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INRODUCTION 

1. The necessary of thesis 

The demand for electric wheelchairs is increasing rapidly due to various 

reasons. Specifically, according to statistics, as of 2025, approximately 12% 

of adults in the United States face mobility limitations, and around 5.5 to 6 

million adults use wheelchairs for mobility [1]. 

To address this issue, automatic or semi-automatic electric wheelchairs 

have emerged as a solution, enabling users to control the wheelchair more 

effectively, particularly for those with severe medical conditions who lack the 

health and flexibility to operate and ensure safety independently. 

To develop automated electric wheelchair systems, a core issue that has 

been extensively studied over the years is trajectory tracking control. 

The reason trajectory control is crucial is that electric wheelchairs must 

operate in relatively complex conditions with numerous uncertainties, 

including uncertainties in the dynamic model itself. Therefore, a reliable 

trajectory control method is essential. 

In recent years, numerous studies have explored trajectory control 

solutions for electric wheelchairs [4]-[12]. However, most of these studies fail 

to fully account for uncertainties or neglect the wheelchair’s dynamic model, 

resulting in a lack of robustness against environmental changes and 

disturbances. Consequently, their results are often limited to simulations or 

experiments in controlled laboratory settings. Although some studies have 

employed Sliding Mode Control [13]-[17] and considered these uncertainties, 

they remain confined to simulations due to the issue of chattering, which will 

be discussed in detail in later sections of the thesis. 

Therefore, researching a new method for trajectory control of electric 

wheelchairs that ensures accuracy, robustness against uncertainties, and 

practical applicability is highly necessary. 

2. Research Objective of the Thesis 

Develop a trajectory control method for electric wheelchairs using high-

order sliding mode control to address the "chattering" issue in sliding mode 

control, enabling direct practical application. 
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3. Main Research Content of the Thesis 

Design a second-order Terminal Sliding Mode surface, including the 

ability to calculate the design parameters of the controller and the convergence 

time of state variables, applicable to practical electromechanical systems. 

Design a trajectory controller for the Differential Drive Mobile Robot 

(DDMR) based on second-order Terminal Sliding Mode. 

Apply the controller to a real DDMR system to demonstrate its robustness 

and effectiveness. 

Thesis Content Structure 

The thesis consists of 4 chapters: 

Chapter 1: Provides an overview of trajectory control studies for electric 

wheelchairs, DDMR, and in-depth research on sliding mode control, thereby 

outlining the research direction of the thesis. 

Chapter 2: Presents the theory of sliding mode control, existing methods 

for chattering suppression, and justifies the selection of the main research 

method in the thesis. 

Chapter 3: Introduces and describes the detailed modeling of the DDMR, 

potential uncertainties, and methods for trajectory control, kinematic control, 

and dynamic control of the DDMR model. 

Chapter 4: Designs a DDMR trajectory controller based on second-order 

Terminal Sliding Mode, including simulation and experimental results. 

Conclusion. 

1 CHAPTER 1: OVERVIEW 

1.1 Overview of Related Studies 

1.1.1 Studies on Traditional Trajectory Control of Electric Wheelchairs 

In 1999, Caracciolo [5] and in 2005, Sun.S [6] utilized the “linearization 

feedback control” method for trajectory control of mobile robots. Similarly, 

in 2019, K. Maatoug [7] proposed a trajectory control method based on a 

Fuzzy controller, and in 2023, A. Amrane [8] suggested a control method 

using a PID controller. The common limitation of these studies is that they 

only considered the kinematic model without addressing the dynamic model. 

Meanwhile, T. Fukao and colleagues [9], as well as Shojaei and colleagues 
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[10], employed adaptive control, taking into account the dynamic model and 

the presence of unknown parameters (uncertainties). In 2016, Li.Z [11] used 

a combined “Neural-Dynamic Optimized Model Predictive” approach, and in 

2023, Trujillo [12] proposed a study on “Trajectory Tracking Control of a 

Mobile Robot using Neural Networks.” However, these studies only 

considered kinematics and were limited to simulations. 

1.1.2 Studies on Trajectory Control of Electric Wheelchairs Using SMC 

In 2009, Solea [13] proposed a trajectory control study using a 

conventional SMC sliding surface. Subsequently, several studies applied 

various SMC sliding surface variants, such as B.B. Mevo [14] in 2018, who 

used an integral sliding surface, and J. Yang (1999) [15], Lingrong (2011) 

[16], and Nikranjbar (2018) [17], who proposed methods using first-order 

SMC. Although these studies achieved good results and accounted for 

uncertainties, they all encountered the issue of chattering. 

