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INTRODUCTION

1. Urgency of the Thesis : Southeast Asia’s groundwater is under

pressure from population growth, urbanization, and climate change. This thesis

focuses on drinkability classification using ML/DL (PSO-SCNN, CNN-GIS, AI-

LGBM) and GIS for improved accuracy.

2. Research Objectives of the Thesis :Enhance groundwater classi-

fication in Vietnam and Odisha using AI-LGBM, PSO-SCNN, and CNN-GIS,

benchmarking for higher accuracy and generalization.

3. Research Subjects and Scope : Focus on Mekong Delta and Odisha

with physicochemical and spatial data, split 70/15/15 (train/val/test) and la-

beled as “Excellent,” “Good,” “Poor.” Validation via k-fold and baseline compar-

ison.

4. Methodology and Research Content : Develop and compare AI-

LGBM, PSO-SCNN, and CNN-GIS with DT/SVM/RF using datasets from

Vietnam and India; evaluate with accuracy, precision, recall, F1, AUC, and map

outputs in GIS.

5. Contributions of the Thesis : Present AI-LGBM, CNN-GIS, and

PSO-SCNN models optimized with spatial clustering and hyperparameter tun-

ing; integrate GIS for groundwater quality mapping in Odisha and Mekong

Delta.

6. Layout of the Thesis :The structure of the thesis includes Introduc-

tion, three chapters and Conclusion. In which,

Chapter 1: Groundwater Drinkability Classification and Background knowledge.

Chapter 2 presents proposed Ensemble Spatial Machine Learning Methods.

Chapter 3 shows the results of AI-LGBM, PSO-SCNN improves robustness

(ANOVA), CNN–spatial maps risk; system architecture.
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Chapter 1

Groundwater Drinkability

Classification and Background

knowledge

1.1 Groundwater Drinkability classification

Context and Motivation. Groundwater sustains billions but faces risks from heavy

metals, nitrates, and pesticides. Traditional assessments are slow and costly,

while AI promises timely, scalable classification yet still struggles with accuracy,

scalability, and interpretability. This work focuses on three problems: multi-

class drinkability classification, robust hyperparameter optimization, and spatial

visualization for decision support.

Problem 1: Groundwater Drinkability Classification

Goal. Classify each sample as Excellent, Good, Moderate, Poor, or Unsuitable

for Drinking using physicochemical and spatial features (e.g., pH, TDS, nitrate,

latitude, longitude).

Formulation. Let X = {xi}ni=1, xi ∈ Rm, and labels yi ∈ {1, . . . , k}. A

model f(· ;W ) outputs class scores; the predicted class is

ŷi = arg max
c∈{1,...,k}

fc(xi;W ).

We train by minimizing empirical risk

min
W

1

n

n∑
i=1

L(yi, f(xi;W )) ,
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with L typically multi-class cross-entropy. Evaluation uses accuracy, precision,

recall, F1, and AUC. Unlike fixed-threshold WQI methods, the model learns

nonlinear relationships and scales to large, heterogeneous datasets.

Problem 2: Hyperparameter Optimization for GWQC Models

Goal. Select hyperparameters (e.g., tree depth, learning rate, estimators, regu-

larization) that maximize out-of-sample performance while controlling compute

cost.

Approach. Use black-box search via AIO , Optuna and Particle Swarm

Optimization (PSO) over a search space W. Let g(W ) be a cross-validated score

(e.g., macro-F1). The optimizer solves

W ∗ = arg max
W∈W

g(W ),

optionally with resource-aware constraints (e.g., time or FLOPs budgets). This

improves accuracy, stability, and generalization on diverse data from Vietnam

and India, including noisy and high-dimensional settings.

Problem 3: Spatial Visualization of Classified Labels

Goal. Map predictions to geography for risk communication and planning.

