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INTRODUCTION 

1. General introduction 

The rapid development of data science and artificial intelligence (AI) in 

education has opened new opportunities to enhance teaching and learning in 

the digital transformation era ([1] - [3]). Among these, predicting students’ 

academic performance has become a key application, enabling the early 

detection of at-risk learners and timely interventions ([1], [4]), in line with the 

goals of personalized learning and improving graduation rates ([5] - [7]). 

However, most existing studies still rely on traditional machine learning 

models such as LiR, LR, SVM, DT, KNN, and NB ([8], [9]). While simple and 

interpretable, these models are limited in capturing nonlinear, sequential, and 

multifactorial characteristics of educational data ([1], [2], [10], [11]). Deep 

learning, particularly LSTM and Transformer architectures, offers a promising 

alternative by effectively modeling sequential behaviors and complex 

relationships ([6], [13], [14]). 

In theory, a practical solution would be to apply pre-trained deep learning 

models or transfer learning techniques, which have proven effective in domains 

like computer vision and natural language processing when data is limited. 

However, in education worldwide, there is still a lack of large, standardized, 

and publicly available datasets, together with a shortage of domain-specific pre-

trained models, which limits the adoption of transfer learning in this field ([15]; 

[16]). In Vietnam, for instance, the Ministry of Education and Training issued 

Circular No. 42/2021/TT-BGDĐT dated November 30, 2021, on the 

Regulations of the Education Database (Ministry of Education and Training of 

Vietnam, 2021), which provides a framework for building a unified national 

education database. Nevertheless, its implementation remains fragmented and 

not yet openly accessible for research, reflecting the broader global challenges. 

 To address these constraints, this study proposes deep learning–based 

and hybrid approaches that integrate data augmentation, feature selection, and 

advanced optimization techniques, combining the representational power of 

deep models with the interpretability of traditional methods ([11], [18] - [20]). 

Based on this rationale, the dissertation investigates deep learning and 

hybrid models for predicting academic performance, aiming to process 

sequential data, incorporate diverse contextual factors, and ensure reliable 
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performance under limited data conditions. This work contributes to advancing 

Learning Analytics, supporting evidence-based decision-making in higher 

education, and expanding the role of AI in educational research. 

2. Research objectives 

General Objective: To research and develop machine learning and deep 

learning models for analyzing educational data with the goal of early prediction 

of student’s academic performance. 

Specific Objectives: 

(1) To propose and compare the performance of modern machine 

learning and deep learning models: k-Nearest Neighbors (KNN), Decision 

Trees (DT), Support Vector Machines (SVM), Logistic Regression (LR), 

Random Forests (RF),Convolutional Neural Networks (CNN), Recurrent 

Neural Networks (RNN), Long Short-Term Memory (LSTM), 

Transformers,…for predicting academic performance (e.g., semester GPA, 

graduation classification), with an emphasis on improving accuracy and 

generalizability. 

(2) To construct hybrid deep learning models, perform appropriate 

feature selection, and apply data augmentation techniques to address the 

challenges of small-scale and heterogeneous educational datasets. 

The experimental evaluation will be conducted using training datasets 

collected from both domestic and international universities and colleges. 

3. Research subjects and scope 

Research Subjects:  

Early prediction problems related to student academic performance can 

be categorized into several specific types, depending on the objectives and 

scope of the analysis. Specifically: 

- Grade prediction problems: including the prediction of semester Grade 

Point Average (GPA), annual GPA, cumulative GPA, individual course scores, 

short-term course results, continuous assessment scores, etc. 

- Classification prediction problems: including the prediction of 

academic classifications for individual courses, semesters, stages of study, or 

final graduation classifications. 

These prediction tasks play an important role in academic early warning 

systems, helping institutions identify students at risk of failing courses, 
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repeating semesters, or being unable to graduate on time. They also support the 

recommendation of interventions to improve student performance and provide 

data-driven evidence for educational administrators to make informed 

decisions. 

In the context of this dissertation, we focus on two core prediction 

problems: 

- The early prediction of semester GPA,  

- The early prediction of final graduation classification. 

Hereinafter, the term "academic performance" as used in this dissertation 

refers specifically to "semester GPA" or "graduation classification". 

In addition, the dissertation also considers research subjects at the model 

level, including: 

- Traditional machine learning algorithms (KNN, DT, SVM, LR, RF) as 

baselines. 

- Deep learning architectures (DNN, CNN, RNN, LSTM, Transformer, 

GNN/GCN/GAT) for sequential and relational data. 

- Hybrid and advanced models (NeutroDL, NeutroGNT, LATCGAd, 

AWG-GC) to address small, imbalanced, and uncertain datasets. 

Research Scope: Modern machine learning and deep learning models, 

including hybrid model architectures. 

Datasets collected from Hanoi Metropolitan University (HNMU), 

Vietnam National University (VNU), and selected publicly available 

international datasets for reference and benchmarking. 

The data used in this research includes: 

-  Student grade records, collected from university academic 

management systems. 

-  Survey data on factors related to students, such as personal 

information, preferences, academic background prior to university, family 

circumstances, and socio-occupational factors that may influence academic 

performance, etc. 

-  Institutional data from higher education institutions, including 

facilities, curriculum, and faculty-related information, etc. 
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4. Research methodology 

The research adopts a combination of theoretical study, literature review, 

empirical research, and survey-based investigation. 

Theoretical research: Theoretical analysis is conducted to evaluate the 

advantages and limitations of various machine learning and deep learning 

models in predicting academic performance. Based on this analysis, appropriate 

models are selected for application to the available datasets. These models 

include, but are not limited to: k-Nearest Neighbors (KNN), Decision Trees 

(DT), Support Vector Machines (SVM), Logistic Regression (LR), Random 

Forests (RF), Deep Neural Networks (DNN), Convolutional Neural Networks 

(CNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), 

Transformers, Graph Neural Networks (GNN), Graph Convolutional Networks 

(GCN), Graph Attention Networks (GAT), Conditional Generative Adversarial 

Networks (CGAN), Wasserstein GANs and Graphomer. 

The study includes: (i) a literature review to synthesize prior works, 

highlight trends, strengths, and limitations for model development; (ii) surveys 

and data collection at Vietnam National University and Hanoi Metropolitan 

University to build student datasets; (iii) empirical experiments validating 

machine learning, deep learning, and hybrid models on both local and 

benchmark datasets; and (iv) technical implementation using Python and 

MATLAB for model development, evaluation, and comparison. 

5. Key contributions of the dissertation 

(1) Two novel methods, NeutroDL and NeutroGNT models, are 

proposed, integrating the neutrosophic process into deep learning models to 

enhance early SGPA prediction performance. 

(2) Two novel hybrid models are proposed: LATCGAd, and AWG-GC 

for the prediction of graduation classification for students. 

(3) Development of 03 multi-attribute datasets from diverse sources and 

proposal of analytical frameworks tailored to educational data. 

From an information systems perspective, where data, software, 

hardware, people, and processes are integrated to support decision-making, this 

dissertation makes the following contributions: 
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 Data sources: Constructed and standardized educational datasets 

(HNMU, VNU, and survey data), providing a reliable foundation for 

Educational Data Mining (EDM) and Learning Analytics (LA). 

 Data pipeline: Designed a rigorous processing, normalization, and 

integration pipeline to ensure consistency, quality, and model reliability. 

 Prediction & Analytics: Applied advanced deep learning and hybrid 

models (NeutroDL, NeutroGNT, LATCGAd, AWG-GC) to predict 

SGPA and graduation classification, leveraging CPU/GPU 

infrastructures for efficient training and real-time analysis. 

 User services: Delivered prediction and analysis results that can be 

integrated into early-warning systems, reporting tools, and decision-

supportservices for students, lecturers, advisors, and administrators -

thereby fostering intelligent, adaptive, and student-centered educational 

management. 

 

Figure 0. 1. Student performance prediction system 

6. Layout of the dissertation 

This dissertation is presented with a structure that includes an 

introduction, three main chapters, a conclusion and future development, a list 

of publications, and references, as follows: 
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The Introduction outlines the scientific significance and urgency of the 

topic, as well as the reasons for choosing the research topic. It also presents the 

objectives, subject, scope, methods, key contributions of the dissertation, and 

contents of the study. 

Chapter 1 provides an overview of educational data analysis, 

highlighting machine learning and deep learning applications in predicting 

student’s academic performance. It reviews related research to establish the 

dissertation’s motivation and introduces three key datasets (HNMU1, HNMU2, 

VNU) from Hanoi Metropolitan University and Vietnam National University, 

which form the experimental basis for the models developed in later chapters. 

Chapter 2 focuses on SGPA prediction using deep learning models 

combined with Neutrosophy theory to manage data uncertainty. Models such 

as DNN, CNN, RNN, LSTM, and Transformer are implemented in 

neutrosophic environments (Neutrosophic DLs) to predict next-semester GPA 

from historical academic data. To further enhance performance, the chapter 

introduces NeutroGNT, a hybrid model integrating data neutrosophicization, 

CGAN-based data generation, noise injection, and Transformer, improving 

prediction accuracy and adaptability in uncertain conditions. 

Chapter 3 shifts to predicting students’ graduation classification, a more 

long-term and system-level task. It introduces LATCGAd and AWG-GC, 

which leverage graph-based models (Graphformer), advanced GANs (CGAN, 

WGAN), and Autoencoders, along with AdaLN for stability, to handle small 

and imbalanced datasets. These models expand data and improve predictive 

performance, offering higher accuracy, robustness, and scalability for 

educational analytics systems. 

In the Conclusion and Future development, the dissertation 

synthesizes the achieved results and draws several conclusions, while also 

outlining future research directions based on the findings. 

List of publications: The dissertation includes a list of 08 papers 

authored by the researcher, which have been published or accepted for 

publication in domestic and international journals and conference proceedings. 

Finally, a list of references used in the dissertation is provided. 
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7. Overview of main content flow 

Apart from Chapter 1, which provides an overview and introduces the 

research problem and datasets, Chapters 2 and 3 form a cohesive structure, 

presenting two complementary approaches to the early prediction of student 

academic performance based on both academic and non-academic data. In 

terms of problem nature, Chapter 2 addresses a regression task aimed at 

predicting semester GPA - a continuous, quantitative indicator that reflects 

short-term academic progress. In contrast, Chapter 3 focuses on a classification 

task to predict graduation classification - a discrete, system-level, and longer-

term outcome. 

These two tasks are inherently linked: the GPA results from multiple 

semesters form a key part of the input for the graduation classification model. 

Accurate SGPA predictions in earlier stages thus help improve the performance 

of classification in later stages. 

From a modeling perspective, the deep learning architectures developed 

in Chapter 2 (such as DNN, LSTM, Transformer), combined with techniques 

for handling data uncertainty (Neutrosophy) and data augmentation (CGAN), 

lay a crucial technical and experimental foundation for the extended models in 

Chapter 3. There, new models like LATCGAd and AWG-GC are developed by 

building upon and integrating advanced components such as WGAN, 

Graphformer, and Autoencoder, effectively addressing the classification 

problem under imbalanced and complex data conditions. 

The strong connection between chapter 2 and chapter 3 is reflected not 

only in the data relationship between the tasks but also in the progression of 

model development, which is carefully aligned with the characteristics and 

objectives of each educational prediction task. 

8. Significance of the dissertation 

The dissertation holds both academic and practical significance in the 

context of digital transformation in higher education: 
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Academic Significance: 

The research contributes to advancing the field of Educational Data 

Mining (EDM) by integrating deep learning models into educational 

information systems. The proposed models for predicting GPA and graduation 

classification, trained on real-world data with high accuracy, provide a strong 

scientific foundation for applying artificial intelligence in analyzing student 

learning behaviors. 

Practical Applications: 

The findings of the dissertation have high applicability in educational 

management, particularly in: 

Personalized learning: supporting academic advising and customized 

learning pathways for students; 

Early identification of at-risk learners: enabling timely interventions by 

educational institutions; 

Data-driven decision-making: assisting in educational planning, 

evaluation, and policy development. 

System-level Contribution: 

The dissertation exemplifies the integration of deep learning 

technologies with core components of educational information systems (data - 

hardware - software - people - processes), aiming to build a smart, adaptive, 

and efficient learning environment in the era of artificial intelligence. 

The results of this dissertation have been presented at: 

1. FS&IS Seminar, School of Information and Communications 

Technology, Hanoi University of Industry. 

2. VNICT Conference, 2024. 

3. MCO Conference, 2025. 
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CHAPTER 1. OVERVIEW OF ACADEMIC PERFORMANCE 

PREDICTION FROM MACHINE LEARNING AND DEEP 

LEARNING APPROACHES 

This chapter outlines the research context and motivation (Section 1.1), 

emphasizing the importance of early prediction of student performance. Section 1.2 

reviews key machine learning and deep learning foundations. Section 1.3 synthesizes 

related domestic and international studies, highlighting research gaps. Section 1.4 

introduces experimental datasets, including three from Vietnamese universities 

([CT1], [CT3], and [CT4]) and several international datasets for benchmarking. 

Finally, Section 1.5 presents the evaluation metrics used to assess and compare 

model performance in later chapters. 

1.1. Research context and motivation 

1.1.1. The transformative role and challenges of data and technology in 

modern education 

The Fourth Industrial Revolution, characterized by rapid data growth, 

has turned data into a strategic asset essential for decision-making and 

efficiency across sectors, including education ([21]). In this domain, LMS, 

online platforms, and intelligent technologies generate vast datasets that enable 

progress tracking, personalized learning, and evidence-based management 

([1]). While these technologies provide opportunities to optimize engagement 

and outcomes ([2]), they also pose challenges in data quality, unstructured 

information, privacy, and the technical requirements of advanced analytics such 

as machine learning and deep learning. To address these issues, educational 

data science has emerged as an interdisciplinary field that integrates computer 

science, education, psychology, and statistics to collect, process, and analyze 

data for enhancing learning and teaching ([5]; [6]). 

1.1.2. Approaches to predicting academic performance 

   In recent years, there has been a growing trend of students at higher 

education institutions receiving academic warnings or being forced to 

withdraw. Despite decades of efforts to improve student retention, the rates 

have remained low ([22]). According to a report by [23], the average retention 

rate from the first to the second year was only 66.5%. Nearly one-fourth of 

students leave college after their first year ([22]). One of the main causes of 

poor academic performance is that students often select courses that do not 
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match their capabilities and lack an effective study plan. This results in students 

either dropping out or extending their study duration, wasting time and 

resources for families, institutions, and society ([24]). 

   Academic success is a key factor in helping students persist in their 

studies ([25]; [26]), and the risk of dropping out decreases as academic 

performance improves ([27]). Therefore, an effective way to increase retention 

is to improve academic performance through early prediction of academic 

performance. This enables early warnings about risks of failure and supports 

decision-making in developing optimal study plans for students, advisors, and 

administrators ([28]; [29]). 

   Predictive results not only help students choose subjects appropriate to 

their abilities but also assist instructors and academic managers in identifying 

students who need additional support, thereby reducing academic warnings and 

forced withdrawals ([30]). In turn, this saves time and costs while improving 

the quality of education. As such, predicting student academic performance has 

become a crucial research topic in the field of LA, attracting increasing 

attention. 

   Among these problems, this dissertation focuses on two main tasks: 

predicting semester GPA scores and early prediction of graduation 

classification. 

1.2. Machine learning and deep learning methods 

1.2.1. Overview of machine learning 

Machine learning is a field of study focused on developing computer 

algorithms that improve automatically through experience. It is commonly 

categorized into four types: supervised learning, unsupervised learning, semi-

supervised learning, and reinforcement learning ([31]). In supervised learning, 

models learn a mapping function from labeled training data. Unsupervised 

learning involves data without labels, aiming to discover hidden patterns or 

structures. Semi-supervised learning combines both labeled and unlabeled data 

to improve learning accuracy. In reinforcement learning, an agent interacts with 

its environment to learn actions that maximize cumulative reward. Figure 1.1 

illustrates the classification of machine learning systems.  
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Figure 1. 1. Classification of machine learning algorithms ([31]) 

LR is a classical statistical method for identifying predictors of binary 

outcomes. KNN is a non-parametric algorithm that performs classification or 

regression based on the majority vote or average of the k nearest data points. 

DT uses a binary tree structure to split data via decision rules but is prone to 

overfitting without pruning. RF, as an ensemble method, aggregates multiple 

randomized DTs to improve accuracy and reduce overfitting. SVM classifies 

data by finding the optimal hyperplane maximizing class separation and  

effectively handles non-linear patterns through kernel functions (see 

Figure 1.2) ([32]). 
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Figure 1. 2. The ML models: LR, KNN, RF and SVM ([32]) 

1.2.2. Some deep learning models 

The foundation of artificial neural networks (ANN) was introduced in 

1943 as a mathematical model of an artificial neuron ([13]). In 2006, the 

concept of deep learning (DL) emerged, extending ANN into multi-layer 

architectures with significantly enhanced learning capabilities. In recent years, 

DL has achieved remarkable success in solving complex problems such as 

anomaly detection, object recognition, disease diagnosis, semantic 

segmentation, social network analysis, and video recommendation systems 

([33]; [34]). 

Deep learning models are generally classified into four main categories: 

deep supervised learning, unsupervised learning, reinforcement learning, and 

hybrid models. Figure 1.3 illustrates these categories along with representative 

models for each.  
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Figure 1. 3. Deep Learning models ([13]) 

Within the category of deep supervised learning, three prominent models 

have been identified: Deep Neural Networks (DNN), Convolutional Neural 

Networks (CNN), and models based on RNN(RNN), as illustrated in Figure 

1.4. ANN and DNN (with multiple hidden layers) model complex nonlinear 

relationships, CNN extract spatial features and patterns for image-related tasks 

using convolution and pooling layers, while RNN (including LSTM) capture 

temporal dependencies and long-term patterns in sequential or time-series data. 

Table 1.1 summarizes the key advantages and limitations of the deep learning 

models: DNN, CNN, and RNN. 
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Figure 1. 4. Model architecture of DNN, CNN and RNN ([13]) 

Table 1. 1. Advantages and disadvantages of deep supervised learning 

techniques 

Learning 

methodology 

Category Advantage Disadvantage 

Deep 

supervised 

learning 

Deep neural 

networks 

Tendency to high 

nonlinear 

relationships,  

Easy to develop 

Slow learning, Hard 

for parameter tuning, 

Insufficient for high-

dimensional input 

 space 

Convolutional 

neural network 

Ability to capture 

spatial correlations, 

high potentiality at 

generalization 

Difficult parameter 

tuning, High 

 computational cost 

Recurrent 

neural network 

Sometimes fast 

converge with 

minimum 

parameters, improve 

the vanishing 

gradient issues 

Difficult parameter 

tuning, Poor spatial 

feature representations 
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Transformer 

The architecture of the Transformer model, originally proposed by 

Vaswani et al. ([35]), is presented in Figure 1.5. It consists of two principal 

components: the encoder and the decoder. The encoder is composed of a series 

of identical layers, each containing two sub-components, a multi-head self-

attention mechanism and a position-wise feed-forward neural network. To 

enhance training stability and gradient flow, residual connections and layer 

normalization are applied following each sub-layer, as illustrated in Figure 1.5. 

Unlike conventional convolutional networks, which combine feature 

aggregation and transformation in a single step, the Transformer architecture 

separates these processes: self-attention handles aggregation, while the feed-

forward layer performs transformation. Similarly, each Transformer decoder 

layer, stacked like those in the encoder, consists of three sub-layers: self-

attention, feed-forward (same as the encoder), and a cross-attention mechanism 

that attends to the encoder’s output. 

 

Figure 1. 5. Transformer architecture ([35]) 

The original Transformer model in [35] was trained for machine 

translation. The input to the encoder is a sequence of words (i.e., a sentence) in 
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the source language. Positional encoding is added to the input sequence to 

capture the relative position of each word. These positional encodings have the 

same dimensionality as the model input 𝑑 =  512, and can be either learned or 

fixed. 

As an auto-regressive model, the Transformer decoder uses previously 

generated predictions to produce the next word in the sequence. Consequently, the 

decoder receives input from both the encoder and the preceding output tokens to 

generate the next token in the target language. To support residual connections, 

the output dimension of all sub-layers is kept constant, i.e., 𝑑 =  512 

The dimensions of the query, key, and value weight matrices in the multi-

head attention mechanism are typically set to 𝑑𝑞  =  64; 𝑑𝑘  =  64; 𝑑𝑣  =  64. 

While deep learning models have demonstrated remarkable performance, 

they also exhibit limitations, particularly in hyperparameter tuning and their 

sensitivity to data volume. These limitations can hinder their deployment in 

various real applications. Nonetheless, each DL model possesses characteristics 

that make it suitable for specific tasks. To address these shortcomings, hybrid 

DL models have been proposed, which combine individual architectures to 

overcome application-specific challenges ([36]). 

1.3. Overview of related research 

1.3.1. Related works 

  a)  Emergence of EDM and Learning Analytics 

In recent years, EDM and LA have become prominent research directions 

in educational science, fueled by the growth of digital technologies and online 

learning platforms such as LMS and MOOCs. These environments generate 

large-scale data on learner behaviors, enabling the application of AI, ML, and 

DL methods to predict, classify, and support learning processes. One of the 

central problems is the prediction of academic performance, including grades, 

graduation likelihood, dropout risk, and achievement classification. Supervised 

machine learning algorithms such as DT, NB, LR, KNN, RF, and SVM have 

been widely used and proven effective in identifying risk factors and enabling 

early intervention ([37]). 

b) Deep Learning and hybrid approaches 

Alongside traditional models, deep learning has gained increasing 

attention for its ability to capture nonlinear and sequential relationships. 
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Architectures such as DNN, RNN, LSTM, and GNN have been applied to 

improve prediction accuracy and analyze learning behavior ([38]). To address 

challenges such as imbalanced and incomplete datasets, researchers have also 

explored hybrid methods, including fuzzy logic integration, feature selection 

using genetic algorithms, and data augmentation techniques like SMOTE 

([39]). While these methods improve accuracy, several works highlight 

concerns about computational complexity and potential overfitting. 

c) Academic performance prediction models 

Academic performance prediction remains one of the most extensively 

studied problems in EDM. Traditional algorithms (DT, KNN, NB, LR, rule-

based systems) continue to be used in predicting GPA, academic classification, 

or graduation outcomes ([4]; [40]; [41]). For example, Waheed et al. ([38]) and 

Wasif et al. ([42]) focused on identifying at-risk students, while Elbadrawy et 

al. ([43]) applied linear regression and matrix factorization. However, these 

models often neglect sequential dependencies between courses, reducing their 

practical relevance. Fei and Yeung ([44]) applied HMMs and RNNs to MOOC 

datasets, though their findings were limited to online contexts. 

d)   Learner behavior and personalized interventions 

Another important research strand emphasizes the analysis of learner behavior 

for personalized support. Okubo et al. ([45]) applied RNN to predict academic 

performance, but the study was restricted to a small cohort, limiting 

generalization. Corrigan and Smeaton ([46]) and Waheed et al. ([38]) 

confirmed the potential of RNNs and LSTMs in online environments, though 

the specific impact of interaction types remained unclear. Other works (e.g., 

Anggrawan et al. [39]) applied SMOTE and genetic algorithms to tackle 

imbalance, while Christou et al. ([47]) explored grammatical evolution for 

feature selection. Despite improvements, challenges such as training cost, 

scalability, and risk of overfitting persist. 

e)  Applications of ML and DL in education 

Recent studies further confirm the potential of ML and DL models in predicting 

student success. Algorithms including LR, DT, neural networks, RF, and 

XGBoost have been employed to analyze exam scores, study habits, and 

participation data ([48]; [49]; [50]). For instance, Sapkota et al. ([48]) predicted 

graduation rates using XGBoost and RF, while Halat et al. ([49]) applied ML 
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to progression analysis in health sciences. Although deep learning models 

achieve high accuracy in online learning contexts ([51]), limitations remain: 

dependency on historical data ([43]; [52]), lack of temporal modeling ([44]), 

neglect of causal relationships ([43]), small sample sizes ([45]), imbalanced 

datasets ([53]), and inconsistent evaluation metrics across studies ([37]). 

f) Context-specific studies and challenges 

Several works have investigated education data in specific institutional 

contexts. An et al. ([54]) used statistical analysis to explore factors influencing 

early-year student performance, though without predictive modeling. Other 

research employed recommender-system toolkits (e.g., Mymedialite) to 

analyze student competency ([55]; [56]), yet noted barriers in adapting generic 

ML models to educational logic. Uyên and Tâm ([41]) applied Naïve Bayes 

and LR for academic performance and dismissal risk prediction, while Nghe 

and Dinh ([57]) designed an AI-based admission advisory system, though still 

at an experimental stage. More advanced studies have begun integrating deep 

learning: e.g., a multilayer perceptron (MLP) with 18 features ([58]) and a CNN 

model with 21 features ([59]) to predict student performance. Despite these 

advances, reliance on traditional input features (e.g., GPA, gender) limits 

personalization and reduces adaptability. 

