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INTRODUCTION
1. The urgency of the dissertation

Energy consumption is an indispensable requirement for social
progress. In previous decades, to meet the ever-increasing demand for energy,
humanity has extensively exploited and utilized various types of fossil fuels.
However, these conventional energy sources are gradually being depleted, and
their consequences have proven to be extremely devastating, leading to the
degradation of the global living environment. For this reason, the demand for
environmentally friendly and renewable energy sources has become
exceedingly urgent. Fortunately, humankind has discovered methods to
harness solar energy - one of the most promising renewable energy sources
that is entirely non-polluting and inexhaustible. The simplest way to utilize this
energy is by developing solar energy absorption panels that directly convert
sunlight into other usable forms of energy (commonly known as solar cells).
To optimize the efficiency of solar energy absorption and conversion into
electricity, comprehensive and detailed investigations are required concerning
various aspects such as material properties, mechanical behavior, and
manufacturing technology. Among these aspects, the study of the mechanical
response of multilayer organic nanoplates (which serve as structural
components in solar cell applications) plays a crucial role.

Based on the aforementioned analysis, the dissertation addresses the
research topic entitled: “Static and dynamic analysis of multi-layer organic
nanoplates considering the size effect.”

2. Objectives of the dissertation

This dissertation aims to investigate the static and dynamic responses
of organic nanoplate structures subjected to static and dynamic loadings,
based on the finite element method (FEM) in conjunction with the nonlocal
elasticity theory.

3. Scope and subjects of the study

The subject of the study is the multilayer organic nanoplate subjected to
both static and dynamic loads. The scope of the research covers three fundamental
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problems: the linear static bending problem, the free vibration problem, and the
linear forced vibration problem of multilayer organic nanoplates.

4. Research methodology

The research methodology is based on the finite element method
(FEM) formulated within the framework of nonlocal elasticity theory.

5. Scientific and practical significance of the dissertation

The analysis of the static and dynamic responses of multilayer organic
nanoplates holds significant importance in the field of structural mechanics.
The findings of this dissertation provide new contributions to the analysis
and understanding of organic nanoplate structures. The obtained results can
serve as valuable references for researchers, designers, and manufacturers
engaged in the development and fabrication of organic nanoplate materials
and structures.

6. Structure of the dissertation

The dissertation is composed of the Introduction, four main chapters,
Conclusion, a list of the author’s scientific publications, and the references.

CHAPTER 1. OVERVIEW OF THE RESEARCH PROBLEM

Chapter 1 (26 pages) presents a comprehensive overview of
nanomaterials, including their fabrication technologies and applications. The
chapter also provides a review of theoretical models and computational
approaches used in the analysis of nanostructures in general, as well as a
summary of existing research findings related to the mechanical behavior
and analysis of nanostructural systems.

CHAPTER 2. THEORETICAL BASIS FOR THE ANALYSIS
OF ORGANIC NANOPLATES CONSIDERING THE SIZE EFFECTS
2.1. Problem model and assumptions

The organic nanoplate is modeled as illustrated in Figure 2.1. The
plate consists of five distinct material layers, each possessing different



mechanical properties.
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a) Three-dimensional model b) 2D cross-section

Figure 2.1. Model of the multilayer organic nanoplate
The dissertation adopts the following assumptions: The normal strain
component &=0. Small deformation assumptions are applied. Thermal
effects are neglected. Each layer is considered linearly elastic.

2.2. Mechanical Behavior Relations of the Plate
The displacement field of the organic nanoplate [58, 87, 88]:
a dwg a
u(x,y,z) = —zﬂ—fz = v(x,y,z) = —zﬂ—fz ay 2.1)
W(x' Y Z) = Wb(ny) + Ws(x'y)

where the function f: can take one of the following three forms: The
polynomial function is expressed as [87]: f, = + 5—2, The sine function
is expressed as [88]: f, =z — —sm( ) The hyperbohc sine function is
expressed as [89]: f, =z — hsinh (E) + z cosh (5)

The strain field is given as follows:
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The dissertation employs nonlocal elasticity theory; therefore, the
constitutive relation between stress and strain in the i-t4 material layer is
given by the following form [27], [89, 90]:

i
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where y is the viscoelastic coefficient of the material.