1.1.3 Studies on Chattering Suppression in SMC 

In 1992, Utkin [20] proposed the “boundary layer” method, which is a 

simple and widely used approach. The concept of higher-order sliding 

surfaces was introduced in 1998 by G. Bartolini [22] and Levant [23][24]. In 

2006, Ferrara [40] introduced a second-order SMC sliding surface for robotic 

arms. In 2016, Y. Feng [16] proposed a full-order TSM sliding surface. In 

2021, Xinghuo Yu and Yong Feng [41] synthesized SMC methods, 

specifically focusing on Terminal Sliding Mode Control (TSMC) and higher-

order sliding surfaces to reduce chattering. Higher-order TSMC excels in 

eliminating chattering while maintaining robustness, but it lacks the ability to 

calculate controller parameters and convergence time, limiting its practical 

applications. Therefore, this thesis investigates the second-order Terminal 

Sliding Mode (2TSM) to address these two issues, optimizing chattering 

suppression for the DDMR system. 

1.2 Conclusion 

1.2.1 Summary of Current Research Status 

1.2.2 Research Issues in the Dissertation 

Investigate the design of a second-order Terminal Sliding Mode (2TSM) 

surface with the capability to calculate controller parameters and convergence 

time. 

Study the design of a trajectory controller for the Differential Drive Mobile 

Robot (DDMR) based on 2TSM, accounting for model uncertainties. 
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Conduct experiments on a real DDMR system. 

1.2.3 Scope of the Research 

The dissertation focuses on the development of a new control algorithm. 

Therefore, in conducting experiments, the author employs a mobile robot 

model under scenarios with uncertainties, which facilitates the tuning and 

modification of the algorithm, rather than performing experiments on a fully 

developed electric wheelchair. 

2 CHAPTER 2: SLIDING MODE CONTROL THEORY AND 

CHATTERING SUPPRESSION METHODS 

2.1 Asymptotic Stability and Finite-Time Stability 

2.1.1 Asymptotic Stability 

𝑥(𝑡) → 0       𝑘ℎ𝑖     𝑡 → ∞ (2.1) 

❖ When uncertainties are present: 

If ∆𝑓 represents unknown disturbance factors, instead of converging to 

“0”, the system’s state will converge to: 

𝑥(𝑡) →
∆𝑓

𝛾
       𝑘ℎ𝑖     𝑡 → ∞ 

(2.2) 

2.1.2 Finite-Time Stability 

𝑥(𝑡) → 0     tại    𝑡 =
𝑥(0)1−𝑝/𝑞

𝛾(1 − 𝑝/𝑞)
 , 

(2.3) 

Where 𝑝, 𝑞 are odd number and 𝑝/𝑞 < 1 

❖ When uncertainties are present: 

N If ∆𝑓 represents unknown disturbance factors: 

→ 𝑥(𝑡) = (
∆𝑓

𝛾
)

𝑞
𝑝
   

(2.4) 

This means that using a control signal to bring the system to an equilibrium 

state in finite time will result in a smaller steady-state error compared to 

asymptotic stability. 
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Figure 2.1 System response under uncertainties  

(𝛾 = 1, ∆𝑓 = 0.1, 𝑝/𝑞 = 1/3) 
Conclusion: From the above, it can be observed that the control of a 

system with a "finite-time" response has several advantages over an 

"asymptotic" response, including: 

• Faster convergence speed. 

• Higher control accuracy. 

Based on these concepts, the thesis will analyze the advantages and 

disadvantages of linear and nonlinear sliding surfaces in the following section. 

2.2 Sliding Mode Control Theory 

2.2.1 Linear Sliding Mode (LSM) 

Consider the follow system: 

{
𝑥̇1 = 𝑥2                              

𝑥̇2 = 𝑓(𝑥) + 𝑢 + 𝜌(𝑥, 𝑡)
 

(2.5) 

Firstly, the sliding manifold was designed: 

𝑠 = 𝑥2 + 𝛾𝑥1 , 𝛾 > 0 (2.6) 

when 𝑠 = 0, the system state 𝑥1, 𝑥2 will converge asymptotically to “0” in 

natural response: 𝑥̇1 = −𝛾𝑥1 

The control law was designed as follow: 

𝑢 = 𝑢𝑒𝑞 + 𝑢𝑛 (2.7) 

where: 

𝑢𝑒𝑞 = −𝑓(𝑥) − 𝛾𝑥2 

𝑢𝑛 = −𝑘𝑠𝑖𝑔𝑛(𝑠) 

(2.8) 

With the above control law, 𝑠 → 0 in finite time: 
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𝑡𝑟 =
√2

𝜂
𝑉
1
2(0) 

(2.9) 

2.2.2 Nonlinear Sliding Mode Manifold 

2.2.2.1 Terminal Sliding Mode Control (TSM) 

First, the nonlinear manifold was designed as: 

𝑠 = 𝑥2 + 𝛾𝑥1
𝑝/𝑞 , 𝛾 > 0 (2.10) 

