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1

Introduction

Research Context

Ensuring the safety of drinking water is a paramount global challenge,

essential for public health, environmental sustainability, and economic devel-

opment. This need is critically amplified by a growing global population that

intensifies pressure on finite water resources [1–3]. An estimated two billion peo-

ple still lack access to safely managed drinking water, making the advancement

of robust water quality assessment methods a global health imperative [4]. Con-

taminated sources are a primary vector for waterborne diseases and expose pop-

ulations to chemical and pathogenic contaminants, creating a persistent public

health crisis [5].

The urgency for a new assessment paradigm is compounded by mounting

environmental pressures from industrial and agricultural runoff [6], as well as

the spatiotemporal variability of water quality, which is being exacerbated by

climate change [7].

Traditional water quality monitoring, which relies on manual field sam-

pling and laboratory analysis, is increasingly ill-suited to address the scale of this

challenge. These methods are inherently inefficient, slow, and unscalable, par-

ticularly in resource-constrained regions [8], necessitating a shift towards more

advanced, automated solutions.

Problem Statement

In response to these limitations, modern machine learning (ML) and deep

learning (DL) offer powerful tools for water quality prediction [9–13], their ap-

plication is often undermined by a critical flaw: spatial blindness. Most stan-
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dard models fail to account for spatial autocorrelation the principle that nearby

samples are related which leads to unreliable predictions [14]. This issue is com-

pounded by naive validation protocols, such as random k-fold cross-validation,

which are statistically unsound for geospatial data and yield overly optimistic

performance metrics [15, 16]. The core research problem, therefore, is to de-

velop a new generation of models that are explicitly spatial-aware, rigorously

validated, and intelligently optimized for real-world deployment.

Input: The research utilizes raw hydrochemical parameters and spatial coordi-

nates of groundwater samples.

Output: The work produces a precise classification of water drinkability and

generates spatially-aware risk maps.

Brief Review of Related works

Traditional approaches to groundwater assessment have historically re-

lied on methods like the Water Quality Index (WQI), which aggregates multi-

ple hydrochemical parameters into a single, easily communicable score [17, 18].

While useful for rapid screening, these index-based methods are constrained by

subjective parameter weighting, an inability to capture complex non-linear in-

teractions, and a lack of scalability for large, heterogeneous regions [19]. Their

ineffectiveness and reliance on manual sampling make them ill-suited for the

dynamic and large-scale challenges of modern water resource management [20].

The limitations of classical methods have catalyzed a shift towards data-

driven techniques using Machine Learning (ML) and Deep Learning (DL) [21,

22]. Algorithms such as Support Vector Machines (SVM), Random Forest (RF),

and Artificial Neural Networks (ANNs) have demonstrated a strong capacity to

model the intricate, non-linear relationships between environmental factors and

water quality indicators [23, 24]. These models can process high-dimensional

datasets, improve predictive accuracy and provide insights into key contamina-

tion drivers [25].

However, a critical flaw in many standard ML and DL applications is
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"spatial blindness" the failure to account for spatial autocorrelation, the prin-

ciple that proximal samples are inherently related [26]. This oversight can lead

to unreliable predictions and flawed validation, as models may perform well on

training data but fail to generalize to new geographic areas [27, 28]. Further-

more, the "black box" nature of many advanced models presents a challenge for

interpretability, hindering their adoption by retaining and water managers [29].

To address these gaps, recent research has focused on developing spatially-

aware and hybrid models. The integration of Geographic Information Systems

(GIS) with ML/DL allows for the incorporation of critical spatial context, sig-

nificantly improving model performance [30, 31]. Studies have demonstrated

the effectiveness of hybrid approaches, such as combining Particle Swarm Op-

timization (PSO) with SVMs or using Convolutional Neural Networks (CNNs)

to extract spatial features from geospatial data [32, 33]. These advanced frame-

works, which often include explainability tools like SHAP, represent the frontier

of hydroinformatics, aiming to provide solutions that are not only accurate but

also robust, scalable, and transparent [34].

Research Motivation

This research is driven by the critical need to overcome the interconnected

limitations of both traditional monitoring and contemporary AI approaches. The

motivation is threefold:

1. To Overcome Manual Monitoring Constraints: Replace inefficient,

slow, and unscalable manual sampling with a robust, automated assessment

framework that can handle the scale of modern environmental challenges.

2. To Address Spatial Blindness in AI: Correct the fundamental flaw

in AI models that ignore spatial autocorrelation by developing explicitly

spatial architectures and implementing rigorous, spatially-aware validation

protocols to ensure trusted performance.

3. To Enhance Trust through Interpretability: Bridge the adoption gap

for "black box" models by using Explainable AI (XAI), making complex
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predictions transparent and actionable for captive and water managers.

Objectives of the Thesis

This research aims to develop, validate, and deploy a novel ensemble spa-

tial machine learning framework for groundwater drinkability classification. With

a primary focus on case studies in Vietnam’s Mekong Delta and Odisha, India,

the research is guided by the following specific objectives:

• 1. Develop and Benchmark of Machine Learning Models: To estab-

lish a performance baseline with traditional algorithms (e.g., SVM, Random

Forest) and subsequently develop novel hybrid models, namely

AI-LGBM and a Particle Swarm Optimized Spatial Convolutional Neural

Network (PSO-SCNN), designed to achieve superior predictive accuracy.

• 2. Integrate Spatial Intelligence for Actionable Visualization: To

leverage Geographic Information System (GIS) techniques to transform

model predictions into intuitive, high-resolution spatial risk maps, thereby

identifying contamination hotspots.

• 3. Validate and Confirm Practical Utility in Real-World Scenar-

ios: To rigorously validate the proposed models using real-world ground-

water datasets from Vietnam and Odisha, India, confirming their accuracy,

robustness, and practical utility.

• 4. Incorporate Temporal Dynamics for Long-Term Monitoring: To

extend the models to analyze and predict changes in groundwater quality

over time, enabling a framework for continuous assessment.

Scope of the Study

This section sets the boundaries of this investigation. Geographically, the

research centers on groundwater quality in Vietnam’s Mekong Delta and Odisha,

India. Theoretically, the work is grounded in machine learning and spatial statis-

tics, focusing on AI-driven models for environmental monitoring. The framework
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is defined by the following operational parameters:

The primary inputs for this research are raw hydrochemical parameters and the

spatial coordinates of groundwater samples.

The principal outputs are a precise classification of water drinkability and the

generation of spatially-aware risk maps.

Research Method

This study adopts a mixed-methods framework, blending quantitative ma-

chine learning with qualitative spatial analysis. The methodology involves several

key phases:

(1) Data Collection and Preprocessing from official sources (Vietnam’s

MONRE and India’s CGWB); (2) Model Development, including baseline

models (SVM, Random Forest) and the proposed hybrid frameworks (AI-LGBM,

PSO-SCNN); (3) Geospatial Visualization using GIS to map model outputs;

and (4)Model Evaluation using a suite of metrics (Accuracy, Precision, Recall,

F1-Score, AUC) and robust k-fold cross-validation techniques.

Results of the Thesis

This thesis delivers significant scientific and practical contributions. The

primary result is an advanced spatial analysis framework for hydroinformatics.

The proposed hybrid models (AI-LGBM, PSO-SCNN) achieve up to 98.8%

accuracy, outperforming traditional methods by a margin of 8–13%. The de-

velopment of the PSO-SCNN model, which combines spatial feature extraction

with evolutionary optimization, stands as a key methodological innovation. Prac-

tically, the models facilitate early contamination detection and enable detailed

spatial mapping to identify pollution hotspots, offering a direct and impactful

tool for water resource management.
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Contributions and Significance

This thesis delivers significant scientific and practical contributions by

establishing an advanced, AI-centric framework for groundwater quality analysis.

Key contributions include:

• Methodological Innovation: The development of a novel Particle Swarm

Optimized Spatial Convolutional Neural Network (PSO-SCNN). This hy-

brid model uniquely fuses deep learning-based spatial feature extraction

with evolutionary optimization, achieving scalable, interpretable, and highly

accurate classifications.

• Performance Advancement: The proposed models attain up to 98.8%

accuracy, outperforming traditional methods by a margin of 8–13%. This is

complemented by optimized feature selection, which reduces dimensionality

for greater efficiency, and enhanced interpretability using XAI tools (SHAP,

LIME).

• Practical Application: The framework provides tangible tools for water

management, including high-resolution spatial maps for identifying pollu-

tion hotspots. It facilitates early contamination detection (reducing response

times by up to 20%) and helps optimize resource allocation (boosting effi-

ciency by up to 30%), supporting data-driven policy for sustainable ground-

water governance.

• Global Scalability: The adaptive framework is designed for global appli-

cability. It can incorporate local attributes and leverage transfer learning

for effective deployment in new environments, even those with limited data.

Limitations of the Study

Despite its contributions, this study has several limitations. The find-

ings are based on datasets from Vietnam and Odisha, which may not capture

the full spectrum of global hydrogeological variability. The inherent complexity

of the hybrid models could also present challenges to generalizability. Finally,
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time constraints limited the extent of data preprocessing and hyperparameter

optimization. These factors frame the current results and highlight important

avenues for future research.

Structure of the Thesis

This thesis is structured into three main chapters to logically present the

research from conception to conclusion.

• Chapter 1: Groundwater Drinkability Classification introduces the

research context, problem statement, motivation, objectives, scope, method-

ology, and key results.

• Chapter 2: Proposed Ensemble Spatial Machine Learning Meth-

ods details the multi-phase methodology, from data collection to model

development, outlining the mathematical foundations, optimization strate-

gies, and evaluation methods.

• Chapter 3: Results and Evaluations presents the experimental findings,

including a comparative performance analysis of the models, the spatial

mapping results, and an assessment of each model’s strengths and limita-

tions.



8

Chapter 1

Groundwater Drinkability

Classification

1.1 Introduction to Groundwater Drinkability Classification

Groundwater drinkability classification assesses whether aquifer water

meets health-based standards by converting multivariate hydrochemistry and

geospatial data into categorical risk (e.g., safe/unsafe). This approach supports

early warnings in areas with sparse and costly monitoring, with recent work

(2022–2025) showing that ML/DL models, including tree ensembles and CNN-

based architectures, outperform traditional index/rule-based methods, while main-

taining operational value through explainability [35].