To derive the equations of motion for the organic nanoplate, the
dissertation employs the principle of minimum total potential energy [91]:

6U—-6W —=48T=0 (2.15)

where U, 6W and 6T are the variations of the plate's strain potential
energy, the work of external forces, and the kinetic energy variation.

After manipulation, the equilibrium equation of the nanoplate takes
the following form:
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2.3. Finite Element Model
The nanoplate is discretized into four-node quadrilateral elements
(Figure 2.2), the nodal displacement vector is defined as follows:

z[w,,,,ws,. ) (5, (5) (50|

The variational formulation of the elastic strain potential energy is
(2.57)

dwg
dy

expressed as follows: U, = qZKeSqe + qzCedqe
where the element stiffness matrix is given by:

(BINE)

(1.0) 5

0-1) @

Figure 2.2. Representation of the Four-Node Quadrilateral Element.
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K, ::Kb4-Kg (2.58)

where: K2 =[ ([W VT] PA11%]) dxa (2.59)
. e — 2, z f f Df Vf y .

K¢ = [, (G AV,) dxdy (2.60)

And the element damping matrix of the plate, accounting for the
viscoelastic behavior of the material, is expressed as follows:

A,, Br [V,
f
Q=XL%0%TI¢H53 wﬂhﬂ+(wnwwﬂ¢My (2.62)

The variational formulation of the kinetic energy is expressed as follows:
8T, = e M.6q. (2.69)
where the element mass matrix M. is determined as follows:
Elid H aFf . aF
ox 1ox 6x d0x 2 dax
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dx 26x+6x 36x
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From the variational expression of the external work, the dissertation

derives the nodal load vector of the element as follows:

+

[ aZ(Fb"'Fs)T ]
|p 0x2
z 02(Fp+F)T
Po=Jo, {Fo +F)Tp 2| \+—77— dxdy (2.74)
T (%P | 9%
k +(Fb +FS) (ax2 + ayz) )

After assembling the element mass matrices, element stiffness
matrices, and element nodal force vectors, the equation of motion of the
organic nanoplate: M.g+Cqg+K.q=P (2.78)
where M =Y, M,, C =3.C,, K =).K,, and P =}, P, are the global
mass matrix, global damping matrix, global stiffness matrix, and global
nodal load vector, respectively; while § = Yo Ge, § = Yo Ge, and q = X0 q,



7

are the global nodal acceleration vector, global nodal velocity vector, and
global nodal displacement vector of the organic nanoplate.
2.4. Boundary conditions

The plate is analyzed under different types of boundary constraints,
including simply supported (denoted as S) and clamped (denoted as C)
conditions. The specific boundary conditions for each case, considering a
rectangular plate, are defined as follows:

- Fora simply supported plateatx = 0 andx = a, the boundary conditions are:

_ C— aﬂ _ ows\ _
wy; = 0,wg; = o,( = )i = 0,(ay)i =0 (2.79)
- Fora simply supported plateaty = 0 andy = b, the boundary conditions are:
= =0 (&) = (%) =
Wi = 0,wy; = 0, (% )i =0,(% )i =0 (2.80)

- For a clamped plate at x = 0 and x = a, the boundary conditions are:

= =0, (22) = (&) (2*2) =g (%) =
Woi = 0,ws; = O'( ax )L- - 0'(6x)i'(6y )i o 0'(6y)l- =0 (@381
- Foraclamped plate at y = 0 and y = b, the boundary conditions are:

=0 =0(52) ~0.(2) (32) =0 (22) =0 o

2.5. Conclusions of Chapter 2

Based on the refined shear deformation theory, nonlocal elasticity
theory, and the finite element method, the author has successfully established
the stiffness matrix, mass matrix, and nodal force vector of the plate. Using the
principle of minimum total potential energy, the equations of motion for the
organic nanoplate under both static and dynamic loads have been formulated.

This chapter also defines the specific boundary conditions for various
support configurations.

The mechanical behavior relations and the formulas presented in
Chapter 2 have been published by the author in Articles 1-5 (see the author’s
list of publications).

