
  

 

 

MINISTRY OF EDUCATION 

AND TRAINING 

VIETNAM ACADEMY OF  

SCIENCE AND TECHNOLOGY 

 

 

GRADUATE UNIVERSITY SCIENCE AND TECHNOLOGY 

 
CAO TRAN NGOC TUAN 

 
 

Cao Trần Ng

ọ

c Tuấ

n

 

 

DEVELOPMENT OF A TRAJECTORY CONTROL METHOD 

FOR ELECTRIC WHEELCHAIRS USING  

HIGHER-ORDER SLIDING MODE CONTROL 

 

 

 

 

SUMMARY OF ELECTRICAL, ELECTRONICS AND 

TELECOMMUNICATION DOCTORAL THESIS 

 

Major: Control Engineering and Automation 

Code: 9 52 02 16 

 

 

 

 

 

 

 

Ho Chi Minh city, 2025 



 

 

 

 

This thesis is accomplished at: Graduate university Science and 

Technology - Vietnam Academy of Science and Technology 

 

 

Supervisors: 

1. Supervisors 1: Dr. Truong Nguyen Vu 

2. Supervisors 2: Assoc. Prof Ha Quang Phuc 

 

 

Referee 1: Prof. Dr. Nguyen Truong Thinh 

                   

Referee 2: Dr. Nguyen Nhu Son 

                

Referee 3: Assoc. Prof. Dr. Le Hoang Thai 

 

 

 

 

The dissertation is examined by Examination Board of Graduate 

University of Science and Technology, Vietnam Academy of Science and 

Technology at 9:00 a.m. on October 4, 2025.  

 

 

 

 

 

 

 

 

 

 

 

The dissertation can be found at:  

1. Graduate University of Science and Technology Library 

2. National Library of Vietnam 



 

 

 

 

LIST OF THE PUBLICATIONS RELATED TO THE 

DISSERTATION 

 

1. TNT Cao, TB Pham, TN Nguyen, DL Vu, & NV Truong, 2024, 

Second-Order Terminal Sliding Mode Control for Trajectory Tracking of 

a Differential Drive Robot. Mathematics, 12(17), 2657 

2. TNT Cao & Pham, Binh & Tran, Hieu & Gia, Long & Nguyen, No & 

Truong, Vu. (2024). Non-singular terminal sliding mode control for 

trajectory-tracking of a differential drive robot. E3S Web of Conferences. 

496. 10.1051/e3sconf/202449602005. 

3. Pham, Thanh-Binh & TNT Cao & Nguyen, Tan-No & Truong, 

Nguyen-Vu. (2025). Adaptive Full Order Sliding Mode Control for 

Electrical Motor Drive. E3S Web of Conferences. 626. 02001. 

10.1051/e3sconf/202562602001. 

4. Dang-Phuc Tran, TNT Cao, Duc-Hieu Tran, Tan-No Nguyen and 

Nguyen-Vu Truong. (2025). Electrical motor drive parameter estimation 

via higher order sliding mode control. E3S Web of Conferences. 626. 

02002. 10.1051/e3sconf/202562602002



1 

 

 

INRODUCTION 

1. The necessary of thesis 

The demand for electric wheelchairs has been steadily increasing due to 

various reasons. Specifically, according to statistics, as of 2025, 

approximately 12% of adults in the United States experience mobility 

limitations that cause serious difficulty in walking or climbing stairs, and 

around 5.5 to 6 million adults rely on wheelchairs for daily movement [1]. 

Among these users, about 10% report severe difficulties or an inability to 

operate powered wheelchairs for everyday activities, and 40% of powered 

wheelchair users encounter challenges in maneuvering—particularly in 

confined spaces or complex terrains [2]. These control difficulties often lead 

to serious accidents, 65–80% of which are related to tipping or falling 

incidents [3]. 

To address these issues, semi-autonomous and fully autonomous electric 

wheelchairs have emerged as promising solutions, enabling users—especially 

those with severe medical conditions or limited strength and dexterity—to 

control wheelchairs more effectively and safely. 

In developing autonomous wheelchair systems, in addition to research on 

sensor integration for navigation or advanced human–computer interfaces 

(HCI) and brain–computer interfaces (BCI), one of the core and extensively 

studied problems is trajectory tracking control. 

Trajectory control plays a crucial role because electric wheelchairs operate 

in complex environments with numerous uncertainties, including 

uncertainties in their own dynamic model (e.g., variations in mass or center of 

gravity) and external disturbances such as surface friction and slope variation. 
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Hence, a reliable trajectory control method is required to ensure stability, 

accuracy, and safety when navigating through complex terrains. 

Given these challenges, Sliding Mode Control (SMC) has been regarded 

as a suitable approach compared to traditional control methods. However, 

despite its advantages, SMC suffers from a fundamental drawback known as 

“chattering”, in which the control signal oscillates rapidly around the desired 

value. This phenomenon can degrade control accuracy and even damage 

electromechanical components. 

Consequently, although numerous studies have applied SMC to trajectory 

control [4]-[18], considering uncertainties and disturbances, most have been 

limited to simulations or small-scale laboratory experiments due to the 

chattering effect. 

