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INTRODUCTION 

1. The urgency of the dissertation 

Energy consumption is an indispensable requirement for social 

progress. In previous decades, to meet the ever-increasing demand for energy, 

humanity has extensively exploited and utilized various types of fossil fuels. 

However, these conventional energy sources are gradually being depleted, and 

their consequences have proven to be extremely devastating, leading to the 

degradation of the global living environment. For this reason, the demand for 

environmentally friendly and renewable energy sources has become 

exceedingly urgent. Fortunately, humankind has discovered methods to 

harness solar energy - one of the most promising renewable energy sources 

that is entirely non-polluting and inexhaustible. The simplest way to utilize this 

energy is by developing solar energy absorption panels that directly convert 

sunlight into other usable forms of energy (commonly known as solar cells). 

To optimize the efficiency of solar energy absorption and conversion into 

electricity, comprehensive and detailed investigations are required concerning 

various aspects such as material properties, mechanical behavior, and 

manufacturing technology. Among these aspects, the study of the mechanical 

response of multilayer organic nanoplates (which serve as structural 

components in solar cell applications) plays a crucial role. 

Based on the aforementioned analysis, the dissertation addresses the 

research topic entitled: “Static and dynamic analysis of multi-layer organic 

nanoplates considering the size effect.” 

2. Objectives of the dissertation 

This dissertation aims to investigate the static and dynamic responses 

of organic nanoplate structures subjected to static and dynamic loadings, 

based on the finite element method (FEM) in conjunction with the nonlocal 

elasticity theory. 

3. Scope and subjects of the study 

The subject of the study is the multilayer organic nanoplate subjected to 

both static and dynamic loads. The scope of the research covers three fundamental 
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problems: the linear static bending problem, the free vibration problem, and the 

linear forced vibration problem of multilayer organic nanoplates. 

4. Research methodology 

The research methodology is based on the finite element method 

(FEM) formulated within the framework of nonlocal elasticity theory. 

5. Scientific and practical significance of the dissertation 

The analysis of the static and dynamic responses of multilayer organic 

nanoplates holds significant importance in the field of structural mechanics. 

The findings of this dissertation provide new contributions to the analysis 

and understanding of organic nanoplate structures. The obtained results can 

serve as valuable references for researchers, designers, and manufacturers 

engaged in the development and fabrication of organic nanoplate materials 

and structures. 

6. Structure of the dissertation 

The dissertation is composed of the Introduction, four main chapters, 

Conclusion, a list of the author’s scientific publications, and the references. 

CHAPTER 1. OVERVIEW OF THE RESEARCH PROBLEM 

Chapter 1 (26 pages) presents a comprehensive overview of 

nanomaterials, including their fabrication technologies and applications. The 

chapter also provides a review of theoretical models and computational 

approaches used in the analysis of nanostructures in general, as well as a 

summary of existing research findings related to the mechanical behavior 

and analysis of nanostructural systems. 

CHAPTER 2. THEORETICAL BASIS FOR THE ANALYSIS 

OF ORGANIC NANOPLATES CONSIDERING THE SIZE EFFECTS 

2.1. Problem model and assumptions 

The organic nanoplate is modeled as illustrated in Figure 2.1. The 

plate consists of five distinct material layers, each possessing different 
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mechanical properties. 

Multilayer nanocomposite plate

a) Three-dimensional model b) 2D cross-section

 
Figure 2.1. Model of the multilayer organic nanoplate 

The dissertation adopts the following assumptions: The normal strain 

component εz=0. Small deformation assumptions are applied. Thermal 

effects are neglected. Each layer is considered linearly elastic.  

2.2. Mechanical Behavior Relations of the Plate 

The displacement field of the organic nanoplate [58, 87, 88]: 

𝑢(𝑥, 𝑦, 𝑧) = −𝑧
𝜕𝑤𝑏

𝜕𝑥
− 𝑓𝑧

𝜕𝑤𝑠

𝜕𝑥
;𝑣(𝑥, 𝑦, 𝑧) = −𝑧

𝜕𝑤𝑏

𝜕𝑦
−𝑓𝑧

𝜕𝑤𝑠

𝜕𝑦
; (2.1) 

 𝑤(𝑥, 𝑦, 𝑧) = 𝑤𝑏(𝑥, 𝑦) + 𝑤𝑠(𝑥, 𝑦) 

where the function fz can take one of the following three forms: The 

polynomial function is expressed as [87]: 𝑓𝑧 = −
𝑧

4
+
5

3

𝑧3

ℎ2
; The sine function 

is expressed as [88]: 𝑓𝑧 = 𝑧 −
ℎ

𝜋
𝑠𝑖𝑛 (

𝜋𝑧

ℎ
); The hyperbolic sine function is 

expressed as [89]: 𝑓𝑧 = 𝑧 − ℎ 𝑠𝑖𝑛ℎ (
𝑧

ℎ
) + 𝑧 𝑐𝑜𝑠ℎ (

1

2
).  

The strain field is given as follows: 

     𝜺 = {

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑥𝑦

} = −𝑧

{
 
 

 
 

𝜕2𝑤𝑏

𝜕𝑥2

𝜕2𝑤𝑏

𝜕𝑦2

2
𝜕2𝑤𝑏

𝜕𝑥𝜕𝑦}
 
 

 
 

− 𝑓𝑧

{
 
 

 
 

𝜕2𝑤𝑠

𝜕𝑥2

𝜕2𝑤𝑠

𝜕𝑦2

2
𝜕2𝑤𝑠

𝜕𝑥𝜕𝑦}
 
 

 
 

+ 𝑔𝑧 {
0
0
0
}    (2.5) 
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 𝜺 = {
𝜀𝑥𝑧
𝜀𝑦𝑧
} = 𝑔𝑧 {

𝜕𝑤𝑠

𝜕𝑥
𝜕𝑤𝑠

𝜕𝑦

}   

The dissertation employs nonlocal elasticity theory; therefore, the 

constitutive relation between stress and strain in the i-th material layer is 

given by the following form [27], [89, 90]: 

 (1 − 𝑙2𝛻2)𝜎𝑖 = [

𝑐11
𝑖 𝑐12

𝑖 0

𝑐12
𝑖 𝑐11

𝑖 0

0 0 𝑐33
𝑖

] {

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
}

𝑖

= 𝐷𝑏
𝑖 𝜀𝑖 + 𝜒

𝜕𝜺𝑖

𝜕𝑡
    (2.8) 

(1 − 𝑙2𝛻2)𝜏𝑖 = [
𝑐33
𝑖 0

0 𝑐33
𝑖
] {
𝛾𝑥𝑧
𝛾𝑦𝑧
}
𝑖

= 𝐷𝑠
𝑖𝛾𝑠
𝑖 +𝜒

𝜕𝜸𝑠
𝑖

𝜕𝑡
          (2.9) 

where 𝜒 is the viscoelastic coefficient of the material. 