A key challenge is spatial dependence: random k-fold validation can in-

flate model performance when wells are clustered. Best practices therefore use

spatially blocked or distance-aware cross-validation, explicit transfer tests, and

clear quality metrics (Accuracy, Precision, Recall, F1, AUC) along with cost-

aware thresholding (e.g., Youden’s J when false negatives are costlier) [36].

Design Principles. Effective classification systems should: (i) combine hydro-

chemistry and geospatial predictors at appropriate scales; (ii) account for spatial

structure (e.g., spatial convolutions); (iii) use spatially blocked cross-validation

and transfer tests; (iv) report metrics with calibrated uncertainty [37]; (v) adopt

cost-sensitive thresholds [38]; and (vi) offer interpretable outputs (e.g., SHAP)

that align with hydrogeochemical knowledge. Recent advancements in ML/DL



9

have enhanced predictive accuracy and model interpretability in complex envi-

ronments [39, 40].

Problem 1: Groundwater Drinkability Classification

Groundwater quality varies depending on several physicochemical and

environmental parameters, including pH levels, total dissolved solids (TDS), ni-

trate concentration, and spatial characteristics such as geographic coordinates.

One of the primary objectives of this research is to develop a robust and reli-

able classification system that can assess whether specific groundwater samples

are suitable for human consumption. The classification system categorizes wa-

ter samples into predefined classes such as Excellent, Good, Moderate, Poor, or

Unsuitable for Drinking.

Unlike conventional water quality index (WQI) calculations that rely on

fixed thresholds and weights, the approach adopted in this study leverages ma-

chine learning algorithms to learn complex relationships from data. This enables

the classification system to be more flexible and data-driven, capable of handling

both linear and nonlinear interactions between variables. The ultimate goal is

to automate and scale this classification task for broader geographic regions,

enabling more timely and accurate groundwater quality assessments.

Mathematical Derivative

This can be framed as a classification problem where each water sample

xi is labeled with a quality category yi from a set of predefined classes.

Let X = {x1, x2, . . . , xn} represent the dataset of groundwater samples,

where each sample xi ∈ Rm is a vector of features xi = (xi1, xi2, . . . , xim), consist-

ing of physicochemical parameters (e.g., pH, TDS, nitrate concentration) and

spatial features (e.g., geographic coordinates).

Each sample xi is associated with a label yi ∈ {1, 2, . . . , k}, where k rep-

resents the number of classes for water quality (e.g., Excellent, Good, Poor,

Bad).
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The classification model f(X;W ) maps the feature vector xi to the pre-

dicted label ŷi as follows:

ŷi = f(xi;W ) (1.1)

Where W represents the hyperparameters of the model, and the objective

is to find the model that minimizes the classification error. The performance of

the model is typically evaluated using accuracy, F1-score, or other classification

metrics.

Objective:

The objective is to minimize the classification error, which can be ex-

pressed as:

ŷi = argmin
ŷ
L(yi, ŷi) (1.2)

Where L is the loss function, such as Cross-Entropy Loss or Mean Squared

Error, that measures the discrepancy between the predicted label ŷi and the true

label yi.

The standard formula for Model Optimization for supervised learning,

model optimization is:

General form (minimizing empirical risk)

θ∗ = argmin
θ

1

n

n∑
i=1

L (yi, f (xi; θ))

Where:

• θ = model parameters (weights, bias, tree structure, etc.)

• f(xi; θ) = model prediction

• L = loss function (cross-entropy, MSE, hinge, . . . )

• n = number of training samples

This is called empirical risk minimization (ERM) and is the standard

formulation for ML model training.
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For classification (cross-entropy loss)

θ∗ = argmin
θ
− 1

n

n∑
i=1

K∑
c=1

1 (yi = c) log pθ (y = c | xi)

Problem 2: Optimizing Hyperparameters for GWQC Models

A further challenge in the development of an accurate groundwater classi-

fication system is the optimization of hyperparameters within machine learning

models. These hyperparameters such as tree depth, learning rate, number of

estimators, and regularization coefficients play a crucial role in determining the

model’s performance. Poorly chosen hyperparameters can lead to underfitting,

overfitting, or excessive computational costs.

This research addresses the issue by employing advanced optimization

strategies such as Optuna and Particle Swarm Optimization (PSO). These al-

gorithms automate the process of selecting the best-performing hyperparameter

configurations. The aim is to enhance model accuracy, stability, and general-

ization performance across diverse environmental datasets from regions such

as Vietnam and India. Through systematic optimization, the models are tai-

lored to deliver more precise predictions, even in the presence of noisy or high-

dimensional data.

Mathematical Derivative

The second problem involves the optimization of hyperparameters for a

predictive model that classifies groundwater quality, aiming to improve the ac-

curacy and efficiency of the model. This can be formulated as an optimization

problem where the goal is to find the optimal hyperparameters W ∗ that maxi-

mize the model’s performance.

Let L(yi, f(xi;W )) represent the loss function used to evaluate the classi-

fication performance of the model. The objective is to find the optimal set of

hyperparameters W ∗ that minimize this loss function across the training dataset:
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W ∗ = argmin
W

1

n

n∑
i=1

L(yi, f(xi;W )) (1.3)

Where:

• W is the set of hyperparameters to be optimized.

• n is the total number of samples in the training set.

• f(xi;W ) is the model’s prediction for the input sample xi with hyperparam-

eters W .

Objective:

The objective is to maximize the performance function g(W ), which could

be accuracy, F1-score, or another relevant metric. The optimization is expressed

as:

W ∗ = argmax
W

g(W ) (1.4)

Where g(W ) is the performance function of the model, and the optimiza-

tion algorithm seeks to find the optimal W ∗.

This process can be done iteratively, where the model is evaluated with

different sets of hyperparameters, and the optimal configuration is determined

based on maximizing g(W ).

Problem 3: Spatial Visualization of Classified Labels on a Map

The third problem focuses on visualizing the classified labels on a map

for decision-making. By integrating the classification results with geographic

information system data, it becomes possible to display the groundwater quality

classification on a map, aiding decision-makers in understanding spatial patterns

and making informed decisions.

Mathematical Derivative

Let G = {(lat1, lon1), (lat2, lon2), . . . , (latn, lonn)} represent the geographic

coordinates of the groundwater samples. Let ŷi represent the predicted ground-



13

water quality class for sample xi, where ŷi ∈ {1, 2, . . . , k}.

The goal is to map each classified label ŷi to its corresponding geographic

location (lati, loni) and visualize the spatial distribution of groundwater quality

on a map.

The spatial map M can be expressed as:

M = GIS(G, ŷ) (1.5)

Where:

• G represents the geographic coordinates of the groundwater samples.

• ŷ = {ŷ1, ŷ2, . . . , ŷn} represents the predicted groundwater quality labels.

• GIS(G, ŷ) maps the predicted labels ŷi to their corresponding geographic

locations for visualization.

Objective:

To combine the classification and spatial mapping, the objective function

becomes:

Ltotal = Lclassification + λLspatial (1.6)

Where:

• Lclassification is the classification error (e.g., Cross-Entropy Loss),

• Lspatial is the spatial error (misalignment of predicted labels with actual

geographic coordinates),

• λ is a regularization parameter controlling the importance of spatial map-

ping.

Groundwater quality is essential for global water supply, with contamina-

tion posing significant health risks. It is a primary drinking water source for bil-

lions, yet pollutants like heavy metals, nitrates, and pesticides threaten its safety
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[41], [42]. Traditional methods, though effective, are costly, time-consuming, and

lack real-time capabilities, relying on manual sampling and lab tests [43].

AI and machine learning offer solutions, using large datasets for real-time

predictions and classification, thus improving monitoring efficiency. However,

challenges related to scalability, accuracy, and interpretability remain [44].

1.2 Research Context

1.2.1 Classical Methods

Classical methods for groundwater quality assessment, such as the Wa-

ter Quality Index (WQI), aggregate water quality parameters (e.g., pH, TDS,

nitrates) into a composite score. While interpretable, WQI has limitations, in-

cluding subjective parameter weighting, inability to model complex, non-linear

interactions, and poor scalability for large or heterogeneous regions [5].

Groundwater quality, crucial for billions of people, is influenced by com-

plex hydrogeochemical processes, land use, and climate variability, which vary

over space and time [45, 46]. Traditional methods, including manual sampling

and laboratory analysis, are costly, slow, and spatially limited, hindering timely

risk assessments [47, 48]. Recent advances in geospatial machine learning (ML)

and deep learning (DL) have shown that combining environmental predictors

(e.g., geology, climate, remote sensing) can accurately map contaminant risk

and water quality. However, naive validation methods, like random k-fold, often

overestimate performance with spatially autocorrelated data, emphasizing the

need for spatially blocked evaluation methods [49, 50].

To address these challenges, spatially aware and interpretable models are

critical for public health and resource management. Deep learning (DL) and

gradient-boosting ensembles offer real-time inference and scalability, while ex-

plainable AI (XAI) frameworks, such as SHAP, improve trust by linking pre-

dictions to domain-relevant drivers [51, 52]. This study uses spatially informed

architectures and spatial cross-validation to deliver robust groundwater drinka-

bility classifications for early warning, mitigation prioritization, and long-term
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planning [53, 54].

Equation & Steps for Calculating WQI

The Water Quality Index (WQI) combines multiple water quality param-

eters into a single score:

WQI =
n∑

i=1

wi ×Qi (1.7)

where Qi is the sub-index score for each parameter, and wi is the weight

for the i-th parameter.

Table 1.1: Summary of Classical Hydrological Methods

Method Type Examples

Physical Methods Visual inspection (e.g., Secchi disk for turbidity), tem-

perature measurement

Chemical Methods Winkler titration for dissolved oxygen, colorimetric tests

(e.g., DPD method for chlorine)

Biological Methods Most Probable Number (MPN) for coliform detection,

membrane filtration for microbial analysis

These methods use standard laboratory techniques, with observed param-

eter values shown in Table 1.2.

Table 1.2: Observed Values of Water Quality Parameters

Parameter Unit Sample 1 Sample 2

pH - 7.2 7.5

Total Dissolved Solids (TDS) mg/L 250 300

Nitrate (NO−
3 ) mg/L 15 20

Total Coliforms CFU/100mL 10 5

Assigning Weights to Parameters

Each parameter is assigned a weight (wi) reflecting its importance, as

shown in Table 1.3. The weights sum to 1.
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Table 1.3: Assigned Weights to Water Quality Parameters

Parameter Weight (wi)

pH 0.15

Total Dissolved Solids (TDS) 0.20

Nitrate (NO−
3 ) 0.25

Total Coliforms 0.40

Total Weight 1.00

Determining Sub-Index Values

The sub-index (qi) for each parameter is calculated as:

qi =

(
Vi
Si

)
× 100 (1.8)

where Vi is the observed value and Si is the standard value for the i-th

parameter.