Formulation. Let G = {(lati, loni)}ni=1 be sample coordinates and ŷ =

{ŷi}ni=1 model outputs. A GIS pipeline produces a thematic map

M = GIS(G, ŷ),

optionally using interpolation or areal aggregation. To couple classification and

spatial coherence, we consider a composite objective

Ltotal = Lclassification + λLspatial,

where Lclassification is cross-entropy and Lspatial penalizes implausible spatial dis-

continuities or misalignment with known spatial priors; λ > 0 tunes this trade-off.

The output is an interpretable map of drinkability classes, highlighting hotspots

and priority zones for monitoring.
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Contribution and Impact. The pipeline replaces rigid WQI thresholds with a flex-

ible, data-driven classifier; uses principled hyperparameter search to ensure re-

liable deployment; and delivers spatial products that support policy decisions.

Together these components enable faster, scalable, and region-aware groundwa-

ter quality assessment..

1.2 Literature Review

1.2.1 Classical Methods

Traditional groundwater quality methods are labor-intensive and rely on

manual sampling and analysis. The Water Quality Index (WQI) offers simple

classification but is limited by subjectivity and expert thresholds.

Limitations of Classical Approaches

Classical water quality methods are slow, subjective, and lack real-time

data. Key gaps include addressing non-linearity and improving data integration

for real-time analysis.

1.2.2 Machine Learning (ML) Methods

ML methods like SVM, RF, and LightGBM handle large datasets and

non-linear patterns, improving accuracy. However, overfitting, data quality, and

interpretability remain challenges.

1.2.3 Deep Learning (DL) Methods

DL models (CNNs, RNNs) excel in automatic feature extraction and han-

dling large datasets, but require high computational power and large datasets,

with limited interpretability.

1.2.4 Hybrid Spatial Machine Learning Models

Hybrid models combining ML, DL, and GIS enhance groundwater classi-

fication by utilizing spatial data for regional variations and real-time insights.
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Spatial Clustering and GIS Integration

Spatial clustering (e.g., K-means, DBSCAN) and ML improve classifica-

tion by capturing spatial patterns, with GIS integrating spatial data. DL models

like LightGBM and CNNs improve accuracy but require significant computa-

tional resources.

A Hybrid RainNet and GA Model for Hyperparameter Tuning

The RainNet and Genetic Algorithm (GA) hybrid model reduces MAE

compared to models like Unet and Segnet, improving rainfall prediction accuracy.

1.3 Limitations and Research Gaps

Despite advances in ML and DL for groundwater quality classification,

challenges like data sparsity, overfitting, and interpretability persist. Future re-

search should focus on improving model generalization, reducing computational

costs, and enabling real-time monitoring, while exploring hybrid approaches for

better robustness and scalability.

1.4 Conclusion

This chapter reviewed groundwater quality classification methods, from

traditional approaches to advanced ML and DL techniques. While traditional

methods are limited in capturing complex patterns, ML and DL improve ac-

curacy and handle large datasets. Hybrid models combining spatial data with

ML and DL offer a promising solution, but challenges like overfitting and inter-

pretability remain, requiring further research.
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Chapter 2

Proposed Ensemble Spatial

Machine Learning Methods

This chapter introduces ensemble spatial machine learning for groundwater qual-

ity classification, centered on two models: an AI-enhanced Light Gradient Boost-

ing Machine (AI-LGBM) and a Particle Swarm Optimization–Spatial Convolu-

tional Neural Network (PSO-SCNN).

2.1 AI-LGBM

2.1.1 Overview of the Proposed AI-LGBM Framework

The AI-enhanced Light Gradient Boosting Machine (AI-LGBM) is an

advanced model designed to combine the benefits of gradient boosting with ar-

tificial intelligence techniques. The main idea behind AI-LGBM is to enhance

the predictive performance of the traditional LightGBM model by incorporating

machine learning techniques such as feature importance analysis and optimiza-

tion algorithms. This model is particularly effective in handling large, complex

datasets with multiple input variables, making it ideal for groundwater quality

classification, where data may include numerous physicochemical parameters.
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Figure 2.1: Proposed AI-LGBM Methodological Flowchart

Mathematical Formulation of AI -LGBM with MIFS

Setup. Given samples X = {xi}ni=1 with xi ∈ Rm (physicochemical + spatial

features) and labels yi ∈ {1, . . . , k}, the AI -LGBM model f(·;W ) produces class

scores. Prediction and training:

ŷi = argmax
c

fc(xi;W ), min
W

1

n

n∑
i=1

L
(
yi, f(xi;W )

)
.