Therefore, this dissertation focuses on developing a novel trajectory 

tracking control algorithm for electric wheelchairs based on high-order sliding 

mode control to overcome the chattering issue. Specifically, a second-order 

terminal sliding mode approach is proposed, offering advantages such as 

robustness against disturbances and uncertainties, high accuracy, and finite-

time convergence. Moreover, its most significant benefit is the elimination of 

chattering, allowing the algorithm to be implemented directly on real 

electromechanical systems (i.e., electric wheelchairs). 

2. Research Objective of the Thesis 

Develop a trajectory control method for electric wheelchairs using high-

order sliding mode control to address the "chattering" issue in sliding mode 

control, enabling direct practical application. 
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3. Main Research Content of the Thesis 

Design a second-order Terminal Sliding Mode surface, including the 

ability to calculate the design parameters of the controller and the convergence 

time of state variables, applicable to practical electromechanical systems. 

Design a trajectory controller for the Differential Drive Mobile Robot 

(DDMR) based on second-order Terminal Sliding Mode. 

Apply the controller to a real DDMR system to demonstrate its robustness 

and effectiveness. 

Thesis Content Structure 

The thesis consists of 4 chapters: 

Chapter 1: Presents an overview of previous studies on trajectory control 

of electric wheelchairs and differential drive mobile robots (DDMRs), as well 

as in-depth research on sliding mode control (SMC). Based on this review, the 

research direction and objectives of the dissertation are defined. 

Chapter 2: Describes the theoretical background of sliding mode control 

and the modeling of DDMR systems. This chapter serves as the foundation 

for developing the new control theories presented in Chapters 3 and 4. 

Chapter 3: Introduces the proposed second-order terminal sliding mode 

(2TSM) control theory, including the complete design of the sliding surface 

and the corresponding verification through simulations. 

Chapter 4: Develops a trajectory tracking controller for the DDMR based 

on the 2TSM surface constructed in Chapter 3. The controller’s performance 

is evaluated through comparisons with traditional control methods and 

validated by experimental results on a real system. 

Conclusion 
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1 CHAPTER 1: OVERVIEW 

1.1 Introduction 

 
Figure 1.1 Simplified trajectory tracking controller structure 

1.2 Related Studies 

1.2.1 Studies on Traditional Trajectory Control of Electric Wheelchairs 

The first studies on trajectory control of electric wheelchairs appeared in 

the late 1990s. In 1999, Caracciolo [27] and later Sun S. [28] in 2005 

employed the linearization feedback control method for mobile robot 

trajectory control. Specifically, Sun S. applied the feedback linearization 

control approach based solely on the kinematic model. Similarly, in 2019, K. 

Maatoug [29] proposed a trajectory control method using a fuzzy controller, 

while in 2023, A. Amrane [30] introduced a control approach based on the 

PID controller. To improve control accuracy, some studies also considered the 

dynamic model. For instance, T. Fukao et al. [31] and Shojaei et al. [32] 

applied adaptive control to trajectory tracking. However, these studies rarely 

addressed system uncertainties or external disturbances and were mostly 

limited to simulation results. 

1.2.2 Studies on Trajectory Control of Electric Wheelchairs Using SMC 

In 2009, Solea [7] proposed a trajectory control approach using a 

conventional Sliding Mode Controller (SMC). Subsequently, many studies 

explored various SMC-based sliding surfaces. For example, B. B. Mevo [8] 

(2018) adopted an integral sliding surface, while J. Yang (1999) [11] and 

Lingrong (2011) [12] also proposed first-order SMC methods. Although these 

studies achieved promising results and accounted for uncertainties, they all 

suffered from the chattering phenomenon. 

1.2.3 Studies on Chattering Suppression in SMC 

In 1977, Utkin [37] introduced the boundary layer method, a simple and 

widely used approach to reduce chattering. The concept of higher-order 

sliding surfaces was later proposed in 1998 by G. Bartolini [42] and Levant 
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[43]-[44]. In 2014, Y. Feng [49] proposed a full-order Terminal Sliding Mode 

(TSM), and in 2021, Xinghuo Yu and Yong Feng [50] provided a 

comprehensive review of various SMC techniques, particularly in Terminal 

Sliding Mode Control (TSMC) and its higher-order forms aimed at mitigating 

chattering. 

Although higher-order TSMC methods effectively suppress chattering 

while maintaining robustness, they often lack analytical formulations for 

controller parameters and convergence time, limiting their practical 

applications. Therefore, this dissertation investigates a second-order Terminal 

Sliding Mode (2TSM) surface to address these two issues and optimize 

chattering suppression for the DDMR system. 

1.3 Conclusion 

1.3.1 Summary of Current Research Status 

1.3.2 Research Issues in the Dissertation 

Investigate the design of a second-order Terminal Sliding Mode (2TSM) 

surface with the capability to calculate controller parameters and convergence 

time. 

Study the design of a trajectory controller for the Differential Drive Mobile 

Robot (DDMR) based on 2TSM, accounting for model uncertainties. 

Conduct experiments on a real DDMR system. 

1.3.3 Scope of the Research 

The dissertation focuses on the development of a new control algorithm. 

Therefore, in conducting experiments, the author employs a mobile robot 

model under scenarios with uncertainties, which facilitates the tuning and 

modification of the algorithm, rather than performing experiments on a fully 

developed electric wheelchair. 

