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INTRODUCTION
1. General introduction

The rapid development of data science and artificial intelligence (Al) in
education has opened new opportunities to enhance teaching and learning in
the digital transformation era ([1] - [3]). Among these, predicting students’
academic performance has become a key application, enabling the early
detection of at-risk learners and timely interventions ([1], [4]), in line with the
goals of personalized learning and improving graduation rates ([5] - [7]).

However, most existing studies still rely on traditional machine learning
models such as LiR, LR, SVM, DT, KNN, and NB ([8], [9]). While simple and
interpretable, these models are limited in capturing nonlinear, sequential, and
multifactorial characteristics of educational data ([1], [2], [10], [11]). Deep
learning, particularly LSTM and Transformer architectures, offers a promising
alternative Dby effectively modeling sequential behaviors and complex
relationships ([6], [13], [14]).

In theory, a practical solution would be to apply pre-trained deep learning
models or transfer learning techniques, which have proven effective in domains
like computer vision and natural language processing when data is limited.
However, in education worldwide, there is still a lack of large, standardized,
and publicly available datasets, together with a shortage of domain-specific pre-
trained models, which limits the adoption of transfer learning in this field ([15];
[16]). In Vietnam, for instance, the Ministry of Education and Training issued
Circular No. 42/2021/TT-BGDDT dated November 30, 2021, on the
Regulations of the Education Database (Ministry of Education and Training of
Vietnam, 2021), which provides a framework for building a unified national
education database. Nevertheless, its implementation remains fragmented and
not yet openly accessible for research, reflecting the broader global challenges.

To address these constraints, this study proposes deep learning—based
and hybrid approaches that integrate data augmentation, feature selection, and
advanced optimization techniques, combining the representational power of
deep models with the interpretability of traditional methods ([11], [18] - [20]).

Based on this rationale, the dissertation investigates deep learning and
hybrid models for predicting academic performance, aiming to process
sequential data, incorporate diverse contextual factors, and ensure reliable



performance under limited data conditions. This work contributes to advancing
Learning Analytics, supporting evidence-based decision-making in higher
education, and expanding the role of Al in educational research.

2. Research objectives

General Objective: To research and develop machine learning and deep
learning models for analyzing educational data with the goal of early prediction
of student’s academic performance.

Specific Objectives:

(1) To propose and compare the performance of modern machine
learning and deep learning models: k-Nearest Neighbors (KNN), Decision
Trees (DT), Support Vector Machines (SVM), Logistic Regression (LR),
Random Forests (RF),Convolutional Neural Networks (CNN), Recurrent
Neural Networks (RNN), Long Short-Term Memory (LSTM),
Transformers,...for predicting academic performance (e.g., semester GPA,
graduation classification), with an emphasis on improving accuracy and
generalizability.

(2) To construct hybrid deep learning models, perform appropriate
feature selection, and apply data augmentation techniques to address the
challenges of small-scale and heterogeneous educational datasets.

The experimental evaluation will be conducted using training datasets
collected from both domestic and international universities and colleges.

3. Research subjects and scope

Research Subjects:

Early prediction problems related to student academic performance can
be categorized into several specific types, depending on the objectives and
scope of the analysis. Specifically:

- Grade prediction problems: including the prediction of semester Grade
Point Average (GPA), annual GPA, cumulative GPA, individual course scores,
short-term course results, continuous assessment scores, etc.

- Classification prediction problems: including the prediction of
academic classifications for individual courses, semesters, stages of study, or
final graduation classifications.

These prediction tasks play an important role in academic early warning
systems, helping institutions identify students at risk of failing courses,



repeating semesters, or being unable to graduate on time. They also support the
recommendation of interventions to improve student performance and provide
data-driven evidence for educational administrators to make informed
decisions.

In the context of this dissertation, we focus on two core prediction
problems:

- The early prediction of semester GPA,

- The early prediction of final graduation classification.

Hereinafter, the term "academic performance" as used in this dissertation
refers specifically to "semester GPA™ or "graduation classification™.

In addition, the dissertation also considers research subjects at the model
level, including:

- Traditional machine learning algorithms (KNN, DT, SVM, LR, RF) as
baselines.

- Deep learning architectures (DNN, CNN, RNN, LSTM, Transformer,
GNN/GCN/GAT) for sequential and relational data.

- Hybrid and advanced models (NeutroDL, NeutroGNT, LATCGAd,
AWG-GC) to address small, imbalanced, and uncertain datasets.

Research Scope: Modern machine learning and deep learning models,
including hybrid model architectures.

Datasets collected from Hanoi Metropolitan University (HNMU),
Vietnam National University (VNU), and selected publicly available
international datasets for reference and benchmarking.

The data used in this research includes:

- Student grade records, collected from university academic
management systems.

- Survey data on factors related to students, such as personal
information, preferences, academic background prior to university, family
circumstances, and socio-occupational factors that may influence academic
performance, etc.

- Institutional data from higher education institutions, including
facilities, curriculum, and faculty-related information, etc.



4. Research methodology

The research adopts a combination of theoretical study, literature review,
empirical research, and survey-based investigation.

Theoretical research: Theoretical analysis is conducted to evaluate the
advantages and limitations of various machine learning and deep learning
models in predicting academic performance. Based on this analysis, appropriate
models are selected for application to the available datasets. These models
include, but are not limited to: k-Nearest Neighbors (KNN), Decision Trees
(DT), Support Vector Machines (SVM), Logistic Regression (LR), Random
Forests (RF), Deep Neural Networks (DNN), Convolutional Neural Networks
(CNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM),
Transformers, Graph Neural Networks (GNN), Graph Convolutional Networks
(GCN), Graph Attention Networks (GAT), Conditional Generative Adversarial
Networks (CGAN), Wasserstein GANs and Graphomer.

The study includes: (i) a literature review to synthesize prior works,
highlight trends, strengths, and limitations for model development; (ii) surveys
and data collection at Vietnam National University and Hanoi Metropolitan
University to build student datasets; (iii) empirical experiments validating
machine learning, deep learning, and hybrid models on both local and
benchmark datasets; and (iv) technical implementation using Python and
MATLAB for model development, evaluation, and comparison.

5. Key contributions of the dissertation

(1) Two novel methods, NeutroDL and NeutroGNT models, are
proposed, integrating the neutrosophic process into deep learning models to
enhance early SGPA prediction performance.

(2) Two novel hybrid models are proposed: LATCGAd, and AWG-GC
for the prediction of graduation classification for students.

(3) Development of 03 multi-attribute datasets from diverse sources and
proposal of analytical frameworks tailored to educational data.

From an information systems perspective, where data, software,
hardware, people, and processes are integrated to support decision-making, this
dissertation makes the following contributions:



« Data sources: Constructed and standardized educational datasets
(HNMU, VNU, and survey data), providing a reliable foundation for
Educational Data Mining (EDM) and Learning Analytics (LA).

. Data pipeline: Designed a rigorous processing, normalization, and
integration pipeline to ensure consistency, quality, and model reliability.

. Prediction & Analytics: Applied advanced deep learning and hybrid
models (NeutroDL, NeutroGNT, LATCGAd, AWG-GC) to predict
SGPA and graduation classification, leveraging CPU/GPU
infrastructures for efficient training and real-time analysis.

« User services: Delivered prediction and analysis results that can be
integrated into early-warning systems, reporting tools, and decision-
supportservices for students, lecturers, advisors, and administrators -
thereby fostering intelligent, adaptive, and student-centered educational

management.
Data Sources Data Pipeline Prediction Repositories
- & Analytics
= O
Academic |—5 ETL Deep Learning Metadata
Records DB J Models ”| Repository
- >y T . Py
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\/
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. J/ — e . S
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Figure 0. 1. Student performance prediction system

6. Layout of the dissertation

This dissertation is presented with a structure that includes an
introduction, three main chapters, a conclusion and future development, a list
of publications, and references, as follows:



The Introduction outlines the scientific significance and urgency of the
topic, as well as the reasons for choosing the research topic. It also presents the
objectives, subject, scope, methods, key contributions of the dissertation, and
contents of the study.

Chapter 1 provides an overview of educational data analysis,
highlighting machine learning and deep learning applications in predicting
student’s academic performance. It reviews related research to establish the
dissertation’s motivation and introduces three key datasets (HNMU1, HNMU2,
VNU) from Hanoi Metropolitan University and Vietnam National University,
which form the experimental basis for the models developed in later chapters.

Chapter 2 focuses on SGPA prediction using deep learning models
combined with Neutrosophy theory to manage data uncertainty. Models such
as DNN, CNN, RNN, LSTM, and Transformer are implemented in
neutrosophic environments (Neutrosophic DLS) to predict next-semester GPA
from historical academic data. To further enhance performance, the chapter
introduces NeutroGNT, a hybrid model integrating data neutrosophicization,
CGAN-based data generation, noise injection, and Transformer, improving
prediction accuracy and adaptability in uncertain conditions.

Chapter 3 shifts to predicting students’ graduation classification, a more
long-term and system-level task. It introduces LATCGAd and AWG-GC,
which leverage graph-based models (Graphformer), advanced GANs (CGAN,
WGAN), and Autoencoders, along with AdaLN for stability, to handle small
and imbalanced datasets. These models expand data and improve predictive
performance, offering higher accuracy, robustness, and scalability for
educational analytics systems.

In the Conclusion and Future development, the dissertation
synthesizes the achieved results and draws several conclusions, while also
outlining future research directions based on the findings.

List of publications: The dissertation includes a list of 08 papers
authored by the researcher, which have been published or accepted for
publication in domestic and international journals and conference proceedings.

Finally, a list of references used in the dissertation is provided.



7. Overview of main content flow

Apart from Chapter 1, which provides an overview and introduces the
research problem and datasets, Chapters 2 and 3 form a cohesive structure,
presenting two complementary approaches to the early prediction of student
academic performance based on both academic and non-academic data. In
terms of problem nature, Chapter 2 addresses a regression task aimed at
predicting semester GPA - a continuous, quantitative indicator that reflects
short-term academic progress. In contrast, Chapter 3 focuses on a classification
task to predict graduation classification - a discrete, system-level, and longer-
term outcome.

These two tasks are inherently linked: the GPA results from multiple
semesters form a key part of the input for the graduation classification model.
Accurate SGPA predictions in earlier stages thus help improve the performance
of classification in later stages.

From a modeling perspective, the deep learning architectures developed
in Chapter 2 (such as DNN, LSTM, Transformer), combined with techniques
for handling data uncertainty (Neutrosophy) and data augmentation (CGAN),
lay a crucial technical and experimental foundation for the extended models in
Chapter 3. There, new models like LATCGAd and AWG-GC are developed by
building upon and integrating advanced components such as WGAN,
Graphformer, and Autoencoder, effectively addressing the classification
problem under imbalanced and complex data conditions.

The strong connection between chapter 2 and chapter 3 is reflected not
only in the data relationship between the tasks but also in the progression of
model development, which is carefully aligned with the characteristics and
objectives of each educational prediction task.

8. Significance of the dissertation

The dissertation holds both academic and practical significance in the

context of digital transformation in higher education:



Academic Significance:

The research contributes to advancing the field of Educational Data
Mining (EDM) by integrating deep learning models into educational
information systems. The proposed models for predicting GPA and graduation
classification, trained on real-world data with high accuracy, provide a strong
scientific foundation for applying artificial intelligence in analyzing student
learning behaviors.

Practical Applications:

The findings of the dissertation have high applicability in educational
management, particularly in:

Personalized learning: supporting academic advising and customized
learning pathways for students;

Early identification of at-risk learners: enabling timely interventions by
educational institutions;

Data-driven decision-making: assisting in educational planning,
evaluation, and policy development.

System-level Contribution:

The dissertation exemplifies the integration of deep learning
technologies with core components of educational information systems (data -
hardware - software - people - processes), aiming to build a smart, adaptive,
and efficient learning environment in the era of artificial intelligence.

The results of this dissertation have been presented at:

1. FS&IS Seminar, School of Information and Communications
Technology, Hanoi University of Industry.

2. VNICT Conference, 2024.

3. MCO Conference, 2025.



CHAPTER 1. OVERVIEW OF ACADEMIC PERFORMANCE
PREDICTION FROM MACHINE LEARNING AND DEEP
LEARNING APPROACHES

This chapter outlines the research context and motivation (Section 1.1),
emphasizing the importance of early prediction of student performance. Section 1.2
reviews key machine learning and deep learning foundations. Section 1.3 synthesizes
related domestic and international studies, highlighting research gaps. Section 1.4
introduces experimental datasets, including three from Vietnamese universities
([CT1], [CT3], and [CT4]) and several international datasets for benchmarking.
Finally, Section 1.5 presents the evaluation metrics used to assess and compare
model performance in later chapters.

1.1. Research context and motivation
1.1.1. The transformative role and challenges of data and technology in
modern education

The Fourth Industrial Revolution, characterized by rapid data growth,
has turned data into a strategic asset essential for decision-making and
efficiency across sectors, including education ([21]). In this domain, LMS,
online platforms, and intelligent technologies generate vast datasets that enable
progress tracking, personalized learning, and evidence-based management
([1D). While these technologies provide opportunities to optimize engagement
and outcomes ([2]), they also pose challenges in data quality, unstructured
information, privacy, and the technical requirements of advanced analytics such
as machine learning and deep learning. To address these issues, educational
data science has emerged as an interdisciplinary field that integrates computer
science, education, psychology, and statistics to collect, process, and analyze
data for enhancing learning and teaching ([5]; [6]).

1.1.2. Approaches to predicting academic performance

In recent years, there has been a growing trend of students at higher
education institutions receiving academic warnings or being forced to
withdraw. Despite decades of efforts to improve student retention, the rates
have remained low ([22]). According to a report by [23], the average retention
rate from the first to the second year was only 66.5%. Nearly one-fourth of
students leave college after their first year ([22]). One of the main causes of
poor academic performance is that students often select courses that do not



10

match their capabilities and lack an effective study plan. This results in students
either dropping out or extending their study duration, wasting time and
resources for families, institutions, and society ([24]).

Academic success is a key factor in helping students persist in their
studies ([25]; [26]), and the risk of dropping out decreases as academic
performance improves ([27]). Therefore, an effective way to increase retention
Is to improve academic performance through early prediction of academic
performance. This enables early warnings about risks of failure and supports
decision-making in developing optimal study plans for students, advisors, and
administrators ([28]; [29]).

Predictive results not only help students choose subjects appropriate to
their abilities but also assist instructors and academic managers in identifying
students who need additional support, thereby reducing academic warnings and
forced withdrawals ([30]). In turn, this saves time and costs while improving
the quality of education. As such, predicting student academic performance has
become a crucial research topic in the field of LA, attracting increasing
attention.

Among these problems, this dissertation focuses on two main tasks:
predicting semester GPA scores and early prediction of graduation
classification.

1.2. Machine learning and deep learning methods
1.2.1. Overview of machine learning

Machine learning is a field of study focused on developing computer
algorithms that improve automatically through experience. It is commonly
categorized into four types: supervised learning, unsupervised learning, semi-
supervised learning, and reinforcement learning ([31]). In supervised learning,
models learn a mapping function from labeled training data. Unsupervised
learning involves data without labels, aiming to discover hidden patterns or
structures. Semi-supervised learning combines both labeled and unlabeled data
to improve learning accuracy. In reinforcement learning, an agent interacts with
its environment to learn actions that maximize cumulative reward. Figure 1.1
illustrates the classification of machine learning systems.
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Figure 1. 1. Classification of machine learning algorithms ([31])

LR is a classical statistical method for identifying predictors of binary
outcomes. KNN is a non-parametric algorithm that performs classification or
regression based on the majority vote or average of the k nearest data points.
DT uses a binary tree structure to split data via decision rules but is prone to
overfitting without pruning. RF, as an ensemble method, aggregates multiple
randomized DTs to improve accuracy and reduce overfitting. SVM classifies
data by finding the optimal hyperplane maximizing class separation and

effectively handles non-linear patterns through kernel functions (see
Figure 1.2) ([32]).
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Figure 1. 2. The ML models: LR, KNN, RF and SVM ([32])

1.2.2. Some deep learning models

The foundation of artificial neural networks (ANN) was introduced in
1943 as a mathematical model of an artificial neuron ([13]). In 2006, the
concept of deep learning (DL) emerged, extending ANN into multi-layer
architectures with significantly enhanced learning capabilities. In recent years,
DL has achieved remarkable success in solving complex problems such as
anomaly detection, object recognition, disease diagnosis, semantic
segmentation, social network analysis, and video recommendation systems
([33]; [34]).

Deep learning models are generally classified into four main categories:
deep supervised learning, unsupervised learning, reinforcement learning, and
hybrid models. Figure 1.3 illustrates these categories along with representative
models for each.
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Figure 1. 3. Deep Learning models ([13])

Within the category of deep supervised learning, three prominent models
have been identified: Deep Neural Networks (DNN), Convolutional Neural
Networks (CNN), and models based on RNN(RNN), as illustrated in Figure
1.4. ANN and DNN (with multiple hidden layers) model complex nonlinear
relationships, CNN extract spatial features and patterns for image-related tasks
using convolution and pooling layers, while RNN (including LSTM) capture
temporal dependencies and long-term patterns in sequential or time-series data.
Table 1.1 summarizes the key advantages and limitations of the deep learning
models: DNN, CNN, and RNN.
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Table 1. 1. Advantages and disadvantages of deep supervised learning

Output

techniques
Learning Category Advantage Disadvantage
methodology
Deep Deep neural | Tendency to high | Slow learning, Hard
supervised | networks nonlinear for parameter tuning,
learning relationships, Insufficient for high-

Easy to develop

dimensional input

space
Convolutional | Ability to capture | Difficult  parameter
neural network | spatial correlations, | tuning, High

high potentiality at
generalization

computational cost

Recurrent
neural network

fast
with

Sometimes
converge
minimum
parameters, improve
the vanishing
gradient issues

Difficult  parameter
tuning, Poor spatial
feature representations
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Transformer

The architecture of the Transformer model, originally proposed by
Vaswani et al. ([35]), is presented in Figure 1.5. It consists of two principal
components: the encoder and the decoder. The encoder is composed of a series
of identical layers, each containing two sub-components, a multi-head self-
attention mechanism and a position-wise feed-forward neural network. To
enhance training stability and gradient flow, residual connections and layer
normalization are applied following each sub-layer, as illustrated in Figure 1.5.

Unlike conventional convolutional networks, which combine feature
aggregation and transformation in a single step, the Transformer architecture
separates these processes: self-attention handles aggregation, while the feed-
forward layer performs transformation. Similarly, each Transformer decoder
layer, stacked like those in the encoder, consists of three sub-layers: self-
attention, feed-forward (same as the encoder), and a cross-attention mechanism
that attends to the encoder’s output.

Output Probabilities

Sofﬁnax
‘ Linéar ‘
Attention(Atient SI t), )
‘ Decoder layer 2
Encode Encode Layer —
T E}—» Decode
Source (Src) T
input
Decoder layer 1
Target (Tgt)

input

Figure 1. 5. Transformer architecture ([35])

The original Transformer model in [35] was trained for machine
translation. The input to the encoder is a sequence of words (i.e., a sentence) in
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the source language. Positional encoding is added to the input sequence to
capture the relative position of each word. These positional encodings have the
same dimensionality as the model input d = 512, and can be either learned or
fixed.

As an auto-regressive model, the Transformer decoder uses previously
generated predictions to produce the next word in the sequence. Consequently, the
decoder receives input from both the encoder and the preceding output tokens to
generate the next token in the target language. To support residual connections,
the output dimension of all sub-layers is kept constant, i.e., d = 512

The dimensions of the query, key, and value weight matrices in the multi-
head attention mechanism are typically setto d, = 64; d;, = 64; d, = 64.

While deep learning models have demonstrated remarkable performance,
they also exhibit limitations, particularly in hyperparameter tuning and their
sensitivity to data volume. These limitations can hinder their deployment in
various real applications. Nonetheless, each DL model possesses characteristics
that make it suitable for specific tasks. To address these shortcomings, hybrid
DL models have been proposed, which combine individual architectures to
overcome application-specific challenges ([36]).

1.3. Overview of related research

1.3.1. Related works

a) Emergence of EDM and Learning Analytics

In recent years, EDM and LA have become prominent research directions
in educational science, fueled by the growth of digital technologies and online
learning platforms such as LMS and MOOCs. These environments generate
large-scale data on learner behaviors, enabling the application of Al, ML, and
DL methods to predict, classify, and support learning processes. One of the
central problems is the prediction of academic performance, including grades,
graduation likelihood, dropout risk, and achievement classification. Supervised
machine learning algorithms such as DT, NB, LR, KNN, RF, and SVM have
been widely used and proven effective in identifying risk factors and enabling
early intervention ([37]).

b) Deep Learning and hybrid approaches

Alongside traditional models, deep learning has gained increasing

attention for its ability to capture nonlinear and sequential relationships.
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Architectures such as DNN, RNN, LSTM, and GNN have been applied to
improve prediction accuracy and analyze learning behavior ([38]). To address
challenges such as imbalanced and incomplete datasets, researchers have also
explored hybrid methods, including fuzzy logic integration, feature selection
using genetic algorithms, and data augmentation techniques like SMOTE
([39]). While these methods improve accuracy, several works highlight
concerns about computational complexity and potential overfitting.

c) Academic performance prediction models

Academic performance prediction remains one of the most extensively
studied problems in EDM. Traditional algorithms (DT, KNN, NB, LR, rule-
based systems) continue to be used in predicting GPA, academic classification,
or graduation outcomes ([4]; [40]; [41]). For example, Waheed et al. ([38]) and
Wasif et al. ([42]) focused on identifying at-risk students, while Elbadrawy et
al. ([43]) applied linear regression and matrix factorization. However, these
models often neglect sequential dependencies between courses, reducing their
practical relevance. Fei and Yeung ([44]) applied HMMs and RNNs to MOOC
datasets, though their findings were limited to online contexts.

d) Learner behavior and personalized interventions
Another important research strand emphasizes the analysis of learner behavior
for personalized support. Okubo et al. ([45]) applied RNN to predict academic
performance, but the study was restricted to a small cohort, limiting
generalization. Corrigan and Smeaton ([46]) and Waheed et al. ([38])
confirmed the potential of RNNs and LSTMs in online environments, though
the specific impact of interaction types remained unclear. Other works (e.g.,
Anggrawan et al. [39]) applied SMOTE and genetic algorithms to tackle
imbalance, while Christou et al. ([47]) explored grammatical evolution for
feature selection. Despite improvements, challenges such as training cost,
scalability, and risk of overfitting persist.

e) Applications of ML and DL in education
Recent studies further confirm the potential of ML and DL models in predicting
student success. Algorithms including LR, DT, neural networks, RF, and
XGBoost have been employed to analyze exam scores, study habits, and
participation data ([48]; [49]; [50]). For instance, Sapkota et al. ([48]) predicted
graduation rates using XGBoost and RF, while Halat et al. ([49]) applied ML
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to progression analysis in health sciences. Although deep learning models
achieve high accuracy in online learning contexts ([51]), limitations remain:
dependency on historical data ([43]; [52]), lack of temporal modeling ([44]),
neglect of causal relationships ([43]), small sample sizes ([45]), imbalanced
datasets ([53]), and inconsistent evaluation metrics across studies ([37]).
f) Context-specific studies and challenges

Several works have investigated education data in specific institutional
contexts. An et al. ([54]) used statistical analysis to explore factors influencing
early-year student performance, though without predictive modeling. Other
research employed recommender-system toolkits (e.g., Mymedialite) to
analyze student competency ([55]; [56]), yet noted barriers in adapting generic
ML models to educational logic. Uyén and Tam ([41]) applied Naive Bayes
and LR for academic performance and dismissal risk prediction, while Nghe
and Dinh ([57]) designed an Al-based admission advisory system, though still
at an experimental stage. More advanced studies have begun integrating deep
learning: e.g., a multilayer perceptron (MLP) with 18 features ([58]) and a CNN
model with 21 features ([59]) to predict student performance. Despite these
advances, reliance on traditional input features (e.g., GPA, gender) limits
personalization and reduces adaptability.

Table 1. 2. Results of student performance prediction using machine
learning and deep learning techniques

Study Purpose Dataset Method Results
Thai-Nghe, To predict 2 datasets from | MF (Matrix Tensor-based
Horvath, and | student KDD Cup 2010 | Factorization factorization can
Schmidt- performance in a Model) be useful for
Thieme, 2011 | course predicting student
[40] performance
Fei and Yeung, | To analyze 2 datasets from | Hidden Markov Explored learning
2015 [44] learning MOOC Model (HMM), progression;

behavior RNN limitations in
sequences for traditional
predicting education
outcomes environments
Elbadrawy et | To predict Course data and | LiR, Matrix Effective in
al., 2016 [43] | academic student Factorization centralized

performance and

achievements

environments;
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personalize does not consider
education course order
lam-On  and | To cluster 811 student Clustering (k- Effective

Boongoen, students for data from means) clustering; lacks

2017 [60] personalized MFLU real-time data,
teaching reducing accuracy

Okubo et al., | To predict 108 students RNN Using log data

2017 [45] student grades from 6 weeks,

accuracy was
above 90%

Xu, 2017 [4] To predict 1,169 data from | Latent Factor Latent factor
student UCLA Method method
performance outperforms

benchmark
approaches

Corrigan and | To explore how | 2,879 data from | RF, RNN, simple | RNN outperforms

Smeaton, 2017 | student VLE LSTM all other

[46] interactions with algorithms
virtual learning
environments
can predict
performance

Zafar Igbal et | To suggest Data on student | Collaborative Improved

al., 2019 [52] | improvements in | course scores Filtering (CF), personalized
grades using and activities SVD, NMF, recommendations;
recommendation RBM not tested across
models different
academic fields
Waheed et al., | To predict Behavioral data | RNN, LSTM BiLSTM
2019 [38] students at risk | from online achieved 90.16%
of learning accuracy;
underperforming | platforms effective but
requires large
datasets
Okubo, 2019 | To predict 108 students RNN Good grade
[45] student grades from a prediction; small
from specific university sample size, lacks
course behavior | course generalizability
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Uyén and Tam
(2019) [41]

Predict at-risk
students likely
to be dismissed

Student
academic
records from an

NB, LR

Identified critical
courses and risks,
but lacked higher-

unspecified order feature
university learning
Anthony To improve Data on grades | SMOTE, Genetic | Improved
Anggrawan, predictions + personal Algorithm + accuracy; risk of
2020 [39] through data information SVM overfitting if not
processing and controlled
feature selection properly
Sang et al. | Predict student | Student records | Multi-Layer Promising results

(2020) [58] academic from Can Tho Perceptron (MLP) | using gender and
performance University with 18 features | GPA, but model
lacked behavioral
and unstructured
data
Dien et al. | Predict Data from a CNN Applied CNN
(2021) [59] academic multi- successfully, but
outcomes using | disciplinary relied on basic
deep learning Vietnamese features and
university lacked
personalized
recommendation
ability
Alturki et al., | To handle Imbalanced RF + Improved
2023 [53] imbalanced data | class learning Oversampling accuracy; risk of

for predicting

data

generating fake

academic samples leading
performance to data bias
Christou et al., | To select Complex Evolutionary Long training
2023 [47] optimal features | learning data Grammar + RBF | time and high
for an RBF kernel computational
model cost
Halat et al., | To predict Medical and XGBoost XGBoost
2023 [49] academic health science provided the most

performance at
Qatar University

student data

accurate results in
predicting
academic
performance
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Sapkota et al., | To predict Student data XGBoost, RF, XGBoost model
2025 [48] graduation and | from Qatar AdaBoost achieved 92%
dropout rates of | University accuracy,
students outperforming
other models

1.3.2. Research gap

After reviewing the current body of research both in Vietnam and
internationally on the application of machine learning and deep learning in
educational data science, it is evident that most existing studies still focus on
utilizing standalone machine learning models, such as linear regression, DT,
RF, or SVM, for tasks like academic performance prediction, student
classification, or dropout risk detection. These models are generally considered
easy to implement, interpretable, and perform relatively well on medium-sized
and low-dimensional datasets.

However, the effectiveness of traditional machine learning models
remains limited when applied to more complex educational problems,
particularly those involving temporal sequences or strong nonlinear
relationships. Moreover, the majority of current studies rely heavily on static
data (e.g., semester grades, exam scores), and have yet to fully leverage
dynamic, longitudinal information that reflects the learning process over time.

In response to these limitations, recent research has increasingly
advocated for the adoption of deep learning models, particularly architectures
designed for sequential data processing, such as RNN, LSTM, and Transformer
models, to better capture temporal features in educational datasets. DL models
offer the advantage of automatic feature learning and complex representation
extraction without the need for manual feature engineering, thereby
significantly enhancing predictive accuracy.

Furthermore, a promising direction gaining attention is the use of hybrid
models, which combine deep learning with traditional machine learning
approaches, or integrate multiple deep learning architectures (e.g., CNN,
LSTMs, and Transformers enhanced with customized attention mechanisms).
These hybrid models have the potential to deliver superior performance by
combining the nonlinear learning power of deep learning with the
interpretability and robustness of classical algorithms.
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Despite these advantages, a major obstacle lies in the lack of high-quality,
structured, and temporally rich educational data. Educational datasets are often
small-scale, fragmented, heterogeneous, and lack standardization, posing
significant challenges for training deep learning models, which typically
require large datasets to reach optimal performance. Moreover, sequential data
reflecting learning trajectories are rarely collected or shared due to privacy and
data protection concerns. This further impedes the development and
benchmarking of models on standardized datasets.

In summary, many current studies still rely on standalone machine
learning or deep learning models with limited performance. The shift toward
deep learning and hybrid approaches opens up promising opportunities to
improve the accuracy and generalizability of academic performance prediction.
However, realizing this potential will require addressing key data-related
challenges, specifically, constructing high-quality sequential datasets,
standardizing input features, and developing techniques tailored to small,
heterogeneous datasets commonly found in educational contexts.

1.4. Datasets

1.4.1. HNMUL1 dataset

This section introduces the dataset constructed from academic records at
Hanoi Metropolitan University (HNMU), a public institution governed by the
Hanoi People's Committee [CT1].

The raw data is provided by the training departments and the Student
Management and Training Office. All data, including student management
status (tuition, personal information, etc.), entrance exam scores, foreign
language scores, computer science scores, and scores for each course
completed by the students, is divided into 8 semesters across 4 academic years.
Student academic performance is evaluated at the end of each semester or
academic year, based on the results of the modules required by the training
program that the student has completed. The average grade of the modules
taken by a student in a semester (semester GPA), in an academic year (annual
GPA), or throughout the course of study (cumulative GPA) is calculated using
the official grade of each module, weighted by the number of credits assigned
to that module.
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The grades (on a 10-point scale and a 4-point scale) and letter grades for
each course are presented in detail, along with the specific number of credits
for each course. The letter grade conventions and grade conversion are detailed
in Table 1.3.

Table 1. 3. Letter grade conventions and grade conversion

Ranking Scale 10 Scale 4

At [9.5;10] 4.0
A [8.5;9.5) 3.7
B* [8.0;8.5) 3.5
B [7.0:8.0) 3.0
c* [6.5;7.0) 2.5
C [5.5;6.5) 2.0
D* [5.0;5.5) 15

[4.0;4.9) 1.0
F [0.0;4.0) 0.0

Additionally, admission data were collected through surveys conducted
via Google Forms.

The dataset includes 2,763 records of Primary Education students from
cohorts D2016 to D2020, with 89 features: 4 admission-related features (scores
in the National High School Graduation Examination for Mathematic,
Literature, English, and the total score), and 85 subject scores (including
elective courses, which may vary by student). Each record corresponds to one
student.

The data were cleaned to remove irrelevant variables and attributes outside
the scope of this study, such as physical education, arts-based subjects, and student
financial variables. Attributes with sparse or missing values, mostly electives, were
also eliminated. The analysis focused on numerical exam scores, discarding any
textual grading elements. Specific features for each student were selected for
correlation analysis with the target variable. As a result, the cleaned dataset includes
932 student records (11 Mediums, 430 Goods, 468 Very Goods and 23 Excellents)
and 39 selected attributes, including 4 pre-university academic attributes and 35
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university course grade attributes and its label (Excellent, Very Good, Good,
Medium).

23, 3% 11, 1%

V

s Medium  « Good = Very Good Excellent

Figure 1. 6. The structure of HNMU 1 dataset

The HNMU1L training dataset includes records from 932 students,
categorized into 4 graduation classes. It contains 28 variables, including high school
graduation exam scores and academic results from the first two years of university.
The list of HNMUL training variables is given in Table 1.4.

Table 1. 4. List of HNMU I variables

No. | Subject Name | No. | Subject Name | No. | Subject Name | No. | Subject
Name
1 Subject 1 8 NDSE 1 15 FML 2 22 PVL
(Mathematics)
2 Subject 2 9 NDSE 2 16 GPA — 23 | Informatics
(Literature) Semester 2
3 Subject 3 10 GPA — 17 Research 24 HCMI
(English) Semester 1 Methodology
4 Total Score 11 NDSE 3 18 PASM 25 GPA —
Semester 4
5 FMT 1 12 Physical 19 Psychology 26 | CGPA (4-
Education 1 point scale)
6 RGCP 13 Physical 20 Teaching 27 | CGPA (10-
Education 2 Practicum 1 point scale)
7 Educational 14 FML 1 21 GPA — 28
Science Semester 3

(FMT) Fundamentals of Mathematical Theory; (RGCP) Revolutionary
Guidelines of the Communist Party; (NDSE) National Defense and Security Education;
(PASM) Public Administration and Sectoral Management; (HCMI) Ho Chi

Minh’s Ideology; (PVL) Practical Vietnamese Language; (FML) Fundamentals of

Marxism-Leninism
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Remarks: Most variables have average scores in the mid-to-high range
approximately 6.5-7.8). SGPA values are as follows:

o GPA Semester 1: 7.237

o GPA Semester 2: 6.792

o GPA Semester 3: 7.690

o GPA Semester 4: 6.363

« CGPA on a 10-point scale: 7.874

The average scores are generally stable, indicating that most students
perform at a good level. Overall, academic performance is consistent and
concentrated around the "Good" to "Very Good" range.

Predictive or statistical models should account for left-skewed and low-
variance data distributions, especially in subjects where many students achieve
near-perfect scores.

Variables with extreme skewness - such as Teaching Practicum 1 -should be
treated separately when building predictive models or evaluating academic
performance.

1.4.2. HNMU?2 dataset

The second dataset, HNMUZ2, was also collected from Hanoi
Metropolitan University in 2023. It comprises 2,613 data records from students
in the Mathematics and Physics Education programs [CT3].

To ensure model accuracy, the academic performance prediction task
was conducted separately for each major, as different programs follow distinct
curricula and graduation requirements. For the HNMU?2 dataset, this study
selected the Mathematics Education program.

