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INRODUCTION

1. The necessary of thesis
The demand for electric wheelchairs has been steadily increasing due to

various reasons. Specifically, according to statistics, as of 2025,
approximately 12% of adults in the United States experience mobility
limitations that cause serious difficulty in walking or climbing stairs, and
around 5.5 to 6 million adults rely on wheelchairs for daily movement [1].

Among these users, about 10% report severe difficulties or an inability to
operate powered wheelchairs for everyday activities, and 40% of powered
wheelchair users encounter challenges in maneuvering—particularly in
confined spaces or complex terrains [2]. These control difficulties often lead
to serious accidents, 65-80% of which are related to tipping or falling
incidents [3].

To address these issues, semi-autonomous and fully autonomous electric
wheelchairs have emerged as promising solutions, enabling users—especially
those with severe medical conditions or limited strength and dexterity—to
control wheelchairs more effectively and safely.

In developing autonomous wheelchair systems, in addition to research on
sensor integration for navigation or advanced human—computer interfaces
(HCI) and brain—computer interfaces (BCI), one of the core and extensively
studied problems is trajectory tracking control.

Trajectory control plays a crucial role because electric wheelchairs operate
in complex environments with numerous uncertainties, including
uncertainties in their own dynamic model (e.g., variations in mass or center of

gravity) and external disturbances such as surface friction and slope variation.
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Hence, a reliable trajectory control method is required to ensure stability,
accuracy, and safety when navigating through complex terrains.

Given these challenges, Sliding Mode Control (SMC) has been regarded
as a suitable approach compared to traditional control methods. However,
despite its advantages, SMC suffers from a fundamental drawback known as
“chattering”, in which the control signal oscillates rapidly around the desired
value. This phenomenon can degrade control accuracy and even damage
electromechanical components.

Consequently, although numerous studies have applied SMC to trajectory
control [4]-[18], considering uncertainties and disturbances, most have been
limited to simulations or small-scale laboratory experiments due to the
chattering effect.

Therefore, this dissertation focuses on developing a novel trajectory
tracking control algorithm for electric wheelchairs based on high-order sliding
mode control to overcome the chattering issue. Specifically, a second-order
terminal sliding mode approach is proposed, offering advantages such as
robustness against disturbances and uncertainties, high accuracy, and finite-
time convergence. Moreover, its most significant benefit is the elimination of
chattering, allowing the algorithm to be implemented directly on real

electromechanical systems (i.e., electric wheelchairs).

2. Research Objective of the Thesis
Develop a trajectory control method for electric wheelchairs using high-
order sliding mode control to address the "chattering™ issue in sliding mode

control, enabling direct practical application.
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3. Main Research Content of the Thesis

Design a second-order Terminal Sliding Mode surface, including the
ability to calculate the design parameters of the controller and the convergence
time of state variables, applicable to practical electromechanical systems.

Design a trajectory controller for the Differential Drive Mobile Robot
(DDMR) based on second-order Terminal Sliding Mode.

Apply the controller to a real DDMR system to demonstrate its robustness

and effectiveness.
Thesis Content Structure

The thesis consists of 4 chapters:

Chapter 1: Presents an overview of previous studies on trajectory control
of electric wheelchairs and differential drive mobile robots (DDMRs), as well
as in-depth research on sliding mode control (SMC). Based on this review, the
research direction and objectives of the dissertation are defined.

Chapter 2: Describes the theoretical background of sliding mode control
and the modeling of DDMR systems. This chapter serves as the foundation
for developing the new control theories presented in Chapters 3 and 4.

Chapter 3: Introduces the proposed second-order terminal sliding mode
(2TSM) control theory, including the complete design of the sliding surface
and the corresponding verification through simulations.

Chapter 4: Develops a trajectory tracking controller for the DDMR based
on the 2TSM surface constructed in Chapter 3. The controller’s performance
is evaluated through comparisons with traditional control methods and
validated by experimental results on a real system.

