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INTRODUCTION

1. Urgency of the Thesis : Southeast Asia’s groundwater is under
pressure from population growth, urbanization, and climate change. This thesis
focuses on drinkability classification using ML /DL (PSO-SCNN, CNN-GIS, Al-
LGBM) and GIS for improved accuracy.

2. Research Objectives of the Thesis :Enhance groundwater classi-
fication in Vietnam and Odisha using AI-LGBM, PSO-SCNN, and CNN-GIS,
benchmarking for higher accuracy and generalization.

3. Research Subjects and Scope : Focus on Mekong Delta and Odisha
with physicochemical and spatial data, split 70/15/15 (train/val/test) and la-
beled as “Excellent,” “Good,” “Poor.” Validation via k-fold and baseline compar-
1son.

4. Methodology and Research Content : Develop and compare Al-
LGBM, PSO-SCNN, and CNN-GIS with DT/SVM/RF using datasets from
Vietnam and India; evaluate with accuracy, precision, recall, F1, AUC, and map
outputs in GIS.

5. Contributions of the Thesis : Present AI-LGBM, CNN-GIS, and
PSO-SCNN models optimized with spatial clustering and hyperparameter tun-
ing; integrate GIS for groundwater quality mapping in Odisha and Mekong
Delta.

6. Layout of the Thesis :The structure of the thesis includes Introduc-
tion, three chapters and Conclusion. In which,

Chapter 1: Groundwater Drinkability Classification and Background knowledge.
Chapter 2 presents proposed Ensemble Spatial Machine Learning Methods.
Chapter 3 shows the results of AI-LGBM, PSO-SCNN improves robustness
(ANOVA), CNN-spatial maps risk; system architecture.



Chapter 1

Groundwater Drinkability
Classification and Background

knowledge

1.1 Groundwater Drinkability classification

Context and Motivation. Groundwater sustains billions but faces risks from heavy
metals, nitrates, and pesticides. Traditional assessments are slow and costly,
while Al promises timely, scalable classification yet still struggles with accuracy,
scalability, and interpretability. This work focuses on three problems: multi-
class drinkability classification, robust hyperparameter optimization, and spatial
visualization for decision support.
Problem 1: Groundwater Drinkability Classification
Goal. Classify each sample as Fxcellent, Good, Moderate, Poor, or Unsuitable
for Drinking using physicochemical and spatial features (e.g., pH, TDS, nitrate,
latitude, longitude).

Formulation. Let X = {z;}",, ; € R™, and labels y; € {1,...,k}. A
model f(-; W) outputs class scores; the predicted class is

y; = arg max xi; W).
vi gce{l ..... k} fc( ! )

We train by minimizing empirical risk

RS
min ﬁgayz,f(xz,w»,



with £ typically multi-class cross-entropy. Evaluation uses accuracy, precision,
recall, F1, and AUC. Unlike fixed-threshold WQI methods, the model learns
nonlinear relationships and scales to large, heterogeneous datasets.
Problem 2: Hyperparameter Optimization for GWQC Models
Goal. Select hyperparameters (e.g., tree depth, learning rate, estimators, regu-
larization) that maximize out-of-sample performance while controlling compute
cost.

Approach. Use black-box search via AIO , Optuna and Particle Swarm
Optimization (PSO) over a search space W. Let g(W) be a cross-validated score
(e.g., macro-F1). The optimizer solves

W* =a ax g(W),
rgvrglegcvg( )

optionally with resource-aware constraints (e.g., time or FLOPs budgets). This

improves accuracy, stability, and generalization on diverse data from Vietnam

and India, including noisy and high-dimensional settings.

Problem 3: Spatial Visualization of Classified Labels

Goal. Map predictions to geography for risk communication and planning.
Formulation. Let G = {(lat;,lon;)}!; be sample coordinates and y =

{9:}1~, model outputs. A GIS pipeline produces a thematic map
M = GIS(G, ),

optionally using interpolation or areal aggregation. To couple classification and

spatial coherence, we consider a composite objective

Ltotal = Lclassification + A Lspatiala

where Lejassification 15 cross-entropy and Lgpatial penalizes implausible spatial dis-
continuities or misalignment with known spatial priors; A > 0 tunes this trade-off.
The output is an interpretable map of drinkability classes, highlighting hotspots

and priority zones for monitoring.