A landmark of this dataset is the inclusion of survey responses from over
2,613 current and former students. Unlike the HNMUL1 dataset, which only
contains input scores and academic performance during university studies, the
HNMU?2 dataset was constructed based on extensive surveys and multi-source
data collection. It incorporates a diverse set of questionnaire items covering
multiple dimensions, including personal characteristics, family background,
environmental factors, prior academic achievements, and the influence of the
current university environment (e.g., faculty, curriculum, facilities, and related
factors).
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After completing the data collection and preprocessing steps, the final
dataset comprises 551 records of Mathematics Education students, with 88
features, including 36 survey-based attributes and 52 academic performance
variables (course grades on a 10-point scale). Survey attributes of the HNMU?2
dataset: Personal, environmental, and prior academic performance variables are
detailed in Table 1.5.

Table 1. 5. Survey variables of the HNMU2 dataset

Attribute Attribute
Individuals® |Gender Academic HSGE score for Chemistry
information |Parents’ educational level Performance | HSGE score for Biology
and  Exam | High school graduation exam

Part-time job

Funding for tuition fees

Results Prior
to Enrollment

scores

Entrance English score

Study time

Social media usage time

The total number of social media
platforms used

Health condition

Academic
Performanc
e and Exam
Results
Prior to
Enrollment

Secondary school
exam scores

graduation

High school graduation exam for
Mathematics

HSGE score for Literature

HSGE score for English

Groups of subject for admission

HSGE score for History

HSGE score for Geography

Learning
Conditions
and Support

Methods of admission

Ranking choices

Scholarship

Level of adaptation to the
environment

Learning methods

Level of school support

Level of instructor support

Facility conditions

Quality of instructors

Suitability of the
program

training

Competitiveness in studies

HSGE score for Civic Education

HSGE score for Physics

Other Factors

Influence of friends

Level of interest in the field of
study

The HNMU?2 dataset includes 62 score-related variables representing
students' academic performance over eight university semesters. As presented in
Table 1.6, 52 of these variables correspond to individual subject scores, while the
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remaining 10 variables represent semester grade point averages (SGPAS) across
eight semesters and cumulative grade point averages (CGPAS) on both 4-point and
10-point scales

Table 1. 6. List of HNMU?2 score variables

Subject Subject . Subject
No. ) No. ) No. | Subject Name | No. J
Name Name Name
1 Linear Algebra | 17 | Calculus 3 33 | Elementary 49 | TMA
Algebra
2 | caleulus 1 18 | GTMM 34 | Measure Theory | o, | Research
and Integration Methodology
Analytic Elective
3 Geometry 19 PVL 35 PTMS 51 (HMET)
Elective Differential .
4 FML 1 20 (Music,Art, .) 36 Equations 52 Elective (ACTS)
5 Informatics 21 AEG 37 TMMC 53 Elective (DGM)
6 Psychology 22 Arithmetic 38 Engll_s_h for 54 Semester 7 GPA
Specific Purposes
7 Semester 1 GPA | 23 Teaching Skills 39 Functlo_nal 55 Teacr_]mg
2 Analysis Practicum 3
Semester 3 Graduation
8 Calculus 2 24 GPA 40 General Law 56 Thesis
9 Ed_ucatlonal 25 Ho Chi Minh’s a1 PDE 57 DTA
Science Ideology
10 | FML2 26 | Complex 42 | PASM 58 | DTG
Functions
11 | English o7 | Projective 43 | Linear 59 | ATSF
Geometry Programming
Elective Teaching
12 (Vietnam culture) 28 Number Theory | 44 Practicum 2 60 Semester 8 GPA
13 Teaching Skills 29 Teaching Skills 45 Semester 6 GPA | 61 CGPA (4-point
1 3 scale)
14 Semester 2 GPA | 30 Teacr_ung 6 Numerl_cal 62 CGPA (10-point
Practicum 1 Analysis scale)
15 RGCPV 31 General 47 Elementary
Topology Geometry
16 General Algebra | 32 (S;D”:Ster 4 48 Semester 5 GPA

(ATSF) Advanced Topics in Sequences and Functions; (PTMS) Probability Theory and Math. Statistics;
(AEG) Affine and Euclidean Geometry; (TMMC) Teaching Methods in Math Content; (PASM) Public
Administration & Sector Management;(DTG) Differentiated Teaching — Geometry; (GTMM) General

Teaching Methodology for Mathematics; (DTA) Differentiated Teaching — Algebra; (PDE) Partial
Differential Equations; (DGM) Differential Geometry, Mechanics; (ACTS) Advanced Calculus, Topo
Spaces; (HMET) History of Math., Educational Tools; (TMA) Teaching Mathematics in English; (RGCPV)
Revolutionary Guidelines of CPV

Remark: Most variables have average scores ranging between 7.0 and 8.2,
indicating that most students performed at a “Good” to “Very Good” academic
level. Semester-wise GPA values (10-point scale) are as follows:

« GPA Semester 1: 7.205/GPA Semester 2: 7.320

« GPA Semester 3: 7.195/GPA Semester 4: 7.992

« GPA Semester 5: 7.964/GPA Semester 6: 7.902
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« GPA Semester 7: 7.637/GPA Semester 8: 8.599

Overall, the GPA trend shows gradual improvement over time,
especially in the final years. This pattern reflects students’ better engagement
and academic maturity in later stages of their program. The highest average
GPA is observed in Semester 8, primarily due to high scores in practicum and
thesis-related subjects.

Most subject scores exhibit low to moderate standard deviations
(typically around 0.8 - 1.2), suggesting tight clustering of student performance.
However, a few subjects such as “Measure Theory and Integration” (SD =
1.496) and “Calculus 2 (SD = 1.412) display more variability.

Distribution characteristics:

- Skewness is moderately negative in most variables (between -0.2 and -
0.9), indicating that many students scored toward the higher end of the scale.

- Several subjects show extreme left-skewness, such as: Teaching
Practicum 2: skewness = -1.444; Teaching Practicum 3: skewness = -1.221;
Probability and Statistics: skewness = -1.614; Elective: Music/Arts/Islands:
skewness = -2.614. These variables should be treated with caution in predictive
models because they lack variance and may bias learning algorithms toward
majority scores. They can also distort performance comparisons across
students.

- Subjects like “English” (mean = 6.82, skewness = +0.308) exhibit slight
positive skew, meaning some students may struggle more compared to other
subjects.

Summary:
. Academic performance is consistently strong, with stable GPA across
semesters.
« Low variance and left-skewed distributions dominate the dataset.
« Special attention should be given to practicum and thesis components
due to their near-perfect scoring patterns.

The HNMUZ2 dataset suffers from a severe class imbalance in the
distribution of student performance categories. Specifically, the Medium class
contains only 19 samples, the Good class has 338 samples, the Very Good class
has 190 samples, and the Excellent class includes just 4 samples. This
imbalance, along with the relatively small overall sample size, poses significant
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challenges for training predictive models and achieving high classification
accuracy.

HNMU2

Excellent ;

/_ 4; 1%

Good;
191; 35%

Very
Good;
337;61%

Figure 1. 7. The structure of HNMUZ2 dataset

1.4.3. VNU dataset

Similar to the HNMU?Z2 dataset, the dissertation selected data from the
Literature Education major at Vietnam National University, Hanoi (VNU), for
empirical investigation [CT4]. The raw dataset contains 521 samples and 91
attribute fields. These include: 29 features related to individual learner
characteristics, 9 features about the learning environment, 10 features on prior
academic performance, and 43 features representing students’ university-level
academic performance. After completing the data collection and preprocessing
steps, the final dataset comprises 271 samples, labeled with graduation
classifications: 46 "Medium"”, 187 "Good", and 38 "Excellent" . This
distribution is more balanced than that of the HNMU1 and HNMU?2 datasets.

VNU

Excellent ; 38;
14%

Very Good; 46;
17%

Good; 187;
69%

Figure 1. 8. The structure of VNU dataset
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This dataset includes the most survey attributes among all datasets considered
in this study. Specifically, 48 surveyed attributes cover:

. Personal factors: age, gender, interests, strengths and weaknesses,
interpersonal relationships, time spent on social media, part-time work, and
study hours;

. Family background: parental age, education level, occupation, family
traditions, hometown, and local culture;
. Social factors: social trends, university entrance exam subject

combinations, social groups, and community influences affecting students’
learning attitudes and performance;

. Educational history and institutional characteristics: academic
achievements in lower and upper secondary school, university entrance scores,
faculty quality, facilities, and curriculum.

Survey data were collected via Google Forms and matched with official
academic records (including 43 performance indicators and graduation
classification). Following table shows the list of score variables in this dataset.

Table 1. 7. List of VNU score variables

Vietnamese Folk
Literature

Statistics for Social
Sciences

Ho Chi Minh Thought

Semester 1 Semester 2 Semester 3 Semester 4
Vietnamese Cultural _ General Psychology Revolutlonary Path of
. Vietnamese Grammar | and School the Communist Party
Foundations ;
Psychology of Vietnam
Introduction to Principles of Literary Literarv Genres Basic Sino-Nom
Linguistics Theory y Studies
Fundamental Fundamental
L A Fundamentals of .
Principles of Principles of - Literary Works
. - . - Informatics
Marxism-Leninism | Marxism-Leninism Il
The Short Story:

Theory and Genre
Practice

General Sociology

Vietnamese Literature
(10th — mid-18th
century)

Chinese Literature

Practical Vietnamese
Writing

Introduction to
Educational Science

General Vietnamese
Linguistics

Vietnamese Literature
(late 18th — 19th
century)

Russian Literature

Introduction to
Applied Statistics in
Education

Marxist-Leninist
Political Economy

Vietnamese Stylistics

Vietnamese Literature
(1900-1945)

Marxist-Leninist
Philosophy

Didactic Theory

Sino-Vietnamese
Classical Texts

General Pedagogy

GPA Semester 1

Introduction to
Educational
Technology

ICT Applications in
Education

Applied Linguistics
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Organization of

Egugﬁglgnal Scientific Socialism Educational Activities
y 9y in Schools
History of the Introdu_ctlon to
. . Educational
English B1 Communist Party of
: Measurement and
Vietnam .
Evaluation
Organizing
GPA Semester 2 GPA Semester 3 Exp_er_lgntl_al .
Activities in Teaching
Literature
GPA Semester 4
Remark:
- Mean scores are generally high and stable, mostly in the 7.5 - 8.2
range.

- SGPAs reflect consistent academic achievement:
= GPA Semester 1: 7.39
= GPA Semester 2: 7.68
= GPA Semester 3: 7.75
= GPA Semester 4: 7.78
This indicates strong academic performance across the student population,
suggesting that most students fall in the Good to Very Good category.

- Standard deviations are mostly low to moderate (typically 0.7 — 1.2),
showing tight clustering of scores.

- Distribution Characteristics: Skewness is predominantly negative.
This suggests a large proportion of students scored near the upper end
(8.0-10.0).

- Outliers and Special Cases: Some subjects show extreme skew and
low variance, which may reflect highly uniform grading practices or
cause bias in modeling or prediction tasks, such as Vietnamese Folk
Literature: Mean = 8.35, Skewness = -3.125; Vietnamese Literature
(1900-1945): Mean = 7.64, Skewness = -3.654.

Predictive models trained on this dataset should account for non-normal
distributions, apply appropriate data transformations, and consider excluding
or reweighting variables affected by near-ceiling effects in comparative
analyses.
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In summary, three original datasets HNMU1, HNMU2, and VNU are
severely imbalanced, with very few samples in the Medium and Excellent
classes (for example, HNMUZ2 has only 4 Excellent samples, and VNU has
none in the Medium class), while the Good and Very Good classes dominate.
This imbalance can easily cause the predicted model to bias toward the majority
classes and overlook the minority ones.

1.4.4. International datasets

In this dissertation, six international datasets were employed, collected
from diverse universities and educational institutions worldwide. These
datasets include those from Covenant University in Nigeria ([61]), the
University of Malaya in Malaysia ([62]), the SATDAP Program-Capacitacdo
da Administracdo Publica in Portugal ([63]), and the well-known Portuguese
school performance dataset ([64]).

Detailed descriptions and characteristics of these datasets are presented
in Table 1.8.

Table 1. 8. Dataset description

Dataset Name Institutions N k Web link
SATDAP program,
1 SATDAP 4424 36 UCI dataset
Potugal
Universiti Malaya,
2 Malaya-Stud _ 493 16  Mendeley data
Malaysia
Portuguese schools,
3 Portugal-Math 395 33  UCI dataset
Portugal
Portuguese schools,
4 Portugal-Lang 649 33  UCI dataset
Portugal
i Covenant University, i )
5 Covenant-Priv L. 1841 9 Data in Brief
Nigeria

Data’s name Institutions, Sample size (n), the number of features (k), and web-link to data
sources.

1.4.5. Issues of privacy and sensitive data handling

- Privacy & Ethics: Educational data include sensitive personal
information such as grades, learning behaviors, psychological surveys, and
family or social factors, requiring strict compliance with legal and ethical
standards.


https://archive.ics.uci.edu/dataset/320/student+performance
https://data.mendeley.com/datasets/5b82ytz489/1
https://archive.ics.uci.edu/dataset/320/student+performance
https://archive.ics.uci.edu/dataset/320/student+performance
https://www.sciencedirect.com/science/article/pii/S2352340917307540?via%3Dihub%23s0005
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- Program diversity: Differences in curricula, assessment methods,
credit systems, and frequent program updates make it difficult to standardize
data across disciplines.

- Institutional disparity: Variations in university scale, data digitization
levels, and training policies lead to fragmented and non-uniform datasets.

- Personalized learning paths: Students’ flexible course selections and
pacing create inconsistent time-series data, posing challenges for deep learning
models that rely on continuous learning trajectories.

1.5. Evaluation metrics for predictive models

1.5.1. Some metrics for classification models

The evaluation metrics used include: Accuracy (Acc), Precision (P),
Recall (R), and F1-Score (F1), calculated using the following formulas:

Acc = Correct pr.edi.ctions_ (1.1)
All predictions
_ , . _ l N TP;
(Macro — Averaged Precision) P = sz=1 TPerFPy (1.2)
1 TP;
(Macro — Averaged Recall) R = EZ?’:lm, (1.3)
2xP*R
— - ; ( .
(Macro — F1 score) F1 1.4)
P+R

where N is the number of classes, TP; (True Positive of the class i), FP; (False
Positive of the class i), and FN; (False Negative of the class i) are key metrics
in classification tasks and all predictions are the total number of data samples.

The greater the values of Accuracy, Precision, and Recall, the better the
model performance.

1.5.2. Some metrics for regression models

To evaluate the accuracy of a regression model, the dissertation uses
evaluation metrics such as: Mean Square Error (MSE), Root Mean Square Error
(RMSE), Mean Absolute Error (MAE) and R-square (R?).

Mean Square Error (MSE)

MSE measures the average of the squared differences between predicted
values and actual values. It shows how far the predicted values are from the
actual values on average, with larger errors being penalized more due to
squaring.
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MSE = %Zn:(yi - yi)2 ' (1.5)

i=1
where: y. is the actual value of the dependent variable, vy, is the predicted
value and n is the sample size.
Root Mean Square Error (RMSE)
RMSE measures the average deviation between predicted and actual
values, but keeps the same units as the original data.

i=1

RMSE = j%Z(y y )2 (1.6)

where vy. is the actual value of the dependent variable, y; is the predicted value
and n is the sample size.

RMSE has the advantage of being measured in the same units as the
dependent variable, making it easy to compare between models and across
different dependent variables. It also provides the average deviation between
predicted and actual values, helping to assess the model's predictive ability.
However, RMSE can be affected by noise or outlier values in the data. If the
data contains noise or outliers, RMSE can be significantly reduced.

Mean Absolute Error (MAE)
MAE measures how much predictions deviate from actual values on average.

1
MAE :HZ‘J Yi—Yi |’ (17)
i1

where y. is the actual value of the dependent variable, y; is the predicted value
and n is the sample size.

MAE also measures the average error of the model compared to the actual
data; however, MAE calculates the average of the absolute values of the errors.
The advantage of MAE is that it has the same units as the dependent variable,
making it easy to compare between models and across different dependent
variables. However, MAE does not assess the magnitude of the errors.

R-square (R?)

The R-square metric measures the extent to which the model explains the
dependent variable. R-square is calculated using the formula:


https://solieu.vip/mse-va-rmse-la-gi-va-cach-tinh-tren-stata/
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n 2

Z(yi - yi) (1.8)
R?* = 1 — (SSE /SST) =1-2———
Z(yi_y)

i=1
where y. is the actual value of the dependent variable, y; is the predicted value

and n is the sample size; SSE (Sum of Squared Errors): The sum of squared
errors of the model; SST (Total Sum of Squares): The total sum of squares of
the sample mean, y is the mean of the actual values.

R? measures the extent to which the model explains the dependent
variable. R? has the advantage of being simple, easy to understand, and easy to
use. It indicates the percentage of variance in the dependent variable explained
by the model. R? also helps compare the explanatory power of different models,
allowing for the selection of the best model. However, R? does not provide any
information about the model's error. Additionally, R? can be affected by adding
independent variables to the model, leading to a higher R? value while the
model still has significant errors.

In summary, depending on the characteristics of the problem and the
prediction goals, selecting the appropriate metric helps accurately evaluate the
model's effectiveness and practicality.

Table 1. 9. Selection of evaluation metrics for the model

Type of Problem Priority Metrics Reason for Selection
Multiclass Classification F1, Accuracy Ensure no bias towards the
(Graduation Classification) majority class

Regression (Predicting GPA) MAE, RMSE, R? Evaluate both absolute error
and model explanatory power

The conclusion of Chapter 1

Chapter 1 identifies two core problems addressed in this dissertation:
short-term regression-based GPA prediction and long-term classification-based
graduation classification prediction, reflecting distinct aspects of the learning
process and academic achievement.

By synthesizing existing machine learning and deep learning models and
highlighting research gaps, this chapter sets the direction for subsequent
chapters to deeply explore advanced deep learning architectures and develop
hybrid models aimed at optimizing predictive performance within the unique
educational context characterized by limited, heterogeneous, and uncertain



36

data. Additionally, the dissertation emphasizes integrating diverse influencing
factors, ranging from individual traits and learning environments to social
impacts, to enhance the accuracy and comprehensiveness of predictions for the
two main tasks: SGPA and graduation classification.
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CHAPTER 2. EARLY PREDICTION OF SEMESTER GRADE POINT
AVERAGE USING DEEP LEARNING APPROACHES

In modern education, predicting students’ semester Grade Point Average
(SGPA) is important for tracking learning outcomes, identifying students at risk, and
guiding personalized study plans. However, SGPA is not an exact or stable measure.
It can change over time under the influence of many factors, such as grading methods,
teaching approaches, students’ mental conditions, and differences between
institutions. Therefore, SGPA should be considered a flexible indicator that reflects
both uncertainty and variability. From this view, this chapter presents predictive
models that apply deep learning together with uncertainty-based methods to improve
accuracy and better represent the complexity of real educational environments.

Two modeling approaches are proposed:

NeutroDLs: Embeds neutrosophic logic into standard deep learning models.

NeutroGNT: A hybrid model combining Transformer, CGAN, and
neutrosophic representation to handle data imbalance and uncertainty.

Experiments on seven real datasets show that the models significantly improve
prediction accuracy, with NeutroGNT achieving MSE = 0.018 and R? = 96.05%.

The content of this chapter is based on the publications [CT5] and [CT6].
2.1. Problem formulation

In this chapter, we consider the semester GPA prediction problem.
Higher education institutions commonly structure their academic programs
over a period ranging from a minimum of eight semesters to a maximum of
twelve, corresponding to an overall duration of approximately three to six
years. The GPA is a standardized metric widely employed in universities to
assess students’ academic performance. It is computed based on individual
course grades and consolidated into an overall average, typically measured on
a 4.0 scale or a 10.0 scale.

The semester GPA (SGPA) is calculated at the end of each academic
semester and serves as an indicator of a student's ongoing academic
performance. The SGPA for each semester is typically computed using the
following formula:

X1kq+-+xnk
Xrp = =21 ___nn (2.1)
ki++ky
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where n denotes the number of courses taken in a given semester; x; and k;
represent the grade and the number of credit hours for the i-th course,
respectively, i € {1, ..., n}; and x5 denotes the SGPA.

The SGPA prediction problem can be formulated as follows: For a given
student, assuming that the GPAs for the first m semesters are known, the task
is to predict the GPA of the (m + 1)-th semester.

Let X be nonempty set. X =X, ® X, ®...Q X, X= (X, X,,...,X,,) € X .

In this chapter, the dissertation investigates the following three scenarios:

Case 1. Predict the SGPA of the nth semester if the SGPA of the n — 1
semester is given. That is, knowing the value of x,_;, predict the value of
Xn, 1 <n < m,seeFigure 2.1.

X, 1 Black box X,

Figure 2. 1. Prediction framework for Case 1

Case 2: Predict the student's nth term SGPA when the SGPA of the
previous 2 semesters are given. That is, knowing the values of x,,_,, x,_1,
predict the value of x,,,2 < n < m, see Figure 2.2.

Black box X

Figure 2. 2. Prediction framework for Case 2

Case 3: Predict the student's nth SGPA when knowing the SGPA of the
previous 3 semesters. That is, knowing the value of x,,_5, x,,_5, x,,_;, predict
the value of x,,, 3 < n < m, see Figure 2.3.

X 3 X, 5 X, 1 Black box Xn

Figure 2. 3. Prediction framework for Case 3
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2.2.  NeutroDL models
2.2.1. The theoretical basis for model selection
In the educational environment, the assessment of students’ academic

performance is inherently complex, uncertain, and variable. Several key factors
contribute to the uncertainty and indeterminacy of GPA results, as outlined
below:
1) Multi-component mordern assessment structure
Student grades are typically derived from various components, including:
Attendance/Class participation,
Midterm and final examinations/Assignments, projects, presentations,
In-class question-and-answer sessions.
Each of these components is influenced by: The context and objectives of the
educational system/The instructor’s level of enthusiasm and teaching
style/Various unstructured or subjective elements ([65]; [66]; [67]).
i) Shifts in instructional and assessment methods due to online
education
The rapid expansion of online education, especially following the
COVID-19 pandemic, has introduced major changes:
Use of online interaction metrics (e.g., click rates, login frequency,
engagement time),
Assessment based on task completion rather than solely on traditional
examinations,
Introduction of new grading scales and conversion methods, such as:
Converting letter grades to numerical scores/GPA calculations based on
classifications like excellent, very good, good, average, poor, and very
poor.
These developments lead to: Inaccuracies due to conversion rules/Subjectivity
in online assessment/Inconsistencies across educational systems.
iii) Personal and psychological factors affecting students
Student SGPA is also affected by non-quantifiable factors such as:
Individual learning strategies,
Perceived difficulty of courses or exams,
Psychological conditions (stress, motivation, confidence, etc.),
Teaching methods used by instructors.
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Given the above, the evaluation of student academic performance -
especially through SGPA -should not be treated as a precise or static indicator.
Instead, SGPA must be viewed as a value characterized by uncertainty and
imprecision, requiring:

« The use of more flexible and robust prediction models,

« Integration of multiple data sources and “soft” factors,

« The application of machine learning or analytical methods capable of
handling uncertainty (e.g., fuzzy models, neutrosophic models, etc.).

In efforts to minimize uncertainty in the evaluation process, many studies
have attempted to apply fuzzy set theory in educational assessment ([67]; [68];
[69]; [70]; [71]).

As a result, the application of uncertainty theories (such as fuzzy theory
and neutrosophic theory) into machine learning and deep learning models has
become a crucial research direction, improving the accuracy of predicting
students' academic performance ([72]; [73]).

Therefore, this dissertation aims to develop predictive models for SGPA
based on educational datasets that are often incomplete, contain uncertainty,
and are influenced by various subjective factors.

To effectively address these challenges, the study proposes an integrated
modeling framework that combines neutrosophic theory with deep learning
techniques. This approach not only improves the accuracy of SGPA prediction
but also enables the model to represent and quantify the uncertainty present in
the input data.

By explicitly modeling indeterminacy, imprecision, and ambiguity, the
proposed framework offers a more flexible and practical evaluation method,
well-suited to the complex nature of real-world educational environments.
2.2.2. Proposed model

In this section, the dissertation introduces the integration of
neutrosophic theory with several deep learning models to predict the final
semester grade and the overall course grade of university students. The
overall model is presented in Figure 2.4.

While several similar studies have been documented in the existing
literature, our proposed model distinguishes itself by incorporating the time factor,
semester variations, and the use of neutrosophic functions for input data

fuzzification.
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T1

T2

Prediction student's score

Student

Input layer  Neutrosophilicization Hidden layers for DNN, RNN,
datasets

layer LSTM, or Transformer Output layers

Figure 2. 4. The NeutroDL models [CT6]

Figure 2.4 illustrates the general architecture of the neutrosophic neural
networks (DNN, CNN, RNN, LSTM, and Transformer). The proposed model
Is a combination of neutrosophic theory and several popular neural networks
aimed at improving the predicted academic performance of students. Within
the scope of this study, which evaluates the effectiveness of integrating
neutrosophic theory and neural networks to address the problem of predicting
students' scores, the dissertation employs five commonly used neural
networks: DNN, CNN, RNN, LSTM, and Transformer. For ease of
comparison, the dissertation utilizes the Adam optimization algorithm in all
models. The process of applying modern deep learning techniques to predict
students' academic performance is carried out as follows:

Step 1: Model Construction

The structure of the model includes the following main layers:

Input Layer: The data processing layer is responsible for preparing raw
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data for use in the neural network. This includes tasks such as data cleaning,
converting data into a format that the neural network can understand, and
organizing the data in a continuous timeline format. The output of this layer is
then passed on to the next encoding layer.

Encoding Layer: This layer transforms the data using neutrosophic
theory. From the output data of the input layer, the data is neutrosophicized
using corresponding neutrosophic membership functions to represent
uncertainty, indeterminacy, and inconsistency in the datasets. Trapezoidal
neutrosophic membership functions used in encoding neutrosophic data (details
on some neutrosophic functions can be found in Subsection 2.4.1).

Hidden Layer: The objective of this layer is to evaluate and consider
the uncertainty, indeterminacy, and inconsistency factors in deep learning
models. In this dissertation, the hidden layer is examined for traditional neural
network architectures such as DNN, CNN, RNN, LSTM, and Transformer.

With the structure of the available methods, determining appropriate
input parameters and preprocessing data (data cleaning, sequence design,
continuous timeline sorting, and neutrosophicization of input data) while
highlighting the comparability of the predictive methods are crucial factors to
consider when constructing the model in this dissertation.

The dissertation begins with data analysis using the DNN model, which
serves as a baseline for comparing other deep learning approaches. It then
introduces the RNN model, incorporating the temporal nature of academic data
by analyzing the sequential performance of students across semesters. Data
preprocessing involves cleaning, organizing, and structuring the raw data into
time-series format based on actual semester records.

For neutrosophic-based models, neutrosophic functions are applied to
convert the input into neutrosophic sets. The key challenge lies in adapting the
input data format for each model and selecting appropriate hyperparameters to
ensure effective training and accurate predictions. The LSTM and Transformer
models are also employed to explore prediction capabilities using the same
dataset. Sigmoid function are applied, and training is conducted using
parameters such as batch size and epochs.

Decoder and Output Layer: The output of the hidden layers consists of
neutrosophic values, and the objective of the decoder layer is to apply
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neutrosophic defuzzification to generate the corresponding real values of
neutrosophic membership. The final layer is the prediction layer, which
provides the final prediction based on the input features received from the
previous hidden layers.

Table 2. 1. Layer structure of DNN model

Model: "sequential”

Layer (type) Output Shape Param #
flatten (Flatten) (None, 18) 0
dropout (Dropout) (None, 18) 0

dense (Dense) (None, 128) 2432
dropout_1 (Dropout) (None, 128) 0
dense_1 (Dense) (None, 1) 129

Table 2. 2. Layer structure of CNN model

Model: "sequential”
Layer (type) Output Shape Param #

convld (ConvlD) (None, 1, 64) 1216
max_poolingld

(MaxPooling1D) (None, 1, 64) 0
convld_1 (ConvlD) (None, 1, 64) 4160
max_poolingld_1

(MaxPooling1D) (None, 1, 64) 0
flatten (Flatten) (None, 64) 0
dropout (Dropout) (None, 64) 0
dense (Dense) (None, 128) 8320
dropout_1 (Dropout) (None, 128) 0
dense_1 (Dense) (None, 1) 129

Table 2. 3. Layer structure of CNN model

Model: "sequential”

Layer (type) Output Shape Param #
simple_rnn

iy N 1,312 103272
(SimpleRNN) (None, 1, 312) 03
simple_rnn_1

N N 1 20664
(SimpleRNN) (None, 1, 56) 066
simple_mn_2 (None, 1, 88) 12760

(SimpleRNN)



44

simple_rnn_3
N 1,504 298872
(SimpleRNN) (None, 1, 504) 988
simple_rnn_4
N N 264 20301
(SimpleRNN) (None, 264) 03016
dropout (Dropout) (None, 264) 0
dense (Dense) (None, 1) 265

Table 2. 4. Layer structure of LSTM model

Model: "sequential”

Layer (type) Output Shape Param #
Istm (LSTM) (None, 1, 128) 75264
Istm_1 (LSTM) (None, 64) 49408
flatten (Flatten) (None, 64) 0
dropout (Dropout) (None, 64) 0
dense (Dense) (None, 128) 8320
dropout_1 (Dropout) (None, 128) 0
dense_1 (Dense) (None, 1) 129

Table 2. 5. Layer structure of Transformer model

Model: "sequential

Layer (type) Output Shape Param #

input_1 (InputLayer) [(None, 1, 18)] 0

layer_normalization (LayerNorma (None, 1, 18) 36
(LayerNormalization)

multi_head_attention (None, 1, 18) 0
(MultiHeadAttention)

dropout (Dropout) (None, 1, 504) 298872

layer_normalization_1 (None, 1, 18) 36
(LayerNormalization )

convld (ConvlD) (None, 1, 4) 76

dropout_1 (Dropout) (None, 1, 4) 0

convld_1 (ConvlD) (None, 1, 18) 90

layer_normalization_2 (None, 1, 18) 36
(LayerNormalization )

multi_head_attention_1 (None, 1, 18) 76818
(MultiHeadAttention)

dropout_2(Dropout) (None, 1, 18) 0

layer_normalization_3 (None, 1, 18) 36
(LayerNormalization )

convld_2 (ConvlD) (None, 1, 4) 76

dropout_3 (Dropout) (None, 1, 4) 0
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convld_3 (ConvlD) (None, 1, 18) 90

layer_normalization_4 (LayerNor (None, 1, 18) 36

(LayerNormalization )

multi_head_attention_2 (None, 1, 18) 76818

(MultiHeadAttention)

dropout_4 (Dropout) (None, 1, 18) 0

layer_normalization_5 (None, 1, 18) 36
(LayerNormalization )

convld_4 (ConvlD) (None, 1, 4) 76

global_average_poolingld (None, 1) 0
(GlobalAveragePooling1D)

dense (Dense) (None, 128) 256

dropout_8 (Dropout) (None, 128) 0

dense_1 (Dense) (None, 1) 129

Step 2: Model Training
The principle of this step is to compute the weights and address the
optimization problem. In this process, parameters (weights w and biases - the
deviations of each node) are learned by the machine to suggest the optimal results.
The backpropagation problem uses the Adam optimization algorithm and employs
MAE (Mean Absolute Error) during the model training process. The model
parameters are detailed in Table 2.6.

Table 2. 6. Model parameters

Hyper-parameters Selection
Learning rate a 0.0003
Drop-out rate 0.3
Number of epochs 1000
Loss function Mean Absolution Error
Optimizer Adam
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Figure 2. 5. Loss function value chart for training and validation of models

Figure 2.5 shows the loss function value chart for the training and
validation phases of the DNN, CNN, RNN, LSTM, and Transformer models
with neutrosophic values. From Figure 2.5, it can be observed that the loss
function values for both training and validation are converging towards zero.
In the proposed framework, the dissertation uses a layer to convert real data
into neutrosophic numbers by applying neutrosophic conversion functions, and
the model training process uses these neutrosophic numbers. Before making the
final predictions, a defuzzification layer is used (to convert neutrosophic
numbers back to real values) to provide the corresponding output.

Step 3. Prediction, Testing
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After obtaining the model with the computed parameters from Step 2,
the dissertation inputs the test data and measures the error. The errors
considered here include RMSE, MAE, and R2.

In summary, the process of applying modern deep learning techniques to
predict student’s academic performance can be outlined as follows: First, the
dissertation utilizes existing libraries of DNN, CNN, RNN, LSTM, and
Transformer, incorporates reasonable parameters in preprocessing, and
specifically applies neutrosophic sets in handling input data. It then connects
(reads) the input data from an Excel file that has been appropriately processed
for the application model. Next, the model setup step is performed, followed
by training the model to extract parameters (weights, biases). Once the model
parameters have been learned, the test data is inputted, predictions are made,
and errors are measured.

= Data Data . Model Model
e e Neutrosophic N .
Validation Validation Traning Analysis

ry

Yes

rﬁﬁ?ril: Model
- deployment

Figure 2. 6. The pineline of NeutroDL model

The integration of the neutrosophic function to neutrosophicize the input
and generate the real output creates a novel approach for the models. Results from
previous terms (or previous semesters) are inputted to predict the SGPA for the
upcoming term. The comparison of prediction ability and accuracy is specifically
demonstrated in Subsection 2.2.3, with experiments conducted on the test dataset
from Hanoi Metropolitan University, Hanoi, Vietnam.

Details about the layers of each network are provided in the experimental
section. Experimental results show that the proposed hybrid model yields better
results than traditional models in predicting student’s SGPA.
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The computational complexity of Algorithm 1 is primarily influenced by
three core components: the neutrosophic encoding stage, the model
construction and training phase, and the evaluation step.

Algorithm 2.1. Neutrosophic Deep Learning for Student Performance
Prediction

1 Input: X are historical student records; H is prediction horizon;

2 E,: Neutrosophic membership functions;

3 Model € {DNN, CNN, RNN, LSTM, Transformer};

4 Hyperparameters: learning rate n, dropout rate d, epochs E

5 Output: y Predicted student performance score

6 Preprocess the raw student data: clean, normalize, order by time
7 Foreachinputx; € X do

8 Encode x; using neutrosophic trapezoidal function:

9 [T(x), 1), F(x)] < F,0

10 end for

11 Construct model with:

12 Input layer (neutrosophic vector [T, I, F])

13 Encoder (neutrosophic transformation)

14 Hidden layers based on selected model (model € {DNN, CNN, RNN,

LSTM, Transformer})
15 Decoder (neutrosophic defuzzification)
16 Output layer (regression head)
17 Train the model using Adam optimizer with MAE loss
18 Run training for E epochs on training data
19 Evaluate model on test data using RMSE, MAE, R?
20 Returny

The computational complexity of the proposed model depends on the
complexity of the underlying architectures such as DNN, CNN, RNN, LSTM, or
Transformer. For instance, the computational cost of LSTM and Transformer models
is O(n-d*), where n denotes the length of the input learning sequence
and d represents the hidden vector dimension.
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2.2.3. Experiment
2.2.3.1. Training dataset

The dataset used in this section is HNMU1 dataset. The structure of the
training dataset and input of the models can ben seen in Table 2.7.