With 0 <
𝑝

𝑞
< 1 and 𝑝, 𝑞 are odd interger. When 𝑠 = 0, the state variables 

𝑥1, 𝑥2 will converge to “0” according to: 𝑥̇1 = −𝛾𝑥1
𝑝/𝑞 

The control law was designed as follow: 

                      𝑢 = 𝑢𝑒𝑞 + 𝑢𝑛 

𝑢𝑒𝑞 = −𝑓(𝑥) − 𝛾𝑝/𝑞𝑥1
𝑝/𝑞−1

𝑥̇1 

𝑢𝑛 = −𝑘𝑠𝑖𝑔𝑛(𝑠)                  

(2.11) 

Remark: in the control signal: 𝑢𝑒𝑞 = −𝑓(𝑥) − 𝛾
𝑝

𝑞
𝑥1

𝑝

𝑞
−1
𝑥̇1 has the 

possibility of encountering a singularity poin 𝑥1 = 0, 𝑥̇1 ≠ 0. Figure 2.2 (𝑡 =

0.37𝑠). 

 
Figure 2.2 the control signal with singularity point 

2.2.2.2 Nonsingular Terminal Sliding Mode Control (NTSM) 

𝑠 = 𝑥1 +
1

𝛾
𝑥2
𝑞/𝑝

 
(2.12) 

When 𝑠 = 0, the response of NTSM (2.12) equivalent to (2.10). The 

control law 𝑢 = 𝑢𝑒𝑞 + 𝑢𝑛  was designed as follow: 

{
𝑢𝑒𝑞 = −𝑓(𝑥) − 𝛾

𝑝

𝑞
𝑥2
2−𝑞/𝑝

𝑢𝑛 = −𝑘𝑠𝑖𝑔𝑛(𝑠)                
 

(2.13) 

Applied the control law (2.13), it gets: 
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𝑉̇ = 𝑠
1

𝛾

𝑞

𝑝
𝑥2

𝑞
𝑝
−1
(−𝑘𝑠𝑖𝑔𝑛(𝑠) + 𝜌(𝑡)) 

Conclusion: Control signal 𝑢𝑒𝑞 = −𝑓(𝑥) − 𝛾
𝑝

𝑞
𝑥2
2−𝑞/𝑝 was eliminated 

the singularity point at 𝑥2 = 0,𝑥1 ≠ 0. 

The inherent disadvantage of Sliding Mode Control (SMC) is the 

phenomenon of “chattering.” Research efforts aimed at eliminating this 

“chattering” phenomenon will be presented in the following section. 

2.3 Eliminating “chattering” in sliding mode control 

2.3.1 Method using the saturation function 

2.3.2 Method using the sigmoid function 

2.3.3 Higher-order sliding mode method 

2.3.3.1 Higher-order LSM sliding surface 

The sliding manifold is proposed: 

𝑠 = 𝑥̈ + 𝛼𝑥̇ + 𝛽𝑥 (2.14) 

Control law 𝑢 = 𝑢𝑒𝑞 + 𝑢𝑛  is designed as follow: 

{
𝑢𝑒𝑞 = −𝑓(𝑥) − 𝛼𝑥̇1 − 𝛽𝑥1
𝑢̇𝑛 = −𝑘𝑠𝑖𝑔𝑛(𝑠)                  

 
(2.15) 

Ex: We design the sliding surface and control signal as follows: 

𝑠 = 𝑥̈1 + 2𝑥̇1 + 𝑥1 

𝑢 = 0.1𝑥2 − 2𝑥̇1 − 𝑥1 − 5∫ 𝑠𝑖𝑔𝑛(𝑠)𝑑𝑡
𝑡

0

 

The simulation results are shown in Figure 2.3. 

It can be observed that although the control signal is smooth and chattering 

is eliminated, the drawback of the linear sliding surface remains: the state 

variable does not reach zero but only converges asymptotically. 

 
Figure 2.3 Control signal 

 
Figure 2.4 State response 
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2.3.3.2 Full order Terminal Sliding Mode (FOTSM) 

According to [23], the sliding surface is chosen as follows: 

𝑠 = 𝑥̇𝑛 + 𝑐𝑛𝑠𝑔𝑛(𝑥𝑛)|𝑥𝑛|
𝛼𝑛 +⋯+ 𝑐1𝑠𝑔𝑛(𝑥1)|𝑥1|

𝛼1 (2.16) 

where 𝑐𝑖 , 𝛼𝑖(𝑖 = 1, 2, …𝑛) are constant. 𝑐𝑖 is chosen such as 𝑝𝑛 +
𝑐𝑛𝑝

𝑛−1 +⋯+ 𝑐2𝑝 + 𝑐1 is Hurwitz, and 𝛼𝑖is chosen as follows 

{

𝛼1 = 𝛼, 𝑛 = 1                                                 

𝛼𝑖−1 =
𝛼𝑖𝛼𝑖+1

2𝛼𝑖+1 − 𝛼𝑖
, 𝑖 = 1,2,… , 𝑛  ∀𝑛 ≥ 2 

(2.17) 