Table 1.4: Calculated Sub-Indices for Water Quality Parameters

Parameter Standard (Si) Sample 1 (qi1) Sample 2 (qi2)

pH 7.5
(
7.2
7.5

)
× 100 = 96

(
7.5
7.5

)
× 100 = 100

TDS 500 mg/L
(
250
500

)
× 100 = 50

(
300
500

)
× 100 = 60

Nitrate (NO−
3 ) 50 mg/L

(
15
50

)
× 100 = 30

(
20
50

)
× 100 = 40

Total Coliforms 0 CFU/100mL ∞ (Special handling) ∞ (Special handling)

Note on Parameters with Zero Standard: For parameters like Total Coliforms,

where the standard is zero, high sub-index values are assigned to indicate risk.

Water Quality Classification Based on WQI

The overall WQI is calculated as:

WQI =

n∑
i=1

(wi × qi) (1.9)
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Table 1.5: Water Quality Classification Based on WQI Values

WQI Range Water Quality Class

0–25 Excellent Water Quality

26–50 Good Water Quality

51–75 Poor Water Quality

76–100 Very Poor Water Quality

>100 Unsuitable for Drinking

In summary, classical methods like the WQI provide a simple, inter-

pretable approach to groundwater quality assessment [55], [56], [57], [58], [59].

However, they are limited by subjective parameter weighting, lack of scalability,

and inability to capture complex interactions, underscoring the need for more

robust methods discussed in the following section.

1.2.2 ML/DL Methods

Machine learning (ML) methods, such as Support Vector Machines (SVM),

Random Forest (RF), and XGBoost, model complex, non-linear relationships

between environmental factors and water quality. These methods handle high-

dimensional datasets and provide better predictions than classical models [60–

62]. However, ML models are challenged by the need for large, high-quality

datasets and potential overfitting with noisy data.



18

Figure 1.1: Traditional ML flow diagram for water quality analysis and classification

Recent advancements in ML (Table 1.6) have been applied to large-scale

pattern recognition and predictive modeling [63–65].

Table 1.6: Machine Learning Methods for Hydrological Water Quality Assessment

Machine Learning Method Description and Applications

Support Vector Machines

(SVM)

Used for classifying groundwater quality, especially in small or

imbalanced datasets.

Random Forest (RF) Ensemble method for predicting pollutant levels and assessing

environmental factors.

Artificial Neural Networks

(ANN)

Models relationships between environmental factors and water

quality indicators.

K-Nearest Neighbors (KNN) Classifies water samples based on features like temperature

and turbidity.

Gradient Boosting Machines

(GBM)

Methods like XGBoost and LightGBM improve accuracy

through iterative learning.

Clustering Algorithms (e.g.,

K-Means)

Groups water samples to identify pollution patterns.

ML methods process high-dimensional real-time data, capture non-linear

relationships, and improve prediction accuracy, revealing key contamination

drivers [66–68]. They support decision-making in water management [69], but

challenges remain with dataset quality and overfitting [70, 71].
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Index and Rule-Based Approaches

Index-based methods like the Water Quality Index (WQI) aggregate pa-

rameters into a single score, making them simple and transparent for rapid

screening [72, 73]. However, they suffer from subjective weighting and difficulty

capturing nonlinear interactions [74]. Recent ML/DL techniques often outper-

form such rule-based schemes in complex scenarios.

ML/DL Classifiers and Ensembles

Modern approaches treat drinkability as a supervised classification or

exceedance-prediction problem, combining hydrochemistry and geospatial data.

Tree ensembles (RF, XGBoost/LightGBM) and deep learning (e.g., CNNs with

spatial proxies) learn non-linear interactions, improving prediction accuracy with

interpretability through tools like SHAP [75]. Best practices emphasize spatially

blocked cross-validation and transfer tests to avoid inflated model performance

due to clustered wells [76].

Deep Learning (DL) Methods

Deep learning (DL) methods, especially CNNs and LSTMs, are effective

at capturing complex spatial and temporal patterns in groundwater data. These

models excel with large datasets and can model intricate relationships that tra-

ditional ML models may miss. However, they are computationally intensive and

suffer from interpretability issues, though tools like SHAP provide insights into

feature contributions.

Table 1.7 summarizes key DL methods in hydrology, emphasizing their

spatial and time-series applications.
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Table 1.7: Deep Learning Methods in Hydrology

Deep Learning

Method

Description and Applications

CNN Used for analyzing spatial data like satellite images to detect

water body conditions.

RNN Used for time-series forecasting, such as predicting river flow

and groundwater levels.

LSTM Effective for predicting long-term trends in water quality.

Autoencoders Used for anomaly detection and dimensionality reduction in

water quality data.

GANs Generate synthetic data and simulate water quality scenarios.

DRL Optimizes water resource management, e.g., flood control and

irrigation strategies.

FCN Predicts variables like river discharge and groundwater levels

by integrating diverse data sources.

Hybrid Models Combine multiple DL techniques to improve predictions by

integrating spatial and temporal data.

In summary, ML and DL methods significantly enhance groundwater qual-

ity assessment by capturing non-linear relationships, processing high-dimensional

data, and providing accurate predictions. However, they face challenges with

data quality, overfitting, and interpretability. Despite these issues, DL methods

like CNNs and LSTMs outperform traditional models in spatial and temporal

pattern recognition, offering state-of-the-art performance [77–81].

Section 1.2.3 will explore Hybrid Spatial Models that combine ML/DL

with geospatial data to address these challenges and improve scalability and

interpretability in groundwater quality classification.

1.2.3 Hybrid Spatial Models

Hybrid spatial models combine machine learning (ML) and deep learning

(DL) techniques with geospatial data to improve groundwater quality predic-

tions. By integrating environmental, geological, climatic, and remote sensing

data, these models capture spatially dependent interactions, enhancing the ac-

curacy of contamination risk predictions in heterogeneous regions [49].
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Geostatistical Interpolation

Geostatistical methods like kriging (ordinary, indicator, and co-kriging)

model constituents as spatial random fields, producing continuous concentra-

tion surfaces with kriging variances. These methods are useful for mapping ex-

ceedance thresholds and guiding uncertainty-aware sampling in areas with sparse

wells [82, 83]. However, they are limited by the assumption of stationarity and

challenges in capturing cross-parameter interactions [84]. Geospatial ML high-

lights the importance of spatially blocked cross-validation to avoid overestimat-

ing accuracy in interpolative models [85].

Integration of Geospatial Data with ML/DL Models

Integrating Geographic Information System (GIS) data with ML/DL al-

gorithms addresses spatial dependencies in groundwater quality, leading to more

robust predictions. For example, the Particle Swarm Optimization Spatial Con-

volutional Neural Network (PSO-SCNN) optimizes spatial features for improved

classification accuracy [52]. This approach aids in identifying contamination

hotspots and predicting water quality in data-limited regions, providing crucial

insights for water resource management [86].

Ensemble Learning with Spatial Features

Ensemble learning methods like Random Forest (RF), XGBoost, and

LightGBM improve prediction accuracy by incorporating spatial features. For in-

stance, integrating LightGBM with spatial features through Mutual Information

Feature Selection (MIFS) enhances accuracy while preserving essential spatial

information [54]. Hybrid methods such as PSO-SCNN, which combine spatial

convolutions and optimization, effectively capture spatial features and improve

prediction performance [87].

Geospatial Mapping and Risk Prediction

Hybrid models integrating ensemble learning with GIS-based spatial map-

ping techniques provide accurate groundwater risk predictions. These models

generate spatially aware risk maps, aiding water resource management and
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decision-making. For example, the CNN-GIS approach uses convolutional neural

networks with GIS data to analyze spatial patterns and predict contamination

levels [88]. These models enable real-time assessment of water quality and sup-

port targeted mitigation strategies [89].

Proposed Solution for Water Classification Challenges

Hybrid spatial models address the limitations of traditional methods like

the Water Quality Index (WQI), which fail to capture complex, non-linear rela-

tionships. By combining geospatial data with ML/DL algorithms, these models

offer scalable, interpretable solutions for classifying groundwater quality in re-

gions with sparse data. Models like PSO-SCNN and CNN-GIS enhance predic-

tive accuracy, supporting real-time decision-making and proactive groundwater

resource management. This approach facilitates better risk management and

targeted remediation efforts for contaminated water sources.

Challenges and Future Directions

Despite the advantages of hybrid spatial models, challenges remain, par-

ticularly regarding computational demands and model interpretability. These

models, while offering improved accuracy, require significant computational re-

sources, especially for large datasets [90]. Additionally, deep learning models are

often seen as "black-box" models, making interpretability a key challenge [91].

Future research should focus on optimizing these models for real-time ap-

plications by improving computational efficiency and enhancing interpretability.

Incorporating diverse data sources, such as satellite-based remote sensing and

IoT sensors, could improve both accuracy and scalability [92].

In conclusion, hybrid spatial models combine the strengths of machine

learning, deep learning, and spatial data, providing enhanced predictive capa-

bilities and valuable insights into groundwater contamination risks, supporting

better decision-making in water resource management [93, 94].
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1.2.4 Gaps and Summary

Despite advances in ML and DL for groundwater quality prediction, sev-

eral limitations persist. The need for large, high-quality datasets remains a chal-

lenge, particularly in data-sparse regions. Hybrid models are computationally

intensive, limiting their real-time application, and deep learning models often

lack interpretability, hindering their practical use.

This research seeks to address these limitations by developing spatially

aware, accurate, and interpretable models for groundwater quality classification.

Future improvements should focus on model scalability, handling incomplete

data, and ensuring stakeholder interpretability.

Research Gaps: Key challenges include:

• Difficulty capturing non-linear interactions between parameters and inte-

grating diverse data sources.

• Limited real-time analysis capabilities and end-to-end automation, restrict-

ing scalability.

• Handling uncertainty in noisy or incomplete data.

• Hybrid modeling combining domain knowledge and data-driven approaches

is underexplored.

Research needs include:

• Enhancing data reliability with standardized protocols and real-time mon-

itoring.

• Integrating ML with traditional methods for data-sparse regions.

• Developing hybrid models combining ML, DL, and geospatial analysis.