Table 1. 2. Results of student performance prediction using machine 

learning and deep learning techniques 

Study Purpose Dataset Method Results 

Thai-Nghe, 

Horváth, and 

Schmidt-

Thieme, 2011 

[40] 

To predict 

student 

performance in a 

course 

2 datasets from 

KDD Cup 2010 

MF (Matrix 

Factorization 

Model) 

Tensor-based 

factorization can 

be useful for 

predicting student 

performance 

Fei and Yeung, 

2015 [44] 

To analyze 

learning 

behavior 

sequences for 

predicting 

outcomes 

2 datasets from 

MOOC 

Hidden Markov 

Model (HMM), 

RNN 

Explored learning 

progression; 

limitations in 

traditional 

education 

environments 

Elbadrawy et 

al., 2016 [43] 

To predict 

academic 

performance and 

Course data and 

student 

achievements 

LiR, Matrix 

Factorization 

Effective in 

centralized 

environments; 
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personalize 

education 

does not consider 

course order 

Iam-On and 

Boongoen, 

2017 [60] 

To cluster 

students for 

personalized 

teaching 

811 student 

data from 

MFLU 

Clustering (k-

means) 

Effective 

clustering; lacks 

real-time data, 

reducing accuracy 

Okubo et al., 

2017 [45] 

To predict 

student grades 

108 students RNN Using log data 

from 6 weeks, 

accuracy was 

above 90% 

Xu, 2017 [4] To predict 

student 

performance 

1,169 data from 

UCLA 

Latent Factor 

Method 

Latent factor 

method 

outperforms 

benchmark 

approaches 

Corrigan and 

Smeaton, 2017 

[46] 

To explore how 

student 

interactions with 

virtual learning 

environments 

can predict 

performance 

2,879 data from 

VLE 

RF, RNN, simple 

LSTM 

RNN outperforms 

all other 

algorithms 

Zafar Iqbal et 

al., 2019 [52] 

To suggest 

improvements in 

grades using 

recommendation 

models 

Data on student 

course scores 

and activities 

Collaborative 

Filtering (CF), 

SVD, NMF, 

RBM 

Improved 

personalized 

recommendations; 

not tested across 

different 

academic fields 

Waheed et al., 

2019 [38] 

To predict 

students at risk 

of 

underperforming 

Behavioral data 

from online 

learning 

platforms 

RNN, LSTM BiLSTM 

achieved 90.16% 

accuracy; 

effective but 

requires large 

datasets 

Okubo, 2019 

[45] 

To predict 

student grades 

from specific 

course behavior 

108 students 

from a 

university 

course 

RNN Good grade 

prediction; small 

sample size, lacks 

generalizability 
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Uyên and Tâm 

(2019) [41] 

Predict at-risk 

students likely 

to be dismissed 

Student 

academic 

records from an 

unspecified 

university 

NB, LR Identified critical 

courses and risks, 

but lacked higher-

order feature 

learning 

Anthony 

Anggrawan, 

2020 [39] 

To improve 

predictions 

through data 

processing and 

feature selection 

Data on grades 

+ personal 

information 

SMOTE, Genetic 

Algorithm + 

SVM 

Improved 

accuracy; risk of 

overfitting if not 

controlled 

properly 

Sang et al. 

(2020) [58] 

Predict student 

academic 

performance 

Student records 

from Can Tho 

University 

Multi-Layer 

Perceptron (MLP) 

with 18 features 

Promising results 

using gender and 

GPA, but model 

lacked behavioral 

and unstructured 

data 

Dien et al. 

(2021) [59] 

Predict 

academic 

outcomes using 

deep learning 

Data from a 

multi-

disciplinary 

Vietnamese 

university 

CNN Applied CNN 

successfully, but 

relied on basic 

features and 

lacked 

personalized 

recommendation 

ability 

Alturki et al., 

2023 [53] 

To handle 

imbalanced data 

for predicting 

academic 

performance 

Imbalanced 

class learning 

data 

RF + 

Oversampling 

Improved 

accuracy; risk of 

generating fake 

samples leading 

to data bias 

Christou et al., 

2023 [47] 

To select 

optimal features 

for an RBF 

model 

Complex 

learning data 

Evolutionary 

Grammar + RBF 

kernel 

Long training 

time and high 

computational 

cost 

Halat et al., 

2023 [49] 

To predict 

academic 

performance at 

Qatar University 

Medical and 

health science 

student data 

XGBoost XGBoost 

provided the most 

accurate results in 

predicting 

academic 

performance 
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Sapkota et al., 

2025 [48] 

To predict 

graduation and 

dropout rates of 

students 

Student data 

from Qatar 

University 

XGBoost, RF, 

AdaBoost 

XGBoost model 

achieved 92% 

accuracy, 

outperforming 

other models 

1.3.2. Research gap 

After reviewing the current body of research both in Vietnam and 

internationally on the application of machine learning and deep learning in 

educational data science, it is evident that most existing studies still focus on 

utilizing standalone machine learning models, such as linear regression, DT, 

RF, or SVM, for tasks like academic performance prediction, student 

classification, or dropout risk detection. These models are generally considered 

easy to implement, interpretable, and perform relatively well on medium-sized 

and low-dimensional datasets. 

However, the effectiveness of traditional machine learning models 

remains limited when applied to more complex educational problems, 

particularly those involving temporal sequences or strong nonlinear 

relationships. Moreover, the majority of current studies rely heavily on static 

data (e.g., semester grades, exam scores), and have yet to fully leverage 

dynamic, longitudinal information that reflects the learning process over time. 

In response to these limitations, recent research has increasingly 

advocated for the adoption of deep learning models, particularly architectures 

designed for sequential data processing, such as RNN, LSTM, and Transformer 

models, to better capture temporal features in educational datasets. DL models 

offer the advantage of automatic feature learning and complex representation 

extraction without the need for manual feature engineering, thereby 

significantly enhancing predictive accuracy. 

Furthermore, a promising direction gaining attention is the use of hybrid 

models, which combine deep learning with traditional machine learning 

approaches, or integrate multiple deep learning architectures (e.g., CNN, 

LSTMs, and Transformers enhanced with customized attention mechanisms). 

These hybrid models have the potential to deliver superior performance by 

combining the nonlinear learning power of deep learning with the 

interpretability and robustness of classical algorithms. 
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Despite these advantages, a major obstacle lies in the lack of high-quality, 

structured, and temporally rich educational data. Educational datasets are often 

small-scale, fragmented, heterogeneous, and lack standardization, posing 

significant challenges for training deep learning models, which typically 

require large datasets to reach optimal performance. Moreover, sequential data 

reflecting learning trajectories are rarely collected or shared due to privacy and 

data protection concerns. This further impedes the development and 

benchmarking of models on standardized datasets. 

In summary, many current studies still rely on standalone machine 

learning or deep learning models with limited performance. The shift toward 

deep learning and hybrid approaches opens up promising opportunities to 

improve the accuracy and generalizability of academic performance prediction. 

However, realizing this potential will require addressing key data-related 

challenges, specifically, constructing high-quality sequential datasets, 

standardizing input features, and developing techniques tailored to small, 

heterogeneous datasets commonly found in educational contexts. 

1.4. Datasets 

1.4.1. HNMU1 dataset  

This section introduces the dataset constructed from academic records at 

Hanoi Metropolitan University (HNMU), a public institution governed by the 

Hanoi People's Committee [CT1].  

The raw data is provided by the training departments and the Student 

Management and Training Office. All data, including student management 

status (tuition, personal information, etc.), entrance exam scores, foreign 

language scores, computer science scores, and scores for each course 

completed by the students, is divided into 8 semesters across 4 academic years. 

Student academic performance is evaluated at the end of each semester or 

academic year, based on the results of the modules required by the training 

program that the student has completed. The average grade of the modules 

taken by a student in a semester (semester GPA), in an academic year (annual 

GPA), or throughout the course of study (cumulative GPA) is calculated using 

the official grade of each module, weighted by the number of credits assigned 

to that module. 
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The grades (on a 10-point scale and a 4-point scale) and letter grades for 

each course are presented in detail, along with the specific number of credits 

for each course. The letter grade conventions and grade conversion are detailed 

in Table 1.3. 

Table 1. 3. Letter grade conventions and grade conversion 

Ranking Scale 10 Scale 4 

A+ [9.5;10] 4.0 

A [8.5;9.5) 3.7 

B+ [8.0;8.5) 3.5 

B [7.0;8.0) 3.0 

C+ [6.5;7.0) 2.5 

C [5.5;6.5) 2.0 

D+ [5.0;5.5) 1.5 

D [4.0;4.9) 1.0 

F [0.0;4.0) 0.0 

 

Additionally, admission data were collected through surveys conducted 

via Google Forms. 

The dataset includes 2,763 records of Primary Education students from 

cohorts D2016 to D2020, with 89 features: 4 admission-related features (scores 

in the National High School Graduation Examination for Mathematic, 

Literature, English, and the total score), and 85 subject scores (including 

elective courses, which may vary by student). Each record corresponds to one 

student. 

The data were cleaned to remove irrelevant variables and attributes outside 

the scope of this study, such as physical education, arts-based subjects, and student 

financial variables. Attributes with sparse or missing values, mostly electives, were 

also eliminated. The analysis focused on numerical exam scores, discarding any 

textual grading elements. Specific features for each student were selected for 

correlation analysis with the target variable. As a result, the cleaned dataset includes 

932 student records (11 Mediums, 430 Goods, 468 Very Goods and 23 Excellents) 

and 39 selected attributes, including 4 pre-university academic attributes and 35 
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university course grade attributes and its label (Excellent, Very Good, Good, 

Medium). 

 

Figure 1. 6. The structure of HNMU1 dataset 

The HNMU1 training dataset includes records from 932 students, 

categorized into 4 graduation classes. It contains 28 variables, including high school 

graduation exam scores and academic results from the first two years of university. 

The list of HNMU1 training variables is given in Table 1.4. 

Table 1. 4. List of HNMU1 variables 

No. Subject Name No. Subject Name No. Subject Name No. Subject 

Name 

1 Subject 1 

(Mathematics) 

8 NDSE 1 15 FML 2 22 PVL 

2 Subject 2 

(Literature) 

9 NDSE 2 16 GPA – 

Semester 2 

23 Informatics 

3 Subject 3 

(English) 

10 GPA – 

Semester 1 

17 Research 

Methodology 

24 HCMI 

4 Total Score 11 NDSE 3 18 PASM 25 GPA – 

Semester 4 

5 FMT 1 12 Physical 

Education 1 

19 Psychology 26 CGPA (4-

point scale) 

6 RGCP 13 Physical 

Education 2 

20 Teaching 

Practicum 1 

27 CGPA (10-

point scale) 

7 Educational 

Science 

14 FML 1 21 GPA – 

Semester 3 

28  

(FMT) Fundamentals of Mathematical Theory; (RGCP) Revolutionary 

Guidelines of the Communist Party; (NDSE) National Defense and Security Education; 

(PASM) Public Administration and Sectoral Management; (HCMI) Ho Chi 

Minh’s Ideology; (PVL) Practical Vietnamese Language; (FML) Fundamentals of 

Marxism-Leninism 
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Remarks: Most variables have average scores in the mid-to-high range 

approximately 6.5–7.8). SGPA values are as follows: 

 GPA Semester 1: 7.237 

 GPA Semester 2: 6.792 

 GPA Semester 3: 7.690 

 GPA Semester 4: 6.363 

 CGPA on a 10-point scale: 7.874 

The average scores are generally stable, indicating that most students 

perform at a good level. Overall, academic performance is consistent and 

concentrated around the "Good" to "Very Good" range. 

Predictive or statistical models should account for left-skewed and low-

variance data distributions, especially in subjects where many students achieve 

near-perfect scores. 

Variables with extreme skewness - such as Teaching Practicum 1 -should be 

treated separately when building predictive models or evaluating academic 

performance. 

1.4.2. HNMU2 dataset  

The second dataset, HNMU2, was also collected from Hanoi 

Metropolitan University in 2023. It comprises 2,613 data records from students 

in the Mathematics and Physics Education programs [CT3]. 

To ensure model accuracy, the academic performance prediction task 

was conducted separately for each major, as different programs follow distinct 

curricula and graduation requirements. For the HNMU2 dataset, this study 

selected the Mathematics Education program. 

A landmark  of this dataset is the inclusion of survey responses from over 

2,613 current and former students. Unlike the HNMU1 dataset, which only 

contains input scores and academic performance during university studies, the 

HNMU2 dataset was constructed based on extensive surveys and multi-source 

data collection. It incorporates a diverse set of questionnaire items covering 

multiple dimensions, including personal characteristics, family background, 

environmental factors, prior academic achievements, and the influence of the 

current university environment (e.g., faculty, curriculum, facilities, and related 

factors). 
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After completing the data collection and preprocessing steps, the final 

dataset comprises 551 records of Mathematics Education students, with 88 

features, including 36 survey-based attributes and 52 academic performance 

variables (course grades on a 10-point scale). Survey attributes of the HNMU2 

dataset: Personal, environmental, and prior academic performance variables are 

detailed in Table 1.5.  

Table 1. 5. Survey variables of the HNMU2 dataset 

Attribute Attribute 

Individuals’ 

information 

Gender Academic 

Performance 

and Exam 

Results Prior 

to Enrollment 

HSGE score for Chemistry 

Parents’ educational level HSGE score for Biology 

Part-time job 
High school graduation exam 

scores 

Funding for tuition fees Entrance English score 

Study time Learning 

Conditions 

and Support 

Methods of admission 

Social media usage time Ranking choices 

The total number of social media 

platforms used 
Scholarship 

Health condition 
Level of adaptation to the 

environment 

Academic 

Performanc

e and Exam 

Results 

Prior to 

Enrollment 

Secondary school graduation 

exam scores 
Learning methods 

High school graduation exam for 

Mathematics 
Level of school support 

HSGE score for Literature Level of instructor support 

HSGE score for English Facility conditions 

Groups of subject for admission Quality of instructors 

HSGE score for History 
Suitability of the training 

program 

HSGE score for Geography Competitiveness in studies 

HSGE score for Civic Education Other Factors Influence of friends 

HSGE score for Physics 
Level of interest in the field of 

study 

The HNMU2 dataset includes 62 score-related variables representing 

students' academic performance over eight university semesters. As presented in 

Table 1.6, 52 of these variables correspond to individual subject scores, while the 
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remaining 10 variables represent semester grade point averages (SGPAs) across 

eight semesters and cumulative grade point averages (CGPAs) on both 4-point and 

10-point scales 

Table 1. 6. List of HNMU2 score variables 

No. 
Subject 

Name 
No. 

Subject 

Name 
No. Subject Name No. 

Subject 

Name 

1 Linear Algebra 17 Calculus 3 33 
Elementary 

Algebra 
49 TMA 

2 Calculus 1 18 GTMM 34 
Measure Theory 

and Integration 
50 

Research 

Methodology 

3 
Analytic 

Geometry 
19 PVL 35 PTMS 51 

Elective 

(HMET) 

4 FML 1 20 
Elective 

(Music,Art, ..) 
36 

Differential 

Equations 
52 Elective (ACTS) 

5 Informatics 21 AEG 37 TMMC 53 Elective  (DGM) 

6 Psychology 22 Arithmetic 38 
English for 

Specific Purposes 
54 Semester 7 GPA 

7 Semester 1 GPA 23 
Teaching Skills 

2 
39 

Functional 

Analysis 
55 

Teaching 

Practicum 3 

8 Calculus 2 24 
Semester 3 

GPA 
40 General Law 56 

Graduation 

Thesis 

9 
Educational 

Science 
25 

Ho Chi Minh’s 

Ideology 
41 PDE 57 DTA 

10 FML 2 26 
Complex 

Functions 
42 PASM 58 DTG 

11 English 27 
Projective 

Geometry 
43 

Linear 

Programming 
59 ATSF 

12 
Elective 

(Vietnam culture) 
28 Number Theory 44 

Teaching 

Practicum 2 
60 Semester 8 GPA 

13 
Teaching Skills 

1 
29 

Teaching Skills 

3 
45 Semester 6 GPA 61 

CGPA (4-point 

scale) 

14 Semester 2 GPA 30 
Teaching 

Practicum 1 
46 

Numerical 

Analysis 
62 

CGPA (10-point 

scale) 

15 RGCPV 31 
General 

Topology 
47 

Elementary 

Geometry 
  

16 General Algebra 32 
Semester 4 

GPA 
48 Semester 5 GPA   

(ATSF) Advanced Topics in Sequences and Functions; (PTMS) Probability Theory and Math. Statistics; 

(AEG) Affine and Euclidean Geometry; (TMMC) Teaching Methods in Math Content; (PASM) Public 

Administration & Sector Management;(DTG) Differentiated Teaching – Geometry; (GTMM)  General 

Teaching Methodology for Mathematics; (DTA) Differentiated Teaching – Algebra; (PDE) Partial 

Differential Equations; (DGM) Differential Geometry, Mechanics; (ACTS) Advanced Calculus, Topo 

Spaces; (HMET) History of Math., Educational Tools; (TMA) Teaching Mathematics in English; (RGCPV) 

Revolutionary Guidelines of CPV 

Remark: Most variables have average scores ranging between 7.0 and 8.2, 

indicating that most students performed at a “Good” to “Very Good” academic 

level. Semester-wise GPA values (10-point scale) are as follows: 

 GPA Semester 1: 7.205/GPA Semester 2: 7.320 

 GPA Semester 3: 7.195/GPA Semester 4: 7.992 

 GPA Semester 5: 7.964/GPA Semester 6: 7.902 
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 GPA Semester 7: 7.637/GPA Semester 8: 8.599 

Overall, the GPA trend shows gradual improvement over time, 

especially in the final years. This pattern reflects students’ better engagement 

and academic maturity in later stages of their program. The highest average 

GPA is observed in Semester 8, primarily due to high scores in practicum and 

thesis-related subjects. 

Most subject scores exhibit low to moderate standard deviations 

(typically around 0.8 - 1.2), suggesting tight clustering of student performance. 

However, a few subjects such as “Measure Theory and Integration” (SD = 

1.496) and “Calculus 2” (SD = 1.412) display more variability. 

Distribution characteristics: 

- Skewness is moderately negative in most variables (between -0.2 and -

0.9), indicating that many students scored toward the higher end of the scale. 

- Several subjects show extreme left-skewness, such as: Teaching 

Practicum 2: skewness = -1.444; Teaching Practicum 3: skewness = -1.221; 

Probability and Statistics: skewness = -1.614; Elective: Music/Arts/Islands: 

skewness = -2.614. These variables should be treated with caution in predictive 

models because they lack variance and may bias learning algorithms toward 

majority scores. They can also distort performance comparisons across 

students. 

- Subjects like “English” (mean = 6.82, skewness = +0.308) exhibit slight 

positive skew, meaning some students may struggle more compared to other 

subjects. 

Summary: 

 Academic performance is consistently strong, with stable GPA across 

semesters. 

 Low variance and left-skewed distributions dominate the dataset. 

 Special attention should be given to practicum and thesis components 

due to their near-perfect scoring patterns. 

The HNMU2 dataset suffers from a severe class imbalance in the 

distribution of student performance categories. Specifically, the Medium class 

contains only 19 samples, the Good class has 338 samples, the Very Good class 

has 190 samples, and the Excellent class includes just 4 samples. This 

imbalance, along with the relatively small overall sample size, poses significant 
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challenges for training predictive models and achieving high classification 

accuracy. 

 

Figure 1. 7. The structure of HNMU2 dataset 

1.4.3. VNU dataset  

Similar to the HNMU2 dataset, the dissertation selected data from the 

Literature Education major at Vietnam National University, Hanoi (VNU), for 

empirical investigation [CT4]. The raw dataset contains 521 samples and 91 

attribute fields. These include: 29 features related to individual learner 

characteristics, 9 features about the learning environment, 10 features on prior 

academic performance, and 43 features representing students’ university-level 

academic performance. After completing the data collection and preprocessing 

steps, the final dataset comprises 271 samples, labeled with graduation 

classifications: 46 "Medium", 187 "Good",  and 38 "Excellent" . This 

distribution is more balanced than that of the HNMU1 and HNMU2 datasets. 

 

Figure 1. 8. The structure of  VNU dataset 
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This dataset includes the most survey attributes among all datasets considered 

in this study. Specifically, 48 surveyed attributes cover: 

• Personal factors: age, gender, interests, strengths and weaknesses, 

interpersonal relationships, time spent on social media, part-time work, and 

study hours; 

• Family background: parental age, education level, occupation, family 

traditions, hometown, and local culture; 

• Social factors: social trends, university entrance exam subject 

combinations, social groups, and community influences affecting students’ 

learning attitudes and performance; 

• Educational history and institutional characteristics: academic 

achievements in lower and upper secondary school, university entrance scores, 

faculty quality, facilities, and curriculum. 

Survey data were collected via Google Forms and matched with official 

academic records (including 43 performance indicators and graduation 

classification). Following table shows the list of score variables in this dataset. 

Table 1. 7. List of VNU score variables 

Semester 1 Semester 2 Semester 3 Semester 4 

Vietnamese Cultural 

Foundations 
Vietnamese Grammar 

General Psychology 

and School 

Psychology 

Revolutionary Path of 

the Communist Party 

of Vietnam 

Introduction to 

Linguistics 

Principles of Literary 

Theory 
Literary Genres 

Basic Sino-Nom 

Studies 

Fundamental 

Principles of 

Marxism-Leninism I 

Fundamental 

Principles of 

Marxism-Leninism II 

Fundamentals of 

Informatics 
Literary Works 

Vietnamese Folk 

Literature 

Statistics for Social 

Sciences 
Ho Chi Minh Thought 

The Short Story: 

Theory and Genre 

Practice 

General Sociology 

Vietnamese Literature 

(10th – mid-18th 

century) 

Chinese Literature 
Practical Vietnamese 

Writing 

Introduction to 

Educational Science 

General Vietnamese 

Linguistics 

Vietnamese Literature 

(late 18th – 19th 

century) 

Russian Literature 

Introduction to 

Applied Statistics in 

Education 

Marxist-Leninist 

Political Economy 
Vietnamese Stylistics 

Vietnamese Literature 

(1900–1945) 

Marxist-Leninist 

Philosophy 
Didactic Theory 

Sino-Vietnamese 

Classical Texts 
General Pedagogy 

GPA Semester 1 

Introduction to 

Educational 

Technology 

ICT Applications in 

Education 
Applied Linguistics 
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Educational 

Psychology 
Scientific Socialism 

Organization of 

Educational Activities 

in Schools 

 English B1 

History of the 

Communist Party of 

Vietnam 

Introduction to 

Educational 

Measurement and 

Evaluation 

 GPA Semester 2 GPA Semester 3 

Organizing 

Experiential 

Activities in Teaching 

Literature 

   GPA Semester 4 

  

Remark:  

- Mean scores are generally high and stable, mostly in the 7.5 - 8.2 

range. 

- SGPAs reflect consistent academic achievement: 

 GPA Semester 1: 7.39 

 GPA Semester 2: 7.68 

 GPA Semester 3: 7.75 

 GPA Semester 4: 7.78 

This indicates strong academic performance across the student population, 

suggesting that most students fall in the Good to Very Good category. 

- Standard deviations are mostly low to moderate (typically 0.7 – 1.2), 

showing tight clustering of scores. 

- Distribution Characteristics: Skewness is predominantly negative. 

This suggests a large proportion of students scored near the upper end 

(8.0–10.0). 

- Outliers and Special Cases: Some subjects show extreme skew and 

low variance, which may reflect highly uniform grading practices or 

cause bias in modeling or prediction tasks, such as Vietnamese Folk 

Literature: Mean = 8.35, Skewness = -3.125; Vietnamese Literature 

(1900–1945): Mean = 7.64, Skewness = -3.654. 

Predictive models trained on this dataset should account for non-normal 

distributions, apply appropriate data transformations, and consider excluding 

or reweighting variables affected by near-ceiling effects in comparative 

analyses. 
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In summary, three original datasets HNMU1, HNMU2, and VNU are 

severely imbalanced, with very few samples in the Medium and Excellent 

classes (for example, HNMU2 has only 4 Excellent samples, and VNU has 

none in the Medium class), while the Good and Very Good classes dominate. 

This imbalance can easily cause the predicted model to bias toward the majority 

classes and overlook the minority ones. 

1.4.4. International datasets 

In this dissertation, six international datasets were employed, collected 

from diverse universities and educational institutions worldwide. These 

datasets include those from Covenant University in Nigeria ([61]), the 

University of Malaya in Malaysia ([62]), the SATDAP Program-Capacitação 

da Administração Pública in Portugal ([63]), and the well-known Portuguese 

school performance dataset ([64]). 

Detailed descriptions and characteristics of these datasets are presented 

in Table 1.8. 

Table 1. 8. Dataset description 

Dataset Name Institutions N k Web link 

1 SATDAP 
SATDAP program, 

Potugal 
4424 36 UCI dataset 

2 Malaya-Stud 
Universiti Malaya, 

Malaysia 
493 16 Mendeley data 

3 Portugal-Math 
Portuguese schools, 

Portugal 
395 33 UCI dataset 

4 Portugal-Lang 
Portuguese schools, 

Portugal 
649 33 UCI dataset 

5 Covenant-Priv 
Covenant University, 

Nigeria 
1841 9 Data in Brief 

Data’s name Institutions, Sample size (n), the number of features (k), and web-link to data 

sources.  

1.4.5.  Issues of privacy and sensitive data handling  

- Privacy & Ethics: Educational data include sensitive personal 

information such as grades, learning behaviors, psychological surveys, and 

family or social factors, requiring strict compliance with legal and ethical 

standards. 

https://archive.ics.uci.edu/dataset/320/student+performance
https://data.mendeley.com/datasets/5b82ytz489/1
https://archive.ics.uci.edu/dataset/320/student+performance
https://archive.ics.uci.edu/dataset/320/student+performance
https://www.sciencedirect.com/science/article/pii/S2352340917307540?via%3Dihub%23s0005
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- Program diversity: Differences in curricula, assessment methods, 

credit systems, and frequent program updates make it difficult to standardize 

data across disciplines. 

- Institutional disparity: Variations in university scale, data digitization 

levels, and training policies lead to fragmented and non-uniform datasets. 

- Personalized learning paths: Students’ flexible course selections and 

pacing create inconsistent time-series data, posing challenges for deep learning 

models that rely on continuous learning trajectories. 

