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INRODUCTION

1. The necessary of thesis
The demand for electric wheelchairs is increasing rapidly due to various

reasons. Specifically, according to statistics, as of 2025, approximately 12%
of adults in the United States face mobility limitations, and around 5.5 to 6
million adults use wheelchairs for mobility [1].

To address this issue, automatic or semi-automatic electric wheelchairs
have emerged as a solution, enabling users to control the wheelchair more
effectively, particularly for those with severe medical conditions who lack the
health and flexibility to operate and ensure safety independently.

To develop automated electric wheelchair systems, a core issue that has
been extensively studied over the years is trajectory tracking control.

The reason trajectory control is crucial is that electric wheelchairs must
operate in relatively complex conditions with numerous uncertainties,
including uncertainties in the dynamic model itself. Therefore, a reliable
trajectory control method is essential.

In recent years, numerous studies have explored trajectory control
solutions for electric wheelchairs [4]-[12]. However, most of these studies fail
to fully account for uncertainties or neglect the wheelchair’s dynamic model,
resulting in a lack of robustness against environmental changes and
disturbances. Consequently, their results are often limited to simulations or
experiments in controlled laboratory settings. Although some studies have
employed Sliding Mode Control [13]-[17] and considered these uncertainties,
they remain confined to simulations due to the issue of chattering, which will
be discussed in detail in later sections of the thesis.

Therefore, researching a new method for trajectory control of electric
wheelchairs that ensures accuracy, robustness against uncertainties, and
practical applicability is highly necessary.

2. Research Objective of the Thesis

Develop a trajectory control method for electric wheelchairs using high-
order sliding mode control to address the "chattering" issue in sliding mode
control, enabling direct practical application.
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3. Main Research Content of the Thesis

Design a second-order Terminal Sliding Mode surface, including the
ability to calculate the design parameters of the controller and the convergence
time of state variables, applicable to practical electromechanical systems.

Design a trajectory controller for the Differential Drive Mobile Robot
(DDMR) based on second-order Terminal Sliding Mode.

Apply the controller to a real DDMR system to demonstrate its robustness
and effectiveness.

Thesis Content Structure

The thesis consists of 4 chapters:

Chapter 1: Provides an overview of trajectory control studies for electric
wheelchairs, DDMR, and in-depth research on sliding mode control, thereby
outlining the research direction of the thesis.

Chapter 2: Presents the theory of sliding mode control, existing methods
for chattering suppression, and justifies the selection of the main research
method in the thesis.

Chapter 3: Introduces and describes the detailed modeling of the DDMR,
potential uncertainties, and methods for trajectory control, kinematic control,
and dynamic control of the DDMR model.

Chapter 4: Designs a DDMR trajectory controller based on second-order
Terminal Sliding Mode, including simulation and experimental results.

Conclusion.

CHAPTER 1: OVERVIEW

1.1  Overview of Related Studies

1.1.1 Studies on Traditional Trajectory Control of Electric Wheelchairs
In 1999, Caracciolo [5] and in 2005, Sun.S [6] utilized the “linearization
feedback control” method for trajectory control of mobile robots. Similarly,
in 2019, K. Maatoug [7] proposed a trajectory control method based on a
Fuzzy controller, and in 2023, A. Amrane [8] suggested a control method
using a PID controller. The common limitation of these studies is that they
only considered the kinematic model without addressing the dynamic model.
Meanwhile, T. Fukao and colleagues [9], as well as Shojaei and colleagues
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[10], employed adaptive control, taking into account the dynamic model and
the presence of unknown parameters (uncertainties). In 2016, Li.Z [11] used
a combined “Neural-Dynamic Optimized Model Predictive” approach, and in
2023, Trujillo [12] proposed a study on “Trajectory Tracking Control of a
Mobile Robot using Neural Networks.” However, these studies only
considered kinematics and were limited to simulations.
1.1.2  Studies on Trajectory Control of Electric Wheelchairs Using SMC