To derive the equations of motion for the organic nanoplate, the 

dissertation employs the principle of minimum total potential energy [91]: 

 𝛿𝑈 − 𝛿𝑊 − 𝛿𝑇 = 0                                     (2.15) 

where 𝛿𝑈,  𝛿𝑊 and 𝛿𝑇 are the variations of the plate's strain potential 

energy, the work of external forces, and the kinetic energy variation. 

After manipulation, the equilibrium equation of the nanoplate takes 

the following form: 

∫

{
 
 
 

 
 
 

[
 
 
 
 
 
 
 −𝐴𝑧11

𝜕4𝑤𝑏
𝜕𝑥4

− 𝐵𝑓11
𝜕4𝑤𝑠
𝜕𝑥4

− 𝐴𝑧12
𝜕4𝑤𝑏
𝜕𝑥2𝜕𝑦2

− 𝐵𝑓12
𝜕4𝑤𝑠
𝜕𝑥2𝜕𝑦2

−𝜒𝐴𝑧𝜒
𝜕

𝜕𝑡
(
𝜕4𝑤𝑏
𝜕𝑥4

+
𝜕4𝑤𝑏
𝜕𝑥2𝜕𝑦2

+ 2
𝜕4𝑤𝑏
𝜕𝑥2𝜕𝑦2

) − 4𝐴𝑧33
𝜕4𝑤𝑏
𝜕𝑥2𝜕𝑦2

−𝜒𝐵𝑓𝜒
𝜕

𝜕𝑡
(
𝜕4𝑤𝑠
𝜕𝑥4

+
𝜕4𝑤𝑠
𝜕𝑥2𝜕𝑦2

+ 2
𝜕4𝑤𝑠
𝜕𝑥2𝜕𝑦2

) − 4𝐵𝑓33
𝜕4𝑤𝑠
𝜕𝑥2𝜕𝑦2 ]

 
 
 
 
 
 
 

𝛿𝑤𝑏

}
 
 
 

 
 
 

𝑑𝑥𝑑𝑦
𝛺

 

+∫

[
 
 
 
 
 
 
 
 
 −𝐵𝑓11

𝜕4𝑤𝑏
𝜕𝑥4

− 𝐷𝑓11
𝜕4𝑤𝑠
𝜕𝑥4

− 𝐵𝑓12
𝜕4𝑤𝑏
𝜕𝑥2𝜕𝑦2

− 𝐷𝑓12
𝜕4𝑤𝑠
𝜕𝑥2𝜕𝑦2

−4𝐵𝑓33
𝜕4𝑤𝑏
𝜕𝑥2𝜕𝑦2

− 4𝐷𝑓33
𝜕4𝑤𝑠
𝜕𝑥2𝜕𝑦2

− 𝜒𝐴𝑠𝜒 (
𝜕4𝑤𝑠
𝜕𝑥4

+
𝜕4𝑤𝑠
𝜕𝑦4

)

−𝜒𝐵𝑓𝜒
𝜕

𝜕𝑡
(
𝜕4𝑤𝑏
𝜕𝑥4

+
𝜕4𝑤𝑏
𝜕𝑥2𝜕𝑦2

+ 2
𝜕4𝑤𝑏
𝜕𝑥2𝜕𝑦2

)

−𝜒𝐷𝑓𝜒
𝜕

𝜕𝑡
(
𝜕4𝑤𝑠
𝜕𝑥4

+
𝜕4𝑤𝑠
𝜕𝑥2𝜕𝑦2

+ 2
𝜕4𝑤𝑠
𝜕𝑥2𝜕𝑦2

)
]
 
 
 
 
 
 
 
 
 

𝛿𝑤𝑠𝑑𝑥𝑑𝑦
𝛺
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−∫

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝑝𝑧

[
 
 
 
 

𝛿𝑤𝑏 −∑
𝑙𝑖
2ℎ𝑖
ℎ

𝑖

(

 
 

𝜕2𝛿𝑤𝑏
𝜕𝑥2

+
𝜕2𝛿𝑤𝑏
𝜕𝑦2

)

 
 

]
 
 
 
 

+ 𝑝𝑧

[
 
 
 
 
 

𝛿𝑤𝑠

−∑
𝑙𝑖
2ℎ𝑖
ℎ

𝑖

(

 
 

𝜕2𝛿𝑤𝑠
𝜕𝑥2

+
𝜕2𝛿𝑤𝑠
𝜕𝑦2

)

 
 

]
 
 
 
 
 

−(𝛿𝑤𝑏 + 𝛿𝑤𝑠)∑
𝑙𝑖
2ℎ𝑖
ℎ

𝑖

(
𝜕2𝑝𝑧
𝜕𝑥2

+
𝜕2𝑝𝑧
𝜕𝑦2

)

+

[
 
 
 
 
 

𝐻0(𝑤̈𝑏 + 𝑤̈𝑠)𝛿𝑤𝑏

+𝐻0𝑙

(

 

𝜕(𝑤̈𝑏 + 𝑤̈𝑠)

𝜕𝑥

𝜕𝛿𝑤𝑏
𝜕𝑥

+
𝜕(𝑤̈𝑏 + 𝑤̈𝑠)

𝜕𝑦

𝜕𝛿𝑤𝑏
𝜕𝑦 )

 

]
 
 
 
 
 

}
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝑑𝑥𝑑𝑦
𝛺

 

−∫

{
 
 
 

 
 