1.5. Evaluation metrics for predictive models  

1.5.1. Some metrics for classification models 

The evaluation metrics used include: Accuracy (Acc), Precision (P), 

Recall (R), and F1-Score (F1), calculated using the following formulas: 

Acc =  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝐴𝑙𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
;                                                                (1.1)               

(𝑀𝑎𝑐𝑟𝑜 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) 𝑃 =  
1

𝑁
∑

𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖

𝑁
𝑖=1 ;                (1.2)      

(𝑀𝑎𝑐𝑟𝑜 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑅𝑒𝑐𝑎𝑙𝑙) 𝑅 =  
1

𝑁
∑

𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖

𝑁
𝑖=1 ;                       (1.3) 

 (𝑀𝑎𝑐𝑟𝑜 − 𝐹1 𝑠𝑐𝑜𝑟𝑒) 𝐹1 =  
2∗𝑃∗𝑅

𝑃+𝑅
;                                                 (1.4) 

where N is the number of classes, 𝑇𝑃𝑖 (True Positive of the class i), 𝐹𝑃𝑖 (False 

Positive of the class i), and 𝐹𝑁𝑖  (False Negative of the class i) are key metrics 

in classification tasks and all predictions are the total number of data samples. 

 

The greater the values of Accuracy, Precision, and Recall, the better the 

model performance. 

1.5.2. Some metrics for regression models 

To evaluate the accuracy of a regression model, the dissertation uses 

evaluation metrics such as: Mean Square Error (MSE), Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE) and R-square (𝑅²). 

Mean Square Error (MSE) 

MSE measures the average of the squared differences between predicted 

values and actual values. It shows how far the predicted values are from the 

actual values on average, with larger errors being penalized more due to 

squaring. 
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                                                        
2

1

1 n

i i
i

MSE y y
n 

  ,                                  (1.5) 

where: 
i

y  is the actual value of the dependent variable, 
i

y  is the predicted 

value and 𝑛 is the sample size. 

Root Mean Square Error (RMSE) 

RMSE measures the average deviation between predicted and actual 

values, but keeps the same units as the original data.  

                                𝑅𝑀𝑆𝐸 = √  
2

1

1 n

i i
i

y y
n 

                              (1.6) 

where 
i

y  is the actual value of the dependent variable, 
i

y  is the predicted value 

and 𝑛 is the sample size. 

RMSE has the advantage of being measured in the same units as the 

dependent variable, making it easy to compare between models and across 

different dependent variables. It also provides the average deviation between 

predicted and actual values, helping to assess the model's predictive ability. 

However, RMSE can be affected by noise or outlier values in the data. If the 

data contains noise or outliers, RMSE can be significantly reduced. 

Mean Absolute Error (MAE) 

MAE measures how much predictions deviate from actual values on average. 

                               
1

1
| |

n

i i
i

MAE y y
n 

  ,                                         (1.7) 

where
i

y  is the actual value of the dependent variable, 
i

y  is the predicted value 

and 𝑛 is the sample size. 

MAE also measures the average error of the model compared to the actual 

data; however, MAE calculates the average of the absolute values of the errors. 

The advantage of MAE is that it has the same units as the dependent variable, 

making it easy to compare between models and across different dependent 

variables. However, MAE does not assess the magnitude of the errors. 

R-square (𝑹²) 

The R-square metric measures the extent to which the model explains the 

dependent variable. R-square is calculated using the formula: 

https://solieu.vip/mse-va-rmse-la-gi-va-cach-tinh-tren-stata/
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                    𝑅2  =  1 − (𝑆𝑆𝐸 / 𝑆𝑆𝑇) 
 
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1

1

n
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n

i
i

y y

y y
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
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




            

where 
i

y  is the actual value of the dependent variable, 
i

y  is the predicted value 

and 𝑛 is the sample size; SSE (Sum of Squared Errors): The sum of squared 

errors of the model; SST (Total Sum of Squares): The total sum of squares of 

the sample mean, y  is the mean of the actual values. 

𝑅2 measures the extent to which the model explains the dependent 

variable. 𝑅2 has the advantage of being simple, easy to understand, and easy to 

use. It indicates the percentage of variance in the dependent variable explained 

by the model. 𝑅2 also helps compare the explanatory power of different models, 

allowing for the selection of the best model. However, 𝑅2 does not provide any 

information about the model's error. Additionally, 𝑅2 can be affected by adding 

independent variables to the model, leading to a higher 𝑅2 value while the 

model still has significant errors. 

 In summary, depending on the characteristics of the problem and the 

prediction goals, selecting the appropriate metric helps accurately evaluate the 

model's effectiveness and practicality. 

Table 1. 9. Selection of evaluation metrics for the model 

Type of Problem Priority Metrics Reason for Selection 

Multiclass Classification 

(Graduation Classification) 

F1, Accuracy Ensure no bias towards the 

majority class 

Regression (Predicting GPA) MAE, RMSE, R² Evaluate both absolute error 

and model explanatory power 

 

The conclusion of Chapter 1  

Chapter 1 identifies two core problems addressed in this dissertation: 

short-term regression-based GPA prediction and long-term classification-based 

graduation classification prediction, reflecting distinct aspects of the learning 

process and academic achievement. 

By synthesizing existing machine learning and deep learning models and 

highlighting research gaps, this chapter sets the direction for subsequent 

chapters to deeply explore advanced deep learning architectures and develop 

hybrid models aimed at optimizing predictive performance within the unique 

educational context characterized by limited, heterogeneous, and uncertain 

(1.8) 
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data. Additionally, the dissertation emphasizes integrating diverse influencing 

factors, ranging from individual traits and learning environments to social 

impacts, to enhance the accuracy and comprehensiveness of predictions for the 

two main tasks: SGPA and graduation classification. 
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CHAPTER 2. EARLY PREDICTION OF SEMESTER GRADE POINT 

AVERAGE USING DEEP LEARNING APPROACHES 

In modern education, predicting students’ semester Grade Point Average 

(SGPA) is important for tracking learning outcomes, identifying students at risk, and 

guiding personalized study plans. However, SGPA is not an exact or stable measure. 

It can change over time under the influence of many factors, such as grading methods, 

teaching approaches, students’ mental conditions, and differences between 

institutions. Therefore, SGPA should be considered a flexible indicator that reflects 

both uncertainty and variability. From this view, this chapter presents predictive 

models that apply deep learning together with uncertainty-based methods to improve 

accuracy and better represent the complexity of real educational environments.  

Two modeling approaches are proposed: 

NeutroDLs: Embeds neutrosophic logic into standard deep learning models. 

NeutroGNT: A hybrid model combining Transformer, CGAN, and 

neutrosophic representation to handle data imbalance and uncertainty. 

Experiments on seven real datasets show that the models significantly improve 

prediction accuracy, with NeutroGNT achieving MSE = 0.018 and R² = 96.05%. 

The content of this chapter is based on the publications [CT5] and [CT6]. 

2.1. Problem formulation 

In this chapter, we consider the semester GPA prediction problem. 

Higher education institutions commonly structure their academic programs 

over a period ranging from a minimum of eight semesters to a maximum of 

twelve, corresponding to an overall duration of approximately three to six 

years. The GPA is a standardized metric widely employed in universities to 

assess students’ academic performance. It is computed based on individual 

course grades and consolidated into an overall average, typically measured on 

a 4.0 scale or a 10.0 scale. 

The semester GPA (SGPA) is calculated at the end of each academic 

semester and serves as an indicator of a student's ongoing academic 

performance. The SGPA for each semester is typically computed using the 

following formula: 

                                       𝑥𝑇𝐵 =
𝑥1𝑘1+⋯+𝑥𝑛𝑘𝑛

𝑘1+⋯+𝑘𝑛
,                                                (2.1) 
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where n denotes the number of courses taken in a given semester; xᵢ and kᵢ 

represent the grade and the number of credit hours for the i-th course, 

respectively, i ∈ {1, ..., n}; and 𝑥𝑇𝐵  denotes the SGPA. 

The SGPA prediction problem can be formulated as follows: For a given 

student, assuming that the GPAs for the first m semesters are known, the task 

is to predict the GPA of the (m + 1)-th semester. 

 Let 𝑋 be nonempty set. 
1 2 ... ,mX X X X    1 2( , ,..., )mx x x x X  . 

In this chapter, the dissertation investigates the following three scenarios: 

Case 1: Predict the SGPA of the nth semester if the SGPA of the 𝑛 − 1 

semester is given. That is, knowing the value of 𝑥𝑛−1, predict the value of 

𝑥𝑛, 1 < 𝑛 ≤ 𝑚, see Figure 2.1. 

                                  

Figure 2. 1. Prediction framework for Case 1 

Case 2: Predict the student's nth term SGPA when the SGPA of the 

previous 2 semesters are given. That is, knowing the values of 𝑥𝑛−2, 𝑥𝑛−1, 

predict the value of 𝑥𝑛, 2 < 𝑛 ≤ 𝑚, see Figure 2.2. 

 

                          

Figure 2. 2. Prediction framework for Case 2 

Case 3: Predict the student's nth SGPA when knowing the SGPA of the 

previous 3 semesters. That is, knowing the value of 𝑥𝑛−3, 𝑥𝑛−2, 𝑥𝑛−1, predict 

the value of 𝑥𝑛, 3 < 𝑛 ≤ 𝑚, see Figure 2.3. 

 

                    

Figure 2. 3. Prediction framework for Case 3 
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2.2. NeutroDL models 

2.2.1. The theoretical basis for model selection 

In the educational environment, the assessment of students’ academic 

performance is inherently complex, uncertain, and variable. Several key factors 

contribute to the uncertainty and indeterminacy of GPA results, as outlined 

below: 

i) Multi-component mordern assessment structure 

Student grades are typically derived from various components, including: 

- Attendance/Class participation, 

- Midterm and final examinations/Assignments, projects, presentations, 

- In-class question-and-answer sessions. 

 Each of these components is influenced by: The context and objectives of the 

educational system/The instructor’s level of enthusiasm and teaching 

style/Various unstructured or subjective elements ([65]; [66]; [67]). 

ii) Shifts in instructional and assessment methods due to online 

education 

The rapid expansion of online education, especially following the 

COVID-19 pandemic, has introduced major changes: 

- Use of online interaction metrics (e.g., click rates, login frequency, 

engagement time), 

- Assessment based on task completion rather than solely on traditional 

examinations, 

- Introduction of new grading scales and conversion methods, such as: 

Converting letter grades to numerical scores/GPA calculations based on 

classifications like excellent, very good, good, average, poor, and very 

poor. 

These developments lead to: Inaccuracies due to conversion rules/Subjectivity 

in online assessment/Inconsistencies across educational systems. 

iii)  Personal and psychological factors affecting students 

Student SGPA is also affected by non-quantifiable factors such as: 

- Individual learning strategies, 

- Perceived difficulty of courses or exams, 

- Psychological conditions (stress, motivation, confidence, etc.), 

- Teaching methods used by instructors. 
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Given the above, the evaluation of student academic performance - 

especially through SGPA -should not be treated as a precise or static indicator. 

Instead, SGPA must be viewed as a value characterized by uncertainty and 

imprecision, requiring: 

 The use of more flexible and robust prediction models, 

 Integration of multiple data sources and “soft” factors, 

 The application of machine learning or analytical methods capable of 

handling uncertainty (e.g., fuzzy models, neutrosophic models, etc.). 

In efforts to minimize uncertainty in the evaluation process, many studies 

have attempted to apply fuzzy set theory in educational assessment ([67]; [68]; 

[69]; [70]; [71]).  

As a result, the application of uncertainty theories (such as fuzzy theory 

and neutrosophic theory) into machine learning and deep learning models has 

become a crucial research direction, improving the accuracy of predicting 

students' academic performance ([72]; [73]). 

Therefore, this dissertation aims to develop predictive models for SGPA 

based on educational datasets that are often incomplete, contain uncertainty, 

and are influenced by various subjective factors.  

To effectively address these challenges, the study proposes an integrated 

modeling framework that combines neutrosophic theory with deep learning 

techniques. This approach not only improves the accuracy of SGPA prediction 

but also enables the model to represent and quantify the uncertainty present in 

the input data. 

By explicitly modeling indeterminacy, imprecision, and ambiguity, the 

proposed framework offers a more flexible and practical evaluation method, 

well-suited to the complex nature of real-world educational environments. 

2.2.2. Proposed model   

 In this section, the dissertation introduces the integration of 

neutrosophic theory with several deep learning models to predict the final 

semester grade and the overall course grade of university students. The 

overall model is presented in Figure 2.4. 

 ` While several similar studies have been documented in the existing 

literature, our proposed model distinguishes itself by incorporating the time factor, 

semester variations, and the use of neutrosophic functions for input data 

fuzzification. 
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Figure 2. 4. The NeutroDL models [CT6] 

Figure 2.4 illustrates the general architecture of the neutrosophic neural 

networks (DNN, CNN, RNN, LSTM, and Transformer). The proposed model 

is a combination of neutrosophic theory and several popular neural networks 

aimed at improving the predicted academic performance of students. Within 

the scope of this study, which evaluates the effectiveness of integrating 

neutrosophic theory and neural networks to address the problem of predicting 

students' scores, the dissertation employs five commonly used neural 

networks: DNN, CNN, RNN, LSTM, and Transformer. For ease of 

comparison, the dissertation utilizes the Adam optimization algorithm in all 

models. The process of applying modern deep learning techniques to predict 

students' academic performance is carried out as follows: 

Step 1: Model Construction 

The structure of the model includes the following main layers: 

Input Layer: The data processing layer is responsible for preparing raw 
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data for use in the neural network. This includes tasks such as data cleaning, 

converting data into a format that the neural network can understand, and 

organizing the data in a continuous timeline format. The output of this layer is 

then passed on to the next encoding layer. 

Encoding Layer: This layer transforms the data using neutrosophic 

theory. From the output data of the input layer, the data is neutrosophicized 

using corresponding neutrosophic membership functions to represent 

uncertainty, indeterminacy, and inconsistency in the datasets. Trapezoidal 

neutrosophic membership functions used in encoding neutrosophic data (details 

on some neutrosophic functions can be found in Subsection 2.4.1). 

Hidden Layer: The objective of this layer is to evaluate and consider 

the uncertainty, indeterminacy, and inconsistency factors in deep learning 

models. In this dissertation, the hidden layer is examined for traditional neural 

network architectures such as DNN, CNN, RNN, LSTM, and Transformer. 

With the structure of the available methods, determining appropriate 

input parameters and preprocessing data (data cleaning, sequence design, 

continuous timeline sorting, and neutrosophicization of input data) while 

highlighting the comparability of the predictive methods are crucial factors to 

consider when constructing the model in this dissertation. 

The dissertation begins with data analysis using the DNN model, which 

serves as a baseline for comparing other deep learning approaches. It then 

introduces the RNN model, incorporating the temporal nature of academic data 

by analyzing the sequential performance of students across semesters. Data 

preprocessing involves cleaning, organizing, and structuring the raw data into 

time-series format based on actual semester records. 

For neutrosophic-based models, neutrosophic functions are applied to 

convert the input into neutrosophic sets. The key challenge lies in adapting the 

input data format for each model and selecting appropriate hyperparameters to 

ensure effective training and accurate predictions. The LSTM and Transformer 

models are also employed to explore prediction capabilities using the same 

dataset. Sigmoid function are applied, and training is conducted using 

parameters such as batch size and epochs. 

Decoder and Output Layer: The output of the hidden layers consists of 

neutrosophic values, and the objective of the decoder layer is to apply 
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neutrosophic defuzzification to generate the corresponding real values of 

neutrosophic membership. The final layer is the prediction layer, which 

provides the final prediction based on the input features received from the 

previous hidden layers. 

Table 2. 1. Layer structure of DNN model 

Model: "sequential" 

Layer (type) Output Shape Param # 

flatten (Flatten) (None, 18) 0 

dropout (Dropout) (None, 18) 0 

dense (Dense) (None, 128) 2432 

dropout_1 (Dropout) (None, 128) 0 

dense_1 (Dense) (None, 1) 129 

Table 2. 2. Layer structure of CNN model 

Model: "sequential" 

Layer (type) Output Shape Param # 

conv1d (Conv1D) (None, 1, 64) 1216 

max_pooling1d 

(MaxPooling1D) 
(None, 1, 64) 0 

conv1d_1 (Conv1D) (None, 1, 64) 4160 

max_pooling1d_1 

(MaxPooling1D) 
(None, 1, 64) 0 

flatten (Flatten) (None, 64) 0 

dropout (Dropout) (None, 64) 0 

dense (Dense) (None, 128) 8320 

dropout_1 (Dropout) (None, 128) 0 

dense_1 (Dense) (None, 1) 129 

Table 2. 3. Layer structure of CNN model 

Model: "sequential" 

Layer (type) Output Shape Param # 

simple_rnn 

(SimpleRNN) 
(None, 1, 312) 103272 

simple_rnn_1 

(SimpleRNN) 
(None, 1, 56) 20664 

simple_rnn_2 

(SimpleRNN) 
(None, 1, 88) 12760 
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simple_rnn_3 

(SimpleRNN) 
(None, 1, 504) 298872 

simple_rnn_4 

(SimpleRNN) 
(None, 264) 203016 

dropout (Dropout) (None, 264) 0 

dense (Dense) (None, 1) 265 

Table 2. 4. Layer structure of LSTM model 

Model: "sequential" 

Layer (type) Output Shape Param # 

lstm (LSTM) (None, 1, 128) 75264 

lstm_1 (LSTM) (None, 64) 49408 

flatten (Flatten) (None, 64) 0 

dropout (Dropout) (None, 64) 0 

dense (Dense) (None, 128) 8320 

dropout_1 (Dropout) (None, 128) 0 

dense_1 (Dense) (None, 1) 129 

Table 2. 5. Layer structure of Transformer model 

Model: "sequential" 

Layer (type) Output Shape Param # 

input_1 (InputLayer) [(None, 1, 18)] 0 

layer_normalization 

(LayerNormalization) 

(LayerNorma (None, 1, 18) 36 

multi_head_attention 

(MultiHeadAttention) 

(None, 1, 18) 0 

dropout (Dropout) (None, 1, 504) 298872 

layer_normalization_1 

(LayerNormalization ) 

(None, 1, 18) 36 

conv1d (Conv1D) (None, 1, 4) 76 

dropout_1 (Dropout) (None, 1, 4) 0 

conv1d_1 (Conv1D) (None, 1, 18) 90 

layer_normalization_2 

(LayerNormalization ) 

(None, 1, 18) 36 

multi_head_attention_1 

(MultiHeadAttention) 

(None, 1, 18) 76818 

dropout_2(Dropout) (None, 1, 18) 0 

layer_normalization_3 

(LayerNormalization ) 

(None, 1, 18) 36 

conv1d_2 (Conv1D) (None, 1, 4) 76 

dropout_3 (Dropout) (None, 1, 4) 0 
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conv1d_3 (Conv1D) (None, 1, 18) 90 

layer_normalization_4 

(LayerNormalization ) 

(LayerNor (None, 1, 18) 36 

multi_head_attention_2 

(MultiHeadAttention) 

(None, 1, 18) 76818 

dropout_4 (Dropout) (None, 1, 18) 0 

layer_normalization_5 

(LayerNormalization ) 

(None, 1, 18) 36 

conv1d_4 (Conv1D) (None, 1, 4) 76 

global_average_pooling1d 

(GlobalAveragePooling1D) 

(None, 1) 0 

dense (Dense) (None, 128) 256 

dropout_8 (Dropout) (None, 128) 0 

dense_1 (Dense) (None, 1) 129 

Step 2: Model Training 

  The principle of this step is to compute the weights and address the 

optimization problem. In this process, parameters (weights 𝒘 and biases - the 

deviations of each node) are learned by the machine to suggest the optimal results. 

The backpropagation problem uses the Adam optimization algorithm and employs 

MAE (Mean Absolute Error) during the model training process. The model 

parameters are detailed in Table 2.6. 

Table 2. 6. Model parameters 

Hyper-parameters Selection 

Learning rate 𝛼 0.0003 

Drop-out rate 0.3 

Number of epochs 1000 

Loss function Mean Absolution Error 

Optimizer Adam 
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Figure 2. 5. Loss function value chart for training and validation of models 

   Figure 2.5 shows the loss function value chart for the training and 

validation phases of the DNN, CNN, RNN, LSTM, and Transformer models 

with neutrosophic values. From Figure 2.5, it can be observed that the loss 

function values for both training and validation are converging towards zero. 

In the proposed framework, the dissertation uses a layer to convert real data 

into neutrosophic numbers by applying neutrosophic conversion functions, and 

the model training process uses these neutrosophic numbers. Before making the 

final predictions, a defuzzification layer is used (to convert neutrosophic 

numbers back to real values) to provide the corresponding output. 

Step 3. Prediction, Testing 
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After obtaining the model with the computed parameters from Step 2, 

the dissertation inputs the test data and measures the error. The errors 

considered here include RMSE, MAE, and R². 

In summary, the process of applying modern deep learning techniques to 

predict student’s academic performance can be outlined as follows: First, the 

dissertation utilizes existing libraries of DNN, CNN, RNN, LSTM, and 

Transformer, incorporates reasonable parameters in preprocessing, and 

specifically applies neutrosophic sets in handling input data. It then connects 

(reads) the input data from an Excel file that has been appropriately processed 

for the application model. Next, the model setup step is performed, followed 

by training the model to extract parameters (weights, biases). Once the model 

parameters have been learned, the test data is inputted, predictions are made, 

and errors are measured. 

 

Figure 2. 6. The pineline of NeutroDL model 

The integration of the neutrosophic function to neutrosophicize the input 

and generate the real output creates a novel approach for the models. Results from 

previous terms (or previous semesters) are inputted to predict the SGPA for the 

upcoming term. The comparison of prediction ability and accuracy is specifically 

demonstrated in Subsection 2.2.3, with experiments conducted on the test dataset 

from Hanoi Metropolitan University, Hanoi, Vietnam. 

Details about the layers of each network are provided in the experimental 

section. Experimental results show that the proposed hybrid model yields better 

results than traditional models in predicting student’s SGPA. 
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The computational complexity of Algorithm 1 is primarily influenced by 

three core components: the neutrosophic encoding stage, the model 

construction and training phase, and the evaluation step. 

 

Algorithm 2.1. Neutrosophic Deep Learning for Student Performance 

Prediction 

1 Input: X are historical student records; H is prediction horizon; 

2       𝐹𝑛: Neutrosophic membership functions; 

3        Model ∈ {DNN, CNN, RNN, LSTM, Transformer}; 

4       Hyperparameters: learning rate 𝜂, dropout rate 𝑑, epochs 𝐸 

5 Output: 𝑦̂ Predicted student performance score 

6 Preprocess the raw student data: clean, normalize, order by time 

7 For each input 𝑥𝑖  ∈ 𝑋 do 

8         Encode 𝑥𝑖 using neutrosophic trapezoidal function: 

9 [T(𝑥𝑖), I(𝑥𝑖), F(𝑥𝑖)]  ←  𝐹𝑛() 

10 end for 

11 Construct model with: 

12      Input layer (neutrosophic vector [𝑇, 𝐼, 𝐹]) 

13      Encoder (neutrosophic transformation) 

14      Hidden layers based on selected model (model ∈ {DNN, CNN, RNN, 

LSTM, Transformer}) 

15      Decoder (neutrosophic defuzzification) 

16      Output layer (regression head) 

17 Train the model using Adam optimizer with MAE loss 

18 Run training for E epochs on training data 

19 Evaluate model on test data using RMSE, MAE, R² 

20 Return 𝑦̂ 

 

The computational complexity of the proposed model depends on the 

complexity of the underlying architectures such as DNN, CNN, RNN, LSTM, or 

Transformer. For instance, the computational cost of LSTM and Transformer models 

is 𝑂(𝑛 · 𝑑²), where 𝑛 denotes the length of the input learning sequence 

and 𝑑 represents the hidden vector dimension. 
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2.2.3. Experiment 

2.2.3.1. Training dataset 

  The dataset used in this section is HNMU1 dataset. The structure of the 

training dataset and input of the models can ben seen in Table 2.7. 

Table 2. 7. Description of the training dataset 

Dataset Number of 

samples 

 

Cases 

Real Input 

attributes 

Neutrosophic 

Input  

attributes 

 

HNMU1 

 

932 

Case 1 1 18 

Case 2 2 36 

Case 3 3 54 

  Six neutrosophic sets for neutrosophic inputs are Excellent, Very Good, 

Good, Medium, Poor, and Very Poor. We use the trapezoidal neutrosophic 

functions: 

Very Poor [0,0.2,3.7,4.1;1,0,0]; Poor [3.8,4.2,4.7,5.1;1,0,0];

[4.8,5.2,5.7,7.1;1,0,0]Medium  ; Good [6.8,7.2,7.7,8.1;1,0,0];

Very Good [7.8,8.2,8.7,9.1;1,0,0] ; Excellent [8.8,9.2,9.7,10.0;1,0,0] . 
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a)                                                       b) 

 

c) 

Figure 2. 7. The neutrosophic functions for the concepts a) Good, 

b) Very Good and c) Excellent 
 

2.2.3.2. Experimental implementation 

The student academic performance dataset obtained from Hanoi 

Metropolitan University is not linearly separable, making certain machine 

learning methods such as linear regression and Perceptron Learning Algorithm 

inapplicable. Therefore, this dissertation proposes the use of several modern 

deep learning models, which are particularly well-suited for handling time 

series data, as processed in this study. The deep learning methods employed for data 

analysis include classical DNN, CNN, RNN, LSTM, and Transformer models. 

In this section, the CNN model applied consists of one convolutional 

layer followed by sequential layers, three max-pooling layers, and fully 

connected layers. The model also utilizes the ReLU activation function and 

dimensionality reduction techniques to generate predictions of student scores. 

The underlying idea of RNN is to process sequential data. RNN are so 

named because, for each element in a sequence, the output is calculated based 

on previous computations. In theory, RNN, LSTM and Transformer can 

process long sequences, but in practice, they are limited to looking back only a 

few steps. This allows the model to take into account the consistency of the 

scores achieved by students. In this case, the dissertation uses a sequence of 

student scores as the input to the neural network. Since the network performs 

the same task for each element in the sequence, it processes the entire student 

record to output the most accurate predicted score. Theoretically, the network 

retains a memory of the student’s SGPA. 