CHAPTER 3. STATIC ANALYSIS OF ORGANIC NANOPLATES

CONSIDERING THE SIZE EFFECTS AND INVESTIGATION

OF THE INFLUENCE OF SEVERAL FACTORS
3.1. Finite element algorithm for solving the static bending problem of



the organic nanoplate
The equilibrium equation for an organic nanoplate subjected to static
loading is expressed as follows: K.q = P 3.1)
From equation (3.1), the global nodal displacement vector of the
plate can be determined as follows: ¢ = K~1P (3.2)
The flowchart for solving the static bending problem of the organic
nanoplate is shown in Figure 3.1. Based on the algorithm described above,
the author developed the Solar Nonlocal Static 2025 (SNS_2025) program
in the Matlab environment for the static analysis of organic nanoplates. The
program consists of three main modules: Input and mesh generation module.
Static analysis solver module for the organic nanoplate. Results output

module.
/ Imput data /

\d

Calculate the matrices F and K

\ J
Boundary condition handling

 J

Displacement and stress calculation

y

/ Export results /

Figure 3.1. Flowchart for Solving the Static Bending Problem

of the Organic NanoPlate.
3.2. Verification of the computational program
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This section presents several examples to verify the accuracy of both
the theoretical model and the computational program, using analytical
solutions as well as the finite element method. The Navier-type solution of
equation (2.43) is expressed as follows:

wp(x,y) = mzl nz Whmn sin (m;rx) sin (ml:y) (3.3)
w(x, :V) = 2m=1 Zn=1 Wsmn Sin (Tx) sin (%)

where m and n are natural numbers, and W, Weiny are the amplitudes of

the corresponding displacements. The load acting on the plate with amplitude
Prhax 1s defined by the following expression:

16Pmax .
P, (x,y) = iy Tiny 2o sim (22 sim () (34)

Substituting expressions (3.3) and (3.4) into (2.43) yields a system of
equations containing only the two unknowns W,,,, and Wg,,,,, as follows:

Kll Klz] {Wbmn} {Pb}
= 3.5
K1 Kool WomnS = 1R G-
Solving equation (3.5) yields the amplitudes W, and Wy
{Wbmn} _ [Kun Klz]‘l {Pb} 3.7)
VVsmn K21 KZZ PS

By substituting equation (3.7) into expression (3.3), the static bending
displacement can be obtained.

Verification example 1: This example compares the static bending
displacement of the nanoplate accounting for the size effect via the nonlocal
parameter |. The plate has a = b = 10 nm, thickness hvarying from a/10 to
a/100, E =30 MPa, v = 0.3, p = 1, uniformly distributed load Qy =1,
and is simply supported on all edges.

The maximum dimensionless displacement is calculated by the

following formula w=10’/’w,_ / (12(1 v’ )Q0a4 ) . Table 3.1 presents the

convergence of the finite element method (FEM) results for the static
bending displacement of the nanoplate as the mesh density is gradually
increased, considering different nonlocal elasticity parameters. The results in
this table demonstrate that as the number of elements in the mesh increases,
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the computed displacements of the nanoplate converge. A 16x16 element
mesh provides the necessary accuracy when compared with the analytical
solution based on the third-order shear deformation theory reported in
reference [45]. Therefore, this mesh configuration will be used for all
subsequent calculations.

Table 3.2 presents the comparison of the maximum displacements for
different nonlocal parameters and plate thicknesses. The results demonstrate
that the finite element method (FEM) computations are in close agreement
with the analytical solutions and also consistent with the results reported in
reference [45]. The slight discrepancies arise because the theoretical model
in [45] is based on the third-order shear deformation theory, whereas the
displacement field in this dissertation is formulated using the refined shear
deformation theory.

Table 3.1. Convergence of the maximum dimensionless displacement w of
the nanoplate under static loading, a/h = 10, [45] using the third-order
shear deformation theory.