Where: 𝛼𝑛+1 = 1,𝛼𝑛 = 𝛼, 𝛼 𝜖 (1 − 𝜀, 1), 𝜀 𝜖 (0,1). 
Applying it to system (2.5), we obtain the sliding surface: 

𝑠 = 𝑥̈1 + 𝑐2𝑠𝑖𝑔𝑛(𝑥̇1)|𝑥̇1|
𝛼2 + 𝑐1𝑠𝑖𝑔𝑛(𝑥1)|𝑥1|

𝛼1 (2.18) 

Control law 𝑢 = 𝑢𝑒𝑞 + 𝑢𝑛  is designed as follow: 

𝑢𝑒𝑞 = −𝑓(𝑥) − 𝑐2𝑠𝑖𝑔𝑛(𝑥̇1)|𝑥̇1|
𝛼2 − 𝑐1𝑠𝑖𝑔𝑛(𝑥1)|𝑥1|

𝛼1 (2.19) 

𝑢̇𝑛 + 𝜆𝑢𝑛 = 𝑣; 𝑣 = −(𝑘𝑑 + 𝑘𝑇 + 𝜂)𝑠𝑖𝑔𝑛(𝑠)  
Example: Consider the same system as above. We design the sliding 

surface and control signal as follows: 

𝑠 = 𝑥̈1 + 2𝑠𝑖𝑔𝑛(𝑥̇1)|𝑥̇1|
9/16 + 𝑠𝑖𝑔𝑛(𝑥1)|𝑥1|

9/23 

→ 𝑢 = 𝑢𝑒𝑞 + 𝑒
−0.1𝑡∫ 𝑒−0.1𝑡𝑣𝑑𝑡

𝑡

0

 

Where 𝑒 is the base of the natural logarithm. (ln (𝑒) = 1).  

 
Figure 2.5 Control signal FOTSM 
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Figure 2.6 State response FOTSM 

It can be observed that the control signal has almost completely eliminated 

chattering (Figure 2.5) and the state variable has converged to zero (Figure 

2.6). However, this method currently has two major issues that prevent its 

practical application [24][40]: it cannot be computed and it cannot be 

measured. 

2.4 Conclusion 

The FOTSM method is the optimal approach to eliminate chattering in 

sliding mode control, provided that the existing drawbacks can be overcome. 

3 CHAPTER 3. MOBILE ROBOT AND TRAJECTORY CONTROL 

METHOD 

3.1 Introduction the model 

3.1.1 Kinematic model 

❖ Forward kinematic:  

{
 

 𝑣 =
𝑣𝑟 + 𝑣𝑙
2

=
𝑅(𝜑𝑟̇ + 𝜑𝑙̇ )

2
 

𝜔 =
𝑣𝑟 − 𝑣𝑙
2𝐿

=
𝑅(𝜑𝑟̇ − 𝜑𝑙̇ )

2𝐿

 

(3.1) 

❖ Inverse kinematic:  

{
𝑣𝑟 = 𝑣 + 𝜔𝐿 
𝑣𝑙 = 𝑣 − 𝜔𝐿

 
(3.2) 

3.1.2 Dynamic model 

(𝑚 +
2

𝑅2
𝐼𝑤) 𝑣̇ − 𝑚𝑐𝑑𝜔

2 =
1

𝑅
(𝜏𝑟 + 𝜏𝑙)     

(𝐼 +
2𝐿2

𝑅2
𝐼𝑤) 𝜔̇ + 𝑚𝑐𝑑𝜔𝑣 =

𝐿

𝑅
(𝜏𝑟 − 𝜏𝑙)

 

(3.3) 
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3.1.3 Uncertainties in the model 

- Uncertainty about the mass: limited to 50 – 100 (kg) 

- Change in the center of mass: limited to ∆𝑑 = 15 (cm) 

𝑀0 [
𝑣̇
𝜔̇
] = 𝑉0 + 𝐶 [

𝜏𝑟
𝜏𝑙
]+∆𝑉 − ∆𝑀 [

𝑣̇
𝜔̇
] + 𝑑(𝑡)

⏟              
𝜌(𝑡)

 (3.4) 

Where 𝑀0, 𝑉0 are the known initial values, ∆𝑀 and ∆𝑉 are the changing 

quantities, 𝑑(𝑡) is other uncertainties, 𝜌(𝑡) is the total uncertainties values. 

3.2 Trajectory control method 

Based on the pre-designed trajectory, the reference DDMR will move 

ahead, and the actual DDMR will follow. The control diagram is shown in 

Figure 3.1. 