51 

 

All experiments were implemented in Python 3.11 within a Conda 

environment, using common libraries such as NumPy, SciPy, Pandas, Scikit-

learn, PyTorch, and TensorFlow/Keras. Classical ML models (e.g., LR, SVM, 

KNN, RF) were built with Scikit-learn, while deep learning architectures 

(LSTM, Transformer) were trained with PyTorch and TensorFlow. GPU 

acceleration was enabled via CUDA Toolkit 11.8 to optimize training 

efficiency. The experiments were conducted on a workstation equipped with an 

Intel Core i7-12700KF CPU, NVIDIA RTX 3060 GPU, and 32GB RAM. 

Evaluative Metrics: The Root Mean Squared Error (RMSE), the Mean 

Absolute Error (MAE), and R²-score to estimate the performance and the 

difference between the student's actual SGPA and predicted SGPA, allowing 

for appropriate model selection based on the situation.  

2.2.4. Results and discussions                                                        

  Table 2.8 shows results of neutrosophy deep learning models. The 

average errors are evaluated 10 times on the 10 folds corresponding to Cases 1, 

2 and 3. When combining neutrosophic functions to fuzzify input data, 

calibrating parameters of applied deep learning algorithms, with the training 

data sample accounting for 80% and 20% of the data used for testing, we get 

the predicted results as shown in Figures 2.8, 2.9 and 2.10 (for 01 test). The test 

is devided in to different cases: (Case 1) Using the previous semester's average 

data to predict the next semester's average score; (Case 2) Using the average 

data of the 2 previous semesters to predict the average score of the third 

semester; (Case 3) Using the average data of the 3 previous semesters to predict 

the average score of the fourth semester. 
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Table 2. 8. Average error for cases 1, 2, 3 with Neutrosophic approach 

Model 

/Metric 

RMSE MAE R²(%) 

Case 

1 

Case 

2 

Case 

3 

Case 

1 

Case 

2 

Case 

3 

Case 

1 

Case 

2 

Case 

3 

DNN 
0.89 ± 

0.09 

0.57 ± 

0.05 

0.87 ± 

0.05 

0.75± 

0.06 

0.47 ± 

0.05 

0.74 ± 

0.04 

12.76 ± 

4.90 

48.42 ± 

5.74 

59.45 ± 

4.00 

CNN 
0.90± 

0.07 

0.58 ± 

0.04 

0.80 ± 

0.08 

0.74± 

0.04 

0.46 ± 

0.02 

0.62 ± 

0.07 

11.40 ± 

5.06 

47.03 ± 

5.80 

62.04 ± 

5.36 

RNN 
0.92 ± 

0.07 

0.60 ± 

0.05 

0.80 ± 

0.08 

0.73 ± 

0.04 

0.45 ± 

0.03 

0.60± 

0.06 

12.39 ± 

6.06 

46.16 ± 

6.82 

62.14 ± 

7.67 

LSTM 
0.91 ± 

0.07 

0.57 ± 

0.04 

0.76 ± 

0.11 

0.74 ± 

0.04 

0.45 ± 

0.03 

0.59 ± 

0.07 

12.73 ± 

4.97 

49.51 ± 

5.40 

65.28 ± 

8.93 

Transformer 
0.89 ± 

0.08 

0.59 ± 

0.06 

0.79 ± 

0.06  

0.74 ± 

0.04 

0.47 ± 

0.06 

0.59 ± 

0.05 

13.13 ± 

7.65 

45.54 ± 

8.92 

65.95 ± 

4.33 

 

Figure 2. 8. Graph of prediction (neutrosophic data, Case 1) 

For Case 1: Using the previous semester's average data to predict the 

next semester's average score, we estimate the errors (average after 10 tests) of 

the algorithms as shown in Table 2.9. In this case, the R² scores of all five 

methods are notably low (just slightly above 10%), indicating that this dataset 

is not suitable for real-world forecasting applications. 

The poor performance can be attributed to the limited input data, as only 

one feature (a single semester score) was used. Although neutrosophic 

transformation expands this into 18 features - representing 18 values of 

neutrosophic membership functions - they still lack sufficient diversity to serve 

as effective inputs for deep learning models. 
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Figure 2. 9. Graph of prediction (neutrosophic data, Case 2) 

For Case 2: Using the average data of the 2 previous semesters to predict 

the average score of the third semester, we get the predicted results as shown 

in Figure 2.10 (for 01 test) and the errors (average after 10 tests) of the 

algorithms in Table 2.9. In this Case, we can see that the quality of forecasting 

methods increases significantly compared to Case 1. In this case the R² metrics 

of all five method are approximately 50% for neutrosophic cases, so in cases 

where much information is not collected, we can also use this model for the 

problem of predicting student scores. 

 

Figure 2. 10. Graph of prediction (neutrosophic data, Case 3) 

For Case 3: We use the grade data of the previous three semesters to 

forecast the SGPA for the fourth semester's grades. From the comparison table 

2.9, we see that in the case of using the Neutrosophic approach, all metrics are 

improved compared to the real case (the case without using the neutrosophic 

approach). Moreover, from Table 2.9 we can see that, in the case of using the 
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neutrosophic approach, the R²-score parameter of all 5 methods is greater than 

60%, which proves that all five methods are suitable for the data and the 

problem. 

Comparison results estimate the errors (average after 10 tests) of the 

algorithms as shown in Table 2.9. From the results are presented in Table 2.9, 

we conclude that the numerical results that are highlighted in “bold” indicate 

that the corresponding forecasting method has better results than the other 

method. It seems that, RNN, LSTM, and Transformer methods significantly 

outperform the other methods, confirming the effectiveness of our approach as 

we achieved consistent results on the validation set. 

Table 2. 9. Average error comparison for cases 1, 2, 3 

Model/Metric 

RMSE MAE R² (%) 

Real input 
Neutro. 

Approach 
Real input 

Neutro. 

Approach 
Real input 

Neutro. 

Approach 

C
a

se
 1

 

DNN 1.06 ± 0.33 0.89 ± 0.09 1.07 ± 0.11 0.75± 0.06 48.26 ± 32.00 12.76 ± 4.90 

CNN 0.92 ± 0.06 0.90± 0.07 0.73 ± 0.04 0.74± 0.04 8.52 ± 4.65 11.40 ± 5.06 

RNN 0.89± 0.05 0.92 ± 0.07 0.72± 0.04 0.73 ± 0.04 12.6 ± 8.49 12.39 ± 6.06 

LSTM 0.90 ± 0.05 0.91 ± 0.07 0.74 ± 0.03 0.74 ± 0.04 9.72 ± 5.39 12.73 ± 4.97 

Transformer 0.90 ± 0.04 0.89 ± 0.08 0.74 ± 0.03 0.74 ± 0.04 26± 5.40 13.13 ± 7.65 

C
a

se
 2

 CNN 0.53 ± 0.05 0.58 ± 0.04 0.41 ± 0.03 0.46 ± 0.02 46.39 ± 6.51 47.03 ± 5.80 

RNN 0.55 ± 0.07 0.60 ± 0.05 0.42 ± 0.05 0.45 ± 0.03 37.12 ± 18.19 46.16 ± 6.82 

LSTM 0.52 ± 0.04 0.57 ± 0.04 0.40 ± 0.03 0.45 ± 0.03 52.42 ± 9.95 49.51 ± 5.40 

Transformer 0.63 ± 0.07 0.59 ± 0.06 0.48 ± 0.04 0.47 ± 0.06 26.83 ± 5.96 45.54 ± 8.92 

C
a

se
 3

 CNN 0.86 ± 0.08 0.80 ± 0.08 0.67 ± 0.07 0.62 ± 0.07 59.01 ± 7.00 62.04 ± 5.36 

RNN 0.82 ± 0.13 0.80 ± 0.08 0.62 ± 0.12 0.60± 0.06 60.69 ± 9.20 62.14 ± 7.67 

LSTM 0.88 ± 0.13 0.76 ± 0.11 0.71 ± 0.15 0.59 ± 0.07 58.51 ± 1.54 65.28 ± 8.93 

Transformer 0.93± 0.07 0.79 ± 0.06 0.77 ± 0.06 0.59 ± 0.05 53.05 ± 7.60 65.95 ± 4.33 

 

  Based on Table 2.9, the Neutrosophic approach demonstrates consistent 

improvements over the Real input baseline. In Case 2, the Transformer reduced 

MAE from 0.60 to 0.47 and increased R² from 26.83% to 45.54%; similarly, 

LSTM improved R² from 32.42% to 49.51%. In Case 3, both LSTM and 

Transformer achieved R² values above 65%, approximately 7-10% higher than 

the real-input approach. These results indicate that incorporating Neutrosophy 

helps reduce prediction errors and enhances model fit across different 

educational data scenarios.  
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  Models performance are compared by aligning the actual values from a 

subset of the test data with the predicted SGPA, followed by an analysis of the 

resulting errors. To support this comparison, the RMSE metric to quantify the 

deviation between actual and predicted SGPA, enabling the selection of the 

most context-appropriate model. In general, the Neutrosophy-LSTM and 

Transformer methods produced comparable and superior results compared to 

other approaches.  

  Among the proposed methods, the Transformer model demonstrated 

outstanding performance, with a notable margin of 0.37 in the initial trial. These 

results were consistently confirmed on the validation dataset, with nearly identical 

scores, highlighting the stability and effectiveness of the proposed approach. 

Regarding the impact of classification and prediction layers, the addition of a 

dense layer slightly improved accuracy, as reflected in the performance gaps 

between models such as RNN versus LSTM and Transformer. 

  The dataset for SGPA prediction is heavily influenced by the specific 

academic major of the students. Hanoi Metropolitan University (HNMU) is a 

young, medium-sized institution located in Hanoi, Vietnam, with approximately 

7,000 students currently enrolled. The HNMU1 dataset focuses on students in the 

Primary Education major, which has an annual intake of only around 200 - 300 

students. As a result, the size of the HNMU1 dataset is relatively small, and the 

outcomes achieved in this context are deemed acceptable. 

  However, the overall accuracy remains below 66%, which is not 

sufficient for large-scale practical deployment. Therefore, future improvements 

should focus on expanding feature sets (including both academic/score-based 

and non-academic factors), integrating data generation mechanisms or hybrid 

architectures, to further improve predictive performance and provide stronger 

support for students, instructors, and administrators. 

  In response, we propose the development of hybrid deep learning models 

that leverage the strengths of neutrosophic-integrated architectures while 

enhancing predictive performance. This direction will be further elaborated in the 

next section - the NeutroGNT model. 

2.3. NeutroGNT model 

2.3.1. The theoretical basis for model selection 

Based on the findings presented in Section 2.2, it is evident that the 

Transformer not only maintains performance stability but also effectively 

leverages neutrosophic representations to improve prediction accuracy. This 



56 

 

highlights the fact that the effectiveness of neutrosophic logic is highly 

dependent on the underlying model architecture, and that the Transformer 

emerges as the most appropriate model in this context. 

However, overall prediction accuracy remained below 66% (in section 

2.2), which -though acceptable for small educational datasets like HNMU1 - 

falls short of practical deep learning expectations. This limitation is mainly due 

to two challenges: 

(i) the limited size and class imbalance of educational datasets, and 

(ii) the inherent uncertainty and subjectivity in academic evaluation. 

To address these issues, the dissertation proposes a hybrid deep learning 

framework that integrates: 

- CGAN, to augment data and improve class balance by generating 

realistic synthetic samples; 

- Neutrosophic representations, to model uncertainty and better reflect 

ambiguity in educational assessments; 

- A noise-injection strategy, to enhance robustness and prevent overfitting 

under noisy, small-scale conditions. 

Together Transformer, these components form the basis of the proposed 

NeutroGNT model, offering a comprehensive solution to the challenges of 

sparsity and uncertainty in real-world educational data.  

2.3.2. Proposed model 

In this section, the dissertation proposes a hybrid deep learning 

framework that integrates the Transformer architecture, CGAN, and 

neutrosophic input representation. Additionally, a noise-injection strategy is 

incorporated to enhance the generalization capability of the model. The overall 

model is presented in Figure 2.11. 
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Figure 2. 11. NeutroGNT model [CT5] 

  Figure 2.11 illustrates the general architecture of the neutrosophic 

neural network, incorporating CGAN and Transformer models. A noise-

injection strategy is incorporated to improve the robustness and generalization 

capabilities of the predictive model. The functioning of the model illustrated in 

Figure 2.11 is as follows: Given the real dataset (𝑋𝑟, 𝑦𝑟), we apply trapezoidal 

neutrosophic functions to capture uncertainty, indeterminacy, and 

inconsistency in the data to construct a new dataset denoted as (𝑋𝑛, 𝑦𝑛). 

Although neutrosophiclize process is utilized, deep learning models generally 

require large datasets. To fully leverage deep learning effectiveness, we further 

incorporate a CGAN to generate synthetic samples and augment the training 

dataset, forming (𝑋𝑓,𝑦𝑓). CGAN is used because it captures the underlying 

distribution of the original dataset, allowing for an expanded training set. The 

two datasets (𝑋𝑛, 𝑦𝑛) and (𝑋𝑓,𝑦𝑓) are then concated to form (𝑋𝑐, 𝑦𝑐). On this 

consolidated dataset (𝑋𝑐, 𝑦𝑐), a noise-injection strategy is incorporated to 

improve the robustness and generalization capabilities of the predictive model, 

forming (𝑋𝑔,𝑦𝑔). This approach is beneficial as it increases diversity, reduces 

computational complexity, improves prediction performance, enhances 

robustness to noise, handles missing data more effectively, aids feature 

discovery, and is particularly effective for small training sets.  
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Figure 2. 12. The pineline of NeutroGNT model 

Given that educational data is often incomplete or imbalanced across 

academic performance levels, CGAN is employed to generate conditionally 

sampled tabular data. This approach helps expand the learning space and improves 

the generalizability of deep learning models. CGAN also addresses data scarcity 

issues among minority student groups (e.g., those with very low or very high 

grades), which could otherwise bias the model’s predictions if left unaddressed. 

The use of neutrosophic logic allows the model to directly encode the three 

components of uncertainty: truth, indeterminacy, and falsity, an explicit modeling 

that traditional fuzzy systems have not adequately addressed. Furthermore, the 

introduction of controlled noise improves model stability, reduces overfitting, and 

enhances robustness against measurement errors or noisy data. 

Synthesizing both theoretical and empirical analyses, the proposed 

Transformer-based model emerges as the optimal architecture for handling 

uncertain educational data. This is achieved through its effective integration with 

neutrosophic representations and the data generation mechanism provided by 

CGAN. The principal contribution of this study lies in the design of an integrated 

neutrosophic encoding/decoding mechanism within a deep learning architecture, 

significantly enhancing prediction accuracy for early academic performance 

forecasting and supporting more informed educational decision-making. 
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  The principal contribution of this model lies in the integration of a 

neutrosophic encoder-decoder mechanism within a deep learning architecture, 

facilitating more accurate early prediction and identification of students at risk 

of academic failure. This, in turn, enables timely educational interventions and 

strategic support planning while also assisting institutions in identifying high-

achieving students for advanced academic opportunities. 

Algorithm 2.2. NeutroGNT - SGPA prediction with Neutrosophic logic, CGAN,  

and Transformer 

1: Input:  𝐷𝑟𝑒𝑎𝑙 : Real dataset of student academic records and SGPA 

2: 𝑍 : Latent noise vector for CGAN 

3: 𝐺 : Number of synthetic neutrosophic samples to generate 

4: 𝑇𝑁𝑒𝑢𝑡𝑟𝑜: Transformer model with neutrosophic encoding and noise injection 

5: Output:  Ŷ ∶ Predicted SGPA values for test set 

6: [𝑋𝑟 , 𝑦𝑟] ← Preprocess(𝐷𝑟𝑒𝑎𝑙) ▷ Clean, scale, sort by semester 

7: 𝑋𝑁𝑒𝑢𝑡𝑟𝑜  ← NeutrosophicTransform(𝑋𝑟) using trapezoidal membership functions 

8: [𝐺𝐶𝑇𝐺𝐴𝑁, 𝐷𝐶𝑇𝐺𝐴𝑁] ← Train CGAN([𝑋𝑁𝑒𝑢𝑡𝑟𝑜, 𝑦], 𝑍) 

9: for 𝑖 =  1 to 𝐺 do 

10:     𝑧𝑖← Sample(𝑍) 

11:     𝑦𝑖← SampleLabelDistribution(𝑦𝑟) 

12:     𝑋𝑓[𝑖] ← 𝐺𝐶𝑇𝐺𝐴𝑁(𝑧𝑖, 𝑦𝑖) ▷ Generate synthetic neutrosophic input 

13:     𝑦𝑓[𝑖]← 𝑦𝑖  

14: end for 

15: 𝐷𝑎𝑢𝑔 ← Concatenate([𝑋𝑁𝑒𝑢𝑡𝑟𝑜  , 𝑦𝑟], [(𝑋𝑓 , 𝑦𝑓]) 

16: 𝐷𝑎𝑢𝑔 ← InjectNoise(𝐷𝑎𝑢𝑔) ▷ Gaussian noise injection 

17: 𝑇𝑁𝑒𝑢𝑡𝑟𝑜 ← TrainTransformer(𝐷𝑎𝑢𝑔) 

18: Ŷ ← Predict(𝑇𝑁𝑒𝑢𝑡𝑟𝑜, 𝑋𝑡𝑒𝑠𝑡 ) 

19: return Ŷ 

 

The Transformer model operates combined to capture complex patterns 

and dependencies within the data  (𝑿𝒈,𝒚𝒈). Finally, performs defuzzification to 

convert neutrosophic values back to real values and outputs the final prediction. 

For ease of comparison, all models in this study utilize the Adam optimization 

algorithm. The errors are evaluated using MSE, MAE, RMSE, R². 
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Table 2. 10. The parameters of the models 

Hyper-parameters Selection 

Learning rate 𝛼 0.001 

Drop-out rate 0.2 

Number of epochs 200 

Batch size 32 

Loss function Mean square error 

Optimizer Adam 

 

The computational complexity of the proposed model depends on its 

core architectures, namely Transformer and CGAN. Specifically, the 

Transformer has a complexity of 𝑂(𝑛 · 𝑑²), where 𝑛 is the length of the input 

learning sequence and 𝑑 is the hidden vector dimension. 

For CGAN, training involves two networks: Generator (G) and Discriminator 

(D), with a complexity of 𝑂(𝐸 · (|𝐺|  + |𝐷|)), where 𝐸 denotes the number of 

training epochs. 

Although the computational cost is higher than that of baseline machine 

learning models, it remains moderate compared to modern deep learning 

architectures. The total training time largely depends on the number of epochs 

and the amount of generated samples. 

2.3.3. Experiments 

The experiments were conducted in a Conda environment with Python 

3.11, integrating libraries such as NumPy, SciPy, Pandas, Scikit-learn, 

PyTorch, and TensorFlow/Keras. Transformer were trained on GPU using 

CUDA 11.8. All computations were performed on a workstation with Intel Core 

i7-12700KF CPU, NVIDIA RTX 3060 GPU, and 32GB RAM. 

In this section, we use 06 datasets. 02 datasets among them are collected 

from Hanoi Metropolitan University [CT3] and Vietnam National University, 

Hanoi [CT4]. The remaining datasets were obtained from Covenant University 

in Nigeria ([61]), the University of Malaya in Malaysia ([62]), and the well-

known Portuguese school performance dataset ([64]). 

Malaya-Stud dataset  

This dataset ([62]), provided by Universiti Malaya and licensed under the 

Creative Commons Attribution 4.0 International License, includes data on 493 

students across 33 features. These features encompass demographic details 
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(such as gender, financial status, and living conditions), study habits, and key 

academic indicators. The SSC Grade (Secondary School Certificate) 

represents academic grades at the lower secondary level, while the HSC Grade 

(Higher Secondary Certificate) reflects academic achievement at the upper 

secondary level, both serving as foundational indicators of pre-university 

readiness. The last semester grade captures the student’s most recent SGPA at 

the university level, offering insights into current SGPA and adaptability to 

higher education. The overall grade, denoting the cumulative SGPA, is used 

as the primary target variable in predictive modeling to assess overall academic 

success. 

Portugal dataset  

The Portugal dataset ([64]) was collected from two Portuguese secondary 

encompassing academic records of 395 Mathematics students (Portugal-Math 

dataset) and 649 Portuguese Language students (Portugal-Lang dataset). 

Alongside demographic and behavioral data (e.g., study time, absenteeism, 

parental support), the standout feature of these datasets is the sequential 

recording of student performance at three critical stages of the academic year: 

G1 (first semester grade), G2 (mid-second semester grade), and G3 (final year 

grade). This time-series format clearly reflects the academic progression of 

each student and provides a strong foundation for developing machine learning 

models capable of forecasting future grades based on previous grades. 

Covenant-Priv dataset  

This dataset ([61]) comes from Covenant University, Nigeria. This large-

scale educational dataset contains academic information from 1841 

undergraduate students majoring in engineering from 2002 to 2014. It includes 

records of students from seven disciplines: Chemical Engineering, Civil 

Engineering, Computer Engineering, Electrical and Electronics Engineering, 

Information and Communication Engineering, Mechanical Engineering, and 

Petroleum Engineering. The data includes semester GPA from the first to the 

fifth year, along with the cumulative GPA (CGPA), with scores ranging from 

0 to 5. 

  The details of the datasets are described in Table 2.11. 
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Table 2. 11. Training dataset description 

 Name M S K Case X Input feature Output 

1 

HNMU2  551 52 88 

1 1 GPA Semester 1 GPA 

Semester 2 

2 2 GPA Semester 1, GPA 

Semester 2 

GPA 

Semester 3 

3 3 GPA Semester 1, GPA 

Semester 2, GPA Semester 3 

GPA 

Semester 4 

2 

VNU  271 43 91 

2 2 GPA Semester 1, GPA 

Semester 2 

GPA 

Semester 3 

3 3 GPA Semester 1, GPA 

Semester 2, GPA Semester 3 

GPA 

Semester 4 

3 Malaya- Stud 493 4 16 3 3 HSC, SSC, Last Overall 

4 Portugal-Math 395 3 33 2 2 G1, G2 G3 

5 Portugal-Lang 649 3 33 2 2 G1, G2 G3 

6 
Covenant-Priv 1841 6 9 3 3 First Year GPA, Second 

Year GPA, Third Year GPA 

Fourth Year 

GPA 

Data’s name, Sample size (M), Number of score-related features (S), the total of features 

(k), Input feature count (X), case using, name input feature, name output feature and 

web- link to data sources. 

2.3.4. Results and discussions 

In this subsection, we present three case studies of student data to 

illustrate the proposed method. Prior to experimentation, all records were 

preprocessed to remove missing values and eliminate scores outside the 0–10 

range. The datasets were then split into 80% for training and 20% for testing.  

Several experimental integration scenarios were designed for 

comparison, including: 

- Integrating the neutrosophic framework with Transformer (Neutro_T), 

- Integrating the neutrosophic framework and CGAN with Transformer 

(NeutroCT), 

-  The combination of all three components: the neutrosophic framework, 

CGAN and noise injection with Transformer (NeutroGNT). 

Detailed experiments are presented for each case as follows. 

Results for Case 1. The experimental results for Case 1 are presented in 

Table 2.12 for HNMU2 dataset.  
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Table 2. 12. Demonstrated errors (averaged over 10 runs - case 1) 

Dataset  Real_T Neutro_T NeutroCT NeutroGNT 

HNMU2 MSE 0.519 ± 0.028 0.474 ± 0.040 0.469 ± 0.031 0.458 ± 0.011 

MAE 0.576 ± 0.014 0.560 ± 0.029 0.558 ± 0.022 0.548 ± 0.010 

R² -0.087±0.058 0.008 ± 0.085 0.017 ± 0.064 0.041 ± 0.022 

Although NeutroGNT achieved the lowest MSE (0.458 ± 0.011) and 

showed a notable 12.8% improvement in R² compared to the Real_T model, 

the resulting R² value remains relatively low (0.041 ± 0.022), hovering near the 

threshold where the model fails to explain the variance in the data. This 

suggests that despite the reductions in absolute and squared errors, the model's 

generalization and explanatory capabilities are still limited, especially in real-

world scenarios like the HNMU2 dataset, which involves high levels of noise 

and uncertainty. 

Results for Case 2. The experimental results for Case 2 are presented 

in Table 2.13.  

Table 2. 13. Demonstrated errors (averaged over 10 runs - case 2) 

Dataset  Real_T Neutro_T NeutroCT NeutroGNT 

HNMU2 

 

MSE 0.323 ± 0.101 0.183 ± 0.024 0.208 ± 0.052 0.181 ± 0.030 

MAE 0.459 ± 0.085 0.339 ± 0.025 0.363 ± 0.053 0.338 ± 0.035 

R² 0.077 ± 0.288 0.478 ± 0.069 0.407 ± 0.147 0.482 ± 0.084 

VNU  

MSE 0.302 ± 0.031 0.320 ± 0.042 0.321 ± 0.044 0.260 ± 0.046 

MAE 0.441 ± 0.032 0.453 ± 0.039 0.451 ± 0.042 0.381 ± 0.054 

R² 0.201 ± 0.083 0.153 ± 0.112 0.150 ± 0.116 0.202 ± 0.140 

Portugal- 

Math 

MSE 2.536 ± 2.129 1.263 ± 0.080 1.409 ± 0.135 1.197 ± 0.074 

MAE 1.065 ± 0.567 0.770 ± 0.069 0.844 ± 0.077 0.725 ± 0.043 

R² 0.505 ± 0.415 0.754 ± 0.016 0.725 ± 0.026 0.767 ± 0.014 

Portugal-

Lang 

MSE 0.704 ± 0.550 0.423 ± 0.014 0.435 ± 0.032 0.440 ± 0.033 

MAE 0.528 ± 0.241 0.403 ± 0.004 0.413 ± 0.027 0.425 ± 0.027 

R² 0.711 ± 0.225 0.826 ± 0.006 0.822 ± 0.013 0.820 ± 0.013 

In Case 2, the proposed neutrophilization-based deep learning models 

consistently demonstrate superior and stable performance across all four 

benchmark datasets. Notably, the NeutroGNT model achieves remarkable 

results on the VNU dataset, with an MSE of 0.260 ± 0.046 and MAE of 0.381 

± 0.054. More importantly, on the HNMU2 dataset, the R² score of NeutroGNT 

increases by more than 40.5% compared to the baseline Real_T model, 



64 

 

highlighting a substantial enhancement in predictive capability. These findings 

reinforce the robustness and effectiveness of the NeutroGNT model, 

positioning it as a strong candidate for broader applications in future 

educational datasets. 