Performance / hyperparameters. Select hyperparameters by cross-validated score

g(W ) (e.g., macro -F1, AUC):

W ∗ = argmax
W

g(W ).
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We use a hybrid search with Optuna (surrogate/TPE proposals), PSO (swarm

refinement), and AIO (adaptive mutation):

W (s) ∼ πϕ(W |Hs−1) , vt+1 = ωvt+c1r1(pbest−Wt)+c2r2(gbest−Wt), Wt+1 = Wt+vt+1,

Wt+1 ← Wt+1 + ηA(Wt+1; Ht) ,

with early stopping and K-fold CV to ensure stable generalization.

Feature selection (MIFS). Rank features by mutual information with the label

and control redundancy; select k features Sk by

Sk = arg max
S: |S|=k

J(S), J(S) =
∑
xj∈S

I(xj ;Y ) − λ
∑

xj ,xℓ∈S
j<ℓ

I(xj ; xℓ),

where I(· ; ·) is mutual information. (Equivalently, I(X;Y ) = H(X) + H(Y ) −

H(X, Y ).)

Summary objective. MIFS reduces dimensionality before training; AI -LGBM

then optimizes W to minimize loss and maximize g(W ) under cross -validation.

Mathematical Foundations

Classification: min
W

1

n

n∑
i=1

L
(
yi, f(xi;W )

)
, ŷi = argmax

c
fc(xi;W ). (2.1)

Hyperparameters: W ∗ = argmax
W

g(W ) (e.g., macro -F1/AUC via CV). (2.2)

Feature selection: Sk = arg max
S: |S|=k

J(S). (2.3)

Hypotheses (AI -LGBM + MIFS)

H0 : E[g(AI -LGBM+MIFS)] = E[g(Baselines)],

H1 : E[g(AI -LGBM+MIFS)] > E[g(Baselines)].
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2.1.2 Experimental Setup and Learning Strategy for AI-LGBM

Stratified 70/15/15 split on groundwater data; preprocessing: imputation,

Z-score normalization, IQR outliers. Supervised: MIFS selection, SMOTE bal-

ancing, LightGBM with Optuna/AIO optimization (5-fold CV, max weighted

F1). Metrics: accuracy, precision, recall, F1, AUC; SHAP interpretability.

Mathematical Formulation

Let D = {(xi, yi)}ni=1, xi ∈ Rm, yi ∈ {1, . . . , K}.

Feature Selection (MIFS). Select top-K features: S⋆ =

argmaxS⊂{1,...,m}, |S|=K

∑
j∈S I(Xj ;Y ), then X ← XS⋆.

SMOTE Balancing. For minority xi and kNN neighbor x(nn)i : x̃ = xi+λ(x
(nn)
i −xi),

λ ∼ U(0, 1), ỹ = yi, yielding Dsmote
train .

Boosted Additive Model. LightGBM fits Fm(x) = Fm−1(x) + η
∑Jm

j=1 γjmI(x ∈

Rjm), with γjm = argminγ
∑

xi∈Rjm
L(yi, Fm−1(xi) + γ).

Multiclass loss: ℓi = −
∑K

k=1 yik log pik, L =
∑

i ωiℓi. Leaf update: w⋆
j = −

∑
i∈Ij

gi∑
i∈Ij

hi+λ
,

Gain as in original.

Hyperparameter Optimization. Optimize θ∗ = argmaxθ
1
K

∑K
k=1 F1-scorek(θ).

2.1.3 Model Optimization and Performance

AI–LGBMwas tuned with AIO/Optuna under 5-fold CV to (learning_rate=0.05,

num_leaves=32, max_depth=8, n_estimators=150, subsample=0.8,

colsample_bytree=0.7). Compared with the default, accuracy rose from

0.812 to 0.865 and weighted F1 from 0.801 to 0.864 ( 7.9%), with similar gains

in precision and recall.