2 CHAPTER 2: SLIDING MODE CONTROL THEORY AND 

SYSTEM MODELING 

 

2.1 Sliding Mode Control Theory 

2.1.1 Historical Background 

2.1.2 Concepts of Stability 

2.1.2.1 Asymptotic Stability 

𝑥(𝑡) → 0       𝑘ℎ𝑖     𝑡 → ∞ 
(2.1) 
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 When uncertainties are present: 

If ∆𝑓 represents unknown disturbance factors, instead of converging to 

“0”, the system’s state will converge to: 

𝑥(𝑡) →
∆𝑓

𝛾
       𝑘ℎ𝑖     𝑡 → ∞ (2.2) 

2.1.2.2 Finite-Time Stability 

𝑥(𝑡) → 0     tại    𝑡 =
𝑥(0)1−𝑝/𝑞

𝛾(1 − 𝑝/𝑞)
 (2.3) 

 

Where 𝑝, 𝑞 are odd number and 𝑝/𝑞 < 1 

 When uncertainties are present: 

N If ∆𝑓 represents unknown disturbance factors: 

→ 𝑥(𝑡) = (
∆𝑓

𝛾
)

𝑞
𝑝

 
(2.4) 

This means that using a control signal to bring the system to an equilibrium 

state in finite time will result in a smaller steady-state error compared to 

asymptotic stability. 

 
Figure 2.1 System response under uncertainties  

(𝛾 = 1, ∆𝑓 = 0.1, 𝑝/𝑞 = 1/3) 
Conclusion: From the above, it can be observed that the control of a 

system with a "finite-time" response has several advantages over an 

"asymptotic" response, including: 

• Faster convergence speed. 

• Higher control accuracy. 

Based on these concepts, the thesis will analyze the advantages and 

disadvantages of linear and nonlinear sliding surfaces in the following section. 
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2.1.3 Idea of Sliding Mode Control  

2.1.3.1 Linear Sliding Mode (LSM) 

Consider the follow system: 

{
𝑥̇1 = 𝑥2                              

𝑥̇2 = 𝑓(𝑥) + 𝑢 + 𝜌(𝑥, 𝑡)
 

(2.5) 

Firstly, the sliding manifold was designed: 

𝑠 = 𝑥2 + 𝛾𝑥1 , 𝛾 > 0 (2.6) 

when 𝑠 = 0, the system state 𝑥1, 𝑥2 will converge asymptotically to “0” in 

natural response: 𝑥̇1 = −𝛾𝑥1 

The control law was designed as follow: 

𝑢 = 𝑢𝑒𝑞 + 𝑢𝑛 (2.7) 

where: 

𝑢𝑒𝑞 = −𝑓(𝑥) − 𝛾𝑥2 

𝑢𝑛 = −𝑘𝑠𝑖𝑔𝑛(𝑠) 

(2.8) 

With the above control law, 𝑠 → 0 in finite time: 

𝑡𝑟 =
√2

𝜂
𝑉
1
2(0) 

(2.9) 

2.1.3.2 Terminal Sliding Mode Control (TSM) 

First, the nonlinear manifold was designed as: 

𝑠 = 𝑥2 + 𝛾𝑥1
𝑝/𝑞 , 𝛾 > 0 (2.10) 

With 0 <
𝑝

𝑞
< 1 and 𝑝, 𝑞 are odd interger. When 𝑠 = 0, the state variables 

𝑥1, 𝑥2 will converge to “0” according to: 𝑥̇1 = −𝛾𝑥1
𝑝/𝑞 

The control law was designed as follow: 

                      𝑢 = 𝑢𝑒𝑞 + 𝑢𝑛 

𝑢𝑒𝑞 = −𝑓(𝑥) − 𝛾𝑝/𝑞𝑥1
𝑝/𝑞−1

𝑥̇1 

𝑢𝑛 = −𝑘𝑠𝑖𝑔𝑛(𝑠)                  

(2.11) 

Remark: in the control signal: 𝑢𝑒𝑞 = −𝑓(𝑥) − 𝛾
𝑝

𝑞
𝑥1

𝑝

𝑞
−1
𝑥̇1 has the 

possibility of encountering a singularity poin 𝑥1 = 0, 𝑥̇1 ≠ 0. Figure 2.2 (𝑡 =

0.37𝑠). 
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Figure 2.2 the control signal with singularity point 

2.1.3.3 Nonsingular Terminal Sliding Mode Control (NTSM) 

𝑠 = 𝑥1 +
1

𝛾
𝑥2
𝑞/𝑝

 (2.12) 

 

When 𝑠 = 0, the response of NTSM (2.12) equivalent to (2.10) The control 

law 𝑢 = 𝑢𝑒𝑞 + 𝑢𝑛  was designed as follow: 

{
𝑢𝑒𝑞 = −𝑓(𝑥) − 𝛾

𝑝

𝑞
𝑥2
2−𝑞/𝑝

𝑢𝑛 = −𝑘𝑠𝑖𝑔𝑛(𝑠)                
 

(2.13) 

Applied the control law (2.13), it gets: 

𝑉̇ = 𝑠
1

𝛾

𝑞

𝑝
𝑥2

𝑞
𝑝
−1
(−𝑘𝑠𝑖𝑔𝑛(𝑠) + 𝜌(𝑡)) 

Conclusion: Control signal 𝑢𝑒𝑞 = −𝑓(𝑥) − 𝛾
𝑝

𝑞
𝑥2
2−𝑞/𝑝 was eliminated 

the singularity point at 𝑥2 = 0,𝑥1 ≠ 0. 