On the Portugal-Math dataset, the NeutroGNT model shows a notable 

improvement in the R² score, reaching 0.767 ± 0.014, which represents a 26.2% 

increase over Real_T, while the MSE is also reduced by 1.339.  

Although NeutroGNT achieved the best performance in terms of MSE and 

MAE across most datasets (HNMU2 and Portugal-Math), several limitations 

remain noteworthy. On the HNMU2 dataset, despite NeutroGNT having the 

highest R² (0.482 ± 0.084), the relatively large standard deviation reflects a lack 

of stability across multiple runs. This is particularly critical in real-world 

educational settings, where models must ensure consistency and high reliability. 

Results for Case 3 

The experimental results for Case 3 are presented in Table 2.14. For the 

dataset from Universiti Malaya, three input features - "HSC", "SSC", and 

"Last" - are used to predict the "Overall" score, and all values are normalized 

to a 10-point scale to ensure consistency. The Covenant-Priv dataset is retained 

in its original scale for comparison with previous studies, where the input 

features are "First Year GPA", "Second Year GPA", and "Third Year GPA", 

and the output is the "Final CGPA". 

Table 2. 14. Demonstrated errors (averaged over 10 runs - case 3) 
     

Dataset  Real_T Neutro_T NeutroCT NeutroGNT 

HNMU2  

MSE 0.212 ± 0.088 0.208 ± 0.081 0.175 ± 0.082 0.152 ± 0.025 

MAE 0.374 ± 0.078 0.382 ± 0.083 0.347 ± 0.081 0.322 ± 0.029 

R² 0.047 ± 0.393 0.068 ± 0.364 0.216 ± 0.367 0.319 ± 0.111 

VNU  

MSE 0.119 ± 0.037 0.109 ± 0.041 0.121 ± 0.061 0.088 ± 0.017 

MAE 0.281 ± 0.039 0.271 ± 0.051 0.282 ± 0.074 0.242 ± 0.026 

R² 0.549 ± 0.140 0.588 ± 0.154 0.541 ± 0.230 0.666 ± 0.064 

Malaya –

Stud 

MSE 0.495 ± 0.563 0.342 ± 0.038 0.412 ± 0.063 0.400 ± 0.055 

MAE 0.505 ± 0.249 0.434 ± 0.025 0.485 ± 0.048 0.473 ± 0.036 

R² 0.788 ± 0.241 0.854 ± 0.016 0.824 ± 0.027 0.829 ± 0.024 

Covenant -

Priv 

 

MSE 0.023 ± 0.001 0.022 ± 0.001 0.023 ± 0.003 0.019 ± 0.002 

MAE 0.116 ± 0.003 0.114 ± 0.002 0.118 ± 0.008 0.107 ± 0.005 

R² 0.949 ± 0.002 0.952 ± 0.001 0.950 ± 0.007 0.958 ± 0.003 

 RMSE 0.152 ± 0.003 0.147 ± 0.002 0.150 ± 0.009 0.138 ± 0.005 
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On the Malaya-Stud dataset, all models performed well with consistently 

high R² scores, with Neutro_T standing out by achieving the highest R² (0.854) 

and the lowest MSE (0.342), reflecting both stability and high prediction 

accuracy. Meanwhile, VNU proved more challenging, as all models yielded 

relatively low and fluctuating R² scores. 

However, in more complex datasets such as HNMU2, the gains are 

limited (R² remains below 0.32), reflecting the strong presence of noise, 

contextual variability, and subjectivity in the data. This indicates that, despite 

incorporating GAN-based data generation and multi-attribute features, the 

model still faces challenges when dealing with inconsistent grading standards, 

institutional heterogeneity, and hidden latent factors not captured in the 

datasets. 

Among the evaluated models, NeutroGNT stands out for achieving the 

best balance between accuracy and robustness on the Covenant-Priv dataset. It 

recorded the highest average R² score (0.958 ± 0.003), clearly outperforming 

other models. Notably, its average RMSE (0.138 ± 0.005) is 0.138 lower than 

that of the Real_T model.  

Furthermore, it achieved a minimum RMSE of 0.1342, which is lower 

than the best result previously reported by Aderibigbe et al (2019). 

Additionally, its minimum MSE of 0.018 is the lowest across the entire study, 

and the maximum R² of 96.05% surpasses all prior benchmarks. These results 

confirm the superior predictive performance and effectiveness of the 

NeutroGNT model. 

  These results underscore the superior overall performance of the 

NeutroGNT model under average evaluation. Collectively, the Neutro 

approach emerges as a reliable and effective predictive framework for all cases 

1, 2 and 3, particularly well-suited for international educational datasets and 

complex academic forecasting tasks.  

2.4. Appendix to Chapter 2  

2.4.1. Overview of Neutrosophy theory 

  Neutrosophy, first introduced by Florentin Smarandache ([74]; [75]), is 

a philosophical framework and mathematical foundation designed to handle 

uncertainty, imprecision, indeterminacy, and inconsistency in knowledge 

representation. Unlike classical logic, which operates under binary true/false 
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conditions, and fuzzy logic, which introduces a degree of truth, neutrosophy 

simultaneously considers three components for any proposition or statement: 

truth (T), indeterminacy (I), and falsity (F). 

   Definition 2.1. ([74]) A neutrosophic set (NS) A, defined on the universe 

of discourse 𝑋 and denoted generally by 𝑥, can be represented in following form: 

                                     𝐴 = {(𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)): 𝑥 ∈ 𝑋}           (2.2) 

where each element 𝑥 in the set 𝑋 is associated with three membership 

functions: 𝑇𝐴(𝑥)  the truth membership function, 𝑇𝐴: 𝑋 → [0,1] , representing 

the degree of confidence or certainty that 𝑥 belongs to the set, the indeterminacy 

membership function, 𝐼𝐴: 𝑋 → [0,1], representing the degree of uncertainty or 

ambiguity about whether 𝑥  belongs to the set, and 𝐹𝐴: 𝑋 → [0,1]: the falsity 

membership function, representing the degree of skepticism or disbelief that 𝑥  

belongs to the set. The sum of these membership values must satisfy the 

condition 0 ≤  𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3 for all  𝑥 ∈ 𝑋, ensuring that the 

total membership remains within a valid range.  

  Example 2.1. The single valued trapezoidal neutrosophic number, 

[𝑎, 𝑏, 𝑐, 𝑑; 𝑇𝑁 , 𝐼𝑁 , 𝐹𝑁], 𝑎 ≤ 𝑏 ≤ 𝑐 ≤ 𝑑; 0 ≤ 𝑇𝑁 , 𝐼𝑁 , 𝐹𝑁 ≤ 1, in the general 

formula, has following membership functions 

𝑇(𝑥) =

{
 
 

 
 
0 𝑖𝑓 𝑥 ≤ 𝑎, 𝑥 > 𝑑
(𝑥 − 𝑎)𝑇𝑁
𝑏 − 𝑎

𝑖𝑓 𝑎 < 𝑥 ≤ 𝑏

𝑇𝑁 𝑖𝑓 𝑏 < 𝑥 ≤ 𝑐
(𝑑 − 𝑥)𝑇𝑁
𝑑 − 𝑐

𝑖𝑓 𝑐 < 𝑥 ≤ 𝑑;

 

                         𝐼(𝑥) =

{
 
 

 
 
1 𝑖𝑓 𝑥 ≤ 𝑎, 𝑥 > 𝑑
𝑏−𝑥+(𝑥−𝑎)𝐼𝑁

𝑏−𝑎
𝑖𝑓 𝑎 < 𝑥 ≤ 𝑏

𝐼𝑁 𝑖𝑓 𝑏 < 𝑥 ≤ 𝑐
𝑥−𝑐+(𝑑−𝑥)𝐼𝑁

𝑑−𝑐
𝑖𝑓 𝑐 < 𝑥 ≤ 𝑑;

                    (2.3) 

                      𝐹(𝑥) =

{
 
 

 
 
1 𝑖𝑓 𝑥 ≤ 𝑎, 𝑥 > 𝑑
𝑏−𝑥+(𝑥−𝑎)𝐹𝑁

𝑏−𝑎
𝑖𝑓 𝑎 < 𝑥 ≤ 𝑏

𝐹𝑁 𝑖𝑓 𝑏 < 𝑥 ≤ 𝑐
𝑥−𝑐+(𝑑−𝑥)𝐹𝑁

𝑑−𝑐
𝑖𝑓 𝑐 < 𝑥 ≤ 𝑑,

 

𝑥 ∈ 𝑅, are used in this context, where 𝑇𝑁 , 𝐼𝑁 , 𝐹𝑁  are the truth degree, the 

indeterminacy degree, and the falsity degree, respectively. 

In this example, we give a simple example on the single-valued 

trapezoidal neutrosophic functions  𝑁 = [0,0.2,3.7,4.1; 1.0,0.1,0.5]. According 
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to Definition 2.1, we receive the truth membership function, indeterminacy 

membership function and falsehood membership function as follows: 
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Figure 2. 13. The single-valued trapezoidal neutrosophic functions 

The graphical representations of the neutrosophic number 𝑁 is given in 

Figure 2.13. Leveraging the strength of fuzzy and neutrosophic sets in 

handling ambiguous data, recent studies have integrated neutrosophic sets 
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(NS) with machine learning and deep learning models. Ejegwa et al. ([73]) 

showed the value of fuzzy sets in pattern recognition using a soft computing 

approach. The feasibility of fuzzy sets in machine learning through soft 

computing methods and provided applications in pattern recognition problems 

of construction materials and mineral mines have been discussed. 

In our framework, a neutrosophic encoder-decoder module applies 

neutrosophic logic to better manage uncertainty and indeterminacy in input and 

output data. 

  The idea of incorporating neutrosophic logic into deep learning models 

has also been proposed by some authors. For instance, in the work of Mayukh 

et al. ([76]), the authors utilized a neutrosophic approach in several extended 

LSTM and Transformer models for sentiment analysis tasks and demonstrated 

the potential and effectiveness of this combined approach. 

2.4.2. Summary of GAN and CGAN 

 2.6.1.1. Generative Adversarial Networks 

Generative Adversarial Networks (GAN) represent a powerful class of 

unsupervised deep learning models in which two neural networks, the 

Generator (G) and the Discriminator (D), engage in a dynamic adversarial 

process ([77]). As stated, the Generator seeks to map a latent noise vector 𝑧 ∽

𝑝(𝑧) to a data-like output 𝑥̃ = 𝐺(𝑧), while the Discriminator learns to 

distinguish real data samples 𝑥 ∽ 𝑃𝑟 from the synthetic ones 𝑥̃ ∽ Ρ𝑔. The 

competition between Generator G and Discriminator D is formulated as a 

minimax objective, illustrated in equation (2.5): 

min
𝐺
max
𝐷
𝐸𝑥∽Ρ𝑟[𝑙𝑜𝑔𝐷(𝑥)] + 𝐸𝑥̃∽Ρ𝑔[log (1 − 𝐷(𝑥̃)],               (2.5) 

where Ρ𝑟 is the data distribution and Ρ𝑔 is the distribution implicitly defined by 

the generator's output.  

In case Discriminator D is trained to the optimal level before each 

parameter update of Generator G, minimizing the value function minimizes the 

Jensen-Shannon divergence between Ρ𝑟 và Ρ𝑔. However, doing so often leads 

to the disappearance of the derivative when Discriminator D is saturated. 
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2.6.1.2. Conditional generative adversarial network (CGAN) 

The Conditional Generative Adversarial Network (CGAN) is a variant of 

the original GAN ([19]). Since CGAN is a conditional generative model, both 

the Generator and Discriminator networks are trained simultaneously, with 

both receiving the label of the data as input, ensuring they generate and evaluate 

data that aligns with specific labels. 

 

Figure 2. 14. CGAN model 

The CGAN operates as follows: the Generator network takes as input a 

noise vector 𝑧 and a condition label 𝑦’, generating new data according to the 

condition provided by 𝑦. The real samples (𝑥, 𝑦’) and the newly generated 

samples (𝑥’, 𝑦’) are then passed to the Discriminator network, which 

distinguishes between real and fake samples. This process is akin to a min-max 

game between two players, with the loss function calculated as 

𝑚𝑖𝑛
𝐺
𝑚𝑎𝑥
𝐷

𝑉(𝐷, 𝐺) = 𝐸𝑥∽𝑝𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥 | 𝑦)] + 𝐸𝑧∽𝑝𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧 | 𝑦) | 𝑦) )].   (2.6) 

For real data input 𝑥 and label y, 𝑙𝑜𝑔D(x | y) is the probability that the 

Discriminator believes the data 𝑥 (with label 𝑦) is real. The Discriminator's goal is 

to maximize this probability as much as possible. Meanwhile, 𝐺 (𝑧 | 𝑦) generates 

fake data using the Generator model from the noise matrix 𝑧, based on label 𝑦. 

log(1 − 𝐷(𝐺(𝑧 | 𝑦) | 𝑦) ) is the probability that the Discriminator believes the 

newly generated data (with label 𝑦) is fake. The Discriminator aims to maximize 

this probability, while the Generator's goal is to make 𝐷(𝐺(𝑧 | 𝑦) | 𝑦) as close to 1 

as possible, meaning it has successfully fooled the Discriminator. 

The principle for model selection is that the CGAN model with the 

smallest FID value (FID is a method for assessing the difference between 

generated data and real data) will be chosen.  
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𝐹𝐼𝐷 = ||𝜇𝑟 − 𝜇𝑔||
2 + 𝑇𝑟(𝛴𝑟 + 𝛴𝑔 − 2(𝛴𝑟𝛴𝑔 )

1

2,                        (2.7) 

where 𝜇𝑟 , 𝜇𝑔 are the average vector of features of real data and generated data. 

𝛴𝑟 , 𝛴𝑔 are the variance matrix of real data and generated data. 𝑇𝑟 is the trace of 

the matrix, i.e. the sum of the elements on the main diagonal of the matrix. ||.|| 

is the Euclidean distance between two vectors. 

2.4.3. The Transformer model for the SGPA prediction task 

The architecture of the Transformer model in this chapter is specifically 

designed to process tabular data composed entirely of continuous features. The 

model consists of three main components: a projection layer for the continuous 

input features, a stack of 𝑁 Transformer blocks, and a multi-layer perceptron 

(MLP). Each Transformer block incorporates a multi-head self-attention 

mechanism and a position-wise feed-forward subnetwork. The overall 

architecture is illustrated in Figure 2.14. 

Assume that a data sample is represented by the pair (𝑥, 𝑦), where 

𝑥𝑐𝑜𝑛𝑡 ∈ 𝑅
𝑃 is a vector of 𝑃 continuous features. 

 

Figure 2. 15. The basic Transformer model for the SGPA prediction task. 
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First, the input vector 𝑥𝑐𝑜𝑛𝑡 is divided into a sequence of 𝑘 values, and 

each value is projected into a 𝑑-dimensional space through a shared linear 

projection layer. This results in an input embedding matrix 𝑋𝑒𝑚𝑏 ∈ 𝑅
𝑃×𝑑, 

where each row represents the score of a subject transformed into a feature 

vector. Each score is mapped to a feature vector via the linear projection, 

allowing the model to learn complex relationships between scores without the 

need for positional encoding or categorical embeddings. 

The embedded matrix 𝑋𝑒𝑚𝑏 is then passed through a sequence of 𝑁 

Transformer layers. These layers iteratively update the representation of each 

element in the sequence by aggregating contextual information from the entire 

sequence. This process is denoted as the function 𝑓𝜃 

            𝑓𝜃(𝑋𝑒𝑚𝑏) = 𝐻 = {ℎ1, . . . , ℎ𝑃}, ℎ𝑖 ∈  𝑅
𝑑 , 𝑖 = 1, . . , 𝑃.         (2.8) 

After obtaining the contextualized embeddings 𝐻, an aggregation 

operation, such as averaging or flattening, is performed to produce a single 

vector ℎ𝑓𝑖𝑛𝑎𝑙 ∈   𝑅
𝑃×𝑑. This vector is then fed into a multi-layer perceptron 

(MLP) denoted as 𝑔𝜓 to generate the final prediction output. 

                                    𝑦̂  =  𝑔𝜓(ℎ𝑓𝑖𝑛𝑎𝑙).                                                        (2.9)            

In regression tasks utilizing the Transformer architecture, the MSE is 

widely regarded as the most appropriate and commonly used loss function. 

MSE effectively measures the average of the squared differences between 

predicted values and actual targets, making it well-suited for learning 

continuous-valued outputs. Its mathematical properties, being convex and 

differentiable, facilitate stable and efficient optimization through gradient-

based algorithms such as Adam or SGD. Additionally, the output structure of 

Transformer models, particularly those adapted for tabular or time-series data, 

naturally aligns with the scalar or vector predictions required for MSE-based 

regression. As a result, MSE remains the default choice in most Transformer-

based regression frameworks, ensuring both accuracy and optimization 

efficiency.  

All parameters of the model, including the projection layer, Transformer 

layers 𝜃, and MLP 𝜓, are trained end-to-end using first-order optimization 

algorithms such as Adam. 
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Transformer Layers 

Each Transformer layer enables any given score embedding to attend to 

all other scores in the sequence, thereby allowing the model to learn inter-

subject and inter-semester relationships as well as factors influencing students’ 

academic progress. The structure of each layer includes a multi-head self-

attention mechanism, followed by two linear feed-forward layers. Each step is 

equipped with residual connections and layer normalization to stabilize and 

enhance the learning process. 

                       Attention(𝑄, 𝐾, 𝑉) =softmax (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 .                           (2.10) 

Where 𝑄 = 𝑋𝑒𝑚𝑏𝑊𝑄, 𝐾 = 𝑋𝑒𝑚𝑏𝑊𝐾, 𝑉 = 𝑋𝑒𝑚𝑏𝑊𝑉; 𝑊𝑄, 𝑊𝐾, 𝑊𝑉 ∈ 𝑅
𝑑×𝑑𝑘  are 

learnable projection matrices. 𝑑𝑘 is the dimensionality of the key/query vectors. 

The conclusion of Chapter 2 

The prediction of students’ SGPA plays an essential role in monitoring 

academic progress, enabling early interventions, and supporting personalized 

educational planning. However, in real-world educational environments, SGPA 

is influenced by numerous uncertain, subjective, and evolving factors - ranging 

from multi-component assessment structures to shifts in teaching methods and 

the psychological states of learners. As such, SGPA should not be interpreted 

as a static or precise value but rather as a dynamic indicator affected by 

uncertainty and variability. 

This chapter has highlighted the need for robust predictive models that 

can handle incomplete and uncertain educational data. Two key frameworks 

were introduced: NeutroDLs and NeutroGNT. NetroGNT achieved a 

minimum MSE of 0.018 and a maximum R² of 96.05%, significantly 

outperforming conventional methods. 

The results of the SGPA prediction study (a short-term regression task 

aimed at monitoring academic progress and providing timely individual 

support) in this chapter lay the foundation and provide motivation for 

developing the graduation classification prediction (a long-term classification 

problem with strategic, system-wide implications that supports policy planning 

and quality enhancement in education under uncertain and data-scarce 

conditions), to be addressed in the next chapter.  
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CHAPTER 3: ENHANCING THE PERFORMANCE OF EARLY 

GRADUATION CLASSIFICATION MODELS 

To further improve the performance of early graduation prediction 

models for university students, this chapter presents two advanced hybrid deep 

learning models: LATCGAd and AWG-GC. Both models are designed to 

address the challenges of limited and imbalanced educational data by 

automatically augmenting training data and leveraging state-of-the-art deep 

learning architectures to improve predictive capability. LATCGAd combines 

Transformer, CGAN, and Adaptive Layer Normalization (AdaLN) to improve 

data quality, stabilize training, and reduce overfitting, reaching 96.97% 

accuracy and 73.66% F1-score. AWG-GC integrates Autoencoder, 

Wasserstein GAN, and Graphormer for joint representation learning, data 

augmentation, and classification, achieving 98.54% accuracy and 99.25% F1-

score, significantly surpassing baseline models. The contents of this chapter 

are based on the research presented in publications [CT2], [CT7] and [CT8]. 

3.1. Problem formulation 

3.1.1. Early prediction of graduation classification problem 

At a higher education institution, a student’s graduation classification is 

determined based on their final GPA upon completion of all academic 

semesters.  

The early prediction of graduation classification task refers to estimating 

a student’s final graduation outcome (e.g., Excellent, Good, Medium…) based 

on academic data from their early semesters. 

The conversion scale for graduation classification is shown in Table 3.1.   

Table 3. 1. Graduation classification based on final GPA 

Classification 10-Point Scale 4-Point Scale 

Excellent [9.0–10] [3.6–4.0] 

Very Good [8.0–9.0) [3.2–3.6) 

Good [7.0–8.0) [2.5–3.2) 

Medium [5.0–7.0] [2.0–2.5) 

Poor [4.0–5.0) [1.0–2.0) 

Very Poor [0–4.0) [0–1.0) 
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Practical Significance 

 For students: Early awareness of their potential graduation 

classification enables them to adjust their study plans, select courses 

more effectively, improve academic performance, and make better-

informed career decisions. 

 For institutions: Early prediction helps identify students at risk of low 

graduation outcomes or delayed completion, allowing timely support and 

intervention. It also supports administrators in refining curriculum 

design, admission strategies, and academic policies. 

Data Used: In addition to academic scores, predictive models can 

incorporate personal factors (e.g., gender, interests, soft skills), family 

background (e.g., parents' education, region), societal influences (e.g., learning 

habits, peer environment), and institutional characteristics (e.g., faculty quality, 

infrastructure, curriculum). 

The problem is formulated as follows: Given input data encompassing 

personal information, study habits, environmental factors, and grades during 

the first and second years of undergraduate study, the goal is to accurately 

predict the student’s final graduation classification. 

Formally, let the dataset consist of 𝑀 samples, each represented by 𝑃 

features. These features include students’ academic scores from the first and 

second years of university, along with encoded survey data reflecting personal 

background, study habits, and environmental conditions. 

  𝑋 = {𝑥𝑗 = (𝑥1
𝑗
, 𝑥2

𝑗
, … , 𝑥𝑃

𝑗
)|𝑥𝑖

𝑗
∈ ℝ, 𝑖 ∈ {1, . . , 𝑃}, 𝑗 ∈ {1,… ,𝑀}},             (3.1) 

and a portion of the data is labeled 

  𝑌 = {𝑦1, 𝑦2, … , 𝑦𝐿 }, 𝑦𝑖 ∈ {1,… ,6}, 𝑖 ∈ {1,… , 𝐿}, 𝐿 ≥ 1; 𝐿 ≪ 𝑀              (3.2) 

associated with graduation classifications for each student, corresponding to 

the following categories: Excellent, Very Good, Good, Medium, Poor or Very 

Poor (already encoded). 

Problem requirement 

Model construction: Determine a mapping 𝑓: ℝ𝑃 → ℕ such that it can 

accurately predict the graduation classification 𝑦𝑗 ∈ {1, . . ,6} ⊂ ℕ for each 

student 𝑥𝑗 ∈ 𝑋 ⊂ ℝ𝑃 , 𝑗 = 1, . . , 𝑀. 
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Building predictive models for early graduation classification is a valuable 

tool for personalized academic advising and strategic educational planning. By 

integrating both academic and non-academic data, such models offer a more 

holistic view of student potential, contributing to improved training quality and 

more effective educational management. 

3.1.2. Learning Analytics with graph data 

In addition to the related works on graduation classification discussed in 

Subsection 1.3.1, this subsection focuses on the LAGT model. The LAGT 

(Learning Analytics with Graph Convolutional Network and Transformer) 

framework, introduced in [CT2], constitutes a significant advancement in 

graduation classification prediction. Its architecture is organized into two main 

phases: a preprocessing phase using GCN to augment and normalize the training 

set by leveraging structural relationships among students, courses, and learning 

factors; and a prediction phase using Transformer to capture semantic 

representations and model complex spatio-temporal dependencies among input 

variables. This division allows each component to contribute its unique strengths 

- GCN for structural representation and feature enrichment, and Transformer for 

context-aware learning with high accuracy. 

Experimental results on three datasets demonstrate that LAGT achieves 

accuracy of up to 92.73%, outperforming strong baselines such as DNN, GAT, 

and standalone Transformer. These findings validate the effectiveness of 

integrating GCN and Transformer for educational data and suggest that additional 

techniques, such as data augmentation (e.g., SMOTE), can further improve 

performance. Building on this foundation, the subsequent part of this dissertation 

extends the LAGT model into more advanced hybrid architectures (LATCGAd, 

AWG-GC) to address the persistent challenges of small-scale, imbalanced, and 

uncertain datasets, thereby enhancing the robustness and reliability of predictive 

outcomes. 

3.2. The LATCGAd model 

3.2.1. The theoretical basis for model selection 

Early prediction of students’ graduation classification in a fragmented, 

non-uniform, and small-scale educational dataset environment requires a deep 
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learning model capable of handling imbalanced data, extracting features 

effectively, and learning stably under low-data conditions. 

In parallel, recent advancements in generative models, particularly GAN 

and their variant CGAN, have emerged as state-of-the-art solutions for 

generating high-quality synthetic data. This is especially relevant given that 

small and imbalanced datasets remain a major barrier to deploying effective 

large-scale LA systems.  