Contribution and Impact. The pipeline replaces rigid WQI thresholds with a flex-
ible, data-driven classifier; uses principled hyperparameter search to ensure re-
liable deployment; and delivers spatial products that support policy decisions.
Together these components enable faster, scalable, and region-aware groundwa-

ter quality assessment..

1.2 Literature Review

1.2.1 Classical Methods

Traditional groundwater quality methods are labor-intensive and rely on
manual sampling and analysis. The Water Quality Index (WQI) offers simple

classification but is limited by subjectivity and expert thresholds.

Limitations of Classical Approaches

Classical water quality methods are slow, subjective, and lack real-time
data. Key gaps include addressing non-linearity and improving data integration

for real-time analysis.

1.2.2 Machine Learning (ML) Methods

ML methods like SVM, RF, and Light GBM handle large datasets and
non-linear patterns, improving accuracy. However, overfitting, data quality, and

interpretability remain challenges.

1.2.3 Deep Learning (DL) Methods

DL models (CNNs, RNNs) excel in automatic feature extraction and han-
dling large datasets, but require high computational power and large datasets,

with limited interpretability.

1.2.4 Hybrid Spatial Machine Learning Models

Hybrid models combining ML, DL, and GIS enhance groundwater classi-

fication by utilizing spatial data for regional variations and real-time insights.



Spatial Clustering and GIS Integration

Spatial clustering (e.g., K-means, DBSCAN) and ML improve classifica-
tion by capturing spatial patterns, with GIS integrating spatial data. DL models
like LightGBM and CNNs improve accuracy but require significant computa-

tional resources.
A Hybrid RainNet and GA Model for Hyperparameter Tuning

The RainNet and Genetic Algorithm (GA) hybrid model reduces MAE

compared to models like Unet and Segnet, improving rainfall prediction accuracy.

1.3 Limitations and Research Gaps

Despite advances in ML and DL for groundwater quality classification,
challenges like data sparsity, overfitting, and interpretability persist. Future re-
search should focus on improving model generalization, reducing computational
costs, and enabling real-time monitoring, while exploring hybrid approaches for

better robustness and scalability.

1.4 Conclusion

This chapter reviewed groundwater quality classification methods, from
traditional approaches to advanced ML and DL techniques. While traditional
methods are limited in capturing complex patterns, ML and DL improve ac-
curacy and handle large datasets. Hybrid models combining spatial data with
ML and DL offer a promising solution, but challenges like overfitting and inter-

pretability remain, requiring further research.



Chapter 2

Proposed Ensemble Spatial
Machine Learning Methods

This chapter introduces ensemble spatial machine learning for groundwater qual-
ity classification, centered on two models: an Al-enhanced Light Gradient Boost-
ing Machine (AI-LGBM) and a Particle Swarm Optimization—-Spatial Convolu-
tional Neural Network (PSO-SCNN).

2.1 AI-LGBM

2.1.1 Overview of the Proposed AI-LGBM Framework

The Al-enhanced Light Gradient Boosting Machine (AI-LGBM) is an
advanced model designed to combine the benefits of gradient boosting with ar-
tificial intelligence techniques. The main idea behind AI-LGBM is to enhance
the predictive performance of the traditional Light GBM model by incorporating
machine learning techniques such as feature importance analysis and optimiza-
tion algorithms. This model is particularly effective in handling large, complex
datasets with multiple input variables, making it ideal for groundwater quality

classification, where data may include numerous physicochemical parameters.
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Figure 2.1: Proposed AI-LGBM Methodological Flowchart

Mathematical Formulation of AI-LGBM with MIFS

Setup. Given samples X = {z;}?; with 2; € R™ (physicochemical + spatial
features) and labels y; € {1,...,k}, the AI-LGBM model f(-; W) produces class

scores. Prediction and training:

) 1
gi = argmax fe(zy; W), min — Z;E(yi,f(l’i; w)).
1=

Performance / hyperparameters. Select hyperparameters by cross-validated score

g(W) (e.g., macro-F1, AUC):

W* = arg max g(W).