The inherent disadvantage of Sliding Mode Control (SMC) is the 

phenomenon of “chattering.” Research efforts aimed at eliminating this 

“chattering” phenomenon will be presented in the following section. 

2.1.4 Chattering problem 

2.2 System modeling 

2.2.1 Introduction 

2.2.2 Kinematic model 

 Forward kinematic:  

{
 

 𝑣 =
𝑣𝑟 + 𝑣𝑙
2

=
𝑅(𝜑𝑟̇ + 𝜑𝑙̇ )

2
 

𝜔 =
𝑣𝑟 − 𝑣𝑙
2𝐿

=
𝑅(𝜑𝑟̇ − 𝜑𝑙̇ )

2𝐿

 

(2.14) 

 Inverse kinematic:  
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{
𝑣𝑟 = 𝑣 + 𝜔𝐿 
𝑣𝑙 = 𝑣 − 𝜔𝐿

 
(2.15) 

2.2.3 Dynamic model 

(𝑚 +
2

𝑅2
𝐼𝑤) 𝑣̇ − 𝑚𝑐𝑑𝜔

2 =
1

𝑅
(𝜏𝑟 + 𝜏𝑙)     

(𝐼 +
2𝐿2

𝑅2
𝐼𝑤) 𝜔̇ + 𝑚𝑐𝑑𝜔𝑣 =

𝐿

𝑅
(𝜏𝑟 − 𝜏𝑙)

 

(2.16) 

2.2.4 Uncertainties in the model 

- Uncertainty about the mass: limited to 50 – 100 (kg) 

- Change in the center of mass: limited to ∆𝑑 = 15 (cm) 

𝑀0 [
𝑣̇
𝜔̇
] = 𝑉0 + 𝐶 [

𝜏𝑟
𝜏𝑙
]+∆𝑉 − ∆𝑀 [

𝑣̇
𝜔̇
] + 𝑑(𝑡)

⏟              
𝜌(𝑡)

 (2.17) 

Where 𝑀0, 𝑉0 are the known initial values, ∆𝑀 and ∆𝑉 are the changing 

quantities, 𝑑(𝑡) is other uncertainties, 𝜌(𝑡) is the total uncertainties values. 

2.3 Conclusion 

3 CHAPTER 3. DESIGN OF HIGH-ORDER SLIDING SURFACES 

3.1 Methods for Eliminating “Chattering” in Sliding Mode Control 

3.1.1 Method using boundary layer 

3.1.1.1 Method using the saturation function 

3.1.1.2 Method using the sigmoid function 

3.1.2 Higher-order sliding mode method 

3.1.2.1 Higher-order LSM sliding surface 

The sliding manifold is proposed: 

𝑠 = 𝑥̈ + 𝛼𝑥̇ + 𝛽𝑥 (3.1) 

Control law 𝑢 = 𝑢𝑒𝑞 + 𝑢𝑛  is designed as follow: 

{
𝑢𝑒𝑞 = −𝑓(𝑥) − 𝛼𝑥̇1 − 𝛽𝑥1
𝑢̇𝑛 = −𝑘𝑠𝑖𝑔𝑛(𝑠)                  

 
(3.2) 

Ex: We design the sliding surface and control signal as follows: 

𝑠 = 𝑥̈1 + 2𝑥̇1 + 𝑥1 

𝑢 = 0.1𝑥2 − 2𝑥̇1 − 𝑥1 − 5∫ 𝑠𝑖𝑔𝑛(𝑠)𝑑𝑡
𝑡

0

 

The simulation results are shown in Figure 2.3. 
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It can be observed that although the control signal is smooth and chattering 

is eliminated, the drawback of the linear sliding surface remains: the state 

variable does not reach zero but only converges asymptotically. 

 
Figure 3.1 Control signal 

 
Figure 3.2 State response 

3.1.2.2 Full order Terminal Sliding Mode (FOTSM) 

According to [46], the sliding surface is chosen as follows: 

𝑠 = 𝑥̇𝑛 + 𝑐𝑛𝑠𝑔𝑛(𝑥𝑛)|𝑥𝑛|
𝛼𝑛 +⋯+ 𝑐1𝑠𝑔𝑛(𝑥1)|𝑥1|

𝛼1 (3.3) 

where 𝑐𝑖 , 𝛼𝑖(𝑖 = 1, 2, …𝑛) are constant. 𝑐𝑖 is chosen such as 𝑝𝑛 +

𝑐𝑛𝑝
𝑛−1 +⋯+ 𝑐2𝑝 + 𝑐1 is Hurwitz, and 𝛼𝑖is chosen as follows 

{

𝛼1 = 𝛼, 𝑛 = 1                                                 

𝛼𝑖−1 =
𝛼𝑖𝛼𝑖+1

2𝛼𝑖+1 − 𝛼𝑖
, 𝑖 = 1,2,… , 𝑛  ∀𝑛 ≥ 2 

(3.4) 

Where: 𝛼𝑛+1 = 1, 𝛼𝑛 = 𝛼, 𝛼 𝜖 (1 − 𝜀, 1), 𝜀 𝜖 (0,1). 