2.1.4 Feature Importance and Visualization

Optuna history/importance in Figs. 2.2a–2.2b. SHAP highlights tds105,

na, cl (Fig. 2.2c).
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(a) Optuna History (b) HP Importance (c) SHAP Summary

Pros. High accuracy, handles high-dimensional data, models linear/nonlinear

relations.

Cons. Computationally expensive, requires tuning, limited interpretability (mit-

igated by SHAP).

2.2 PSO-SCNN

2.2.1 Overview of PSO-SCNN Framework

Proposes PSO-SCNN, a hybrid DL model building on AI-LGBM, to cap-

ture geospatial dependencies via spatial embeddings, Haversine encoding, multi-

head attention, and CNNs.

Figure 2.3: PSO-SCNN Spatial Model Architecture
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Figure 2.4: Extended for Spatial Map Visualization

2.2.2 Mathematical Formulation of PSO-SCNN and CNN-GIS

PSO-SCNN Formulation

The PSO-SCNN model optimizes a Spatial Convolutional Neural Network

(SCNN) using Particle Swarm Optimization (PSO) to classify groundwater qual-

ity, incorporating spatial data for enhanced geospatial dependency modeling. Let

D = {(xi, yi, (lati, loni))}ni=1 be the dataset, where xi ∈ Rm are physicochemical

features, yi ∈ {0, 1} is the binary drinkability label, and (lati, loni) are coordi-

nates.

Preprocessing and Spatial Encoding. Features are normalized: x∗i =
xi−µx

σx
. Spatial

features are encoded via Haversine distance from the centroid ( ¯lat, ¯lon):

di = 2R arcsin

(√
sin2

(
lati − ¯lat

2

)
+ cos( ¯lat) cos(lati) sin

2

(
loni − ¯lon

2

))
, (2.4)

yielding augmented inputs x̃i = [x∗i ; di]. SMOTE balances classes by generating

synthetic x̃j for minorities.

PSO Optimization. PSO searches hyperparameters θ = {filters,kernel size, learning rate}

in swarm {pk}Pk=1. Fitness is negative AUC: Fit(pk) = −AUC(SCNNθ). Updates:

vt+1
k = wvtk + c1r1(pbestk − ptk) + c2r2(gbest− ptk), (2.5)



12

pt+1
k = ptk + vt+1

k , (2.6)

where w is inertia, c1, c2 are coefficients, r1, r2 ∼ U(0, 1), converging to optimal

θ∗.

SCNN Architecture. SCNN processes x̃i through convolutional layers: hl = σ(Wl∗

hl−1 + bl), pooling, and dense layers, outputting ŷi = σ(WfhL + bf ). Trained with

binary cross-entropy: L = −
∑

i[yi log ŷi + (1− yi) log(1− ŷi)].

CNN-GIS Formulation

CNN-GIS extends PSO-SCNN for geospatial visualization, mapping pre-

dictions ŷi to geographic coordinates (lati, loni) via GIS integration. The goal is

to generate a thematic map M highlighting quality classes and hotspots.

Spatial Prediction Mapping. Predictions are interpolated over a grid G = {(latg, long)}Gg=1

using inverse distance weighting (IDW):

ŷ(latg, long) =

∑
iwiŷi∑
iwi

, wi =
1

d((latg, long), (lati, loni))p
, (2.7)

where d(·) is Haversine distance and p > 0 controls decay. The composite loss

couples classification with spatial regularization:

Ltotal = Lclass + λ
∑
i,j

∥ŷi − ŷj∥ · d((lati, loni), (latj , lonj))−1, (2.8)

ensuring spatial coherence. Outputs are exported to GeoTIFF for ArcGIS visu-

alization of drinkability hotspots.