In 2009, Solea [13] proposed a trajectory control study using a
conventional SMC sliding surface. Subsequently, several studies applied
various SMC sliding surface variants, such as B.B. Mevo [14] in 2018, who
used an integral sliding surface, and J. Yang (1999) [15], Lingrong (2011)
[16], and Nikranjbar (2018) [17], who proposed methods using first-order
SMC. Although these studies achieved good results and accounted for
uncertainties, they all encountered the issue of chattering.
1.1.3  Studies on Chattering Suppression in SMC

In 1992, Utkin [20] proposed the “boundary layer” method, which is a
simple and widely used approach. The concept of higher-order sliding
surfaces was introduced in 1998 by G. Bartolini [22] and Levant [23][24]. In
2006, Ferrara [40] introduced a second-order SMC sliding surface for robotic
arms. In 2016, Y. Feng [16] proposed a full-order TSM sliding surface. In
2021, Xinghuo Yu and Yong Feng [41] synthesized SMC methods,
specifically focusing on Terminal Sliding Mode Control (TSMC) and higher-
order sliding surfaces to reduce chattering. Higher-order TSMC excels in
eliminating chattering while maintaining robustness, but it lacks the ability to
calculate controller parameters and convergence time, limiting its practical
applications. Therefore, this thesis investigates the second-order Terminal
Sliding Mode (2TSM) to address these two issues, optimizing chattering
suppression for the DDMR system.
1.2 Conclusion
1.2.1 Summary of Current Research Status
1.2.2  Research Issues in the Dissertation

Investigate the design of a second-order Terminal Sliding Mode (2TSM)
surface with the capability to calculate controller parameters and convergence
time.

Study the design of a trajectory controller for the Differential Drive Mobile
Robot (DDMR) based on 2TSM, accounting for model uncertainties.
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Conduct experiments on a real DDMR system.
1.2.3  Scope of the Research

The dissertation focuses on the development of a new control algorithm.
Therefore, in conducting experiments, the author employs a mobile robot
model under scenarios with uncertainties, which facilitates the tuning and
modification of the algorithm, rather than performing experiments on a fully
developed electric wheelchair.

CHAPTER 2: SLIDING MODE CONTROL THEORY AND
CHATTERING SUPPRESSION METHODS
2.1 Asymptotic Stability and Finite-Time Stability
2.1.1 Asymptotic Stability
x(t) >0 khi t-oo (2.1)
+* When uncertainties are present:
If Af represents unknown disturbance factors, instead of converging to

“0”, the system’s state will converge to:

Af . (2.2)

x(t) - 7 khi t- o
2.1.2  Finite-Time Stability
x(0)1-P/4 (2.3)
x(t) -0 tai t =L,
y(1—=p/q)
Where p, q are odd number and p/q < 1
+* When uncertainties are present:
N If Af represents unknown disturbance factors:
q
Af\r
-x0-(2)
() »
This means that using a control signal to bring the system to an equilibrium

state in finite time will result in a smaller steady-state error compared to

(2.4)

asymptotic stability.
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Figure 2.1 System response under uncertainties

(r=1Af =0.1,p/q =1/3)
Conclusion: From the above, it can be observed that the control of a

system with a "finite-time" response has several advantages over an
"asymptotic" response, including:

* Faster convergence speed.

* Higher control accuracy.

Based on these concepts, the thesis will analyze the advantages and
disadvantages of linear and nonlinear sliding surfaces in the following section.
2.2 Sliding Mode Control Theory
2.2.1 Linear Sliding Mode (LSM)

Consider the follow system:

X, = X, (2.5)
{562 =f) +u+pt)
Firstly, the sliding manifold was designed:

S=Xx,+yx1,y>0 (2.6)
when s = 0, the system state x4, x, will converge asymptotically to “0” in
natural response: X; = —yx;
The control law was designed as follow:
U= Ugq + Uy 2.7
where:
Ueqg = —f(x) —yx, (2.8)

u, = —ksign(s)
With the above control law, s — 0 in finite time:
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1 2.9
r=—V2(0
t 1 2(0)

2.2.2  Nonlinear Sliding Mode Manifold
2.2.2.1 Terminal Sliding Mode Control (TSM)
First, the nonlinear manifold was designed as:
s=x, +yxP/9,y >0 (2.10)
With 0 < S < 1 and p, q are odd interger. When s = 0, the state variables

x4, X, will converge to “0” according to: x; = —yx,P/4
The control law was designed as follow:
U=Ugq + Uy

Ueg = —f(x) — Vp/qxf/q_lxl (2.11)

u, = —ksign(s)
L)
Remark: in the control signal: ueq = —f(x) — ysxf X, has the

possibility of encountering a singularity poin x; = 0,%; # 0. Figure 2.2 (t =
0.37s).