Applying it to system (2.5), we obtain the sliding surface: 

𝑠 = 𝑥̈1 + 𝑐2𝑠𝑖𝑔𝑛(𝑥̇1)|𝑥̇1|
𝛼2 + 𝑐1𝑠𝑖𝑔𝑛(𝑥1)|𝑥1|

𝛼1 (3.5) 

Control law 𝑢 = 𝑢𝑒𝑞 + 𝑢𝑛  is designed as follow: 

𝑢𝑒𝑞 = −𝑓(𝑥) − 𝑐2𝑠𝑖𝑔𝑛(𝑥̇1)|𝑥̇1|
𝛼2 − 𝑐1𝑠𝑖𝑔𝑛(𝑥1)|𝑥1|

𝛼1 (3.6) 

𝑢̇𝑛 + 𝜆𝑢𝑛 = 𝑣; 𝑣 = −(𝑘𝑑 + 𝑘𝑇 + 𝜂)𝑠𝑖𝑔𝑛(𝑠)  

Example: Consider the same system as above. We design the sliding 

surface and control signal as follows: 

𝑠 = 𝑥̈1 + 2𝑠𝑖𝑔𝑛(𝑥̇1)|𝑥̇1|
9/16 + 𝑠𝑖𝑔𝑛(𝑥1)|𝑥1|

9/23 

→ 𝑢 = 𝑢𝑒𝑞 + 𝑒
−0.1𝑡∫ 𝑒−0.1𝑡𝑣𝑑𝑡

𝑡

0

 

Where 𝑒 is the base of the natural logarithm. (ln (𝑒) = 1).  
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Figure 3.3 Control signal FOTSM 

 
Figure 3.4 State response FOTSM 

It can be observed that the control signal has almost completely eliminated 

chattering (Figure 3.3) and the state variable has converged to zero (Figure 

3.4). However, this method currently has two major issues that prevent its 

practical application: it cannot be computed and it cannot be measured. 

3.1.3 Comparison and Selection of Methods 

The Full-Order Terminal Sliding Mode (FOTSM) method is considered 

the optimal approach for suppressing chattering in sliding mode control, 

provided that its current limitations can be effectively addressed. 

3.2 Second-Order Terminal Sliding Surface 

3.2.1 Design of Sliding Surface 

The second order TSM manifold is chosen as follow: 

𝑠 = 𝑥̈ + 𝛾1𝑥̇
𝛼 + 𝛾2𝑥

𝛽 (3.7) 

Wherein, the following conditions are satisfied: 

0 < 𝛼 =
𝑞

𝑝
< 1, 𝛽 =

𝛼

2−𝛼
=

𝑞

2𝑝−𝑞
, 𝑝 > 𝑞 are odd intergers; 

          0 < 𝛾1;   𝛾2 = 𝛾1
𝛽+1 𝛼𝛽

(𝛽+1)𝛽
(1 −

𝛼

2
) > 0; 

          𝑥(0) = 𝑥0, 𝑥̇(0) = −𝛾1
𝛽/𝛼 (

𝛼

𝛽+1
)
𝛽/𝛼

𝑥0 
1/(2−𝛼). 

(3.8) 
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Theorem 1: when the manifold (3.7) converge to 0 (𝑠 = 0) and the 

conditions (3.8) is satisfied, the state variable 𝑥(𝑡) and its derivative 

𝑥̇(𝑡) converge to 0 in finite time, which is calculated as follow: 

𝑡𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 =
𝛼

𝛼 − 𝛽
(
𝛾1𝛼

𝛽 + 1
)
−𝛽/𝛼

𝑥0
(𝛼−𝛽)/𝛼 

(3.9) 

Prove: 

Take 𝑦 = 𝑥̇ → 𝑥̈ = 𝑦
𝑑𝑦

𝑑𝑥
 , 𝑠 = 0, (3.7) become: 

𝐹(𝑦, 𝑦̇) = 𝑦
𝑑𝑦

𝑑𝑥
+ 𝛾1𝑦

𝛼 = −𝛾2𝑥
𝛽 (3.10) 

natural response of (3.10) is: 

𝐹(𝑦, 𝑦̇) = 𝑦
𝑑𝑦

𝑑𝑥
+ 𝛾1𝑦

𝛼 = 0 
(3.11) 

Where 𝑦 = 0 is particular solution of (3.11), in the case 𝑦 ≠ 0, (3.11) is 

rewritten as: 𝑦1−𝛼𝑑𝑦 = −𝛾1𝑑𝑥.  
Integrating both sides, we obtain: 

1

2 − 𝛼
𝑦2−𝛼 = −𝛾1𝑥 + 𝐶 

𝑦 = (𝑀𝑥 + 𝑁)1/(2−𝛼)    

(3.12) 

With the presence of the signal 𝑢 = −𝛾2𝑥
𝛽, the general solution has the 

form: 

𝑦 = (𝑀𝑥 + 𝑓(𝑥))
1/(2−𝛼)

  (3.13) 

Where 𝑁 = 𝑓(𝑥) is the function of 𝑥. Substituting (4.7) into (4.4), we 

obtain: 

(𝛾1 +
𝑀 +

𝑑𝑓
𝑑𝑥

2 − 𝛼
)(𝑀𝑥 + 𝑓(𝑥))

𝛽
= −𝛾2𝑥

𝛽 
(3.14) 

where 

- 𝑀𝑥 + 𝑓(𝑥) has the form 𝑀𝑥 + 𝑓(𝑥) = 𝐾𝑥; derive 𝑓(𝑥) = (𝐾 −𝑀)𝑥 

- 
𝑑𝑓

𝑑𝑥
= (𝐾 −𝑀) 

Equating both sides, we obtain: 