Table 2. 7. Description of the training dataset

Dataset Number of Real Input | Neutrosophic
samples Cases attributes Input
attributes
Case 1 1 18
HNMU1 932 Case 2 2 36
Case 3 3 54

Six neutrosophic sets for neutrosophic inputs are Excellent, Very Good,
Good, Medium, Poor, and Very Poor. We use the trapezoidal neutrosophic

functions:
Very Poor =[0,0.2,3.7,4.1,1,0,0]; Poor =[3.8,4.2,4.7,5.1;1,0,0];

Medium =[4.8,5.2,5.7,7.1,1,0,0] : Good =[6.8,7.2,7.7,8.1,1,0,0];
Very Good =[7.8,8.2,8.7,9.1,1,0,0] ; Excellent =[8.8,9.2,9.7,10.0;1,0,0] ,

0 if x<0,x>4.1
T (X) = 5x if 0<x<0.2
ery poor 1 if 02<x<37
10.25-25x if 3.7<x<4.1
1 if x<£0,x>4.1
Ly oo () = 1—5x. if 0<x<0.2
0 if 0.2<x<37
25x-9.25 if 3.7<x<41
1 if x<0,x>4.1
1-5x if 0<x<0.2
and - Feneeor =105 05 y<37 (23)

3.7<x<41

2.5x-9.25 if
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a) b)

Figure 2. 7. The neutrosophic functions for the concepts a) Good,
b) Very Good and c) Excellent

2.2.3.2. Experimental implementation

The student academic performance dataset obtained from Hanoi
Metropolitan University is not linearly separable, making certain machine
learning methods such as linear regression and Perceptron Learning Algorithm
inapplicable. Therefore, this dissertation proposes the use of several modern
deep learning models, which are particularly well-suited for handling time
series data, as processed in this study. The deep learning methods employed for data
analysis include classical DNN, CNN, RNN, LSTM, and Transformer models.

In this section, the CNN model applied consists of one convolutional
layer followed by sequential layers, three max-pooling layers, and fully
connected layers. The model also utilizes the ReLU activation function and
dimensionality reduction techniques to generate predictions of student scores.

The underlying idea of RNN is to process sequential data. RNN are so
named because, for each element in a sequence, the output is calculated based
on previous computations. In theory, RNN, LSTM and Transformer can
process long sequences, but in practice, they are limited to looking back only a
few steps. This allows the model to take into account the consistency of the
scores achieved by students. In this case, the dissertation uses a sequence of
student scores as the input to the neural network. Since the network performs
the same task for each element in the sequence, it processes the entire student
record to output the most accurate predicted score. Theoretically, the network

retains a memory of the student’s SGPA.
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All experiments were implemented in Python 3.11 within a Conda
environment, using common libraries such as NumPy, SciPy, Pandas, Scikit-
learn, PyTorch, and TensorFlow/Keras. Classical ML models (e.g., LR, SVM,
KNN, RF) were built with Scikit-learn, while deep learning architectures
(LSTM, Transformer) were trained with PyTorch and TensorFlow. GPU
acceleration was enabled via CUDA Toolkit 11.8 to optimize training
efficiency. The experiments were conducted on a workstation equipped with an
Intel Core i7-12700KF CPU, NVIDIA RTX 3060 GPU, and 32GB RAM.

Evaluative Metrics: The Root Mean Squared Error (RMSE), the Mean
Absolute Error (MAE), and R2-score to estimate the performance and the
difference between the student's actual SGPA and predicted SGPA, allowing
for appropriate model selection based on the situation.

2.2.4. Results and discussions

Table 2.8 shows results of neutrosophy deep learning models. The
average errors are evaluated 10 times on the 10 folds corresponding to Cases 1,
2 and 3. When combining neutrosophic functions to fuzzify input data,
calibrating parameters of applied deep learning algorithms, with the training
data sample accounting for 80% and 20% of the data used for testing, we get
the predicted results as shown in Figures 2.8, 2.9 and 2.10 (for 01 test). The test
is devided in to different cases: (Case 1) Using the previous semester's average
data to predict the next semester's average score; (Case 2) Using the average
data of the 2 previous semesters to predict the average score of the third
semester; (Case 3) Using the average data of the 3 previous semesters to predict
the average score of the fourth semester.
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Table 2. 8. Average error for cases 1, 2, 3 with Neutrosophic approach

Model RMSE MAE R2(%)
/Metric Case | Case | Case | Case | Case | Case | Case | Case | Case
1 2 3 1 2 3 1 2 3
0.80+ | 057+ | 0.87+ | 075+ | 047+ | 074+ | 12.76+ | 48.42 + | 59.45 +
DNN 0.09 0.05 0.05 0.06 0.05 0.04 4.90 5.74 4.00
0.90+ | 058+ | 080+ | 074+ | 046+ | 0.62+ | 11.40+ | 47.03+ | 62.04 +
CNN 0.07 0.04 0.08 0.04 0.02 0.07 5.06 5.80 5.36
092 +|060 +[080 +|073 +|045 +|0.60+ 12.39 + | 46.16 + | 62.14 +
RNN 0.07 0.05 0.08 0.04 0.03 0.06 6.06 6.82 7.67
091 +£|057 +£[076 +|074 +|045 +|059 =+ |12.73 | 4951 + | 65.28 +
LSTM 0.07 0.04 0.11 0.04 0.03 0.07 4,97 5.40 8.93
089 +|059 +[079 +|074 +|047 +|059 =+ |13.13 + | 4554 + | 65.95 +
Transformer
0.08 0.06 0.06 0.04 0.06 0.05 7.65 8.92 4.33
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Figure 2. 8. Graph of prediction (neutrosophic data, Case 1)
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For Case 1: Using the previous semester's average data to predict the
next semester's average score, we estimate the errors (average after 10 tests) of
the algorithms as shown in Table 2.9. In this case, the R2 scores of all five
methods are notably low (just slightly above 10%), indicating that this dataset
IS not suitable for real-world forecasting applications.

The poor performance can be attributed to the limited input data, as only
one feature (a single semester score) was used. Although neutrosophic
transformation expands this into 18 features - representing 18 values of
neutrosophic membership functions - they still lack sufficient diversity to serve
as effective inputs for deep learning models.
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Figure 2. 9. Graph of prediction (neutrosophic data, Case 2)

For Case 2: Using the average data of the 2 previous semesters to predict
the average score of the third semester, we get the predicted results as shown
in Figure 2.10 (for 01 test) and the errors (average after 10 tests) of the
algorithms in Table 2.9. In this Case, we can see that the quality of forecasting
methods increases significantly compared to Case 1. In this case the R2 metrics
of all five method are approximately 50% for neutrosophic cases, so in cases
where much information is not collected, we can also use this model for the
problem of predicting student scores.

FORECAST RESULTS USING NEUTROSOPHIC APPROACH
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Figure 2. 10. Graph of prediction (neutrosophic data, Case 3)

For Case 3. We use the grade data of the previous three semesters to
forecast the SGPA for the fourth semester's grades. From the comparison table
2.9, we see that in the case of using the Neutrosophic approach, all metrics are
improved compared to the real case (the case without using the neutrosophic
approach). Moreover, from Table 2.9 we can see that, in the case of using the
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neutrosophic approach, the R2-score parameter of all 5 methods is greater than
60%, which proves that all five methods are suitable for the data and the
problem.

Comparison results estimate the errors (average after 10 tests) of the
algorithms as shown in Table 2.9. From the results are presented in Table 2.9,
we conclude that the numerical results that are highlighted in “bold” indicate
that the corresponding forecasting method has better results than the other
method. It seems that, RNN, LSTM, and Transformer methods significantly
outperform the other methods, confirming the effectiveness of our approach as
we achieved consistent results on the validation set.

Table 2. 9. Average error comparison for cases 1, 2, 3

RMSE MAE R2 (%)
Model/Metric . Neutro. ) Neutro. ) Neutro.
Real input Real input Real input
Approach Approach Approach

DNN 1.06+0.33 | 0.89+0.09 | 1.07+0.11 | 0.75+0.06 48.26 + 32.00 12.76 £4.90

; CNN 0.92 £ 0.06 0.90+0.07 | 0.73+0.04 | 0.74+0.04 8.52+4.65 11.40 £5.06
31

O RNN 0.89+ 0.05 0.92+0.07 | 0.72+0.04 | 0.73+£0.04 12.6 + 8.49 12.39 £ 6.06

LSTM 0.90+0.05 | 0.91+0.07 | 0.74+0.03 | 0.74+£0.04 9.72£5.39 12.73 £ 4.97

Transformer | 0.90+0.04 | 0.89+0.08 | 0.74+0.03 | 0.74+0.04 26+ 5.40 13.13+£7.65

o CNN 0.53+0.05 | 0.58+0.04 | 0.41+£0.03 | 0.46£0.02 46.39 + 6.51 47.03 +5.80

% RNN 0.55+0.07 | 0.60+£0.05 | 0.42+0.05 | 0.45+0.03 37.12 +18.19 46.16 + 6.82

© LSTM 0.52+0.04 | 0.57+0.04 | 0.40+0.03 | 0.45+0.03 52.42 £ 9.95 49.51 +5.40

Transformer | 0.63+0.07 | 0.59+0.06 | 0.48+0.04 | 0.47 +0.06 26.83 £ 5.96 45.54 + 8.92

- CNN 0.86+0.08 | 0.80+0.08 | 0.67+0.07 | 0.62+0.07 59.01+7.00 62.04 + 5.36

% RNN 0.82+0.13 | 0.80+0.08 | 0.62+0.12 | 0.60+0.06 60.69 £ 9.20 62.14 + 7.67

© LSTM 0.88+0.13 | 0.76+0.11 | 0.71+£0.15 | 0.59 £ 0.07 58.51+1.54 65.28 + 8.93

Transformer | 0.93+0.07 0.79+0.06 | 0.77+0.06 | 0.59+0.05 53.05+7.60 65.95 + 4.33

Based on Table 2.9, the Neutrosophic approach demonstrates consistent

improvements over the Real input baseline. In Case 2, the Transformer reduced
MAE from 0.60 to 0.47 and increased R? from 26.83% to 45.54%; similarly,
LSTM improved R? from 32.42% to 49.51%. In Case 3, both LSTM and
Transformer achieved R? values above 65%, approximately 7-10% higher than
the real-input approach. These results indicate that incorporating Neutrosophy
helps reduce prediction errors and enhances model fit across different
educational data scenarios.
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Models performance are compared by aligning the actual values from a
subset of the test data with the predicted SGPA, followed by an analysis of the
resulting errors. To support this comparison, the RMSE metric to quantify the
deviation between actual and predicted SGPA, enabling the selection of the
most context-appropriate model. In general, the Neutrosophy-LSTM and
Transformer methods produced comparable and superior results compared to
other approaches.

Among the proposed methods, the Transformer model demonstrated
outstanding performance, with a notable margin of 0.37 in the initial trial. These
results were consistently confirmed on the validation dataset, with nearly identical
scores, highlighting the stability and effectiveness of the proposed approach.
Regarding the impact of classification and prediction layers, the addition of a
dense layer slightly improved accuracy, as reflected in the performance gaps
between models such as RNN versus LSTM and Transformer.

The dataset for SGPA prediction is heavily influenced by the specific
academic major of the students. Hanoi Metropolitan University (HNMU) is a
young, medium-sized institution located in Hanoi, Vietnam, with approximately
7,000 students currently enrolled. The HNMUL1 dataset focuses on students in the
Primary Education major, which has an annual intake of only around 200 - 300
students. As a result, the size of the HNMUL1 dataset is relatively small, and the
outcomes achieved in this context are deemed acceptable.

However, the overall accuracy remains below 66%, which is not
sufficient for large-scale practical deployment. Therefore, future improvements
should focus on expanding feature sets (including both academic/score-based
and non-academic factors), integrating data generation mechanisms or hybrid
architectures, to further improve predictive performance and provide stronger
support for students, instructors, and administrators.

In response, we propose the development of hybrid deep learning models
that leverage the strengths of neutrosophic-integrated architectures while
enhancing predictive performance. This direction will be further elaborated in the
next section - the NeutroGNT model.

2.3.  NeutroGNT model
2.3.1. The theoretical basis for model selection

Based on the findings presented in Section 2.2, it is evident that the

Transformer not only maintains performance stability but also effectively

leverages neutrosophic representations to improve prediction accuracy. This
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highlights the fact that the effectiveness of neutrosophic logic is highly
dependent on the underlying model architecture, and that the Transformer
emerges as the most appropriate model in this context.

However, overall prediction accuracy remained below 66% (in section
2.2), which -though acceptable for small educational datasets like HNMU1 -
falls short of practical deep learning expectations. This limitation is mainly due
to two challenges:

(1) the limited size and class imbalance of educational datasets, and

(i) the inherent uncertainty and subjectivity in academic evaluation.

To address these issues, the dissertation proposes a hybrid deep learning
framework that integrates:

- CGAN, to augment data and improve class balance by generating
realistic synthetic samples;

- Neutrosophic representations, to model uncertainty and better reflect
ambiguity in educational assessments;

- A noise-injection strategy, to enhance robustness and prevent overfitting
under noisy, small-scale conditions.

Together Transformer, these components form the basis of the proposed
NeutroGNT model, offering a comprehensive solution to the challenges of
sparsity and uncertainty in real-world educational data.

2.3.2. Proposed model

In this section, the dissertation proposes a hybrid deep learning
framework that integrates the Transformer architecture, CGAN, and
neutrosophic input representation. Additionally, a noise-injection strategy is
incorporated to enhance the generalization capability of the model. The overall
model is presented in Figure 2.11.
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Figure 2. 11. NeutroGNT model [CT5]

Figure 2.11 illustrates the general architecture of the neutrosophic
neural network, incorporating CGAN and Transformer models. A noise-
injection strategy is incorporated to improve the robustness and generalization
capabilities of the predictive model. The functioning of the model illustrated in
Figure 2.11 is as follows: Given the real dataset (X,., y,), we apply trapezoidal
neutrosophic  functions to capture uncertainty, indeterminacy, and
inconsistency in the data to construct a new dataset denoted as (X,,, yu).
Although neutrosophiclize process is utilized, deep learning models generally
require large datasets. To fully leverage deep learning effectiveness, we further
incorporate a CGAN to generate synthetic samples and augment the training
dataset, forming (Xr,yr). CGAN is used because it captures the underlying

distribution of the original dataset, allowing for an expanded training set. The
two datasets (X, y,) and (X,yr) are then concated to form (X,, y.). On this

consolidated dataset (X., y.), a noise-injection strategy is incorporated to
improve the robustness and generalization capabilities of the predictive model,
forming (X,,y,). This approach is beneficial as it increases diversity, reduces
computational complexity, improves prediction performance, enhances

robustness to noise, handles missing data more effectively, aids feature
discovery, and is particularly effective for small training sets.
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Figure 2. 12. The pineline of NeutroGNT model

Given that educational data is often incomplete or imbalanced across
academic performance levels, CGAN is employed to generate conditionally
sampled tabular data. This approach helps expand the learning space and improves
the generalizability of deep learning models. CGAN also addresses data scarcity
Issues among minority student groups (e.g., those with very low or very high
grades), which could otherwise bias the model’s predictions if left unaddressed.

The use of neutrosophic logic allows the model to directly encode the three
components of uncertainty: truth, indeterminacy, and falsity, an explicit modeling
that traditional fuzzy systems have not adequately addressed. Furthermore, the
introduction of controlled noise improves model stability, reduces overfitting, and
enhances robustness against measurement errors or noisy data.

Synthesizing both theoretical and empirical analyses, the proposed
Transformer-based model emerges as the optimal architecture for handling
uncertain educational data. This is achieved through its effective integration with
neutrosophic representations and the data generation mechanism provided by
CGAN. The principal contribution of this study lies in the design of an integrated
neutrosophic encoding/decoding mechanism within a deep learning architecture,
significantly enhancing prediction accuracy for early academic performance
forecasting and supporting more informed educational decision-making.
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The principal contribution of this model lies in the integration of a
neutrosophic encoder-decoder mechanism within a deep learning architecture,
facilitating more accurate early prediction and identification of students at risk
of academic failure. This, in turn, enables timely educational interventions and
strategic support planning while also assisting institutions in identifying high-
achieving students for advanced academic opportunities.

Algorithm 2.2. NeutroGNT - SGPA prediction with Neutrosophic logic, CGAN,
and Transformer

1: Input: D,..,; : Real dataset of student academic records and SGPA

2: Z : Latent noise vector for CGAN

3: G : Number of synthetic neutrosophic samples to generate

4: Tyeutro: Transformer model with neutrosophic encoding and noise injection
: Output: Y : Predicted SGPA values for test set

o1

6: [X,, y-] < Preprocess(D,..4;) > Clean, scale, sort by semester
7: Xneutro < NeutrosophicTransform(X,.) using trapezoidal membership functions
8: [Gergany Dergan] < Train CGAN([Xneutro, Y1, Z)
9:fori = 1toG do

10:  z;« Sample(Z)

11:  y;« SampleLabelDistribution(y,.)

12:  X¢[i] < Gerean(zi, y;i) > Generate synthetic neutrosophic input

131 yrlil—y;

14: end for

15: Dgyg < Concatenate([Xyeyero - ¥rl [(Xr, ¥r])

16: Dgy g < InjectNoise(Dg,,4) > Gaussian noise injection

17: Tyeytro < TrainTransformer(Dg,,4)

18: Y « Predict(Tyeutros Xeest )

19: return Y

The Transformer model operates combined to capture complex patterns

and dependencies within the data (X ). Finally, performs defuzzification to

9Yg
convert neutrosophic values back to real values and outputs the final prediction.
For ease of comparison, all models in this study utilize the Adam optimization
algorithm. The errors are evaluated using MSE, MAE, RMSE, R2.
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Table 2. 10. The parameters of the models

Hyper-parameters Selection
Learning rate a 0.001
Drop-out rate 0.2
Number of epochs 200
Batch size 32
Loss function Mean square error
Optimizer Adam

The computational complexity of the proposed model depends on its
core architectures, namely Transformer and CGAN. Specifically, the
Transformer has a complexity of O(n - d%), where n is the length of the input
learning sequence and d is the hidden vector dimension.
For CGAN, training involves two networks: Generator (G) and Discriminator
(D), with a complexity of O(E - (|G| + |D|)), where E denotes the number of
training epochs.

Although the computational cost is higher than that of baseline machine
learning models, it remains moderate compared to modern deep learning
architectures. The total training time largely depends on the number of epochs
and the amount of generated samples.

2.3.3. Experiments

The experiments were conducted in a Conda environment with Python
3.11, integrating libraries such as NumPy, SciPy, Pandas, Scikit-learn,
PyTorch, and TensorFlow/Keras. Transformer were trained on GPU using
CUDA 11.8. All computations were performed on a workstation with Intel Core
i7-12700KF CPU, NVIDIA RTX 3060 GPU, and 32GB RAM.

In this section, we use 06 datasets. 02 datasets among them are collected
from Hanoi Metropolitan University [CT3] and Vietnam National University,
Hanoi [CT4]. The remaining datasets were obtained from Covenant University
in Nigeria ([61]), the University of Malaya in Malaysia ([62]), and the well-
known Portuguese school performance dataset ([64]).

Malaya-Stud dataset

This dataset ([62]), provided by Universiti Malaya and licensed under the
Creative Commons Attribution 4.0 International License, includes data on 493
students across 33 features. These features encompass demographic details
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(such as gender, financial status, and living conditions), study habits, and key
academic indicators. The SSC Grade (Secondary School Certificate)
represents academic grades at the lower secondary level, while the HSC Grade
(Higher Secondary Certificate) reflects academic achievement at the upper
secondary level, both serving as foundational indicators of pre-university
readiness. The last semester grade captures the student’s most recent SGPA at
the university level, offering insights into current SGPA and adaptability to
higher education. The overall grade, denoting the cumulative SGPA, is used
as the primary target variable in predictive modeling to assess overall academic
success.
Portugal dataset
The Portugal dataset ([64]) was collected from two Portuguese secondary
encompassing academic records of 395 Mathematics students (Portugal-Math
dataset) and 649 Portuguese Language students (Portugal-Lang dataset).
Alongside demographic and behavioral data (e.g., study time, absenteeism,
parental support), the standout feature of these datasets is the sequential
recording of student performance at three critical stages of the academic year:
G1 (first semester grade), G2 (mid-second semester grade), and G3 (final year
grade). This time-series format clearly reflects the academic progression of
each student and provides a strong foundation for developing machine learning
models capable of forecasting future grades based on previous grades.
Covenant-Priv dataset
This dataset ([61]) comes from Covenant University, Nigeria. This large-
scale educational dataset contains academic information from 1841
undergraduate students majoring in engineering from 2002 to 2014. It includes
records of students from seven disciplines: Chemical Engineering, Civil
Engineering, Computer Engineering, Electrical and Electronics Engineering,
Information and Communication Engineering, Mechanical Engineering, and
Petroleum Engineering. The data includes semester GPA from the first to the
fifth year, along with the cumulative GPA (CGPA), with scores ranging from
0to 5.
The details of the datasets are described in Table 2.11.
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Table 2. 11. Training dataset description

Name M S K Case X Input feature Output
1 1 1 GPA Semester 1 GPA
Semester 2
Semester 2 Semester 3
3 3 GPA Semester 1, GPA GPA
Semester 2, GPA Semester 3 Semester 4
2 2 2 GPA Semester 1, GPA GPA
Semester 2 Semester 3
VNU 271 43 91
3 3 GPA Semester 1, GPA GPA
Semester 2, GPA Semester 3 Semester 4
3 | Malaya- Stud 493 4 16 3 3 HSC, SSC, Last Overall
4 | Portugal-Math | 395 3 33 2 2 G1, G2 G3
5 | Portugal-Lang | 649 3 33 2 2 G1, G2 G3
6 ri 1841 6 9 3 3 First Year GPA, Second Fourth Year
Covenant-Priv Year GPA, Third Year GPA GPA

Data’s name, Sample size (M), Number of score-related features (S), the total of features
(k), Input feature count (X), case using, name input feature, name output feature and
web- link to data sources.

2.3.4. Results and discussions
In this subsection, we present three case studies of student data to
illustrate the proposed method. Prior to experimentation, all records were
preprocessed to remove missing values and eliminate scores outside the 0—10
range. The datasets were then split into 80% for training and 20% for testing.
Several experimental integration scenarios were designed for
comparison, including:
- Integrating the neutrosophic framework with Transformer (Neutro_T),
- Integrating the neutrosophic framework and CGAN with Transformer
(NeutroCT),
- The combination of all three components: the neutrosophic framework,
CGAN and noise injection with Transformer (NeutroGNT).
Detailed experiments are presented for each case as follows.
Results for Case 1. The experimental results for Case 1 are presented in
Table 2.12 for HNMU2 dataset.
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Table 2. 12. Demonstrated errors (averaged over 10 runs - case 1)

Dataset Real T Neutro_T NeutroCT NeutroGNT
HNMU2 MSE 0.519+0.028 0.474+0.040 0.469+0.031 0.458 £0.011
MAE 0.576 +0.014 0.560 £ 0.029 0.558 +0.022  0.548 +0.010
R?z  -0.087+0.058 0.008 £0.085 0.017 +£0.064 0.041 £ 0.022

Although NeutroGNT achieved the lowest MSE (0.458 + 0.011) and
showed a notable 12.8% improvement in R? compared to the Real T model,
the resulting R? value remains relatively low (0.041 + 0.022), hovering near the
threshold where the model fails to explain the variance in the data. This
suggests that despite the reductions in absolute and squared errors, the model's
generalization and explanatory capabilities are still limited, especially in real-
world scenarios like the HNMUZ2 dataset, which involves high levels of noise
and uncertainty.

Results for Case 2. The experimental results for Case 2 are presented
in Table 2.13.

Table 2. 13. Demonstrated errors (averaged over 10 runs - case 2)

Dataset Real T Neutro_ T NeutroCT NeutroGNT
HNMU2 MSE 0.323+0.101  0.183+0.024 0.208 £0.052 0.181 + 0.030
MAE 0.459+0.085 0.339+0.025 0.363+0.053 0.338+0.035
R? 0.077+£0.288  0.478+0.069 0.407 £0.147 0.482 +0.084
MSE 0.302+£0.031 0.320+0.042 0.321+0.044 0.260 + 0.046
VNU MAE 0.441+0.032 0.453+0.039 0.451+0.042 0.381+0.054
R? 0.201+0.083 0.153+0.112 0.150+£0.116 0.202 +0.140
Portugal- MSE 2536+2.129 1.263+0.080 1.409+0.135 1.197 +0.074
Math MAE 1.065+0.567 0.770+0.069 0.844 £0.077 0.725+0.043
R2 0.505+0.415 0.754+£0.016 0.725+0.026 0.767 +£0.014
Portugal- MSE 0.704 £0.550 0.423+0.014 0.435+0.032 0.440+0.033
Lang MAE 0.528 £0.241 0.403+£0.004 0.413+0.027 0.425+0.027
R? 0.711+0.225 0.826+£0.006 0.822+0.013 0.820 +£0.013

In Case 2, the proposed neutrophilization-based deep learning models
consistently demonstrate superior and stable performance across all four
benchmark datasets. Notably, the NeutroGNT model achieves remarkable
results on the VNU dataset, with an MSE of 0.260 + 0.046 and MAE of 0.381
+ 0.054. More importantly, on the HNMU?2 dataset, the R2 score of NeutroGNT
increases by more than 40.5% compared to the baseline Real T model,
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highlighting a substantial enhancement in predictive capability. These findings
reinforce the robustness and effectiveness of the NeutroGNT model,
positioning it as a strong candidate for broader applications in future
educational datasets.

On the Portugal-Math dataset, the NeutroGNT model shows a notable
improvement in the R2 score, reaching 0.767 = 0.014, which represents a 26.2%
increase over Real T, while the MSE is also reduced by 1.339.

Although NeutroGNT achieved the best performance in terms of MSE and
MAE across most datasets (HNMU2 and Portugal-Math), several limitations
remain noteworthy. On the HNMUZ2 dataset, despite NeutroGNT having the
highest Rz (0.482 = 0.084), the relatively large standard deviation reflects a lack
of stability across multiple runs. This is particularly critical in real-world
educational settings, where models must ensure consistency and high reliability.

Results for Case 3

The experimental results for Case 3 are presented in Table 2.14. For the
dataset from Universiti Malaya, three input features - "HSC", "SSC", and
"Last" - are used to predict the "Overall" score, and all values are normalized
to a 10-point scale to ensure consistency. The Covenant-Priv dataset is retained
in its original scale for comparison with previous studies, where the input
features are "First Year GPA", "Second Year GPA", and "Third Year GPA",
and the output is the "Final CGPA".

Table 2. 14. Demonstrated errors (averaged over 10 runs - case 3)

Dataset Real T Neutro_ T NeutroCT NeutroGNT
MSE 0.212 +£0.088 0.208 £ 0.081 0.175 +0.082 0.152 + 0.025

HNMU2 MAE 0.374+0.078 0.382 £ 0.083 0.347 £0.081 0.322 £0.029
R2 0.047 £0.393 0.068 + 0.364 0.216 + 0.367 0.319 £ 0.111

MSE 0.119+£0.037 0.109 £ 0.041 0.121 £ 0.061 0.088 £ 0.017

VNU MAE 0.281 +0.039 0.271 £0.051 0.282 +0.074 0.242 + 0.026
R2 0.549 £ 0.140 0.588 £ 0.154 0.541 +£0.230 0.666 + 0.064

MSE  0.495 + 0.563 0.342 £0.038 0.412 £ 0.063 0.400 £ 0.055

Malaya= "\ AE 05050249 043440025  0485+0048  0.473+0036
Stud Rz 0.788+0.241 0.854 £0.016 0.824 £ 0.027 0.829 £ 0.024
Covenant- MSE 0.023+0.001 0.022 £0.001 0.023 £0.003 0.019 £ 0.002
Priv MAE 0.116 +0.003 0.114 £ 0.002 0.118 £ 0.008 0.107 £ 0.005
R2  0.949 £0.002 0.952 £ 0.001 0.950 £ 0.007 0.958 + 0.003

RMSE 0.152 +£0.003 0.147 £ 0.002 0.150 = 0.009 0.138 £ 0.005
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On the Malaya-Stud dataset, all models performed well with consistently
high Rz scores, with Neutro_T standing out by achieving the highest R? (0.854)
and the lowest MSE (0.342), reflecting both stability and high prediction
accuracy. Meanwhile, VNU proved more challenging, as all models yielded
relatively low and fluctuating R? scores.

However, in more complex datasets such as HNMU2, the gains are
limited (R? remains below 0.32), reflecting the strong presence of noise,
contextual variability, and subjectivity in the data. This indicates that, despite
incorporating GAN-based data generation and multi-attribute features, the
model still faces challenges when dealing with inconsistent grading standards,
institutional heterogeneity, and hidden latent factors not captured in the
datasets.

Among the evaluated models, NeutroGNT stands out for achieving the
best balance between accuracy and robustness on the Covenant-Priv dataset. It
recorded the highest average R2 score (0.958 + 0.003), clearly outperforming
other models. Notably, its average RMSE (0.138 + 0.005) is 0.138 lower than
that of the Real T model.

Furthermore, it achieved a minimum RMSE of 0.1342, which is lower
than the best result previously reported by Aderibigbe et al (2019).
Additionally, its minimum MSE of 0.018 is the lowest across the entire study,
and the maximum R2 of 96.05% surpasses all prior benchmarks. These results
confirm the superior predictive performance and effectiveness of the
NeutroGNT model.

These results underscore the superior overall performance of the
NeutroGNT model under average evaluation. Collectively, the Neutro
approach emerges as a reliable and effective predictive framework for all cases
1, 2 and 3, particularly well-suited for international educational datasets and
complex academic forecasting tasks.

2.4. Appendix to Chapter 2
2.4.1. Overview of Neutrosophy theory

Neutrosophy, first introduced by Florentin Smarandache ([74]; [75]), is
a philosophical framework and mathematical foundation designed to handle
uncertainty, imprecision, indeterminacy, and inconsistency in knowledge
representation. Unlike classical logic, which operates under binary true/false
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conditions, and fuzzy logic, which introduces a degree of truth, neutrosophy
simultaneously considers three components for any proposition or statement:
truth (T), indeterminacy (1), and falsity (F).

Definition 2.1. ([74]) A neutrosophic set (NS) A, defined on the universe
of discourse X and denoted generally by x, can be represented in following form:

A= {(x, TA(x),IA(x),FA(x)): X € X} (2.2)

where each element xin the set X is associated with three membership
functions: T,(x) the truth membership function, T,: X — [0,1] , representing
the degree of confidence or certainty that x belongs to the set, the indeterminacy
membership function, I,: X — [0,1], representing the degree of uncertainty or
ambiguity about whether x belongs to the set, and F,: X — [0,1]: the falsity
membership function, representing the degree of skepticism or disbelief that x
belongs to the set. The sum of these membership values must satisfy the
condition 0 < T,(x) + I,(x) + F4(x) < 3 for all x € X, ensuring that the
total membership remains within a valid range.

Example 2.1. The single valued trapezoidal neutrosophic number,
[a,b,c,d; Ty, Iy, Fyl,a<b<c<d;0<TyIy,Fy <1, in the general
formula, has following membership functions

(0 if x<ax>d

x —a)T,
% lf a<x<b

Ty if b<x<c
(d—x)Ty
d—c d—c

if x<ax>d
bx+(x a)IN lf a<x<bh
I(x) =

T(x) =+

if c<x<d;

lf b<x<c (2.3)

xc+(d xoctd—x)iy c<x<d;
( lf x<ax>d
bx+b(xaa)FN if a<x<b

FO=3p, if b<x<c

—c+(d-X)Fy .
% if c<x<d,

X € R,are used in this context, where Ty, Iy, Fy are the truth degree, the
indeterminacy degree, and the falsity degree, respectively.

In this example, we give a simple example on the single-valued
trapezoidal neutrosophic functions N = [0,0.2,3.7,4.1; 1.0,0.1,0.5]. According
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to Definition 2.1, we receive the truth membership function, indeterminacy
membership function and falsehood membership function as follows:

(0 x ¢[0,4.1]
g% 0<x<0.2
T,.(X)=< 7" :
v (%) 1 02<x<3.7
4A1-X 5. x<an
0.4
1 x ¢[0,4.1]
0204 gy
I, (X)= ’ :
v (X) 0.1 02<x<3.7
09x=329 .5 _y<a1.
0.4
1 x ¢[0,4.1]
02-05 ) <02
Fo()=1 02 . (2.4)
0.1 02<x<37
05x-165 5. <41
0.4

—— Truth-membership function

Indeterminacy-membership function

— Falsehood-membership function

Figure 2. 13. The single-valued trapezoidal neutrosophic functions

The graphical representations of the neutrosophic number N is given in
Figure 2.13. Leveraging the strength of fuzzy and neutrosophic sets in
handling ambiguous data, recent studies have integrated neutrosophic sets
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(NS) with machine learning and deep learning models. Ejegwa et al. ([73])
showed the value of fuzzy sets in pattern recognition using a soft computing
approach. The feasibility of fuzzy sets in machine learning through soft
computing methods and provided applications in pattern recognition problems
of construction materials and mineral mines have been discussed.

In our framework, a neutrosophic encoder-decoder module applies
neutrosophic logic to better manage uncertainty and indeterminacy in input and
output data.

The idea of incorporating neutrosophic logic into deep learning models
has also been proposed by some authors. For instance, in the work of Mayukh
et al. ([76]), the authors utilized a neutrosophic approach in several extended
LSTM and Transformer models for sentiment analysis tasks and demonstrated
the potential and effectiveness of this combined approach.

2.4.2. Summary of GAN and CGAN
2.6.1.1. Generative Adversarial Networks

Generative Adversarial Networks (GAN) represent a powerful class of
unsupervised deep learning models in which two neural networks, the
Generator (G) and the Discriminator (D), engage in a dynamic adversarial
process ([77]). As stated, the Generator seeks to map a latent noise vector z «
p(z) to a data-like output ¥ = G(z), while the Discriminator learns to
distinguish real data samples x -~ B. from the synthetic ones X -~ P,. The
competition between Generator G and Discriminator D is formulated as a
minimax objective, illustrated in equation (2.5):

min max Ey_p, [logD (x)] + Ez.p,[log(1 — D(X)], (2.5)
where P, is the data distribution and P, is the distribution implicitly defined by

the generator's output.