Based on these requirements, the dissertation proposes the LATCGAd 

model, a hybrid architecture that integrates three main components: CGAN, 

Transformer Encoder, and Adaptive Layer Normalization (AdaLN). Each 

component supports specific learning functions and complements the others to 

enhance the overall performance of the model. 

- Conditional data augmentation with CGAN: To address the issue of 

class imbalance commonly found in educational datasets, CGAN is employed 

as a data augmentation technique. In this approach, CGAN is employed to 

generate synthetic samples 𝑥∗ ∼ 𝑝𝑔(𝑥|𝑦), where 𝑦 ∈  {𝐶1, 𝐶2, … , 𝐶𝑘} 

represents the graduation classification labels. These labels correspond to 

distinct academic performance levels, which are often imbalanced in real-world 

datasets, such as the "medium" or "excellent" classes in the HNMU1 and 

HNMU2 datasets. 

CGAN is trained to generate label-conditioned synthetic data, where the 

Generator learns to mimic real samples and the Discriminator distinguishes 

them based on the same label. This approach helps balance class distribution 

by augmenting minority classes, thereby improving model performance. (see 

Subsection 2.4.2, Chapter 2). 

- Extracting complex relationships with Transformer Encoder: After the 

dataset has been augmented, the model employs a Transformer Encoder to learn 

nonlinear and long-range dependencies among input features. Unlike RNN or 

LSTM, Transformer do not rely on sequential processing; instead, they fully 

utilize the attention mechanism, enabling efficient learning even when the input 

data lacks sequential structure. At each encoder layer, the feature representation 

𝑋 ∈ 𝑅𝑛×𝑑  is updated through a multi-head attention mechanism. With multiple 

attention heads operating in parallel, the model can capture multi-dimensional 
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dependencies among input features such as GPA, course outcomes, or non-

academic factors. 

- Stabilizing training with Adaptive Layer Normalization (AdaLN). 

Although Transformers exhibit powerful learning capabilities, they tend to 

overfit and converge slowly on small datasets. To address this, the study 

incorporates AdaLN into each Transformer Encoder layer. AdaLN is an 

extension of Layer Normalization that adapts normalization parameters based 

on the characteristics of the input data. It is particularly useful in deep learning 

models like Transformers, where input distributions can vary throughout 

training. AdaLN enhances model performance by dynamically adjusting 

parameters to reduce bias and variance across layers. In standard Layer 

Normalization, normalization is applied by computing the mean 𝜇 and standard 

deviation 𝜎 of the inputs: 

                                 𝑥𝑖̂ =
𝑥𝑖−𝜇

𝜎
.                                                         (3.3) 

After normalization, learned parameters 𝛾 and 𝛽 (scale and shift) are applied: 

                                     𝑦𝑖 = 𝛾𝑥𝑖̂ + 𝛽.                                                  (3.4) 

AdaLN adapts these parameters for each input dynamically: 

                      𝑦𝑖 = 𝛾(𝑥) ⋅ 𝑥𝑖̂ + 𝛽(𝑥),                                               (3.5) 

where 𝛾(𝑥) and 𝛽(𝑥) are computed based on the input 𝑥 for each layer. These 

parameters are learned through a sub-network, allowing for adjustment 

according to the data's characteristics. This is particularly useful in cases where 

the data has a non-uniform distribution, as it helps reduce internal covariate 

shift, improves convergence, and lowers the risk of overfitting. In Transformer 

models, AdaLN improves stability and efficiency, especially when working 

with small or heterogeneous datasets, ensuring effective learning across layers. 

In general, the integration of CGAN, Transformer Encoder, and AdaLN 

into the hybrid LATCGAd model provides three main benefits: (a) Addressing 

label imbalance: CGAN conditionally generates samples for minority classes. 

(b) Learning powerful representations: The Transformer captures multi-

dimensional nonlinear relationships among features. (c) Ensuring stable 

convergence and reducing overfitting: AdaLN adapts the normalization process 

contextually, supporting effective learning on small datasets. 
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3.2.2. Proposed model 

Figure 3.1 illustrates the LATCGAd model, where the combination of 

the CGAN and Transformer Encoder provides an effective solution for 

accurately predicting graduation classification on small and imbalanced 

datasets. In this model, CGAN expands and balances the dataset by generating 

synthetic samples for specific labels, addressing the issue of data scarcity in 

underrepresented groups. Once the dataset is expanded and balanced, the 

Transformer Encoder learns from this diverse dataset, optimizing its ability to 

capture complex relationships among input features. Notably, to improve 

accuracy and ensure robust performance on small datasets, the model integrates 

AdaLN into each Transformer Encoder layer. AdaLN automatically adjusts 

normalization parameters based on the characteristics of the input data. It 

reduces bias and variance across network layers, enhancing convergence and 

overall model performance. As a result, the Transformer learns more stably and 

mitigates overfitting-a common challenge when working with small datasets. 

The tight integration of CGAN, AdaLN, and Transformer not only improves 

accuracy but also enhances precision, recall, and F1-score, enabling the model 

to make more reliable and comprehensive predictions. 

 

 

Figure 3. 1. The LATCGAd model ([CT7]) 
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The operation of the proposed model is depicted in Figure 3.1. Real data 

samples 𝑋𝑟 (which contain student-related information, such as survey data and 

academic scores from the first two years of study) are collected along with the 

labels 𝑦’ (represents the actual academic ranking after students graduate, 

serving as the ground truth labels for training and evaluating the model). This 

label is used in both the CGAN and Transformer components. In CGAN, it acts 

as a condition during data generation to ensure that the synthetic data aligns 

with specific academic ranking categories. In the Transformer model, it serves 

as the target variable for the classification task.  

To generate additional synthetic data and expand the training dataset, we 

propose integrating CGAN into the model. Using the original data, we train the 

CGAN model, where the generator takes in noise vectors 𝑧 (𝑧 is a random input 

that allows the Generator to create diverse synthetic data instead of repeating a 

single sample for each label) and labels 𝑦’ to create synthetic data. The 

discriminator then distinguishes between real and synthetic data using the 

labels 𝑦’ (𝑦’ is the label that helps the Generator create synthetic data with the 

correct label for each class; meanwhile, the Discriminator uses 𝑦’ to verify 

whether the generated data matches the assigned label), allowing the generator 

to improve and produce data that closely resembles the real data.  

After training the CGAN, the generator will be used to generate additional 

new data 𝑋𝑓 (synthetic student-related data generated by CGAN, including 

simulated survey responses and academic scores from the first two years, 

corresponding to each 𝑦𝑓) and 𝑦𝑓. CGAN allows the generation of data based 

on specific classification labels. 

This augmented dataset is subsequently used to train the Transformer 

model enhanced with Adaptive Layer Normalization (AdaLN), which 

dynamically adjusts normalization parameters across layers to reduce bias and 

variance. This adaptive mechanism improves model performance in predicting 

student graduation classification.  
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Figure 3. 2. The pineline of LATCGAd model 

The proposed LATCGAd algorithm is given as follows. 

Algorithm 3.1. LATCGAd - Learning Analysis with Transformer, 

CGAN, 

and Adaptive Layer Normalization 

1: Input:  𝐷𝑅𝑒𝑎𝑙 : Real dataset of labeled student features and labels 

2: 𝑍 ∶ Latent noise vector for CGAN 

3: 𝐺 : Number of synthetic samples to generate 

4: 𝑇AdaLN: Transformer model with Adaptive Layer Normalization 

5: Output:  Ŷ : Predicted graduation classification labels for test set 

6: [𝑋𝑟 , 𝑦𝑟] ← Preprocess(𝐷𝑟𝑒𝑎𝑙) 

7: [𝐺CGAN, 𝐷CGAN] ← 𝑇𝑟𝑎𝑖𝑛𝐶𝐺𝐴𝑁([𝑋𝑟 , 𝑦𝑟], 𝑍) 

8: for 𝑖 =  1 to 𝐺 do 

9:     𝑧𝑖← Sample(𝑍) 

10:     𝑦𝑖  ← Sample_Label_Distribution(𝑦𝑟) 

11:     𝑋𝑓 [𝑖]  ←  𝐺𝐶𝐺𝐴𝑁(𝑧𝑖 , 𝑦𝑖) ▷ Generate synthetic sample 

12:     𝑦𝑓 [𝑖]  ←  𝑦𝑖  
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13: end for 

14: 𝐷𝑎𝑢𝑔← Concatenate( [𝑋𝑟 , 𝑦𝑟], [𝑋𝑓 , 𝑦𝑓] ) ▷ Augmented dataset 

15: 𝑇AdaLN← Train_Transformer(𝐷𝑎𝑢𝑔) 

16: Ŷ ← Predict(𝑇AdaLN, 𝑋test) 

17: return Ŷ 

In this model, we utilize a generator with three hidden layers and a 

discriminator with four hidden layers. We apply the Adam optimizer, learning 

rate, and Beta_1. 

For the Transformer model, we only use the Transformer Encoder. The 

final output will be a latent feature vector, which will then be passed through a 

fully connected layer for classification prediction. We use parameters such as 

multi-head attention, feed-forward layers, the number of Transformer encoder 

layers, the Adam optimizer, learning rate, and weight decay (see Subsection 

3.2.3.2). 

LATCGAd combines three key components: Transformer, CGAN, and 

AdaLN. The overall computational complexity is approximately 𝑂(𝑛 · 𝑑² +

 𝐸 · (|𝐺|  + |𝐷|)), where 𝑛 is the input sequence length, 𝑑 the hidden 

dimension, and 𝐸 the number of epochs. 

The main bottlenecks lie in training the CGAN and Transformer, while 

AdaLN adds only minimal computational overhead. 

Overall, the model achieves high predictive performance with a moderate 

computational cost compared to modern deep learning architectures. 

3.2.3. Experiments 

3.2.3.1. Datasets 

To demonstrate the effectiveness of our proposed model, we will test it on 

these three datasets: HNMU1, HNMU2, and VNU. We will use all survey data 

and student scores from their first two years to predict student classification 

(see Section 1.4 Chapter 1).  

Table 3. 2. Description of the training dataset 

Dataset Number of 

samples 

Survey-based 

attributes 

Academic  

attributes (first 

two academic  years) 

Number of 

classes 

HNMU1 932 4 18 4 

HNMU2 551 36 28 4 

VNU 271 48 24 3 
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By using real data, we aim to show that our proposed model is effective in 

practical applications. The dataset is divided into train, validation, and test sets, 

with 60% of the data used for training, 15% for validation, and 25% for testing. 

All experiments were implemented on a workstation equipped with an Intel 

Core i7-12700KF CPU, NVIDIA RTX 3060 GPU, and 32GB RAM, ensuring 

reliable computational performance for deep learning training and evaluation. 

3.2.3.2. Experimental setup 

CGAN Model:  In this model, the Generator in the CGAN network 

consists of 3 layers to generate new data from latent space. Specifically, the 

first layer of the Generator has 256 neurons, the second layer has 512 neurons, 

and the third layer has 1024 neurons. The output of the Generator is 21 for 

HNMU1, 62 for HNMU2, and 72 for VNU. The activation function for 

HNMU1 and VNU is LeakyReLU with a coefficient of 0.2, and for HNMU2, 

it is ReLU. The Adam optimizer is used with a learning rate (lr) of 0.0002 and 

beta_1 of 0.5. The loss function is Binary Cross Entropy Loss, which helps the 

network learn nonlinear features effectively and avoid neuron death. The 

Discriminator also consists of 4 layers to evaluate the authenticity of the data 

generated by the Generator. Specifically, the first layer of the Discriminator has 

1024 neurons, the second layer has 512 neurons, the third layer has 256 

neurons, and the fourth layer has 64 neurons. The activation function for 

HNMU1 and VNU is LeakyReLU with a coefficient of 0.2, and for HNMU2, 

it is ReLU. The Adam optimizer is used with lr = 0.0002 and beta_1 = 0.5. The 

loss function is Binary Cross Entropy Loss. The output of the Critic is a single 

value representing the Discriminator's score for the input sample. 

 For HNMU1, CGAN generates an additional 32 samples per class. 

 For HNMU2, CGAN generates an additional 25 samples per class. 

 For VNU, CGAN generates an additional 12 samples per class. 

Table 3. 3. Number of samples before and after creation with CGAN 

Datasets Labels Medium Good 
Very 

Good 
Excellent Total 

HNMU1 

Before 

generating 
11 430 468 23 932 

After 

generating 
43 462 500 55 1060 
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HNMU2 

Before 

generating 
19 337 191 4 551 

After 

generating 
51 369 223 36 679 

VNU 

Before 

generating 
0 46 187 38 271 

After 

generating 
0 58 199 50 307 

As shown in Table 3.4, the initial datasets suffer from significant class 

imbalance, with the Medium and Excellent categories represented by very few 

samples (for instance, only 4 Excellent cases in HNMU2 and none in the Medium 

category for VNU), while the Good and Very Good classes are predominant. This 

uneven distribution can lead the model to concentrate on the majority classes and 

neglect patterns associated with minority ones. After applying CGAN, the number 

of samples in the smaller classes increased significantly, such as Excellent in 

HNMU2 rising from 4 to 36, and Medium in HNMU1 from 11 to 43, leading to a 

more balanced distribution and improved model learning. However, some 

limitations remain, for instance, VNU still has no samples in the Medium class, 

and the generated data may not fully represent real data.  

The parameters of the CGAN model (such as the number of layers, 

learning rate, and activation functions) are tailored for each dataset to ensure 

that the synthetic data closely resembles the real data. For HNMU1 and VNU, 

the LeakyReLU activation function is used in both the generator and 

discriminator, whereas ReLU is more effective for HNMU2. The number of 

synthetic data samples for each class is also adjusted differently for each dataset 

to ensure class balance without introducing excessive noise. 

Table 3. 4. Generator model parameters on the HNMU1, HNMU2, and 

VNU datasets 

 

Datasets 

First 

layer 

Second 

layer 

Third 

layer 

Activation 

function 

Output 

layer 

Output 

activation 

function 

HNMU1 256 512 1024 LeakyReLU(0.2) 21 Tanh 

HNMU2 256 512 1024 ReLU 62 Tanh 

VNU 256 512 1024 LeakyReLU(0.2) 72 Tanh 

Table 3. 5. Discriminator model parameters 
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Datasets First 

layer 

Second 

layer 

Third 

layer 

Fourth 

Layer 

Activation 

function 

Output 

activation 

function 

HNMU1 1024 512 256 64 LeakyReLU(0.2) Sigmoid 

HNMU2 1024 512 256 64 ReLU Sigmoid 

VNU 256 512 256 64 LeakyReLU(0.2) Sigmoid 

Training parameters for the Generator and Discriminator models on the 

datasets as follows: Optimizer is Adam, Learning Rate=0.0002, Beta_1=0.5 

and Loss function: Binary Cross Entropy Loss. 

Transformer model 

 For HNMU1, the Transformer uses 2 multi-heads. The feed-forward layer 

in each encoder layer has 64 units. The number of Transformer encoder layers is 1, 

with dropout = 0.6. This is followed by a fully connected network with an output of 

4 (corresponding to the number of classes in the HNMU1 dataset).  

 For HNMU2, the Transformer uses 7 multi-heads. The feed-forward layer 

in each encoder layer has 64 units. The number of Transformer encoder layers is 

2, with dropout = 0.5. This is followed by a fully connected network with an output 

of 4 (corresponding to the number of classes in the HNMU2 dataset).  

 For VNU, the Transformer uses 2 multi-heads. The feed-forward layer 

in each encoder layer has 128 units. The number of Transformer encoder layers 

is 1, with dropout = 0.6. This is followed by a fully connected network with an 

output of 3 (corresponding to the number of classes in the VNU dataset).  

All models use the Adam optimizer with lr = 0.005 and weight decay = 0.0005. 

The number of attention heads is selected based on the complexity of the 

feature space. For HNMU1 and VNU, two multi-heads are appropriate. The HNMU2 

requires seven multi-heads to learn complex patterns from a larger feature space.  

Feed-Forward Layer: For HNMU1 and HNMU2, the feed-forward layers 

have 64 units, whereas VNU requires 128 units due to the higher number of 

variables in the dataset. Learning Rate and Optimizer: The learning rate is set to 

0.005 with the Adam optimizer after experimenting with different values and 

observing the convergence speed and accuracy. 

During the model training process, several important parameters were 

utilized to optimize and adjust the model's learning capability, including 

Beta_1, learning rate (lr), and Dropout. A Beta_1 value of 0.5 was chosen to 

balance convergence speed and learning stability. The learning rate (lr) controls 

the adjustment speed of the model’s weights after each gradient update. This 

value was set differently for each model: 0.0002 for CGAN and 0.005 for 
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Transformer, ensuring optimal convergence speed while preventing 

oscillations or slow convergence. Additionally, Dropout was used as a 

regularization technique to mitigate overfitting by randomly dropping some 

neurons during training. The Dropout value was set at either 0.5 or 0.6, 

depending on the model and dataset, to enhance generalization and model 

robustness when applied to real data. 

For LATCGAd model, the number of epochs for training the CGAN model 

for the three datasets HNMU1, HNMU2, and VNU is 5000 epochs. The training 

graphs of the models are shown respectively in Figure 3.3a), 3.3b), and 3.3c). The 

principle for model selection is that the CGAN model with the smallest FID value.  

 

(a)                   (b)   

           

                            (c) 

Figure 3. 3. Training the CGAN model (in the LATCGAd model) 

a) On the HNMU1 dataset. b) On the HNMU2 dataset. c) On the VNU dataset. 
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(a)                              (b)   

 
(c) 

Figure 3. 4. FID values 
 a) On the HNMU1 dataset. b) On the HNMU2 dataset. c) On the VNU dataset. 

We will then train the Transformer model for 1000 epochs for the three 

datasets HNMU1, HNMU2, and VNU. The training graphs for the models for 

the three datasets HNMU1, HNMU2, and VNU are shown respectively in 

Figure 3.5a), 3.5b), and 3.5c). The principle for selecting the best model is to 

take the average of the training loss and validation loss, and the epoch with the 

smallest value will be chosen. Based on this principle, for the model in Figure 

3.5a), the model selected at epoch 71 has a train loss of 0.2677 and a validation 

loss of 0.1237. For the model in Figure 3.5b), the model selected at epoch 962 

has a train loss of 0.0361 and a validation loss of 0.0018. For the model in 

Figure 3.5c), the model selected at epoch 61 has a train loss of 0.3878 and a 

validation loss of 0.2793. 
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(a)                                                                   (b)                                          

 

 (c) 

Figure 3. 5. Training the Transformer model (in the LATCGAd model) 
a) On the HNMU1 dataset. b) On the HNMU2 dataset. c) On the VNU dataset. 

We will compare the proposed model with three different deep learning 

algorithms (DNN, GAT and Transformer), and traditional machine learning 

methods (which are known to perform well with small datasets): DT, SVM and LR. 

We trained the DNN, GAT and Transformer models with the three datasets 

HNMU1, HNMU2, and VNU, training the model for 1000 epochs. The 

principle for selecting the best model is that model with the lowest average of 

train loss and validation loss will be chosen.  

3.2.4. Results and discussion 

Experimental results on the three datasets (HNMU1, HNMU2, and 

VNU) show that the LATCGAd model outperforms traditional models (DT, 

SVM, LR) and deep learning models (DNN, GAT, and standard Transformer). 
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Table 3. 6. Prediction results on the HNMU1 dataset 

Method Accuracy Precision Recall F1-Score 

DT 89.64 39.77 48.09 42.90 

SVM 84.64 35.95 45.31 38.77 

LR 92.86 43.13 49.05 45.71 

DNN 93.57 69.07 74.15 71.35 

GAT 82.14 34.81 44.57 37.46 

Transformer 93.57 44.71 47.96 46.26 

LATCGAd 95.56 72.50 74.78 73.61 

On the HNMU1 dataset, LATCGAd achieves an accuracy of 95.56%, 

significantly higher than DT (89.64%), SVM (84.64%), LR (92.86%), DNN 

(93.57%), and GAT (82.14%). In addition to accuracy, the model also improves 

Precision (72.50%), Recall (74.78%), and F1-score (73.61%), demon strating 

its ability to reduce errors and correctly classify almost all true positive 

samples, outperforming all compared models. 

On the HNMU2 dataset, LATCGAd achieves the highest accuracy 

(96.97%), outperforming the standard Transformer (95.62%), DT (89.70%), 

and GAT (89.05%). However, while it maintains relatively balanced Precision 

(73.26%) and Recall (74.09%), these values are still noticeably lower than the 

high Precision of DT (94.65%) and its Recall (79.26%). This indicates that 

despite its stability and generalization ability, thanks to synthetic data generated 

by CGAN, LATCGAd lacks sharpness in accurately and comprehensively 

identifying the target class. This limitation may impact its effectiveness in real-

world scenarios that require high discriminative performance (see Table 3.8). 

To address this, future work should focus on optimizing the CGAN-based data 

generation process to produce samples closer to real distributions and 

leveraging multi-level attention or graph-based features to better capture 

complex relationships within student data. 

Table 3. 7. Prediction results on the HNMU2 dataset 

Method Accuracy Precision Recall F1-Score 

DT 89.70 94.65 79.26 82.48 

SVM 80.29 41.38 41.81 40.55 

LR 71.74 64.57 62.25 60.46 

DNN 87.05 69.32 60.92 63.75 
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GAT 89.05 53.52 57.95 55.16 

Transformer 95.62 72.77 60.99 64.79 

LATCGAd 96.97 73.26 74.09 73.66 

On the VNU dataset, LATCGAd achieves an accuracy of 87.65%, lightly 

outperforming DT (83.95%), and standard Transformer (86.76%). A key 

advantage is that Precision increases to 95.56%, significantly surpassing the 

other models, indicating its high reliability in predicting positive cases and 

minimizing false positives. However, Recall is 58.73%, slightly lower than 

Transformer (71.73%). This trade-off is justified by its optimized Precision, 

making it suitable for applications requiring high confidence in identifying 

critical cases. The F1-score of LATCGAd on the VNU dataset reaches 67.62%, 

surpassing most machine learning models, though slightly lower than standard 

Transformer (70.72%). 

Table 3. 8. Prediction results on the VNU dataset 

Method Accuracy Precision Recall F1-Score 

DT 83.95 67.59 55.08 59.06 

SVM 83.82 42.43 53.83 46.97 

LR 76.47 70.88 74.06 59.19 

DNN 75.36 67.26 53.39  55.44 

GAT 80.88 51.60 50.52 51.00 

Transformer 86.76 69.72 71.73 70.72 

LATCGAd 87.65 95.56 58.73 67.62 

A key factor influencing the experimental results is the differences in 

characteristics among the three datasets: HNMU1, HNMU2, and VNU. Each 

dataset varies in size, number of features, and class imbalance levels, which 

directly impact the models' performance. 

Specifically, the HNMU1 dataset has the largest sample size (932 samples) 

but a limited number of features (21 features, with only 3 survey-based 

features). As a result, the model primarily relies on academic scores from the 

first two years. While this enables the model to quickly identify learning trends, 

it also increases the risk of missing additional insights from non-academic 

factors. By balancing the data with CGAN, LATCGAd significantly improves 

accuracy and F1-score compared to other models. 
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The HNMU2 dataset is smaller (551 samples) but contains 62 features 

(including 34 survey-based features), providing a more comprehensive view of 

students. This allows LATCGAd to capture multidimensional relationships 

between academic and non-academic data. As a result, HNMU2 achieves the 

highest accuracy (96.97%), while maintaining a balance between Precision and 

Recall, demonstrating that rich and diverse data plays a crucial role in enhancing 

model performance. The integration of AdaLN further improves stability and 

mitigates overfitting, enabling the model to perform consistently across diverse 

educational datasets. 

In contrast, the VNU dataset has the smallest sample size (271 samples) 

but includes 72 features. Despite the dataset's high feature richness, its small 

size makes the model more susceptible to overfitting. The high Precision 

(95.56%) indicates that LATCGAd is highly effective in reducing false 

positives, but the low Recall (58.73%) suggests that some true positive samples 

were missed, likely due to the limited training data.  

These confusion matrices clearly present the experimental results. 

  

                a)                                                            b) 

 
c) 

Figure 3. 6. Confusion Matrices  (in the LATCGAd model) 
a) on the HNMU1 dataset. b) on the HNMU2 dataset. c) on the VNU dataset. 
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As illustrated in Figure 3.6, the confusion matrices reveal that most 

misclassifications occur between the Good and Very Good categories. This 

problem is largely due to class imbalance. In the HNMU2 dataset, which 

contains four performance categories (Excellent, Very Good, Good, and 

Medium), the distribution is dominated by the Very Good (337 samples, 61%) 

and Good (191 samples, 35%) classes. The overwhelming proportion of these 

two categories makes it challenging for the model to establish a clear separation 

between them. In the HNMU1 dataset, the imbalance issue also persists, where 

Medium students are sometimes misclassified as Good. 

The differences in size and composition across these datasets highlight the 

necessity of data balancing and augmentation using CGAN, particularly when 

working with small or highly imbalanced datasets. Additionally, this 

underscores the importance of feature selection and analysis in optimizing deep 

learning model performance. 

In summary, the LATCGAd model demonstrates superior accuracy and 

overall performance across all three datasets, particularly under conditions of 

small and imbalanced data. This improvement is attributable to the synergistic 

integration of data augmentation via CGAN and model optimization through 

AdaLN. Compared to the LAGT model presented in [CT2], LATCGAd 

effectively addresses the severe class imbalance observed in the HNMU2 

dataset by employing CGAN to generate additional samples for each class, 

especially for underrepresented classes. This targeted data augmentation leads 

to a substantial enhancement in predictive performance. 

However, on the VNU dataset, where class distribution is relatively 

balanced but the ratio of samples (271) to features (72) is disproportionate, the 

LATCGAd model performs less effectively. This indicates that the model is 

sensitive to situations where the number of samples is too small compared to 

the feature dimensionality, even when class proportions are not an issue. 