(𝛾1 +
𝐾

2 − 𝛼
)𝐾𝛽 = −𝛾2                

(3.15) 

From (3.15), it easy to see: if 𝛾2 > 0, 𝐾 < 0, then: 
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- The minimum of 𝑔(𝐾) = (𝛾1 +
𝐾

2−𝛼
)𝐾𝛽 + 𝛾2 exits at 𝐾∗ =

−𝛾1
𝛽(2−𝛼)

𝛽+1
= −𝛾1

𝛼

𝛽+1
 

- 𝑔 (𝐾∗ = −𝛾1
𝛼

𝛽+1
) = 0 and 𝐾∗ is the unique solution of (3.15) 

The result is: 

𝑦 = (𝐾∗𝑥)1/(2−𝛼) = −[𝛾1
𝛼

𝛽 + 1
]
1/(2−𝛼)

⏟            
𝐴

𝑥1/(2−𝛼) 

Then, the general solution is 

𝑦 = 𝑥̇ = 𝐴𝑥1/(2−𝛼) (3.16) 

Remark : Picard − Lindelöf  theorem assert that (3.16) is the unique 

solution of the equation. 𝐹(𝑦, 𝑦̇) = 𝑦
𝑑𝑦

𝑑𝑥
+ 𝛾1𝑦

𝛼 = −𝛾2𝑥
𝛽 according to the 

given initial conditions. 

Hoàn tất chứng minh. 

3.2.2 Simulation of sliding surface convergence time: 

With 𝛾1, 𝛾2, 𝛼, 𝛽 are chosen in theorem 3, the desire convergence time is 

𝑡 = 2𝑠, the sliding manifold is designed as follow: 

𝑠 = 𝑥̈ + 9.92𝑥̇3/5 + 12.8𝑥3/7 = 0 (3.17) 

With the initial variable 𝑥0 = 5, the systems response as in Figure 4.5: 

 

 
Figure 3.5 Simulation results of the natural convergence of the 2TSM 

surface. 

3.3 Conclusion 

In this chapter, the dissertation has presented a complete theoretical 

development of the Second-Order Terminal Sliding Surface (2TSM). The 
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proposed approach successfully addresses two long-standing issues in 

conventional Terminal Sliding Mode Control: the ability to analytically 

determine the sliding surface parameters, and the capability to estimate the 

convergence time of the system’s state variables. 

4 CHAPTER 4. DESIGN OF TRAJECTORY TRACKING 

CONTROLLER BASED ON 2TSM SLIDING SURFACE 

4.1 Trajectory control method 

Based on the pre-designed trajectory, the reference DDMR will move 

ahead, and the actual DDMR will follow. The control diagram is shown in 

Figure 4.1. 

 

Figure 4.1 Trajectory control diagram 

 Kinematic Controller: 

The tracking error 𝑝𝑒  is the different between real and refference position, 

denoted as 𝑝 = [𝑥 𝑦 𝜃]𝑇  and the refference position, denoted as  𝑝𝑟𝑒𝑓 =

[𝑥𝑟𝑒𝑓 𝑦𝑟𝑒𝑓  𝜃𝑟𝑒𝑓]
𝑇, it obtain: 

𝑝𝑒 = [

𝑥𝑒
𝑦𝑒
𝜃𝑒
] = 𝑝𝑟𝑒𝑓 − 𝑝 = [

𝑥𝑟𝑒𝑓 − 𝑥
𝑦𝑟𝑒𝑓 − 𝑦

𝜃𝑟𝑒𝑓 − 𝜃
] 

(4.1) 

The outermost kinematic controller uses a simple P-type controller, 

designed as follows: 

𝜔𝑟𝑒𝑓 =  𝐾𝑤. 𝜃𝑒 , 𝑣𝑟𝑒𝑓 =  𝐾𝑣 . 𝑑𝑒 (4.2) 

where 𝜔𝑟𝑒𝑓 , 𝑣𝑟𝑒𝑓 are the refference velocities; 𝐾𝑤 , 𝐾𝑣 are the gain 

controller; 𝑑𝑒 = (𝑥𝑒
2 + 𝑦𝑒

2)1/2 và 𝜃𝑒 = 𝑡𝑎𝑛−1(𝑦𝑒 , 𝑥𝑒). 

 Dynamic Controller: 
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After the signals 𝜔𝑟𝑒𝑓 , 𝑣𝑟𝑒𝑓 are sent to the dynamic controller, it calculates 

and generates the control signals—torques 𝜏𝑟𝑖𝑔ℎ𝑡 , 𝜏𝑙𝑒𝑓𝑡  - to each wheel (Figure 

4.2). 

 
Figure 4.2 Trajectory control flowchart in simulation 

4.2 Using Linear Sliding Mode (LSM) 

4.2.1 Controller design (LSM sliding surface) 

𝑀𝑞̈ = 𝑉(𝑞̇) + 𝐶𝑢(𝑡) + 𝜌(𝑡) (4.3) 

The error is defined as: 

𝑒̇(𝑡) = 𝑞̇ − 𝑞𝑟̇ = [𝑣𝑒 ,  𝜔𝑒 ]𝑇 = [𝑣 − 𝑣𝑟𝑒𝑓 ,  𝜔−𝜔𝑟𝑒𝑓 ]
𝑇
 (4.4) 