In case Discriminator D is trained to the optimal level before each
parameter update of Generator G, minimizing the value function minimizes the
Jensen-Shannon divergence between P, va P,. However, doing so often leads
to the disappearance of the derivative when Discriminator D is saturated.
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2.6.1.2. Conditional generative adversarial network (CGAN)

The Conditional Generative Adversarial Network (CGAN) is a variant of
the original GAN ([19]). Since CGAN is a conditional generative model, both
the Generator and Discriminator networks are trained simultaneously, with
both receiving the label of the data as input, ensuring they generate and evaluate
data that aligns with specific labels.

Figure 2. 14. CGAN model

The CGAN operates as follows: the Generator network takes as input a
noise vector z and a condition label y’, generating new data according to the
condition provided by y. The real samples (x,y") and the newly generated
samples (x’,y") are then passed to the Discriminator network, which
distinguishes between real and fake samples. This process is akin to a min-max
game between two players, with the loss function calculated as

minmax V(D,G) = Ex.pyqa(0llogD (x | V)] + Ezop () [log(1 = D(G(z | y) | ¥))]. (2.6)

For real data input x and label y, logD(x | y) is the probability that the
Discriminator believes the data x (with label y) is real. The Discriminator's goal is
to maximize this probability as much as possible. Meanwhile, G (z | y) generates
fake data using the Generator model from the noise matrix z, based on label y.
log(1 —D(G(z|y)|y))is the probability that the Discriminator believes the
newly generated data (with label y) is fake. The Discriminator aims to maximize
this probability, while the Generator's goal isto make D(G(z | y) | y) ascloseto 1
as possible, meaning it has successfully fooled the Discriminator.

The principle for model selection is that the CGAN model with the
smallest FID value (FID is a method for assessing the difference between
generated data and real data) will be chosen.
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1
FID = ||uy — ug|1> + Tr(Z, + 2, — 2(Z,:2; )z, (2.7)
where p,, 114 are the average vector of features of real data and generated data.
2., 24 are the variance matrix of real data and generated data. T is the trace of
the matrix, i.e. the sum of the elements on the main diagonal of the matrix. ||.||
is the Euclidean distance between two vectors.
2.4.3. The Transformer model for the SGPA prediction task
The architecture of the Transformer model in this chapter is specifically
designed to process tabular data composed entirely of continuous features. The
model consists of three main components: a projection layer for the continuous
input features, a stack of N Transformer blocks, and a multi-layer perceptron
(MLP). Each Transformer block incorporates a multi-head self-attention
mechanism and a position-wise feed-forward subnetwork. The overall
architecture is illustrated in Figure 2.14.
Assume that a data sample is represented by the pair (x,y), where
Xqont € RY is a vector of P continuous features.

[ Multi-laver Perceptron ]

________________

Adll & MNorm E

| Feed Forward |

Add & MNorm

amEEE TS
O g

________________

Input: xe =4

Figure 2. 15. The basic Transformer model for the SGPA prediction task.
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First, the input vector x,,,; is divided into a sequence of k values, and
each value is projected into a d-dimensional space through a shared linear
projection layer. This results in an input embedding matrix X,,,, € RFP*¢,
where each row represents the score of a subject transformed into a feature
vector. Each score is mapped to a feature vector via the linear projection,
allowing the model to learn complex relationships between scores without the
need for positional encoding or categorical embeddings.

The embedded matrix X,,,; IS then passed through a sequence of N
Transformer layers. These layers iteratively update the representation of each
element in the sequence by aggregating contextual information from the entire
sequence. This process is denoted as the function f;

fo(Xemp) = H = {hy,...,hp},h; € R%,i=1,..,P. (2.8)

After obtaining the contextualized embeddings H, an aggregation
operation, such as averaging or flattening, is performed to produce a single
Vvector Agipg; € RP*2_ This vector is then fed into a multi-layer perceptron

(MLP) denoted as g, to generate the final prediction output.
y = .glp(hfinal)- (2.9)

In regression tasks utilizing the Transformer architecture, the MSE is
widely regarded as the most appropriate and commonly used loss function.
MSE effectively measures the average of the squared differences between
predicted values and actual targets, making it well-suited for learning
continuous-valued outputs. Its mathematical properties, being convex and
differentiable, facilitate stable and efficient optimization through gradient-
based algorithms such as Adam or SGD. Additionally, the output structure of
Transformer models, particularly those adapted for tabular or time-series data,
naturally aligns with the scalar or vector predictions required for MSE-based
regression. As a result, MSE remains the default choice in most Transformer-
based regression frameworks, ensuring both accuracy and optimization
efficiency.

All parameters of the model, including the projection layer, Transformer
layers 6, and MLP i, are trained end-to-end using first-order optimization
algorithms such as Adam.
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Transformer Layers

Each Transformer layer enables any given score embedding to attend to
all other scores in the sequence, thereby allowing the model to learn inter-
subject and inter-semester relationships as well as factors influencing students’
academic progress. The structure of each layer includes a multi-head self-
attention mechanism, followed by two linear feed-forward layers. Each step is
equipped with residual connections and layer normalization to stabilize and
enhance the learning process.

T
Attention(Q, K, V) =softmax (%) V. (2.10)

Where Q = XempWo, K = Xemp Wi, V = XempWy; Wo, Wy, Wy, € R are
learnable projection matrices. d,, is the dimensionality of the key/query vectors.

The conclusion of Chapter 2

The prediction of students’ SGPA plays an essential role in monitoring
academic progress, enabling early interventions, and supporting personalized
educational planning. However, in real-world educational environments, SGPA
is influenced by numerous uncertain, subjective, and evolving factors - ranging
from multi-component assessment structures to shifts in teaching methods and
the psychological states of learners. As such, SGPA should not be interpreted
as a static or precise value but rather as a dynamic indicator affected by
uncertainty and variability.

This chapter has highlighted the need for robust predictive models that
can handle incomplete and uncertain educational data. Two key frameworks
were introduced: NeutroDLs and NeutroGNT. NetroGNT achieved a
minimum MSE of 0.018 and a maximum R2Z of 96.05%, significantly
outperforming conventional methods.

The results of the SGPA prediction study (a short-term regression task
aimed at monitoring academic progress and providing timely individual
support) in this chapter lay the foundation and provide motivation for
developing the graduation classification prediction (a long-term classification
problem with strategic, system-wide implications that supports policy planning
and quality enhancement in education under uncertain and data-scarce
conditions), to be addressed in the next chapter.
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CHAPTER 3: ENHANCING THE PERFORMANCE OF EARLY
GRADUATION CLASSIFICATION MODELS

To further improve the performance of early graduation prediction
models for university students, this chapter presents two advanced hybrid deep
learning models: LATCGAd and AWG-GC. Both models are designed to
address the challenges of limited and imbalanced educational data by
automatically augmenting training data and leveraging state-of-the-art deep
learning architectures to improve predictive capability. LATCGAd combines
Transformer, CGAN, and Adaptive Layer Normalization (AdaLN) to improve
data quality, stabilize training, and reduce overfitting, reaching 96.97%
accuracy and 73.66% F1l-score. AWG-GC integrates Autoencoder,
Wasserstein GAN, and Graphormer for joint representation learning, data
augmentation, and classification, achieving 98.54% accuracy and 99.25% F1-
score, significantly surpassing baseline models. The contents of this chapter
are based on the research presented in publications [CT2], [CT7] and [CT8].
3.1. Problem formulation
3.1.1. Early prediction of graduation classification problem

At a higher education institution, a student’s graduation classification is
determined based on their final GPA upon completion of all academic
semesters.

The early prediction of graduation classification task refers to estimating
a student’s final graduation outcome (e.g., Excellent, Good, Medium...) based
on academic data from their early semesters.

The conversion scale for graduation classification is shown in Table 3.1.

Table 3. 1. Graduation classification based on final GPA

Classification 10-Point Scale 4-Point Scale
Excellent [9.0-10] [3.6-4.0]
Very Good [8.0-9.0) [3.2-3.6)
Good [7.0-8.0) [2.5-3.2)
Medium [5.0-7.0] [2.0-2.5)
Poor [4.0-5.0) [1.0-2.0)
Very Poor [0-4.0) [0-1.0)
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Practical Significance

« For students: Early awareness of their potential graduation
classification enables them to adjust their study plans, select courses
more effectively, improve academic performance, and make better-
informed career decisions.

. For institutions: Early prediction helps identify students at risk of low
graduation outcomes or delayed completion, allowing timely support and
intervention. It also supports administrators in refining curriculum
design, admission strategies, and academic policies.

Data Used: In addition to academic scores, predictive models can
incorporate personal factors (e.g., gender, interests, soft skills), family
background (e.g., parents' education, region), societal influences (e.g., learning
habits, peer environment), and institutional characteristics (e.g., faculty quality,
infrastructure, curriculum).

The problem is formulated as follows: Given input data encompassing
personal information, study habits, environmental factors, and grades during
the first and second years of undergraduate study, the goal is to accurately
predict the student’s final graduation classification.

Formally, let the dataset consist of M samples, each represented by P
features. These features include students’ academic scores from the first and
second years of university, along with encoded survey data reflecting personal
background, study habits, and environmental conditions.

X={l=0lx), ... xDx eRie{1,. ., P}jed,.., M)} (3.1)
and a portion of the data is labeled
Y =y, Vs 0, LV €{1,..,6},i €{1,...,L},L=>1;L KM (3.2)

associated with graduation classifications for each student, corresponding to
the following categories: Excellent, Very Good, Good, Medium, Poor or Very
Poor (already encoded).

Problem requirement

Model construction: Determine a mapping f: RP — N such that it can
accurately predict the graduation classification y; € {1,..,6} < N for each

studentx/ e X cRP,j =1,.., M.
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Building predictive models for early graduation classification is a valuable
tool for personalized academic advising and strategic educational planning. By
integrating both academic and non-academic data, such models offer a more
holistic view of student potential, contributing to improved training quality and
more effective educational management.

3.1.2. Learning Analytics with graph data

In addition to the related works on graduation classification discussed in
Subsection 1.3.1, this subsection focuses on the LAGT model. The LAGT
(Learning Analytics with Graph Convolutional Network and Transformer)
framework, introduced in [CT2], constitutes a significant advancement in
graduation classification prediction. Its architecture is organized into two main
phases: a preprocessing phase using GCN to augment and normalize the training
set by leveraging structural relationships among students, courses, and learning
factors; and a prediction phase using Transformer to capture semantic
representations and model complex spatio-temporal dependencies among input
variables. This division allows each component to contribute its unique strengths
- GCN for structural representation and feature enrichment, and Transformer for
context-aware learning with high accuracy.

Experimental results on three datasets demonstrate that LAGT achieves
accuracy of up to 92.73%, outperforming strong baselines such as DNN, GAT,
and standalone Transformer. These findings validate the effectiveness of
integrating GCN and Transformer for educational data and suggest that additional
techniques, such as data augmentation (e.g., SMOTE), can further improve
performance. Building on this foundation, the subsequent part of this dissertation
extends the LAGT model into more advanced hybrid architectures (LATCGAd,
AWG-GC) to address the persistent challenges of small-scale, imbalanced, and
uncertain datasets, thereby enhancing the robustness and reliability of predictive
outcomes.

3.2. The LATCGAd model
3.2.1. The theoretical basis for model selection

Early prediction of students’ graduation classification in a fragmented,
non-uniform, and small-scale educational dataset environment requires a deep
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learning model capable of handling imbalanced data, extracting features
effectively, and learning stably under low-data conditions.

In parallel, recent advancements in generative models, particularly GAN
and their variant CGAN, have emerged as state-of-the-art solutions for
generating high-quality synthetic data. This is especially relevant given that
small and imbalanced datasets remain a major barrier to deploying effective
large-scale LA systems.

Based on these requirements, the dissertation proposes the LATCGAd
model, a hybrid architecture that integrates three main components: CGAN,
Transformer Encoder, and Adaptive Layer Normalization (AdaLN). Each
component supports specific learning functions and complements the others to
enhance the overall performance of the model.

- Conditional data augmentation with CGAN: To address the issue of
class imbalance commonly found in educational datasets, CGAN is employed
as a data augmentation technique. In this approach, CGAN is employed to
generate synthetic samples x* ~ p,(x|y), where y€ {C,Cy, ..., Cy}
represents the graduation classification labels. These labels correspond to
distinct academic performance levels, which are often imbalanced in real-world
datasets, such as the "medium"” or "excellent" classes in the HNMUL1 and
HNMU?2 datasets.

CGAN is trained to generate label-conditioned synthetic data, where the
Generator learns to mimic real samples and the Discriminator distinguishes
them based on the same label. This approach helps balance class distribution
by augmenting minority classes, thereby improving model performance. (see
Subsection 2.4.2, Chapter 2).

- Extracting complex relationships with Transformer Encoder: After the
dataset has been augmented, the model employs a Transformer Encoder to learn
nonlinear and long-range dependencies among input features. Unlike RNN or
LSTM, Transformer do not rely on sequential processing; instead, they fully
utilize the attention mechanism, enabling efficient learning even when the input
data lacks sequential structure. At each encoder layer, the feature representation
X € R™? is updated through a multi-head attention mechanism. With multiple
attention heads operating in parallel, the model can capture multi-dimensional
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dependencies among input features such as GPA, course outcomes, or non-
academic factors.

- Stabilizing training with Adaptive Layer Normalization (AdaLN).
Although Transformers exhibit powerful learning capabilities, they tend to
overfit and converge slowly on small datasets. To address this, the study
incorporates AdaLN into each Transformer Encoder layer. AdaLN is an
extension of Layer Normalization that adapts normalization parameters based
on the characteristics of the input data. It is particularly useful in deep learning
models like Transformers, where input distributions can vary throughout
training. AdaLN enhances model performance by dynamically adjusting
parameters to reduce bias and variance across layers. In standard Layer
Normalization, normalization is applied by computing the mean u and standard
deviation o of the inputs:

£ =" (3.3)
After normalization, learned parameters y and 8 (scale and shift) are applied:
Yi =YX +B. (34)
AdaLN adapts these parameters for each input dynamically:
yi =v(x) - %+ B(x), (3.5)

where y(x) and B (x) are computed based on the input x for each layer. These
parameters are learned through a sub-network, allowing for adjustment
according to the data's characteristics. This is particularly useful in cases where
the data has a non-uniform distribution, as it helps reduce internal covariate
shift, improves convergence, and lowers the risk of overfitting. In Transformer
models, AdaLN improves stability and efficiency, especially when working
with small or heterogeneous datasets, ensuring effective learning across layers.

In general, the integration of CGAN, Transformer Encoder, and AdaLN
into the hybrid LATCGAd model provides three main benefits: (a) Addressing
label imbalance: CGAN conditionally generates samples for minority classes.
(b) Learning powerful representations: The Transformer captures multi-
dimensional nonlinear relationships among features. (c) Ensuring stable
convergence and reducing overfitting: AdaLLN adapts the normalization process
contextually, supporting effective learning on small datasets.
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3.2.2. Proposed model

Figure 3.1 illustrates the LATCGAd model, where the combination of
the CGAN and Transformer Encoder provides an effective solution for
accurately predicting graduation classification on small and imbalanced
datasets. In this model, CGAN expands and balances the dataset by generating
synthetic samples for specific labels, addressing the issue of data scarcity in
underrepresented groups. Once the dataset is expanded and balanced, the
Transformer Encoder learns from this diverse dataset, optimizing its ability to
capture complex relationships among input features. Notably, to improve
accuracy and ensure robust performance on small datasets, the model integrates
AdaLN into each Transformer Encoder layer. AdaLN automatically adjusts
normalization parameters based on the characteristics of the input data. It
reduces bias and variance across network layers, enhancing convergence and
overall model performance. As a result, the Transformer learns more stably and
mitigates overfitting-a common challenge when working with small datasets.
The tight integration of CGAN, AdaLN, and Transformer not only improves
accuracy but also enhances precision, recall, and F1-score, enabling the model
to make more reliable and comprehensive predictions.

X “
Transformer Encode ™
y discriminator
—
: X l m::'d Add & Feed- Add &
B ! Attention AdalN Forward AdalN
Classify real or fake

generator

Qutput

-— |
Z probabiliies /< | Softmax
X ¥r

Figure 3. 1. The LATCGAd model ([CT7])
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The operation of the proposed model is depicted in Figure 3.1. Real data
samples X,. (which contain student-related information, such as survey data and
academic scores from the first two years of study) are collected along with the
labels y’ (represents the actual academic ranking after students graduate,
serving as the ground truth labels for training and evaluating the model). This
label is used in both the CGAN and Transformer components. In CGAN, it acts
as a condition during data generation to ensure that the synthetic data aligns
with specific academic ranking categories. In the Transformer model, it serves
as the target variable for the classification task.

To generate additional synthetic data and expand the training dataset, we
propose integrating CGAN into the model. Using the original data, we train the
CGAN model, where the generator takes in noise vectors z (z is a random input
that allows the Generator to create diverse synthetic data instead of repeating a
single sample for each label) and labels y’ to create synthetic data. The
discriminator then distinguishes between real and synthetic data using the
labels y’ (y’ is the label that helps the Generator create synthetic data with the
correct label for each class; meanwhile, the Discriminator uses y’ to verify
whether the generated data matches the assigned label), allowing the generator
to improve and produce data that closely resembles the real data.

After training the CGAN, the generator will be used to generate additional
new data X, (synthetic student-related data generated by CGAN, including
simulated survey responses and academic scores from the first two years,
corresponding to each y¢) and y,. CGAN allows the generation of data based

on specific classification labels.

This augmented dataset is subsequently used to train the Transformer
model enhanced with Adaptive Layer Normalization (AdaLN), which
dynamically adjusts normalization parameters across layers to reduce bias and
variance. This adaptive mechanism improves model performance in predicting
student graduation classification.



The proposed LATCGA algorithm is given as follows.
Algorithm 3.1. LATCGAd - Learning Analysis with Transformer,
CGAN,
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and Adaptive Layer Normalization

1: Input: Dg,,; : Real dataset of labeled student features and labels
2: Z : Latent noise vector for CGAN

3: G : Number of synthetic samples to generate

4: Taqarn: Transformer model with Adaptive Layer Normalization
5: Output: Y : Predicted graduation classification labels for test set

6: [X,, V-] < Preprocess(Dyeq;)

7. [Geoans Degan] < Trainggan ([ Xy, ¥ ), Z)
8:fori = 1toG do

9: z;« Sample(Z)

10:
11:
12:

y; < Sample Label Distribution(y;.)
X¢ [i] < Gegan (2, y:) > Generate synthetic sample

yr il < wi
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13: end for

14: Dgy g« Concatenate( [Xy, ], [Xr, y¢] ) > Augmented dataset
15: Tpgarn < Train_Transformer(Dg,, )

16: Y « Predict(Tagarn, Xtest)

17: returnY

In this model, we utilize a generator with three hidden layers and a
discriminator with four hidden layers. We apply the Adam optimizer, learning
rate, and Beta 1.

For the Transformer model, we only use the Transformer Encoder. The
final output will be a latent feature vector, which will then be passed through a
fully connected layer for classification prediction. We use parameters such as
multi-head attention, feed-forward layers, the number of Transformer encoder
layers, the Adam optimizer, learning rate, and weight decay (see Subsection
3.2.3.2).

LATCGAd combines three key components: Transformer, CGAN, and
AdaLN. The overall computational complexity is approximately O(n - d* +
E - (|G| + |D|)), where n is the input sequence length, dthe hidden
dimension, and E the number of epochs.

The main bottlenecks lie in training the CGAN and Transformer, while
AdaLN adds only minimal computational overhead.

Overall, the model achieves high predictive performance with a moderate
computational cost compared to modern deep learning architectures.

3.2.3. Experiments
3.2.3.1. Datasets
To demonstrate the effectiveness of our proposed model, we will test it on
these three datasets: HNMU1, HNMU2, and VNU. We will use all survey data
and student scores from their first two years to predict student classification
(see Section 1.4 Chapter 1).

Table 3. 2. Description of the training dataset

Dataset Number of | Survey-based Academic Number of
samples attributes atgl;:atjelﬂntfsyegr.gt classes
HNMU1 932 4 . 18 4
HNMU2 551 36 28 4
VNU 271 48 24 3
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By using real data, we aim to show that our proposed model is effective in
practical applications. The dataset is divided into train, validation, and test sets,
with 60% of the data used for training, 15% for validation, and 25% for testing.
All experiments were implemented on a workstation equipped with an Intel
Core i7-12700KF CPU, NVIDIA RTX 3060 GPU, and 32GB RAM, ensuring
reliable computational performance for deep learning training and evaluation.

3.2.3.2. Experimental setup

CGAN Model: In this model, the Generator in the CGAN network

consists of 3 layers to generate new data from latent space. Specifically, the
first layer of the Generator has 256 neurons, the second layer has 512 neurons,
and the third layer has 1024 neurons. The output of the Generator is 21 for
HNMUL, 62 for HNMUZ2, and 72 for VNU. The activation function for
HNMU1 and VNU is LeakyReL U with a coefficient of 0.2, and for HNMU2,
it is ReLU. The Adam optimizer is used with a learning rate (Ir) of 0.0002 and
beta_1 of 0.5. The loss function is Binary Cross Entropy Loss, which helps the
network learn nonlinear features effectively and avoid neuron death. The
Discriminator also consists of 4 layers to evaluate the authenticity of the data
generated by the Generator. Specifically, the first layer of the Discriminator has
1024 neurons, the second layer has 512 neurons, the third layer has 256
neurons, and the fourth layer has 64 neurons. The activation function for
HNMU1 and VNU is LeakyRelL.U with a coefficient of 0.2, and for HNMU2,
itis ReLU. The Adam optimizer is used with Ir = 0.0002 and beta 1 =0.5. The
loss function is Binary Cross Entropy Loss. The output of the Critic is a single
value representing the Discriminator's score for the input sample.

e For HNMU1, CGAN generates an additional 32 samples per class.

e For HNMUZ2, CGAN generates an additional 25 samples per class.
e For VNU, CGAN generates an additional 12 samples per class.

Table 3. 3. Number of samples before and after creation with CGAN

. Y;
Datasets Labels Medium | Good GS)?(; Excellent | Total
Bee:g:ztin 11 430 468 23 932
HNMU1 iﬁer g
. 43 462 500 55 | 1060
generating
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B::er:un 19 337 101 4 551

HNMU2 iﬂer g
. 51 369 223 36 679

generating

Before

. 0 46 187 38 271

VNU i\fter :
. 0 58 199 50 307

generating

As shown in Table 3.4, the initial datasets suffer from significant class
imbalance, with the Medium and Excellent categories represented by very few
samples (for instance, only 4 Excellent cases in HNMU2 and none in the Medium
category for VNU), while the Good and Very Good classes are predominant. This
uneven distribution can lead the model to concentrate on the majority classes and
neglect patterns associated with minority ones. After applying CGAN, the number
of samples in the smaller classes increased significantly, such as Excellent in
HNMU?2 rising from 4 to 36, and Medium in HNMUL1 from 11 to 43, leading to a
more balanced distribution and improved model learning. However, some
limitations remain, for instance, VNU still has no samples in the Medium class,
and the generated data may not fully represent real data.

The parameters of the CGAN model (such as the number of layers,
learning rate, and activation functions) are tailored for each dataset to ensure
that the synthetic data closely resembles the real data. For HNMU1 and VNU,
the LeakyReLU activation function is used in both the generator and
discriminator, whereas ReL.U is more effective for HNMUZ2. The number of
synthetic data samples for each class is also adjusted differently for each dataset
to ensure class balance without introducing excessive noise.

Table 3. 4. Generator model parameters on the HNMU1, HNMU2, and
VNU datasets

First | Second | Third Activation Output | Output

Datasets | layer | layer | layer function layer | activation
function

HNMUL | 256 512 1024 | LeakyRelLU(0.2) 21 Tanh
HNMU2 | 256 512 1024 RelLU 62 Tanh
VNU 256 512 1024 | LeakyReLU(0.2) 72 Tanh

Table 3. 5. Discriminator model parameters
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Datasets First | Second | Third | Fourth Activation Output
layer layer layer | Layer function activation

function
HNMU1 | 1024 512 256 64 LeakyReLU(0.2) | Sigmoid
HNMU2 | 1024 512 256 64 RelLU Sigmoid
VNU 256 512 256 64 LeakyRelLU(0.2) | Sigmoid

Training parameters for the Generator and Discriminator models on the
datasets as follows: Optimizer is Adam, Learning Rate=0.0002, Beta_1=0.5
and Loss function: Binary Cross Entropy Loss.

Transformer model

e For HNMUL, the Transformer uses 2 multi-heads. The feed-forward layer
in each encoder layer has 64 units. The number of Transformer encoder layers is 1,
with dropout = 0.6. This is followed by a fully connected network with an output of
4 (corresponding to the number of classes in the HNMU1 dataset).

e For HNMU2, the Transformer uses 7 multi-heads. The feed-forward layer
in each encoder layer has 64 units. The number of Transformer encoder layers is
2, with dropout = 0.5. This is followed by a fully connected network with an output
of 4 (corresponding to the number of classes in the HNMUZ2 dataset).

e For VNU, the Transformer uses 2 multi-heads. The feed-forward layer
in each encoder layer has 128 units. The number of Transformer encoder layers
is 1, with dropout = 0.6. This is followed by a fully connected network with an
output of 3 (corresponding to the number of classes in the VNU dataset).

All models use the Adam optimizer with Ir = 0.005 and weight decay = 0.0005.

The number of attention heads is selected based on the complexity of the
feature space. For HNMU1 and VNU, two multi-heads are appropriate. The HNMU2
requires seven multi-heads to learn complex patterns from a larger feature space.

Feed-Forward Layer: For HNMU1 and HNMUZ2, the feed-forward layers
have 64 units, whereas VNU requires 128 units due to the higher number of
variables in the dataset. Learning Rate and Optimizer: The learning rate is set to
0.005 with the Adam optimizer after experimenting with different values and
observing the convergence speed and accuracy.

During the model training process, several important parameters were
utilized to optimize and adjust the model's learning capability, including
Beta_1, learning rate (Ir), and Dropout. A Beta 1 value of 0.5 was chosen to
balance convergence speed and learning stability. The learning rate (Ir) controls
the adjustment speed of the model’s weights after each gradient update. This
value was set differently for each model: 0.0002 for CGAN and 0.005 for
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Transformer, ensuring optimal convergence speed while preventing
oscillations or slow convergence. Additionally, Dropout was used as a
regularization technique to mitigate overfitting by randomly dropping some
neurons during training. The Dropout value was set at either 0.5 or 0.6,
depending on the model and dataset, to enhance generalization and model
robustness when applied to real data.

For LATCGAd model, the number of epochs for training the CGAN model
for the three datasets HNMU1, HNMU2, and VNU is 5000 epochs. The training
graphs of the models are shown respectively in Figure 3.3a), 3.3b), and 3.3c). The
principle for model selection is that the CGAN model with the smallest FID value.
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Figure 3. 3. Training the CGAN model (in the LATCGAd model)

a) On the HNMU1 dataset. b) On the HNMU2 dataset. ¢) On the VNU dataset.
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Figure 3. 4. FID values
a) On the HNMUL1 dataset. b) On the HNMUZ2 dataset. ¢) On the VNU dataset.

We will then train the Transformer model for 1000 epochs for the three
datasets HNMU1, HNMUZ2, and VNU. The training graphs for the models for
the three datasets HNMU1, HNMU2, and VNU are shown respectively in
Figure 3.5a), 3.5b), and 3.5¢). The principle for selecting the best model is to
take the average of the training loss and validation loss, and the epoch with the
smallest value will be chosen. Based on this principle, for the model in Figure
3.5a), the model selected at epoch 71 has a train loss of 0.2677 and a validation
loss of 0.1237. For the model in Figure 3.5b), the model selected at epoch 962
has a train loss of 0.0361 and a validation loss of 0.0018. For the model in
Figure 3.5c), the model selected at epoch 61 has a train loss of 0.3878 and a
validation loss of 0.2793.
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Figure 3. 5. Training the Transformer model (in the LATCGAd model)
a) On the HNMU1 dataset. b) On the HNMUZ2 dataset. ¢) On the VNU dataset.

We will compare the proposed model with three different deep learning
algorithms (DNN, GAT and Transformer), and traditional machine learning
methods (which are known to perform well with small datasets): DT, SVM and LR.

We trained the DNN, GAT and Transformer models with the three datasets
HNMU1, HNMUZ2, and VNU, training the model for 1000 epochs. The
principle for selecting the best model is that model with the lowest average of
train loss and validation loss will be chosen.

3.2.4. Results and discussion
Experimental results on the three datasets (HNMU1, HNMU2, and
VNU) show that the LATCGAd model outperforms traditional models (DT,
SVM, LR) and deep learning models (DNN, GAT, and standard Transformer).
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Table 3. 6. Prediction results on the HNMU1 dataset

Method Accuracy | Precision | Recall | F1-Score
DT 89.64 39.77 48.09 42.90
SVM 84.64 35.95 45.31 38.77
LR 92.86 43.13 49.05 45.71
DNN 93.57 69.07 74.15 71.35
GAT 82.14 34.81 44.57 37.46
Transformer 93.57 4471 47.96 46.26
LATCGAd 95.56 72.50 74.78 73.61

On the HNMUL1 dataset, LATCGAd achieves an accuracy of 95.56%,
significantly higher than DT (89.64%), SVM (84.64%), LR (92.86%), DNN
(93.57%), and GAT (82.14%). In addition to accuracy, the model also improves
Precision (72.50%), Recall (74.78%), and F1-score (73.61%), demon strating
its ability to reduce errors and correctly classify almost all true positive
samples, outperforming all compared models.

On the HNMU?2 dataset, LATCGAd achieves the highest accuracy
(96.97%), outperforming the standard Transformer (95.62%), DT (89.70%),
and GAT (89.05%). However, while it maintains relatively balanced Precision
(73.26%) and Recall (74.09%), these values are still noticeably lower than the
high Precision of DT (94.65%) and its Recall (79.26%). This indicates that
despite its stability and generalization ability, thanks to synthetic data generated
by CGAN, LATCGAd lacks sharpness in accurately and comprehensively
identifying the target class. This limitation may impact its effectiveness in real-
world scenarios that require high discriminative performance (see Table 3.8).
To address this, future work should focus on optimizing the CGAN-based data
generation process to produce samples closer to real distributions and
leveraging multi-level attention or graph-based features to better capture
complex relationships within student data.

Table 3. 7. Prediction results on the HNMU2 dataset

Method Accuracy | Precision | Recall | F1-Score
DT 89.70 94.65 79.26 82.48
SVM 80.29 41.38 41.81 40.55
LR 71.74 64.57 62.25 60.46
DNN 87.05 69.32 60.92 63.75
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GAT 89.05 53.52 57.95 55.16
Transformer 95.62 12.77 60.99 64.79
LATCGAd 96.97 73.26 74.09 73.66

On the VNU dataset, LATCGAGd achieves an accuracy of 87.65%, lightly
outperforming DT (83.95%), and standard Transformer (86.76%). A key
advantage is that Precision increases to 95.56%, significantly surpassing the
other models, indicating its high reliability in predicting positive cases and
minimizing false positives. However, Recall is 58.73%, slightly lower than
Transformer (71.73%). This trade-off is justified by its optimized Precision,
making it suitable for applications requiring high confidence in identifying
critical cases. The F1-score of LATCGAd on the VNU dataset reaches 67.62%,
surpassing most machine learning models, though slightly lower than standard
Transformer (70.72%).

Table 3. 8. Prediction results on the VNU dataset

Method Accuracy | Precision | Recall | F1-Score
DT 83.95 67.59 55.08 59.06
SVM 83.82 42.43 53.83 46.97
LR 76.47 70.88 74.06 59.19
DNN 75.36 67.26 53.39 55.44
GAT 80.88 51.60 50.52 51.00
Transformer 86.76 69.72 71.73 70.72
LATCGAd 87.65 95.56 58.73 67.62

A key factor influencing the experimental results is the differences in
characteristics among the three datasets: HNMU1, HNMU2, and VNU. Each
dataset varies in size, number of features, and class imbalance levels, which
directly impact the models' performance.

Specifically, the HNMU1 dataset has the largest sample size (932 samples)
but a limited number of features (21 features, with only 3 survey-based
features). As a result, the model primarily relies on academic scores from the
first two years. While this enables the model to quickly identify learning trends,
it also increases the risk of missing additional insights from non-academic
factors. By balancing the data with CGAN, LATCGA significantly improves
accuracy and F1-score compared to other models.
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The HNMU2Z2 dataset is smaller (551 samples) but contains 62 features
(including 34 survey-based features), providing a more comprehensive view of
students. This allows LATCGAd to capture multidimensional relationships
between academic and non-academic data. As a result, HNMU2 achieves the
highest accuracy (96.97%), while maintaining a balance between Precision and
Recall, demonstrating that rich and diverse data plays a crucial role in enhancing
model performance. The integration of AdaLN further improves stability and
mitigates overfitting, enabling the model to perform consistently across diverse
educational datasets.

In contrast, the VNU dataset has the smallest sample size (271 samples)
but includes 72 features. Despite the dataset's high feature richness, its small
size makes the model more susceptible to overfitting. The high Precision
(95.56%) indicates that LATCGAd is highly effective in reducing false
positives, but the low Recall (58.73%) suggests that some true positive samples
were missed, likely due to the limited training data.

These confusion matrices clearly present the experimental results.
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Figure 3. 6. Confusion Matrices (in the LATCGAd model)
a) on the HNMU 1 dataset. b) on the HNMU?2 dataset. c) on the VNU dataset.
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As illustrated in Figure 3.6, the confusion matrices reveal that most
misclassifications occur between the Good and Very Good categories. This
problem is largely due to class imbalance. In the HNMUZ2 dataset, which
contains four performance categories (Excellent, Very Good, Good, and
Medium), the distribution is dominated by the Very Good (337 samples, 61%)
and Good (191 samples, 35%) classes. The overwhelming proportion of these
two categories makes it challenging for the model to establish a clear separation
between them. In the HNMUL1 dataset, the imbalance issue also persists, where
Medium students are sometimes misclassified as Good.

The differences in size and composition across these datasets highlight the
necessity of data balancing and augmentation using CGAN, particularly when
working with small or highly imbalanced datasets. Additionally, this
underscores the importance of feature selection and analysis in optimizing deep
learning model performance.

In summary, the LATCGAd model demonstrates superior accuracy and
overall performance across all three datasets, particularly under conditions of
small and imbalanced data. This improvement is attributable to the synergistic
integration of data augmentation via CGAN and model optimization through
AdaLN. Compared to the LAGT model presented in [CT2], LATCGAd
effectively addresses the severe class imbalance observed in the HNMU2
dataset by employing CGAN to generate additional samples for each class,
especially for underrepresented classes. This targeted data augmentation leads
to a substantial enhancement in predictive performance.

However, on the VNU dataset, where class distribution is relatively
balanced but the ratio of samples (271) to features (72) is disproportionate, the
LATCGAd model performs less effectively. This indicates that the model is
sensitive to situations where the number of samples is too small compared to
the feature dimensionality, even when class proportions are not an issue.