Conclusion
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CHAPTER 1: OVERVIEW
1.1  Introduction

P . Kinematic controller Dynamic controller
/ \ - -
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Figure 1.1 Simplified trajectory tracking controller structure
1.2 Related Studies

1.2.1 Studies on Traditional Trajectory Control of Electric Wheelchairs
The first studies on trajectory control of electric wheelchairs appeared in

the late 1990s. In 1999, Caracciolo [27] and later Sun S. [28] in 2005
employed the linearization feedback control method for mobile robot
trajectory control. Specifically, Sun S. applied the feedback linearization
control approach based solely on the kinematic model. Similarly, in 2019, K.
Maatoug [29] proposed a trajectory control method using a fuzzy controller,
while in 2023, A. Amrane [30] introduced a control approach based on the
PID controller. To improve control accuracy, some studies also considered the
dynamic model. For instance, T. Fukao et al. [31] and Shojaei et al. [32]
applied adaptive control to trajectory tracking. However, these studies rarely
addressed system uncertainties or external disturbances and were mostly
limited to simulation results.
1.2.2  Studies on Trajectory Control of Electric Wheelchairs Using SMC

In 2009, Solea [7] proposed a trajectory control approach using a
conventional Sliding Mode Controller (SMC). Subsequently, many studies
explored various SMC-based sliding surfaces. For example, B. B. Mevo [8]
(2018) adopted an integral sliding surface, while J. Yang (1999) [11] and
Lingrong (2011) [12] also proposed first-order SMC methods. Although these
studies achieved promising results and accounted for uncertainties, they all
suffered from the chattering phenomenon.
1.2.3 Studies on Chattering Suppression in SMC

In 1977, Utkin [37] introduced the boundary layer method, a simple and
widely used approach to reduce chattering. The concept of higher-order
sliding surfaces was later proposed in 1998 by G. Bartolini [42] and Levant

L Péng lue )
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[43]-[44]. In 2014, Y. Feng [49] proposed a full-order Terminal Sliding Mode
(TSM), and in 2021, Xinghuo Yu and Yong Feng [50] provided a
comprehensive review of various SMC techniques, particularly in Terminal
Sliding Mode Control (TSMC) and its higher-order forms aimed at mitigating
chattering.

Although higher-order TSMC methods effectively suppress chattering
while maintaining robustness, they often lack analytical formulations for
controller parameters and convergence time, limiting their practical
applications. Therefore, this dissertation investigates a second-order Terminal
Sliding Mode (2TSM) surface to address these two issues and optimize
chattering suppression for the DDMR system.

1.3 Conclusion
1.3.1 Summary of Current Research Status
1.3.2 Research Issues in the Dissertation

Investigate the design of a second-order Terminal Sliding Mode (2TSM)
surface with the capability to calculate controller parameters and convergence
time.

Study the design of a trajectory controller for the Differential Drive Mobile
Robot (DDMR) based on 2TSM, accounting for model uncertainties.

Conduct experiments on a real DDMR system.

1.3.3  Scope of the Research

The dissertation focuses on the development of a new control algorithm.
Therefore, in conducting experiments, the author employs a mobile robot
model under scenarios with uncertainties, which facilitates the tuning and
modification of the algorithm, rather than performing experiments on a fully
developed electric wheelchair.

CHAPTER 2: SLIDING MODE CONTROL THEORY AND
SYSTEM MODELING

2.1  Sliding Mode Control Theory
2.1.1 Historical Background
2.1.2  Concepts of Stability

2.1.2.1 Asymptotic Stability

x(t) >0 khi t-o o @2.1)
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% When uncertainties are present:
If Af represents unknown disturbance factors, instead of converging to

“0”, the system’s state will converge to:

Af

x(t) - 7 khi t- o (2.2)
2.1.2.2 Finite-Time Stability
x(0)t-P/a
x(t) >0 tai t=—-—-— (2.3)
y(d—-p/q)

Where p, g are odd number and p/q < 1
¢ When uncertainties are present:
N If Af represents unknown disturbance factors:

q
Af\p 2.4
- x(t) = (7f) (2:4)
This means that using a control signal to bring the system to an equilibrium

state in finite time will result in a smaller steady-state error compared to
asymptotic stability.

Bap (rng khi b nhidu

0 1 2 3 4 3 7 8 9 10

5
Thar gian (s)

Figure 2.1 System response under uncertainties

(r=1Af=0.1,p/q=1/3)
Conclusion: From the above, it can be observed that the control of a

system with a "finite-time" response has several advantages over an
"asymptotic" response, including:
* Faster convergence speed.
* Higher control accuracy.
Based on these concepts, the thesis will analyze the advantages and
disadvantages of linear and nonlinear sliding surfaces in the following section.