2.2.3 Rationale for Hybrid Model Selection and Evaluation Criteria

Hybrids (AI-LGBM, PSO-SCNN) chosen for accuracy, interpretability,

and scalability in spatial groundwater classification; evaluation focuses on ro-

bustness, efficiency, and utility, outperforming traditional methods.
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2.2.4 Learning Strategy of PSO-SCNN

The PSO-SCNN learning strategy integrates initialization, optimization,

spatial feature extraction, and training/validation. PSO initializes a swarm of

particles for hyperparameter search, optimizing to minimize error. SCNN ex-

tracts spatial features from groundwater data. Training uses K-fold cross-validation

for robustness, with feature fusion of physicochemical, categorical, and spatial

embeddings: FV5 = concat(FV1, FV4), where FV4 is from SCNN layers.

Supervised Setup. Objective: θ∗ = argmaxθ
1
K

∑K
k=1 F1w

(
f
(−k)
θ ,D(k)

)
.

PSO Loop. Updates particles via velocity/position equations, evaluating on val-

idation AUC to select θ∗.

Training. Uses Adam with early stopping on validation F1 for generalization

and spatial mapping.

2.2.5 Comparison of Learning Algorithms

Optimizer choice impacts convergence. Table 2.1 compares Adam, AdamW,

and AdaGrad. Adam is selected for efficiency, adaptive rates, and minimal tun-

ing, ideal for SCNN on high-dimensional groundwater data. AdamW suits large-

scale models; AdaGrad for sparse data but may converge slowly.

Table 2.1: Comparison of Optimizers

Optimizer Speed Adaptivity Generalization Tune Need Use Case

Adam Fast Yes Very Good Low Deep networks

AdamW Fast Yes Excellent Low Large-scale models

AdaGrad Medium Yes Good early Medium Sparse data

Table 2.2: Key PSO-SCNN Hyperparameters

Hyperparameter Description Values

Particle Size Swarm size 10-50

Inertia Weight Previous velocity impact 0.5-0.9

C1/C2 Personal/global influences 1.5-2.0

Max Iterations PSO iterations 50-200

Kernel Size Convolution kernel 3×3, 5×5

Stride Convolution stride 1-2
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2.2.6 Impact of PSO Hyperparameters

PSO parameters balance exploration/exploitation. Used: nparticles = 3, w =

0.9, c1 = 0.5, c2 = 0.3. Table 2.3 shows impacts on performance.

Table 2.3: PSO Parameter Effects on PSO-SCNN

Config w AUC F1 Convergence

High w (Explor.) 0.9 0.965 0.945 Slow

Balanced (Study) 0.9 0.988 0.965 Moderate

Low w, High c2 0.4 0.972 0.950 Fast, Risky

Higher w aids exploration but slows convergence; adaptive strategies en-

hance robustness.

2.2.7 Pros and Cons

Pros: Handles spatial data well, optimizes for stability, models complex

dependencies. Cons: Computationally intensive, resource-heavy for large datasets,

challenging interpretability.

2.3 Chapter Conclusion

This chapter combines AI-LGBM (MIFS, SMOTE, AIO+Optuna, SHAP)

with PSO-SCNN (spatial embeddings, Haversine, PSO optimization via AUC).

Key Contributions

• Synergy of tabular ensembles and spatial DL.

• Dual optimization for generalization.

• SHAP and spatial visuals for explainability.

Trade-offs and Limitations High compute cost, tuning complexity, spatial inter-

pretability challenges; mitigated by early stopping, dynamic PSO, compression,

uncertainty.

Outlook Next chapter evaluates results, ablations, ANOVA, and spatial visual-

izations for accuracy and robustness on Vietnam/India data.
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Chapter 3

Results and Evaluations

3.1 Performance Evaluation and Comparison

Traditional ML: results in 3.1 are published in Earth Science Informatics, 16(2),

1701–1725. Springer. [DOI: https://doi.org/10.1007/s12145-023-00977-x].