 
Figure 3.1 Trajectory control diagram 

❖ Kinematic Controller: 

The tracking error 𝑝𝑒  is the different between real and refference position, 

denoted as 𝑝 = [𝑥 𝑦 𝜃]𝑇  and the refference position, denoted as  𝑝𝑟𝑒𝑓 =

[𝑥𝑟𝑒𝑓 𝑦𝑟𝑒𝑓  𝜃𝑟𝑒𝑓]
𝑇, it obtain: 

𝑝𝑒 = [

𝑥𝑒
𝑦𝑒
𝜃𝑒
] = 𝑝𝑟𝑒𝑓 − 𝑝 = [

𝑥𝑟𝑒𝑓 − 𝑥
𝑦𝑟𝑒𝑓 − 𝑦

𝜃𝑟𝑒𝑓 − 𝜃
] 

(3.5) 

The outermost kinematic controller uses a simple P-type controller, 

designed as follows: 
𝜔𝑟𝑒𝑓 =  𝐾𝑤. 𝜃𝑒 , 𝑣𝑟𝑒𝑓 =  𝐾𝑣 . 𝑑𝑒 (3.6) 

where 𝜔𝑟𝑒𝑓 , 𝑣𝑟𝑒𝑓 are the refference velocities; 𝐾𝑤 , 𝐾𝑣 are the gain 

controller; 𝑑𝑒 = (𝑥𝑒
2 + 𝑦𝑒

2)1/2 và 𝜃𝑒 = 𝑡𝑎𝑛−1(𝑦𝑒 , 𝑥𝑒). 
❖ Dynamic Controller: 

After the signals 𝜔𝑟𝑒𝑓 , 𝑣𝑟𝑒𝑓 are sent to the dynamic controller, it calculates 

and generates the control signals—torques 𝜏𝑟𝑖𝑔ℎ𝑡 , 𝜏𝑙𝑒𝑓𝑡  - to each wheel (Figure 

3.2). 
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Figure 3.2 Trajectory control flowchart in simulation 

3.3 Trajectory Controller Based on Linear Sliding Mode (LSM) 

3.3.1 Design of Trajectory Controller Using LSM Sliding Surface 

𝑀𝑞̈ = 𝑉(𝑞̇) + 𝐶𝑢(𝑡) + 𝜌(𝑡) (3.7) 

The error is defined as: 

𝑒̇(𝑡) = 𝑞̇ − 𝑞𝑟̇ = [𝑣𝑒 ,  𝜔𝑒 ]𝑇 = [𝑣 − 𝑣𝑟𝑒𝑓 ,  𝜔−𝜔𝑟𝑒𝑓 ]
𝑇
 (3.8) 

Sliding manifold: 𝑠 = 𝑒̇ + 𝛾𝑒 

Theorem 1: The control law is: 𝑢 = 𝑢𝑒𝑞 + 𝑢𝑛  
𝑢𝑒𝑞 = 𝐶

−1𝑀(−𝑀−1𝑉(𝑞̇) + 𝑞̈𝑟 − 𝛾𝑒̇) (3.9) 

𝑢𝑛 = −𝐶
−1𝑀𝑠𝑖𝑔𝑛(𝑠)(𝑘 + 𝜂) (3.10) 

3.3.2 Simulation 

3.3.2.1 LSM without“boundary layer” 

 
Figure 3.3 Trajectory 1 control 

signal (without boundary layer) 

 
Figure 3.4 Velocities response 

(trajectory 1 - without boundary 

layer) 
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3.3.2.2 LSM with boundary layer 

 

Figure 3.5 Trajectory 1 control 

signal (with boundary layer) 

 

Figure 3.6 Velocities response 

(trajectory 1 - with boundary layer) 

3.3.2.3 Comment 

It can be clearly observed that the use of a boundary layer significantly 

reduces the accuracy of the controller. 

3.4 Trajectory controller using NTSM 

3.4.1 Design trajectory controller using NTSM 

𝑠 = 𝑒 +
1

𝛾
𝑒̇𝑞/𝑝 

(3.11) 

Theorem 2: Control law is: 𝑢 = 𝑢𝑒𝑞 + 𝑢𝑛  

Where: 

𝑢𝑒𝑞 = 𝐶
−1𝑀(−𝑀−1𝑉(𝑞̇) + 𝑞̈𝑟 − 𝛾

𝑝

𝑞
𝑒̇2−𝑞/𝑝) (3.12) 

𝑢𝑛 = −𝐶
−1𝑀𝑠𝑖𝑔𝑛(𝑠)(𝑘 + 𝜂) (3.13) 

And satisfied the condition:𝑘 = 𝑀𝑎𝑥{‖𝑀−1𝜌(𝑡)‖} , 𝜂 > 0 

3.4.2 Simulation 

3.4.2.1 NTSM without “boundary layer” 
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Figure 3.7 Trajectory 1 control 

signal (NTSM without boundary 

layer) 

Figure 3.8 Velocities response 

(trajectory 1 – NTSM without 

boundary layer) 

3.4.2.2 Mô phỏng NTSM với boundary layer 

 
Figure 3.9 Trajectory 1 control 

signal (NTSM with boundary 

layer) 

 
Figure 3.10 Velocities response 

(trajectory 1 – NTSM with 

boundary layer) 

3.4.2.3 Comment 

It is observed that NTSM demonstrates superiority over LSM in ensuring 

accuracy, convergence speed, and robustness. 