2.1.3 Idea of Sliding Mode Control
2.1.3.1 Linear Sliding Mode (LSM)
Consider the follow system:
X = Xy (2.5)
{5(2 =fx)+u+p(xt)
Firstly, the sliding manifold was designed:
s=x,+yx,,y>0 (2.6)
when s = 0, the system state x;, x, will converge asymptotically to “0” in
natural response: x; = —yx;
The control law was designed as follow:
U= Upg + Uy (2.7)
where:
Ueq = —f(x) —yx; (2.8)
u, = —ksign(s)
With the above control law, s — 0 in finite time:

V2

.= —V%(O) (2.9
n

2.1.3.2 Terminal Sliding Mode Control (TSM)
First, the nonlinear manifold was designed as:

s=x, +yx;P/1,y >0 (2.10)
With 0 < S < 1 and p, q are odd interger. When s = 0, the state variables
x4, X, Will converge to “0” according to: x; = —yx,?/4
The control law was designed as follow:
U=Ugq + Uy
Ueq = —f(x) —vp/ax} "y (2.11)
u, = —ksign(s)

L
Remark: in the control signal: ueq = —f(x) — ysxf X1 has the
possibility of encountering a singularity poin x; = 0,x; # 0. Figure 2.2 (t =
0.37s).
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Tin hiéu diéu khién
T T T

Figure 2.2 the control signal with singularity point

2.1.3.3 Nonsingular Terminal Sliding Mode Control (NTSM)

1
s=x;+ ;xg/p (2.12)

When s = 0, the response of NTSM (2.12) equivalent to (2.10) The control
law u = u.q + u, was designed as follow:

p _
Ueq = _f(x) - Vaxzz a’p

u, = —ksign(s)

Applied the control law (2.13), it gets:
q

,_lg 7t
V= s)—/;x2 (—ksign(s) + p(t))

(2.13)

Conclusion: Control signal u., = —f(x) — y§x22—q/p was eliminated
the singularity point at x, = 0,x; # 0.

The inherent disadvantage of Sliding Mode Control (SMC) is the
phenomenon of “chattering.” Research efforts aimed at eliminating this
“chattering” phenomenon will be presented in the following section.

2.1.4 Chattering problem
2.2 System modeling
2.2.1 Introduction
2.2.2 Kinematic model
« Forward kinematic:
(U — Uy + U — R((pr + <Pz) (2-14)

2 _ 2
wzvr_vl =R((pr_¢l)
2L 2L
« Inverse kinematic:
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{vr =v+ wl (2.15)
v =v— wlL
2.2.3 Dynamic model

2 1 2.16
(m+ﬁlw>1'7—mcdw2 ZE(Tr +177) (2.16)
212 , L
I+ FIW w+m.dov = E(Tr - 1)
2.2.4  Uncertainties in the model
- Uncertainty about the mass: limited to 50 — 100 (kg)
- Change in the center of mass: limited to Ad = 15 (cm)
Mo [°] = Vo + C[7] +av - am [ 7] + (o) 2.17)
1) 7y ) '

p(t)
Where M, V, are the known initial values, AM and AV are the changing
quantities, d(t) is other uncertainties, p(t) is the total uncertainties values.
2.3 Conclusion

CHAPTER 3. DESIGN OF HIGH-ORDER SLIDING SURFACES

3.1 Methods for Eliminating “Chattering” in Sliding Mode Control
3.1.1 Method using boundary layer

3.1.1.1 Method using the saturation function

3.1.1.2 Method using the sigmoid function

3.1.2 Higher-order sliding mode method

3.1.2.1 Higher-order LSM sliding surface
The sliding manifold is proposed:

s=X+ax+ fx (3.1
Control law u = u,, + u,, is designed as follow:
{ueq = _f(x) —ax, — fx; (3.2)
U, = —ksign(s)

Ex: We design the sliding surface and control signal as follows:

S = jél + 2x1 + x1
t
u=01x, — 2%, —x; — 5] sign(s)dt
0
The simulation results are shown in Figure 2.3.



10

It can be observed that although the control signal is smooth and chattering
is eliminated, the drawback of the linear sliding surface remains: the state
variable does not reach zero but only converges asymptotically.