 + {𝐻1 (

𝜕2𝑤̈𝑏

𝜕𝑥2
+

𝜕2𝑤̈𝑏

𝜕𝑦2
) + 𝐻2 (

𝜕2𝑤̈𝑠

𝜕𝑥2
+

𝜕2𝑤̈𝑠

𝜕𝑦2
)}𝛿𝑤𝑏

−𝛻2 {𝐻1𝑙 (
𝜕2𝑤̈𝑏

𝜕𝑥2
+

𝜕2𝑤̈𝑏

𝜕𝑦2
)+ 𝐻2𝑙 (

𝜕2𝑤̈𝑠

𝜕𝑥2
+

𝜕2𝑤̈𝑠

𝜕𝑦2
)}𝛿𝑤𝑏

+ {𝐻2 (
𝜕2𝑤̈𝑏

𝜕𝑥2
+

𝜕2𝑤̈𝑏

𝜕𝑦2
) + 𝐻3 (

𝜕2𝑤̈𝑠

𝜕𝑥2
+

𝜕2𝑤̈𝑠

𝜕𝑦2
)}𝛿𝑤𝑠

−𝛻2 {𝐻2𝑙 (
𝜕2𝑤̈𝑏

𝜕𝑥2
+

𝜕2𝑤̈𝑏

𝜕𝑦2
)+ 𝐻3𝑙 (

𝜕2𝑤̈𝑠

𝜕𝑥2
+

𝜕2𝑤̈𝑠

𝜕𝑦2
)}𝛿𝑤𝑠}

 
 
 

 
 
 

𝑑𝑥𝑑𝑦 = 0
𝛺

     (2.43) 

2.3. Finite Element Model 

The nanoplate is discretized into four-node quadrilateral elements 

(Figure 2.2), the nodal displacement vector is defined as follows: 

𝑞𝑒 =∑[𝑤𝑏𝑗, 𝑤𝑠𝑗, (
𝜕𝑤𝑏
𝜕𝑥

)
𝑗
, (
𝜕𝑤𝑠
𝜕𝑥

)
𝑗
, (
𝜕𝑤𝑏
𝜕𝑦

)
𝑗

, (
𝜕𝑤𝑠
𝜕𝑦

)
𝑗

]

4

𝑗=1

 

The variational formulation of the elastic strain potential energy is 

expressed as follows:  𝛿𝑈𝑒 = 𝑞
𝑒
𝑇𝐾𝑒𝛿𝑞𝑒 + 𝑞̇𝑒

𝑇𝐶𝑒𝛿𝑞𝑒                                  (2.57) 

where the element stiffness matrix is given by: 

 
Figure 2.2. Representation of the Four-Node Quadrilateral Element. 
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 𝐾𝑒 = 𝐾𝑒
𝑏 +𝐾𝑒

𝑠 (2.58) 

where:      𝐾𝑒
𝑏 = ∫ ([𝑉𝑧

𝑇 𝑉𝑓
𝑇] [

𝐴𝑧 𝐵𝑓
𝐵𝑓 𝐷𝑓

] [
𝑉𝑧
𝑉𝑓
]) 𝑑𝑥𝑑𝑦

𝛺𝑒
                        (2.59) 

 𝐾𝑒
𝑠 = ∫ (𝑉𝑠

𝑇𝐴𝑠𝑉𝑠)𝛺𝑒
𝑑𝑥𝑑𝑦 (2.60) 

And the element damping matrix of the plate, accounting for the 

viscoelastic behavior of the material, is expressed as follows: 

𝐶𝑒 = 𝜒∫ ([𝑉𝑧
𝑇 𝑉𝑓

𝑇] [
𝐴𝑧𝜒 𝐵𝑓𝜒
𝐵𝑓𝜒 𝐷𝑓𝜒

] [
𝑉𝑧
𝑉𝑓
] + (𝑉𝑠

𝑇𝐴𝑠𝜒𝑉𝑠))𝑑𝑥𝑑𝑦𝛺𝑒
     (2.62) 

The variational formulation of the kinetic energy is expressed as follows: 

 𝛿𝑇𝑒 = 𝑞̈𝑒
𝑇𝑀𝑒𝛿𝑞𝑒 (2.69) 

where the element mass matrix Me is determined as follows: 

𝑀𝑒 =

[
 
 
 
 
 
 
 
 
 
𝜕𝐹𝑏

𝑇

𝜕𝑥
𝐻1

𝜕𝐹𝑏

𝜕𝑥
+
𝜕𝐹𝑏

𝑇

𝜕𝑥
𝐻2

𝜕𝐹𝑠

𝜕𝑥

+
𝜕𝐹𝑠

𝑇

𝜕𝑥
𝐻2

𝜕𝐹𝑏

𝜕𝑥
+
𝜕𝐹𝑠

𝑇

𝜕𝑥
𝐻3

𝜕𝐹𝑠

𝜕𝑥

𝜕𝐹𝑏
𝑇

𝜕𝑦
𝐻1

𝜕𝐹𝑏

𝜕𝑦
+
𝜕𝐹𝑏

𝑇

𝜕𝑦
𝐻2

𝜕𝐹𝑠

𝜕𝑦

+
𝜕𝐹𝑠

𝑇

𝜕𝑦
𝐻2

𝜕𝐹𝑏

𝜕𝑦
+
𝜕𝐹𝑠

𝑇

𝜕𝑦
𝐻3

𝜕𝐹𝑠

𝜕𝑦

𝐹𝑏
𝑇𝐻0𝐹𝑏 +𝐹𝑏

𝑇𝐻0𝐹𝑠
+𝐹𝑠

𝑇𝐻0𝐹𝑏 + 𝐹𝑠
𝑇𝐻0𝐹𝑠 ]

 
 
 
 
 
 
 
 
 

                  (2.70) 

From the variational expression of the external work, the dissertation 

derives the nodal load vector of the element as follows: 

𝑃𝑒 = ∫

{
 
 

 
 

(𝐹𝑏 +𝐹𝑠)
𝑇𝑝𝑧𝑙

2

[
 
 
 
 
 
𝑝𝑧 (

𝜕2(𝐹𝑏+𝐹𝑠)
𝑇

𝜕𝑥2

+
𝜕2(𝐹𝑏+𝐹𝑠)

𝑇

𝜕𝑦2

)

+(𝐹𝑏 +𝐹𝑠)
𝑇 (

𝜕2𝑝𝑧

𝜕𝑥2
+
𝜕2𝑝𝑧

𝜕𝑦2
)]
 