Tin higu diéu khién
T T T

Figure 2.2 the control signal with singularity point
2.2.2.2  Nonsingular Terminal Sliding Mode Control (NTSM)
1 2.12
s=x4 + }—/xg/ P ( )

When s = 0, the response of NTSM (2.12) equivalent to (2.10). The
control law u = u,q + u, was designed as follow:

p _ 2.13
Ueq = _f(x) —Vaxzz a/p ( )

u, = —ksign(s)
Applied the control law (2.13), it gets:
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19 -
: q 51 .
V= s}—/;x2 (—ksign(s) + p(t))
Conclusion: Control signal ue, = —f(x) — y%xzz‘q/ P was eliminated

the singularity point at x, = 0,x; # 0.

The inherent disadvantage of Sliding Mode Control (SMC) is the
phenomenon of “chattering.” Research efforts aimed at eliminating this
“chattering” phenomenon will be presented in the following section.

2.3 Eliminating “chattering” in sliding mode control
2.3.1 Method using the saturation function
2.3.2 Method using the sigmoid function
2.3.3 Higher-order sliding mode method
2.3.3.1 Higher-order LSM sliding surface
The sliding manifold is proposed:

s=X+ax+ fx (2.14)
Control law u = u,q + Uy, is designed as follow:
{ueq =—f(x) —ax; — Bx; (2.15)
U, = —ksign(s)

Ex: We design the sliding surface and control signal as follows:
S = 5(.'1 + 2x1 + X1

t
u=01x, — 2%; —x; — 5f sign(s)dt
0

The simulation results are shown in Figure 2.3.

It can be observed that although the control signal is smooth and chattering
is eliminated, the drawback of the linear sliding surface remains: the state
variable does not reach Zero but only converges asymptotlcally

Thet'k Epgbtgl

i —
/ \\ A NI R

5
Thai gian (s) Thari gian (s)

Figure 2.3 Control signal Figure 2.4 State response
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2.3.3.2  Full order Terminal Sliding Mode (FOTSM)
According to [23], the sliding surface is chosen as follows:
s = %&n + Cpsgn () |xn ™™ + -+ + c15gn 0 ) x| M (2.16)
where c¢;, @;(i =1,2,..n) are constant. ¢; is chosen such as p™ +
P + -+ + cyp + ¢ is Hurwitz, and a;is chosen as follows
a =aq, n=1 (2.17)

Aidit1q .
a1 , i=12,.,nvVn =2

C 2ai41 — @
Where: a1 =L, a, =a,ae (1 —¢,1),e€(0,1).
Applying it to system (2.5), we obtain the sliding surface:

S =X + cpsign(x,) %112 + cysign(xq) x| % (2.18)
Control law u = ugq + Uy, is designed as follow:
Upq = —f(x) — casign(Xy)|%1|%2 — cysign(xg) x| (2.19)

Up + Auy, = v v =—(kg + kr +n)sign(s)
Example: Consider the same system as above. We design the sliding
surface and control signal as follows:

s =X, + 2sign(x;)|%,]%/6 + sign(x;)|x,|%/?3
¢
= U= Ugg + e‘O'”j e Otydt
0

Where e is the base of the natural logarithm. (In (e) = 1).

Tin hiéu didu khién
T T T

Bién do

Thai gian (s)

Figure 2.5 Control signal FOTSM
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Bap (ng bién trang thai
T T T

Offset=0 Thoi gian (s)
Figure 2.6 State response FOTSM

It can be observed that the control signal has almost completely eliminated
chattering (Figure 2.5) and the state variable has converged to zero (Figure
2.6). However, this method currently has two major issues that prevent its
practical application [24][40]: it cannot be computed and it cannot be
measured.
2.4 Conclusion

The FOTSM method is the optimal approach to eliminate chattering in
sliding mode control, provided that the existing drawbacks can be overcome.