Tin higu diéu khién Bap img bién trang thé

. .
/ \\ A 4 \ 25 \\ ol
7 \\ / \ 1 N\ -
o \ \\\ 2 A e 1
H \‘ N %15 ) e {
& \ A N L e b
{ / N
s ) \\\-7-7-
o R {
[*] 2 4 5 [ 7 a ] 10 ) 2 3 4 5 [ 7 8 9 10
Thai gian (s} Thei gian (s)
Figure 3.1 Control signal Figure 3.2 State response

3.1.2.2  Full order Terminal Sliding Mode (FOTSM)
According to [46], the sliding surface is chosen as follows:
§ = Xy + Cusgn(xp) x| + -+ + cysgn () x| “ 3.3)
where c¢;, a;(i =1,2,..n) are constant. ¢; is chosen such as p™ +
Pt + - + cyp + ¢ is Hurwitz, and a;is chosen as follows

o, =aq, n=1
At . (3.4)
a4 =5, i=12,..,.nvVvn=2
2ai 41 — @

Where: a1 =1L, =a,ae (1 —¢,1),e€(0,1).
Applying it to system (2.5), we obtain the sliding surface:

s = %1 + csign (k) |%1]%2 + ¢y sign(xy)|x, |4 (3.5)
Control law u = u,, + u,, is designed as follow:
Ueqg = —f(X) — ca5ign(Xy) %12 — ¢y sign(xy) x| (3.6)

Up + Au, =v;v = —(kg + kr +n)sign(s)
Example: Consider the same system as above. We design the sliding
surface and control signal as follows:
s = ¥y + 2sign(xy)|%,|%/*0 + sign(xy)|xq]%/%3

t
= U= Uy + e‘o'”f e %1tydt
0

Where e is the base of the natural logarithm. (In(e) = 1).
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Tin hiéu didu khién
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Figure 3.3 Control signal FOTSM

Bap (ng bién trang thai
T T

Offset=0 Thoi gian (s)
Figure 3.4 State response FOTSM

It can be observed that the control signal has almost completely eliminated
chattering (Figure 3.3) and the state variable has converged to zero (Figure
3.4). However, this method currently has two major issues that prevent its
practical application: it cannot be computed and it cannot be measured.
3.1.3 Comparison and Selection of Methods

The Full-Order Terminal Sliding Mode (FOTSM) method is considered
the optimal approach for suppressing chattering in sliding mode control,
provided that its current limitations can be effectively addressed.
3.2 Second-Order Terminal Sliding Surface
3.2.1 Design of Sliding Surface

The second order TSM manifold is chosen as follow:

s =F+ 7y, %%+ yxFf 3.7)
Wherein, the following conditions are satisfied:
-4 -_* __9 ; .
0<a= 5 < Lp=5—= oo P > qare odd intergers; (3.8)
B
. _ ., p+1_2% _a .
0<Vy1; V2=71 (G+D)P (1 2) > 0;

. Bla _
x(0) = xo, %(0) = =1,/ (5) " 2o V27,
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Theorem 1: when the manifold (3.7) converge to 0 (s = 0) and the
conditions (3.8) is satisfied, the state variable x(t) and its derivative
x(t) converge to 0 in finite time, which is calculated as follow:

tCOnvergence = L( yla >_B/a xo(a—ﬁ)/a (39)
a—p\B+1

Prove:
Takey =x - ¥ = y% , s =0, (3.7) become:

. dy
FO.9) =y +ny® = —rx’ (3.10)
natural response of (3.10) is:
. dy 3.11
Fo.y) =y -+rny* =0 (311)
Where y = 0 is particular solution of (3.11), in the case y # 0, (3.11) is
rewritten as: y'~%*dy = —y,dx.
Integrating both sides, we obtain:
1
2-a — __
=Y = yix+C (3.12)
y = (Mx + N)/C~®
With the presence of the signal u = —y,x?, the general solution has the
form:

y = (Mx + f(x))l/(z_a) (3.13)
Where N = f(x) is the function of x. Substituting (4.7) into (4.4), we
obtain:

df
M+ 5= (3.14)
B
Y1 +Tix (Mx + f(x))" = —yoxP
where
- Mx + f(x) has the form Mx + f(x) = Kx; derive f(x) = (K — M)x
af _
- K=M)
Equating both sides, we obtain:

K 1
(n +m) KF =y, (3.19)