Results of the dissertation using the finite element Analyftical
method with different mesh discretizations results

6x6 | 10x10 | 14x14 | 16x16 | 18x18 | 20x20 | [45]
f-1s a polynomial function
0 4394 | 4314 4292 | 4287 | 4283 | 4281 | 4.185
0.5 | 4583 | 4.506 4484 | 4478 | 4475 | 4472 | 4.560
1 5.151 5.081 5.059 | 5.053 | 5.049 | 5.046 | 4.936
f-1s a sine function
0 4393 | 4313 4292 | 4286 | 4283 | 4280 | 4.185
0.5 | 4583 | 4.505 4483 | 4478 | 4474 | 4472 | 4.560
1 5.152 | 5.081 5.058 | 5.052 | 5.049 | 5.046 | 4.936
/= 1s a hyperbolic sine function
0 4394 | 4314 4292 | 4287 | 4283 | 4281 | 4.185
0.5 | 4583 | 4.506 4484 | 4478 | 4475 | 4472 | 4.560
1 5.151 5.081 5.059 | 5.053 | 5.049 | 5.046 | 4.936
Table 3.2. Comparison of the dimensionless displacement w of the nanoplate

with analytical results [45] using the third-order shear deformation theory.

!
(nm)
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The dissertation Aralytical
results
[45]

Fom) | a1 | LA2 | LA3 | LA4 | LAS | LAG

al/h=10
0 4261 | 4261 | 4261 | 4287 | 4286 | 4.287 | 4.185
05 | 4447 | 4446 | 4447 | 4478 | 4478 | 4478 | 4.560
1 5.004 | 5.003 | 5.004 | 5.053 | 5.052 | 5.053 | 4936

a/h=50
0 4.063 | 4.063 | 4.063 | 4.085 |4.085 |4.085 | 4.015
0.5 4244 | 4244 | 4244 | 4269 | 4269|4269 | 4377
1 4786 | 4786 | 4.786 | 4.823 | 4.823 | 4.823 | 4.740
a/h=100
0 4.057 | 4057 | 4.057 | 4.078 | 4.078 | 4.078 | 4.010
0.5 4237 | 4237 | 4237 | 4263 | 4263|4263 | 4.372
1 4779 | 4779 | 4779 | 4816 | 4816|4816 | 4.734

Note: LA1: Analytical solution with f, as a polynomial function; LA2:
Analytical solution with f, as a sine function; LA3: Analytical solution with
f as a hyperbolic sine function; LA4: FEM solution with f, as a polynomial
function; LAS: FEM solution with f, as a sine function; LA6: FEM solution
with f, as a hyperbolic sine function.

3.3. Investigation of the effects of various parameters on the static
bending response of organic nanoplates

The nanoplate has geometric parameters a, b, and h. The aspect ratio
a/b varies from 1 to 4, and the thickness ratio a/h varies from 10 to 50. The
plate is composed of five material layers with a total thickness h =
0.55044 nm; the individual layer thicknesses h; are distributed
proportionally as 550:0.120:0.050:0.170:0.100. The mechanical properties
of each layer are given in Table 3.5. The plate is subjected to a uniformly
distributed load of intensity Pyax-

Table 3.5. Mechanical properties of each material layer [48]

Elasti Poi ' Densi
Layer Name astic oisson's ensity

order modulus (GPa) ratio (kg/m?)
1 Glass 69 0.23 2400
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2 ITO 116 0.35 7120
3 PEDOT:PSS 23 04 1000
4 P3HT:PCBM 6 0.23 1200
5 Aluminum 70 0.35 2601

The two parameters at the midpoint of the plate:

. 10K E b) .
W= 0 glass W(XZE,)}:_),G — hO Gx(xzﬁ’yzéjzzg),Where

P a' 2 2)° P _a 2 2

ho =1 nm. The formula for calculating this difference is expressed as follows:

DiﬁFw:W- D-ﬁf _w D-ﬁr _M (3‘9)

(ll.=0)’ ZU_O_,:(ZiZO), o a)i*(l':())

1

- Effect of plate thickness and nonlocal elastic parameter

The dissertation assigns the nonlocal parameter of each layer [; to vary
from 0 to 2h;, and the plate length-to-thickness ratio a/h varies from 10 to
50. The computational results are presented in Tables 3.6 and 3.7.

+ If the nonlocal elastic parameter [; increases, both the displacement
and the stress of the organic nanoplate increase, which indicates that the
nonlocal parameter effectively reduces the stiffness of the nanoplate.