• Addressing interpretability issues using explainable AI.

• Scaling models for real-time and large-scale groundwater quality manage-

ment.
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1.2.5 Research Method to Address Gaps

Previous sections highlighted the limitations of traditional ML models

like Random Forest (RF) and Support Vector Machines (SVM), which strug-

gle with spatial dependencies and accuracy in groundwater quality prediction.

Deep learning models, while excelling at feature extraction, often neglect spatial

context, limiting their effectiveness in large-scale applications. Spatial-CNNs,

though incorporating spatial data, fail to fully model GIS dependencies, limit-

ing scalability across diverse environments.

To overcome these challenges, we propose a hybrid framework combining

the AI-enhanced Light Gradient Boosting Machine (AI-LGBM) and Particle

Swarm Optimization Spatial Convolutional Neural Network (PSO-SCNN). This

framework addresses both attribute-driven and spatial-contextual patterns for

more accurate and scalable groundwater quality prediction.

Key Components of the Hybrid Framework:

• Feature Fusion: Combines hydrogeochemical data and spatial coordinates

using embedding layers and attention mechanisms for superior predictive

performance.

• Hybrid Architecture: Integrates CNN for spatial pattern recognition,

Random Forest for interpretability, and AI-LGBM for robust classification.

• Optimization: Uses Grid Search, PSO, and Genetic Algorithms to fine-

tune hyperparameters, ensuring model stability and generalization.

A schematic diagram in Figure 2.1 illustrates the dual-stream processing

of hydrogeochemical and spatial features.

Key Advantages and Applications:

This hybrid framework enhances accuracy through CNN-based feature

extraction and ensemble methods, improves spatial prediction with spatial em-

beddings and attention mechanisms, and offers scalability for deployment in

regions like Odisha and the Mekong Delta. It enables real-time groundwater
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monitoring for proactive management and contamination detection, supporting

sustainable groundwater governance and aiding policymakers and environmental

managers in climate-sensitive regions.

Research Design

The research adopts a quantitative, experimental approach, combining

data analysis with ML. It follows sequential steps: data collection, model train-

ing, validation, and evaluation, focusing on a hybrid spatial model to enhance

prediction accuracy, scalability, and interpretability in groundwater quality man-

agement.

1.3 Study Areas: India and Vietnam

This study focuses on Odisha, India, and the Mekong Delta, Vietnam—two

regions with high groundwater dependency, documented vulnerability to con-

tamination, and sufficiently rich monitoring datasets for machine learning and

spatial analysis.

1.3.1 Mekong Delta, Vietnam

The Mekong Delta in southern Vietnam spans approximately 39,000 km2

and is traversed by a dense network of rivers and canals. Figure 1.2 illustrates

its geographic scope and provinces.

Figure 1.2: Geographical Context of Study Areas (a) Location of the Mekong Delta (Source: Mekong
River Commission); (b) Provincial Extent within the Mekong Delta.

The Mekong Delta Vietnam’s agricultural heartland—relies heavily on

shallow alluvial aquifers. Groundwater stress arises from over-extraction, saltwa-
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ter intrusion, industrial effluents, and agricultural runoff. The dataset (MONRE)

contains 2,139 records with physicochemical measurements and spatial coordi-

nates.

Table 1.8: Descriptive Statistics of Groundwater Parameters in the Mekong Delta (Vietnam)

Parameter Minimum Maximum Mean

pH 5.6 8.3 ≈ 6.8

TDS (mg/L) 95 2,300 ≈ 641

Nitrate (mg/L) 1.5 77 ≈ 25

Iron (mg/L) 0.02 3.7 ≈ 1.21

Additional Info: Latitude and Longitude of sampled wells

These characteristics make the Mekong Delta a critical testbed for auto-

mated water-quality assessment models that integrate spatial signals (e.g., GIS,

remote sensing).

1.3.2 Odisha, India

Odisha, in eastern India, comprises diverse hard-rock and alluvial aquifers.

Districts such as Ganjam and Mayurbhanj frequently report exceedances of ni-

trate, iron, and fluoride. Groundwater is vital for drinking and irrigation. Fig-

ure 1.3 shows the hydro-geological map of the study area.

Figure 1.3: Hydro-geological map of the Odisha study area.

Odisha supplied data from CGWB/state monitoring stations in and around

Bhubaneswar and multiple districts, totaling 1,241 samples with physicochem-

ical attributes.
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Table 1.9: Descriptive Statistics of Groundwater Parameters in Odisha (India)

Parameter Minimum Maximum Mean

pH 5.4 8.9 ≈ 7.05

TDS (mg/L) 110 2,500 ≈ 874

Nitrate (mg/L) 2 90 ≈ 32

Iron (mg/L) 0.1 4.3 ≈ 1.65

Additional Parameters: EC, TH, Ca, Mg, Cl, SO4, F

Odisha’s hydro-geological variability and contamination complexity pro-

vide a rigorous environment for evaluating predictive models.

1.3.3 Hydrological Context & Site Rationale

Hydrological characteristics. The Mekong Delta is shaped by distribu-

taries and shallow alluvial aquifers, with seasonal flooding, intensive ground-

water extraction, and salinity intrusion. Pollution sources include agricultural

runoff, pesticides, and domestic wastewater; land use is dominated by rice farm-

ing and aquaculture. Odisha is governed by major rivers and mixed aquifers, ex-

periences cyclonic rainfall and droughts, and shows variable recharge. Its ground-

water quality is affected by fluoride, iron, nitrates, and industrial pollution, with

land uses across agriculture, industry, and mining.

Comparative Overview of the hydrological profile Vietnam & Odisha India

Table 1.10: Comparison of Hydrological Characteristics

Feature Mekong Delta, Vietnam Odisha, India

Main Rivers Mekong River distributaries Mahanadi, Brahmani, Baitarani,
Rushikulya

Aquifer Type Shallow, unconfined alluvial
aquifers

Confined and semi-confined; hard
rock and alluvial

Major Stress Fac-
tors

Salinity intrusion, agrochem-
ical runoff

Nitrate, fluoride, iron contamination

Pollution Sources Agriculture, aquaculture, sea-
water ingress

Industry, mining, agriculture, ge-
ogenic processes

Seasonal Influence Monsoonal floods and dry-
season salinization

Monsoon rains, cyclones, erratic
recharge

Land Use Intensive rice farming and
aquaculture

Agriculture, industry, and mining
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These differing hydrological profiles influenced model configuration and

performance, particularly in the PSO-CNN architecture, where spatial features

such as proximity to river systems and land use types significantly contributed

to prediction accuracy.

Rationale for selecting these regions. Both areas rely heavily on

groundwater for domestic, agricultural, and industrial needs and provide ample,

well-structured datasets for training and evaluation. Their contrasting geology,

land-use patterns, and contamination sources create a robust test of model gen-

eralizability.

Table 1.11: Justification for Selecting Odisha and the Mekong Delta

Criteria Description

Groundwater

Dependency and

Vulnerability

Both regions rely heavily on groundwater. Odisha faces fluoride, iron, and

salinity issues, while the Mekong Delta struggles with arsenic

contamination, salinity intrusion, and over-extraction, exacerbated by

climate change.

Hydrogeological

Diversity

Odisha features diverse terrain from coastal plains to hilly interiors. The

Mekong Delta is a flat, deltaic system shaped by rivers and tides, offering

varied hydrogeological conditions for testing ML models.

Data Availability Odisha’s data come from CGWB and the state’s groundwater

department; Mekong Delta data are sourced from MONRE and

open-access studies, enabling spatial ML applications.

Policy Relevance The research aligns with India’s “Har Ghar Jal” initiative and Vietnam’s

water security and sustainability goals, supporting policy-making.

Addressing Research

Gaps

There has been limited use of hybrid GIS-ML models in these regions.

This study fills that gap with advanced classification and mapping

approaches.

These differing hydrological profiles influenced model configuration and perfor-

mance especially for the Spatial CNN architecture where spatial features such

as proximity to river systems and land-use classes contributed measurably to

predictive accuracy.

1.4 Evaluation Metrics & Scenario

Our experimental workflow used a stratified 70/15/15 split for training,

validation, and testing. Preprocessing involved imputing missing values, normal-

izing features via the Z-score method (Equation (2.9)), and removing IQR-based
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outliers. Model training and hyperparameter tuning were conducted in Python

3.10 with Scikit-learn 1.2.2, LightGBM 3.3.2, and Optuna 3.0.0. All metrics are

an average of five runs using different random seeds.

Step 1: Data Acquisition

This study utilizes two distinct groundwater quality datasets. The first

dataset, comprising 1,052 samples from Vietnam’s Mekong Delta, includes physic-

ochemical attributes such as pH, TDS, nitrate, chloride, sulfate, and hardness,

along with spatial coordinates. A second dataset of 1,241 samples with simi-

lar parameters was sourced from the Central Ground Water Board (CGWB) in

Odisha, India.

Step 2: Data Preprocessing

The data preprocessing pipeline included several key steps: missing values

were imputed using mean/median and mode, outliers were removed using the

IQR method, and both physicochemical features and spatial coordinates were

scaled to a [0,1] range via Min-Max normalization.

Feature Engineering Preprocessing

The preprocessing pipeline involved imputing missing values, binarizing

features according to permissible water quality standards, and normalizing all

numerical data with the following formula:

F ∗(x) =
F (x)− µ

σ(F (x))
(1.10)

where F (x) is the original feature value, µ is the mean, and σ(F (x)) is

the standard deviation. This step helped standardize the data and improved the

model’s convergence during training.

We also introduced new features using Water Quality Index (WQI) re-

lations, where higher scores indicate better water quality. Finally, numerical

features were normalized for consistent analysis, as shown in Eq. (2.25).
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F ∗(x) =
F (x)− F (x)

σ(F (x))
(1.11)

where:

F (x) =

∑n
i=1 F (xi)

n
(1.12)

σ(F (x)) =

√√√√ 1

n

n∑
i=1

(F (xi)− F (x))2 (1.13)

After standardizing the features using Eq. (2.9) along with the details in

Eq. (2.10) and Eq. (2.11), we used the preprocessed dataset for further analysis.

Feature Selection

Mutual Information-based Feature Selection (MIFS) was applied, reduc-

ing dimensionality to 14 essential features for efficient training without accuracy

loss.

Step 3: Class Balancing

After balancing the classes with SMOTE, we trained multiple models.