CHAPTER 3. MOBILE ROBOT AND TRAJECTORY CONTROL

METHOD
3.1 Introduction the model
3.1.1 Kinematic model
+» Forward kinematic:
U=Ur+vl =R((pr+¢1) (3-1)
2 ' 2
wzvr_vl =R((pr_¢l)
2L 2L
«» Inverse kinematic:
{vr =v+wl (3.2)
v, =v— wlL

3.1.2 Dynamic model
2 1 33
<m+ﬁlw>1}—mcda)2 =z 1) (3-3)

212 ) L
I +FIW o+ m.dov = E(TT - 1)
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3.1.3  Uncertainties in the model
- Uncertainty about the mass: limited to 50 — 100 (kg)
- Change in the center of mass: limited to Ad = 15 (cm)

! T !
M, [Z] =V, +C [T:] +AV — AM [Z] +d(t) G4
p(t)

Where M, V, are the known initial values, AM and AV are the changing
quantities, d(t) is other uncertainties, p(t) is the total uncertainties values.
3.2 Trajectory control method

Based on the pre-designed trajectory, the reference DDMR will move

ahead, and the actual DDMR will follow. The control diagram is shown in
Figure 3.1.

ROBOT

orque L v

Dynamic
Reference |Vrer| Kinematic Controller Dynamic

Path i Controller (L Model Kinematic
FeedBack,

Bref] (PI) |, SMC,.) | TorgueR

Figure 3.1 Trajectory control diagram
% Kinematic Controller:
The tracking error p, is the different between real and refference position,
denoted as p = [x y 8] and the refference position, denoted as Dref =

[xref Yref Gref]T, it obtain:

Xe Xref — X 3.5)
De = | Ve :pref—pzl}Iref_y]
e Href -0

The outermost kinematic controller uses a simple P-type controller,

designed as follows:
Wrer = Ky O, Vrer = Ky.d, (3.6)

where wrer , Vyes are the refference velocities; K, , K, are the gain

controller; d, = (x,% + y,2)/? va 6, = tan™(y,, x,.).
+ Dynamic Controller:

After the signals wyf , Vyes are sent to the dynamic controller, it calculates
and generates the control signals—torques T,ign¢, Tief - to €ach wheel (Figure
3.2).
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Real DDMR
r_TTTT :
e x
Vref Tieft Viere "-‘ | Motor | 1Yreal, . Undate \
Reference | Kinematic Dynamic Current ; |ttt 0 Kinematic| y P F R“':f]
N . N . J— i [+ Position Position
——| Controller w Controller T Controller Equation
() e, (SMC) right P) (2.11) (x,y.0)
— (S

Figure 3.2 Trajectory control flowchart in simulation
3.3 Trajectory Controller Based on Linear Sliding Mode (LSM)

3.3.1 Design of Trajectory Controller Using LSM Sliding Surface
MG =V(q) + Cu(t) + p(t) 3.7
The error is defined as:

e(t) =4 — qGr = [ve, we "= [V — Uref) W—Wref ]T (3-8)
Sliding manifold: s = é + ye
Theorem 1: The control law is: u = Ugq + Uy,
Ueq = CIM(—M~V(G) + G, — vé) (3.9
u, = —C *Msign(s)(k + 1) (3.10)

3.3.2 Simulation

Tin higu Gidu knién LSM

3.3.2.1 LSM without “boundary layer”

15f

Torque (Nm)

Van té dai (mis)

0 5 10 O s
Thiigisn (5) Thei gian (s)

Figure 3.3 Trajectory 1 control Figure 3.4 Velocities response
signal (without boundary layer) (trajectory 1 - without boundary
layer)
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3.3.2.2  LSM with boundary layer

[ e Len

5
# o

| T S ol
. . . . . . . . X . . ) .
I Tern
ot
Erop H
g 3 o1
] | Soost-
o g
o
0 1 F 3 4 5 o 7 ] ] 1