Table 3.1: Performance Metrics for Various Models in Odisha Dataset

Model Avg. Accuracy Avg. Precision Avg. F1-Score Avg. Recall

Logistic Regression 0.7051 0.72 0.6275 0.6025

Polynomial SVM 0.9012 0.9175 0.9025 0.8925

Decision Tree 0.8989 0.885 0.8900 0.8850

AdaBoost 0.5445 0.465 0.4950 0.4650

CNN 0.9766 0.9877 0.9877 0.9877

AI-LGBM 0.94 0.95 0.92 0.93

Table 3.2: Performance Metrics for Various Models in Vietnam Dataset

Model Avg. Accuracy Avg. Precision Avg. F1-Score Avg. Recall

Logistic Regression 0.9672 0.5333 0.5517 0.5714

Polynomial SVM 0.9766 0.9950 0.9926 0.9950

Decision Tree 0.9696 0.9877 0.9889 0.9877

AdaBoost 0.9696 0.9901 0.9877 0.9901

CNN 0.9766 0.9877 0.9913 0.9877

AI-LGBM 0.94 0.95 0.92 0.93

https://doi.org/10.1007/s12145-023-00977-x
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3.1.1 Appended (Post-Optimization) ML Results: AI-LGBM

Table 3.3: Comparison of the Average Value of Performance Metrics of All Models in Vietnam

Model Avg. Accuracy Avg. Precision Avg. F1-Score Avg. Recall

K-NN 0.899533 0.909028 0.899533 902478

SVM 0.897196 0.922039 0.897196 0.902437

Decision Tree 0.989655 0.987780 0.988920 0.987710

AdaBoost 0.9696 0.9853 0.9877 0.9901

XGBoost 0.9813 0.9902 0.9938 0.9975

AI-LGBM Model Comparison with Baseline and advance models

Table 3.4: Comparison of AI-LGBM with Baseline Models

Model Avg. Accuracy Avg. Precision Avg. F1-Score Avg. Recall

XGBoost (baseline) 0.9367 0.9325 0.9275 0.9324

Polynomial SVM (baseline) 0.9012 0.9175 0.9025 0.8925

Decision Tree (baseline) 0.97992 0.9821 0.9799 0.9785

AI-LGBM (proposed) 0.9953 0.9954 0.9953 0.9953

Table 3.5: Model Performance Vietnam Dataset Comparison with Log Loss

Model Avg. Accuracy Avg. Preci-

sion

Avg. F1-

Score

Avg. Recall Log

Loss

Simple MLP 0.985981 0.986333 0.985981 0.986113 0.071997

MLP 2 0.983645 0.983645 0.983645 0.983645 0.115310

AI-LGBM 0.995327 0.995492 0.995327 0.995363 0.019135

Conclusion of AI-LGBM

Re-evaluated on Odisha and Vietnam, AI–LGBM consistently outperformed

KNN, SVM, Decision Trees, and XGBoost across accuracy, precision, recall,

and F1. Against deep models (MLP/CNN/Transformer) on a Kaggle set and

the Vietnam set, AI–LGBM led on F1 and recall, achieving 99.53% accuracy

and 0.0191 log loss on Vietnam.
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3.2 Validation of PSO–SCNN

Validated PSO–SCNN using accuracy, precision, recall, and F1.

Optimizer comparison. Grid Search achieved 1.0000 accuracy in 4.56 s; PSO

reached 0.9948 in 3.70 s; GA matched 0.9948 but took 11.54 s—PSO offers the

best speed–accuracy trade-off, Grid Search the peak accuracy, GA the slowest.

3.2.1 PSO-SCNN Performance Results

Results in Sec. 3.2.1 accepted to Proc. ICIIT 2025 (Hanoi; in press); hybrid

method submitted to Journal of the Indian Society of Remote Sensing (SCIE,

IF 2.2).

Table 3.6: Model Performance Vietnam (Testing Set)

Model Precision Recall Accuracy F1 Score AUC

Support Vector Machine 0.764 0.920 0.750 0.835 0.960

Decision Tree Classifier 0.980 1.000 1.000 0.990 0.980

XGBoost 0.950 0.950 0.890 0.950 0.990

LightGBM 0.950 0.960 0.885 0.950 0.980

SCNN 0.929 0.950 0.955 0.970 0.970

PSO-SCNN 0.975 1.000 0.988 0.995 0.990

Table 3.7 compares proposed models (AI-LGBM, PSO-SCNN, and CNN-

GIS) against conventional machine learning models.