We use a hybrid search with Optuna (surrogate/ TPE proposals), PSO (swarm

refinement), and AIO (adaptive mutation):

W) ~ (W | Hs-1), Vpp1 = wogtcrry (pbest—Wy)+cora(gbest—Wy),  Wip1 = Witvpy,

Wizt < Wi + n AWigr; Hy),

with early stopping and K-fold CV to ensure stable generalization.

Feature selection (MIFS). Rank features by mutual information with the label

and control redundancy; select k features Sy by

Sy = J(S), JS) = I(z;:Y) — A I(z;:
k= arg max (S), J(S) E (zj;Y) E (55 20),
z; €S 2;,20E€S
j<t

where I(-;-) is mutual information. (Equivalently, I(X;Y) = H(X) + H(Y) —

H(X,Y).)

Summary objective. MIFS reduces dimensionality before training; AI-LGBM

then optimizes W to minimize loss and maximize g(W) under cross-validation.

Mathematical Foundations

1 n
lassification: min — g i [z W), 0= c(xi; W). 2.1
Classification: min P L’(y f(x )) 7; = arg mgtxf (xi; W) (2.1)

Hyperparameters: W* = arg mme}xg(W) (e.g., macro-F1/AUC via CV). (2.2)

Feature selection: Sj, = arg Sr?sa‘xk J(S). (2.3)

Hypotheses (AI-LGBM + MIFS)

Hy : E[g(AI-LGBM+MIFS)| = E[¢g(Baselines)],

Hy : E[g(AI-LGBM+MIFS)] > E[g(Baselines)].



2.1.2 Experimental Setup and Learning Strategy for AI-LGBM

Stratified 70/15/15 split on groundwater data; preprocessing: imputation,
Z-score normalization, IQR outliers. Supervised: MIFS selection, SMOTE bal-
ancing, LightGBM with Optuna/AIO optimization (5-fold CV, max weighted
F1). Metrics: accuracy, precision, recall, F1, AUC; SHAP interpretability.

Mathematical Formulation

Let D = {(xi,yi)}?zl, x; € Rm, Y; € {1, R ,K}.

Feature Selection (MIFS). Select top-K features: S* =

arg maXSC{17.._7m}7‘S|ZK szSI(Xj; Y), then X « XS*-

(nn)

SMOTE Balancing. For minority z; and kNN neighbor ;" & = x; +A(x; ' —;),

A~ U(0,1), §=y;, yielding Dsmote,

train

Boosted Additive Model. LightGBM fits F,(z) = Fn—-1(x) + n Z}];'H viml(z €
Rjm), with -, = arg min,, Zmieij L(yi, F—1(x;) + 7).

. Zz - Gi
Multiclass loss: ¢; = — Zle Yik log pik, £ = Y, wil;. Leaf update: w} = —ﬁlz#/\,

Gain as in original.

.. K
Hyperparameter Optimization. Optlmlze 0* = arg maxy % Zk::l Fl-SCOl“ek(«g).

2.1.3 Model Optimization and Performance

AI-LGBM was tuned with AIO/Optuna under 5-fold CV to (learning rate=0.05,
num_ leaves=32, mazr_depth=8, n_ estimators=150, subsample=0.8,
colsample_ bytree=0.7). Compared with the default, accuracy rose from

0.812 to 0.865 and weighted F1 from 0.801 to 0.864 ( 7.9%), with similar gains

in precision and recall.

2.1.4 Feature Importance and Visualization

Optuna history/importance in Figs. 2.2a-2.2b. SHAP highlights tds105,
na, cl (Fig. 2.2¢).
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(a) Optuna History

relations.

Proposes PSO-SCNN, a hybrid DL model building on AI-LGBM, to cap-

(b) HP Importance

2.2 PSO-SCNN

head attention, and CNNs.