+ The results obtained by both analytical methods and the finite
element method, across the three plate theories considered, are similar,
indicating that either analytical or numerical approaches may be used to
solve the bending problem of organic nanoplates.

Figure 3.2 is the plot showing the differences in displacement and
stress as functions of the ratio [;/h; for three values of the thickness ratio
a/h. When a/h = 10, the discrepancy in displacement and stress (between
the cases with and without the nonlocal parameter [;) becomes more
pronounced as l;/h; increases. However, for a/h = 50 the discrepancy
between the two cases is not evident (the maximum discrepancy of
displacement does not exceed 3% for [;/h; = 2), which implies that if very
high accuracy is not required, the effect of the nonlocal elastic parameter
may be neglected, considerably simplifying the computations.

Table 3.6. Dimensionless bending displacement w* depending on the ratio
a/hand the nonlocal parameter [;.
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W | 0 | 02 | 05 | 10 | 15 | 20
a=10h

LAl | 29347 | 29552 | 3.0625 | 3.4458 | 4.0847 | 4.9791
LA2 | 29345 | 29550 | 3.0623 | 3.4456 | 4.0845 | 4.9788
LA3 | 29347 | 29552 | 3.0625 | 34458 | 4.0847 | 4.9791
LA4 | 29068 | 29276 | 3.0365 | 34257 | 4.0742 | 4.9822
LA5 | 29066 | 29273 | 3.0363 | 34253 | 4.0737 | 4.9815
LAG | 29068 | 2.9276 | 3.0365 | 34257 | 4.0742 | 4.9822
a=20h
LAl | 2.8375 | 2.8425 | 2.8689 | 2.9629 | 3.1196 | 3.3389
LA2 | 2.8375 | 2.8425 | 2.8688 | 2.9628 | 3.1195 | 3.3389
LA3 | 2.8375 | 2.8425 | 2.8689 | 2.9629 | 3.1196 | 3.3389
LA4 | 2.8091 | 2.8141 | 2.8406 | 2.9354 | 3.0933 | 3.3144
LAS | 2.8090 | 2.8141 | 2.8406 | 2.9354 | 3.0933 | 3.3144
LAG6 | 2.8091 | 2.8141 | 2.8406 | 2.9354 | 3.0933 | 3.3144

Table 3.7. Dimensionless stress g, as a function of the ratio a/h and the
nonlocal elastic parameter [;.

lifhi 0 0.2 0.5 10 | 15

a=10h

LA1 4.8630 4.8818 4.9804 5.3327 5.9200
LA2 4.8643 4.8831 4.9816 5.3333 5.9196
LA3 4.8628 4.8816 4.9803 5.3327 5.9200
LA4 4.9602 4.9868 5.1267 5.6263 6.4590
LAS 4.9621 4.9887 5.1287 5.6285 6.4615
LA6 4.9600 4.9867 5.1265 5.6261 6.4587
a=20h
LAl 9.6945 9.7041 9.7544 9.9340 10.2334
LA2 9.6952 9.7048 9.7550 9.9346 10.2339
LA3 9.6945 9.7040 9.7543 9.9340 10.2334
LA4 9.8771 9.8902 9.9593 10.2059 10.6170
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LAS 9.8781 9.8913 9.9606 10.2084 10.6213
LA6 9.8770 9.8901 9.9592 10.2057 10.6165

1.8

4

——FEM: a/h=10
L7 35| ——=FEM: a/h=20
—e-FEM: a/h=50

1.6

0 05 g, 1 15 2 0 05/, 1 1.5

Figure 3.2. Graphs illustrating the variation of displacement
and stress errors with respect to [; /h;, f, is a polynomial function
- Effect of length ratio b/a and nonlocal elastic parameter

Tables 3.8 and 3.9 present the displacement and stress of the organic
nanoplates for different values of the side length ratio b/a and the ratio [; /h;.
The computational results show that:

For different values of the ratio b/a, as the nonlocal elastic parameter
liincreases, the deviation in the displacement and stress of the organic
nanoplate compared with the classical theory becomes more significant. This
further confirms that the effect of the nonlocal elastic parameter cannot be
neglected in the analysis of organic nanoplates. The computational results
obtained by the finite element method and the analytical method based on all
three shear deformation theories are in very good agreement.