Sliding manifold: 𝑠 = 𝑒̇ + 𝛾𝑒 

The control law is: 𝑢 = 𝑢𝑒𝑞 + 𝑢𝑛  

{
𝑢𝑒𝑞 = 𝐶

−1𝑀(−𝑀−1𝑉(𝑞̇) + 𝑞̈𝑟 − 𝛾𝑒̇)

𝑢𝑛 = −𝐶
−1𝑀𝑠𝑖𝑔𝑛(𝑠)(𝑘 + 𝜂)

 (4.5) 

 

4.2.2 Simulation 

4.2.2.1 LSM without“boundary layer” 

 

Figure 4.3 Trajectory 1 control 

signal (without boundary layer) 

 

Figure 4.4 Velocities response 

(trajectory 1 - without boundary 

layer) 
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4.2.2.2 LSM with boundary layer 

 
Figure 4.5 Trajectory 1 control 

signal (with boundary layer) 

 
Figure 4.6 Velocities response 

(trajectory 1 - with boundary layer) 

4.3 Using nonliner sliding surface (NTSM) 

4.3.1 Controller design (NTSM sliding surface) 

𝑠 = 𝑒 +
1

𝛾
𝑒̇𝑞/𝑝 

(4.6) 

Theorem 2: Control law is: 𝑢 = 𝑢𝑒𝑞 + 𝑢𝑛  
Where: 

𝑢𝑒𝑞 = 𝐶
−1𝑀(−𝑀−1𝑉(𝑞̇) + 𝑞̈𝑟 − 𝛾

𝑝

𝑞
𝑒̇2−𝑞/𝑝) (4.7) 

𝑢𝑛 = −𝐶
−1𝑀𝑠𝑖𝑔𝑛(𝑠)(𝑘 + 𝜂) (4.8) 

And satisfied the condition:𝑘 = 𝑀𝑎𝑥{‖𝑀−1𝜌(𝑡)‖} , 𝜂 > 0 

4.3.2 Simulation 

4.3.2.1 NTSM without “boundary layer” 

 
Figure 4.7 Trajectory 1 control 

signal (NTSM without boundary 

layer) 

 
Figure 4.8 Velocities response 

(trajectory 1 – NTSM without 

boundary layer) 
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4.3.2.2 Mô phỏng NTSM với boundary layer 

 
Figure 4.9 Trajectory 1 control 

signal (NTSM with boundary 

layer) 

 
Figure 4.10 Velocities response 

(trajectory 1 – NTSM with 

boundary layer) 

4.4 Using Second-Order TSM Sliding Surface 

4.4.1 Controller Design 

Theorem 3: The velocity error of the system will converge to zero when 

the control signal is designed as follows: 𝑢 = 𝑢𝑒𝑞 + 𝑢𝑛 

                          𝑢𝑒𝑞 = 𝐶
−1𝑀(−𝑀−1𝑉 + 𝑞̈𝑟 − 𝛾1𝑒̇

𝛼 − 𝛾2𝑒
𝛽) 

            𝑢̇𝑛 = 𝐶
−1𝑀(𝑠𝑖𝑔𝑛(𝑠)(𝑘 + 𝜂)) 

(4.9) 

Where 𝑘 = 𝑀𝑎𝑥{‖𝑀−1𝜌̇(𝑡)‖} và 𝜂 > 0 

Prove: 

By substituting the system state errors into the 2TSM sliding surface, we 

obtain: 

𝑠 = 𝑀−1(𝑉(𝑞̇) + 𝐶𝜏(𝑡) + 𝜌(𝑡)) − 𝑞̈𝑟 + 𝛾1𝑒̇
𝛼 + 𝛾2𝑒

𝛽 

Substituting the control signal (4.12) into the above expression: 

𝑠 = 𝑀−1𝐶𝑢𝑛 +𝑀
−1𝜌(𝑡) 

Consider Lyapunov function: 𝑉 = 0.5𝑠𝑇𝑠, it gets: 

𝑉̇ = 𝑠𝑇𝑠̇ = 𝑠𝑇(−𝑠𝑖𝑔𝑛(𝑠)𝑘 − 𝑠𝑖𝑔𝑛(𝑠)𝜇 +𝑀−1𝜌̇(𝑡)) (4.10) 

It follow that: 

𝑉̇ ≤ −𝑘‖𝑠‖ − 𝜂‖𝑠‖ +𝑀−1𝜌̇(𝑡) ≤ −𝜂‖𝑠‖ = −𝜂√2𝑉1/2 < 0  

𝑠 → 0 in finite time 𝑡𝑟 ≤
√2𝑉1 2⁄ (0)

𝜂
 .  

This completes the proof. 

4.4.2 Simulation 

The sliding surface and control signal are designed as follows: 

𝑠 = 𝑒̈ + 4𝑒̇3/5 + 3.49𝑒3/7 
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                                  𝑢𝑒𝑞 = 𝐶
−1𝑀(−𝑀−1𝑉 + 𝑞̈𝑟 − 4𝑒̇

3
5 − 3.49𝑒

3
7 ) 

                    𝑢̇𝑛 = 𝐶
−1𝑀(𝑠𝑖𝑔𝑛(𝑠)([2; 1]𝑇 + 0.2)) 

The simulation results from Figure 4.11 to Figure 4.14. 

 Trajectory 1: circle with a radius of 1 meter. 

 
Figure 4.11 Trajectory 1 – control 

signal (2TSM) 

 
Figure 4.12 Trajectory 1 – 

velocities response (2TSM) 

 

It can be seen that the 2TSM controller has eliminated the chattering 

phenomenon in the control signal (Figure 4.11) while maintaining high 

accuracy. 