We benchmarked standard classifiers like Random Forest and XGBoost against

our proposed AI-LGBM model, whose hyperparameters were tuned using Auto-

Immune Optimization (AIO) and Optuna.

Step 4: Model Evaluation

To measure and compare model performance comprehensively, the follow-

ing evaluation metrics were used:

Table 1.12: Evaluation Metrics for Model Performance

Metric Description

Accuracy Proportion of correct predictions overall.

Precision True positives among predicted positives.

Recall (Sensitivity) True positives among actual positives.

F1 Score Harmonic mean of precision and recall; handles class imbalance.

AUC-ROC Performance across all classification thresholds.
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Model interpretability was also analyzed using SHAP (SHapley Additive

exPlanations) to identify dominant features and explain the contribution of each

parameter in the classification process.

Together, these components form the methodological backbone of the

study, ensuring that the comparison of models is both statistically sound and

contextually meaningful for water quality management applications.

Experimental Configuration

Data are preprocessed (outlier removal, normalization, imputation) and

features selected via Mutual Information (MIFS). Three hybrid models were

then developed:

Table 1.13: Hybrid Spatial-AI Models Used in Groundwater Classification

Model Description

AI-LGBM An enhanced LightGBM framework that integrates adaptive learning
rate tuning and ensemble optimization using AIO, grid search, and cross-
validation to improve classification accuracy and stability.

PSO-SCNN A Spatial Convolutional Neural Network whose hyperparameters (ker-
nel size, stride, and learning rate) are optimized using Particle Swarm
Optimization (PSO) to improve spatial feature extraction.

CNN-GIS A hybrid model combining CNN architecture with geospatial embed-
ding techniques, designed to simultaneously capture hydro-chemical vari-
ations and geographic spatial dependencies of groundwater samples.

Each model was trained separately on both regional datasets. The experi-

ments were repeated five times with different random seeds, and 5-fold stratified

cross-validation was applied to prevent bias and variance issues.

5. GIS Integration

Model predictions were converted to GeoTIFF using GeoPandas and vi-

sualized in ArcGIS, enabling spatial mapping of groundwater quality. Heatmaps

were overlaid with known contamination zones for effective decision support.

6. Hardware and Software Environment

Experiments were conducted on Apple M1 Max (64 GB RAM, 32 cores)

and Intel i7 (32 GB RAM, GTX 1650 GPU) systems. The software stack included
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Python 3.10, Scikit-learn, Keras, Optuna, SHAP, GeoPandas, and QGIS 3.28 for

geospatial processing and visualization.

Baseline Models for Groundwater Quality Classification

The table 1.14 summarizes baseline models commonly used for ground-

water quality classification. Each model offers distinct strengths for handling

different data characteristics and classification challenges.

Table 1.14: Baseline Models for Groundwater Quality Classification

Model Description

Logistic Regression A linear model used for binary classification, predicting ground-

water quality as safe or contaminated.

Decision Tree Tree-based model that splits data based on feature thresholds

to classify groundwater quality.

Support Vector Machine

(SVM)

Effective for classification tasks, especially with small or imbal-

anced datasets.

Random Forest An ensemble of decision trees that improves classification accu-

racy and reduces overfitting.

K-Nearest Neighbors

(KNN)

Classifies samples based on the majority class of nearest neigh-

bors in feature space.

1.5 Data Sources

The study used two datasets: the Vietnam dataset from the Ministry of

Natural Resources and Environment, which includes physicochemical parameters

and spatial data, and the Odisha dataset from the CGWB Ground Water

Yearbook (2018–2020), containing 1,241 rows of physicochemical data. Both

datasets provide essential inputs for groundwater quality assessment, with data

collected through field sampling, expert review, and laboratory testing, following

quality assurance protocols.

Vietnam Dataset Overview

The Vietnam dataset contains water quality measurements from 2139

wells, with 40 columns representing various attributes across multiple time points.

The dataset includes 2 datetime columns, 31 numeric columns, and 6 categorical

columns. Key columns include water quality parameters such as pH, conductiv-
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ity, and TDS, with some missing values in certain attributes like PO4, oxygen,

and carbon. The data is structured in a 2-dimensional format, with 2139 rows

and 40 columns.

Table 1.15: Dataset Overview and Column Types

Aspect Details

Number of Rows 2139

Number of Columns 40

Datetime Columns date_sampling, date_analyzing

Numeric Columns na, k, ca2, ph, conductivity, tds105

Categorical Columns well_code, quarter, laboratory, color

Missing Values PO4, eh, Oxygen, Lienhe, Carbon

Dimensions 2-Dimensional (2139 rows, 40 columns)

Indian Dataset Overview

The Indian water quality dataset is well-organized, containing 1241 rows

and 17 columns, with no missing values. It includes 14 numeric columns repre-

senting water quality parameters such as pH, EC, TDS, and alkalinity, and 2

categorical columns for district and village. The dataset provides a comprehen-

sive representation of water quality across different villages and districts.

Table 1.16: Dataset Overview and Column Types for Indian Water Quality Dataset

Aspect Details

Number of Rows 1241

Number of Columns 17

Datetime Columns None

Numeric Columns pH, EC, TDS, TH, Alkalinity

Categorical Columns District, Village

Missing Values None

Data Preprocessing, Balancing, and Evaluation Strategy

The groundwater dataset was preprocessed for integrity and reliability

by converting columns to numeric types, imputing missing values with column

means, and removing columns with excessive missing data.
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Outlier impact was mitigated by using robust tree-based models, which

handle moderate outliers effectively in environmental data.

Figure 1.4: Box-Plot analysis

Boxplot Analysis

Figure 1.4 shows box plots for key groundwater parameters: TDS, NO3,

and pH. The TDS plot shows significant outliers, indicating contamination, while

NO3 values are mostly low with some high outliers, suggesting localized pollu-

tion. pH remains stable with few deviations. These distributions highlight the

need for outlier handling and normalization in preprocessing.

Scatter Plot Analysis

Figure 1.5: Scatter Plot Analysis

Figure 1.5 shows scatter plots for tds105 and hardness_general, with

most values clustering at lower ranges and several extreme peaks, indicating out-

liers. This suggests high variability in TDS and hardness, likely due to localized

contamination or varying water sources, emphasizing the need for robust models

and careful preprocessing.
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Data Class Imbalance

To address class imbalance, the Synthetic Minority Oversampling

Technique (SMOTE) was applied, generating synthetic examples for under-

represented classes to balance the dataset and reduce bias.

Code snippet: SMOTE

from imblearn.over_sampling import SMOTE

# Split data

X_train, X_test, y_train, y_test = train_test_split

(X, y, stratify=y, test_size=0.2, random_state=42)

# Apply SMOTE to balance the training data

sm = SMOTE(random_state=42)

X_train, y_train = sm.fit_resample(X_train, y_train)

To ensure robust evaluation and reduce overfitting, cross-validation was

used with weighted F1-score during hyperparameter optimization (e.g., AIO,

Optuna), employing 3- or 5-fold cross-validation for better generalizability.

Code snippet:

from sklearn.model_selection import cross_val_score

# Inside Optuna objective function

scores = cross_val_score(model, X_train, y_train, cv=5,

scoring=’f1_weighted’)

return scores.mean()

Following these steps, the dataset was free of missing values, balanced

across classes, and ready for feature selection and modeling.

1. Preprocessing and Feature Extraction

The data were cleaned, normalized, and imputed. Features were selected

using MIFS, with geographic coordinates included for spatial analysis. CNNs

extracted spatial features, and PSO optimized hyperparameters.
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2. Data Split for Training, Validation, and Testing

The dataset was split using stratified sampling to ensure even distribution

of groundwater quality labels: 70% for training, 15% for Validation, and

15% for testing model performance on unseen data.

3. Ground Truth Data and Labeling

Ground truth labels were assigned based on physicochemical parameters

(e.g., pH, TDS, hardness) and contaminants (e.g., arsenic, cadmium), catego-

rized as “Excellent”, “Good”, or “Poor” based on thresholds and expert assess-

ments.

4. Input Data (features included)

The features used as input for machine learning models included physico-

chemical properties (e.g., ions, pH, TDS), spatial attributes (latitude, longitude),

and temporal attributes (sampling dates) to account for seasonal variations. The

target variable was the groundwater quality label.

5. Model Validation

Cross-validation was performed using k-fold to assess model performance

and prevent overfitting. Models were evaluated based on accuracy, precision,

recall, and F1-score, and external validation was done by comparing outputs

with field data.

Handling Missing Values

The process for handling missing data ensured the dataset was properly

cleaned for analysis and modeling.

Step 1: Initial Data Preprocessing

The dataset was loaded from the Excel file daluong.xlsx, which con-

tains groundwater quality data with multiple columns, including features such

as well_code, date_sampling, and others.
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Table 1.17: Data Preprocessing Steps

Preprocessing Step Description

Dropping Irrelevant

Columns

Removed columns such as well_code,
date_sampling, and others not necessary for
analysis using: df.drop(columns=[...],
errors=’ignore’)

Removing Rows with

Missing Target Values

Rows with missing values in the target variable
tatse were removed using:
df.dropna(subset=[’tatse’])

Standardizing

Non-Standard Values

Replaced non-standard values in the tatse column
(e.g., "MÆn", "Kh«ng") with standardized labels
("Mặn", "Không").

Step 2: Label Encoding and Column Drop

The tatse variable was label encoded using LabelEncoder to create nu-

meric labels (tatse_encoded). Columns with only NaN values were identified

and removed from the feature set.

Step 3: Handling Remaining Missing Values

Missing values in numeric columns were filled with the column mean, iden-

tified using X.select_dtypes(include=np.number).columns, and imputed with

X[numeric_cols].fillna(X[numeric_cols].mean()). Before feature selection,

the code checks for remaining NaN values in the features using:

X.columns[X.isnull().any()].tolist(). Any remaining NaNs are printed

for further investigation to ensure no NaNs remain before feature selection.

Step 4: Feature Selection

Feature selection was performed based on MIFS between features and the

target variable: Mutual information scores for each feature were calculated using:

mutual_info_classif(X, y). The top 14 features were selected based on these

scores, and the feature set was reduced accordingly using pd.Series(mi_scores,

index=X.columns).sort_values(ascending=False).
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Step 5: Feature Importance Analysis for Groundwater Classification

Figure 1.6: AI-LGBM Model Feature Importance

The figure 1.6 bar chart shows feature importance, with cl (chloride) as

the most influential feature, followed by tds105 (TDS), na (sodium), and mg2

(magnesium). Other significant features include hardness parameters and ions

like k (potassium) and ca2 (calcium), while hco3 (bicarbonate) has the lowest

importance.