O
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High accuracy, handles high-dimensional data,

2.2.1 Overview of PSO-SCNN Framework
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(c) SHAP Summary

Computationally expensive, requires tuning, limited interpretability (mit-

igated by SHAP).
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2.2.2 Mathematical Formulation of PSO-SCNN and CNN-GIS

PSO-SCNN Formulation

The PSO-SCNN model optimizes a Spatial Convolutional Neural Network
(SCNN) using Particle Swarm Optimization (PSO) to classify groundwater qual-
ity, incorporating spatial data for enhanced geospatial dependency modeling. Let
D = {(xi,yi, (lat;, lon;))}?, be the dataset, where x; € R™ are physicochemical
features, y; € {0,1} is the binary drinkability label, and (lat;, lon;) are coordi-

nates.

Preprocessing and Spatial Encoding. Features are normalized: T, = aa,;_m Spatial

features are encoded via Haversine distance from the centroid (lat,lon):

lat; — lat - lon; — lo.
d; = 2R arcsin \/sin2 <%) + cos(lat) cos(lat;) sin® (M) . (2.4)

yielding augmented inputs z; = [z};d;]. SMOTE balances classes by generating

synthetic ; for minorities.

PSO Optimization. PSO searches hyperparameters 6 = {filters, kernel size, learning rate}

in swarm {p;}_,. Fitness is negative AUC: Fit(py) = —AUC(SCNNy). Updates:

UZ—H = wvl, + c1r1(pbesty, — pl.) + cara(gbest — pl.), (2.5)
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pitt = pl + vl (2.6)

where w is inertia, c1,co are coefficients, r1,re ~ U(0,1), converging to optimal

0*.

SCNN Architecture. SCNN processes 7; through convolutional layers: h; = o(W;x*
hi—1 +b;), pooling, and dense layers, outputting g; = o(Wyhr, +by). Trained with

binary cross-entropy: £ = — ) [y;log §; + (1 — y;) log(1 — 3;)].
CNN-GIS Formulation

CNN-GIS extends PSO-SCNN for geospatial visualization, mapping pre-
dictions g; to geographic coordinates (lat;,lon;) via GIS integration. The goal is
to generate a thematic map M highlighting quality classes and hotspots.

Spatial Prediction Mapping. Predictions are interpolated over a grid G = {(lat,, long)}ff:1

using inverse distance weighting (IDW):

) > Wil 1
latg,long) = i = ’ 2
y(latg,long) T d((laty, lony), (lat;, lony))P &0

Zz‘wi 7

where d(-) is Haversine distance and p > 0 controls decay. The composite loss

couples classification with spatial regularization:
‘Ctotal - Eclass + A Z H@z - y]” : d((latia lO”i)» (latja lonj))_lv (28)
]
ensuring spatial coherence. Outputs are exported to GeoTIFF for ArcGIS visu-

alization of drinkability hotspots.

2.2.3 Rationale for Hybrid Model Selection and Evaluation Criteria

Hybrids (AI-LGBM, PSO-SCNN) chosen for accuracy, interpretability,
and scalability in spatial groundwater classification; evaluation focuses on ro-

bustness, efficiency, and utility, outperforming traditional methods.
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2.2.4 Learning Strategy of PSO-SCNN

The PSO-SCNN learning strategy integrates initialization, optimization,
spatial feature extraction, and training/validation. PSO initializes a swarm of
particles for hyperparameter search, optimizing to minimize error. SCNN ex-
tracts spatial features from groundwater data. Training uses K-fold cross-validation

for robustness, with feature fusion of physicochemical, categorical, and spatial

embeddings: FV5 = concat(FV;, FVy), where FVy is from SCNN layers.

Supervised Setup. Objective: 6* = arg maxy % Zi{zl Fly (fe(_k),'D(k)).

PSO Loop.

idation AUC to select 6*.

Training.

and spatial mapping.

2.2.5 Comparison of Learning Algorithms

Optimizer choice impacts convergence. Table 2.1 compares Adam, AdamW,
and AdaGrad. Adam is selected for efficiency, adaptive rates, and minimal tun-

ing, ideal for SCNN on high-dimensional groundwater data. AdamW suits large-

Updates particles via velocity /position equations, evaluating on val-

Uses Adam with early stopping on validation F1 for generalization

scale models; AdaGrad for sparse data but may converge slowly.