From (3.15), it easy to see: if y, > 0, K < 0, then:
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- The minimum of g(K) = (y1 + %) KB +y, exits at K* =
B _ a
T g+1 — “1pua

- g (K* = -y ﬁ) = 0 and K™ is the unique solution of (3.15)
The result is:

_ (koo = [, < ]
y = (K"x) =—1"N

pg+1
A

x1/(2-a)

Then, the general solution is
y =% = AxY/(Z"0 (3.16)
Remark : Picard — Lindelof theorem assert that (3.16) is the unique
solution of the equation. F(y,y) = y% +y,1y% = —y,x# according to the
given initial conditions.
Hoan tat ching minh.
3.2.2  Simulation of sliding surface convergence time:
With y4,y,, a, B are chosen in theorem 3, the desire convergence time is
t = 2s, the sliding manifold is designed as follow:
s=%+9.92x%3%5+128x37 =0 (3.17)
With the initial variable x, = 5, the systems response as in Figure 4.5:

| |
0 1 2 3 4 5 6 7 8 9 10
Thei gian (s)

Figure 3.5 Simulation results of the natural convergence of the 2TSM
surface.
3.3 Conclusion

In this chapter, the dissertation has presented a complete theoretical
development of the Second-Order Terminal Sliding Surface (2TSM). The
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proposed approach successfully addresses two long-standing issues in
conventional Terminal Sliding Mode Control: the ability to analytically
determine the sliding surface parameters, and the capability to estimate the
convergence time of the system’s state variables.

CHAPTER 4. DESIGN OF TRAJECTORY TRACKING
CONTROLLER BASED ON 2TSM SLIDING SURFACE
4.1 Trajectory control method

Based on the pre-designed trajectory, the reference DDMR will move
ahead, and the actual DDMR will follow. The control diagram is shown in
Figure 4.1.

_ ROBOT

Xref Vrey |, Torgue L v

Dynamic
Reference |Yre| Kinematic Controller Dynamic ) L
Path | Controller (PL Model Kinematic
Orep FeedBack.
Ore/] (P} L SMC...) (rerueR

Figure 4.1 Trajectory control diagram
% Kinematic Controller:

The tracking error p, is the different between real and refference position,
denoted as p = [x ¥ 6]" and the refference position, denoted as p,.r =
[Xref Vrer Orer]” it Obtain:
xe
Ye

e

Xref — X
yref -y
Orer — 0

The outermost kinematic controller uses a simple P-type controller,
designed as follows:

Wrer = Ky O, Vrer = Ky.d, (4.2)

where w,.r , vy are the refference velocities; K, , K, are the gain

controller; d, = (x,% + y,2)"/? va 0, = tan~1(y,, x,).
+« Dynamic Controller:

(4.1)

Pe = =DPref —P =
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After the signals w...f , vf are sent to the dynamic controller, it calculates
and generates the control signals—torques 7,;gx¢, T1¢f+ - to €ach wheel (Figure
4.2).

Real DDMR
P :
| Vrer | Tiert Vierr N[ |wotor | 1 Vreal] Undat
- i atic . i < 1 et 7 i ati . pdate Real
Reference | Kinematic Dynamic Current . / Kinematic| y ;
SN ) . 1 1 . |——=| Position Position
—*| Controller| " Controller | - A Controller| 1y . |/ Wreal Equation @i
e, o right ht 1\ Motor | 5 8
® L (smo) 7 ) Tight, | J ot | ,:—-— g (x,.8)
[

Figure 4.2 Trajectory control flowchart in simulation
4.2 Using Linear Sliding Mode (LSM)
4.2.1 Controller design (LSM sliding surface)
MG =V(g)+ Cu(t) + p(t) (4.3)
The error is defined as:

. . . T
e(t) =q—qr = [ve' We ]T = [17 = Uref» w_wref] (4.4)

Sliding manifold: s = é + ye
The control law is: u = ueq + uy
Ueq = C*M(=M~V(q) + G, — vé) (4.5)
u, = —C *Msign(s)(k +n)

4.2.2  Simulation
4.2.2.1 LSM without “boundary layer”

Tin higu didy khidn LSM

Figure 4.3 Trajectory 1 control Figure 4.4 Velocities response
signal (without boundary layer) (trajectory 1 - without boundary

layer)
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Figure 4.6 Velocities response
(trajectory 1 - with boundary layer)