-Figure 3.5 Trajectory 1 control

T 2 3 0 s
cccccc Time (secor

G
nds)

: Figure 3.6 Velocities response

signal (with boundary layer) (trajectory 1 - with boundary layer)

3.3.2.3 Comment

It can be clearly observed that the use of a boundary layer significantly

reduces the accuracy of the controller.
3.4 Trajectory controller using NTSM
3.4.1 Design trajectory controller using NTSM

1,
s=e+—elP
14
Theorem 2: Control law is: u = u,q + up
Where:
eq = 1M (<MY (@) + g, —yEermam)

u, = —C *Msign(s)(k + 1)
And satisfied the condition:k = Max{||M~1p(®)||},n > 0
3.4.2 Simulation

3.4.2.1  NTSM without “boundary layer”

(= i
5055

(3.11)

(3.12)

(3.13)
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Figure 3.7 Trajectory 1 control Figure 3.8 Velocities response
signal (NTSM without boundary (trajectory 1 — NTSM without
layer) boundary layer)

3.4.2.2 Mo phong NTSM voi boundary layer

an tée dai (mis)

3,
H
8 af
g, T o2l
&
025
2 o3}
121 [ Tounz 025
_ 3 02
E & E
H o5
PRl 3
E e g o1
T >005
o 1 [

Figure 3.9 Trajeciory 1 control VFigure 3.10 Velocities response
signal (NTSM with boundary (trajectory 1 — NTSM with
layer) boundary layer)
3.4.2.3 Comment

It is observed that NTSM demonstrates superiority over LSM in ensuring

accuracy, convergence speed, and robustness.
3.5 Conclusion

The chattering phenomenon appears in both LSM and NTSM methods, and
the “boundary layer” has shown a lack of robustness and reduced controller
accuracy. Therefore, in Chapter 4, the dissertation will address this issue using

the higher-order sliding mode method.

CHAPTER 4: DESIGN OF TRAJECTORY CONTROLLER
USING SECOND-ORDER TERMINAL SLIDING MODE
METHOD
4.1 Second order TSM
4.1.1 Convergence Time Characteristics of the Sliding Surface
The second order TSM manifold is chosen as follow:
S =X+ X% + y,xP 4.1)
Wherein, the following conditions are satisfied:
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0<a——<1[)’———

a Zp o> P > qare odd intergers; (4.2)

B
. — ., p+1_<% _a .
0<yi v2=n Gr)P (1 2) > 0;

Bla
x(0) = x4, %(0) = —y,P/® (ﬁ’+1) xo /(27
Theorem 3: when the manifold Error! Reference source not found. c
onverge to 0 (s = 0) and the conditions (4.2) is satisfied, the state variable

x(t) and its derivative x(t) converge to 0 in finite time, which is calculated
as follow:

Leconvergence = L( r1d >—ﬁ/a xo(a—[i’)/a (4.3)
a—p\B+1

Prove:
Takey =x = & = y% , s =0, (4.1) become:
. dy « 4.4
F.3) =y——+ny® = —yxF (+4)
natural response of (4.4) is:
. dy « 4.5
F.y) =y +rny“=0 (43)
Where y = 0 is particular solution of (4.5), in the case y # 0, (4.5) is
rewritten as: y1~%dy = —y,dx.
Integrating both sides, we obtain:
(4.6)

2—

y¢=—yx+C

2—a
= (Mx + N)¥/2=®

With the presence of the signal u = —y,x#, the general solution has the
form:

1/(2-a)
y=(Mx+f) " 4.7)
Where N = f(x) is the function of x. Substituting (4.7) into (4.4), we
obtain:

M+ g g @8
Vit——- > —a (Mx +f(x)) = —y,xP

where
- Mx + f(x) has the form Mx + f(x) = Kx; derive f(x) = (K — M)x
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af _ ;0
- =(K-M)
Equating both sides, we obtain:

K B
(r+7=5) =
From (4.9), it easy to see: if y, > 0, K < 0, then:

- The minimum of g(K) = (y1 + %) KB +y, exits at K* =

_, B &
£ B+l Y1[>’+1

4.9

- g (K =y ﬁ) = 0 and K™ is the unique solution of (4.9)

The result is:

y = (K*x)/ -2 = — [h x1/(2-a)

a 11/@-a)
7+l

A

Then, the general solution is
y =% = Ax/(2=®) (4.10)
Remark : Picard — Lindel6f theorem assert that (4.10) is the unique
solution of the equation. F(y,y) = y% +y1y% = —y,xF according to the
given initial conditions.
Hoan tat chiing minh.
4.1.2  Simulation of sliding surface convergence time:
With y4,v,, @, f are chosen in theorem 3, the desire convergence time is
t = 2s, the sliding manifold is designed as follow:
s=%+9.92%%5 +12.8x%7 = 0 (4.11)
With the initial variable x, = 5, the systems response as in Figure 4.1:
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Trang thai x
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Thoi gian (s)
Figure 4.1 Simulation results of the natural convergence of the 2TSM
surface.
4.2 Trajectory Control Based on Second-Order TSM Sliding Surface
4.2.1 Controller Design

Theorem 4: The velocity error of the system will converge to zero when
the control signal is designed as follows: u = u,, + u,
Upqg = CTIM(=MV + G — 16 —12ef)  (4.12)
U, = C™M(sign(s)(k +n))
Where k = Max{|[M~1p(®)|]} van >0
Prove:
By substituting the system state errors into the 2TSM sliding surface
(4.12), we obtain:
s =M1 V(@) + Ct(t) + p(t)) — G +y1€% +y,eP
Substituting the control signal (4.12) into the above expression:
s=M"1Cu, + M~1p(t)
Consider Lyapunov function: V = 0.5s7’s, it gets:
V =s5Ts = sT(=sign(s)k — sign(s)u + M~1p(t)) (4.13)
It follow that:
V< —kllsll = nllsll + M~1p(t) < —nlisll = —nv2V*/2 <0
V2v1/2(0)

s — 0 in finite time ¢, < "

This completes the proof.
4.2.2 Simulation

The sliding surface and control signal are designed as follows:
s =&+ 4635 4+ 3.49¢%/7
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3 3
Upg = C™'M (—M—lv + G, — 4€5 — 3.49e7>
U, = C *M(sign(s)([2;1]" + 0.2))
The simulation results from Figure 4.3 to Figure 4.6.
e Trajectory 1: circle with a radius of 1 meter.

Tin nigu did khidn 2TSM T

of - o
o Toraa o

[E= 0251
10
- g o2f
i
2 | Z 015
E« g o1
z 005
o
o
I 7 ] 0 0

Thiri gian {5)

Van téc goc (rad/s)

)

Van té dai (m

Figure 4.2 Trajectory 1 — control ~ Figure 4.3 Trajectory 1 — velocities
signal (2TSM) response (2TSM)

It can be seen that the 2TSM controller has eliminated the chattering
phenomenon in the control signal (Figure 4.3) while maintaining high
accuracy.

e Trajectory 2: A path consisting of straight segments combined with 90°
turns.

For trajectory 2, the 2TSM controller still demonstrates robustness and
high accuracy (Figure 4.6).

s Phase plot ” Quy dao 2
uj dao thye Quy dao DDMR thyc
- - - - -quy dao tham chiéu - - - - -Quy dao tham chiéu
1 - 1
0.5 08
> 0 E 06
£
0.5 0.4
1 0.2
Start
1.5
-15 -1 -0.5 o 05 1 15 05 1 15 2 25 3 35
x X(m)
Figure 4.4 DDMR result in Figure 4.5 DDMR result in

trajectory 1(2TSM) trajectory 2 (2TSM)
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4.3 Experiment
4.3.1 DC motor control

4.3.1.1 Simulation

From the simulation, it can be seen that all four control methods exhibit
comparable responses, each bringing the system to a convergent state in
approximately 1 second. Among them, the 2TSM method (Figure 4.10)
demonstrates superior performance by ensuring high accuracy, driving the
error to zero, and eliminating chattering.