Consequently, there arises a clear need to improve predictive performance
in contexts that require additional feature selection and extraction. The
subsequent model introduced in this work, AWG-GC, is designed to address
this challenge effectively.

3.3. The AWG-GC model
3.3.1. The theoretical basis for model selection
Despite the strong performance of LATCGAd in predicting academic
performance from small and imbalanced educational datasets, several technical
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challenges remain unresolved. These limitations reveal the need for a more
comprehensive approach to educational data modeling.

One key limitation lies in feature representation. Educational data is often
noisy, sparse, and inconsistently structured, which reduces the ability of models
like Transformers to extract meaningful patterns. Moreover, the reliance on
labeled data presents difficulties when annotations are limited. This motivates
the integration of an Autoencoder module, which can learn compressed,
denoised representations in an unsupervised manner.

A second challenge is the quality and diversity of synthetic data used to
balance training sets. LATCGAd uses CGAN to generate additional samples,
but this approach suffers from unstable training and limited control over sample
quality. From a theoretical perspective, WGAN improves the stability of GAN-
based training, including CGAN, and helps avoid the mode collapse problem.
Furthermore, the synthetic data generated by WGAN is generally of higher
quality and closer to the real data distribution compared to that generated by
CGAN. This makes WGAN a more suitable choice for generating reliable and
diverse educational data.

Finally, educational data often contains rich relational structures,such as
dependencies among courses, learning sequences, and behavioral interactions,
that are naturally represented as graphs. Transformer-based models, including
those used in LATCGAd, do not fully exploit these relationships. Prior work
has shown that incorporating graph-based architectures can significantly
enhance learning from such data.

To address these challenges, we propose AWG-GC, a hybrid deep
learning model that combines Autoencoder, WGAN, and Graphormer. This
architecture is designed to enhance feature learning, improve data generation,
and capture complex relationships within educational data, thereby offering a
more robust and effective solution for academic performance prediction.

Graphformer is a particularly promising candidate, as it fully integrates
both Transformer mechanisms and graph-specific features, making it well-
suited for educational datasets with rich relational structures. With multi-head
self-attention and positional encoding mechanisms, Graphormer can effectively
model long-range and hierarchical relationships, overcoming limitations such as
over-smoothing found in traditional GNNs like GCN and GAT.

In summary, AWG-GC is a systematic extension of LATCGAd. It not
only inherits the strengths of data generation and training optimization but also
introduces critical components to fully address real challenges: complex feature
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handling, limited labeled data, and multidimensional relationship modeling in
educational data. As a result, the model provides an efficient hybrid deep
learning framework with strong potential to support intelligent decision-
making and enhance the quality of learning analytics.
3.3.2. Proposed model
This section presents the mapping f: X — Y in the form of the proposed
AWG-GC model, which accurately predict the graduation classification y € Y
for each student based on features x € X. Figure 3.7 illustrates the AWG-GC
model, which integrates an Autoencoder, WGAN, and Graphormer for
graduation classification.
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Figure 3. 7. The AWG-GC model ([CT8])

The implementation of the model, as illustrated in Figure 3.7, is carried
out as follows:

After preprocessing, the raw data forms an initial sample set consisting of
(L + U) samples, where (X,,y,) are labeled samples and X, are unlabeled
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samples. Note that each sample in this set has a dimensionality of n. This
dataset is used to train a deep Autoencoder neural network to learn the latent
space representation. At the same time, the (L + U) sample set is also used to
train a Wasserstein Generative Adversarial Network (WGAN) to generate an
additional synthetic sample set, X,;, consisting of G new samples.

After the sample generation process is completed, the dataset is expanded
to L+ U+ G samples, maintaining the same dimensionality of n. This
expanded sample set is then fed into the encoder part of the Autoencoder to
extract features and reduce the data dimension from n to m. Thus, each sample
inthe L + U + G set has two representations: one in the original n-dimensional
space and one in the m-dimensional feature space.

To construct the input graph for the Graphormer model, these two
representations are combined by column concatenation, creating a dataset with
a dimensionality of n + m. The neighborhood graph of the samples in the (L +
U + G) set is built using the KNN algorithm based on this combined feature
space. The resulting graph is then fed into the Graphormer model, a
Transformer-based variant designed to handle graph-structured data. Thanks to
the global attention mechanism weighted by graph distance, Graphormer can
efficiently learn the relationships between nodes, thus improving the accuracy
in predicting students' graduation classifications.

In our model, the KNN algorithm is utilized in two different contexts.
First, KNN is employed to construct the input graph structure for the
Graphormer model. Specifically, after the raw data is passed through an
Autoencoder to obtain compressed representations, we perform a column-wise
concatenation of the original and compressed features to form a combined
feature space. It is within this space that KNN is applied to identify the nearest
neighboring nodes for building the input graph. Therefore, dimensionality
reduction via the Autoencoder is carried out prior to graph construction using
KNN. Second, KNN is also used as a baseline classification method in the
experimental comparison. In this case, KNN is applied directly to the original
feature space, without any dimensionality reduction or data augmentation. This
allows us to assess the extent of improvement achieved by the proposed AWG-
GC deep learning framework.
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Figure 3. 8. The pineline of AWG-GC model

The AWG-GC model offers the following key benefits: (1) Leverages
the Autoencoder network to extract features and reduce data dimensionality,
improving training efficiency; (2) Uses the WGAN network to augment the
dataset, enhancing the model’s generalization ability; (3) Combines both
original and extracted representations to construct the graph, thereby enhancing
the performance of Graphormer in classifying students.

It is important to note that in the AWG-GC model, Autoencoder, WGAN,
and Graphormer do not operate independently but work together in a unified
process. The Autoencoder and WGAN help create a richer dataset, while
Graphormer utilizes this dataset to improve the model’s prediction accuracy.

The proposed AWG-GC algorithm will be given as follows.
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Algorithm 3.2: AWG-GC - Integrating an Autoencoder, Wasserstein
GAN, and Graphormer for Graduation Classification

1: Input: Dy, : Labeled dataset of student features and labels
2 Dy : Unlabeled dataset of student features

3 m : Number of samples in Dy

4. n : Number of samples in Dy,

5 z . Latent feature dimension from Autoencoder

6: s : Number of synthetic samples generated by WGAN
7: Output: Y : Predicted graduation classification labels

8: [X., y.] < Preprocess(D,)

9: Xy« Preprocess(Dy)

10: Train Autoencoder on X; U Xy

11: Z;, < Encode(X}), Zy < Encode(Xy;)
12: [G, C] < TrainWGAN(X,, y;)
13:fori = 1tosdo

14:  z; « SampleNoise()

15:  y;«— SampleLabel(y;)

16 x!" —G(z, )

17 Ds«—Ds U (x/", )

18: end for

19: Dy <D, U Dy U D

20: Z,;; < Encode(Dy;;)

21: Fopmpinea < Concatenate(X,;;, Zq11)
22 Gy < ConstructGraph(F,ompined)
23: Train Graphormer on (Gynn, V1)

24: Y « Predict(Graphormer, X, ;)

25: return Y

AWG-GC combines three main components: an Autoencoder for
dimensionality reduction, a WGAN for data augmentation, and a Graphormer
for classification. Its computational complexity is approximately O(E - |AE| +
n-N?-d?+ |E;|), where |AE| denotes the computational cost per training
epoch of the Autoencoder, E is the number of epochs, N the number of student
nodes, and |E;| the number of graph edges.



97

The model is more computationally demanding than LATCGAd due to
WGAN’s gradient penalty and Graphormer’s graph-aware attention. However,
this higher complexity is justified by its improved accuracy and robustness in
modeling inter-student relationships within educational graphs.

3.3.3 Experiments

3.3.3.1. Training dataset

In this section, we use three real datasets, HNMUZ2, VNU, and SATDAP,
to evaluate the performance of the proposed model. The HNMU2 and VNU
datasets contain information on students' grades and survey feedback from two
major universities in Vietnam. Each dataset differs in scale, feature distribution,
and classification labels, creating a diverse testing environment for our
approach. The inclusion of the SATDAP dataset, collected in Portugal, serves
to enhance the generalizability of our proposed method by incorporating data
from a distinct international educational context.

The SATDAP dataset originates from the SATDAP program, Capacitacéo
da Administracdo Publica, under the authorization of POCI-05-5762-FSE-
000191, Portugal ([61]). This dataset consists of 4424 records and 36 features.
It includes information on students’ academic trajectories, demographic data,
socio-economic factors, and SGPA over a five-year period.

The dataset contains variables related to demographic factors (such as age
at enrollment, gender, marital status, nationality, postal code, special needs),
socio-economic factors (such as whether the student works, parents’
educational background, parents’ occupations, parents’ employment status,
student scholarships, and tuition debt), and educational pathways (such as
entrance exam score, number of years repeated in secondary school, program
preference order, and type of secondary school course).

The academic information in this dataset is limited to observable factors
prior to university enrollment, excluding any internal assessments after
enrollment. Each student record is categorized into one of three groups:
Success, Relative Success, or Failure, based on the time taken to complete the
degree program. "Success" or “Graduate” refers to students who complete the
program within the standard timeframe. "Relative Success" or “Enrolled”
refers to those who graduate after up to three additional years. "Failure” or
“Dropout” applies to students who take more than three additional years to
graduate or do not graduate at all.
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This classification reflects three levels of risk: Low-risk students are
highly likely to succeed; Medium-risk students may benefit from institutional
interventions to support their success, and High-risk students are those with a
high likelihood of failure.

1421

2209

794

Enrolled . Graduate Dropout

Figure 3. 9. Number of samples per class in the SATDAP dataset

The data underwent feature normalization using the StandardScaler()
method, which adjusts features to have a mean of 0 and a standard deviation
of 1. This ensures that all features share the same scale and units, thereby
improving the performance of machine learning models. The formula for
StandardScaler is:

X—x
Xnew = #- (3-6)

For the labels, they were converted from text to numerical format using
the LabelEncoder() function. This function encodes each unique label value as
an integer, enabling machine learning models to process the labels numerically
instead of as text strings.

To evaluate the efficacy of the AWG-GC model, this section focuses on
conducting experiments on three distinct datasets: the HNMU2 dataset, the
VNU dataset, and the SATDAP dataset. By evaluating the proposed model on
these real datasets, we provide clear evidence of its effectiveness. We will
sequentially extract train, validate, and test datasets from the data with the
purpose of testing on the most recent graduate student data, enabling the best
evaluation of the model's practical applicability when using past student data.
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The datasets are divided into train, validation, and test sets, with 60% of the
data used for training, 15% for validation, and 25% for testing.

To demonstrate the effectiveness of the proposed method, we divided it
into scenarios as follows:

e SVM, KNN, RF, GAT, Transformer, Graphormer: using the original
dataset allows us to evaluate the predictive capability of each model with
the initial data.

o AutoGAT: applying dimensionality reduction using an Autoencoder
before training the GAT model helps us understand the impact of the
Autoencoder on predictions, particularly with datasets containing
numerous fields and complex structures,

o AWG-GAT: combining dimensionality reduction via an Autoencoder
with data augmentation using WGAN before training the GAT model
demonstrates how WGAN-generated data can address the issue of small
dataset sizes,

e AWG-GC: combining dimensionality reduction via an Autoencoder
with data augmentation using WGAN before training the Graphormer
model.

3.3.3.2. Set up of model parameters

Experiments were run on a workstation with Intel Core i7-12700KF,
NVIDIA RTX 3060, and 32GB RAM, offering adequate resources for deep
learning training and evaluation.

To ensure that the selected hyperparameters were both optimal and
stable, we conducted a sensitivity analysis by varying key hyperparameters
such as the number of neurons per layer, learning rate, dropout rate, and the
number of attention heads within reasonable ranges based on previous studies.
The learning rate was tested with values {0.0001, 0.001, 0.005, 0.01}, while
the dropout rate was evaluated within the range {0.3, 0.5, 0.6, 0.7}.
Experimental results showed that the model's performance remained stable
across these configurations. The final hyperparameters were selected based on
minimizing validation error and maximizing the F1-score, ensuring a balance
between training effectiveness and generalization capability across datasets of
varying sizes and structural characteristics.



100

Autoencoder

The Autoencoder network is structured with two main parts: an encoder
and a decoder. The encoder comprises two stages. The first layer of the encoder
has 128 neurons and is responsible for reducing the input data to a smaller
space. Next, the second layer has 64 neurons and compresses the data into a
hidden space. The hidden space of this Autoencoder network is flexibly
structured with different sizes depending on each dataset: 10 neurons in the
HNMUZ set, 10 neurons in the VNU set and 10 neurons in the SATDAP.

The Decoder part of the network also includes two layers, but it operates
oppositely to the encoder part. The first layer of the decoder contains 64
neurons to expand data from the hidden space. Finally, the second layer has 128
neurons, which completes the process of reconstructing the data to their original
form or close to the input data. This structure helps the Autoencoder network
learn and compress information effectively and is capable of reconstructing
data from hidden spaces with high accuracy.

All layers in the Autoencoder and the decoder use the ReL U activation
function and the Adam optimizer with a learning rate equal to 0.005 and weight
decay equal to 0.0005.

WGAN model

This WGAN is structured to include two main components: Generators
and Critics. The Generator set of the WGAN network includes 3 layers for the
HNMUZ2, VNU and SATDAP datasets, each with increasing sizes to generate
new data from the hidden space. With the HNMU2, VNU and SATDAP
datasets, the first layer of the Generator has 256 neurons, the second layer has
512 neurons, and the third layer has 1024 neurons. The generator output
contains 62 features for the HNMU?2 set, 72 features for the VNU set, and 36
features for the SATDAP set. All layers in the Generator use the LeakyRelLU
activation function with a coefficient of 0.2, which helps the network learn
nonlinear features effectively and avoids neuronal death. We use the Adam
optimizer with a learning rate equal to 0.0002 and betas equals (0.5, 0.9).

The Critic part of the WGAN network also includes 3 layers for the
HNMU2, VNU and SATDAP datasets, but with decreasing size, to help
evaluate the authenticity of the data generated by the Generator. Specifically,
with Critic’s the HNMU2, VNU and SATDAP datasets, Critic's first layer had
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512 neurons, the second layer had 256 neurons, and the third layer had 64
neurons. All layers in the Critic use the LeakyReL U activation function with a
coefficient of 0.2. We use the Adam optimizer with a learning rate equal to
0.0002 and betas equals (0.5, 0.9). The Critic output is a single value
representing the Wasserstein score of the input data sample. This structure
helps the WGAN network achieve a balance between generating new data
samples and evaluating the authenticity of the samples, which improves the
quality of the generated data.

After training the model, we used the Generator to generate additional
training data for GAT. For the HNMU?2 dataset, we generated 100 samples per
class, totaling 400 samples, to add to the training set. For the VNU dataset, we
generated 64 samples per class, totaling 192 samples, to add to the training set.
For the SATDAP dataset, we generated 1032 samples per class, totaling 3096
samples, to add to the training set The number of samples generated and added
to each dataset is as follows: (1) HNMU2 dataset: 731 training samples and 137
testing samples; (2) VNU dataset: 355 training samples and 68 testing samples;
and (3) SATDAP dataset: 6104 training samples and 855 testing samples.

Graphormer model

For HNMUZ2, the Graphomer model selects d_model = 64 to define the
dimensionality of the hidden representations, ensuring a compact yet expressive
embedding space for node features and facilitating efficient attention
computations. We also configure max_distance = 12, which limits the hop
distance used for spatial bias embeddings, effectively controlling the range of node
interactions and reducing noise from overly distant connections. Attention dropout
rate of 0.1, a multi-head attention value of 2, The number of Transformer encoder
layers is 2, with a dropout rate of 0.4 at each layer. The network output is 4
(corresponding to the number of classes in the HNMU2 dataset). Models use the
AdamW optimizer with Ir = 0.005 and weight decay = 0.0005.

For VNU, the Graphomer model selects d_model = 64. We also
configure max_distance = 12. Attention dropout rate of 0.1, a multi-head
attention value of 4, The number of Transformer encoder layers is 1. The
network output is 4 (corresponding to the number of classes in the HNMU2
dataset). Models use the AdamW optimizer with Ir = 0.005 and weight decay =
0.0005.
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For SATDAP, the Graphomer model selects d_model = 64. We also
configure max_distance = 12. Attention dropout rate of 0.1, a multi-head
attention value of 2, The number of Transformer encoder layers is 2. The network
output is 4 (corresponding to the number of classes in the HNMU?2 dataset).
Models use the AdamW optimizer with Ir = 0.005 and weight decay = 0.0005.

Graph construction

For graph construction, we used the method of selecting the 10 nodes with
the lowest Euclidean distance to form neighboring nodes. If the Euclidean
distance is above or below the farthest neighbor within the selected K
neighbors, we do not include those nodes as part of the neighborhood. In this
section, we do not use threshold-based neighbor selection.

Transformer model:

For HNMUZ, the Transformer model selects a multi-head attention value
of 4, with a dropout rate of 0.5 at each layer. The network output is 4
(corresponding to the number of classes in the HNMU2 dataset). Models use
the Adam optimizer with Ir = 0.005 and weight decay = 0.0005.

For VNU, the Transformer model selects a multi-head attention value of
2 and is combined with an ANN network structured in three layers: the first
layer has 64 neurons, the second layer has 128 neurons, and the third layer has
64 neurons. The dropout rate is 0.4 at each layer. The network output is 3
(corresponding to the number of classes in the VNU dataset). Models use the
Adam optimizer with Ir = 0.005 and weight decay = 0.0005.

For the dataset from the SATDAP program, the Transformer model
selects a multi-head attention value of 4, with a dropout rate of 0.4 at each layer.
The network output is 3 (corresponding to the number of classes in the
SATDAP dataset). Models use the Adam optimizer with Ir = 0.005 and weight
decay = 0.0005.

3.3.3.2. Model training

Train model for AutoGAT:

The number of epochs for training the Autoencode model on the
HNMUZ2, and VNU datasets were all 5,000 epochs. The model training plots of
these three datasets are shown in Figure 3.10a), Figure 3.10b) (on these figures,
the values at the epochs that are divisible by 10 are shown). The principle of
model selection is to select the Autoencode model with the smallest loss value.
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On that principle, with the model in Figure 3.10a), the model is selected at the
4943rd epoch because it has a loss of 0.0557, and with the model in Figure
3.10b), the model is selected at epoch 4981 because it has a loss of 0.0310.
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Figure 3. 10. Autoencoder model training according to AutoGAT

a) on the HNMUZ2 dataset. b) on the VNU dataset.
In AutoGAT, we trained the GAT model on three datasets (1000 epochs).
The training graphs of the models are shown in Figures 3.11a), 3.11Db),
respectively. The principle of selecting the best model is to take the average of
the training and validation loss values. In which epoch gives the smallest value,
the model is selected at that epoch.
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Figure 3. 11. Training of the GAT model according to AutoGAT

a) on the HNMU2 dataset. b) on the VNU dataset.
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Train model for AWG-GAT:

The number of epochs used to train the Autoencode model on the three
datasets was 5,000 epochs. The training graphs of the models are shown in
Figure 3.12 (on this figure, the values at the epochs that are divisible by 10 are
shown). The principle of model selection is to select the Autoencode model
with the smallest loss value.
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Figure 3. 12. Autoencoder model training according to AWG-GAT

a) on the HNMUZ2 dataset. b) on the VNU dataset.

Figures 3.10, 3.11 and 3.12 illustrate the different training stages in the
experimental scenarios and highlight the significant differences in the role of
the Autoencoder and data processing. Specifically, Figure 3.10 demonstrates
the training process of the Autoencoder in AutoGAT, where the model is
trained on the original dataset, including both labeled and unlabeled samples,
without any data augmentation techniques being applied. The goal at this stage
IS to extract latent features that help reduce dimensionality and enrich the input
information for subsequent classification models. Figure 3.11 further illustrates
the training process of the GAT model in the same scenario, using the output
features from the Autoencoder in Figure 3.10.

Figure 3.12, belonging to AWG-GAT (the scenario involving synthetic
data from WGAN), shows the Autoencoder training process, which is still
conducted on the original dataset, without including any synthetic samples.
Keeping the original dataset at the Autoencoder training stage ensures stability
in learning feature representations and avoids potential bias from synthetic data
that may not fully reflect the true distribution. Once the Autoencoder is trained,
the WGAN model is then applied to generate additional data based on the same
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original dataset. The entire expanded dataset (comprising both original and
synthetic data) is subsequently passed through the Autoencoder’s encoder to
extract features for subsequent steps such as graph construction and
classification. Therefore, in AWG-GAT, the role of the Autoencoder in the
initial stage is similar to that in AutoGAT.

In AWG-GAT, the number of epochs selected to train the WGAN model
on the three datasets was 1,000. The training graphs of the models are shown
in Figures 3.13, 3.14, respectively. The principle of model selection is which
WGAN model has the smallest FID value.
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Figure 3. 13. Training of the WGAN model on the HNMU?2 dataset
according to AWG-GAT.
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Figure 3. 14. Training of the WGAN model on the VNU dataset

according to AWG-GAT
(a) Loss value. (b) FID value.
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In AWG-GAT, we trained the GAT model on the three datasets (1000
epochs). The training graphs of these models are shown in Figure 3.15a), Figure
3.15b). The principle of selecting the best model is to take the average of the
training and validation loss values. In which epoch gives the smallest value, the
model is selected at that epoch. On that principle, with the model shown in
Figure 3.15a), the model selected at the 980th epoch has a training loss of
0.0338 and a validation loss of 0.0423. With the model shown in Figure 3.15b),
the model selected at the 994th epoch had a training loss of 0.3369 and a
validation loss of 0.5201.
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Figure 3. 15. Training of the GAT model according to AWG-GAT:

a) on the HNMUZ2 dataset. b) on the VNU dataset.
Train model for Graphormer:

We trained the model with 1000 epochs on the HNMUZ2, VNU and
SATDAP. The model training graphs for the three datasets HNMU2, VNU and
SATDAP are shown in Figure 3.16. The principle of selecting the best model
is to take the average of the training and validation loss values. In which epoch
gives the smallest value, the model is selected at that epoch.



107

Loss Function Validation accuracy

L7549
—— Train Loss 1.0+
Val Loss
1.50 4
0.9
1259
[
3 1.00 _":ﬂ 08 |
= \ o \
g 0.754 n-
[1T] 0.7 1
0.50 1 ‘ JJ
0.25 L 1 L . 06
M | *ﬂi“‘"""’ —— Train accuracy
0.001 Val accuracy
6 260 4[‘:‘0 660 860 1060 6 260 460 660 560 lD:UO
Epochs Values
a) b)

Figure 3. 16. Training of the Graphomer model
a) on the HNMUZ2 dataset. b) on the VNU dataset.

Train model for AWG-GC:

The number of epochs used to train the Autoencode model on the three
datasets was 5,000 epochs. The training graphs of the models are shown in Figure
3.17a), Figure 3.17b), and Figure 3.17c) respectively (on these figures, the values
at the epochs that are divisible by 10 are shown). The principle of model selection
is to select the Autoencode model with the smallest loss value. On that principle,
with the model in Figure 3.17a), the model is selected at the 4928nd epoch because
it has a loss of 0.0567. With the model in Figure 3.17b), the model is selected at
the 4822nd epoch because it has a loss of 0.0291. With the model in Figure 3.17¢),
the model is selected at epoch 4990th because it has a loss of 0.0261.
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Figure 3. 17. Autoencoder model training according to AWG-GC
a) on the HNMUZ2 dataset. b) on the VNU dataset. ¢) on the SATDAP dataset.
In AWG-GC with Graphomer, the number of epochs selected to train the

WGAN model on the three datasets was 5,000. The training graphs of the
models are shown in Figures 3.18, 3.19, and 3.20, respectively.
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Figure 3. 18. Training of the WGAN model on the HNMU?2 dataset
according to AWG-GC a) Loss value. b) FID value.
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Figure 3. 19. Training of the WGAN model on the VNU dataset

according to AWG-GC a) Loss value. b) FID value.




109

Loss WGAN FID

—— FID

—— Loss Generator
—— Loss Discriminator

I\

o] 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Epochs Values

Figure 3. 20. Training of the WGAN model on the SATDAP dataset
according to AWG-GC a) Loss value. b) FID value.

In AWG-GC, we trained the Graphomer model on the three datasets (1000
epochs). The training graphs of these models are shown in Figure 3.21. The principle
of selecting the best model is to take the average of the training and validation loss
values. In which epoch gives the smallest value, the model is selected at that epoch..
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Figure 3. 21. Training of the Graphomer model according to AWG_GC
a) on the HNMU? dataset. b) on the VNU dataset.
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3.3.4. Results and discussions

3.3.4.1. Results obtained on the HNMU2 dataset
Table 3. 9. Prediction results on the HNMUZ2 dataset.

Method Accuracy Precision Recall F1-Score
SVM 80.29 41.38 41.81 40.55
KNN 80.29 40.68 41.58 40.59
RF 95.62 47.79 48.31 48.34
Transformer  95.62 172.77 60.99 64.79
GAT 89.05 53.52 57.95 55.16
Graphomer 97.08 73.45 73.97 73.67
AutoGAT 93.43 59.84 59.74 59.74
AWG_GAT  97.08 98.50 86.41 90.37
AWG-GC 98.54 99.25 99.25 99.25

From Table 3.10, we can see that the accuracy of AWG-GC was the
highest (98.54%), 18.25% higher than that of SVM, 18.25% higher than that of
KNN, 2.92% higher than that of Transformer and RF, 9.49% higher than that
of GAT, 1.46% higher than that of Graphomer, 5.11% higher than that of
AutoGAT and 1.46% higher than that of AWG_GAT.

In addition, the prediction accuracy of AWG-GC was the highest
(99.25%), 57.87% higher than that of SVM, 58.57% higher than that of KNN,
with 51.46% higher than that of RF, with 26.48% higher than that of
Transformer, 45.73% higher than that of GAT, 25.8% higher than that of
Graphomer, 39.41% higher than that of AutoGAT and 0.75% higher than that
of AWG_GAT. This resulted in a higher rate of correct positive predictions,
minimizing false positives.

Table 3.10 also shows that the sensitivity of AWC-GC is the highest
(99.25%), 57.44% higher than that of SVM, 57.67% higher than that of KNN,
with 50.94% higher than that of RF, with 38.26% higher than that of
Transformer, 41.3% higher than that of GAT, 25.34% higher than that of
Graphomer, 39.51% higher than that of AutoGAT and 12.84% higher than that
of AWG_GAT. This demonstrates that the AWG-GC model is capable of
detecting more true positive samples and minimizing false negative cases.

In particular, the F1-Score of AWG-GC is the highest (99.25%), 58.7%
higher than that of SVM, 58.66% higher than that of KNN, with 50.91% higher



111

than that of RF, with 34.46% higher than that of Transformer, 44.09% higher
than that of GAT, 25.58% higher than that of Graphomer, 39.51% higher than
that of AutoGAT, and 8.88% higher than that of AWG_GAT. The F1-score
shows that AWG-GC achieves the best balance between accurately predicting
positive samples and detecting more positive samples. These improvements
indicate that AWG-GC outperforms the remaining methods.

3.2.3.2 Results obtained on VNU dataset

Table 3. 10. Prediction results obtained on the VNU dataset

Method Accuracy  Precision Recall F1-Score
SVM 83.82 42.43 53.83 46.97
KNN 86.76 51.45 54.98 53.12
RF 82.35 54.03 46.91 49.39
Transformer 86.76 69.72 71.73 70.72
GAT 80.88 51.60 50.52 51.00
Graphomer 88.24 80.11 63.93 64.97
AutoGAT 85.29 74.50 58.59 53.96
AWG-GAT 89.71 70.95 95.98 78.64
AWG-GC 94.12 81.67 97.70 88.17

The results in Table 3.11 reveal that the AWG-GC model consistently
outperforms all other methods across all evaluation metrics on the VNU
dataset. It achieved the highest accuracy (94.12%), precision (81.67%), recall
(97.70%), F1-score (88.17%), indicating both superior predictive accuracy and
robust classification capability. Compared to the baseline models, AWG-GC
improved accuracy by 5.88% over Graphormer, 7.36% over Transformer, and
10.30% over SVM. Notably, its recall increased dramatically by 33.77%
compared to Graphormer and 25.97% over Transformer, suggesting an
exceptional ability to correctly identify positive cases while minimizing false
negatives.

Furthermore, the F1-score of AWG-GC (88.17%) represents a
substantial improvement, outperforming Graphormer by 23.20% and
Transformer by 17.45%, reflecting a well-balanced trade-off between precision
and recall.
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3.2.3.3 Results obtained on SATDAP dataset
Table 3. 11. Prediction results obtained on the SATDAP dataset

Method Accuracy  Precision Recall F1-Score
SVM 77.59 71.89 68.17 68.85
KNN 66.67 57.66 54.73 55.35
RF 79.32 70.78 68.65 69.37
Transformer 80.34 71.87 70.99 71.34
Graphomer 80.79 74.08 70.30 71.67
AWG-GC 81.81 74.74 73.89 74.21
XGBoost 73.00 65.00

(Martin et al., [63])

According to the results presented in Table 3.12, the AWG-GC model
achieved the highest overall performance across all evaluation metrics. It
reached an accuracy of 81.81%, surpassing SVM by 4.22%, KNN by 14.91%,
RF by 2.49%, Transformer by 1.47%, and Graphormer by 1.02%. Its prediction
accuracy (74.74%) similarly exceeded that of SVM by 2.85%, KNN by
17.08%, RF by 3.96%, Transformer by 2.87%, and Graphormer by 0.66%.
Moreover, AWG-GC recorded the highest sensitivity (74.21%), outperforming
SVM by 5.72%, KNN by 19.16%, RF by 5.24%, Transformer by 2.90%, and
Graphormer by 3.59%. Its Fl-score (74.21%) also led all models, with
improvements of 5.36% over SVM, 18.86% over KNN, 4.84% over RF, 2.87%
over Transformer, and 2.54% over Graphormer.

When compared to previous studies, the performance of AWG-GC is
particularly notable. Martins et al. ([63]) reported that Extreme Gradient
Boosting (XGBoost) achieved an accuracy of 73% and an F1-score of 65% in
predicting student performance. In contrast, AWG-GC outperformed XGBoost
by 8.81% in accuracy and 9.21% in Fl-score. This comparison further
underscores the superiority of AWG-GC in both predictive accuracy and
balanced classification performance.

These results indicate that the integration of Autoencoder, WGAN, and
Graphormer architectures enables the model to better capture the underlying
structure of educational data and effectively address challenges such as small
sample sizes and class imbalance. Overall, AWG-GC demonstrates a
significant improvement over both traditional machine learning approaches and
previously reported models in the literature ([63]).
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Although AWG-GC achieves the highest performance on the SATDAP
dataset, the model still has certain limitations. Overall accuracy does not exceed
82%, and the F1-Score remains below 80%, indicating that its ability to detect
and classify correctly is still limited, especially in real-world contexts that
demand high reliability. Furthermore, the performance improvement over
Transformer or Graphormer is relatively small (only about 1-1.5%), while the
computational cost is high due to the integration of multiple components
(Autoencoder, WGAN, Graphormer). To address these issues, future work
should incorporate additional features from learning behaviors and contextual
factors, optimize the WGAN data generation strategy to produce more realistic
synthetic samples, and develop a lightweight version of the model to reduce
training costs and improve its practical applicability.

In AWG-GC, we demonstrated that for all three datasets HNMUZ2, VNU
and SATDAP augmenting the training set with data generated by WGAN
improved the model's predictive performance. Specifically, HNMU?2 achieved an
improvement of 1.46%, VNU improved by 5.88%, and SATDAP showed an
increase of 1.02% compared to when no additional training data was used. This
proves that a larger training dataset enhances the model's predictive capability.

For multi-class prediction tasks, it is essential to evaluate the performance
for each class label individually to ensure balanced and reliable classification.
Therefore, Tables 3.13, 3.14 and 3.15 have been included to provide a detailed
breakdown of the model's performance across all class labels in each dataset.

Table 3. 12. Per-class performance evaluation table of the AWG-GC model

on the HNMU? dataset
Precision Recall F1-Score
Medium 100 100 100
Good 98.65 98.65 98.65
Very good 98.33 98.33 98.33
Excellent 100 100 100

Table 3. 13. Per-Class Performance Evaluation Table of the AWG-GC

Model on the VNU Dataset
Precision Recall F1-Score
Good 75 100 85.71
Very good 100 93.10 96.43

Excellent 70 100 82.35
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Table 3. 14. Per-Class Performance Evaluation Table of the AWG-GC
Model on the SATDAP Dataset

Precision Recall F1-Score
Graduate 86.33 90.77 88.49
Enrolled 47.69 49.60 48.63
Dropout 90.19 81.29 85.51

In addition to overall performance metrics, detailed error analysis helps
clarify the model’s predictive behavior. Figure 3.22 presents confusion
matrices for the HNMU, VNU, and SATDAP datasets, highlighting
misclassifications caused by unclear class boundaries and class imbalance.

Confusion Matrix with Errors Highlighted of HNMU dataset Confusion Matrix with Errors Highlighted
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Figure 3. 22. Confusion Matrices (in the AWG-GC model)

a) on the HNMU?2 dataset. b) on the VNU dataset. c) on the SATDAP
dataset.
We conducted a detailed evaluation of the most commonly confused cases

across the three datasets and identified the underlying causes of
misclassification. For the HNMU?2 dataset, although the AWG-GC model
achieved near-perfect classification performance (Fl-score = 99.25%), the
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confusion matrix reveals some misclassifications between the "Good" and
"Very Good" categories. This issue is largely due to the relatively close GPA
ranges and overlapping behavioral features derived from survey responses.
Additionally, the dataset's class imbalance, particularly the larger number of
“Good” samples (338) compared to “Very Good” samples (190), may have
biased the model toward favoring the majority class. These factors combined
make it challenging for the model to draw a clear boundary between these two
performance levels. In the VNU dataset, the classification task becomes more
complex due to the small sample size and the large number of features,
increasing the risk of overfitting. A common error here is the misclassification
of "Good" students as "Very Good" or even "Excellent." There is significant
overlap in course grades, especially in high-weight subjects. Although the
"Excellent" group is identified with perfect recall (Recall = 100%), the
boundary between "Good" and "Very Good" remains ambiguous in many
cases, affecting overall classification accuracy. In the SATDAP dataset, the
most challenging issue lies in distinguishing the "Enrolled” group from the
other two groups: "Graduated" and "Dropout.” This is understandable, as the
"Enrolled" status is transitional, with students exhibiting characteristics similar
to those who have either completed the program or are at risk of dropping out.
Furthermore, the number of samples in this group is relatively small in the
training data, resulting in class imbalance and affecting prediction accuracy.
Nevertheless, the model still achieved an F1-score of 74.21%, demonstrating
strong generalization capability even in the presence of structural class
complexity and data imbalance. In summary, most classification errors stem
from the inherent ambiguity between classes rather than limitations in the
model’s capability.