Time (seconds) )

4.3  Using nonliner sliding surface (NTSM)

431

1,
s=e+—gP
Y

Controller design (NTSM sliding surface)

(4.6)

Theorem 2: Control law is: u = u.q + u,

Where:

Ueqg = C™'M (_M_lv(‘?) +Gr — Vgéz_q/p>
u, = —C *Msign(s)(k +n)

(4.7)

(4.8)

And satisfied the condition:k = Max{||M~*p(®)||},n >0

4.3.2 Simulation

higu did khidn LSM

[=rrn
©
E
£
25
&
o
5

4.3.2.1 NTSM without “boundary layer”

. . . . . ..w,,
£ uh
g 5

0

0 2 3 4 5 ] 7 8 0

Figure 4.7 Trajélz:it"ory 1 control
signal (NTSM without boundary
layer)

05
\

Figure 4.8 Velocities response
(trajectory 1 — NTSM without
boundary layer)
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4.3.2.2 M0 phong NTSM vai boundary layer

Torue

ar
Van téc goc (radis)

-]
L

Figure 4.9 Trajggory 1 control W“Figure 4.10 Velocities response
signal (NTSM with boundary (trajectory 1 — NTSM with
layer) boundary layer)

4.4 Using Second-Order TSM Sliding Surface
4.4.1 Controller Design

Theorem 3: The velocity error of the system will converge to zero when
the control signal is designed as follows: u = u,, + u,

Upqg = CTIM(=MV + §, — y16% — y,€F)
U, = C™M(sign(s)(k +n))
Where k = Max{||[M~1p(t)||}van > 0
Prove:

By substituting the system state errors into the 2TSM sliding surface, we
obtain:

(4.9)

s =M1 V() + Ct(t) + p(t)) — Gr +y1€% +y,€P
Substituting the control signal (4.12) into the above expression:
s=M"1Cu, + M 1p(t)
Consider Lyapunov function: V = 0.5s7s, it gets:
V=sTs= ST(—Slgn(S)k —sign(s)u + M~ p(t))
It follow that:
V< —kllsll = nllsll + M~1p(t) < —nlIsll = —nv2V*/2 <0
1/2
s - 0 in finite time ¢, < @
This completes the proof.
4,42 Simulation

The sliding surface and control signal are designed as follows:
s =&+ 4635 +3.49¢3/7

(4.10)
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3 3
Upg = C™'M (—M—lv + G, — 4€5 — 3.49e7>

U, = C"*M(sign(s)([2;1]" + 0.2))
The simulation results from Figure 4.11 to Figure 4.14.
e Trajectory 1: circle with a radius of 1 meter.

- 0
Torgm
0.05
01
015
02
025

E et
54‘ 4 o1
] Zo0s

Van téc goc (radis)

Figure 4.11 Traj;g{bry 1 — control Figure 4.12 rIe'sreii;jﬁectory 1-
signal (2TSM) velocities response (2TSM)

It can be seen that the 2TSM controller has eliminated the chattering
phenomenon in the control signal (Figure 4.11) while maintaining high
accuracy.

e Trajectory 2: A path consisting of straight segments combined with 90°
turns.

For trajectory 2, the 2TSM controller still demonstrates robustness and
high accuracy (Figure 4.14).

Phase plot Quy dao 2

15

quy dao thyc
- - - - quj dao tham

chiéu
1 - 1

0.5 0.8

15 -1 05 0 0.5 1 15 0.5 1 15 2 25 3 35
X(m)

Figure 4.13 DDMR result in Figure 4.14 DDMR result in
trajectory 1(2TSM) trajectory 2 (2TSM)
4.4.3 Comparison with Conventional Sliding Mode Controllers

Table 4.1 Longitudinal Velocity Error Responses of Different Methods



19

No Response Unit NTSM NTSM 2TSM
Parameters boundary

1 Steady state errors m/s 2e-3 -1.2e-4 -2.7e-8

2 (IAE) m/s 5e-2 2.09e-3 1.6e-5

Bang 4.2 Pap &ing sai s6 Van toc goc giita cac phuong phap

No Response Unit NTSM NTSM 2TSM
Parameters boundary

1 Steady state errors m/s -de-2 1.07e-3 9.6e-7

2 (IAE) m/s 3.6e-2 8e-3 1.37e-5

The results clearly indicate that, in terms of both the steady-state error and
the 1AE index, the proposed 2TSM controller outperforms the conventional
control methods. These findings confirm the superiority and practical
effectiveness of the proposed controller design.