 
 
 
 

}
 
 

 
 

𝑑𝑥𝑑𝑦
𝛺𝑒

  (2.74) 

After assembling the element mass matrices, element stiffness 

matrices, and element nodal force vectors, the equation of motion of the 

organic nanoplate:           𝑀. 𝑞̈ +Cq̇+ 𝐾.𝑞 = 𝑃                                   (2.78) 

where 𝑀 = ∑ 𝑀𝑒𝑒 , 𝐶 = ∑ 𝐶𝑒𝑒 , 𝐾 = ∑ 𝐾𝑒𝑒 , and 𝑃 = ∑ 𝑃𝑒𝑒  are the global 

mass matrix, global damping matrix, global stiffness matrix, and global 

nodal load vector, respectively; while 𝑞̈ = ∑ 𝑞̈𝑒𝑒 , 𝑞̇ = ∑ 𝑞̇𝑒𝑒 , and 𝑞 = ∑ 𝑞𝑒𝑒  
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are the global nodal acceleration vector, global nodal velocity vector, and 

global nodal displacement vector of the organic nanoplate. 

2.4. Boundary conditions 

The plate is analyzed under different types of boundary constraints, 

including simply supported (denoted as S) and clamped (denoted as C) 

conditions. The specific boundary conditions for each case, considering a 

rectangular plate, are defined as follows: 

- For a simply supported plate at 𝑥 = 0 and 𝑥 = 𝑎, the boundary conditions are: 

𝑤𝑏𝑖 = 0,𝑤𝑠𝑖 = 0, (
𝜕𝑤𝑏

𝜕𝑦
)
𝑖
= 0, (

𝜕𝑤𝑠

𝜕𝑦
)
𝑖
= 0                              (2.79) 

- For a simply supported plate at 𝑦 = 0 and 𝑦 = 𝑏, the boundary conditions are: 

𝑤𝑏𝑖 = 0,𝑤𝑠𝑖 = 0, (
𝜕𝑤𝑏

𝜕𝑥
)
𝑖
= 0, (

𝜕𝑤𝑠

𝜕𝑥
)
𝑖
= 0                          (2.80) 

- For a clamped plate at 𝑥 = 0 and 𝑥 = 𝑎, the boundary conditions are: 

𝑤𝑏𝑖 = 0,𝑤𝑠𝑖 = 0, (
𝜕𝑤𝑏

𝜕𝑥
)
𝑖
= 0, (

𝜕𝑤𝑠

𝜕𝑥
)
𝑖
, (
𝜕𝑤𝑏

𝜕𝑦
)
𝑖
= 0, (

𝜕𝑤𝑠

𝜕𝑦
)
𝑖
= 0      (2.81) 

- For a clamped plate at 𝑦 = 0 and 𝑦 = 𝑏, the boundary conditions are: 

𝑤𝑏𝑖 = 0,𝑤𝑠𝑖 = 0, (
𝜕𝑤𝑏

𝜕𝑥
)
𝑖
= 0, (

𝜕𝑤𝑠

𝜕𝑥
)
𝑖
, (
𝜕𝑤𝑏

𝜕𝑦
)
𝑖
= 0, (

𝜕𝑤𝑠

𝜕𝑦
)
𝑖
= 0   (2.82) 

2.5. Conclusions of Chapter 2 

Based on the refined shear deformation theory, nonlocal elasticity 

theory, and the finite element method, the author has successfully established 

the stiffness matrix, mass matrix, and nodal force vector of the plate. Using the 

principle of minimum total potential energy, the equations of motion for the 

organic nanoplate under both static and dynamic loads have been formulated. 

This chapter also defines the specific boundary conditions for various 

support configurations.  

The mechanical behavior relations and the formulas presented in 

Chapter 2 have been published by the author in Articles 1–5 (see the author’s 

list of publications). 

CHAPTER 3. STATIC ANALYSIS OF ORGANIC NANOPLATES 

 CONSIDERING THE SIZE EFFECTS AND INVESTIGATION 

OF THE INFLUENCE OF SEVERAL FACTORS 

3.1. Finite element algorithm for solving the static bending problem of 
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the organic nanoplate 

The equilibrium equation for an organic nanoplate subjected to static 

loading is expressed as follows: 𝐾. 𝑞 = 𝑃                                                   (3.1) 

From equation (3.1), the global nodal displacement vector of the 

plate can be determined as follows: 𝑞 = 𝐾−1𝑃                                              (3.2) 

The flowchart for solving the static bending problem of the organic 

nanoplate is shown in Figure 3.1. Based on the algorithm described above, 

the author developed the Solar_Nonlocal_Static_2025 (SNS_2025) program 

in the Matlab environment for the static analysis of organic nanoplates. The 

program consists of three main modules:  Input and mesh generation module. 

Static analysis solver module for the organic nanoplate. Results output 

module. 

Start

Imput data

Calculate the matrices F and K

Boundary condition handling

Displacement and stress calculation

Export results

End

 

Figure 3.1. Flowchart for Solving the Static Bending Problem 

of the Organic NanoPlate. 

3.2. Verification of the computational program 



9 

 
This section presents several examples to verify the accuracy of both 

the theoretical model and the computational program, using analytical 

solutions as well as the finite element method. The Navier-type solution of 

equation (2.43) is expressed as follows: 

𝑤𝑏(𝑥, 𝑦) = ∑ ∑𝑊𝑏𝑚𝑛 𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
)

∞

𝑛=1

∞

𝑚=1

 

𝑤𝑠(𝑥, 𝑦) = ∑ ∑ 𝑊𝑠𝑚𝑛 𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝑎
)𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
)∞

𝑛=1
∞
𝑚=1         

 

(3.3) 

where 𝑚 and 𝑛 are natural numbers, and 𝑊𝑏𝑚𝑛, 𝑊𝑠𝑚𝑛 are the amplitudes of 

the corresponding displacements. The load acting on the plate with amplitude 

𝑃max is defined by the following expression: 

𝑝𝑧(𝑥, 𝑦) = ∑ ∑
16𝑃𝑚𝑎𝑥

𝜋2𝑚𝑛

∞
𝑚=1

∞
𝑚=1 𝑠𝑖𝑛 (

𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
)        

 

(3.4) 

Substituting expressions (3.3) and (3.4) into (2.43) yields a system of 

equations containing only the two unknowns 𝑊𝑏𝑚𝑛 and 𝑊𝑠𝑚𝑛, as follows: 

[
𝐾11 𝐾12
𝐾21 𝐾22

] {
𝑊𝑏𝑚𝑛

𝑊𝑠𝑚𝑛
} = {

𝑃𝑏
𝑃𝑠
}        

 

(3.5) 

Solving equation (3.5) yields the amplitudes 𝑊𝑏𝑚𝑛 and 𝑊𝑠𝑚𝑛: 

{
𝑊𝑏𝑚𝑛

𝑊𝑠𝑚𝑛
} = [

𝐾11 𝐾12
𝐾21 𝐾22

]
−1

{
𝑃𝑏
𝑃𝑠
}        

 

(3.7) 

By substituting equation (3.7) into expression (3.3), the static bending 

displacement can be obtained. 