wref, w real w ref, w real

2 },’ 2 / ‘b
: 41593 _ _ L ____
1 141592
[3.141591 - -
1 9.08 9.1 9.12 914 9.16
Figure 4.6 Motor velocity response Figure 4.7 Motor velocity response
(PID (LSM)
w ref, w real w ref, w real

m

141584

15— 141503 ) [

141586
15 141594
141592

141582 3.14158
9.98 9985
I

0 ‘ ‘ ‘
I I I I
o 1 2 3 4 5 6 7 & o 1 2 3 4 5 6 7 8 o 10

Figure 4.8 Motor velocity response Figure 4.9 Motor velocity response
(NTSM) (2TSM)

279 2792 2794 2796
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4.3.1.2  Experiment

PID controller LSM véi boundary layer

van téc (rpm)
&

0
0 500 1000 1500 0 1000 2000 3000 4000 5000 6000 7000
Thei gian (s) Thoi gian (s)

Figure 4.10 PID Controller Figure 4.11 LSM (e = 0.01)
Through the above experiments and simulations, the thesis has

demonstrated the outstanding advantages of 2TSM in maintaining the
characteristic robustness of SMC, the high accuracy of TSM, and the ability
to eliminate chattering for direct application in practical control systems,
forming the basis for applying it to trajectory control experiments.

2TSM controller

200 400 600 800 1000 1200 1400

Thoi gian (s)

Figure 4.12 2TSM controller
4.3.2  Trajectory Control

4.3.2.1 Simulation

Before conducting trajectory control experiments, the thesis briefly
presents the simulation results of 2TSM compared with NTSM and NTSM
using a boundary layer on the same reference system (with identical
uncertainties and physical parameters of the DDMR) to more clearly evaluate
the superiority of the 2TSM method using specific metrics.
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Figure 4.14 Angular velocity response (Rad/s)
4.3.2.2 Experiment
Dimension (DxRxC) 20x20x20 cm

Wheel radius 6 cm
Wheelbase distance 23.5cm
Power (DC) 12VDC 6000mah

» Trajectory 1: Trajectory 1 consists of straight paths; the experimental
results are shown in Figure 4.16.
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Figure 4.15 The DDMR moves along trajectory 1.
Trajectory 2: Trajectory 2 consists of diagonal paths, followed by a

return to the starting position; the experimental results are shown in
Figure 4.17.

Quy dao 2
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= Start
o

Figure 4.16 The DDMR moves along trajectory 2
Trajectory 3: Trajectory 3 is a circle with a radius of 1 meter. The

experimental results are shown in Figure 4.18.
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Figure 4.17 The DDMR moves along trajectory 3
4.4 Conclusion:

The trajectory control method based on 2TSM, as designed in Chapter 4,
has fully met the requirements set forth in the thesis, as demonstrated through
both simulations and experiments.

CONCLUSION
Main Research Contents of the Thesis

The thesis focuses on studying the order-raising solution for nonlinear
sliding surfaces to overcome the chattering phenomenon while maintaining
advantages such as robustness against uncertainties and high accuracy.

In Chapter 2, the thesis presents the theoretical foundation of sliding mode
control, emphasizing the analysis of the advantages and disadvantages of
traditional sliding mode control methods and chattering elimination solutions.
This leads to the decision to raise the order of the TSM sliding surface to
leverage its benefits while generating smooth control signals applicable in
practical electromechanical systems.

New Scientific Contributions of the Thesis
The thesis has two main contributions:
» Designing a complete second-order Terminal Sliding Mode (TSM)
sliding surface with the capabilities to:
e Eliminate chattering in the control signal
e Maintain the robustness characteristic of SMC
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e Ensure state convergence to the equilibrium point within finite
time
e Allow computation of controller parameters
e Enable measurement of the state response time
» Designing a trajectory (dynamic) controller for the DDMR system, taking
into account model uncertainties and unknown disturbances.

Among the thesis results, two very important points that have not been
addressed by other studies are: the ability to compute the controller parameters
and measure the state response time of the 2TSM method.

Research direction of the dissertation:

Develop a complete solution for an autonomous electric wheelchair system

that can move within designated areas within the campus.
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