Figure 1.7: SHAP Summary Plot for AI-LGBM
Model

Figure 1.8: SHAP Interpretation and Implica-
tions

Figures 1.7 and 1.8 display SHAP values for the AI-LGBM model. Figure

1.7 shows the SHAP Summary Plot, highlighting the impact of features like cl,

na, and tds105 across different classes. Figure 1.8 presents the SHAP Interaction
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Plot, showing how these features interact and influence the model’s predictions.

Step 6: Spatial Resolution and GIS Integration

1.6 Feature Engineering

Feature engineering is a critical step in developing an effective machine

learning model for groundwater drinkability classification, as it transforms raw

data into meaningful features that enhance predictive capability. This section

outlines the process used in this research, including the encoding of spatial co-

ordinates, the derivation of new features from raw measurements, and the incor-

poration of domain knowledge.

1.6.1 Encoding of Spatial Coordinates

Groundwater quality can vary spatially, and geographic location plays a

significant role in understanding contamination patterns. Thus, spatial coordi-

nates (latitude and longitude) of each groundwater sample were used as features.

Additionally, the haversine distance between the geographic coordinates of dif-

ferent samples was calculated to quantify spatial relationships. This allows the

model to consider the proximity of samples to one another, enhancing its ability

to detect regional water quality variations.

The Haversine distance between two geographic points (lat1, lon1) and

(lat2, lon2) is given by the following equation:

d = 2R · arcsin

(√
sin2

(
∆ϕ

2

)
+ cos(ϕ1) · cos(ϕ2) · sin2

(
∆λ

2

))

Where:

• d is the distance between the two points (in kilometers).

• R is the radius of the Earth (mean radius ≈ 6371km).

• ϕ1 and ϕ2 are the latitudes of the two points in radians.

• ∆ϕ = ϕ2 − ϕ1 is the difference in latitudes.

• ∆λ = λ2 − λ1 is the difference in longitudes.
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1.6.2 Derived Features from Raw Measurements

To enhance the model’s predictive accuracy, several key hydrochemical pa-

rameters, such as pH, TDS, nitrate, and ron, were used as base measurements.

These parameters were transformed into sub-indices based on environmental

standards. For example, the Water Quality Index (WQI) was computed as a

weighted sum of sub-indices, each representing a specific water quality parame-

ter.

The equation for calculating sub-indices for each parameter is as follows:

qi =

(
Vi
Si

)
× 100

Where:

• qi is the sub-index for the i-th parameter (e.g., pH, TDS, nitrate).

• Vi is the observed value of the i-th parameter.

• Si is the standard or guideline value for the i-th parameter.

The overall WQI is computed as the weighted sum of the sub-indices:

WQI =
n∑

i=1

wi · qi

Where:

• wi is the weight assigned to the i-th parameter, reflecting its importance in

the overall water quality.

• qi is the sub-index for each parameter.

• n is the number of parameters (e.g., pH, TDS, nitrate).

Additionally, interactions between parameters, such as pH × TDS, were

considered to account for non-linear relationships between features.

1.6.3 Incorporating Domain Knowledge into Feature Creation

Domain knowledge was essential for selecting the most relevant features

for groundwater quality modeling. While specific datasets for pollution sources
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(e.g., proximity to industrial zones or agricultural runoff) could not be integrated

directly due to data limitations, domain knowledge influenced the selection of

key hydrochemical parameters. For instance, TDS, nitrate, and iron are well-

known to have a significant impact on groundwater quality based on existing

environmental research.

Even though data for spatial pollution sources was not available, domain

knowledge ensured that the selected features were highly relevant to water qual-

ity classification and accurately represented the factors influencing groundwater

quality.

The feature engineering process involved the following key steps:

• Spatial Encoding: Geographic coordinates (latitude and longitude) were

used directly, along with the haversine distance between samples.

• Derived Features: The Water Quality Index (WQI) was calculated for each

sample to summarize key hydrochemical parameters.

• Domain Knowledge Integration: Feature selection was guided by domain

expertise, ensuring that the most relevant hydrochemical parameters were

included.

These engineering steps, combined with spatial features, allowed the mod-

els to capture the complexities of groundwater contamination and significantly

improved prediction accuracy and model robustness.

Impact of GIS on Model Performance and Location on Prediction Re-

sults: The integration of GIS improved model accuracy (98.8%) and F1-score

(99.5%) by incorporating spatial features, enabling the detection of contami-

nation patterns often missed by traditional models. Location-specific factors,

such as hydrogeology and pollution sources, influenced predictions. GIS maps

revealed regional disparities, highlighting the importance of spatial context in

decision-making.
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Figure 1.9: Spatial Visualization of Groundwater Quality Classification

1.7 Generalization and Transferability to Other Geographical

Regions

The proposed PSO-SCNN model is designed to be transferable to other

regions with similar groundwater contamination challenges. Its generalizability

depends on the availability and relevance of input features, such as water quality

parameters and spatial coordinates, which may vary by region. Future research

should test the model in diverse areas, especially arid regions or those impacted

by industrial pollution, to assess its robustness under different environmental

conditions.

Required Minimum Sample Sizes for New Areas

For effective deployment in new regions, determining the minimum sample

size is crucial. This depends on groundwater variability in the area. A representa-

tive dataset should include key water quality parameters like TDS, hardness, and

chemical concentrations. Power analysis can help estimate the required sample

size, ensuring the model’s high performance across different regions.

Model Retraining vs. Fine-Tuning Strategies

When applying the model to new areas, two strategies are considered:

model retraining and fine-tuning.

Model Retraining involves training the model from scratch with new

regional data, ideal for regions with significant differences in water quality pro-

files.
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Fine-Tuning uses a pre-trained model and adjusts it with a smaller

dataset from the new region, which is more resource-efficient when the new

area shares similarities with the original.

The choice depends on dataset size and available computational resources.

Limitations of Current Geographical Scope

While the model has been tested in the Mekong Delta and Odisha, it may

not perform equally well in other regions with different hydrological conditions

or contamination profiles. Expanding its geographical scope will require addi-

tional data and possibly retraining to ensure its generalizability. The model’s

robustness for global applicability remains uncertain due to limited data from

diverse regions.

1.8 Chapter Conclusion

Groundwater Quality Classification: From Traditional Methods to Advanced ML/DL

Frameworks: This chapter highlighted the shift from traditional groundwater

quality assessment methods, like the Water Quality Index (WQI), to advanced

machine learning (ML) and deep learning (DL) approaches. Traditional methods

struggle with non-linear relationships, large datasets, and spatial dependencies,

motivating the adoption of ML/DL tools capable of leveraging multi-dimensional

data for real-time results.

Machine learning techniques such as Random Forest (RF), Support Vec-

tor Machine (SVM), and XGBoost have enhanced groundwater quality classi-

fication by capturing intricate data relationships. However, challenges such as

data dependency and high computational demands remain, limiting their use in

resource-constrained settings.

Deep learning methods, particularly Convolutional Neural Networks (CNN),

have further improved classification by effectively capturing spatial and temporal

dependencies in groundwater data. Yet, their "black box" nature raises concerns

about interpretability, especially for actionable insights needed by water resource

managers.
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To address these issues, this research introduces a hybrid spatial-aware

framework, combining AI-enhanced Light Gradient Boosting Machines (AI-LGBM)

with Spatial Convolutional Neural Networks (SCNN) and Particle Swarm Op-

timization (PSO). This approach improves model performance, scalability, and

interpretability.

In conclusion, the transition from WQI-based methods to hybrid ML/DL

models represents a significant advancement in groundwater quality classifica-

tion. The proposed models provide a robust, scalable, and interpretable solution,

supporting better water resource management in regions facing environmental

and health challenges, such as Vietnam and India.

Contributions of This Chapter

This chapter discussed the limitations of traditional WQI methods, re-

viewed advanced ML/DL techniques for groundwater classification, and intro-

duced a hybrid AI-LGBM, spatial PSO-SCNN framework for enhanced predic-

tive accuracy. Optimization algorithms like PSO, GA, and Grid Search were

highlighted for performance improvement, and spatial integration was empha-

sized for better interpretability and policy relevance.

Visual Summary of the Transition

Traditional Methods
(WQI, Manual Analysis)

Machine Learning
(RF, SVM, XGBoost)

Deep Learning
(CNN, SCNN)

Proposed Hybrid Framework
(AI-LGBM + PSO Optimization)

Real-Time Monitoring
+ Policy Decision Support

Figure 1.10: Evolution from Traditional Methods to Hybrid Spatial-Aware ML Framework
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Chapter 2

Proposed Ensemble Spatial

Machine Learning Methods

2.1 Introduction

This chapter presents the proposed machine learning methods for ground-

water quality classification, focusing on ensemble spatial machine learning mod-

els. The primary models discussed are the AI-enhanced Light Gradient Boost-

ing Machine (AI-LGBM) and Particle Swarm Optimization-Spatial Convolu-

tional Neural Network (PSO-SCNN). These models are aimed at addressing the

challenges faced by traditional methods in classifying groundwater quality ac-

curately and efficiently. The proposed models leverage spatial data integration

and optimization techniques to improve prediction accuracy, scalability, and in-

terpretability in environmental monitoring systems.

2.1.1 Proposed System Model of the Artificial Intelligence Framework

The proposed system architecture, illustrated in Figure 2.1, defines an

Artificial Intelligence (AI) framework simulated for simulated real-time ground-

water quality monitoring and intelligent decision support. It integrates multiple

layers – data acquisition, data processing, ensemble modelling (AI-LGBM and

PSO-SCNN), decision-making, and continuous learning – to provide a robust,

scalable, and high-performance pipeline from raw sensor input to actionable

groundwater drinkability maps.

Protocol. The proposed architecture (Figure 2.1) is designed to operate

as an end-to-end AI framework for environmental monitoring:
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Figure 2.1: Proposed System Model of the Artificial Intelligence Framework
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• 1. Data Acquisition: Data is collected from water-quality sensors, envi-

ronmental sensors, historical records, and GIS layers via edge gateways.

• 2. Data Processing: Pre-processing includes feature extraction, missing

value handling, normalization, and real-time buffering for clean and consis-

tent inputs.