Table 3.7: Comparison of Proposed Models with Baseline Models

Model Avg. Accuracy Avg. Precision Avg. F1-Score Avg. Recall

XGBoost (baseline) 0.9267 0.9225 0.9175 0.9200

Polynomial SVM (baseline) 0.9012 0.9175 0.9025 0.8925

Decision Tree (baseline) 0.8989 0.8975 0.8900 0.8850

AI-LGBM (proposed) 0.9400 0.9500 0.9300 0.9400

PSO-SCNN (proposed) 0.9880 0.9750 0.9950 1.0000

CNN-GIS Mapping (proposed) 0.9700 0.9650 0.9750 0.9800
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3.2.2 Appended (Post- Optimization) PSO-SCNN Results

Post-optimization, the PSO-SCNN was re-evaluated on both datasets,

yielding notable gains in precision, recall, F1 score, and AUC.

Table 3.8: Advance Model Performance Vietnam (Testing Set)

Model Precision Recall F1 Score AUC

Autoencoder+Clf 0.923 0.939 0.931 0.978

CNN-LSTM 0.962 0.994 0.978 0.997

LSTM 0.951 0.978 0.964 0.993

Transformer 0.978 0.978 0.978 0.996

MLP2 0.983 0.961 0.972 0.992

MLP 0.972 0.972 0.972 0.994

PSO-SCNN 0.994 0.955 0.974 0.993

Table 3.9: Cross-Validation Results (Mean ± SD) of Proposed Models

Model Accuracy F1-Score AUC Recall

AI-LGBM 0.932± 0.011 0.914± 0.009 0.945± 0.010 0.911± 0.012

PSO-SCNN 0.918± 0.013 0.902± 0.008 0.934± 0.009 0.889± 0.014

CNN-GIS 0.902± 0.015 0.880± 0.011 0.921± 0.012 0.867± 0.013

(a) Vietnam - Mekong Region
(b) Scatterplot of Water Quality at Well
Points in Odisha

Figure 3.1: Vietnam and Odisha Water Quality Visualizations

Training and Validation Performance

The figures below show the training/validation loss, accuracy, and com-

parison with baselines, indicating effective training and good generalization.
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Table 3.11: PSO–SCNN cross-validation summary (mean ± SD).

Accuracy F1 AUC Recall

0.918± 0.013 0.902± 0.008 0.934± 0.009 0.889± 0.014

Figure 3.2: SHAP Summary Plot for
AI-LGBM Model

Figure 3.3: Overlay of predicted unsafe
zones with actual contamination areas

Figure 3.4: SHAP Feature Importance and Spatial Contamination View

(a) PSO-SCNN Training and
Validation Loss

(b) PSO-SCNN Training and
Validation Accuracy

(c) Validation Loss Comparison -
PSO-SCNN vs Deep Baselines

Figure 3.5: Performance Evaluation: Training/Validation Loss, Accuracy, and Comparison

Table 3.10: PSO–SCNN post-optimization results on held-out test sets.

Region Precision Recall Accuracy F1 AUC

Vietnam (Mekong) 0.975 1.000 0.988 0.995 0.990
India (Odisha) 0.960 1.000 0.988 0.970 0.990

Cross-validation (summary for PSO–SCNN). Repeated five-fold CV yields 0.918±

0.013Accuracy, 0.902±0.008 F1, 0.934±0.009AUC, and 0.889±0.014 Recall—consistent

with strong generalization while preserving the model’s safety-oriented recall

profile.



20

Table 3.12 presents the quantitative results of the ablation study, sum-

marizing the precision, recall, F1 score, AUC, and training time for each model

variant.

