPA prediction, the study introduced two frameworks,
NeutroDL and NeutroGNT, which integrate deep learning with neutrosophic theory to
handle incomplete and uncertain data. Results confirmed their effectiveness, with
NeutroGNT achieving an MSE of 0.018 and R? of 96.05%, outperforming conventional
models and supporting timely monitoring, early intervention, and personalized learning.

Building on this, the research extended to long-term graduation classification
prediction. Two hybrid models were proposed: LATCGAd, which reached 96.97%
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accuracy and 73.66% F1-score; and AWG-GC, which achieved 98.54% accuracy and
99.25% F1-score, surpassing baselines and demonstrating the advantages of combining
generative and graph-based architectures.

In summary, the dissertation contributes by: (i) developing uncertainty-aware
frameworks for SGPA prediction, (ii) designing hybrid models for robust graduation
classification under imbalanced data, and (iii) constructing enriched datasets and
analytical pipelines for educational applications. These advances provide practical tools
to support data-driven, adaptive, and intelligent decision-making in higher education.

B. Future research directions
Based on the results achieved, the dissertation proposes several promising directions
for future research:

1. Broaden prediction targets to include dropout risk, program completion, course
satisfaction, and career orientation, thereby providing a more comprehensive view of
students’ learning trajectories.

2. Apply reinforcement learning and unsupervised learning, combined with
explainable Al (XAl) techniques, to both personalize learning pathways and provide
transparent, interpretable justifications that enhance trust in early intervention decisions
by instructors and administrators.

3. Leverage federated learning and transfer learning to develop models that ensure
predictive effectiveness and generalization capability while preserving data privacy
across institutions.

4. Develop an online Learning Analytics (LA) system based on the proposed models,
integrated with XA, to deliver real-time monitoring, intuitive explanations, and
actionable recommendations for both students and educators.

These directions not only extend the impact of the current research but also foster
sustainable, data-driven digital transformation in higher education, toward a smart,

adaptive, and transparent learning ecosystem.
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