In the experiments above, we observed the following differences between
the datasets and their impact on model performance:

HNMU?2 is the dataset with the most diverse features (including several
surveys on soft skills, learning behaviors, and specialized course results), with
a moderate sample size. The AWG-GC model achieved the highest
performance here (Accuracy 98.54%, F1-score 99.25%), demonstrating its
ability to effectively leverage complex relationships in graph data and the
benefits of synthetic data generation.

VNU is the dataset with a small number of samples but a large number of
features, increasing the risk of overfitting. However, the model still achieved
an F1-score of 88.17%, proving the stability and high generalization capability
of AWG-GC even in a context with limited data.
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SATDAP represents an international context with imbalanced label
distribution and distinct feature structures. Although this dataset contains many
samples, the model maintained high performance (Fl-score 74.21%),
showcasing the wide applicability of the approach.

The differences between the three datasets in terms of sample size, feature
types, and application contexts helped validate the adaptability and
generalization ability of the proposed model. The AWG-GC model not only
maintained high accuracy on each individual dataset but also demonstrated
stable performance when facing different data characteristics, ranging from
simple tabular structures to complex graph relationships, from small to large
datasets, and from domestic to international data.

To validate the necessity of each component in AWG-GC, we conducted
an ablation study by removing or replacing each individual component:

Removing WGAN: For the HNMU2 dataset, when trained only on real
data without synthetic data from WGAN, the model experienced overfitting,
and performance decreased by 1.46%. For the VNU dataset, when trained only
on real data without synthetic data from WGAN, the model also suffered from
overfitting, and performance decreased by 5.88%. For the SATDAP dataset,
when trained only on real data without synthetic data from WGAN, the model
exhibited overfitting, and performance decreased by 1.02%.

Replacing Graphormer with GAT: When replacing Graphormer with
GAT, the model failed to effectively capture relationships in the data, resulting
in an average decrease of 8.03% in accuracy for the HNMUZ dataset and 7.36%
for the VNU dataset.

Although the AWG-GC model delivers superior performance compared
to traditional methods, there are still several challenges and limitations that
need to be addressed to ensure broader applicability. The use of synthetic data
generated by WGAN may lead to overfitting if the generated samples lack
sufficient diversity or do not accurately reflect the real distribution. This is
particularly problematic when the original dataset is small, causing the model
to overly rely on synthetic samples. The combination of Autoencoder, WGAN,
and Graphormer increases the number of parameters compared to simpler
methods like GCN or MLP. As a result, it requires substantial computational
resources, making it challenging to deploy on systems with limited hardware.
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3.4. Appendix to Chapter 3
3.4.1. Wasserstein GANs (WGAN)

The divergence that GANSs typically minimize is probably discontinuous with
respect to the Generator G parameters. This makes training difficult. The
Wasserstein-1 (also called Earth-Mover) distance W (p4,p,) IS recommended.
W (pq, p2) is the minimum mass transport cost for converting distribution p; to p,
(where cost is mass multiplied by transport distance). With loose assumptions,
W (p4, p2) is continuous everywhere and differentiable almost everywhere.

Use Kantorovich-Rubinstein duality ([78]) is used in building the WGAN
value function to obtain:

min max Eyxp,[logD(x)] = Ex_p [D(®)], (3.7)

In Equation (3.6), D is the set of 1-Lipschitz functions and P, is the
implicit distribution of the model determined by ¥ = G(2),z -~ p(z). In this
case, under optimal Discriminator D, minimizing the value function relative to
the parameters of Generator G minimizes W (p,, p, ).

The WGAN objective function introduces a Critic function whose
gradient concerning its input is more effective compared to a standard GAN.
This enhancement facilitates the optimization of Generator G. To enforce a
Lipschitz constraint on the Critic, (Arjovsky et al., 2017) suggested clipping
the weights of the Critic to lie within a bounded range [—m, m]. The set of
functions that adhere to this constraint forms a subset of k -Lipschitz functions,
where the Lipschitz constant k depends on m and the architecture of the Critic.

The principle of model selection is also which WGAN model has the smallest
FID value. The difference between the generated data and the original data.

3.4.2. The Transformer model for the task of predicting graduation
classification

The architecture of the Transformer model in this chapter is
fundamentally designed as described in Sections 1.2.2 and 2.4.3.

Assume that a data sample is represented by the pair (x, y), where x.,,,;: €
RF is a vector of P continuous features representing a student's grades over four
semesters, where each semester includes m; subjects (i = 1,2,3,4), along with
survey data that has been numerically encoded. The label y corresponds to the
graduation classification, which falls into one of the following categories:
excellent, very good, good, medium, poor and very poor.
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classification.

For the classification task, the loss function used is the cross-entropy loss.
L(x,y) = H(gy(fo(Xemp)) ¥)

3.4.3. Graphormer

(3.8)

Graphormer ([80]) is an advanced deep learning architecture developed
to extend the representational capabilities of the Transformer model from
sequential (series) data to graph-structured data. While traditional graph models
like GCN and GAT rely on local message passing through neighborhood layers,
Graphormer leverages a global self-attention mechanism to capture long-range
and diverse relationships between nodes in a graph.
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Figure 3. 24. The Graphormer model ([80])

Unlike traditional Transformers, Graphormer directly integrates three
key structural aspects of graphs into the attention mechanism: centrality,
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spatial position, and edge features. These encoding techniques are designed to
preserve the non-sequential nature of graphs while providing structural context
for each attention computation.

Centrality Encoding: To reflect the importance of each node within the
graph, Graphormer incorporates in-degree and out-degree information into the
node embeddings. The input vector of node i is defined as follows:

h® = x; + 27 + z}. (3.9)
where: x; is the initial feature of node i, z;: the embedding learned from the in-
degree, and z;: the embedding learned from the out-degree.

Spatial Encoding: The distance between nodes is calculated using the
shortest path length ¢(i, j), from which a spatial embedding b ; ;) is generated.
This embedding serves as a bias term in the attention mechanism:

T
Attention(Q, K, V) = Softmax (% + BV (3.10)
k

where B is the spatial bias matrix obtained from the embedding b ; ;.

Edge Encoding: Graphormer utilizes information from the edges lying
along the shortest path between two nodes i and j, computing the edge
embedding component ¢;; as follows:

1
Cij = 7 IN_1 MLP(x\?) (3.11)
where N is the number of edges on the shortest path between nodes i and j,

x,(f) is the feature of the n-th edge, and MLP is a deep neural network that
generates an embedding from the edge feature. This edge embedding is then
integrated into the attention score as follows:

T
hiWo )(h ;W
ij = ( Qz/(a] 9 beq.jy + cij- (3.12)

Virtual Node: Similar to the [CLS] token in BERT, Graphormer
introduces a virtual node that connects to the entire graph. This node does not
exist in the original structure but is capable of aggregating global information,
effectively supporting tasks such as graph-level classification.

According to an analysis on Medium titled Graphormer on Medium,
Graphormer demonstrates outstanding performance on several benchmark
datasets, such as ZINC and PCQM4Mv2. Key improvements include:

A
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. Eliminating the need for multi-layer message passing as seen in
GCN/GAT.

« Mitigating the over-smoothing effect.

. Preserving the parallel computation capability of traditional
Transformers.

In summary, Graphormer marks a significant advancement in
generalizing the Transformer architecture to the domain of graph data. By
directly incorporating graph structural information into the attention
mechanism, Graphormer provides a powerful and flexible deep learning
framework for complex graph-based machine learning tasks.

The conclusion of Chapter 3

The early prediction of graduation classification holds significant
practical value in higher education. It enables institutions to make timely, data-
informed decisions that support quality assurance, curriculum development,
and strategic planning. For students, early insights into their likely graduation
outcomes provide opportunities for academic adjustment, proactive learning,
and career preparation.

This chapter demonstrated that graduation classification is influenced not
only by academic performance but also by a variety of personal, family, social,
and institutional factors. Therefore, predictive models must go beyond
traditional approaches by integrating diverse data sources and addressing the
uncertainty inherent in educational environments.

By proposing deep learning models that incorporate both academic and
non-academic data - along with mechanisms for handling incomplete and
uncertain information - this study contributes to the development of more
accurate and realistic tools for early graduation classification prediction. These
models lay the foundation for more personalized academic advising and
improved educational management.

In this chapter, the dissertation presented integrated deep learning
models aimed at improving performance in the task of early prediction of
students’ graduation classification, including the LATCGAd and AWG-GC
models. LATCGAd and AWG-GC are notable for their tight integration of
preprocessing, data generation, and classification learning within a unified
architecture. Instead of handling data processing and model training as separate
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stages, these models operate cohesively, allowing their components to support
each other in optimizing overall system performance. This approach improves
accuracy, enhances generalization capability, and offers better adaptability to
complex, imbalanced, or low-label datasets. Experiments on the HNMU2
dataset demonstrated the effectiveness of the models: LATCGAd reached an
accuracy of 96.97% and an F1 score of 73.66%, while AWG-GC outperformed
the others with an accuracy of 98.54% and an impressive F1 score of 99.25%.

However, models with complex architectures like AWG-GC require
significant computational resources and long training times, which may limit
their practical deployment. Therefore, in scenarios with limited data or
computational constraints, lighter models such as LATCGAd may be more
suitable choices.
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CONCLUSION AND FUTURE DEVELOPMENT

A. Key contributions of the dissertation

This dissertation has addressed the challenge of predicting student
academic outcomes under the conditions of uncertainty, data scarcity, and
imbalance that characterize real-world educational environments.

In the first stage, the research focused on short-term SGPA prediction,
demonstrating that SGPA should be treated as a dynamic and uncertain
indicator rather than a fixed value. To capture this complexity, two novel
frameworks-NeutroDL and NeutroGNT-were proposed, integrating deep
learning with neutrosophic theory to manage incomplete and uncertain data.
Experimental results confirmed their superiority, with NeutroGNT achieving a
minimum MSE of 0.018 and a maximum RZ of 96.05%, significantly
outperforming conventional approaches. These findings highlight the
effectiveness of uncertainty-aware deep learning models in supporting timely
academic monitoring, early intervention, and personalized learning pathways.

Building on this foundation, the research advanced to the long-term
prediction of graduation classification, a task with broader strategic
implications for educational policy and quality management. To this end, two
hybrid deep learning models were developed: LATCGAd, which integrates
Transformer, CGAN, and Adaptive Layer Normalization, achieving 96.97%
accuracy and a 73.66% F1-score; and AWG-GC, which combines
Autoencoder, Wasserstein GAN, and Graphormer, simultaneously addressing
representation learning, data augmentation, and classification. The AWG-GC
model achieved 98.54% accuracy and a 99.25% F1-score, markedly surpassing
baseline models and demonstrating the benefits of unifying advanced
generative and graph-based architectures.

Overall, the dissertation makes three major contributions: (i) the
development of uncertainty-aware predictive frameworks (NeutroDL and
NeutroGNT) for SGPA prediction, (ii) the design of advanced hybrid models
(LATCGAd and AWG-GC) for robust graduation classification under imbalanced
data conditions, and (iii) the creation of enriched educational datasets and
analytical pipelines tailored for real-world application. Together, these results
provide both methodological advances and practical tools to support data-driven,
adaptive, and intelligent decision-making in higher education.
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B. Future research directions
Based on the results achieved, the dissertation proposes several
promising directions for future research:

1. Broaden prediction targets to include dropout risk, program completion,
course satisfaction, and career orientation, thereby providing a more
comprehensive view of students’ learning trajectories.

2. Apply reinforcement learning and unsupervised learning, combined with
explainable Al (XAl) techniques, to both personalize learning pathways
and provide transparent, interpretable justifications that enhance trust in
early intervention decisions by instructors and administrators.

3. Leverage federated learning and transfer learning to develop models that
ensure predictive effectiveness and generalization capability while
preserving data privacy across institutions.

4. Develop an online Learning Analytics (LA) system based on the
proposed models, integrated with XAl, to deliver real-time monitoring,
intuitive explanations, and actionable recommendations for both
students and educators.

These directions not only extend the impact of the current research but
also foster sustainable, data-driven digital transformation in higher education,
toward a smart, adaptive, and transparent learning ecosystem.
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NQIDUNG NHAN XET
1. Tinh cdn thiét, theéi su, ¥ nghia khoa hoc vi thiee tién cia dé 1i Tugn dn

Trong bdi canh chuyén ddi sé va cdch mang cong l;ghiép 4.0, cic trnirdmg.dai hoc
ngdy cang tng dung manh mé hé thééng quin Iy hoc tdp v dao tao trire tuyén-, tao ra
khdi frgng dit lidu hoe tip rét 1¢n ciia sinh vién. Tuy nhién, viéc khai thac dit liéu nay
dé dy doan két qua hoc tAp vin con han ché. Viée dp dung cdc md hinh tri tué nhin
tao, dic biét 12 hoc sau, nhdm du doan chinh xdc két qua hoc tip cla sinh vién dang
duge cac nha khoa hoc trong va ngodi nuée quan tam nghién cfru. V& mit khoa ho,
dé tai gbp phén bd sung co s&1y lugn va thye nghiém cho vige tng dung hoc siu trong
khai phé dit liéu gido duc va phén tich hoc tip & bic dai hoe. V& mit thye tidn, két qua
nghién ciru c6 thé hd tro gidng vien va nha quan ly trong viée theo déi qua trinh hoc
tdp, phét hi¢n som nhom sinh vién ¢6 nguy co két qua thép dé dua ra giai phap hd trg
phi hop, gép phin nfing cao chit lwgng dio tao trong che trugng dai hoc hign nay. Do
vily, dé tai ludin an v&i myc tién phat trién cic md hinh dy doan két qua hoc tip dga
trén hoc sdu ctia NCS Nguyén Thi Kim Som 14 ¢6 ¥ nghia khoa hoc vi y-nghia thye tién
cao.

2. Sy khong trimg Idp ciia dé tai nghién civu; vén dé trich dén tai ligu tham khdo

Cac két qua nghién ciru ctia NCS khoéng mmg 13p so véi cong trinh, ludn 4n dd cong
bb & trong va ngoai nude. Ludn dn ndy dugc vidt trén co-sé cac edng trinh khoa hoc cfia
chinh NCS va ¢dng sy, d& tham khao 80 tii liéu khoa hoe chinh théng. Cac tai lidu
tham khao vé co ban phit hep, cip nhit va di dwoc trich din dly do wong ludn 4n.



3. Su phit hop ctia tén dé i véi ngi dung, giita ngi dung vai chuyén nganh

Pé tai ludn 4n pht hop voi ndi dung nghién ciry, hudng nghién ctu phi hop voi
nganh ddo tao “H¢ théng thong tin”, ma sb: 9480104. Cac két qua thu dugc ciia NCS
6 thé 4p dyng trong viéc xiy dyung hé thdng thong tin dy doén két qud hoc tip cla
sinh vién,

4. Bg tin cdy va tinh hién dai cia phuong phdp da sir dung d@é nghién citu

NCS da nghién ctru 1y thuyét thong qua khio st, phan tich va danh gi4 cAc tai
ligu khoa hoc dd cong bé lién quan dén bai toan dy bdo sém két qua hoc tdp cha sinh
vién dya trén hoc mdy va hoc sdu. Sau dé, NCS dé xudt két hgp md hinh hoc siu véi
Iy thuyét Neutrosophy va céc kién tric nhu sinh div lidu, chu trac dd thi, cdu trac
transformer dé giai quyét bai todn dir ligu khong chéc chiin, nho hay mit ¢in bing. Céc
mb hinh dé xudt trong lugn dn d& duoe NCS phan tich dénh gis va kiém chitg bing
thye nghiém trén cdc bo dir 1idu tyr thu thdp hodc cong bd ¢Ong khai, sir dung céc d6 do
théng dung trong linh vire hoe mdy. Phuong phip nghién ciru ciia NCS 1a hop ly va
déang tin cly. |

5. Két qud nghién ciru méi cia tdc gid
Két qué clia nghién ciru d& gép phin bd sung tri thire khoa hoe, thie diy phat

trién cdc hé théng thong minh, khai pha dir lidu, h¢ chuyén gia hoiic ra quyét dinh md.
Ludn an ctia NCS ¢6 cic két qua chinh nhur sau:

e Xiy dung dugc hai md hinh NeutroDL va NeutroGNT dya trén hoc shu két hgp
ly thuyét Neutrosophy ¢ dy dodn sém diém frang binh hoc k¥ (SGPA-
Semester Grade Point Average) cua sinh vién, véi kha niing xir ly dtt Héu thiéu
vi khéng chéc chin.

s« Xdy du’ng duge hai mo hinh lai LATCGAd v AWG-GC dua trén sur két hqp
che kién trie nhu sinh dit liéu, d6 thi va transformer dé du dodn phén loai tdt
nghiép dai han trong diéu kién dir liéu nho va mit can b%ing.

Ngoai hai doéng gép chinh néi trén day, NCS da phét trién duge ba b b dir
ligu tir c4c trudmg dai hoe Vigt Nam dé thye nghiém cac mb hinh dé xuit. Cac két qua
cla lufn 4n 18 moiva da dép (ng ddy di myc tiéu nghién etru dit ra cho dé tai.

6. Vé wu didm va nhuge diém cia ludn dn
e Lufn dn ¢é cdu triic hop 1y, ndi dung nghién efru va cdc két qua thu durge di
(uge NCS trinh b”:y khd nghlém tic, 1o réng va 16 gic.
» Ludn an dugce viét b’ing neng Anh, it 15i in 4n, bang biéu, hinh v& r3 rang.
s Muc CONTENTS (frang viii) ctia ludn 4n cin duge dua 1én triede SYMBOLS
AND ABBREVIATIONS theo qui dinh cia co s& ddo tao. Bang SYMBOLS

AND ABBREVIATIONS (irang iii) £4n duge sip x&p theo vin abe dé dé tra
el




e Cic thudt todn can duge danh s theo chuong nhu hinh va bang, vi du
Algorithm 1. (trang 48) thanh Algorithm 2.1,...

o Phén tich thém Thong tw 42/2021 "Quy dinh v& co sé dit lidu gido duc va dio
tao" cita BGD-DT trudce khi két ludn "However, in education, there is currently
a lack of large, standardized, ..." (trang 2).

» Nén bd sung vio Rescarch Subjects (trang 3): Ngoai cdc bai todn dy béo két
qua hoc tdp cla sinh vién, ddi trgng nghién ciru con 1a cic mé hinh hoc siu.

¢ Muc 5. Key contributions of the dissertation (trang 5); Mic dii did c6 mo ta
"From an information systems perspective,...", tuy nhién nén bd sung so dd khéi
trye quan Hé thdng thong tin du bao két qua hoe tdp cua sinh vién, tir 36 chira
cdc két qua nghién citu ctia lugn 4n phuc vy cho cdc khdi chire néing nao.

e Cac muc 2.4. Appendix to Chapter 2 (trang 64), 3.4. Appendix to Chapter 3
(trang 114) cAn chuyén v& Chuong 1 hogc dé cudi ludn an.

e Phan tich sdu hon dd phirc tap cha cdce thudt todn dé xudt trong lugn 4n. NCS
méi quan tdm dén do chinh xdc, chua quan tim dén thoi gian va b nho cin
thibt khi thire hién céc thudt todn. .

¢ Nén c6 thém thye nghi¢m cde thudt toan Chuong 2 véi cde bd dir 1iéu khéac nhau
@& danh gia khach quan hon.

7. Vé cdc eong trinh da céng bé eva NCS

'NCS ¢6 06 cong trinh khoa hoc da céng bd va 02 ¢dng trinh khoa hoc da chip
nhfin ding, viét cing (4p thé gido vién hudng din va cac ddng nghidp, trong do, ¢d 05
bai bdo trén cée tap chi qudc té va 03 bai bdo trén céc tap chi trong nwée déu ¢6 phan
bién va dugc HDCDGSNN tinh diém. N$i dung cdc cong trinh khou hoc dd cong b6 1
phit hop, {héng nhét voi ndi dung thyc té ctia ludn 4n.
8 Két hugn

‘Ban tom tit luan dn da phén aoh trung thanh ndi dung co ban cua luén 4n. Lufn 4n
ciia NCS Nguyén Thi Kim Son 43 dap tng ddy di cde yéu cdu ca véndi dung va hinh
thire d&i v&i mét ludn dn Tién sT theo céc qui ché hién hanh. Téi déng ¥ cho NCS bio
vé ludn 4n ctia minh trude Hi ddng cdp Hoc vién dé nhén bing Tién si nganh H¢
théng thong tin.

He Néi, ngéy A thang 9 nam 2025
Nguwdi nhan xét

PGS.TS Nguyén Long Giang
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Hoc ham, hoc vi: PGS TS
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DUNG HOC SAU TRONG DY POAN KET QUA HOC TAP CUA

NGUOI HOC

Y KIEN NHAN XET

1. Tinh can thiét, thdi su, y nghia khoa hge vi thye tifn ciia dé tai:
D4 tai ¢6 tinh cin thiét cao trong béi canh chuyén d6i 6 gido dyctai Vit Nam
va trén thé gioi, noi dit lidu hoc tip ngady cang phong ph nhung clura-duge
nghién ctru img dung va khai théc hiu qua dé du doén két qué: hoc tap, Vlec
- ung dung hoc sdu (deep learning) de dy doén didm trung bmh hﬂc ky va phﬁni_-

logi tSt nghiép sém {4 phu hop v&i xu hudng chuyén dbi so hzen nay, gzup i
phét hién sém rii ro thit bai hgc tap '

Y nghia khoa hoc thé hién & wec dé xudt cdc md Ahinh lai nhu NeutroDL
NeutroGNT, LATCGAd va AWG-GC, két hop 1y ’thuyei t;‘ung tfnh

(heutrosophy) véi cic kién triic hoc 'shu hign dai (T ransfmmer, Graphormei) e

céi thién dd chinh xac dy doan len dén 98.54% va R? 1én 96.05% trén du lidu
thue té,

Dé tai hy vong hd tro sinh vién diéu chinh ke hoach hoc tap, gzang v1én can
thi€p kip thoi, va quan Iy gido duc tm uu hoa chinh sach, dic bigt vo‘l dfr heui-.
tir cde trudng dai hoe Viét Nam nhu HNMU va VNU. A

2. Sw khéng tring Iip ciia d& tai nghién erru so voi ciic cang trmh ludn
viin, ludn an da cong b & trong va ngodi nu‘éc, tinh trung thlrc, ré rang
va diy di trong trich din i ll(;u tham khio. " -




Pé tai khong tring lip véi cdc cong trinh tewde, vi thp trung vio viée tich hop
neutrosophy vi hoe sdu & xir 1y bét dinh trong dit lidu giéc_i duc Viét Nam,
khéc bist so véi cde nghién ciru quée t& nhe Waheed et al. (2020) hay Okubo
et al. (2017) chi ding RNN/LSTM co ban, hodc trong nude nhir Sang et al.
(2020) str dung MLP don gian.

Céc md hinh lai nhu NeutroGNT va AWG-GC ¢é tinh méi; ngudi doc chua
thiy trong tai ligu tham khao,

Dt lidu thue tir INMU va VNU duge khai bao r& rang, két qua thi nghiém
trung thuc véi 16i chudn (standard deviation).

Trich din 1o rang, ddy di véi hon 70 ti lidu, bao quét tir kinh didn dén gin
day (2025), str dung dinh dang chudn va khéng c6 diu higu dao vin.

3. Sy phidt hop gitra tén 48 tai véi ndi dung, gita ndi dung véi chuyén
nganh vi mi s6 chuyén nganh,

Tén dé tai phit hop hoan toan véi ndi dung, tép trung vao "ing dung hoc sau”
trong dy dodn két qui hoc tip, v6i cic mé hinh cu thé nh{r'Ne_i)_troDL”ifé
LATCGAdJ.

N&i dung phit hop véi chuyén nganh Hé théng thong tin (md 9 48 01 04), vi
nghién ctu xdy dung hé thong dir dodn dya trén dit lidu gi'éo duc, tich hop Al
va0 hé théng théng tin gidgo duc, hd trg phén tich va ra quyét dinh. Cac chuong

tir tdng quan dén thi nghiém déu lién két chit ché véi linh vye, nhin manh
Learning Analytics nhu mdt phdn ctia Information Systems. -

4. D@ tin cfty va tinh hién dai cita phwong phap di su'dung_-dé nghién‘ ¢,

Phurong phép ¢6 dd tin cdy cao nhd si dyng dir lidu thye té tir céc trudng dai
hoe Viét Nam va quéc té, két hop véi xéc thye chéo (10-fold cross-validation)
vé cdc chi sé danh gi4 chufin (Ac_:c:uracy, Precision, Recall, Fl-score, MSE,
RMSE, R?).

Thi nghiém I&p lai 10 1An véi 16i chudn cho thdy két qua én dinh.

Tinh hién dai ndi bat: tich hgp neutrosophy (Smarandache, 1998) véi hoc sau.

hién dai nhu Transformer (Vaswani, 2017), Graphormer (Ying et ali, 2021),

vi GAN bién thé (CGAN, WGAN), phi hop véi xu hu’dmg hybrld models
trong EDM.

Céc phuong phd]) nhir AdaLN va tiém nhiéu (noxse«lnjectlon) ti‘mg cu‘ong bn
- dinh, phan anh tién b gan déy trong deep learning cho dit heu nho va bat dinh.




5. Két qua nghién ciru méi cita tic gid; nhitng déng gép méi cho s phat
tnen khoa ho¢ chuyén nganh; dong gop m&i phye va cho sdn xuat, kinh
té, qudc phong, xa hdi va doi séng. Y nghia khoa hoe, gla tri va d¢ tin
cy cita nhitng két qua dé.

Két qua moi; D& xudt 4 mé hinh lai {(NeutroDL, NeutroGNT, LATCGAd,
AWG-GC) cho dyu dodn SGPA va phin loat tbt nghidp, dat d§ chinh xéac 1én
98.54% va Fi-score 99.25% trén dir iéu thyre.
V& déng gop khoa hoc: Lug@in 4n mé rdng ly thuyét trung tinh vao hoc siu, cai
thién xir ly bét dijnh trong dit lidu gido duc, bd sung cho chuyén nganh Hé
théng thong tin biing khung tich hop cho phan tich hoc tap LA.
V& déng gbp thue tidn: Ludn 4o hd trg dy dodn sdm rii ro hoc tp, tdi wu héa
quan ly gxéo duc tai Viét Nam, gop phan vao kinh te xd héi quaning cao chét
lugng ngudn nhén lye.
Cé ¥ nghia khoa hoc cao, gia tri thuc tién 16 rang véi di ligu dia phuong, d¢
tin ¢dy vitng nhd thi nghiém 18p va so sanh véi baseline. | |
6. Uu diém va nhuge diém vé ngi dung, két géu vi hinh tl_.n’ré cia lufin an,
Un diém:
Ngi dung dugc trinh bay chi tidt, tap trtmg vao van dé thyc tidn véi dix hau Viét

Nam, d& xufit m6 hinh méi hidu qua. Két ciu logic, glm thidu 3 vén &, long quan

toan dién, phuong phap hién dai, thi nghidém chi tiét, Bang biéu, db thj 13 1éng,
ngdn ngir khoa hoc, 142 trang ¢én f:icn

Nhage diém:
Vé ndi dung:

(}) Dir lidu nhé (HNMUT: 932, HNMU2: 551, VNU: 271), dén den R? thép o mot
sb case, thiéu téng quat héa cho trwdng hop l(m hon.

- (2) So sanh baseline chua diy du, thxeu md hinkh SOTA cho di”r ligu gido duc.

(3) Chua phin tich sau yéu t6 dic thi Viét Nam, din dén mé hinh chua t8i va héa
dia phuong; Pic biét, md hinh dy bdo & Chuong 2 dimg lai & mirc d6 don bién,
chua tinh 161 yéu 18 da bién.

V& két cdu: Churong 2 va 3 1gp lai mdt sb phin (nhu GAN), thidu lidn két chijt che
gifra du doan SGPA va logi tot nghiép.

'V hinh thire:

Khéng nén phan biét nghién clru trong va ngoai mrdc (trang 16)



Nén co cde giai thich v& sy hop 1y trong céc lai ghép md hinh

Céc ky higu todn hoc & chuong 2 nén.chuén hoa cho théng nhét va ding vén phong
academic hon

7. N§i dung ciia ludin 4n di duge cong bd trén tap chi, ky yeu H@l nghi Khoa

hge ndo va gid tri cla cdc cong trinh da cdng bb (cip cdng b WoS (SSCI,
SCI/E, ESCY ...), bcopus, qube t€ ¢6 phin bién, tap chi trong nude duge
tinh didm theo Hji ddng Gido sur nhi nude .. vit xép hang SCIMAGO).

Ludn 4n ¢6 08 céng trinh cdng bd, bao gdm [CT1] dén [CT8], déng trén cdc hoi

- nghj va tap chi qubc té/ndi dia nhu: VNICT 2024, MCO 2025, va céc tap-chf

Scopus/Q2.

Céc bai chirng minh mé hinh méi, dat chi s6 Scopus (Q21Q3), va tinh diém theo
HDGSNN (0.5-1.0 diém/bai), phan dnh dong goép thye tign va khoa hoc.

A 1on
8. Keét luiin:
L . - L4 L 4 Ead ; . A - F A Pl ’ * }( A~ N b
«  Mirc d9 dap (g cac yéu cau doi vdi mot ludn an tien sT chuyén nganh:

Luén 4n dép (mg t&t, véi ndi dung mai mé, phuong phap hién dai, va y
nghia thyc tién. :

. Ban tém tét luan n ¢6 phén &nh trung thanh ndi dung co bén cia luﬁn én.
khéng:

Cé, tém tat phan anh chinh xac cdc mé hinh, phwong phép va két qua.

+ Ludn 4n c6 thé dua ra bio vé cdp Hoc vién dé nhan bing Tién si dugc hay
khing: |
Co, ludin &n di chit lugng dé bao vé. .

Ha Ngi, ngay J-'fh{?ng fq adam 203

Nguwoi viétnhin xét

(Ky v& ghi v6 ho va tén
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Nganh: Hé théng théng tin M3 s61 9.48.01.04
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ar WA 3 e , - . . 5 aA e ~
[, Tinh ciin thiét, théi sy, ¥ nghia khoa hoc va thye tien efia de ti ludn-an

Ludn an t@p trung vao viée du dodn két qua hoc tap cta sinh vién dya wén dir ligu
thu thip trong qud trinh hoc, giup phai hién sém cae nguy co thit bai va trién khm cac
bién phap can thiép kip thai, trye tiép ho trg ml,m tiéu gido duc hién dai. bao g_,om ca
nhéin hoa tedi nghiém hoe tdp va nang cao 1y 1€ 1t nghl(.p. pé giai quyu vin dé nay,
fudn an {ua chon cic mo hinh hoc sau dang phd bién tam nén tang, két hap vai cac k¥
thudt nhu ting cudmg dir Hiéu, chon loc dic trung va (i tru siéu tham sd. I)ong thori, |)hdl
trién mo hinh lai (k& hop deep learning v6i machine learning ruyén thing, hoae két
hop nhidu kién wtic decp learning) ta mot hudng di (ricn voig, vira tin dung sir¢ manh
bicu didn dii licu, vira cai thign tinh giai thich cha m6 hinh. Vi vay, vi¢e nghién cou coa
ludn an la hét sire can thiét, ¢o tinh thoi sy, y nghia khoa hoe va thire tién.

2, Sy khing trong i3p cia d& tai nghién ciru so véi ¢ic cdng (rinh, ludn an da
cbng b & trong v ngodi mrde; tinh trung thye, rd rang va dity dv trong trich dan tai
li¢u tham khao

Theo hi¢u biét clia ngudi nhan xét, két qua cta ludn an khdng trimg 13p v&i cde edng

trinh, luan an da céng bo & trong va ngodi nude. Ludn dn ¢6 trich din 18 rang 80 tai lidu
tham khio, cée 1ai lidu ¢6 linh mdi cdp nhit trong phirng nam gan day.




» - L) . 4 e 1 - A
3, Sy phit hp giiva tén dé tai véi ndi dung, gia ndi dung vii nganh va i so

Tén dé i co ban piu‘; hyp vai ndl duag ludn dan. Noi dung ludn dn phit hop v
chuyén nganh va mi s6 chuyén nganh He théng thong tin.
4, Db tin cqy vA tink hign dai cia phwong phap da siw dyng dé nghitn ciu

Phuong phdp Ile!lL‘ﬂ clru coa ludn dn ap trung vdo nghién ciru ly thuyét v thye
nghiém, Cac dé xudit. cai tién trong ludn an déu duge thi nghiém nhim minh chimg cho
tinh hidu qua eta phiong phap. D ligu thue nghi¢m duge thu thip tir cac don vi dao
a0 thue t&. Do o, phuong phap nghién el s dung trong lidn an 1a hop 1v, bao dam
tinh khoa hoc va dd tin cay.

5, Két qui aghién cdu moi cha the gia

Ludn an ndy di gin quy &t bai roan du doan két qua hoe mp clia sinh vién trong diéu
kidn khong chic chiin. thidu hut div liéu va mit cin biing 1Gp, von dic trung cho edc méi
trwrdmg gido dye thye fidn. Déng sop mai cua tde gid tp Lung vio cie ndi dung chinh
sau day:

1. D& xudt hai mo hinh NeutroDL vi NeutroGN'T, tich hop hoe sfu voi ly thuyél

neutrosophic nhiim xi 1y dir ligu thicu va khdng chiic chiin d& dy doan két qua
hoc 1ap cta sinh vién.

2. D& xudt hai mo hinh lai k& hyp l\n.n trae sinh dir liéu va mang dua trén do thi
trong bdi canh dir ligu gido duc mdl cin bing va quy mé nho: LATCGAd va

AWG-GC dé dyu dodn phén loai 15t nghi¢p dai han 6 d§ chinh xdc cao hon so
v cde mo hinh déi sanh,

3. Phat trién bo dir licu md réng va quy trinh phin tich phye vu ing dung trong
gido dyc.

6, U didm va nhuge didm v ndi dung, két cAn va hinh thire ciia lugn dn

Ludn an bd cuc lam 3 chuong gom 120 tang ndi dung va cac phin lién quan vé
chng tinh cong bé va tai ligu tham khao, phit hep vt chu trie caa lugn an tién st
cac chuong duoe phén chia hgp 1y cde ndi dung lién quan, trinh bay chi tidt rd rang
cac mé hinh, k¥ thudt dé& xudt rong pham vi nghién clru cda ludn én. HE thong 80
1ai lidu tham khao dugce trich dan ding chudn, cac 1ai lidu ¢ tinh cdp nhat mai trong
nhirng nam gan day.