Verification example 1: This example compares the static bending 

displacement of the nanoplate accounting for the size effect via the nonlocal 

parameter l. The plate has a = b = 10 nm, thickness hvarying from a/10 to 

a/100, E = 30 MPa, ν = 0.3, ρ = 1, uniformly distributed load Q0 = 1, 

and is simply supported on all edges. 

The maximum dimensionless displacement is calculated by the 

following formula ( )( )3 3 2 4

max 010 / 12 1w h w Q a= −


. Table 3.1 presents the 

convergence of the finite element method (FEM) results for the static 

bending displacement of the nanoplate as the mesh density is gradually 

increased, considering different nonlocal elasticity parameters. The results in 

this table demonstrate that as the number of elements in the mesh increases, 
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the computed displacements of the nanoplate converge. A 16×16 element 

mesh provides the necessary accuracy when compared with the analytical 

solution based on the third-order shear deformation theory reported in 

reference [45]. Therefore, this mesh configuration will be used for all 

subsequent calculations. 

Table 3.2 presents the comparison of the maximum displacements for 

different nonlocal parameters and plate thicknesses. The results demonstrate 

that the finite element method (FEM) computations are in close agreement 

with the analytical solutions and also consistent with the results reported in 

reference [45]. The slight discrepancies arise because the theoretical model 

in [45] is based on the third-order shear deformation theory, whereas the 

displacement field in this dissertation is formulated using the refined shear 

deformation theory. 

Table 3.1. Convergence of the maximum dimensionless displacement 𝑤̆ of 

the nanoplate under static loading, 𝑎/ℎ = 10, [45] using the third-order 

shear deformation theory. 

l 

(nm) 

Results of the dissertation using the finite element 

method with different mesh discretizations 

Analytical 

results 

[45] 6×6 10×10 14×14 16×16 18×18 20×20 

fz is a polynomial function 

0 4.394 4.314 4.292 4.287 4.283 4.281 4.185 

0.5 4.583 4.506 4.484 4.478 4.475 4.472 4.560 

1 5.151 5.081 5.059 5.053 5.049 5.046 4.936 

fz is a sine function 

0 4.393 4.313 4.292 4.286 4.283 4.280 4.185 

0.5 4.583 4.505 4.483 4.478 4.474 4.472 4.560 

1 5.152 5.081 5.058 5.052 5.049 5.046 4.936 

fz is a hyperbolic sine function 

0 4.394 4.314 4.292 4.287 4.283 4.281 4.185 

0.5 4.583 4.506 4.484 4.478 4.475 4.472 4.560 

1 5.151 5.081 5.059 5.053 5.049 5.046 4.936 

Table 3.2. Comparison of the dimensionless displacement 𝑤̆ of the nanoplate 

with analytical results [45] using the third-order shear deformation theory. 
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l (nm) 

The dissertation Analytical 

results 

[45] 
LA1 LA2 LA3 LA4 LA5 LA6 

a/h=10 

0 4.261 4.261 4.261 4.287 4.286 4.287 4.185 

0.5 4.447 4.446 4.447 4.478 4.478 4.478 4.560 

1 5.004 5.003 5.004 5.053 5.052 5.053 4.936 

a/h=50 

0 4.063 4.063 4.063 4.085 4.085 4.085 4.015 

0.5 4.244 4.244 4.244 4.269 4.269 4.269 4.377 

1 4.786 4.786 4.786 4.823 4.823 4.823 4.740 

a/h=100 

0 4.057 4.057 4.057 4.078 4.078 4.078 4.010 

0.5 4.237 4.237 4.237 4.263 4.263 4.263 4.372 

1 4.779 4.779 4.779 4.816 4.816 4.816 4.734 

Note: LA1: Analytical solution with 𝑓𝑧 as a polynomial function; LA2: 

Analytical solution with 𝑓𝑧 as a sine function; LA3: Analytical solution with 

𝑓𝑧 as a hyperbolic sine function; LA4: FEM solution with 𝑓𝑧 as a polynomial 

function; LA5: FEM solution with 𝑓𝑧 as a sine function; LA6: FEM solution 

with 𝑓𝑧 as a hyperbolic sine function. 

3.3. Investigation of the effects of various parameters on the static 

bending response of organic nanoplates 

The nanoplate has geometric parameters 𝑎, 𝑏, and ℎ. The aspect ratio 

𝑎/𝑏 varies from 1 to 4, and the thickness ratio 𝑎/ℎ varies from 10 to 50. The 

plate is composed of five material layers with a total thickness ℎ =

0.55044 nm; the individual layer thicknesses ℎ𝑖  are distributed 

proportionally as 550:0.120:0.050:0.170:0.100. The mechanical properties 

of each layer are given in Table 3.5. The plate is subjected to a uniformly 

distributed load of intensity 𝑃max. 