 Trajectory 2: A path consisting of straight segments combined with 90° 

turns. 

For trajectory 2, the 2TSM controller still demonstrates robustness and 

high accuracy (Figure 4.14). 

 
Figure 4.13 DDMR result in 

trajectory 1(2TSM) 

 
Figure 4.14 DDMR result in 

trajectory 2 (2TSM) 

4.4.3 Comparison with Conventional Sliding Mode Controllers 

Table 4.1 Longitudinal Velocity Error Responses of Different Methods 
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No Response 

Parameters 

Unit NTSM 

boundary 
NTSM 2TSM 

1 Steady state errors m/s 2e-3 -1.2e-4 -2.7e-8 

2  (IAE) m/s 5e-2 2.09e-3 1.6e-5 

Bảng 4.2 Đáp ứng sai số vận tốc góc giữa các phương pháp 

No Response 

Parameters 

Unit NTSM 

boundary 
NTSM 2TSM 

1 Steady state errors m/s -4e-2 1.07e-3 9.6e-7 

2  (IAE) m/s 3.6e-2 8e-3 1.37e-5 

The results clearly indicate that, in terms of both the steady-state error and 

the IAE index, the proposed 2TSM controller outperforms the conventional 

control methods. These findings confirm the superiority and practical 

effectiveness of the proposed controller design. 

4.5 Experiment 

4.5.1 DC motor control 

4.5.1.1 Simulation 

From the simulation, it can be seen that all four control methods exhibit 

comparable responses, each bringing the system to a convergent state in 

approximately 1 second. Among them, the 2TSM method (Figure 4.10) 

demonstrates superior performance by ensuring high accuracy, driving the 

error to zero, and eliminating chattering. 

 
Figure 4.15 Motor velocity response 

(PID) 

 
Figure 4.16 Motor velocity response 

(LSM) 
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Figure 4.17 Motor velocity response 

(NTSM) 

 
Figure 4.18 Motor velocity response 

(2TSM) 

4.5.1.2 Experiment 

Scenario 1: Constant reference speed without controller tuning 

 

Figure 4.19 PID Controller  

 

Figure 4.20 LSM (𝜀 = 0.01) 

 

Through the above experiments and simulations, the thesis has 

demonstrated the outstanding advantages of 2TSM in maintaining the 

characteristic robustness of SMC, the high accuracy of TSM, and the ability 

to eliminate chattering for direct application in practical control systems, 

forming the basis for applying it to trajectory control experiments. 
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Figure 4.21 2TSM controller 

Scenario 2: Experiment with varying reference speed 

 

Figure 4.22 Response of the PID 

controller with varying reference 

speed 

 

Figure 4.23 Response of the 2TSM 

controller with varying reference 

speed 

4.5.2 Trajectory Control 

Dimension (DxRxC) 20x20x20 cm 

Wheel radius 6 cm 

Wheelbase distance 23.5 cm 

Power (DC) 12VDC 6000mah 

 

Scenario 1: A 3.5 kg load is placed at the center of gravity of the DDMR. 
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Figure 4.24 DDMR follow 

trajectory 1 

 

Figure 4.25 DDMR follow 

trajectory 2 

Scenarios 2 and 3: A 3.5 kg load is placed 5 cm to the left of the DDMR’s 

center of gravity. 

 

Figure 4.26 DDMR follow 

trajectory 1 (2&3) 

 

Figure 4.27 DDMR follow trajectory 2 

(2&3) 

4.6 Conclusion: 

The trajectory control method based on 2TSM, as designed in Chapter 4, 

has fully met the requirements set forth in the thesis, as demonstrated through 

both simulations and experiments. 
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5 CONCLUSION 

Main Research Contents of the Thesis 

The dissertation focuses on addressing the main drawback of Sliding Mode 

Control (SMC) — the chattering phenomenon — while preserving its key 

advantages of robustness against uncertainties and high precision. 

In Chapter 2, the dissertation presents the theoretical foundations of SMC 

and the modeling of the DDMR system, including the uncertainties that need 

to be managed. Building on this theoretical basis, Chapter 3 analyzes the 

advantages and disadvantages of existing chattering reduction methods based 

on higher-order sliding surfaces and develops the Second-Order Terminal 

Sliding Mode (2TSM) surface. Using this 2TSM surface, Chapter 4 introduces 

the trajectory controller design and presents experimental results to 

demonstrate the controller’s effectiveness. 

New Scientific Contributions of the Thesis 

The thesis has two main contributions: 

 Designing a complete second-order Terminal Sliding Mode (TSM) 

sliding surface with the capabilities to: 

 Eliminates chattering in the control signal while maintaining SMC 

robustness, 

 Ensures system states converge to equilibrium in finite time, 

 Allows analytical computation of controller parameters, 

 Enables estimation of state response time, 

 Facilitates easy controller tuning. 

 Designing a trajectory (dynamic) controller for the DDMR system, taking 

into account model uncertainties and unknown disturbances. 
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Research direction of the dissertation: 

Develop a complete autonomous electric wheelchair control solution 

capable of navigating within designated indoor/outdoor environments. 

Further extend the proposed sliding mode theory to torque control systems 

in other electromechanical systems such as robotic arms, drones, and similar 

applications. 

 