3.5 Conclusion 

The chattering phenomenon appears in both LSM and NTSM methods, and 

the “boundary layer” has shown a lack of robustness and reduced controller 

accuracy. Therefore, in Chapter 4, the dissertation will address this issue using 

the higher-order sliding mode method. 

4 CHAPTER 4: DESIGN OF TRAJECTORY CONTROLLER 

USING SECOND-ORDER TERMINAL SLIDING MODE 

METHOD 

4.1 Second order TSM  

4.1.1 Convergence Time Characteristics of the Sliding Surface 

The second order TSM manifold is chosen as follow: 

𝑠 = 𝑥̈ + 𝛾1𝑥̇
𝛼 + 𝛾2𝑥

𝛽 (4.1) 

Wherein, the following conditions are satisfied: 
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0 < 𝛼 =
𝑞

𝑝
< 1, 𝛽 =

𝛼

2−𝛼
=

𝑞

2𝑝−𝑞
, 𝑝 > 𝑞 are odd intergers; 

          0 < 𝛾1;   𝛾2 = 𝛾1
𝛽+1 𝛼𝛽

(𝛽+1)𝛽
(1 −

𝛼

2
) > 0; 

          𝑥(0) = 𝑥0, 𝑥̇(0) = −𝛾1
𝛽/𝛼 (

𝛼

𝛽+1
)
𝛽/𝛼

𝑥0 
1/(2−𝛼). 

(4.2) 

Theorem 3: when the manifold Error! Reference source not found. c

onverge to 0 (𝑠 = 0) and the conditions (4.2) is satisfied, the state variable 

𝑥(𝑡) and its derivative 𝑥̇(𝑡) converge to 0 in finite time, which is calculated 

as follow: 

𝑡𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 =
𝛼

𝛼 − 𝛽
(
𝛾1𝛼

𝛽 + 1
)
−𝛽/𝛼

𝑥0
(𝛼−𝛽)/𝛼 

(4.3) 

Prove: 

Take 𝑦 = 𝑥̇ → 𝑥̈ = 𝑦
𝑑𝑦

𝑑𝑥
 , 𝑠 = 0, (4.1) become: 

𝐹(𝑦, 𝑦̇) = 𝑦
𝑑𝑦

𝑑𝑥
+ 𝛾1𝑦

𝛼 = −𝛾2𝑥
𝛽 

(4.4) 

natural response of (4.4) is: 

𝐹(𝑦, 𝑦̇) = 𝑦
𝑑𝑦

𝑑𝑥
+ 𝛾1𝑦

𝛼 = 0 
(4.5) 

Where 𝑦 = 0 is particular solution of (4.5), in the case 𝑦 ≠ 0, (4.5) is 

rewritten as: 𝑦1−𝛼𝑑𝑦 = −𝛾1𝑑𝑥.  
Integrating both sides, we obtain: 

1

2 − 𝛼
𝑦2−𝛼 = −𝛾1𝑥 + 𝐶 

 𝑦 = (𝑀𝑥 + 𝑁)1/(2−𝛼)    

(4.6) 

With the presence of the signal 𝑢 = −𝛾2𝑥
𝛽, the general solution has the 

form: 

𝑦 = (𝑀𝑥 + 𝑓(𝑥))
1/(2−𝛼)

  (4.7) 

Where 𝑁 = 𝑓(𝑥) is the function of 𝑥. Substituting (4.7) into (4.4), we 

obtain: 

(𝛾1 +
𝑀 +

𝑑𝑓
𝑑𝑥

2 − 𝛼
)(𝑀𝑥 + 𝑓(𝑥))

𝛽
= −𝛾2𝑥

𝛽 

(4.8) 

where 

- 𝑀𝑥 + 𝑓(𝑥) has the form 𝑀𝑥 + 𝑓(𝑥) = 𝐾𝑥; derive 𝑓(𝑥) = (𝐾 −𝑀)𝑥 
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- 
𝑑𝑓

𝑑𝑥
= (𝐾 −𝑀) 

Equating both sides, we obtain: 