Table 3.5. Mechanical properties of each material layer [48] 

Layer 

order 
Name 

Elastic 

modulus (GPa) 

Poisson's 

ratio 

Density 

(kg/m3) 

1 Glass 69 0.23 2400 
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2 ITO 116 0.35 7120 

3 PEDOT:PSS 2.3 0.4 1000 

4 P3HT:PCBM 6 0.23 1200 

5 Aluminum 70 0.35 2601 

The two parameters at the midpoint of the plate: 
3

0*

4

10
,

2 2

glass

max

h E a b
w w x y

P a

 
= = = 

 
; * 0

max

( , , )
2 2 2

x x

h a b h
x y z

P a
 = = = = , where 

h0 = 1 nm. The formula for calculating this difference is expressed as follows:  

( )

( )

* 0

* 0

i

w

i

w l
Diff

w l


=

=
; 

( )

( )

*

*

0

0

x i

x i

l
Diff

l







=

=
; 

( )

( )

*

*

0

0

i i

i i

l
Diff

l







=

=
   (3.9) 

- Effect of plate thickness and nonlocal elastic parameter 

The dissertation assigns the nonlocal parameter of each layer 𝑙𝑖 to vary 

from 0 to 2ℎ𝑖, and the plate length-to-thickness ratio 𝑎/ℎ varies from 10 to 

50. The computational results are presented in Tables 3.6 and 3.7. 

+ If the nonlocal elastic parameter 𝑙𝑖 increases, both the displacement 

and the stress of the organic nanoplate increase, which indicates that the 

nonlocal parameter effectively reduces the stiffness of the nanoplate. 

+ The results obtained by both analytical methods and the finite 

element method, across the three plate theories considered, are similar, 

indicating that either analytical or numerical approaches may be used to 

solve the bending problem of organic nanoplates. 

Figure 3.2 is the plot showing the differences in displacement and 

stress as functions of the ratio 𝑙𝑖/ℎ𝑖 for three values of the thickness ratio 

𝑎/ℎ. When 𝑎/ℎ = 10, the discrepancy in displacement and stress (between 

the cases with and without the nonlocal parameter 𝑙𝑖) becomes more 

pronounced as 𝑙𝑖/ℎ𝑖 increases. However, for 𝑎/ℎ = 50 the discrepancy 

between the two cases is not evident (the maximum discrepancy of 

displacement does not exceed 3% for 𝑙𝑖/ℎ𝑖 = 2), which implies that if very 

high accuracy is not required, the effect of the nonlocal elastic parameter 

may be neglected, considerably simplifying the computations. 

Table 3.6. Dimensionless bending displacement 𝑤∗ depending on the ratio 

𝑎/ℎand the nonlocal parameter 𝑙𝑖. 



13 

 

li/hi 0 0.2 0.5 1.0 1.5 2.0 

a = 10h 

LA1 2.9347 2.9552 3.0625 3.4458 4.0847 4.9791 

LA2 2.9345 2.9550 3.0623 3.4456 4.0845 4.9788 

LA3 2.9347 2.9552 3.0625 3.4458 4.0847 4.9791 

LA4 2.9068 2.9276 3.0365 3.4257 4.0742 4.9822 

LA5 2.9066 2.9273 3.0363 3.4253 4.0737 4.9815 

LA6 2.9068 2.9276 3.0365 3.4257 4.0742 4.9822 

a = 20h 

LA1 2.8375 2.8425 2.8689 2.9629 3.1196 3.3389 

LA2 2.8375 2.8425 2.8688 2.9628 3.1195 3.3389 

LA3 2.8375 2.8425 2.8689 2.9629 3.1196 3.3389 

LA4 2.8091 2.8141 2.8406 2.9354 3.0933 3.3144 

LA5 2.8090 2.8141 2.8406 2.9354 3.0933 3.3144 

LA6 2.8091 2.8141 2.8406 2.9354 3.0933 3.3144 

Table 3.7. Dimensionless stress 𝜎𝑥
∗ as a function of the ratio 𝑎/ℎ and the 

nonlocal elastic parameter 𝑙𝑖. 

li/hi 0 0.2 0.5 1.0 1.5 

a = 10h 

LA1 4.8630 4.8818 4.9804 5.3327 5.9200 

LA2 4.8643 4.8831 4.9816 5.3333 5.9196 

LA3 4.8628 4.8816 4.9803 5.3327 5.9200 

LA4 4.9602 4.9868 5.1267 5.6263 6.4590 

LA5 4.9621 4.9887 5.1287 5.6285 6.4615 

LA6 4.9600 4.9867 5.1265 5.6261 6.4587 

a = 20h 

LA1 9.6945 9.7041 9.7544 9.9340 10.2334 

LA2 9.6952 9.7048 9.7550 9.9346 10.2339 

LA3 9.6945 9.7040 9.7543 9.9340 10.2334 

LA4 9.8771 9.8902 9.9593 10.2059 10.6170 
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LA5 9.8781 9.8913 9.9606 10.2084 10.6213 

LA6 9.8770 9.8901 9.9592 10.2057 10.6165 

Exact
FEM

FEM
FEM
FEM

  

Figure 3.2. Graphs illustrating the variation of displacement 

and stress errors with respect to 𝑙𝑖/ℎ𝑖, 𝑓𝑧 is a polynomial function 

- Effect of length ratio b/a and nonlocal elastic parameter 

Tables 3.8 and 3.9 present the displacement and stress of the organic 

nanoplates for different values of the side length ratio 𝑏/𝑎 and the ratio 𝑙𝑖/ℎ𝑖. 

The computational results show that: 

For different values of the ratio 𝑏/𝑎, as the nonlocal elastic parameter 

𝑙𝑖increases, the deviation in the displacement and stress of the organic 

nanoplate compared with the classical theory becomes more significant. This 

further confirms that the effect of the nonlocal elastic parameter cannot be 

neglected in the analysis of organic nanoplates. The computational results 

obtained by the finite element method and the analytical method based on all 

three shear deformation theories are in very good agreement. 

Figure 3.3 presents the calculated differences in stress and displacement 

with respect to the ratio 𝑙𝑖/ℎ𝑖. These differences increase as the nonlocal 

elastic parameter 𝑙𝑖increases, and decrease as the ratio 𝑏/𝑎 increases.  