• 3. Ensemble Modelling: Processed features are passed to AI models (AI-

LGBM and PSO-SCNN), trained and optimized using AIO/Optuna and

PSO to improve performance and prevent overfitting.

• 4. Decision-Making: Model outputs are combined with cost-sensitive

thresholds to generate operational decisions like “safe/unsafe” flags and risk

levels.

• 5. Visualization and Reporting: Predictions are integrated into a GIS

module, generating risk maps and dashboards for stakeholders to identify

contamination hotspots.

• 6. Continuous Learning: New field data is used to retrain or fine-tune

models, improving generalization and adapting to changing conditions.

• 7. System Integration: The framework will connects with external sys-

tems via APIs for automated alerts and policy-relevant reporting.

This AI framework supports real-time groundwater drinkability assess-

ment, enabling decision support across various environments.

IoT Data for Simulated Real-Time Updates

As shown in Figure 2.1, IoT sensors enable continuous data streams for

dynamic model retraining. This ensures adaptive, accurate predictions, timely

risk assessment, and improved responsiveness for emergency response, monitor-

ing, and public health.

Performance & Features

The system demonstrates robust performance metrics, including a re-

sponse time of less than 5 seconds, throughput exceeding 10,000 readings per
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second, accuracy greater than 95%, and uptime of 99.9%. Key features encom-

pass simulated real-time IoT data integration, ensemble predictions, automated

updates, and multi-platform access, ensuring efficient and reliable operation for

groundwater quality monitoring.

Scalable Groundwater Quality Management Framework

1. Data Collection: Deploy IoT sensors at key sites for physiochemical pa-

rameters (pH, nitrate, turbidity) and GIS spatial data.

2. Data Processing: Preprocess data with feature engineering, missing value

handling, and quality scoring for real-time buffering.

3. Model Ensemble: Use hybrid models AI-LGBM, PSO-optimized Spatial

CNN, and GIS integrated CNN and combine outputs via ensemble voting.

4. Real-Time simulated Monitoring: Integrate IoT streams with AI infer-

ence for risk alerts and enable automated model retraining for adaptation.

5. Deployment & Governance: Connect with provincial/national systems

via APIs, ensuring interoperability and stakeholder dashboards.

6. Policy & Sustainability: Establish data governance, secure funding, and

train local teams for maintenance and updates.

7. Global Adaptability: The framework can be retrained and fine-tuned for

regions worldwide Africa, South Asia, Latin America using local data and

remote sensing.

Outcome: A flexible, scalable system for sustainable groundwater man-

agement in varied hydrogeological and socio-economic settings.

In conclusion, the proposed models deliver exceptional performance in

tested environments and show potential for global environmental applications.
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2.2 AI-LGBM

2.2.1 Main Ideas

The AI-LGBM (Auto Immune Light Gradient Boosting Machine) inte-

grates machine learning and evolutionary optimization techniques to enhance

model robustness and performance. The term “Auto Immune” draws a biolog-

ical metaphor to describe the model’s adaptive and self-correcting capabilities.

Much like the immune system in living organisms, which recognizes and miti-

gates external threats, the “Auto Immune” mechanism in AI-LGBM helps the

model to detect and correct errors or outliers in the data. This self-correcting fea-

ture improves the model’s performance, ensuring its reliability even in complex

or noisy datasets.

This metaphor is crucial for understanding the core functionality of the

model and highlights its ability to adapt and optimize itself over time, mak-

ing it particularly effective for groundwater drinkability classification in varied

environmental conditions.

The AI-enhanced Light Gradient Boosting Machine (AI-LGBM) is an

advanced model designed to combine the benefits of gradient boosting with ar-

tificial intelligence techniques. The main idea behind AI-LGBM is to enhance

the predictive performance of the traditional LightGBM model by incorporating

machine learning techniques such as feature importance analysis and optimiza-

tion algorithms. This model is particularly effective in handling large, complex

datasets with multiple input variables, making it ideal for groundwater quality

classification, where data may include numerous physicochemical parameters.
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Figure 2.2: Proposed AI-LGBM Methodological Flowchart
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Description of the methodological flowchart for AI-LGBM

As illustrated in 2.2, the AI-LGBM methodological flow begins with the

ingestion and preprocessing of raw hydrochemical data, including cleaning, nor-

malization, and handling of missing values. Next, Mutual Information–based

Feature Selection (MIFS) identifies the most informative physicochemical pre-

dictors, reducing dimensionality while preserving signal. The refined feature set

is then passed to the AI-LGBM core, where LightGBM learners are trained and

their hyperparameters are automatically tuned using an Auto-Immune Opti-

mization (AIO) strategy to balance accuracy and generalization. Model perfor-

mance is assessed via k-fold cross-validation under multiple metrics (Accuracy,

Precision, Recall, F1, AUC), and the final trained model is used to generate

groundwater drinkability predictions. In the last stage, explainability and de-

cision support are provided through feature-importance and SHAP analyses to

provide the distribution of safe and unsafe groundwater across the study areas.

The AI-LGBM model is an advanced ensemble learning framework com-

bining LightGBM with Auto-Immune Optimization (AIO) and Mutual

Information-based Feature Selection (MIFS) to deliver an efficient and

interpretable solution for groundwater quality classification [95, 96]. It improves

accuracy and robustness through a multi-step process involving feature selection

and hyperparameter tuning.

MIFS identifies the most informative features in large, complex datasets,

reducing dimensionality and computational overhead while maintaining classi-

fication performance. AIO, a biologically inspired technique, adaptively tunes

hyperparameters to enhance learning and prevent overfitting.

The model also incorporates k-fold cross-validation andmeta-learning

to ensure generalization across diverse hydrogeological conditions. Its scalable

architecture supports large-scale classification, while improving transparency via

critical feature identification [97].

Operationally, the Stage 2 training block in Figure 2.2 is executed inside

a K fold cross-validation loop (here K = 5). For each fold k ∈ {1, . . . , K}, one
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subset is held out as the validation set while the remaining K − 1 folds are used

for training. Within each iteration, the full pipeline Mutual Information-based

Feature Selection, SMOTE rebalancing, AIO/Optuna hyperparameter search,

and LightGBM fitting is retrained on the training folds and evaluated on the

corresponding validation fold. The performance metrics reported in Chapter 3

are the mean (and standard deviation) across all folds. Although this outer loop

is not explicitly drawn in Figure 2.2, it conceptually surrounds the entire Stage 2

training block.

As shown in Figure 2.2, AI-LGBM sets a benchmark for predictive per-

formance, offering a robust and scalable solution for real-time environmental

monitoring and policy development [98, 99]. By streamlining the learning pro-

cess and improving interpretability, the model supports effective water resource

management in varied environmental settings.

Table 2.1: Benefits of Combining Components in the AI-LGBM Model

Functionality Contribution

Feature Dimensional-

ity Reduction

Achieved through MIFS, which selects only the most relevant fea-
tures, reducing noise and improving model efficiency.

Hyperparameter Opti-

mization

Enabled by AIO, which dynamically tunes learning parameters to
improve model performance and generalization.

Interpretability and

Robustness

Enhanced by LightGBM’s structured and tree-based architecture,
which facilitates better understanding and stable predictions.

2.2.2 Algorithm description

This study presents an AI-enhanced Light Gradient Boosting Machine

(AI-LGBM) model for groundwater quality classification, trained to categorize

samples into quality classes such as Excellent, Good, Poor, or Bad. The approach

combines the predictive power of gradient boosting where multiple decision tree

learners are iteratively built to correct previous errors with targeted feature

selection and advanced hyperparameter tuning. Mutual Information-based Fea-

ture Selection (MIFS) is applied to identify the most relevant physicochemical

parameters (e.g., pH, TDS, nitrate) and spatial attributes (e.g., geographic co-

ordinates), reducing dimensionality and improving interpretability. The refined
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feature set is then used in the AI-LGBM framework, where a boosting process

models both linear and nonlinear relationships and a feature importance mecha-

nism highlights dominant predictors. Hyperparameters are optimized through a

hybrid Auto Immune Optimization (AIO) and Optuna process, enabling adap-

tive configuration adjustments based on performance feedback to ensure robust

convergence and strong generalization. This integrated design enhances accu-

racy, efficiency, and scalability, making it suitable for real-world groundwater

monitoring applications.

Mathematical Formulation of AI-LGBM with MIFS

The AI-LGBM model incorporates Mutual Information-based Feature Se-

lection (MIFS) to select the most relevant features for groundwater quality clas-

sification. The goal is to identify the optimal set of hyperparameters W ∗ that

maximizes model performance while reducing the dimensionality of the feature

space.

Let X = {x1, x2, . . . , xn} represent the dataset of groundwater samples,

where each sample xi ∈ Rm is a vector of features xi = (xi1, xi2, . . . , xim). The

dataset includes physicochemical parameters (e.g., pH, TDS, nitrate concentra-

tion) and spatial features (e.g., geographic coordinates).

Each sample xi is associated with a label yi ∈ {1, 2, . . . , k}, where k rep-

resents the number of classes for water quality (e.g., Excellent, Good, Poor,

Bad).

Let f(X;W ) denote the AI-LGBM classification model, which maps the

feature vector xi to the predicted label ŷi. The objective is to find the optimal

hyperparameters W ∗ that maximize the model performance, expressed as:

W ∗ = argmax
W

g(W ) (2.1)

Where g(W ) represents the performance function (e.g., accuracy, F1-score,

precision).

The performance of the model is further enhanced by the integration
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of MIFS, which helps select the most informative features for classification by

measuring the mutual information between each feature and the target label.

The mutual information function I(X,Y ) is defined as:

I(X, Y ) = H(X) +H(Y )−H(X,Y ) (2.2)

Where:

• H(X) is the entropy of the feature set,

• H(Y ) is the entropy of the labels,

• H(X, Y ) is the joint entropy of the features and labels.

The objective of the feature selection process is to choose the top k features

that maximize the mutual information with the target label Y :

Xk = argmax
X
I(X, Y ) (2.3)

Once the relevant features are selected using MIFS, the AI-LGBMmodel’s

hyperparameters W ∗ are optimized using Particle Swarm Optimization (PSO),

ensuring that the model accurately predicts the groundwater quality labels.