Figure 3.3 presents the calculated differences in stress and displacement
with respect to the ratio [;/h;. These differences increase as the nonlocal
elastic parameter l;increases, and decrease as the ratio b/a increases.

Table 3.8. The dimensionless deflection w* of the nanoplate depending on
the ratio b/a, with a/h = 10.
wh |0 ] 02 05 | 10 [ 15
b=a
LA1 2.9347 2.9552 3.0625 3.4458 4.0847
LA2 2.9345 2.9550 3.0623 3.4456 4.0845
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LA3 2.9347 2.9552 3.0625 3.4458 4.0847
LA4 2.9068 2.9276 3.0365 3.4257 4.0742
LAS 2.9066 2.9273 3.0363 34253 4.0737
LA6 2.9068 2.9276 3.0365 3.4257 4.0742

Table 3.9. Dimensionless stress gyas a function of the ratio b/aand the
nonlocal elastic parameter [;.

lih | LAl LA2 LA3 LA4 | LA5 | LA6
b=a
15 [ 59200 | 59196 | 59200 [ 64590 | 64615 | 6.4587
1.0 | 53327 | 53333 | 5.3327 | 5.6263 | 5.6285 | 5.6261
0.5 | 49804 | 4.9816 | 4.9803 | 51267 | 5.1287 | 5.1265
0.2 | 48818 | 4.8831 | 4.8816 | 4.9868 | 4.9887 | 4.9867
0 | 48630 | 4.8643 | 4.8628 | 4.9602 | 4.9621 | 4.9600
LS 14
— Exact —+—FEM: b/a=1
——FEM 1.35| —e—=FEM:b/a=2
14 =8-FEM; b/a=4
13
E':
=]

0.5

1
Iy

0 0.5

1/h

i

1.5

Figure 3.3. The graph illustrates the error of stress and deflection

3.5. Conclusions of Chapter 3

Chapter 3 has addressed the following main contents:
The author developed a finite element algorithm and the
Solar Nonlocal Static 2025 (SNS 2025) program for analyzing organic
nanoplates, taking into account the size-dependent effect. A Navier-type
analytical solution was also presented to verify the finite element results. The
finite element results were compared with analytical and published results,

showing good accuracy and reliability.
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The contents of this chapter have been published in Paper No. 1 (see

the author’s list of publications).
CHAPTER 4. DYNAMIC RESPONSE ANALYSIS

OF ORGANIC NANOPLATES CONSIDERING THE SIZE EFFECT
AND INVESTIGATION OF THE INFLUENCE OF SEVERAL PARAMETERS
4.1. Free vibration problem

The equation of motion for a free, undamped vibration of the plate is
expressed as follows: Mg+ Kqg=0 4.1

To determine the natural frequencies and corresponding mode shapes
of the organic nanoplate, assume a solution of the form g = gqgsin (wt),
where q, is the amplitude vector and w is the angular frequency. Substituting
this into the free undamped equation (4.1) yields the following eigenvalue
problem: (K—Mw?)gy, =0 4.2)

Equation (4.2) is a homogeneous linear system and admits a nontrivial
solution qo # 0 if and only if the determinant of the matrix (K— Mw?)
vanishes, i.e: det (K —Mw?) =0 4.3)

Solving equation (4.3) yields N natural frequencies w; of the structure.
Corresponding to each natural frequency w;, substituting it into equation
(4.2) gives the corresponding eigenvector g;.

The algorithm diagram for solving the free vibration problem of the
organic nanoplates is shown in Figure 4.1.

Based on the algorithm presented above, the author developed the
computational program Solar Nonlocal Freevibration 2025 (SNF_2025).

For the free vibration problem, starting from equation (2.43),
neglecting the right-hand side and ignoring damping, the dissertation adopts
the Navier-type solution as follows:

o0 o0

wy(x,y) = Z Z Wymn Sin (?) sin (%) elowt

m=1n=1 (4.4)
_ 0 0 . mmnx . nmy iwt
Ws(x: }’) - Zmzl Zn:l VVsmn sin (T) sin (T) e
In which w is the vibration frequency of the plate. Substituting expressions
(4.4) into (2.43), we obtain the following system of equations:
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By solving equation (4.5), the natural frequencies and corresponding
mode shapes are obtained. The solution in this study employs the first three

Y

/ Imput data /

Calculate the matrices F and K

terms of the series.