Table 3.8. The dimensionless deflection 𝑤∗ of the nanoplate depending on 

the ratio 𝑏/𝑎, with 𝑎/ℎ = 10. 

li/hi 0 0.2 0.5 1.0 1.5 

b = a 

LA1 2.9347 2.9552 3.0625 3.4458 4.0847 

LA2 2.9345 2.9550 3.0623 3.4456 4.0845 
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LA3 2.9347 2.9552 3.0625 3.4458 4.0847 

LA4 2.9068 2.9276 3.0365 3.4257 4.0742 

LA5 2.9066 2.9273 3.0363 3.4253 4.0737 

LA6 2.9068 2.9276 3.0365 3.4257 4.0742 

Table 3.9. Dimensionless stress 𝜎𝑥
∗as a function of the ratio 𝑏/𝑎and the 

nonlocal elastic parameter 𝑙𝑖. 

li/hi LA1 LA2 LA3 LA4 LA5 LA6 

b = a 

1.5 5.9200 5.9196 5.9200 6.4590 6.4615 6.4587 

1.0 5.3327 5.3333 5.3327 5.6263 5.6285 5.6261 

0.5 4.9804 4.9816 4.9803 5.1267 5.1287 5.1265 

0.2 4.8818 4.8831 4.8816 4.9868 4.9887 4.9867 

0 4.8630 4.8643 4.8628 4.9602 4.9621 4.9600 

Exact
FEM

FEM

FEM

FEM

  
Figure 3.3. The graph illustrates the error of stress and deflection  

3.5. Conclusions of Chapter 3 

Chapter 3 has addressed the following main contents: 

The author developed a finite element algorithm and the 

Solar_Nonlocal_Static_2025 (SNS_2025) program for analyzing organic 

nanoplates, taking into account the size-dependent effect. A Navier-type 

analytical solution was also presented to verify the finite element results. The 

finite element results were compared with analytical and published results, 

showing good accuracy and reliability.  
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The contents of this chapter have been published in Paper No. 1 (see 

the author’s list of publications).  

CHAPTER 4. DYNAMIC RESPONSE ANALYSIS 

OF ORGANIC NANOPLATES CONSIDERING THE SIZE EFFECT 

AND INVESTIGATION OF THE INFLUENCE OF SEVERAL PARAMETERS 

4.1. Free vibration problem 

The equation of motion for a free, undamped vibration of the plate is 

expressed as follows:            Mq̈+Kq = 0                                            (4.1) 

To determine the natural frequencies and corresponding mode shapes 

of the organic nanoplate, assume a solution of the form 𝑞 = 𝑞0sin (𝜔𝑡), 

where 𝑞0 is the amplitude vector and 𝜔 is the angular frequency. Substituting 

this into the free undamped equation (4.1) yields the following eigenvalue 

problem:                         (𝐾 −𝑀𝜔2)𝑞0 = 0                                           (4.2) 

Equation (4.2) is a homogeneous linear system and admits a nontrivial 

solution q0 ≠ 0 if and only if the determinant of the matrix (K−𝑀𝜔2) 

vanishes, i.e:             det (𝐾 −𝑀𝜔2) = 0                                              (4.3) 

Solving equation (4.3) yields 𝑁 natural frequencies 𝜔𝑖 of the structure. 

Corresponding to each natural frequency 𝜔𝑖, substituting it into equation 

(4.2) gives the corresponding eigenvector 𝑞𝑖. 

The algorithm diagram for solving the free vibration problem of the 

organic nanoplates is shown in Figure 4.1. 

Based on the algorithm presented above, the author developed the 

computational program Solar_Nonlocal_Freevibration_2025 (SNF_2025). 

For the free vibration problem, starting from equation (2.43), 

neglecting the right-hand side and ignoring damping, the dissertation adopts 

the Navier-type solution as follows: 

𝑤𝑏(𝑥, 𝑦) = ∑ ∑𝑊𝑏𝑚𝑛 𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
)

∞

𝑛=1

∞

𝑚=1

𝑒𝑖𝜔𝑡  

𝑤𝑠(𝑥, 𝑦) = ∑ ∑ 𝑊𝑠𝑚𝑛 𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝑎
)𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
)∞

𝑛=1
∞
𝑚=1 𝑒𝑖𝜔𝑡        

 

(4.4) 

In which 𝜔 is the vibration frequency of the plate. Substituting expressions 

(4.4) into (2.43), we obtain the following system of equations: 
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[
𝐾11 −𝑀11 𝐾12 −𝑀12
𝐾21 −𝑀21 𝐾22 −𝑀22

] {
𝑊𝑏𝑚𝑛

𝑊𝑠𝑚𝑛
} = {

0
0
}        

 

(4.5) 

By solving equation (4.5), the natural frequencies and corresponding 

mode shapes are obtained. The solution in this study employs the first three 

terms of the series. 

Start

Imput data

Calculate the matrices F and K

Boundary condition handling

Calculate the natural frequency according to (4.3)

Export results

End

 

Figure 4.1. Algorithm diagram for solving the free vibration problem 

of the organic nanoplate. 

Table 4.3 presents the calculated results for the first natural frequency 

of the organic nanoplates. From these data, it can be observed that as the ratio 

𝑙𝑖/ℎ𝑖 increases, the natural frequency of the plate decreases. Figure 4.2 

illustrates the difference in the first natural frequency between the cases with 

and without considering the effect of the nonlocal elasticity parameter. It is 

evident that as the plate becomes thinner (i.e., the 𝑎/ℎ ratio increases), the 

difference in the first natural frequency between the two cases becomes 

smaller. For example, when 𝑎/ℎ = 50, the difference between the two cases 

is less than 4%. Therefore, if high accuracy is not required, the effect of the 
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nonlocal parameter 𝑙𝑖 can be neglected.  

Table 4.3. The first natural frequency 𝜔1
∗  of the organic nanoplate as a 

function of 𝑎/ℎand the nonlocal elastic parameter, with 𝑏/𝑎 = 1, 

*

1 1 /glass glassh E  =  

li/hi LA1 LA2 LA3 LA4 LA5 LA6 

a=10h 

2.0 0.0430 0.0430 0.0430 0.0423 0.0423 0.0423 

1.5 0.0478 0.0478 0.0478 0.0471 0.0471 0.0471 

1.0 0.0525 0.0525 0.0525 0.0517 0.0517 0.0517 

0.5 0.0561 0.0561 0.0561 0.0552 0.0552 0.0552 

a=20h 

2.0 0.0133 0.0133 0.0133 0.0132 0.0132 0.0132 

1.5 0.0138 0.0138 0.0138 0.0137 0.0137 0.0137 

1.0 0.0142 0.0142 0.0142 0.0141 0.0141 0.0141 

0.5 0.0144 0.0144 0.0144 0.0144 0.0144 0.0144 

Exact

FEM

 
Figure 4.2. The difference in the first natural frequency between the cases 

considering and neglecting the size effect, where 𝑓𝑧 is a polynomial function. 