Table 2.1: Comparison of Optimizers

Optimizer | Speed | Adaptivity | Generalization | Tune Need | Use Case
Adam Fast Yes Very Good Low Deep networks
AdamW Fast Yes Excellent Low Large-scale models
AdaGrad Medium Yes Good early Medium Sparse data
Table 2.2: Key PSO-SCNN Hyperparameters

Hyperparameter | Description Values

Particle Size Swarm size 10-50

Inertia Weight Previous velocity impact 0.5-0.9

C1/C2 Personal/global influences 1.5-2.0

Max Iterations PSO iterations 50-200

Kernel Size Convolution kernel 3x3, bx5

Stride Convolution stride 1-2
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2.2.6 Impact of PSO Hyperparameters

PSO parameters balance exploration/exploitation. Used: nparticles = 3, w =
0.9, ¢c1 = 0.5, co = 0.3. Table 2.3 shows impacts on performance.

Table 2.3: PSO Parameter Effects on PSO-SCNN

Config w | AUC F1 Convergence
High w (Explor.) | 0.9 | 0.965 | 0.945 Slow
Balanced (Study) | 0.9 | 0.988 | 0.965 Moderate
Low w, High c» 0.4 | 0.972 | 0.950 Fast, Risky

Higher w aids exploration but slows convergence; adaptive strategies en-

hance robustness.

2.2.7 Pros and Cons

Pros: Handles spatial data well, optimizes for stability, models complex
dependencies. Cons: Computationally intensive, resource-heavy for large datasets,

challenging interpretability.

2.3 Chapter Conclusion

This chapter combines AI-LGBM (MIFS, SMOTE, AIO+Optuna, SHAP)
with PSO-SCNN (spatial embeddings, Haversine, PSO optimization via AUC).

Key Contributions
e Synergy of tabular ensembles and spatial DL.
e Dual optimization for generalization.

e SHAP and spatial visuals for explainability.

Trade-offs and Limitations High compute cost, tuning complexity, spatial inter-
pretability challenges; mitigated by early stopping, dynamic PSO, compression,

uncertainty.

Outlook Next chapter evaluates results, ablations, ANOVA, and spatial visual-

izations for accuracy and robustness on Vietnam/India data.



Chapter 3
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Results and Evaluations

3.1 Performance Evaluation and Comparison

Traditional ML: results in 3.1 are published in Farth Science Informatics, 16(2),

1701-1725. Springer. [DOI: https://doi.org/10.1007/s12145-023-00977-%].

Table 3.1: Performance Metrics for Various Models in Odisha Dataset

Model Avg. Accuracy | Avg. Precision | Avg. F1-Score | Avg. Recall
Logistic Regression 0.7051 0.72 0.6275 0.6025
Polynomial SVM 0.9012 0.9175 0.9025 0.8925
Decision Tree 0.8989 0.885 0.8900 0.8850
AdaBoost 0.5445 0.465 0.4950 0.4650
CNN 0.9766 0.9877 0.9877 0.9877
AI-LGBM 0.94 0.95 0.92 0.93

Table 3.2: Performance Metrics for Various Models in Vietnam Dataset

Model Avg. Accuracy | Avg. Precision | Avg. F1-Score | Avg. Recall
Logistic Regression 0.9672 0.5333 0.5517 0.5714
Polynomial SVM 0.9766 0.9950 0.9926 0.9950
Decision Tree 0.9696 0.9877 0.9889 0.9877
AdaBoost 0.9696 0.9901 0.9877 0.9901
CNN 0.9766 0.9877 0.9913 0.9877
AI-LGBM 0.94 0.95 0.92 0.93



https://doi.org/10.1007/s12145-023-00977-x

3.1.1 Appended (Post-Optimization) ML Results: AI-LGBM
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Table 3.3: Comparison of the Average Value of Performance Metrics of All Models in Vietnam

Model Avg. Accuracy | Avg. Precision | Avg. F1-Score | Avg. Recall
K-NN 0.899533 0.909028 0.899533 902478
SVM 0.897196 0.922039 0.897196 0.902437
Decision Tree 0.989655 0.987780 0.988920 0.987710
AdaBoost 0.9696 0.9853 0.9877 0.9901
XGBoost 0.9813 0.9902 0.9938 0.9975