Y

Boundary condition handling

v

Calculate the natural frequency according to (4.3)

\

/ Export results /

Figure 4.1. Algorithm diagram for solving the free vibration problem

of the organic nanoplate.

Table 4.3 presents the calculated results for the first natural frequency
of the organic nanoplates. From these data, it can be observed that as the ratio
l;/h; increases, the natural frequency of the plate decreases. Figure 4.2
illustrates the difference in the first natural frequency between the cases with
and without considering the effect of the nonlocal elasticity parameter. It is
evident that as the plate becomes thinner (i.e., the a/h ratio increases), the
difference in the first natural frequency between the two cases becomes
smaller. For example, when a/h = 50, the difference between the two cases
is less than 4%. Therefore, if high accuracy is not required, the effect of the
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nonlocal parameter [; can be neglected.
Table 4.3. The first natural frequency w; of the organic nanoplate as a
function of a/hand the nonlocal elastic parameter, with b/a =1,

*
0)1 = a)lh\’ pglass / Eglass

Iihi| LA1 | LA2 | LA3 LA4 LAS | LAG6
a=10h

2.0 [ 0.0430 [ 0.0430 | 0.0430 | 0.0423 [ 0.0423 | 0.0423
15| 00478 | 0.0478 | 0.0478 | 0.0471 | 0.0471 | 0.0471
1.0 | 00525 | 0.0525 | 0.0525 | 0.0517 | 0.0517 | 0.0517
0.5 | 0.0561 | 00561 | 00561 | 0.0552 | 0.0552 | 0.0552
a=20h
20 00133 [ 00133 | 00133 [ 00132 [ 00132 | 0.0132
15 00138 | 00138 | 00138 | 00137 | 0.0137 | 0.0137
1.0 | 00142 | 0.0142 [ 0.0142 [ 0.0141 | 0.0141 | 0.0141
0.5 00144 | 00144 | 00144 | 00144 [ 00144 | 0.0144

1 i
T
0.95
a’h=50
>
0.9 B
P a’h=20
=
0.85
0.8} a’h=10
Exact
0.75 === FEM
0 0.5 1 ",/I’f 1.5 2

Figure 4.2. The difference in the first natural frequency between the cases
considering and neglecting the size effect, where f,, is a polynomial function.
4.2. Forced vibration problem

The equation of forced vibration with damping for the organic
nanoplates, as given in (2.78): Mg+ Cg+Kg=F 4.7
To solve equation (4.7), the thesis employs the Newmark direct
integration method and develops the computational program



Solar Nonlocal Dynamic 2025 (SND 2025). The algorithm flowchart is
shown in Figure 4.6. The plate is subjected to a uniformly distributed load
varying according to the law: p, = P, - F(t), where P,is the load amplitude:

/
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Figure 4.6. Algorithm diagram for solving the forced vibration problem
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of the organic nanoplate.
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sin(wti) 0ty
1

0 t>t

1-L o<t<yy

Triangular load: F(t) = { t
0 t>t

The computational parameter is the displacement at the center of the

Sinusoidal load: F(t) = { ; t1=15ms;

3
plate:w* = % w (g, g); ao=10A. In the following computational results,
o“o

the plate thickness h remains constant at h = 0.55044 nm, while in each
example below, the plate side lengths a and b may vary. The damping
parameter of the organic nanoplate is calculated using the dimensionless
expression of the viscoelastic parameter a = y/Ey;. In the general case, this
damping parameter depends on the characteristics of each material type, and
experimental testing is required to accurately determine this coefficient.
However, to facilitate the computational process, the dissertation only
considers the case where the damping parameter remains constant across all
material layers, with its value ranging from 0 to 107,
- Influence of the damping parameter

The variation of the mid-plane displacement over time corresponding
to different values of the damping coefficient is shown in Figures 4.9 - 4.12.
Some observations can be drawn as follows:

3 _a=0_u=10>6_ﬂ,=10'57ﬂ,=10'4k 1

2 I M

1

* {RN

o " 1uMM{“MI]MIHH'H'IHIHH

.1 W i

, i —

3 ‘ — =10

4 5] —o=10"

—a=10"

0 02 04 ¢ 06 038 1 2 02 04 ¢ 0.6 0.8 1

Figure 4.9. SSSS plate under Figure 4.10. CCCC plate under
triangular loading triangular loading.