(𝛾1 +
𝐾

2 − 𝛼
)𝐾𝛽 = −𝛾2                

(4.9) 

From (4.9), it easy to see: if 𝛾2 > 0, 𝐾 < 0, then: 

- The minimum of 𝑔(𝐾) = (𝛾1 +
𝐾

2−𝛼
)𝐾𝛽 + 𝛾2 exits at 𝐾∗ =

−𝛾1
𝛽(2−𝛼)

𝛽+1
= −𝛾1

𝛼

𝛽+1
 

- 𝑔 (𝐾∗ = −𝛾1
𝛼

𝛽+1
) = 0 and 𝐾∗ is the unique solution of (4.9) 

The result is: 

𝑦 = (𝐾∗𝑥)1/(2−𝛼) = −[𝛾1
𝛼

𝛽 + 1
]
1/(2−𝛼)

⏟            
𝐴

𝑥1/(2−𝛼) 

Then, the general solution is 

𝑦 = 𝑥̇ = 𝐴𝑥1/(2−𝛼) (4.10) 

Remark : Picard − Lindelöf  theorem assert that (4.10) is the unique 

solution of the equation. 𝐹(𝑦, 𝑦̇) = 𝑦
𝑑𝑦

𝑑𝑥
+ 𝛾1𝑦

𝛼 = −𝛾2𝑥
𝛽 according to the 

given initial conditions. 

Hoàn tất chứng minh. 

4.1.2 Simulation of sliding surface convergence time: 

With 𝛾1, 𝛾2, 𝛼, 𝛽 are chosen in theorem 3, the desire convergence time is 

𝑡 = 2𝑠, the sliding manifold is designed as follow: 

𝑠 = 𝑥̈ + 9.92𝑥̇3/5 + 12.8𝑥3/7 = 0 (4.11) 

With the initial variable 𝑥0 = 5, the systems response as in Figure 4.1: 
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Figure 4.1 Simulation results of the natural convergence of the 2TSM 

surface. 

4.2 Trajectory Control Based on Second-Order TSM Sliding Surface 

4.2.1 Controller Design 

Theorem 4: The velocity error of the system will converge to zero when 

the control signal is designed as follows: 𝑢 = 𝑢𝑒𝑞 + 𝑢𝑛 

                          𝑢𝑒𝑞 = 𝐶
−1𝑀(−𝑀−1𝑉 + 𝑞̈𝑟 − 𝛾1𝑒̇

𝛼 − 𝛾2𝑒
𝛽) 

            𝑢̇𝑛 = 𝐶
−1𝑀(𝑠𝑖𝑔𝑛(𝑠)(𝑘 + 𝜂)) 

(4.12) 

Where 𝑘 = 𝑀𝑎𝑥{‖𝑀−1𝜌̇(𝑡)‖} và 𝜂 > 0 

Prove: 

By substituting the system state errors into the 2TSM sliding surface 

(4.12), we obtain: 

𝑠 = 𝑀−1(𝑉(𝑞̇) + 𝐶𝜏(𝑡) + 𝜌(𝑡)) − 𝑞̈𝑟 + 𝛾1𝑒̇
𝛼 + 𝛾2𝑒

𝛽 

Substituting the control signal (4.12) into the above expression: 

𝑠 = 𝑀−1𝐶𝑢𝑛 +𝑀
−1𝜌(𝑡) 

Consider Lyapunov function: 𝑉 = 0.5𝑠𝑇𝑠, it gets: 

𝑉̇ = 𝑠𝑇𝑠̇ = 𝑠𝑇(−𝑠𝑖𝑔𝑛(𝑠)𝑘 − 𝑠𝑖𝑔𝑛(𝑠)𝜇 +𝑀−1𝜌̇(𝑡)) (4.13) 

It follow that: 

𝑉̇ ≤ −𝑘‖𝑠‖ − 𝜂‖𝑠‖ +𝑀−1𝜌̇(𝑡) ≤ −𝜂‖𝑠‖ = −𝜂√2𝑉1/2 < 0  

𝑠 → 0 in finite time 𝑡𝑟 ≤
√2𝑉1 2⁄ (0)

𝜂
 .  

This completes the proof. 

4.2.2 Simulation 

The sliding surface and control signal are designed as follows: 
𝑠 = 𝑒̈ + 4𝑒̇3/5 + 3.49𝑒3/7 
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                                  𝑢𝑒𝑞 = 𝐶
−1𝑀(−𝑀−1𝑉 + 𝑞̈𝑟 − 4𝑒̇

3
5 − 3.49𝑒

3
7 ) 

                    𝑢̇𝑛 = 𝐶
−1𝑀(𝑠𝑖𝑔𝑛(𝑠)([2; 1]𝑇 + 0.2)) 

The simulation results from Figure 4.3 to Figure 4.6. 

• Trajectory 1: circle with a radius of 1 meter. 