AI-LGBM Model Comparison with Baseline and advance models

Table 3.4: Comparison of AI-LGBM with Baseline Models

Model Avg. Accuracy | Avg. Precision | Avg. F1-Score | Avg. Recall
XGBoost (baseline) 0.9367 0.9325 0.9275 0.9324
Polynomial SVM (baseline) 0.9012 0.9175 0.9025 0.8925
Decision Tree (baseline) 0.97992 0.9821 0.9799 0.9785
AI-LGBM (proposed) 0.9953 0.9954 0.9953 0.9953

Table 3.5: Model Performance Vietnam Dataset Comparison with Log Loss

Model Avg. Accuracy Avg. Preci- | Avg. F1-  Avg. Recall Log
sion Score Loss
Simple MLP 0.985981 0.986333 0.985981 0.986113 0.071997
MLP 2 0.983645 0.983645 0.983645 0.983645 0.115310
AI-LGBM 0.995327 0.995492 0.995327 0.995363 0.019135

Conclusion of AI-LGBM

Re-evaluated on Odisha and Vietnam, AI-LGBM consistently outperformed
KNN, SVM, Decision Trees, and XGBoost across accuracy, precision, recall,
and F1. Against deep models (MLP/CNN/Transformer) on a Kaggle set and
the Vietnam set, AI-LGBM led on F1 and recall, achieving 99.53% accuracy

and 0.0191 log loss on Vietnam.
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3.2 Validation of PSO-SCNN

Validated PSO-SCNN using accuracy, precision, recall, and F1.

Optimizer comparison. Grid Search achieved 1.0000 accuracy in 4.56 s; PSO
reached 0.9948 in 3.70s; GA matched 0.9948 but took 11.54s—PSO offers the

best speed—accuracy trade-off, Grid Search the peak accuracy, GA the slowest.

3.2.1 PSO-SCNN Performance Results

Results in Sec. 3.2.1 accepted to Proc. ICIIT 2025 (Hanoi; in press); hybrid

method submitted to Journal of the Indian Society of Remote Sensing (SCIE,

IF 2.2).
Table 3.6: Model Performance Vietnam (Testing Set)
Model Precision | Recall | Accuracy | F1 Score | AUC
Support Vector Machine 0.764 0.920 0.750 0.835 0.960
Decision Tree Classifier 0.980 1.000 1.000 0.990 0.980
XGBoost 0.950 0.950 0.890 0.950 0.990
LightGBM 0.950 0.960 0.885 0.950 0.980
SCNN 0.929 0.950 0.955 0.970 0.970
PSO-SCNN 0.975 1.000 0.988 0.995 0.990

Table 3.7 compares proposed models (AI-LGBM, PSO-SCNN, and CNN-

GIS) against conventional machine learning models.

Table 3.7: Comparison of Proposed Models with Baseline Models

Model Avg. Accuracy | Avg. Precision | Avg. F1-Score | Avg. Recall
XGBoost (baseline) 0.9267 0.9225 0.9175 0.9200
Polynomial SVM (baseline) 0.9012 0.9175 0.9025 0.8925
Decision Tree (baseline) 0.8989 0.8975 0.8900 0.8850
AI-LGBM (proposed) 0.9400 0.9500 0.9300 0.9400
PSO-SCNN (proposed) 0.9880 0.9750 0.9950 1.0000
CNN-GIS Mapping (proposed) 0.9700 0.9650 0.9750 0.9800
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3.2.2 Appended (Post- Optimization) PSO-SCNN Results

Post-optimization, the PSO-SCNN was re-evaluated on both datasets,
yielding notable gains in precision, recall, F1 score, and AUC.