Consequently, there arises a clear need to improve predictive performance 

in contexts that require additional feature selection and extraction. The 

subsequent model introduced in this work, AWG-GC, is designed to address 

this challenge effectively. 

3.3. The AWG-GC model 

3.3.1. The theoretical basis for model selection 

Despite the strong performance of LATCGAd in predicting academic 

performance from small and imbalanced educational datasets, several technical 
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challenges remain unresolved. These limitations reveal the need for a more 

comprehensive approach to educational data modeling. 

One key limitation lies in feature representation. Educational data is often 

noisy, sparse, and inconsistently structured, which reduces the ability of models 

like Transformers to extract meaningful patterns. Moreover, the reliance on 

labeled data presents difficulties when annotations are limited. This motivates 

the integration of an Autoencoder module, which can learn compressed, 

denoised representations in an unsupervised manner. 

A second challenge is the quality and diversity of synthetic data used to 

balance training sets. LATCGAd uses CGAN to generate additional samples, 

but this approach suffers from unstable training and limited control over sample 

quality. From a theoretical perspective, WGAN improves the stability of GAN-

based training, including CGAN, and helps avoid the mode collapse problem. 

Furthermore, the synthetic data generated by WGAN is generally of higher 

quality and closer to the real data distribution compared to that generated by 

CGAN. This makes WGAN a more suitable choice for generating reliable and 

diverse educational data. 

Finally, educational data often contains rich relational structures,such as 

dependencies among courses, learning sequences, and behavioral interactions, 

that are naturally represented as graphs. Transformer-based models, including 

those used in LATCGAd, do not fully exploit these relationships. Prior work 

has shown that incorporating graph-based architectures can significantly 

enhance learning from such data. 

To address these challenges, we propose AWG-GC, a hybrid deep 

learning model that combines Autoencoder, WGAN, and Graphormer. This 

architecture is designed to enhance feature learning, improve data generation, 

and capture complex relationships within educational data, thereby offering a 

more robust and effective solution for academic performance prediction. 

Graphformer is a particularly promising candidate, as it fully integrates 

both Transformer mechanisms and graph-specific features, making it well-

suited for educational datasets with rich relational structures. With multi-head 

self-attention and positional encoding mechanisms, Graphormer can effectively 

model long-range and hierarchical relationships, overcoming limitations such as 

over-smoothing found in traditional GNNs like GCN and GAT. 

In summary, AWG-GC is a systematic extension of LATCGAd. It not 

only inherits the strengths of data generation and training optimization but also 

introduces critical components to fully address real challenges: complex feature 
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handling, limited labeled data, and multidimensional relationship modeling in 

educational data. As a result, the model provides an efficient hybrid deep 

learning framework with strong potential to support intelligent decision-

making and enhance the quality of learning analytics. 

3.3.2. Proposed model 

This section presents the mapping 𝑓: 𝑋 → 𝑌 in the form of the proposed 

AWG-GC model, which accurately predict the graduation classification 𝑦 ∈ 𝑌 

for each student based on features 𝑥 ∈ 𝑋. Figure 3.7 illustrates the AWG-GC 

model, which integrates an Autoencoder, WGAN, and Graphormer for 

graduation classification. 

 

Figure 3. 7. The AWG-GC model ([CT8]) 

The implementation of the model, as illustrated in Figure 3.7, is carried 

out as follows: 

After preprocessing, the raw data forms an initial sample set consisting of 

(𝐿 + 𝑈) samples, where (𝑋𝐿 , 𝑦𝐿) are labeled samples and 𝑋𝑈  are unlabeled 
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samples. Note that each sample in this set has a dimensionality of 𝑛. This 

dataset is used to train a deep Autoencoder neural network to learn the latent 

space representation. At the same time, the (𝐿 + 𝑈) sample set is also used to 

train a Wasserstein Generative Adversarial Network (WGAN) to generate an 

additional synthetic sample set, 𝑋𝐺, consisting of 𝐺 new samples. 

After the sample generation process is completed, the dataset is expanded 

to 𝐿 + 𝑈 + 𝐺 samples, maintaining the same dimensionality of 𝑛. This 

expanded sample set is then fed into the encoder part of the Autoencoder to 

extract features and reduce the data dimension from 𝑛 to 𝑚. Thus, each sample 

in the 𝐿 + 𝑈 + 𝐺 set has two representations: one in the original 𝑛-dimensional 

space and one in the 𝑚-dimensional feature space. 

To construct the input graph for the Graphormer model, these two 

representations are combined by column concatenation, creating a dataset with 

a dimensionality of 𝑛 +𝑚. The neighborhood graph of the samples in the (𝐿 +

𝑈 + 𝐺) set is built using the KNN algorithm based on this combined feature 

space. The resulting graph is then fed into the Graphormer model, a 

Transformer-based variant designed to handle graph-structured data. Thanks to 

the global attention mechanism weighted by graph distance, Graphormer can 

efficiently learn the relationships between nodes, thus improving the accuracy 

in predicting students' graduation classifications. 

In our model, the KNN algorithm is utilized in two different contexts. 

First, KNN is employed to construct the input graph structure for the 

Graphormer model. Specifically, after the raw data is passed through an 

Autoencoder to obtain compressed representations, we perform a column-wise 

concatenation of the original and compressed features to form a combined 

feature space. It is within this space that KNN is applied to identify the nearest 

neighboring nodes for building the input graph. Therefore, dimensionality 

reduction via the Autoencoder is carried out prior to graph construction using 

KNN. Second, KNN is also used as a baseline classification method in the 

experimental comparison. In this case, KNN is applied directly to the original 

feature space, without any dimensionality reduction or data augmentation. This 

allows us to assess the extent of improvement achieved by the proposed AWG-

GC deep learning framework. 



95 

 

 

Figure 3. 8. The pineline of AWG-GC model 

The AWG-GC model offers the following key benefits: (1) Leverages 

the Autoencoder network to extract features and reduce data dimensionality, 

improving training efficiency; (2) Uses the WGAN network to augment the 

dataset, enhancing the model’s generalization ability; (3) Combines both 

original and extracted representations to construct the graph, thereby enhancing 

the performance of Graphormer in classifying students. 

It is important to note that in the AWG-GC model, Autoencoder, WGAN, 

and Graphormer do not operate independently but work together in a unified 

process. The Autoencoder and WGAN help create a richer dataset, while 

Graphormer utilizes this dataset to improve the model’s prediction accuracy. 

The proposed AWG-GC algorithm will be given as follows. 
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Algorithm 3.2: AWG-GC – Integrating an Autoencoder, Wasserstein 

GAN, and Graphormer for Graduation Classification 

1: Input: 𝒟L : Labeled dataset of student features and labels 

2:        𝒟U : Unlabeled dataset of student features 

3:        𝑚 : Number of samples in 𝒟U 

4:        𝑛 : Number of samples in 𝒟L 

5:        𝑧 : Latent feature dimension from Autoencoder 

6:        𝑠 : Number of synthetic samples generated by WGAN 

7: Output: Ŷ : Predicted graduation classification labels 

8: [𝑋𝐿, 𝑦𝐿] ← Preprocess(𝒟𝐿) 

9: 𝑋U← Preprocess(𝒟U) 

10: Train Autoencoder on 𝑋𝐿 ∪ 𝑋𝑈 

11: 𝑍L ← Encode(𝑋𝐿), 𝑍U ← Encode(𝑋U) 

12: [𝒢, 𝐶] ← TrainWGAN(𝑋𝐿, 𝑦𝐿) 

13: for 𝑖 =  1 to 𝑠 do 

14:     𝑧𝑖 ← SampleNoise() 

15:     𝑦𝑖← SampleLabel(𝑦𝐿) 

16:     𝑥𝑖
𝑔𝑒𝑛

 ← 𝒢(𝑧𝑖 , 𝑦𝑖) 

17:     𝒟𝑆 ← 𝒟𝑆  ∪  (𝑥𝑖
𝑔𝑒𝑛
, 𝑦𝑖) 

18: end for 

19: 𝒟𝑎𝑙𝑙  ← 𝒟𝐿  ∪  𝒟𝑈  ∪  𝒟𝑆 

20: 𝑍𝑎𝑙𝑙 ← Encode(𝒟𝑎𝑙𝑙) 

21: 𝐹𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑  ← Concatenate(𝑋𝑎𝑙𝑙 , 𝑍𝑎𝑙𝑙) 

22: 𝐺𝑘𝑛𝑛 ← ConstructGraph(𝐹𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑) 

23: Train Graphormer on (𝐺𝑘𝑛𝑛, 𝑦𝐿) 

24: Ŷ ← Predict(Graphormer, 𝑋𝑡𝑒𝑠𝑡) 

25: return Ŷ 

AWG-GC combines three main components: an Autoencoder for 

dimensionality reduction, a WGAN for data augmentation, and a Graphormer 

for classification. Its computational complexity is approximately 𝑂(𝐸 · |𝐴𝐸| +
 𝑛 · 𝑁2 · 𝑑2 + |𝐸𝑔|), where |𝐴𝐸| denotes the computational cost per training 

epoch of the Autoencoder, 𝐸 is the number of epochs, 𝑁 the number of student 

nodes, and |𝐸𝑔| the number of graph edges. 
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The model is more computationally demanding than LATCGAd due to 

WGAN’s gradient penalty and Graphormer’s graph-aware attention. However, 

this higher complexity is justified by its improved accuracy and robustness in 

modeling inter-student relationships within educational graphs. 

3.3.3 Experiments 

3.3.3.1. Training dataset 

In this section, we use three real datasets, HNMU2, VNU, and SATDAP, 

to evaluate the performance of the proposed model. The HNMU2 and VNU 

datasets contain information on students' grades and survey feedback from two 

major universities in Vietnam. Each dataset differs in scale, feature distribution, 

and classification labels, creating a diverse testing environment for our 

approach. The inclusion of the SATDAP dataset, collected in Portugal, serves 

to enhance the generalizability of our proposed method by incorporating data 

from a distinct international educational context. 

The SATDAP dataset originates from the SATDAP program, Capacitação 

da Administração Pública, under the authorization of POCI-05-5762-FSE-

000191, Portugal ([61]). This dataset consists of 4424 records and 36 features. 

It includes information on students’ academic trajectories, demographic data, 

socio-economic factors, and SGPA over a five-year period. 

The dataset contains variables related to demographic factors (such as age 

at enrollment, gender, marital status, nationality, postal code, special needs), 

socio-economic factors (such as whether the student works, parents’ 

educational background, parents’ occupations, parents’ employment status, 

student scholarships, and tuition debt), and educational pathways (such as 

entrance exam score, number of years repeated in secondary school, program 

preference order, and type of secondary school course). 

The academic information in this dataset is limited to observable factors 

prior to university enrollment, excluding any internal assessments after 

enrollment. Each student record is categorized into one of three groups: 

Success, Relative Success, or Failure, based on the time taken to complete the 

degree program. "Success" or “Graduate” refers to students who complete the 

program within the standard timeframe. "Relative Success" or “Enrolled” 

refers to those who graduate after up to three additional years. "Failure" or 

“Dropout” applies to students who take more than three additional years to 

graduate or do not graduate at all. 
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This classification reflects three levels of risk: Low-risk students are 

highly likely to succeed; Medium-risk students may benefit from institutional 

interventions to support their success, and High-risk students are those with a 

high likelihood of failure. 

 

Figure 3. 9. Number of samples per class in the SATDAP dataset 

The data underwent feature normalization using the StandardScaler() 

method, which adjusts features to have a mean of 0 and a standard deviation 

of 1. This ensures that all features share the same scale and units, thereby 

improving the performance of machine learning models. The formula for 

StandardScaler is: 

                                  𝑥𝑛𝑒𝑤 =
𝑥−𝑥𝑚𝑒𝑎𝑛

𝑥𝑠𝑡𝑑
.                                                 (3.6) 

 For the labels, they were converted from text to numerical format using 

the LabelEncoder() function. This function encodes each unique label value as 

an integer, enabling machine learning models to process the labels numerically 

instead of as text strings. 

To evaluate the efficacy of the AWG-GC model, this section focuses on 

conducting experiments on three distinct datasets: the HNMU2 dataset, the 

VNU dataset, and the SATDAP dataset. By evaluating the proposed model on 

these real datasets, we provide clear evidence of its effectiveness. We will 

sequentially extract train, validate, and test datasets from the data with the 

purpose of testing on the most recent graduate student data, enabling the best 

evaluation of the model's practical applicability when using past student data. 
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The datasets are divided into train, validation, and test sets, with 60% of the 

data used for training, 15% for validation, and 25% for testing.  

To demonstrate the effectiveness of the proposed method, we divided it 

into scenarios as follows:  

 SVM, KNN, RF, GAT, Transformer, Graphormer: using the original 

dataset allows us to evaluate the predictive capability of each model with 

the initial data. 

 AutoGAT: applying dimensionality reduction using an Autoencoder 

before training the GAT model helps us understand the impact of the 

Autoencoder on predictions, particularly with datasets containing 

numerous fields and complex structures,  

 AWG-GAT: combining dimensionality reduction via an Autoencoder 

with data augmentation using WGAN before training the GAT model 

demonstrates how WGAN-generated data can address the issue of small 

dataset sizes, 

 AWG-GC: combining dimensionality reduction via an Autoencoder 

with data augmentation using WGAN before training the Graphormer 

model. 

3.3.3.2. Set up of model parameters 

Experiments were run on a workstation with Intel Core i7-12700KF, 

NVIDIA RTX 3060, and 32GB RAM, offering adequate resources for deep 

learning training and evaluation. 

To ensure that the selected hyperparameters were both optimal and 

stable, we conducted a sensitivity analysis by varying key hyperparameters 

such as the number of neurons per layer, learning rate, dropout rate, and the 

number of attention heads within reasonable ranges based on previous studies. 

The learning rate was tested with values {0.0001, 0.001, 0.005, 0.01}, while 

the dropout rate was evaluated within the range {0.3, 0.5, 0.6, 0.7}. 

Experimental results showed that the model's performance remained stable 

across these configurations. The final hyperparameters were selected based on 

minimizing validation error and maximizing the F1-score, ensuring a balance 

between training effectiveness and generalization capability across datasets of 

varying sizes and structural characteristics.  
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Autoencoder 

The Autoencoder network is structured with two main parts: an encoder 

and a decoder. The encoder comprises two stages. The first layer of the encoder 

has 128 neurons and is responsible for reducing the input data to a smaller 

space. Next, the second layer has 64 neurons and compresses the data into a 

hidden space. The hidden space of this Autoencoder network is flexibly 

structured with different sizes depending on each dataset: 10 neurons in the 

HNMU2 set, 10 neurons in the VNU set and 10 neurons in the SATDAP. 

The Decoder part of the network also includes two layers, but it operates 

oppositely to the encoder part. The first layer of the decoder contains 64 

neurons to expand data from the hidden space. Finally, the second layer has 128 

neurons, which completes the process of reconstructing the data to their original 

form or close to the input data. This structure helps the Autoencoder network 

learn and compress information effectively and is capable of reconstructing 

data from hidden spaces with high accuracy. 

All layers in the Autoencoder and the decoder use the ReLU activation 

function and the Adam optimizer with a learning rate equal to 0.005 and weight 

decay equal to 0.0005. 

WGAN model 

This WGAN is structured to include two main components: Generators 

and Critics. The Generator set of the WGAN network includes 3 layers for the 

HNMU2, VNU and SATDAP datasets, each with increasing sizes to generate 

new data from the hidden space. With the HNMU2, VNU and SATDAP 

datasets, the first layer of the Generator has 256 neurons, the second layer has 

512 neurons, and the third layer has 1024 neurons. The generator output 

contains 62 features for the HNMU2 set, 72 features for the VNU set, and 36 

features for the SATDAP set. All layers in the Generator use the LeakyReLU 

activation function with a coefficient of 0.2, which helps the network learn 

nonlinear features effectively and avoids neuronal death. We use the Adam 

optimizer with a learning rate equal to 0.0002 and betas equals (0.5, 0.9). 

The Critic part of the WGAN network also includes 3 layers for the 

HNMU2, VNU and SATDAP datasets, but with decreasing size, to help 

evaluate the authenticity of the data generated by the Generator. Specifically, 

with Critic’s the HNMU2, VNU and SATDAP datasets, Critic's first layer had 
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512 neurons, the second layer had 256 neurons, and the third layer had 64 

neurons. All layers in the Critic use the LeakyReLU activation function with a 

coefficient of 0.2. We use the Adam optimizer with a learning rate equal to 

0.0002 and betas equals (0.5, 0.9). The Critic output is a single value 

representing the Wasserstein score of the input data sample. This structure 

helps the WGAN network achieve a balance between generating new data 

samples and evaluating the authenticity of the samples, which improves the 

quality of the generated data. 

After training the model, we used the Generator to generate additional 

training data for GAT. For the HNMU2 dataset, we generated 100 samples per 

class, totaling 400 samples, to add to the training set. For the VNU dataset, we 

generated 64 samples per class, totaling 192 samples, to add to the training set. 

For the SATDAP dataset, we generated 1032 samples per class, totaling 3096 

samples, to add to the training set The number of samples generated and added 

to each dataset is as follows: (1) HNMU2 dataset: 731 training samples and 137 

testing samples; (2) VNU dataset: 355 training samples and 68 testing samples; 

and (3) SATDAP dataset: 6104 training samples and 855 testing samples. 

Graphormer model 

For HNMU2, the Graphomer model selects d_model = 64 to define the 

dimensionality of the hidden representations, ensuring a compact yet expressive 

embedding space for node features and facilitating efficient attention 

computations. We also configure max_distance = 12, which limits the hop 

distance used for spatial bias embeddings, effectively controlling the range of node 

interactions and reducing noise from overly distant connections. Attention dropout 

rate of 0.1, a multi-head attention value of 2, The number of Transformer encoder 

layers is 2, with a dropout rate of 0.4 at each layer. The network output is 4 

(corresponding to the number of classes in the HNMU2 dataset). Models use the 

AdamW optimizer with lr = 0.005 and weight decay = 0.0005. 

For VNU, the Graphomer model selects d_model = 64. We also 

configure max_distance = 12. Attention dropout rate of 0.1, a multi-head 

attention value of 4, The number of Transformer encoder layers is 1. The 

network output is 4 (corresponding to the number of classes in the HNMU2 

dataset). Models use the AdamW optimizer with lr = 0.005 and weight decay = 

0.0005.  
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For SATDAP, the Graphomer model selects d_model = 64. We also 

configure max_distance = 12. Attention dropout rate of 0.1, a multi-head 

attention value of 2, The number of Transformer encoder layers is 2. The network 

output is 4 (corresponding to the number of classes in the HNMU2 dataset). 

Models use the AdamW optimizer with lr = 0.005 and weight decay = 0.0005.   

Graph construction 

For graph construction, we used the method of selecting the 10 nodes with 

the lowest Euclidean distance to form neighboring nodes. If the Euclidean 

distance is above or below the farthest neighbor within the selected K 

neighbors, we do not include those nodes as part of the neighborhood. In this 

section, we do not use threshold-based neighbor selection. 

Transformer model: 

For HNMU2, the Transformer model selects a multi-head attention value 

of 4, with a dropout rate of 0.5 at each layer. The network output is 4 

(corresponding to the number of classes in the HNMU2 dataset). Models use 

the Adam optimizer with lr = 0.005 and weight decay = 0.0005.  

For VNU, the Transformer model selects a multi-head attention value of 

2 and is combined with an ANN network structured in three layers: the first 

layer has 64 neurons, the second layer has 128 neurons, and the third layer has 

64 neurons. The dropout rate is 0.4 at each layer. The network output is 3 

(corresponding to the number of classes in the VNU dataset). Models use the 

Adam optimizer with lr = 0.005 and weight decay = 0.0005. 

For the dataset from the SATDAP program, the Transformer model 

selects a multi-head attention value of 4, with a dropout rate of 0.4 at each layer. 

The network output is 3 (corresponding to the number of classes in the 

SATDAP dataset). Models use the Adam optimizer with lr = 0.005 and weight 

decay = 0.0005. 

3.3.3.2. Model training 

Train model for AutoGAT:  

The number of epochs for training the Autoencode model on the 

HNMU2, and VNU datasets were all 5,000 epochs. The model training plots of 

these three datasets are shown in Figure 3.10a), Figure 3.10b) (on these figures, 

the values at the epochs that are divisible by 10 are shown). The principle of 

model selection is to select the Autoencode model with the smallest loss value. 
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On that principle, with the model in Figure 3.10a), the model is selected at the 

4943rd epoch because it has a loss of 0.0557, and with the model in Figure 

3.10b), the model is selected at epoch 4981 because it has a loss of 0.0310. 

 

a)                                                                    b) 

Figure 3. 10. Autoencoder model training according to AutoGAT 

a) on the HNMU2 dataset. b) on the VNU dataset. 

In AutoGAT, we trained the GAT model on three datasets (1000 epochs). 

The training graphs of the models are shown in Figures 3.11a), 3.11b), 

respectively. The principle of selecting the best model is to take the average of 

the training and validation loss values. In which epoch gives the smallest value, 

the model is selected at that epoch.  

 

a)                                     b) 

Figure 3. 11. Training of the GAT model according to AutoGAT 

a) on the HNMU2 dataset. b) on the VNU dataset. 
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Train model for AWG-GAT:  

The number of epochs used to train the Autoencode model on the three 

datasets was 5,000 epochs. The training graphs of the models are shown in 

Figure 3.12 (on this figure, the values at the epochs that are divisible by 10 are 

shown). The principle of model selection is to select the Autoencode model 

with the smallest loss value.  

 

a)                                                      b) 

Figure 3. 12. Autoencoder model training according to AWG-GAT 

a) on the HNMU2 dataset. b) on the VNU dataset. 

Figures 3.10, 3.11 and 3.12 illustrate the different training stages in the 

experimental scenarios and highlight the significant differences in the role of 

the Autoencoder and data processing. Specifically, Figure 3.10 demonstrates 

the training process of the Autoencoder in AutoGAT, where the model is 

trained on the original dataset, including both labeled and unlabeled samples, 

without any data augmentation techniques being applied. The goal at this stage 

is to extract latent features that help reduce dimensionality and enrich the input 

information for subsequent classification models. Figure 3.11 further illustrates 

the training process of the GAT model in the same scenario, using the output 

features from the Autoencoder in Figure 3.10. 

Figure 3.12, belonging to AWG-GAT (the scenario involving synthetic 

data from WGAN), shows the Autoencoder training process, which is still 

conducted on the original dataset, without including any synthetic samples. 

Keeping the original dataset at the Autoencoder training stage ensures stability 

in learning feature representations and avoids potential bias from synthetic data 

that may not fully reflect the true distribution. Once the Autoencoder is trained, 

the WGAN model is then applied to generate additional data based on the same 
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original dataset. The entire expanded dataset (comprising both original and 

synthetic data) is subsequently passed through the Autoencoder’s encoder to 

extract features for subsequent steps such as graph construction and 

classification. Therefore, in AWG-GAT, the role of the Autoencoder in the 

initial stage is similar to that in AutoGAT. 

In AWG-GAT, the number of epochs selected to train the WGAN model 

on the three datasets was 1,000. The training graphs of the models are shown 

in Figures 3.13, 3.14, respectively. The principle of model selection is which 

WGAN model has the smallest FID value. 

 

a)                                                                b) 

Figure 3. 13. Training of the WGAN model on the HNMU2 dataset 

according to AWG-GAT. 

a) Loss value. b) FID value. 

 

a)                                                      b) 

Figure 3. 14. Training of the WGAN model on the VNU dataset 

 according to AWG-GAT 
(a) Loss value. (b) FID value. 
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In AWG-GAT, we trained the GAT model on the three datasets (1000 

epochs). The training graphs of these models are shown in Figure 3.15a), Figure 

3.15b). The principle of selecting the best model is to take the average of the 

training and validation loss values. In which epoch gives the smallest value, the 

model is selected at that epoch. On that principle, with the model shown in 

Figure 3.15a), the model selected at the 980th epoch has a training loss of 

0.0338 and a validation loss of 0.0423. With the model shown in Figure 3.15b), 

the model selected at the 994th epoch had a training loss of 0.3369 and a 

validation loss of 0.5201. 

 

a)                                                               b) 

Figure 3. 15. Training of the GAT model according to AWG-GAT: 

a) on the HNMU2 dataset. b) on the VNU dataset. 

Train model for Graphormer: 

We trained the model with 1000 epochs on the HNMU2, VNU and 

SATDAP. The model training graphs for the three datasets HNMU2, VNU and 

SATDAP are shown in Figure 3.16. The principle of selecting the best model 

is to take the average of the training and validation loss values. In which epoch 

gives the smallest value, the model is selected at that epoch.  
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a)                                                                         b) 

Figure 3. 16. Training of the Graphomer model 
a) on the HNMU2 dataset. b) on the VNU dataset. 

Train model for AWG-GC:  

The number of epochs used to train the Autoencode model on the three 

datasets was 5,000 epochs. The training graphs of the models are shown in Figure 

3.17a), Figure 3.17b), and Figure 3.17c) respectively (on these figures, the values 

at the epochs that are divisible by 10 are shown). The principle of model selection 

is to select the Autoencode model with the smallest loss value. On that principle, 

with the model in Figure 3.17a), the model is selected at the 4928nd epoch because 

it has a loss of 0.0567. With the model in Figure 3.17b), the model is selected at 

the 4822nd epoch because it has a loss of 0.0291. With the model in Figure 3.17c), 

the model is selected at epoch 4990th because it has a loss of 0.0261. 

 

a)                                     b) 
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c) 

Figure 3. 17. Autoencoder model training according to AWG-GC 
a) on the HNMU2 dataset. b) on the VNU dataset. c) on the SATDAP dataset. 