- In the case where damping is neglected, when the external force
ceases, the plate continues to vibrate freely without decaying. However,
when the structural damping is considered, the vibration of the plate
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gradually diminishes after the external force is removed.

- During forced vibration (when the excitation force is still acting), the larger
the damping coefficient, the smaller the maximum displacement of the plate. This is
because part of the energy is dissipated through the structural damping.

3 T 1

—a=0 — =0
| \ — =10 | —a=10"°
— =107 0.5} — =107}
1 a=10"* . a=10"*
5 z
0 o

'
—

-0.

wn

|
~

MAM}'AMMIMMQF
/‘fmw LA

-3

1

0 0.2 04 = 0.6 08 1 o 02 04 = 06 0.8 1
Figure 4.11. SSSS plate under sinusoidal Figure 4.12. CCCC plate under
loading sinusoidal loading

- Influence of the loading frequency acting on the plate

When the frequency of the external force coincides with the natural
frequency of the plate, the maximum displacement of the plate gradually
increases over time-this is the resonance phenomenon in the nanoplate.

500 — : S p—
— a0 ‘ a0
—o=10" i 200] —— =10
—a=10" i U |
100 il ‘
| |
20 AVAVAVA"Avavan ﬂ VYL =0 | |
1
! | v A 1111
1
i -200
|
00, 0.2 0.4 o 0.6 0.8 1 300, 0.2 04 ¢ 0.6 0.8 1
Figure 4.21. SSSS plate under Figure 4.22. CCCC plate under
sinusoidal loading sinusoidal loading.

4.5. Conclusion of Chapter 4
The results presented in Chapter 4 have addressed the following main points:
A computational program for analyzing the free vibration of organic
nanoplates, Solar Nonlocal Freevibration 2025 (SNF_2025), has been
developed. Verification with published results shows the program’s reliability.
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The dissertation has demonstrated the influence of the nonlocal elastic
parameter and the plate thickness on the natural frequencies of organic
nanoplates, using both the finite element method and analytical solutions.
The results indicate that for thick plates (a/A=10), the effect of the nonlocal
parameter is significant; however, for thin plates (a/h=50), this effect
becomes negligible.

A computational program for analyzing the forced vibration of organic
nanoplates under dynamic loading, Solar Nonlocal Dynamic 2025
(SND 2025), has also been developed, showing good accuracy and reliability.

The computational results in this chapter have been published in
papers No. 1 and 2 (Author’s publication list).

CONCLUSION

The dissertation has made the following significant new contributions:

1. A theoretical model has been established, and the equilibrium
equations for organic nanoplates have been derived for the general case, as
well as for the problems of static bending, free vibration, and forced
vibration, taking into account small-scale effects.

2. By employing the Finite Element Method (FEM) in combination
with nonlocal elasticity theory, the dissertation has developed algorithms to
solve the problems of static bending, free vibration, and forced vibration of
organic nanoplates considering the size effect. The results reveal clear
differences between the nonlocal elasticity theory (which includes small-
scale effects) and the classical elasticity theory (which neglects them).

3. A set of computational programs - SNS 2025, SNF 2025, and
SND_2025 - has been developed to calculate deflections, stresses, natural
frequencies, and forced displacements of five-layer organic nanoplates while
accounting for the small-scale effect.

4. The effects of various parameters such as the nonlocal elasticity
coefficient, geometric dimensions, damping ratio, boundary conditions, and
excitation frequency on the static bending, free vibration, and forced
vibration responses of organic nanoplates have been thoroughly investigated.
The results show that the size effect becomes significant for thicker plates,
whereas it diminishes as the plate becomes thinner.

5. The numerical data obtained from this dissertation can serve as a
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useful reference for the design of organic nanoplate structures subjected to
static and dynamic loads, such as micro-scale energy storage devices,
sensors, and electronic chips.
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