Table 3.8: Advance Model Performance Vietnam (Testing Set)

Model Precision | Recall | F1 Score | AUC
Autoencoder+ClIf 0.923 0.939 0.931 0.978
CNN-LSTM 0.962 0.994 0.978 0.997
LSTM 0.951 0.978 0.964 0.993
Transformer 0.978 0.978 0.978 0.996
MLP2 0.983 0.961 0.972 0.992
MLP 0.972 0.972 0.972 0.994
PSO-SCNN 0.994 0.955 0.974 0.993

Table 3.9: Cross-Validation Results (Mean £ SD) of Proposed Models

Model Accuracy F1-Score AUC Recall

AI-LGBM 0.932 +£0.011 | 0.914 £0.009 | 0.945+0.010 | 0.911 £0.012
PSO-SCNN | 0.918 £0.013 | 0.902 £ 0.008 | 0.934 £+ 0.009 | 0.889 £+ 0.014
CNN-GIS 0.902 £0.015 | 0.880 £0.011 | 0.921 £0.012 | 0.867 £ 0.013

Vietnam Water Quality

aaaaa
MMMMMM

mmmmm
o Longitude

1056 1058 1060 1062 1064 1066 1068  107.0
Longitude

(b) Scatterplot of Water Quality at Well

(a) Vietnam - Mekong Region Points in Odisha

Figure 3.1: Vietnam and Odisha Water Quality Visualizations

Training and Validation Performance

The figures below show the training/validation loss, accuracy, and com-

parison with baselines, indicating effective training and good generalization.
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Table 3.11: PSO-SCNN cross-validation summary (mean + SD).

Accuracy F1 AUC

Recall

0.918 £0.013 0.902+£0.008 0.934£0.009 0.889 +0.014
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Figure 3.2: SHAP Summary Plot for
AI-LGBM Model

Figure 3.3: Overlay of predicted unsafe
zones with actual contamination areas

Figure 3.4: SHAP Feature Importance and Spatial Contamination View

PSO-SCNN Training and Validation Loss

PSO-SCNN Training and Validation Accuracy

/

— PSO-SCNN Train Loss. 05 1 — ps0

Epochs Epochs

(a) PSO-SCNN Training and (b) PSO-SCNN Training and
Validation Loss Validation Accuracy

(c) Validation Loss Comparison -
PSO-SCNN vs Deep Baselines

Figure 3.5: Performance Evaluation: Training/Validation Loss, Accuracy, and Comparison

Table 3.10: PSO-SCNN post-optimization results on held-out test sets.

Region Precision Recall Accuracy  F1 AUC
Vietnam (Mekong) 0.975 1.000 0.988 0.995 0.990
India (Odisha) 0.960 1.000 0.988 0.970  0.990

Cross-validation (summary for PSO-SCNN). Repeated five-fold CV yields 0.918 &+

0.013 Accuracy, 0.902+0.008 F'1, 0.9344+0.009 AUC, and 0.889+0.014 Recall—consistent
with strong generalization while preserving the model’s safety-oriented recall

profile.
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Table 3.12 presents the quantitative results of the ablation study, sum-

marizing the precision, recall, F1 score, AUC, and training time for each model

variant.
Table 3.12: Ablation Study: Quantitative Impact of Components removal
Model Precision Recall F1 AUC Epochs Train Time (s)
PSO-SCNN (full) 0.977528  0.988636 0.983051 0.998470 13 9.579775
SCNN w/o PSO 0.965116  0.943182 0.954023 0.988418 13 9.588812
PSO-SCNN w/o spatial ~ 0.977011  0.965909 0.971429  0.997050 14 9.746294
Shallow SCNN 0.988506 0.977273 0.982857 0.998142 13 6.442084

Table 3.13: Training Time and Memory Consumption Comparison for AI-LGBM and PSO-SCNN
Models

AI-LGBM PSO-SCNN
Specification
Training Time | Memory Consumption | Training Time | Memory Consumption
Time to Conver- 2.750229 0.000000 3.2720 16.5 GB

gence (seconds)

Memory Consump- 0.000000 0.000000 16.5 GB 16.5 GB
tion (GB)

Hardware Specifi- | Linux 6.6.105+ 12.67 GB RAM, 2 cores Linux 6.6.105+ 32.65 GB RAM, 2 cores

cations

Feature Ranges Where Models Underperform

nnnnnnnnnnnnnnnn

wwwwwwww

ecaiaied Comecty Casiied acesied Comecty laziies acssaied Comecty Casited

o ) (b) Feature Distribution for Misclassified vs Correctly Clas-
(a) Misclassification Hotspots (PSO-SCNN) sified Samples

Figure 3.6: Feature Range, Confusion Matrix, Misclassification Hotspots, and Feature Distribution

Section Associated Publications

Peer-reviewed outputs include CNN-GIS optimization in Proc. ICIIT 2025 and
PSO-SCNN in Journal of the Indian Society of Remote Sensing.