In AWG-GC with Graphomer, the number of epochs selected to train the 

WGAN model on the three datasets was 5,000. The training graphs of the 

models are shown in Figures 3.18, 3.19, and 3.20, respectively.  

 
a)                                                       b) 

Figure 3. 18. Training of the WGAN model on the HNMU2 dataset 

according to AWG-GC a) Loss value. b) FID value. 

 
a)                                                               b) 

Figure 3. 19. Training of the WGAN model on the VNU dataset  

according to AWG-GC a) Loss value. b) FID value. 
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a)                                          b) 

Figure 3. 20. Training of the WGAN model on the SATDAP dataset 

according to AWG-GC a) Loss value. b) FID value. 

In AWG-GC, we trained the Graphomer model on the three datasets (1000 

epochs). The training graphs of these models are shown in Figure 3.21. The principle 

of selecting the best model is to take the average of the training and validation loss 

values. In which epoch gives the smallest value, the model is selected at that epoch.. 

       

a)                                                                 b) 

Figure 3. 21. Training of the Graphomer model according to AWG_GC 
a) on the HNMU2 dataset. b) on the VNU dataset. 
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 3.3.4. Results and discussions 

3.3.4.1. Results obtained on the HNMU2 dataset 

Table 3. 9. Prediction results on the HNMU2 dataset. 

Method Accuracy Precision  Recall F1-Score  

SVM 80.29 41.38 41.81 40.55 

KNN 80.29 40.68 41.58 40.59 

RF 95.62 47.79 48.31 48.34 

Transformer 95.62 72.77 60.99 64.79 

GAT 89.05 53.52 57.95 55.16 

Graphomer 97.08 73.45 73.97 73.67 

AutoGAT 93.43 59.84 59.74 59.74 

AWG_GAT 97.08 98.50 86.41 90.37 

AWG-GC 98.54 99.25 99.25 99.25 

From Table 3.10, we can see that the accuracy of AWG-GC was the 

highest (98.54%), 18.25% higher than that of SVM, 18.25% higher than that of 

KNN, 2.92% higher than that of Transformer and RF, 9.49% higher than that 

of GAT, 1.46% higher than that of Graphomer, 5.11% higher than that of 

AutoGAT and 1.46% higher than that of AWG_GAT.  

In addition, the prediction accuracy of AWG-GC was the highest 

(99.25%), 57.87% higher than that of SVM, 58.57% higher than that of KNN, 

with 51.46% higher than that of RF, with 26.48% higher than that of 

Transformer, 45.73% higher than that of GAT, 25.8% higher than that of 

Graphomer, 39.41% higher than that of AutoGAT and 0.75% higher than that 

of AWG_GAT. This resulted in a higher rate of correct positive predictions, 

minimizing false positives.  

Table 3.10 also shows that the sensitivity of AWC-GC is the highest 

(99.25%), 57.44% higher than that of SVM, 57.67% higher than that of KNN, 

with 50.94% higher than that of RF, with 38.26% higher than that of 

Transformer, 41.3% higher than that of GAT, 25.34% higher than that of 

Graphomer, 39.51% higher than that of AutoGAT and 12.84% higher than that 

of AWG_GAT. This demonstrates that the AWG-GC model is capable of 

detecting more true positive samples and minimizing false negative cases.  

In particular, the F1-Score of AWG-GC is the highest (99.25%), 58.7% 

higher than that of SVM, 58.66% higher than that of KNN, with 50.91% higher 
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than that of RF, with 34.46% higher than that of Transformer, 44.09% higher 

than that of GAT, 25.58% higher than that of Graphomer, 39.51% higher than 

that of AutoGAT, and 8.88% higher than that of AWG_GAT. The F1-score 

shows that AWG-GC achieves the best balance between accurately predicting 

positive samples and detecting more positive samples. These improvements 

indicate that AWG-GC outperforms the remaining methods.  

3.2.3.2 Results obtained on VNU dataset 

Table 3. 10. Prediction results obtained on the VNU dataset 

Method Accuracy Precision Recall F1-Score 

SVM 83.82 42.43 53.83 46.97 

KNN 86.76 51.45 54.98 53.12 

RF 82.35 54.03 46.91 49.39 

Transformer 86.76 69.72 71.73 70.72 

GAT 80.88 51.60 50.52 51.00 

Graphomer 88.24 80.11 63.93 64.97 

AutoGAT 85.29 74.50 58.59 53.96 

AWG-GAT 89.71 70.95 95.98 78.64 

AWG-GC 94.12 81.67 97.70 88.17 

The results in Table 3.11 reveal that the AWG-GC model consistently 

outperforms all other methods across all evaluation metrics on the VNU 

dataset. It achieved the highest accuracy (94.12%), precision (81.67%), recall 

(97.70%), F1-score (88.17%), indicating both superior predictive accuracy and 

robust classification capability. Compared to the baseline models, AWG-GC 

improved accuracy by 5.88% over Graphormer, 7.36% over Transformer, and 

10.30% over SVM. Notably, its recall increased dramatically by 33.77% 

compared to Graphormer and 25.97% over Transformer, suggesting an 

exceptional ability to correctly identify positive cases while minimizing false 

negatives. 

Furthermore, the F1-score of AWG-GC (88.17%) represents a 

substantial improvement, outperforming Graphormer by 23.20% and 

Transformer by 17.45%, reflecting a well-balanced trade-off between precision 

and recall.  
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 3.2.3.3 Results obtained on SATDAP dataset 

Table 3. 11. Prediction results obtained on the SATDAP dataset 

Method Accuracy Precision Recall F1-Score 

SVM 77.59 71.89 68.17 68.85 

KNN 66.67 57.66 54.73 55.35 

RF 79.32 70.78 68.65 69.37 

Transformer 80.34 71.87 70.99 71.34 

Graphomer 80.79 74.08 70.30 71.67 

AWG-GC 81.81 74.74 73.89 74.21 

XGBoost  

(Martin et al., [63]) 

73.00   65.00 

According to the results presented in Table 3.12, the AWG-GC model 

achieved the highest overall performance across all evaluation metrics. It 

reached an accuracy of 81.81%, surpassing SVM by 4.22%, KNN by 14.91%, 

RF by 2.49%, Transformer by 1.47%, and Graphormer by 1.02%. Its prediction 

accuracy (74.74%) similarly exceeded that of SVM by 2.85%, KNN by 

17.08%, RF by 3.96%, Transformer by 2.87%, and Graphormer by 0.66%. 

Moreover, AWG-GC recorded the highest sensitivity (74.21%), outperforming 

SVM by 5.72%, KNN by 19.16%, RF by 5.24%, Transformer by 2.90%, and 

Graphormer by 3.59%. Its F1-score (74.21%) also led all models, with 

improvements of 5.36% over SVM, 18.86% over KNN, 4.84% over RF, 2.87% 

over Transformer, and 2.54% over Graphormer.  

When compared to previous studies, the performance of AWG-GC is 

particularly notable. Martins et al. ([63]) reported that Extreme Gradient 

Boosting (XGBoost) achieved an accuracy of 73% and an F1-score of 65% in 

predicting student performance. In contrast, AWG-GC outperformed XGBoost 

by 8.81% in accuracy and 9.21% in F1-score. This comparison further 

underscores the superiority of AWG-GC in both predictive accuracy and 

balanced classification performance. 

These results indicate that the integration of Autoencoder, WGAN, and 

Graphormer architectures enables the model to better capture the underlying 

structure of educational data and effectively address challenges such as small 

sample sizes and class imbalance. Overall, AWG-GC demonstrates a 

significant improvement over both traditional machine learning approaches and 

previously reported models in the literature ([63]). 
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Although AWG-GC achieves the highest performance on the SATDAP 

dataset, the model still has certain limitations. Overall accuracy does not exceed 

82%, and the F1-Score remains below 80%, indicating that its ability to detect 

and classify correctly is still limited, especially in real-world contexts that 

demand high reliability. Furthermore, the performance improvement over 

Transformer or Graphormer is relatively small (only about 1–1.5%), while the 

computational cost is high due to the integration of multiple components 

(Autoencoder, WGAN, Graphormer). To address these issues, future work 

should incorporate additional features from learning behaviors and contextual 

factors, optimize the WGAN data generation strategy to produce more realistic 

synthetic samples, and develop a lightweight version of the model to reduce 

training costs and improve its practical applicability. 

In AWG-GC, we demonstrated that for all three datasets HNMU2, VNU 

and SATDAP augmenting the training set with data generated by WGAN 

improved the model's predictive performance. Specifically, HNMU2 achieved an 

improvement of 1.46%, VNU improved by 5.88%, and SATDAP showed an 

increase of 1.02% compared to when no additional training data was used. This 

proves that a larger training dataset enhances the model's predictive capability.  

For multi-class prediction tasks, it is essential to evaluate the performance 

for each class label individually to ensure balanced and reliable classification. 

Therefore, Tables 3.13, 3.14 and 3.15 have been included to provide a detailed 

breakdown of the model's performance across all class labels in each dataset. 

Table 3. 12. Per-class performance evaluation table of the AWG-GC model 

on the HNMU2 dataset 

 Precision  Recall F1-Score  

Medium 100 100 100 

Good 98.65 98.65 98.65 

Very good 98.33 98.33 98.33 

Excellent 100 100 100 

Table 3. 13. Per-Class Performance Evaluation Table of the AWG-GC 

Model on the VNU Dataset 

 Precision  Recall F1-Score  

Good 75 100 85.71 

Very good 100 93.10 96.43 

Excellent 70 100 82.35 
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Table 3. 14. Per-Class Performance Evaluation Table of the AWG-GC 

Model on the SATDAP Dataset 

 Precision  Recall F1-Score  

Graduate 86.33 90.77 88.49 

Enrolled 47.69 49.60 48.63 

Dropout 90.19 81.29 85.51 

In addition to overall performance metrics, detailed error analysis helps 

clarify the model’s predictive behavior. Figure 3.22 presents confusion 

matrices for the HNMU, VNU, and SATDAP datasets, highlighting 

misclassifications caused by unclear class boundaries and class imbalance. 

 
a)                                                   b) 

 
c) 

Figure 3. 22. Confusion Matrices  (in the AWG-GC model) 

 a) on the HNMU2 dataset. b) on the VNU dataset. c) on the SATDAP 

dataset. 

We conducted a detailed evaluation of the most commonly confused cases 

across the three datasets and identified the underlying causes of 

misclassification. For the HNMU2 dataset, although the AWG-GC model 

achieved near-perfect classification performance (F1-score = 99.25%), the 
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confusion matrix reveals some misclassifications between the "Good" and 

"Very Good" categories. This issue is largely due to the relatively close GPA 

ranges and overlapping behavioral features derived from survey responses. 

Additionally, the dataset's class imbalance, particularly the larger number of 

“Good” samples (338) compared to “Very Good” samples (190), may have 

biased the model toward favoring the majority class. These factors combined 

make it challenging for the model to draw a clear boundary between these two 

performance levels. In the VNU dataset, the classification task becomes more 

complex due to the small sample size and the large number of features, 

increasing the risk of overfitting. A common error here is the misclassification 

of "Good" students as "Very Good" or even "Excellent." There is significant 

overlap in course grades, especially in high-weight subjects. Although the 

"Excellent" group is identified with perfect recall (Recall = 100%), the 

boundary between "Good" and "Very Good" remains ambiguous in many 

cases, affecting overall classification accuracy. In the SATDAP dataset, the 

most challenging issue lies in distinguishing the "Enrolled" group from the 

other two groups: "Graduated" and "Dropout." This is understandable, as the 

"Enrolled" status is transitional, with students exhibiting characteristics similar 

to those who have either completed the program or are at risk of dropping out. 

Furthermore, the number of samples in this group is relatively small in the 

training data, resulting in class imbalance and affecting prediction accuracy. 

Nevertheless, the model still achieved an F1-score of 74.21%, demonstrating 

strong generalization capability even in the presence of structural class 

complexity and data imbalance. In summary, most classification errors stem 

from the inherent ambiguity between classes rather than limitations in the 

model’s capability.  

In the experiments above, we observed the following differences between 

the datasets and their impact on model performance: 

HNMU2 is the dataset with the most diverse features (including several 

surveys on soft skills, learning behaviors, and specialized course results), with 

a moderate sample size. The AWG-GC model achieved the highest 

performance here (Accuracy 98.54%, F1-score 99.25%), demonstrating its 

ability to effectively leverage complex relationships in graph data and the 

benefits of synthetic data generation. 

VNU is the dataset with a small number of samples but a large number of 

features, increasing the risk of overfitting. However, the model still achieved 

an F1-score of 88.17%, proving the stability and high generalization capability 

of AWG-GC even in a context with limited data. 
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SATDAP represents an international context with imbalanced label 

distribution and distinct feature structures. Although this dataset contains many 

samples, the model maintained high performance (F1-score 74.21%), 

showcasing the wide applicability of the approach. 

The differences between the three datasets in terms of sample size, feature 

types, and application contexts helped validate the adaptability and 

generalization ability of the proposed model. The AWG-GC model not only 

maintained high accuracy on each individual dataset but also demonstrated 

stable performance when facing different data characteristics, ranging from 

simple tabular structures to complex graph relationships, from small to large 

datasets, and from domestic to international data. 

To validate the necessity of each component in AWG-GC, we conducted 

an ablation study by removing or replacing each individual component: 

Removing WGAN: For the HNMU2 dataset, when trained only on real 

data without synthetic data from WGAN, the model experienced overfitting, 

and performance decreased by 1.46%. For the VNU dataset, when trained only 

on real data without synthetic data from WGAN, the model also suffered from 

overfitting, and performance decreased by 5.88%. For the SATDAP dataset, 

when trained only on real data without synthetic data from WGAN, the model 

exhibited overfitting, and performance decreased by 1.02%. 

Replacing Graphormer with GAT: When replacing Graphormer with 

GAT, the model failed to effectively capture relationships in the data, resulting 

in an average decrease of 8.03% in accuracy for the HNMU2 dataset and 7.36% 

for the VNU dataset. 

Although the AWG-GC model delivers superior performance compared 

to traditional methods, there are still several challenges and limitations that 

need to be addressed to ensure broader applicability. The use of synthetic data 

generated by WGAN may lead to overfitting if the generated samples lack 

sufficient diversity or do not accurately reflect the real distribution. This is 

particularly problematic when the original dataset is small, causing the model 

to overly rely on synthetic samples. The combination of Autoencoder, WGAN, 

and Graphormer increases the number of parameters compared to simpler 

methods like GCN or MLP. As a result, it requires substantial computational 

resources, making it challenging to deploy on systems with limited hardware. 
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3.4. Appendix to Chapter 3 

3.4.1. Wasserstein GANs (WGAN)  

The divergence that GANs typically minimize is probably discontinuous with 

respect to the Generator G parameters. This makes training difficult. The 

Wasserstein-1 (also called Earth-Mover) distance 𝑊(𝑝1, 𝑝2) is recommended. 

𝑊(𝑝1, 𝑝2) is the minimum mass transport cost for converting distribution 𝑝1 to 𝑝2 

(where cost is mass multiplied by transport distance). With loose assumptions, 

𝑊(𝑝1, 𝑝2) is continuous everywhere and differentiable almost everywhere. 

Use Kantorovich-Rubinstein duality ([78]) is used in building the WGAN 

value function to obtain: 

                 min
𝐺
max
𝐷∈𝐷̃

𝐸𝑥∽Ρ𝑟[𝑙𝑜𝑔𝐷(𝑥)] − 𝐸𝑥̃∽Ρ𝑔[𝐷(𝑥̃)],                                   (3.7)                                                                                              

In Equation (3.6), 𝐷̃ is the set of 1-Lipschitz functions and Ρ𝑔 is the 

implicit distribution of the model determined by 𝑥̃ = 𝐺(𝑧), 𝑧 ∽ 𝑝(𝑧). In this 

case, under optimal Discriminator D, minimizing the value function relative to 

the parameters of Generator G minimizes 𝑊(𝑝𝑟 , 𝑝𝑔). 

The WGAN objective function introduces a Critic function whose 

gradient concerning its input is more effective compared to a standard GAN. 

This enhancement facilitates the optimization of Generator G. To enforce a 

Lipschitz constraint on the Critic, (Arjovsky et al., 2017) suggested clipping 

the weights of the Critic to lie within a bounded range [−𝑚,𝑚]. The set of 

functions that adhere to this constraint forms a subset of 𝑘 -Lipschitz functions, 

where the Lipschitz constant 𝑘 depends on 𝑚 and the architecture of the Critic. 

The principle of model selection is also which WGAN model has the smallest 

FID value. The difference between the generated data and the original data. 

3.4.2. The Transformer model for the task of predicting graduation 

classification 

The architecture of the Transformer model in this chapter is 

fundamentally designed as described in Sections 1.2.2 and 2.4.3. 

Assume that a data sample is represented by the pair (𝑥, 𝑦), where 𝑥𝑐𝑜𝑛𝑡 ∈

𝑅𝑃 is a vector of 𝑃 continuous features representing a student's grades over four 

semesters, where each semester includes 𝑚𝑖 subjects (𝑖 = 1,2,3,4), along with 

survey data that has been numerically encoded. The label 𝑦 corresponds to the 

graduation classification, which falls into one of the following categories: 

excellent, very good, good, medium, poor and very poor.  
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Figure 3. 23. Transformer model for the task of predicting graduation 

classification. 

For the classification task, the loss function used is the cross-entropy loss. 

                          𝐿(𝑥, 𝑦)  =  𝐻(𝑔𝜓(𝑓𝜃(𝑋𝑒𝑚𝑏)), 𝑦)                                      (3.8) 

3.4.3. Graphormer  

  Graphormer ([80]) is an advanced deep learning architecture developed 

to extend the representational capabilities of the Transformer model from 

sequential (series) data to graph-structured data. While traditional graph models 

like GCN and GAT rely on local message passing through neighborhood layers, 

Graphormer leverages a global self-attention mechanism to capture long-range 

and diverse relationships between nodes in a graph. 

 

Figure 3. 24. The Graphormer model ([80]) 

 Unlike traditional Transformers, Graphormer directly integrates three 

key structural aspects of graphs into the attention mechanism: centrality, 
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spatial position, and edge features. These encoding techniques are designed to 

preserve the non-sequential nature of graphs while providing structural context 

for each attention computation. 

  Centrality Encoding: To reflect the importance of each node within the 

graph, Graphormer incorporates in-degree and out-degree information into the 

node embeddings. The input vector of node i is defined as follows: 

                                            ℎ𝑖
(0)
= 𝑥𝑖 + 𝑧𝑖

− + 𝑧𝑖
+.                                              (3.9) 

where: 𝑥𝑖  is the initial feature of node i, 𝑧𝑖
−: the embedding learned from the in-

degree, and 𝑧𝑖
+: the embedding learned from the out-degree. 

  Spatial Encoding: The distance between nodes is calculated using the 

shortest path length ϕ(i, j), from which a spatial embedding 𝑏𝜙(𝑖,𝑗) is generated. 

This embedding serves as a bias term in the attention mechanism: 

         Attention(Q, K, V ) = Softmax (
𝑄𝐾𝑇

√𝑑𝑘
+ 𝐵)𝑉                                     (3.10) 

where B is the spatial bias matrix obtained from the embedding 𝑏𝜙(𝑖,𝑗). 

 Edge Encoding: Graphormer utilizes information from the edges lying 

along the shortest path between two nodes i and j, computing the edge 

embedding component 𝑐𝑖𝑗  as follows: 

                                    𝑐𝑖𝑗 =
1

𝑁
∑ 𝑀𝐿𝑃(𝑥𝑛

(𝑒)
)𝑁

𝑛=1                                        (3.11) 

where 𝑁 is the number of edges on the shortest path between nodes i and j, 

𝑥𝑛
(𝑒)

 is the feature of the n-th edge, and MLP is a deep neural network that 

generates an embedding from the edge feature. This edge embedding is then 

integrated into the attention score as follows:                                

                                   𝐴𝑖𝑗 =
(ℎ𝑖𝑊𝑄)(ℎ𝑗𝑊𝐾)

𝑇

√𝑑
+ 𝑏𝜙(𝑖,𝑗) + 𝑐𝑖𝑗 .                              (3.12) 

         Virtual Node: Similar to the [CLS] token in BERT, Graphormer 

introduces a virtual node that connects to the entire graph. This node does not 

exist in the original structure but is capable of aggregating global information, 

effectively supporting tasks such as graph-level classification. 

According to an analysis on Medium titled Graphormer on Medium, 

Graphormer demonstrates outstanding performance on several benchmark 

datasets, such as ZINC and PCQM4Mv2. Key improvements include: 
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 Eliminating the need for multi-layer message passing as seen in 

GCN/GAT. 

 Mitigating the over-smoothing effect. 

 Preserving the parallel computation capability of traditional 

Transformers. 

In summary, Graphormer marks a significant advancement in 

generalizing the Transformer architecture to the domain of graph data. By 

directly incorporating graph structural information into the attention 

mechanism, Graphormer provides a powerful and flexible deep learning 

framework for complex graph-based machine learning tasks. 

The conclusion of Chapter 3 

The early prediction of graduation classification holds significant 

practical value in higher education. It enables institutions to make timely, data-

informed decisions that support quality assurance, curriculum development, 

and strategic planning. For students, early insights into their likely graduation 

outcomes provide opportunities for academic adjustment, proactive learning, 

and career preparation. 

This chapter demonstrated that graduation classification is influenced not 

only by academic performance but also by a variety of personal, family, social, 

and institutional factors. Therefore, predictive models must go beyond 

traditional approaches by integrating diverse data sources and addressing the 

uncertainty inherent in educational environments. 

By proposing deep learning models that incorporate both academic and 

non-academic data - along with mechanisms for handling incomplete and 

uncertain information - this study contributes to the development of more 

accurate and realistic tools for early graduation classification prediction. These 

models lay the foundation for more personalized academic advising and 

improved educational management. 

 In this chapter, the dissertation presented integrated deep learning 

models aimed at improving performance in the task of early prediction of 

students’ graduation classification, including the LATCGAd and AWG-GC 

models. LATCGAd and AWG-GC are notable for their tight integration of 

preprocessing, data generation, and classification learning within a unified 

architecture. Instead of handling data processing and model training as separate 
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stages, these models operate cohesively, allowing their components to support 

each other in optimizing overall system performance. This approach improves 

accuracy, enhances generalization capability, and offers better adaptability to 

complex, imbalanced, or low-label datasets. Experiments on the HNMU2 

dataset demonstrated the effectiveness of the models: LATCGAd reached an 

accuracy of 96.97% and an F1 score of 73.66%, while AWG-GC outperformed 

the others with an accuracy of 98.54% and an impressive F1 score of 99.25%. 

However, models with complex architectures like AWG-GC require 

significant computational resources and long training times, which may limit 

their practical deployment. Therefore, in scenarios with limited data or 

computational constraints, lighter models such as LATCGAd may be more 

suitable choices. 
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CONCLUSION AND FUTURE DEVELOPMENT 

A. Key contributions of the dissertation 

  This dissertation has addressed the challenge of predicting student 

academic outcomes under the conditions of uncertainty, data scarcity, and 

imbalance that characterize real-world educational environments.  

  In the first stage, the research focused on short-term SGPA prediction, 

demonstrating that SGPA should be treated as a dynamic and uncertain 

indicator rather than a fixed value. To capture this complexity, two novel 

frameworks-NeutroDL and NeutroGNT-were proposed, integrating deep 

learning with neutrosophic theory to manage incomplete and uncertain data. 

Experimental results confirmed their superiority, with NeutroGNT achieving a 

minimum MSE of 0.018 and a maximum R² of 96.05%, significantly 

outperforming conventional approaches. These findings highlight the 

effectiveness of uncertainty-aware deep learning models in supporting timely 

academic monitoring, early intervention, and personalized learning pathways. 

  Building on this foundation, the research advanced to the long-term 

prediction of graduation classification, a task with broader strategic 

implications for educational policy and quality management. To this end, two 

hybrid deep learning models were developed: LATCGAd, which integrates 

Transformer, CGAN, and Adaptive Layer Normalization, achieving 96.97% 

accuracy and a 73.66% F1-score; and AWG-GC, which combines 

Autoencoder, Wasserstein GAN, and Graphormer, simultaneously addressing 

representation learning, data augmentation, and classification. The AWG-GC 

model achieved 98.54% accuracy and a 99.25% F1-score, markedly surpassing 

baseline models and demonstrating the benefits of unifying advanced 

generative and graph-based architectures. 

  Overall, the dissertation makes three major contributions: (i) the 

development of uncertainty-aware predictive frameworks (NeutroDL and 

NeutroGNT) for SGPA prediction, (ii) the design of advanced hybrid models 

(LATCGAd and AWG-GC) for robust graduation classification under imbalanced 

data conditions, and (iii) the creation of enriched educational datasets and 

analytical pipelines tailored for real-world application. Together, these results 

provide both methodological advances and practical tools to support data-driven, 

adaptive, and intelligent decision-making in higher education. 
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B. Future research directions 

Based on the results achieved, the dissertation proposes several 

promising directions for future research: 

1. Broaden prediction targets to include dropout risk, program completion, 

course satisfaction, and career orientation, thereby providing a more 

comprehensive view of students’ learning trajectories. 

2. Apply reinforcement learning and unsupervised learning, combined with 

explainable AI (XAI) techniques, to both personalize learning pathways 

and provide transparent, interpretable justifications that enhance trust in 

early intervention decisions by instructors and administrators. 

3. Leverage federated learning and transfer learning to develop models that 

ensure predictive effectiveness and generalization capability while 

preserving data privacy across institutions. 

4. Develop an online Learning Analytics (LA) system based on the 

proposed models, integrated with XAI, to deliver real-time monitoring, 

intuitive explanations, and actionable recommendations for both 

students and educators. 

These directions not only extend the impact of the current research but 

also foster sustainable, data-driven digital transformation in higher education, 

toward a smart, adaptive, and transparent learning ecosystem. 
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