45 Experiment
45.1 DC motor control
45.1.1 Simulation

From the simulation, it can be seen that all four control methods exhibit
comparable responses, each bringing the system to a convergent state in
approximately 1 second. Among them, the 2TSM method (Figure 4.10)
demonstrates superior performance by ensuring high accuracy, driving the
error to zero, and eliminating chattering.

wref, w real wref, w real
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Figure 4.15 Motor velocity response Figure 4.16 Motor velocity response
(PID) (LSM)
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Figure 4.17 Motor velocity response Figure 4.18 Motor velocity response
(NTSM) (2TSM)
45.1.2 Experiment
Scenario 1: Constant reference speed without controller tuning
PID controller 20 LSM véi boundary layer

Thevi gian (s) Theigian (s)

Figure 4.19 PID Controller Figure 4.20 LSM (¢ = 0.01)

Through the above experiments and simulations, the thesis has
demonstrated the outstanding advantages of 2TSM in maintaining the
characteristic robustness of SMC, the high accuracy of TSM, and the ability
to eliminate chattering for direct application in practical control systems,
forming the basis for applying it to trajectory control experiments.
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2TSM controller
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Figure 4.21 2TSM controller
Scenario 2: Experiment with varying reference speed

Bo diéu khién 2TSM 30 B) diéu khién 2TSM

Figure 4.22 Response of the PID  Figure 4.23 Response of the 2TSM
controller with varying reference controller with varying reference
speed speed
45.2 Trajectory Control
Dimension (DxRxC) 20x20x20 cm

Wheel radius 6 cm
Wheelbase distance 23.5cm
Power (DC) 12VvDC 6000mah

Scenario 1: A 3.5 kg load is placed at the center of gravity of the DDMR.
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Figure 4.24 DDMR follow
trajectory 1
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Figure 4.25 DDMR follow
trajectory 2

Scenarios 2 and 3: A 3.5 kg load is placed 5 cm to the left of the DDMR’s

center of gravity.

Quy dao 1

~erers Quy Ggo tham chiéu

Quy dao mé phéng

----- DDMR kich ban 2
DDMR kich ban 3

25

Y(m)
N
f—\ |
IA
\
\
\
\
\
.
“ /

N
N
b
w
@
@

X(m)

Figure 4.26 DDMR follow
trajectory 1 (2&3)

4.6 Conclusion:

051

Quy dao 2

Figure 4.27 DDMR follow trajectory 2

(2&3)

The trajectory control method based on 2TSM, as designed in Chapter 4,
has fully met the requirements set forth in the thesis, as demonstrated through

both simulations and experiments.
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CONCLUSION
Main Research Contents of the Thesis

The dissertation focuses on addressing the main drawback of Sliding Mode
Control (SMC) — the chattering phenomenon — while preserving its key
advantages of robustness against uncertainties and high precision.

In Chapter 2, the dissertation presents the theoretical foundations of SMC
and the modeling of the DDMR system, including the uncertainties that need
to be managed. Building on this theoretical basis, Chapter 3 analyzes the
advantages and disadvantages of existing chattering reduction methods based
on higher-order sliding surfaces and develops the Second-Order Terminal
Sliding Mode (2TSM) surface. Using this 2TSM surface, Chapter 4 introduces
the trajectory controller design and presents experimental results to
demonstrate the controller’s effectiveness.

New Scientific Contributions of the Thesis
The thesis has two main contributions:
» Designing a complete second-order Terminal Sliding Mode (TSM)
sliding surface with the capabilities to:
¢ Eliminates chattering in the control signal while maintaining SMC
robustness,
e Ensures system states converge to equilibrium in finite time,
o Allows analytical computation of controller parameters,
e Enables estimation of state response time,
e Facilitates easy controller tuning.
» Designing atrajectory (dynamic) controller for the DDMR system, taking

into account model uncertainties and unknown disturbances.
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Research direction of the dissertation:
Develop a complete autonomous electric wheelchair control solution
capable of navigating within designated indoor/outdoor environments.
Further extend the proposed sliding mode theory to torque control systems
in other electromechanical systems such as robotic arms, drones, and similar

applications.