Tuy nhién ciin xem xét mot sé v kidn sau day dé chinh sua hudn dan cho hop 1y hon

néu ¢o the dirge:




- V& quy mé dir lidu, do vige thu thip thye t& s¢ mat nhicu thoi glan nén hién

3 -~

fai ¢d quy mo con clira lom, s€ dnh lnrong ¢hit lugng mo hinh?.
- Cac thudt toan dé& xudt hién chua ¢6 danh gia so b vé (o phic tap. thii
gian tinh todn, ¢o thé xem nhu phu thude vao dg phire tap cia cée md hinh co ban
drge sur dung?.
- Cée ké1 qua hién khdng ddnh gid thai gian chay. tuy nhién thye nghigm nén
¢6 cde thang sé vé ciu hinh phan ctng dé ding cho viée tham Khao Khic sau nay”?
- Trinh bay thudt todn nén theo format truyén thong: Input. Output (khdng
dénh s6 dong 1¢énh). Begin - End mai bat ddu danh sd.
- Chuong ba cin noi thém ndi dung cong bo & C12.
- R4 s0dl v& cae cho thich Hinh v&. Bing bidu ¢b giing khéng nén ngfu trang
& ¢ 2 ban Judn an va tom tat.
7, NGi dung lujin an da duge cong bd trén tap chi, k¥ yéu hdi nghi khoa hoc nio
va gid tri khoa hye cila cic edng trinh di cong b
Ciie két qua nghién ciru ndy di duge cong bd rén cae 1ap chi va duge trao doi trong
cae bao cao tai nhitng hdi thao khoa hoe chuyén nganh bao gom 08 cﬁﬁg trinh khoa hoc,
trong do ¢d 01 bii bao ap chi québe (¢ thude danh mue SCIE, 03 bai bdo thude danh mye
Scopus, 02 bai bao tap chi khde va 01 béi bao ky yéu hoi thao qude (&, cac tap ehi va hoi
thao ¢ chat lugng cao.
NCS 13 tde gig chinh diu tién trong 07 cong trinh. Noi dung cua cde ¢dng trinh phi
hop vai udi dung nghién e cua lun an va la cic phan két qua chinh cua lugn dn.
8, Két lujin
Ludn an cue NCS Nguydn Thi Kim Son dép (g cde yéu cau déi vai mot ludn an
tién si chuyén nganh H¢ thdng théng tin sau khi chinh sira theo cie gop v ¢ trén. Ban tom
1at ludn dn phan doh trung thanh ndi dung co bin cua ludn an. Lufn dn co thé dua ra bao
v& chp Hoe vien va thue hign cae budc tiép theo dé nhin hoe vi tién s,

Her Noi, ngdry. | thang §..ncm 2025

TS. Nguyén Nhw Son
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1. NOI DUNG NHAN XET
1. Tinh cAp thiét, thii sy § nghia khoa hoc ciia @8 tailudn dn:

Pé tai LA nghién clru viée ing dung mé hinh hoc sau irong‘*dt,r 'Cféén'két
qua hoc tap cna ngudi hoe ¢d ¥ nghia khoa hoc & viée khai théc kha. nang mnd
hinh- hoa quan hg ph: tuyen gifra dit 1iéu hoc tép va két qua ddu ra. Két qua
nghién ciru cung cAp ¢o s& cho viéc xay ding cac hé thong cénh bdo sém va
hé trg ca nhan héa hoat dong hoc tdp. Ngoai ra, dé tai gép phan bd sung cho
tiép c4n str dung tri tué nhan tao trong phan tich dir li¢u gigo due, ddng thoi
‘lamnén tang cho céc {mg dung trong quan ly vara quyet d;nh trong mm trudng
hoe trire tuyén. L
2 Sy phu. hQrp ciia & tai lufin 4n véi chuyén nganh ﬂao tao. _:f_ _

E)e tai ludn 4n c6 tinh khoa hoc, phii hgp véi chuyén. n&‘mh déo tao tlén
s Hé thong thong tin. '




: -c‘len ngx dung cua luan ﬁn .

' smh can chinh su'a, bo qung.

3. Sy trung lép cua dc tz’,u 50 voi cOng trinh khoa hoc @4 ¢ong bo.

N01 dung luan an khong trung lap vél céc luan an ﬂa bé.o vé va cdc ket_ :
qud nghién ciru da cong bb trong va ngodi nuée. B

4. Stx phu hqp cua ¢ac phu'o’ng phap nghlen c&u, 69 tm eﬁy cua céc két’" o

qué da datﬁuqc'-:*' - o -::ﬁ:-"

Cac 1ap Tuén, chu'ng mmh v cac ket qua dat c’iu'orc la dang tm cay
5. Nhung dong g6p mdi clia aé t'u L

Luﬁn an nghien cliu va: phét trlen céc mod hmh th méy va hoc shu dé

:phan txch du‘ heu g1éo duc, nham muc dzch nang cdo kha néng du‘ doén som |

dong gop méi cla iuan an cu the nhu saw: . 1
(1) }':)e xuat 02 mo hinh mé; lé NeutroDL vé NeutroGNT nch ho‘p quy =

GPA som. : : : "
(2) pé xuat 02md. hmh lal moi Ia LATCGAd va AWG GC de du‘ doan- '

phén loal tot nghxep cho smh vién.

dé xuat cic khuén kho phan tzch phu hqrp vm dﬁ heu glao duc

' _6 Ve cac cong trmh khoa hqc as cong bo cia ngh:éu clm smh hen quan ‘

b6 tai 8 th ﬂlé{}/tap chl chuyénf [
nganh c6 uy tin. Cac két qué. cong bo cé ndi dung khoa hoc vé 1a két qua chinhf-'
cia fufn 4n. '

T Tmh trung thgrc, mlnh bach trong trfch dan tél ileu. e o

Bam bao."

8. Gop y cac thleu S0t vé hmh thxic, ngn dung clia !uan an ma nghlen ciu |

U ﬂxem

Lugnancoy nghza Iy thuyet va ng dung thure tien phuomg phap ngh1en
cuudangtmcay LR R S 3':_;_3.'-;,_:
Nhwgc diémigopy: ERC




Trong cac nghién ctru twong lai, nén bd sung thém cac yéu t5 anh hudng dén
kétﬁ;qué:hoc tdp khéc, vi du nhu thai dd/syu tich cye trong hoe tép, nhwr vay vige
du doén s& tt hon,
 Nén thir nghiém thém trén céc bo dit lidu khdc nhau dé dam béo tinh khach
quan va sy higu qué cua dé xuit,
Ltru y ra sodt LA dam bao theo mauv/ciu tric cia Hoc vién.

IL KET LUAN

Pénh gia v& mirc 49 dat yéu cu ciia ludn dn:

Luén 4n “Nghién cuy z}ng dung mét s6 mé hinh sir dung hoc séu trong di
dodn két qua hoc tdp cua nguoi hoc/ Reseach on the application of deep
learning models for predictmg learners ‘academic performance dap Vg céc
~ yéu cau clia B Gido duc va Dao tao va co so d0 tao d& ra cho mét luén 4n
- 'tien sT chuyén nganh Hé théng thong tin, ma s6: 9 48 01 04.

_ 'Dong y cho NCS dwa ludn 4n ra bio vé tai Hoi ddng clp Hoc vién dé nhéan hoc
vi Tién st.

Ha Néi, ngay /1 thang 09 ndm 2025
Nguwoi nhin xét

P

TS. Trin Dire Nghia
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CONG HOA XA HQI CHU NGHIA VIET NAM
Pjc 1ap - Ty do - Hanh phiic

Ye vk e e e Y o o e e ke ek
BAN NHAN XET LUAN AN TIEN §1

P2 tai: Nghidn ctru dng dyng mdt s6 md hinh sir dung hoc shu trong dy dodn két qui
hoe tip cia nguwdi hoe

Nginh: H¢ théng thong tin; Ma s6: 9.48.01.04
Ho va tén nghién ciru sinh: Nguyén Thi Kim Son

Nguoi hudng din: PGS.TS. Nguyén Hiru Quynh, trudng Dai hoc CMC; PGS.TS. Ngb
Quéc Tao, Vién Cong nghé thong tin

Co s¢ dio tao NCS: Hoc vién Khoa hge va Cong nghg, Vién han ldm khoa hoc va cong
ngh¢ Viét Nam

Ngudi nhén xét: PGS.TS, Nguyén Viin Long

Pon v cong tac ciia ngudi nhén xét: B mdn Khoa hoc May tinh trwing Pai hoc Giao
théng Van tai.

34 dién thoai: 0933819869, Email: nvlongdt@utc.edu.vn

1. Y nghfa khoa hoc va thyc tién ciia lufn 4n:

P4 tai nghién ctru ¢6 § nghia khoa hoc gop phin m rong linh vyc khai pha dir lidu
gido duc (EDM) va phén tich hoc tdp (Learning Analytics), thong qua vi¢c ong dung céc
mé hinh hoc sdu hién dai dé dy doan két qua hoc tip clia ngudi hoc; 44 1am rd nhimg han
ché cia cac mé hinh hec méay truyén théng vén chi khai thac dit ligu tinh va tuyén tinh, tr
dé khing dinh tinh vu viét cia cic md hinh hoc séu trong viéc nhin dién cac mdi quan h¢
phi tuyén va dic tha theo chudi thoi gian trong dit ligu gido dyc.

Luén 4n déng gop co s& 19 ludn moi v& viéc tich hop céc kién trac hoc sdu (LSTM,
Transformer, Graph Neural Network...) véi céc ky thudt xir 1y dit liéu (neutrosophic,
GAN, data augmentation), gitp khic phuc nhitng thach thirc do dir liéu gido duc thudng
nhé, phiin thn vA mét cin bing. Dy 13 huéng nghién ciru méi, lim co so cho viéc thiét ké
hé théng phén tich théng minh trong gido dyc dai hoc.

V& mit thyc tidn, két qua nghién ciru c6 gié trj trye tiép trong cbng téc quan 1y dio
tao v4 hd trg ngudi hoc, Céc md hinh dy doén GPA theo hoc ky va phén loai t6t nghiép
sérm cho phép nha trudng sém nhin dién sinh vién cd nguy co bat lgi, tr 46 tridn khai cic
bian phép can thiép kip thoi nhw tu vén hoc tép, didu chinh ké hoach ddo tao, hay hd trg
tam iy — x4 hi. Pdng thoi, vide dy doan chinh xéc 16 itinh hoc tip gidp ning cao ty 1§ duy
trl va tdt nghiép ding han, qua dé ti&t kiém chi phf va ngudn lyc cho ca ngudi hec va co
s& dao 130,

1
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D& tdi concd ¥ nghia trong vige xBy dung hé théng ra quyé! dinh dua trén dit liéu
cho cc nihi quan 1y gio dyc. Nhimg bing ching thye nghiém thu duge c6 thé dugc vin
dung vdo hogch dinh chinh séch, danh gié cht hrong chuong trinh, cling nhu cai tién
phuong phap gidng day. Nghién elru gbp hin phit trién hé thdng phén tich hoc tép théng
minh, tich hgp dir ligu — phiin mém — phin cimg ~ con ngudi ~ quy trinh, tao tién dé cho
mét mdi trudng gido duc sb héa, théng minh va thich tmg trong bbi canh chuyén abi b
quéc gia.

D& tai khéng chi mang gié trj khoa hge trong vige mé rdng tri thir vé ng duyng tri
tué nhfn teo trong gido duc, ma con mang gié trj thye tién to 16n, phyc vy tryc tiép cho
ngudi hoc, gidng vién va nha quén 1y, ddng thdi d4p ing xu thé phét trién cda gifo dyc
hién dai.

2. Sy khong triing lip ciia d& tai nghién ctru so vé6i cdc cong trinh, ludn 4n dd cdng b
& trong va ngodi nwéc; tinh trung thye, rd rang va diy di trong trich dén tai ligu
tham khao.

Ni dung lufn an khong tring lp véi c4c cdng trinh khoa hoc d& cong bd trong va
ngogi nudc.

Luén 4n da tun thu cic nguyén tic vé dao dite hoc thuft, dim béo tinh trung thuc
trong nghién ciru khoa hoc. Céc ngudn tai lidy, sb liéu, cong trinh nghién ciru trong va
ngodi nudc duge trich din dly du, chinh x4&c va ding quy céch tai ligu tham khao cta ludn
4n tién sT. Téc gia da phan biét 13 rang gitta két qua nghién ciru clia minh véi chc két qua
ké thira, ddng thoi ghi rd xudt x&r c4c luan diém, s6 ligu, cong thirc va md hinh tham khao.

Danh myc tai liéu tham khdo trong lugn 4n bao gdm chc cong trinh quéc té
1SU/Scopus, tap chi va héi thao khoa hoc trong nuéc, phén anh tinh da dang, céP nhét va d¢
tin ciy. Khong c6 hién tugng sao chép hay sir dyng tai liéu ma khdng ghi ngudn.

3. Syr phi hop giira tén d& tai véi ndi dung, giia ni dung véi nganh v2 mi nganh.

 N6i dung phan &nh tén d€ tai lugn 4n, phi hop véi nganh Hg théng thdng tin va ma
ngéanh,

4. D} tin ciy vA tinh hign dai ciia phwong phép i sir dyng aé nghién ciru.

Trong béi canh chuyén ddi sb gido dyc, viée dy dodn sém két qua hoc tip cia sinh
vién 14 nhu ciu cAp thiét nhim nang cao chét lugng ddo tao va hd trg ngudi hoc. Tuy nhién,
che nghién ctru trude day chi yéu dya vao mé hinh hoc méy truyén théng, v6n khé nim
bt quan hé phi tuyén va tinh chudi thdi gian trong dir 1igu hoe tap. Tir han ché 46, luan 4n
a3t vén d can tng dyng chc mé hinh hoc sdu hign dai, két hop k¥ thudt xir 1y dit ligu tién
tién, d& cai thién d chinh x4c va kha ning khai quét trong dy dodn hoc tép.

Lugn 4n trién khai céch tiép cin tong hop: nghién ciru co s¢ 1 thuyét va téng quan
cdng trinh lién quan; thiét ké vA thir nghiém nhiéu mé hinh hoc siu (DNN, CNN, LSTM,
Transformer, GNN); tich hop k¥ thut neutrosophic, ting cudng dir liéu (GAN, CGAN)
nhim khic phyc tinh trang dit li¢u nho vA mét con bing; phét trién cée md hinh lai méi
(LATCGAd, AWG-GC) dé nang cao hidu qua phén logi. Céc md hinh duge kiém chimg
qua dir ligu thye tién tr HNMU, VNU va d6i sénh véi b6 dir liéu qudc té, bao ddm tinh
khoa hoc, sing tao va (mg dung.




" Phuong p‘ht&p nghién ciu cla lufn 4n két hgp nghién céu 1y lhuyét, khdo sét thye
“““ "*\AUI\TC nghi¢gm md hinh. Viée st dung ddng thdi cde md hinh hoe sfu, mé hinh lai vd
ky ﬂma‘t X{r 1y dit 1igu bdo dam tinh khoa hoc, phd hgp véi dic thi dir li¢u gito duc. Céc
b di liéu duoe thu thap i nhidu ngudn (HNMU, VNU, quéc té), trdi qua budc tién xur 1y
v chulin héa. Qué trinh kidm dijnh bing nhidu chi sé (MAE, RMSE, Fl-score...) vé 50
sanh v&i che phuong phip truydn théng. Két qua nghién ctru c6 gid trj hoc thudt, c6 tinh
{mg dung. Céc cdng trinh cng b 1ién quan dén lun in déu c6 gié tri trong cée tap chi c6
uy tin nén 4§ tin cfy cao.

5, Két qua nghidn ciru mdi cda tde gid
Lufin 4n cd ndi dung mdi sau:
- Xfy dyng céc khung m6 hinh hoc sau tich hop yéu 6 bt dinh cho dy dodn SGPA

- Thiét ké cic mé hinh fai cho bai tofin phén logi tét nghiép trong diéu kign dit igu nhod
va mét cin bing

- Phat trién b dit liéu md rong va quy trinh phén tich phyc vy img dung trong gido
duc

6. Uu diém va nhuge diém v& ndi dung, két cAu va hinh théc ludn 4n
6.1. Uu diém

+ V3 hinh thie: Luén 4n duge trinh biy ding theo quy dinh hign hanh dbi véi ludn
&n tién si, bao dam céu tric chit ché gém: Mé dau, cac chuong ndi dung, két lugn — kién
nghi, danh myc cong trinh di cong bo va tai ligu tham khéo. Vin phong khoa hoc, mach
lac; bang bidu, hinh v& minh hoa & rang, c6 chi thich diy dg, thuin tién cho vigc theo ddi
vA d5i chidu. H théng tai lidu tham khao duoc trich din ding chuén, phan anh tinh nghiém
i tic va df tin cdy cba nghién ctr, :

+ V& ndi dung: Lugn 4n tap trung vao mt vén d& c6 tinh cép thiét v méi trong linh
vire Hé théng thang tin, d6 12 mg dung mé hinh hoc su trong dy doén két qua hoc tap cia
ngudi hee, Nghién ctru dd ké thira, tdng hop va phin tich cé chon loc céc cdng trinh trong
v ngoai nudc, x4c dinh rd khoing tréng nghién ctru, 1 d6 dé xuit cic mé hinh méi va gidi
phép kha thi. Két qua nghién ctru vira ¢6 gid trj khoa hoc, md rong tri thizc trong linh vyre
Educational Data Mining va Learning Analytics, vira ¢ gid tri ing dyng trong quén 1y ddo
tao dai hoc, phll hgp véi yéu ciu ciia mot cong trinh tién s,

6.2. V& mot sé ¥ kién khuyén nghj voi ludn én:

+ V& nguyén tic dit lidu cho viée hoc m4y 13 tinh “ddng nhat” dit li¢u, phin 4nh gié
tri cbt 18i dic trung cla bd dit ligu, di 16n v& 50 lugng. Trong ludn 4n, sir dyng 4 loai b
div lidu, mBi bo dit ligu phy thude vao co s ddo tao (quy md - thwong higu - chéit lugng
trudng, co sér vit chét - chuong trinh day hqc - thye hanh thyc tdp - trdi nghiém - gidng
vién ciia cc nganh nghé, sy déng ddu t;}ogg‘,li%ﬁgbqg géc nganh trong trudmg ...), s& dnh
huémg dén tinh ddng nhat, Ngay cé trong ot bo. i 1icu, gig tri cdt 16i dc trung cla dit
Jieu ¢on chiu anh hudmg bdi chinh diy lié%%g\'nhﬁn cia méi sinh vién (hoan canh gia dink,
s& thich, mtrc 49 chdm chi...). C4 2 yéu t6 ndu wén déu tac dong dén 49 tin ciy cla b dit
fidu sau khi ting cudng di¥ ligu, dnh hudng dén tinh chym cia dfic trung dit 1i§u. M3t khéc,
50 lugng dir li¢u cho viic hoc méy con khiém tén Anh hm’mg\ dén chét lrgng mé hinh, Téc
gia cho ¥ kién vé vin a8 nay. T B A AT
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+ B dit liéu do lufin én thu thip, chua phdi 1a b dir ligu chuéin di timg dugc sir
dung trong cée cong trinh d& nghién ciru, 4§ tin cdy cla b dir ligu ndy thé nao? Dir lidu tai
mét co s& ddo tpo dun vao hoc, ngodi dit lidu chung nhw lufn an ¢ d@ cfp, c6 dua vio khai

théc dic trung cia dfic thd co s& do khéng (co sir vit chét, chuong trinh d3o tao nganh...)
v dua niwr ndo?

Dénh gid chung: Lujn én ¢ hinh thic, ndi dung, déng gbp mdi, dép img &i ticu
chufin cia mot lun 4n tién s nganh H& théng théng tin,

7. N§i dung clia lujn éin di dwge cong b trén tap chi, k§ yéu hji nghj khoa hgc no
vi gi trj khoa hoc ciia cde cong trinh di cong bo

- Bai bio diing trén tap chi quée té uy tin (ISI/Scopus, Q2~Q3): 02 bai; ndi dung tép
trung vao ung dung mé hinh hoc §ﬁu (QNN, LSTM, Transformer) trong dy doén két qua
hoc tap va xir 1y dit liéu khong chac chan bang neutrosophic.

- Bai bao diing trén tap chi khoa hoc trong nudc c¢6 uy tin: 03 bai; déng i tai céc
tap chi chuyén nganh Cong ngh¢ thong tin, H¢ thong thong tin va Gido duc, duge Héi ddng
chirc danh Gio su Nha nuée tinh diém.

- Bai bao tai hdi thao khoa h90 quéc té: 02 bai: trinh bay tai céc hdi thdo VNICT
(2024) va MCO (2025), phén 4nh ket qua md hinh lai LATCGAd vd AWG-GC trong du
do4n phin loai t6t nghiép.

- Bai béo tai hdi thao khoa hoc trong nudc: 01 bai; trinh bay tai Hji thao FS&IS,
Truémg Cong nghé Théng tin & Truyén théng — Dai hoc Cong nghiép Ha Ngi, tap trung
vio img dung hoc sdu trong phén tich dit liéu gido duc.

Chc cOng trinh dugc cong bb co sb lugng di, chét lugng, trong 6 c6 cong bb quéc
t& ISU/Scopus, ddm bao yéu chu bit budc dbi voi ludn 4n tién si. Noi dung céc cong trinh
phan 4nh diing huéng nghién cir, ¢6 tinh méi va déng gop 18 rét cho linh vyre Educational
Data Mining (EDM) va Learning Analytics (LA).

8. Két luan:
- Luin 4n c6 ndi dung va hinh thire d4p ing ddy di céc diéu kign cia mot lugn 4n tién st.

- Ban tom tét ¢4 phan 4nh trung thyc dugc ndi dung cla lugn 4n, ‘ )
- pé nghi cho NCS dua luan 4n ra bao vé tai Hi dong cép Hoc vién dé nhfn hoc vj Tién si.

Trudmg DH GTVT x4c nhén PGS.TS. Ha nii, ngay 5 thdng 9 ndm 2025
Nguyén Msmeng la giang vién cia Nha Ngiedi nhin xét
e > N ¢ L TRUONG

" KT, TRUONG PHONG TCCB

PHO TRUONG PHONG ﬁ

Nguyén Vin Long

pGS.TS. HE Knedin N
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BAN NHAN XE£T LUAN AN TIEN s1

V& dé ti : Nghién ciru g dung mot s8 mé hinh sir dung hoe sdu trong dy béo két
qua hoc tip cia ngudi hoc

Nganh: Hg théng thang tin Mi sb: 948.01.04

Nghién efru sinh: Nguyén Thi Kim Son

Ngudi nhin xét lodn 4n: P& Trung Tufn,

Co quan ¢dng tac: Trudng dai hoe Khoa hoc ty nhién, Dai hoc Quée gia Ha N§i

NOI DUNG NHAN XET
1. Tinh cn thiét, thoi sy, ¥ nghia khoa hoc vi thye ti&n cua d& tai lugn 4n

Lufin 4n clia nghién ciru sinh Nguy&n Thi Kim Son d& ¢ip Gng dung cta hoc siu,
mét nhanh trong hoe mdy, thude tri tué nhan tgo. Hoc shu 14 mgt phintrong mdt nhénh
rong hon cdc phuong phip hoe may dua trén mang than kinhnhén tao két hop véi viée
hoc bidu didn dge trung. Vide hoc nay c6 thé ¢6 gidm sdt, nira gidm sdt hodic khéng giam
sét. mét bidu din o6 t§ chirc cia céc thye thé trong thé gidi thire va cae mbi quan hé ctia
ching,

Nghién ctru sinh ¢ong tc trong linh vyre gido dye nén d& tai luan 4n hudngtdi img
dyng trong nganh, dé cdp (i) khai pha théng tin v& hoc; (ii) c4 nhédn hoa trai nghiém khi
hoe. Trong ban viét ludn dn, nghién ctru sinh d4 lién két hai muc dich cin dat vé& 1i thuyét
va {mg dung, & din ra cdc kT thudt nhu (i) ting cudng dit li€u; (ii) chon diic trung; (iii)
161 wu cic tham sé mé hinh. Viy nén dé tai va ludn 4n cla nghién ciru sinh ¢6 y nghia.

Tuy tiép cdn theo céch truyén théng trong nganh gifio duc va dio tao, két qua luin
an c6 (hé duoc phét trién cho cdc mé hinh tirong ty.

2. Sy phit hop giika tén d& thi véi ndi dung, giira ndi dung véi nginh dio tao va
ma sb

e tai lufin 4n va két qua trinh bay trong lugn 4n cia nghién ctru sinh phu
hop v6i yéu ciu ciia chuyén nganh Hg thdng (héng tin, ma sé : 9.48.01.04,




P& tai khong trimg Hip véi cde d& tai nghién citu hay lufn én khée ¢4 bao vé ,.
tai co s& dho tao. Ludn 4n cia nghién ciru sinh Nguy&n Thj Kim Son duoc tip thé
PGS, TS. Nguy%n Hitu Quynh vé PGS TS. Ng6 Quéc Tao huéng dén. Céc thay 1a |
3 })6 tm eﬁy clia phtw’ng phap nghién clru

Cﬁn e Va0 dng conghién chu-da trinh bay trong chuomg dau el lufn 4n,
dl,ra {rén cong nghé hoc séu, &p dyng mft $6 ki thuét hoe méy va x{r i diy izéu,'
nghlén clru smh da (1) dir baoy (u) ‘phén loau di¥ lidu. : :

' Nhﬁng dﬁ' hq:u nghlén ¢l smh s dung thuqc cQ sér dfio tae, co tmh thuc 1é,

clign du*qc uép cén tht hon.

So sz‘inh V61 tudin én lién quan dén gido dyc hge, tam li hqc, lufn 4n ndy
hurdng. cong nghé Do viy céc ktem dinh gia thuydt thdng k& nhir cac ludn 4n vé
giao duc duqc thay the b:’mg cac phan tich théng ké va danh gid mu'c d@ chinh xéc
4, Két qm‘t nghlen ¢l méi el nghu’%n civu sinh L i

Nghién ciru sinh s dung thuft ngft v logic thn kinh, phét trzén logzc cd
diénva Ioglc 1d aé tich higp'viio md hink hoc méy ‘
Ngirdi nhén %6t nhﬁt tri voi ng}nen ciru sinh vé han déng gép chinh- vé (1) mb hinh
hoe sir dung logic thiin kinh; (i) md hinh dy béo i tién. Cho két qui ndy fiuqc 1
.trlnh béy treng (1) phan 2 3, trang 53 clia’ bé.n vzet luén én véi céc thugtt toan, (11)

ligu gléo dgc duoc nghzen ctfm smh Kem nhu cong sirc mt’n 1& b du‘ I;e;u, kém theo
a8 xuat khung phan tfch du’ 11¢u ' e
Nghién ot smh t:rinh bay vén d& sfmg sua, ngudi nhan xét d% lheo d6i. |
‘Luén‘n’ duge trinh bay cln thén, bing uéng Anh. Mot sb phyc lue nén dat trong
phén phu Tye ciia fugn 4n, thay viditcudi chuong _
Ve cﬁu truc, 1udn 4n trinh béy theo céc: chuong, g voi. che ket qu"x chinh |
cia lugn 4n, TV 18 56 trang gitta cac chuong 13 hop 1. |
6. Nm dung iu@n ﬁn aa du’q‘c c6ng bé tré""tap chi !q','r yéu hgn ngh] khoa hqc

qué nghwn cu'u hén quan dén dé téi Iuﬁn én trén céa c’qa chi cé uy- tin vﬁ 06 phén- :
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bién. Céc dia chi ndy bao ddm tinh méi clia cia che két qua ludn 4n. Céc phan bién
s& danh gi4 chit hegng chi tiét clia cac cong bd va ce thudt toan 8 duge trinh bay
trong bin viét lugn an, Nghién cru sinh cing tap thé hudng din da cdng bd 8 cong
trinh lién quan dén k&t qua lugn 4n. Trong d6 64 ¢bng trinh niim 2025 44 duge
chép nhan ding.

- Lién quan dén dy bio véi ki thudt hoc méy , nghién ctru sinh ¢ cong bd
ndin 2022 trén Tap chi quéc (€, ing véi CT1, ndm 2024 trén Tap chi Tinh
todn va didu khién, \ng véi CT2.

- Lién quan dén céc mo hinh hoc sdu va ki thudt hoe may , ¢é cdc cong bd
nim 2025, &g véi CTS, CT6, CT7, CT8.

- Lién quan dén bd dir lidu thir nghiém cho qué trinh hoe mdy , nghién ciru
sinh ¢6 cong bd nam 2024, 2025 tmg voi CT3, CT4.

So sanh voi mot s6 ludn 4n d3 bio vé co s& dao tao, s& lugng chét lvong
c6ng bd 1a dang khich 18,
7. Két lufn

Can cir vao yéu cAu coa Indn &n tién s7 chuyén nganh, dia vao két qua v If
thuyét va thye nghiém ma nghién ctru sinh da trinh by trong cdc chuong ludn én,
ngardi nhin xét nhét tri d8 nghi ban ludn 4n duge bio va trurde Hai ddng chdm ludn
an cAp Hoce vién Khoa hoc va Céng nghé.

Ha Ngi, ngdy 4 thing 9 ndm 2025

exfri nhiin xét

— e

3 Trung Tufin




CONG HOA XA HOI CHU NGHIA VIET NAM
Pic 1ap - Ty do - Hanh phic

Ha Ngi, 6 thang 10 nam 2025

BAN NHAN XET PHAN BIEN LUAN AN TIEN SI

Tén dé tai lugn an: Nghién ¢iru img dung mdt s6 md hinh si dung hoe sdu
trong dw doan két qua hoe tAp ciia ngwdi hoe

Chuyén nganh: 11 théng thong tin

Mé s6: 948 01 04

Ngudai hudng dan: PGS.TS. Nguyén Hiru Quynh, PGS. TS Ngé Qube Tao

Ngudi nhan xét: PGS.TS Pham Van Hai, Uy vién

Don vi cong tac: Truomg Cong nghé Thong tin- 'i’ruyfﬁn i}a(")z1g?, Pai hoc Béch
Khoa Ha Noi, B1, Ta Quang By, Ha Noi

- N§i dung nhin xét

Dé 1ai c6 v nghia khoa hoc thue tien dng dung mét so md hinh sir dung hoc

sau trong dy doan két qua hoc 1dp cia ngudi hoc.

Gia tri khoa hoc, 50 li¢u, két qua nghién ctru v& ket fudn cua Judn an ding

tin cdy.

H

D¢ tai ludn an, cac két qua nghién clu, cac nhan xé(, két ludn khong tring

-

A

lap véi cac tai liéu, cong trinh cong bd & trong nude va quoc L.

~Cac phuong plidp phan tich dir li¢u, mé hinh hoc séu dé xut phu hgp voi

hé théng dé xudt.

1

Frich ddn tai licu 1o rang, day-da va trung thyc.

2- Vin phong, két chu va each trinh bay cia lufin 4n

- Ludn an dugce trinh bay van phong va cach trinh bay bang bidu, hinh vé 5
rang voi cdch trich dan ti lidu chinh xée, minh bach.

. Cach trinh bay luan an phi hop, rd rang.

r

" i d * .. ¥ r r.e -, > A (4 r
3- K&t qua va dong gop moi nghicn cuu cua tac gia

Cac két qua ndy da trinh bay trong muc 5 trang § cta ludn an phit hgp.




4- Cic cong trinh khoa hoc |

- Tée gia cong bd 01 bai bao tap chi quoe & SCIE, 1S1, 02 bai bao tap chi
cdng b chi sb scopus, 02 bai bao uy tin cong bé tap chi trong nudce, hoi
thao quéc & Spinger 01 bai. Cac bai bao du cde cong bd khoa hoc cho diéu
kién bdo vé& luan 4n tién si. Bai bao chua dugc chip thuan, khong nhét
thiét dé trong danh mye cong bé khoa hoc.

- Céc bai bdo thé hién ndi dung chinh trong Judn an cla téc gia va thé hién
cach thire lam vi¢e cha dong clia tde gia wong quda trinh nghién céru.

5- Hinb thire trinh by va nhitng thidu x6t trong ban ludn an

- No&i dung ludn dn trung thue, bd cue va cac ndi dung co ban cha ludn an mot

cach hop ly,

6- Cie gbp y chn cip nhit, stra chiva lufin 4n

e Ludn 4n trinh bay cdu tic logic, cic noi dung trinh bay hop Iy. Ludn 4n
viét bing ngén ngir tiéng Anh, c6 ham lugng khoa hoc va img dung thire
tién, Tuy nhién cde sia ddi gZOp y nhu sau:

¢ Muc Motivation of the dissertation can om luge théng tin, ndi dung viét
chua ¢b dong. Can viét diém chinh tom tit thay vi md td dai dong.

o Ra sodt mot s6 chd, cach ding tir va hidu dinh tiéng Anh trong luén an.

7- Kt lufin
Luédn én da dat di‘ly di yéu cdu clia mdt lugn &n tién si. Kién nghi ludn an

dua ra bao vé céip Hoc vién dé nhan hoc vi tién i

Ngudoi nhin xét

PGSUES Pham Vin Hai

ja




VIEN HAN LAM CONG HOA XA HQI CHU NGHIA VIET NAM
KHOA HOC VA CONG NGHE VN Dje lap - Tu do - Hanh phic
HOC VIEN KHOA HOC VA CONG NGHE

Ha Néi, ngay 08 thang 10 nam 2025

BIEN BAN CUA
HOI DONG DANH GIA LUAN AN TIEN S CAP HQC VIEN

Can ¢t quyét dinh sb 821/Qb-HVKHCN ngay 25 thang 08 nim 2025 cla
Giam ddc Hoc vién Khoa hoc va Céng nghé vé viéc thanh 1ap Hoi ddng danh gia
luan an tién si cé‘ip Hoc vién, Hoi déng da hop vao hdi 09 gid ngay 08 thang 10
nam 2025 tai Hoc vién Khoa hoc va Cong nghé, Vién Han 1am Khoa hoc va Cong
ngh¢ Viét Nam, s6 18 duong Hoang Qudc Viét, Cu Gidy, Ha Noi dé danh gi4
luan 4n tién si.

Ho vatén NCS:  Nguyén Thij Kim Son

Tén d8 tai luén 4n: Nghién ctru l'rng,dung mot sé mé hinh st dung hoc sau

trong du doan két qua hoc tip ctia ngudi hoc / Reseach

on the application of deep learning models for
predicting learners’academic performance

Nganh: Hé thdng théng tin
M4 sb: 948 01 04
Ngudi huéng dan: PGS.TS. Nguyén Hitu Quynh, PGS.TS. Ngb Qudc Tao

THAM DU BUOI BAO VE GOM CO

- Dai dién co s& dao tao:
1. GS.TS. Vii Binh Lam - Giam db¢ Hoc vién KH&CN
- Dai dién Vién Cong nghé thong tin:
1. PGS.TS. Nguyén Truong Théng - Vién truéng Vién Cong nghé thong tin
- Dai dién Co quan chi quan ctia NCS:
TS. Nguyén Vin Thién, Pai hoc Cong nghiép Ha Noi
- Thanh vién Hdi dong c6 mat: 7/7 thanh vién
1. PGS.TS. Nguyén Long Giang, Chii tich Hpi ddng
2. PGS.TS. Bui Thu Lam, Phan bién 1
3. TS. Nguyén Nhu Son, Phan bién 2



4. TS. Trin Dirc Nghia, Thu ky Héi dong
5. PGS.TS. Nguyén Vin Long, Uy vién
6. PGS.TS. B3 Trung Tuén, Uy vién
7. PGS.TS. Pham Van Hai, Uy vién
- Thanh vién Hoi déng vang mit: PGS.TS. Nguyén Vin Long
- Dai dién tap thé can bd huéng dan: PGS.TS. Nguyén Hitu Quynh, PGS.TS.
Ngb Quéc Tao
- Cung tham dy budi bao vé con co nhiéu can bd nghién ctru khoa hoc trong va

ngoai Hoc vién.
TIEN TRINH BUOI BAO VE

1. Paqi dién co s6 dao tao, ¢ Pham Thi Nhu Quynh, tuyén bd ly do, gidi thiéu
dai bidu va doc quyét dinh s 821/QD-HVKHCN ngay 25 thang 08 nam 2025
ctia Giam déc HVKHCN v& viée thanh 1ap Héi ddng dénh gid ludn 4n tién si
chp Hoc vién cho NCS Nguyén Thi Kim Son va dé nghi Chi tich Hoi dong
didu khién phién hop.