Table 3.12: Ablation Study: Quantitative Impact of Components removal

Model Precision Recall F1 AUC Epochs Train Time (s)

PSO-SCNN (full) 0.977528 0.988636 0.983051 0.998470 13 9.579775
SCNN w/o PSO 0.965116 0.943182 0.954023 0.988418 13 9.588812
PSO-SCNN w/o spatial 0.977011 0.965909 0.971429 0.997050 14 9.746294
Shallow SCNN 0.988506 0.977273 0.982857 0.998142 13 6.442084

Table 3.13: Training Time and Memory Consumption Comparison for AI-LGBM and PSO-SCNN
Models

Specification
AI-LGBM PSO-SCNN

Training Time Memory Consumption Training Time Memory Consumption

Time to Conver-

gence (seconds)

2.750229 0.000000 3.2720 16.5 GB

Memory Consump-

tion (GB)

0.000000 0.000000 16.5 GB 16.5 GB

Hardware Specifi-

cations

Linux 6.6.105+ 12.67 GB RAM, 2 cores Linux 6.6.105+ 32.65 GB RAM, 2 cores

Feature Ranges Where Models Underperform

(a) Misclassification Hotspots (PSO-SCNN)
(b) Feature Distribution for Misclassified vs Correctly Clas-
sified Samples

Figure 3.6: Feature Range, Confusion Matrix, Misclassification Hotspots, and Feature Distribution

Section Associated Publications

Peer-reviewed outputs include CNN–GIS optimization in Proc. ICIIT 2025 and

PSO–SCNN in Journal of the Indian Society of Remote Sensing.
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Chapter Conclusion

AI–LGBM: VN ≥98%, Odisha 92–93%, Prec >0.92, Rec >0.90, F1 >0.91;

AIO/Optuna improved F1 by 15–20%.

PSO–SCNN: Superior F1 on spatial tasks; PSO improved convergence by

25–30%, reduced overfitting.

Figure 3.7: Proposed System Architecture for Artificial Intelligence Framework
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Conclusion and Future

Development

Core Contributions and Novelty

Hybrid spatial ensemble (AI–LGBM, PSO–SCNN, CNN–GIS); explicit

geographic feature integration; PSO-based hyperparameter tuning; XAI (SHAP/LIME)

for transparent decisions.

Scientific and Theoretical Significance

Advances spatial ML for hydroinformatics; couples PSO with DL; embeds

XAI in monitoring; demonstrates cross-regional scalability.

Limitations

Data representativeness limits generalization; PSO–SCNN is compute-

intensive; real-time IoT integration pending.

Future Research Directions

Add DL feature extraction for unstructured data; expand to longitudinal,

multi-regional datasets; integrate IoT/remote sensing for real time; include socio-

economic/climate covariates; release an open-source platform.
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APPENDIX A: CODE AND DATA

AVAILABILITY

A1 - REPRODUCIBILITY

This section provides details for the reproducibility of this study, including

code, dataset, software dependencies, and random seed values.

Code Availability

The code is available at: https://github.com/MichaelOmar24/PSO-SCNN-

model, which includes all scripts, Jupyter notebooks, and resources for replica-

tion.

Dataset Access

The dataset is available upon request. Contact: omar2@fe.edu.vn:. Pre-

processing instructions are in the Methodology and Colab sections.

Software Versions and Dependencies

The dependencies are: Python 3.8, TensorFlow 2.4.1, Keras 2.4.3, pyswarms

1.0.1, scikit-learn 0.24.1, matplotlib 3.3.4, NumPy 1.20.2, and pandas 1.2.4.

These can be installed via the ‘requirements.txt‘ file in the GitHub repository.

Random Seed Values

For reproducibility, the random seeds used are: Global Seed = 42, Tensor-

Flow Seed = 42 (tf.random.set_seed(42)), NumPy Seed = 42 (np.random.seed(42)),

ensuring identical results across runs.

https://github.com/MichaelOmar24/PSO-SCNN-model
https://github.com/MichaelOmar24/PSO-SCNN-model
mailto:contact@omar2@fe.edu.vn
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