21

Chapter Conclusion

AI-LGBM: VN >98%, Odisha 92-93%, Prec >0.92, Rec >0.90, F1 >0.91;
ATIO/Optuna improved F1 by 15-20%.

PSO—-SCNN: Superior F1 on spatial tasks; PSO improved convergence by
25-30%, reduced overfitting.

‘I%T Data Acquisition Laysr‘ Data Processing Layer ‘ M
5 |  Water Quality Sensors Feature Engineering — Input Layer
Environmental Sensors —> Missing Value Handling <-|_ Physiochemical
GIS / Spatial Data Quality Scoring Spatial Data
Edge Gateway | Real-time Buffering ‘ Water Quality
v
Al Model Ensemble layer
= psosow [ owas |
Feature Selection RestMet Backbone Conv layers
LGBM Training <> Multi-head Att <> GIS integration 9
Swam optimization PSO-Tuning PSO-SCNN
[ Ensemble Vioting Combiner
\
¢
Artificial Intelligence Framework
= End User Interface Layer End Users
ngine
Risk Assessment ‘_’Web Dashboard Agencies & Utilities
Alert Generation GIS Mapping Emergency Response
Real time Output Researchers & Public
Tontinuos Learning
Auto-Retrain
Model Upd
=] Data Flow = Key Features = system Performance
=) Primary Flow Real-time loT data integration Response Time: < 5 Seconds
——» Model Udates Multi-modal ensemble predictions Throughput: 10,000+sensors/sec
—3-Real-time Stream Automated model Update Accuracy: > 95% for critical params
Multi-platform user access Availability: 99.9% uptime

Figure 3.7: Proposed System Architecture for Artificial Intelligence Framework
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Conclusion and Future

Development

Core Contributions and Novelty

Hybrid spatial ensemble (AI-LGBM, PSO-SCNN, CNN-GIS); explicit
geographic feature integration; PSO-based hyperparameter tuning; XAI (SHAP /LIME)

for transparent decisions.

Scientific and Theoretical Significance

Advances spatial ML for hydroinformatics; couples PSO with DL; embeds

XAI in monitoring; demonstrates cross-regional scalability.

Limitations

Data representativeness limits generalization; PSO-SCNN is compute-

intensive; real-time IoT integration pending.

Future Research Directions

Add DL feature extraction for unstructured data; expand to longitudinal,
multi-regional datasets; integrate IoT /remote sensing for real time; include socio-

economic/climate covariates; release an open-source platform.
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APPENDIX A: CODE AND DATA
AVAILABILITY

Al - REPRODUCIBILITY

This section provides details for the reproducibility of this study, including

code, dataset, software dependencies, and random seed values.

Code Availability

The code is available at: https://github.com/MichaelOmar24 /PSO-SCNN-
model, which includes all scripts, Jupyter notebooks, and resources for replica-

tion.

Dataset Access

The dataset is available upon request. Contact: omar2@fe.edu.vn:. Pre-

processing instructions are in the Methodology and Colab sections.

Software Versions and Dependencies

The dependencies are: Python 3.8, TensorFlow 2.4.1, Keras 2.4.3, pyswarms
1.0.1, scikit-learn 0.24.1, matplotlib 3.3.4, NumPy 1.20.2, and pandas 1.2.4.

These can be installed via the ‘requirements.txt* file in the GitHub repository.

Random Seed Values

For reproducibility, the random seeds used are: Global Seed = 42, Tensor-
Flow Seed = 42 (tf.random.set_seed(42) ), NumPy Seed = 42 (np.random. seed(42)),

ensuring identical results across runs.


https://github.com/MichaelOmar24/PSO-SCNN-model
https://github.com/MichaelOmar24/PSO-SCNN-model
mailto:contact@omar2@fe.edu.vn
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