2. Chii tich Héi dong, PGS.TS. Nguyén Long Giang, cong b6 danh sach thanh
vién c6 mat 1a 06, thong qua chuong trinh budi bao vé, dé nghi Thu ky thong
béo cac diéu kién chuén bi cho budi bao vé va doc ly lich khoa hoc cia NCS.

3. Thu ky Héi dong, TS. Tran Dirc Nghia théng béo céc diéu kién cho buoi bao vé
- Doc ly lich khoa hoc ctia NCS Nguyén Thi Kim Son.

- D4 nhan du 07 nhan xét clia cac phan bién va cac thanh vién HD.
- Lich bao vé cia NCS da duogc ding trén Cong thong tin dién tir Hoc vién
Khoa hoc va Coéng nghé ngay 15/09/2025.
- CAc gidy to can thiét khac.
NCS Nguyén Thi Kim Son ¢6 du cac didu kién v& thu tuc dé bao vé luén én
trudc Hoi dong danh gia ludn an cap Hoc vién.

4. Cac thanh vién hoi dong va nhiing nguoi tham du thong qua vé 1y lich khoa
hoc va qué trinh dao tao clia nghién ciru sinh.

5. Nghién cuu sinh Nguyén Thi Kim Son trinh bay ndi dung luén én trong 30
phut truée Hoi ddng. Bao cdo clia NCS bao gdm céc ndi dung chinh nhu sau:

Gioi thiéu



Téng quan vé du dodn két qua hoc tap tir cdc phuong phap hoc may va hoc
séu.

Cac nghién ctru lién quan.

Dong luc va thich thiec.

Céc két qua chinh cua ludn an:

(1) Dé xudt 02 mé hinh méi 1a NeutroDL va NeutroGNT, tich hop

quy trinh neutrosophic vao cac md hinh hoc sau dé nang cao hiéu suét du
doan GPA sém.

(2) bé Xuat 02 mo6 hinh lai méi la LATCGAd va AWG-GC, dé du
doan phan loai tot nghiép cho sinh vién.

(3) Phat trién 03 tép dit li¢u da thudc tinh tir nhiéu nguon khac nhau
va d& xuét cac khuén kho phan tich phu hop véi dit liéu gido duc.
Két ludn va phét trién trong tuong lai

6. Cac phan bién doc ban nhan xét va dit cAu héi danh gia luan 4n ctia NCS
Nguyén Thi Kim Son
1) Phan bién 1, PGS.TS. Bui Thu Lim, doc nhin xét ddnh gia luan an va
két luan (c6 vin ban kém theo).
Uu diém:
Noi dung duge trinh bay chi tiét, tap trung vao van d& thyuc tidn véi dir liéu Viét
Nam, d& xudt mé hinh méi hiu qua. Két cdu logic, gidi thiéu rd van dé, téng quan
toan dién, phuong phéap hién dai, thi nghiém chi tiét. Bang biéu, dd thi 15 rang,
ngodn ngit khoa hoc, 142 trang can dbi.
Nhuwoe diém:

Vé ndi dung;:

(1) Dt lidu nhé (HNMU1: 932, HNMU2: 551, VNU: 271), ddn dén R2 thip & mét
s case, thiéu tong quat hoa cho truong hop 16n hon.

(2) So sanh baseline chua diy di, thiéu mé hinh SOTA cho di¥ liéu gido duc.

(3) Chura phan tich sau yéu té dic thi Viét Nam, d4n dén mé hinh chua tdi vu héa
dia phuong; Dac biét, m6 hinh du bao & Chuong 2 dimng lai & mitc d don bién,
chua tinh téi yéu t da bién.

Ve két cau:

Chuong 2 va 3 13p lai mt s6 phan (nhu GAN), thiéu lidn két chit ché gitra du
doan SGPA va loai tét nghiép.

V& hinh thire:



Khong nén phéin biét nghién ciru trong va ngoai nudc (trang 16)
Nén c6 cac giai thich vé su hop Iy trong céc lai ghép mé hinh

Céc ky hiéu toan hoc & chuong 2 nén chudn hoa cho théng nhét va diing van phong

academic hon.

2) Phan bién 2, TS. Nguyén Nhuw Son, doc nhan xét danh gia luan an va két
luén (c6 van ban kém theo).

Uu diém:

Luan 4n bd cuc lam 3 chuong gom 120 trang ndi dung va cac phan lién quan vé
cdng trinh cong bd va tai ligu tham khao, phu hop vai cu tric ctia ludn 4n tién si,
cac chuong duoc phan chia hop ly céc néi dung lién quan, trinh bay chi tiét rd
rang cac mo hinh, k¥ thuat dé xuét trong pham vi nghién clru cta luan an. H¢
théng 80 tai liéu tham khao dugc trich dan dung chuén, céc tai liéu c6 tinh cap

nhét maéi trong nhitng nam gan day.
Nhuwoge diém:

Tuy nhién can xem xét mdt s y kién sau ddy de chinh stra luén an cho hop ly

hon néu cé thé duge:

- Vé quy md dit liéu, do viéc thu thap thue té s& mét nhiéu thoi gian nén
hién tai ¢é quy mo con chua 1dn, s¢ anh huéng chét luong mé hinh?.

- Céc thuat toan dé xuét hién chua c6 danh gia so bd vé do phuec tap, thoi

gian tinh todn, co thé xem nhu phu thudc vao dd phirc tap ctia cdc md hinh co ban
duge st dung?.

- Céc két qua hién khong danh gia thoi gian chay, tuy nhién thuc nghiém
nén cé céc thong sb vé ciu hinh phdn cting dé dung cho viée tham khao khéc sau
nay?

- Trinh bay thuét toan nén theo format truyén thdng: Input, Output (khong
dénh s6 dong 1énh), Begin — End méi bt dau dénh sb.

- Chuong ba cdn noi thém ndi dung cong bd & CT2,

- R4 soét v céc chd thich Hinh v&, Bang biéu c¢b géng khong nén ngit trang

& ca 2 ban ludn an va tom tat.



7. NCS Nguyén Thj Kim Son tiép thu y kién nhén xét cta cac phan bién va tra
16 day dii cau hoi cla céc uy vién phan bién.

8. Céc thanh vién khac trong Hoi dong dua ra y kién nhan xét; Hoi dong va nhiing
nguoi tham du dit cdu hoi
- PGS.TS. Nguyén Long Giang
* Luén &n c6 ciu trac hop ly, ndi dung nghién ctu va cac két qua thu duge
da dugc NCS trinh bay kha nghiém tlc, r6 rang va 16 gic.
* Muyc CONTENTS (trang viii) ctia ludn 4n cin duoc dua 18n trudc
SYMBOLS AND ABBREVIATIONS theo qui dinh cia co sé dao tao. Bang

SYMBOLS AND ABBREVIATIONS (trang iii) cin duoc sép xép theo vin
abc dé d& tra ctu.

* Céc thuét toan can dugc danh sb theo chuong nhu hinh va béang, vi duy
Algorithm 1. (trang 48) thanh Algorithm 2.1,...

* Phén tich thém Théng tu 42/2021 "Quy dinh vé co s& dit liéu gido duc va YA

dao tao" ctia BGD-DT truéc khi két ludn "However, in education, there is VI
currently a lack of large, standardized, ..." (trang 2). HS(
» Nén bé sung vao Research Subjects (trang 3): Ngoai c4c bai toan du béo "=
két qua hoc tap clia sinh vién, déi tugng nghién ctru con 1a cdc md hinh hoc =
sau.

* Muc 5. Key contributions of the dissertation (trang 5): Miic di dd c6 mé ta
"From an information systems perspective,...", tuy nhién nén bd sung so dd
khdi tryc quan Hé thong théng tin du béo két qua hoc tap cua sinh vién, tir 6
chi ra céc két qué nghién ctru ctia luén 4n phuc vu cho cac khdi chirc nang nao.
* Céc myc 2.4. Appendix to Chapter 2 (trang 64), 3.4. Appendix to Chapter
3 (trang 114) can chuyén vé Chuong 1 hodc dé cudi luan an.

* Phan tich sau hon d§ phire tap cia céc thuét toan dé xuét trong luén an.
NCS méi quan tdm dén d¢ chinh xéc, chua quan tim dén thoi gian va bd nhé
can thiét khi thyc hién céc thuat toan.

* Nén c6 thém thuc nghiém c4c thuét toan Chuong 2 véi cac bod dit lidu khac
nhau dé danh gia khach quan hon.

- PGS.TS. Nguyén Viin Long

+ V& nguyén tdc dit lidu cho vige hoc may 1a tinh “ddng nhdt” dit lidu, phan

anh gia trj cot 181 ddc trung ctia bd dir lidu, da 16n vé sb luong. Trong lun 4n,

5



sit dung 4 loai bg dit licu, mdi bo dit liéu phu thude vao co s& dao tao (quy mod
-thuong hiéu - chét lugng trudng, co sé vat chét - chuong trinh day hoc - thuc
hanh thue tap - trai nghiém - giang vién cua cac nganh nghé, sy déng déu trong
hoat dong cac nganh trong trudng ...), s€ anh huong dén tinh déng nhat. Ngay
ca trong mot bo dir liéu, gia tri ¢t 161 diic trung clia dit liéu con chiu anh hudng
boi chinh dit liéu c& nhan ctia mdi sinh vién (hoan canh gia dinh, s¢ thich, mic
d6 chim chi...). Ca 2 yéu td néu trén déu tac dong dén do tin cay cla bd dix
lidu sau khi ting cuong dir liéu, anh huong dén tinh chym cua dic trung dit
liéu. Mit khac, s6 lugng dit liéu cho viéc hoc may con khiém tén anh huong
dén chét lugng mo hinh. Téc gia cho y kién vé vén d8 nay.

+ B6 dit liéu do luan 4n thu thap, chua phai 1a b dir ligu chuén da ting dugc
st dung trong céac cong trinh dd nghién ctu, do tin cay cua bd dir liéu nay thé
nao? Dit lidu tai mdt co s& ddo tao dua vao hoc, ngoai dit liéu chung nhu luén
4n da dé cép, c6 dua vao khai thac déc trung cia dic thu co so d6 khong (co
s& vat chét, chuong trinh dio tao nganh...) va dua nhu nao?

- PGS.TS. P Trung Tuin

Nghién ctru sinh trinh bay vAn d& sang sta, nguoi nhan xét dé theo dai.

Luén an dugc trinh bay can than, béng tiéng Anh.

Mot s6 phu luc nén dt trong phﬁn phu luc clia luan an, thay vi dat cudi chuong.
- PGS.TS. Pham Vian Hai

Céc bai bao dii cac cong bd khoa hoc cho didu kién bao vé lun 4n tién si. Bai
b4o chua dugc chip nhan ding, khong nhAt thiét dé trong danh muc cong b
khoa hoc.

Luén an trinh bay cAu trac logic, cac ndi dung trinh bay hop ly. Luén an viét
béng ngon ngfr tiéng Anh, c6 ham luong khoa hoc va ung dung thuc tién. Tuy
nhién cac sira dbi gép ¥ nhu sau:

« Muc Motivation of the dissertation can tém luge thong tin, ndi dung viét
chua c6 dong. Can viét didm chinh tom tat thay vi mé ta dai dong.

+ Ra soat mot s6 chd, cach dung tr va hiéu dinh tiéng Anh trong luan an.

- TS. Tran Pitc Nghia

Trong céc nghién clru tuong lai, nén bd sung thém céc yéu t6 anh hudng dén
két qua hoc tap khdc, vi du nhu thai dg/su tich cyc trong hoc tép, nhu vy viéce
du doan sé& tot hon.



Nén thir nghiém thém trén cac b dit liéu khac nhau dé dam bao tinh khach
quan va su hiéu qua clia dé xuét.
Luu y ra soat LA ddm bao theo mau/céu tric ctia Hoc vién.
9. Thu ky doc nhan xét ctia 02 chuyén gia phan bién doc lap.
10.NCS Nguyén Thj Kim Son tiép thu ¥ kién nhén xét ctia cac thanh vién ctia Hoi
ddng. NCS tra 161 céc cAu héi clia cac thanh viédn Hoi dong va trinh bay giai
trinh nhén xét ctia 02 chuyén gia phén bién doc 1ap.
11. ai dién tap thé huéng din phat bidu y kién bing vin ban.
12. Hoi dong tién hanh hop riéng dé biu ban kiém phiéu, bo phidu kin va thao
luéin théng qua quyét nghi ctia Hoi dong.
1) Béu ban kiém phiéu gdm:
- Trudng ban: PGS.TS. D6 Trung Tuén
- Uy vién: PGS.TS. Pham Vin Hai
- Uyvién:  TS. Trin Ptc Nghia
2) B phiéu kin va théo luan thong qua Quyét nghi ctia Hoi déng.
- Trudng ban kiém phiéu, PGS.TS. D3 Trung Tuén cong b két qua kiém
phiéu (c6 bién ban kiém phiéu).
- Chu tich Hoi dong, PGS.TS. Nguyén Long Giang, thong qua Quyét nghi
(c6 van ban kém theo).
3) Tém tit nghi quyét caa Hoi ddng
3.1. Tinh phit hop ciia tén dé tai va su khong trimg ldp vé néi dung ludn én
- Tén dé tai, ndi dung va két qua nghién ctru cta ludn 4n phu hop véi
Nganh dao tao “Hé thdng thong tin”, ma sb “9 48 01 04”.
- N&i dung cua ludn an khong triung liip véi cac ludn 4n da bdo vé va cac
két qua nghién ctru da cdng bb trong va ngoai nudc.
- Cac tai liéu tham khéo ctia luén 4n c6 ndi dung phi hop va da duoc trich
dan trong lun 4n.
3.2. Cadc két qud chinh cia ludn dn
Luén én c6 mdt s6 két qua nghién ctru méi trong bai todn du doan som két
qua hoc tdp cuia sinh vién:
(1) Bé xudt 02 mé hinh méi 13 NeutroDI, va NeutroGNT, tich hgp quy

trinh neutrosophic vao cdc mé hinh hoc sau dé nang cao hiéu suit du doan



GPA som.
(2) Pé xuit 02 md hinh lai méi la LATCGAd va AWG-GC, dé du doan
phan loai t6t nghiép cho sinh vién.
(3) Phat trién 03 tap dit liéu da thude tinh tir nhidu ngudn khac nhau va dé
xuét cac khudn khd phan tich phi hop véi dit lidu gido duc.

3.3. Cdc diém can bé sung chinh stea trucc khi nép lugn an cho Thuw vién

Quéc gia Viét Nam

NCS cén tiép thu, ra soat, chinh sira, bd sung ndi dung luan an theo y kién
d6ng gop trong ban nhan xét ctia cac thanh vién Hoi dong va Bién ban cla
Hoi déng danh gia luan an tién st cép Hoc vién trudc khi ndp luédn an cho
Thu vién Quéc gia Viét Nam.
3.4. Mire do ddp ving yéu cau cia ludn dn tién st vé ca ndi dung va hinh
thite
- Luén 4an ctia NCS Nguyén Thi Kim Son dap (mg yéu cau ctia luan an
tién si nganh “Hé thdng thong tin”, ma s6 “9 48 01 04” vé nodi dung va
hinh thirc theo cac qui ché hién hanh vé dao tao tién si cua B6 Gido duc
va Pao tao, ciia Hoc vién Khoa hoc va Cong nghé.
- bé nghi Hoc vién Khoa hoc va Céng nghé cong nhan két qua bdo vé va
clp béng tién s cho NCS Nguyén Thi Kim Son sau khi chinh stra, b

sung luédn an theo cac gép y cua Hoi dong.

13. Tong két

Truéng ban kiém phiéu, PGS.TS. DB Trung Tuén, cong bd két qua bé phiéu
danh gia luén an.

Chu tich Hoi d&‘mg, PGS.TS. Nguyén Long Giang, doc Quyét nghi ctia Hoi
dong.

Chu tich Hoi ddng tuyén bd Hoi dong da hoan thanh nhidm vu va trao lai
quyén diéu khién cho Co so dao tao.

Céc dai biéu va NCS phat biéu y kién.

Dai dién co s& dao tao tuyén bo két thuc budi bao vé luén an tién si.

Bién ban hop Hoi dong nay duoc /1y vién Hoi ddng biéu quyét cong khai

thong qua.



Budi hop Hoi ddng danh gi4 luan 4n tién si cAp Hoc vién két thc vao lic 11 gio
30 phut, ngay 08 thang 10 nam 2025.

Thu ky Hji dong Chi tich Hdi dong

ey

TS. Tran Pirc Nghia PGS.TS. Nguyén Long Giang
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VIENHANLAM CONG HOA XA HQI CHU NGHIA VIET NAM
KHOA HQC VA CONG NGHE VN Poc lap - Tw do - Hanh phiic
HOQC VIEN KHOA HQC VA CONG NGHE )

Ha Néi, ngay 08 thang 10 ndm 2025

QUYET NGHI CUA
HOQI PONG PANH GIA LUAN AN TIEN ST CAP HQC VIEN

Can cir quyét dinh s6 821/QD-HVKHCN ngay 25 thang 08 ndm 2025 ctia Gidm
dbc Hoc vién Khoa hoc va Cong nghé vé viéc thanh 1ap Héi d(‘“)ng danh gia luén an
tién st cip Hoc vién, Hoi ddng da hop vao hdi 09 gid 00 ngay 08 thang 10 nam 2025
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HOQI PONG PANH GIA LUAN AN TIEN ST CAP HQC VIEN CUA
NCS NGUYEN THI KIM SON KET LUAN

1. Tinh phit hop ciia tén dé tai va sy khong tring Lip vé ndi dung ludn an

- Tén &8 tai, ndi dung va két qua nghién ctru ctia ludn 4n pht hop véi nganh dao
tao Hé thdng théng tin, ma sb 9 48 01 04.

- Ndi dung ctia luan 4n khéng tring l3p véi céc ludn an d3 bao vé va cac két
quéa nghién ctru da cong bé trong va ngoai nude.

- Céc tai liéu tham khéo ctia ludn 4n ¢6 ndi dung phil hop va di duoc trich dan
trong ludn an.
2. Két qua, y nghia khoa hoc, thwe tién ciia d@ tai

Luan 4n c¢6 mot s6 két qua nghién ciru méi trong bai toan du doén sém két qua

hoc tép cta sinh vién:






(1) DBé xuit 02 md hinh lai NeutroDL va NeutroGNT nhdm tich hop quy trinh
neutrosophic vao cac mo hinh hoc sau dé nang cao hiéu suét du doan GPA sém.
(2) Dé xuét 02 md hinh lai LATCGAd va AWG-GC dé dy doan phan loai tét
nghiép cho sinh vién.
Ngoai ra, luan an xay dung 03 tip dit liéu da thudc tinh tir nhiéu ngudn khac
nhau va d& xudt céc khudn khéd phan tich pht hop véi dit lidu gido duc.
3. Nhiing thiéu s6t ciia lufin 4n, vin dé cin bd sung, sira chita
NCS can tiép thu, ra soat, chinh stra, bd sung ndi dung luan én theo y kién dong
g6p trong ban nhan xét clia cac thanh vién Hoi dong va Bién ban cta Hoi ddng dénh
gia luan 4n tién si cip Hoc vién trudc khi ndp ludn 4n cho Thu vién Qudc gia Viét
Nam.
4. Mitc @6 d4p ng yéu cau ctia luin 4n tién si vé c4 ndi dung va hinh thirc theo
cic quy ché hién hanh vé dao tao tién si ciia B0 Giao duc va Dao tao
Lu4n 4n ctia NCS Nguyén Thi Kim Son dép Gmg yéu cu ctia mét luan 4n tién

si nganh “Hé thong thong tin”, ma s6 9 48 01 04 v& nodi dung va hinh thirc theo ¢4

quy ché hién hanh vé dao tao tién si cia Bd Gido duc va Pao tao va ctia Hoc viéaN
10C VA
NGHE

Khoa hoc va Cong nghé.
Két lufn:
Két qua bo phiéu danh gia luan 4n ctia Hoi ddng: 6/6 thanh vién tan thanh.
Hoi dong két ludn thong qua luén én, dé nghi Hoc vién Khoa hoc va Céng nghé
cong nhan két qua bao vé va cip bang tién si cho NCS Nguyén Thi Kim Son.

Quyét nghi nay duge 6/6 thanh vién Hoi ddng bidu quyét cong khai thong qua.

THU KY CHU TICH
/ A X
TS. Tran Dirc Nghia PGS.TS. Nguyén Long Giang
XAC NHAN CUA CO SO PAO TAO

KT GIAM BOC

Nguyéen Thj Trung






(Mau 6-HV-Ban giai trinh chinh sita, bé sung cdp HY)

VIEN HAN LAM CONG HOA XA HOI CHU NGHIA VIET NAM

KHOA HOC VA CONG NGHE VN

- INUL ) Poe ldp - Tw do - Hanh phiic
HOQC VIEN KHOA HQC VA CONG NGHE

BAN GIAI TRINH CHINH SUA, BO SUNG LUAN AN TIEN ST
CAP HOC VIEN

Ngay 8 thang 10 ndm 2025, Hoc vién Khoa hoc va Céng nghé di to chtc danh
gia luan an tién si cdp Hoc vién cho nghién ctru sinh Nguyén Thi Kim Son theo
Quyét dinh s6 821/QD-HVKHCN ngdy 25 thang 8 nam 2025 cia Gidm dbc Hoc
vién. '

Dé tai: Nghién ctru tng dung mét sé mo hinh st dung hoc sau trong du doan két
qua hoc tdp cua ngudi hoc (Research on the application of deep learning models for
predicting learners' academic performance)

Nganh: Hé thong thong tin; Ma s6 : 9 48 01 04

Tap thé hudéng dan khoa hoc: PGS.TS Nguyén Hiru Quynh; PGS.TS Ngb Quic
Tao

Theo Bién ban ctia Hoi déng, NCS phai bé sung va chinh stta luan dn céc diém
sau day:

Noi dung dé nghi N i e e ud
STT chinh sita, bé Noi dung da duge chinh sira, b6 sung

(Ghi ré s6 trang/chiong/muc ... da dwoc chinh sira)
sung

|| Ve quy mé dir | NCS tidp thu,

li€u, do vige thu | pyng 13 trong béi canh gido duc dai hoc & Viét Nam, viée thu thap dir

thap thuc & s@ licu quy md Ién, ¢6 nhin, dong bd gitta nhiéu khéa hoc va nhiéu hé
mat nhiéu thoi | théng 1a mét théch thie thuc té. Pay la thuc t& chung trong nhiéu
gian nén hién tai | cOng trinh ca trong nudc va qubc té do dac thu dir lidu gido duc
6 quy md con thuong lién quan dén quyen riéng tu, phan tan & nhiéu hé thong va

; - 1.~ | kho chudn hoa.
chwa I6n. Dir liéu

akid (HNMUI: Han ché vé quy mo dir Iif::u la dic t!‘lfl khach quan cua linh vuc gido
duc, nhung luén an da bién han ché do thanh bai toan nghién ctru
trung tAim. Cac mo hinh dé xuat (NeutroGNT, LATCGAd, AWG-
GC) khdng nhiing giai quyét duoc van dé dir liéu nho ma con cho
théy hiéu qua vuot trdi so vdi baseline, chimg minh gia tri khoa hoc
lugng mo hinh, | va thuc tién cua hudng tiép can.

932,  HNMU2:
551, VNU: 271).
Anh hudng chét

thiéu tong quat | Trong tuong lai, hudng mé rong 1a thu thap thém di liéu lién co s&
hoa cho truong | hodc Gng dung federated learning dé vira ting kich thudc mau vira
hop 16n hon. bao dam quyén riéng tu.

2 Trong ludn an, d | D@ liéu gido duc c6 su khac biét gitia cac co so ddo tao va gilia tirng
liéu tir nhiéu co | ca nhin sinh vién. Cac yéu to “khong dong nhat” va “it dir li¢u” da
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s dao tao khac
nhau va ca yéu t6
ca nhan sinh vién
¢6 thé lam giam
tinh dong nhat,
trong khi sé lugng
dii liéu con han
ché. Néu rd hon
vé do tin cdy va
kha nang tong
quat hoéa.

duoc xem xét ky trong thiét ké mo hinh dé dam bao do tin cdy va kha
nang tong quat hoa. Cu thé:

. Chuan hod dir liéu (thang diém, cdu tric hoc tap) nham giam
khéc biét gifra cac dic trung va gilia cdc trudng.
. Tang cuong dir liéu ¢6 kiém sodt (GAN, CGAN, WGAN) va

luén danh gia riéng biét dé tranh nhiéu.

D lidu tai mdt co
so dao tao dua
vao hoc, ngoai dir
licu chung nhu
lugn an da dé cap,
c¢6 dua vao khai
thac dic trung cua
ddc thu co s¢ do
khéng (co so vat
chét, chuong trinh
ddo tao nganh...)
va dua nhu nao?

Ngoai cdc thong tin chung vé ca nhan va két qua hoc, tap, b dir licu
co tich hgp thém cédc dic trung dic thu cia co s¢ dao tao nhu:

Co so vt chét: didu kién co sd vat chét, hé théng hd trg hoc tap.
Chuong trinh dao tao va phuong phap giang day: muc do phu hop
ctia chuong trinh dao tao, chit lirgng giang vién, diéu kién hoc tap.
Moi trudng hoc tip: mlc do canh tranh trong hoc tap, su hd tro tir
giang vién va nha truong, su thich nghi cua sinh vién v§i moi trudng,
nang luc canh tranh trong hoc tap.

Céc yéu td nay dugec ma hoa thanh bién sb (feature) trong dix lidu, vi
du: “Facility conditions™, “Quality of instructors”, “Suitability of the
training program”. Nho dd, mo hinh khong chi phén tich dic diém ca
nhin cta sinh vién ma con phan anh ding anh huong tir diéu kién,
chinh sach va chat lugng dao tao ctia timg co so.

So sanh baseline
chua day du, thiéu
md hinh SOTA
cho dir liéu gido
duc.

Tiép thu. Baseline hién mai ding & m6 hinh ML/DL phé bién. Hién
tai luan 4n nhdn manh gia tri hoc thudt ¢ viéc d& xudt md hinh lai
ghép (hybrid DL), chua dit trong tim vao so sanh toan dién. Trong
nghién ctu tiép theo, NCS s& nghién ciru thém mot sé baseline SOTA
trong EDM dé két qua c6 tinh thuyét phuc cao hon.

Chua phéan tich
sdu yéu & dic thu
Viét Nam, dan
dén mo hinh chua
toi uu hoa
dia phuong; Dic
bi¢t, mé hinh du
bio & Chuong 2
dirng lai & mac do
don bién,
chua tinh toi yéu
t6 da bién.

Tiép thu. O Chuong 3, nghién ciru da mo rong sang mé hinh da bién
(tich hgp yéu t6 hoc tip, méi truong, xa hoi). Trong tuong lai, NCS
s€ khai thac thém cac dic trung dic tht caa Viét Nam (chinh sach,
chuong trinh dao tao tong thé) dé tdi vu héa méd hinh cho bdi canh
dia phuong.

Chuong 2 va 3 lip
lai mot s& phan

Tiép thu, su tring lap khi st dung lai GAN ciing thé hién mdi lién két
hoc thuat gitra md hinh cia chuong 2 va chuong 3.




(nhu  GAN). Bd
sung pineline cho
trng md hinh.

Bd sung nhén
manh lién két chat
ché gitra du doan
SGPA va loai tdt
nghiép.

NCS di bd sung cdc pineline cho tirng mé hinh d& xuét trong ludn an
(trang 47, 58, 80, 95)

Luén an dd nhian manh su chuyén tiép tir du bdo ngin han (SGPA -
hdi quy) sang du béo dai han (tét nghiép - phan loai).

V& hinh  thic:
Khéng nén phén
biét nghién cuiu
trong va ngoai
nudce (trang 16)

Tiép thu. NCS da chinh sira ludn an. “Nghién ciiu trong nude/ngoai
nude” sé duge dién dat lai theo hudng hoc thuat, tranh phan biét. Cac
tidu muc 1.3.1 va 1.3.2. duoc viét gop lai thanh 1.3.1. Related works
(trang 16-18)

Nén co6 cdc giai
thich vé su hop ly
trong cac lai ghép
mo hinh

Tiép thu. Véi cdc mé hinh lai ghép, luan an da néu ngin gon vé Iy do
két hop. NCS chinh sta ludn an, trinh bay chi tiét cu thé hon vé Iy do
Iwa chon mé hinh (6 cac tidu muc: 2.2.1, 2.3.1, 3.3.1 va 3.3.2).

Trinh bay thudt

toan nén theo

format truyén
thong: Input,
Output (khong

danh  sb  dong
[énh), Begin -
End méi bat diu
danh sb.

Luan an danh s6 dong cua thudt toan theo khudn dang cua IEEE.

Cac thuat toan dé
xuét hién chua co
danh gia so bd vé
dd phuc tap, thoi
gian tinh toan, cé
thé xem nhu phu
thude vao do phic
tap cia cac md
hinh co ban dugc

str.dung khong?,

Tiép thu. Cac mé hinh dé xuét phu thude vao do phtre tap cia cac mo
hinh co ban dugc st dung.
NCS da bd sung vao luén an, trang 48, 60, 81, 96, 97.

Trong phan thuc
nghiém nén c¢o
cic thong sd vé
cdu hinh phéin
ciing dé diing cho
viéc tham khao

Tiép thu. NCS dd bd sung ciu hinh phin ciing dang dung vao ludn
an, cac phin md ta thuc nghiém, trang 50, 51 (muc 2.2.3), trang 60
(muc 2.3.3), trang 82 (muc 3.2.3) va trang 99 (muc 3.3.3)..
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khac sau nay.

Chuong ba can
noi thém ndi dung
cong bo 6 CT2

Tiép thu. NCS da chinh stra va thém ndi dung trong chuong 3, muc
3.1.2, trang 75.

Muc Motivation
of the dissertation
cin  tom  lugc
thong  tin, noi

dung ¢6 dong.

Tiép thu. Muc 1. Motivation of the dissertation dd dugc chinh sua
ngin gon thanh 1. General Introduction trang | cta luén én.

14

Nén thém thuc
nghiém chuong 2
vai cac bd di liéu

khac nhau

Tiép thu. Trong chuong 2, thuc nghiém da duogc trién khai v6i 06 bo
dir liéu (trong nude va qudc té).

Phan tich thém
thdng tu 42/2021
vé bo dir lidu cua

co sO gido duc

cua BGD&DT |.

trude khi két luén
“However, in
education, there is
currently a

lack....”

Tiép thu. NCS da bé sung thong tin phén tich trong Trang | cia Ludn
an.

Trong nghién ciu
twong lai, nén bd
sung thém cac
yéu té anh huong
dén két qua hoc
tap khac nhu thai
do, su tich cuc

hoc tép

Tiép thu.

B6 sung vao phan
Research Subjects
vé cac md hinh

hoc siu

Tiép thu. NCS bd sung trong trang 3 ciia ludn an.




B4 sung so do
khoi truc quan Hg¢
thdéng théng tin,
tr d6 chi ra két
qua cua .luan an
phuc vu khéi chire

niang nao

Tiép thu. NCS da bd sung so dd, trang 5 cuia Ludn an.

Muc Contents nén
dé  trudc  muc
Symbols...

Muc Symbols nén

xép theo a,b,c

Tiép thu. NCS da ra soat, chinh stra (trang iii, trang vi cua ludn an).

Thuat toan can
danh  s6 theo

chuong

Tiép thu. NCS da chinh stra (Thuat todn 2.1, 2.2, 3.1 va 3.2).

20

Céc phan phu luc
chuong nén dé
phan  phu luc
chung cua luén
an, hoic cudi

chuong 1.

Y kién gép ¥ rat xdc dang vé b6 cuc luan an. Tuy nhién, viéc bé tri
phu luc ngay sau mdi chuong da dwoc NCS va tap thé hudng din can
nhéc k¥, véi muc tiéu tao su thudn tién cho nguoi doc trong viée dbi
chiéu truc tiép voi ndi dung thuc nghiém, thay vi phai tra ciu & cubi
ludn an. Céch trinh bay nay cfing phan anh dac thu cta tirng bai toan:
tuy cung khai thac mé hinh Transformer nhung dugc ap dung theo
céc cach tiép can khéc nhau.

21

Ra soat vé cac
chu thich Hinh vé,
Bang biéu b
ging khong nén
ngét trang & ca 2
ban [udn an va

tom tat.

Tiép thu. NCS di ra soat chinh sira ban luén 4n va tom tit.

22

Ra soat mot sb
chd, cach dung tir
va hiéu dinh tiéng
Anh trong [luan

an.

Tiép thu. NCS da ra soat chinh sira cach ding tir va tiéng Anh trong
ludn an.




NCS cén kiém tra toan bd ludn an dé stra | NCS da kiém tra cdn than toan bd luin 4an va
cac 16i hinh thic/trinh bay. chinh sta cic 16i lién quan dén hinh
thire/trinh bay.

Nghién ciru sinh chan thanh cdm on Qui thdy, 6 trong Hoi ddng danh gia luan
an tién st Cép Hoc vién dd gop y va tao co hi cho NCS hoan thién luin 4n ciia minh.

Xin tran trong cam on./.

Ha Ngi, ngay 20 thang A0 nim 2025

TAP THE HUONG DAN
(Truong hop c6 02 nguoi hieéng dan xin chi
ky ca 02 nguoi, ky va ghi ré ho tén)

N e )

NGHIEN CU'U SINH

Nguyén Thi Kim Son
Nguyén Hiru Quynh Ngé Qudc Tao
CHU TICH HOI PONG THU KY HOI PONG
% /e
Nguyén Long Giang Trin Pirc Nghia
XAC NHAN CUA HQC VIEN
KHOA HQC VA C( o
YOI BBt
PHO GIAM BOC

Nguyén Thi Trung
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