4.2. Forced vibration problem 

  The equation of forced vibration with damping for the organic 

nanoplates, as given in (2.78):  Mq̈+Cq̇+Kq = 𝐹                                    (4.7) 

To solve equation (4.7), the thesis employs the Newmark direct 

integration method and develops the computational program 
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Solar_Nonlocal_Dynamic_2025 (SND_2025). The algorithm flowchart is 

shown in Figure 4.6. The plate is subjected to a uniformly distributed load 

varying according to the law: 𝑝𝑧 = 𝑃0 ⋅ 𝐹(𝑡),  where 𝑃0is the load amplitude:  

Start

  K  M  C

Caculate

Export results

End

Wrong   j < n

*

o o o
  q q q K

t t t= + 

Caculate
*

t t+F

Caculate
* 1 *

t t t t

−

+ +=q K F

Caculate ,t t t t+ +
q q

Caculate , ,t t t t t t+ + +σ ε F

R
ig

h
t 

j 
=

 n

Imput data

, , , ,...Nt n  

 
Figure 4.6. Algorithm diagram for solving the forced vibration problem 

of the organic nanoplate. 



20 

 

Sinusoidal load: 𝐹(𝑡) = {
𝑠𝑖𝑛 (𝜔

𝑡

𝑡1
)     0 ≤ 𝑡 ≤ 𝑡1

0           𝑡 > 𝑡1
;    t1 = 5 ms; 

Triangular load: 𝐹(𝑡) = {
1 −

𝑡

𝑡1
    0 ≤ 𝑡 ≤ 𝑡1

0           𝑡 > 𝑡1
 

The computational parameter is the displacement at the center of the 

plate: 𝑤∗ =
𝐸𝐴𝑙ℎ

3

12𝑃0𝑎0
4𝑤 (

𝑎

2
,
𝑏

2
); a0 = 10h. In the following computational results, 

the plate thickness ℎ remains constant at ℎ = 0.55044 nm, while in each 

example below, the plate side lengths 𝑎 and 𝑏 may vary. The damping 

parameter of the organic nanoplate is calculated using the dimensionless 

expression of the viscoelastic parameter 𝛼 = 𝜒/𝐸𝐴𝑙 . In the general case, this 

damping parameter depends on the characteristics of each material type, and 

experimental testing is required to accurately determine this coefficient. 

However, to facilitate the computational process, the dissertation only 

considers the case where the damping parameter remains constant across all 

material layers, with its value ranging from 0 to 10−4. 

- Influence of the damping parameter 

The variation of the mid-plane displacement over time corresponding 

to different values of the damping coefficient is shown in Figures 4.9 - 4.12. 

Some observations can be drawn as follows: 

 
Figure 4.9. SSSS plate under 

triangular loading 

 
Figure 4.10. CCCC plate under 

triangular loading. 

- In the case where damping is neglected, when the external force 

ceases, the plate continues to vibrate freely without decaying. However, 

when the structural damping is considered, the vibration of the plate 
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gradually diminishes after the external force is removed.  

- During forced vibration (when the excitation force is still acting), the larger 

the damping coefficient, the smaller the maximum displacement of the plate. This is 

because part of the energy is dissipated through the structural damping. 

  

 
Figure 4.11. SSSS plate under sinusoidal 

loading 

 
Figure 4.12. CCCC plate under 

sinusoidal loading 

- Influence of the loading frequency acting on the plate 

When the frequency of the external force coincides with the natural 

frequency of the plate, the maximum displacement of the plate gradually 

increases over time-this is the resonance phenomenon in the nanoplate.   

 
Figure 4.21. SSSS plate under 

sinusoidal loading 

 
Figure 4.22. CCCC plate under 

sinusoidal loading. 

4.5. Conclusion of Chapter 4 

The results presented in Chapter 4 have addressed the following main points: 

A computational program for analyzing the free vibration of organic 

nanoplates, Solar_Nonlocal_Freevibration_2025 (SNF_2025), has been 

developed. Verification with published results shows the program’s reliability. 
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The dissertation has demonstrated the influence of the nonlocal elastic 

parameter and the plate thickness on the natural frequencies of organic 

nanoplates, using both the finite element method and analytical solutions. 

The results indicate that for thick plates (a/h=10), the effect of the nonlocal 

parameter is significant; however, for thin plates (a/h=50), this effect 

becomes negligible.   

A computational program for analyzing the forced vibration of organic 

nanoplates under dynamic loading, Solar_Nonlocal_Dynamic_2025 

(SND_2025), has also been developed, showing good accuracy and reliability. 

The computational results in this chapter have been published in 

papers No. 1 and 2 (Author’s publication list). 

CONCLUSION 

The dissertation has made the following significant new contributions: 

1. A theoretical model has been established, and the equilibrium 

equations for organic nanoplates have been derived for the general case, as 

well as for the problems of static bending, free vibration, and forced 

vibration, taking into account small-scale effects. 

2. By employing the Finite Element Method (FEM) in combination 

with nonlocal elasticity theory, the dissertation has developed algorithms to 

solve the problems of static bending, free vibration, and forced vibration of 

organic nanoplates considering the size effect. The results reveal clear 

differences between the nonlocal elasticity theory (which includes small-

scale effects) and the classical elasticity theory (which neglects them). 

3. A set of computational programs - SNS_2025, SNF_2025, and 

SND_2025 - has been developed to calculate deflections, stresses, natural 

frequencies, and forced displacements of five-layer organic nanoplates while 

accounting for the small-scale effect.  

4. The effects of various parameters such as the nonlocal elasticity 

coefficient, geometric dimensions, damping ratio, boundary conditions, and 

excitation frequency on the static bending, free vibration, and forced 

vibration responses of organic nanoplates have been thoroughly investigated. 

The results show that the size effect becomes significant for thicker plates, 

whereas it diminishes as the plate becomes thinner. 

5. The numerical data obtained from this dissertation can serve as a 
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useful reference for the design of organic nanoplate structures subjected to 

static and dynamic loads, such as micro-scale energy storage devices, 

sensors, and electronic chips. 
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