 
Figure 4.2 Trajectory 1 – control 

signal (2TSM) 

 
Figure 4.3 Trajectory 1 – velocities 

response (2TSM) 

 

It can be seen that the 2TSM controller has eliminated the chattering 

phenomenon in the control signal (Figure 4.3) while maintaining high 

accuracy. 

• Trajectory 2: A path consisting of straight segments combined with 90° 

turns. 

For trajectory 2, the 2TSM controller still demonstrates robustness and 

high accuracy (Figure 4.6). 

 
Figure 4.4 DDMR result in 

trajectory 1(2TSM) 

 
Figure 4.5 DDMR result in 

trajectory 2 (2TSM) 
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4.3 Experiment 

4.3.1 DC motor control 

4.3.1.1 Simulation 

 

From the simulation, it can be seen that all four control methods exhibit 

comparable responses, each bringing the system to a convergent state in 

approximately 1 second. Among them, the 2TSM method (Figure 4.10) 

demonstrates superior performance by ensuring high accuracy, driving the 

error to zero, and eliminating chattering. 

 
Figure 4.6 Motor velocity response 

(PID) 

 
Figure 4.7 Motor velocity response 

(LSM) 

 
Figure 4.8 Motor velocity response 

(NTSM) 

 
Figure 4.9 Motor velocity response 

(2TSM) 
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4.3.1.2 Experiment 

 
Figure 4.10 PID Controller  

 
Figure 4.11 LSM (𝜀 = 0.01) 

Through the above experiments and simulations, the thesis has 

demonstrated the outstanding advantages of 2TSM in maintaining the 

characteristic robustness of SMC, the high accuracy of TSM, and the ability 

to eliminate chattering for direct application in practical control systems, 

forming the basis for applying it to trajectory control experiments. 

 

Figure 4.12 2TSM controller 

4.3.2 Trajectory Control 

4.3.2.1 Simulation 

Before conducting trajectory control experiments, the thesis briefly 

presents the simulation results of 2TSM compared with NTSM and NTSM 

using a boundary layer on the same reference system (with identical 

uncertainties and physical parameters of the DDMR) to more clearly evaluate 

the superiority of the 2TSM method using specific metrics. 
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Figure 4.13 Long-term velocity response results of the three methods. 

 
Figure 4.14 Angular velocity response (Rad/s) 

4.3.2.2 Experiment 

Dimension (DxRxC) 20x20x20 cm 

Wheel radius 6 cm 

Wheelbase distance 23.5 cm 

Power (DC) 12VDC 6000mah 

 

➢ Trajectory 1: Trajectory 1 consists of straight paths; the experimental 

results are shown in Figure 4.16. 
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Figure 4.15 The DDMR moves along trajectory 1. 

➢ Trajectory 2: Trajectory 2 consists of diagonal paths, followed by a 

return to the starting position; the experimental results are shown in 

Figure 4.17. 

 

Figure 4.16 The DDMR moves along trajectory 2 

➢ Trajectory 3: Trajectory 3 is a circle with a radius of 1 meter. The 

experimental results are shown in Figure 4.18. 
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Figure 4.17 The DDMR moves along trajectory 3 

4.4 Conclusion: 

The trajectory control method based on 2TSM, as designed in Chapter 4, 

has fully met the requirements set forth in the thesis, as demonstrated through 

both simulations and experiments. 

5 CONCLUSION 

Main Research Contents of the Thesis 

The thesis focuses on studying the order-raising solution for nonlinear 

sliding surfaces to overcome the chattering phenomenon while maintaining 

advantages such as robustness against uncertainties and high accuracy. 

 

In Chapter 2, the thesis presents the theoretical foundation of sliding mode 

control, emphasizing the analysis of the advantages and disadvantages of 

traditional sliding mode control methods and chattering elimination solutions. 

This leads to the decision to raise the order of the TSM sliding surface to 

leverage its benefits while generating smooth control signals applicable in 

practical electromechanical systems. 

New Scientific Contributions of the Thesis 

The thesis has two main contributions: 

➢ Designing a complete second-order Terminal Sliding Mode (TSM) 

sliding surface with the capabilities to: 

• Eliminate chattering in the control signal 

• Maintain the robustness characteristic of SMC 
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• Ensure state convergence to the equilibrium point within finite 

time 

• Allow computation of controller parameters 

• Enable measurement of the state response time 

➢ Designing a trajectory (dynamic) controller for the DDMR system, taking 

into account model uncertainties and unknown disturbances. 

Among the thesis results, two very important points that have not been 

addressed by other studies are: the ability to compute the controller parameters 

and measure the state response time of the 2TSM method. 

Research direction of the dissertation: 

Develop a complete solution for an autonomous electric wheelchair system 

that can move within designated areas within the campus. 
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