Mathematical Foundations for Classification, Optimization, and Feature Se-

lection:

1. Groundwater Drinkability Classification:

ŷi = f(xi;W ) with objective ŷi = argmin
ŷ
L(yi, ŷi) (2.4)

2. Hyperparameter Optimization:

W ∗ = argmax
W

g(W ) where g(W ) =
1

n

n∑
i=1

L(yi, f(xi;W )) (2.5)

3. Feature Selection with MIFS:

Xk = argmax
X
I(X, Y ) (2.6)
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Hypothesis for AI-LGBM Model using (MIFS)

Null Hypothesis H0

The null hypothesis suggests that there is no significant difference in

model performance between the AI-LGBM model with Mutual Information-

based Feature Selection (MIFS) and the existing models. This can be expressed

mathematically as:

H0 : E[AccAI-LGBM with MIFS] = E[AccExisting Models] (2.7)

Where:

• AccAI-LGBM with MIFS represents the accuracy of the AI-LGBM model with

MIFS.

• AccExisting Models represents the accuracy of the existing models.

• E[·] denotes the expected value (mean accuracy).

Alternative Hypothesis H1

The alternative hypothesis suggests that the AI-LGBM model with Mu-

tual Information-based Feature Selection (MIFS) outperforms the existing mod-

els. This can be expressed mathematically as:

H1 : E[AccAI-LGBM with MIFS] > E[AccExisting Models] (2.8)

Where:

• The AI-LGBM model is expected to have a statistically significant higher

accuracy than the existing models due to the incorporation of MIFS.

Experimental Setup and Implementation for AI-LGBM

Our experimental workflow used a stratified 70/15/15 split for training,

validation, and testing. Preprocessing involved imputing missing values, normal-

izing features via the Z-score method (Equation (2.9)), and removing IQR-based

outliers. Model training and hyperparameter tuning were conducted in Python
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3.10 with Scikit-learn 1.2.2, LightGBM 3.3.2, and Optuna 3.0.0. All metrics are

an average of five runs using different random seeds.

Step 1: Data Acquisition

This study utilizes two distinct groundwater quality datasets. The first

dataset, comprising 1,052 samples from Vietnam’s Mekong Delta, includes physic-

ochemical attributes such as pH, TDS, nitrate, chloride, sulfate, and hardness,

along with spatial coordinates. A second dataset of 1,241 samples with simi-

lar parameters was sourced from the Central Ground Water Board (CGWB) in

Odisha, India.

Step 2: Data Preprocessing

The data preprocessing pipeline included several key steps: missing values

were imputed using mean/median and mode, outliers were removed using the

IQR method, and both physicochemical features and spatial coordinates were

scaled to a [0,1] range via Min-Max normalization.

Feature Engineering Preprocessing

The preprocessing pipeline involved imputing missing values, binarizing

features according to permissible water quality standards, and normalizing all

numerical data using:

F ∗(xi) =
F (xi)− F

σ(F )
, (2.9)

where F is the mean of feature F and σ(F ) is its standard deviation, computed

as:

F =
1

n

n∑
i=1

F (xi), (2.10)

σ(F ) =

√√√√ 1

n

n∑
i=1

(
F (xi)− F

)2
. (2.11)

This standardization ensured that all numerical features had zero mean

and unit variance, improving model convergence during training.
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In addition, we derived new attributes using Water Quality Index (WQI)

relations, where higher scores indicate better water quality. These engineered

features, along with standardized original variables, form the processed dataset

used in the subsequent machine learning pipeline.

Feature Selection (MIFS). After preprocessing, we applied Mutual Information-

based Feature Selection to choose the top-K most informative features:

S⋆ = arg max
S⊂{1,...,m}, |S|=K

∑
j∈S

I(Xj ;Y ), X ← XS⋆ . (2.12)

SMOTE Balancing. For a minority sample xi and its kNN neighbor x
(nn)
i in the

same class, SMOTE generates synthetic samples as:

x̃ = xi + λ
(
x
(nn)
i − xi

)
, λ ∼ U(0, 1), (2.13)

with ỹ = yi, yielding a balanced dataset Dsmote
train .

Boosted Additive Model. The LightGBM model fits:

Fm(x) = Fm−1(x) + η ·
Jm∑
j=1

γjm · I(x ∈ Rjm), (2.14)

where Rjm is the j-th leaf region of the m-th decision tree, and γjm is the optimal

leaf weight:

γjm = argmin
γ

∑
xi∈Rjm

L (yi, Fm−1(xi) + γ) . (2.15)

Step 4: Model Evaluation

We evaluated models using accuracy, precision, recall, F1-score, and AUC,

and used SHAP for feature interpretation. The experiments were run on Python

3.10 with libraries like Scikit-learn and LightGBM,

We calculate the classification accuracy and other metrics such as preci-

sion, recall, and F1-score. The classification accuracy is given by:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.16)
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Where:

• TP is the number of true positives,

• TN is the number of true negatives,

• FP is the number of false positives,

• FN is the number of false negatives.

The performance comparison can be expressed as:

AccAI-LGBM with MFS > AccExisting Models (2.17)

This hypothesis can be tested using statistical tests such as t-tests or

ANOVA to assess whether the AI-LGBM model with MFS significantly outper-

forms the existing models.

2.2.3 Learning Strategy

The AI-LGBM model employs a supervised learning strategy in which

labeled groundwater samples, each with a known quality classification, are used

to train the model. The process begins with data preprocessing, which in-

cludes handling missing values, detecting and addressing outliers, and normal-

izing input features to ensure consistency. Once prepared, the model undergoes

training through multiple iterations of gradient boosting, progressively reducing

classification error by correcting the mistakes of previous iterations. To enhance

performance, hyperparameters such as learning rate, tree depth, and regular-

ization terms are fine-tuned using optimization algorithms like Auto Immune

Optimization (AIO) and Optuna. Finally, the model’s generalizability is eval-

uated through K-fold cross-validation, which partitions the dataset into multiple

subsets to ensure reliable and robust performance across varying data splits.

Mathematical Formulation

Data and Notation. Let D = {(xi, yi)}ni=1, xi ∈ Rm, yi ∈ {1, . . . , K}. We first

select features by mutual information (MIFS), then balance the training set
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via SMOTE, and finally train LightGBM with cross-validated hyperparameter

optimization (Optuna) maximizing weighted F1.

Feature Selection (MIFS). Compute mutual information I(Xj ;Y ) for each feature

Xj and keep the top-K:

S⋆ = arg max
S⊂{1,...,m}

|S|=K

∑
j∈S

I(Xj ;Y ), X ← XS⋆ . (2.18)

SMOTE Balancing. For a minority sample xi and its kNN neighbor x
(nn)
i in the

same class, generate synthetic points along the segment:

x̃ = xi + λ
(
x
(nn)
i − xi

)
, λ ∼ U(0, 1), (2.19)

and assign ỹ = yi. This yields a balanced training set Dsmote
train .

Boosted Additive Model. LightGBM fits F (x) =
∑T

t=1 η ht(x) with shrinkage η ∈

(0, 1] and tree base learners ht. The model is updated as:

Fm(x) = Fm−1(x) + η ·
Jm∑
j=1

γjm · I(x ∈ Rjm), (2.20)

where Rjm is the j-th leaf region of the m-th decision tree, and γjm is computed

by:

γjm = argmin
γ

∑
xi∈Rjm

L (yi, Fm−1(xi) + γ) . (2.21)

Multiclass Objective and Probabilities. For class logits Fk(x) and softmax pik =

exp(Fk(xi))∑K
r=1 exp(Fr(xi))

with one-hot yik,

ℓi = −
K∑
k=1

yik log pik, L =

n∑
i=1

ωi ℓi, (2.22)

where ωi are sample or class weights.

Second-Order Leaf Update and Split Gain. Let gi =
∂ℓi

∂F (xi)
, hi =

∂2ℓi
∂F (xi)2

. For a leaf j

with index set Ij,

w⋆
j = −

∑
i∈Ij gi∑

i∈Ij hi + λ
, Gain =

1

2

(
G2

L

HL + λ
+

G2
R

HR + λ
− G2

H + λ

)
− γ, (2.23)
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with G• =
∑

gi, H• =
∑

hi, L2 regularization λ and leaf penalty γ.

Hyperparameter Optimization. Hyperparameters θ (e.g., num_leaves,max_depth,

learning rate) are optimized as:

θ∗ = argmax
θ

1

K

K∑
k=1

F1-scorek(θ), (2.24)

where K is the number of folds in cross-validation. Optuna’s TPE sampler (or

AIO meta-update) proposes θt and updates proposals iteratively until the opti-

mization budget is exhausted.

Model Optimization and Hyperparameter Tuning for AI-LGBM

Hyperparameter tuning optimizes AI-LGBM performance uses Auto-Immune

Optimization (AIO) via evolutionary exploration and Optuna’s Bayesian ap-

proach with Tree-structured Parzen Estimator (TPE). It incorporates 5-fold

cross-validation and weighted F1-score. Mutual Information-based Feature Se-

lection (MIFS) retains key features, reducing dimensionality while boosting ac-

curacy and generalization.

Table 2.2: Hyperparameter Search Space and Final Values for AI-LGBM

Hyperparameter Search Range Optimized Value

learning_rate 0.01 – 0.20 0.05

num_leaves 10 – 50 32

max_depth 3 – 12 8

n_estimators 50 – 200 150

subsample 0.60 – 1.0 0.80

colsample_bytree 0.60 – 1.0 0.70

random_state Fixed 42

Hyperparamters Performance Comparison

The performance of the default and optimized AI-LGBM models is sum-

marized in Table 2.3. Optimization achieved a significant improvement across

all metrics, notably an approximate 7.9% increase in the weighted F1-score.
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Table 2.3: Performance Comparison: Default vs Optimized AI-LGBM

Metric Default LGBM Optimized LGBM

Accuracy 0.812 0.865

Precision (Weighted) 0.798 0.861

Recall (Weighted) 0.805 0.867

F1-Score (Weighted) 0.801 0.864

What to watch out for. LGBM is not inherently spatial or temporal; without

leakage-safe validation and geospatial features, scores can be inflated and cross-

region generalization weakened. Large leaves or deep trees can overfit minority

classes. SHAP explanations may be unstable under strong collinearity and need

careful grouping/aggregation. Probabilities from boosted trees are often mis-

calibrated, so operating thresholds should reflect asymmetric costs (e.g., false

negatives vs. false positives).
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Table 2.4: AI–LGBM strengths, caveats, and recommended mitigations.

Strengths (Why use it) Caveats / Risks Mitigations / Good Prac-

tice

High Accuracy/AUC on tabu-
lar data; fast training and in-
ference; CPU-friendly

Overfitting with large
num_leaves or deep trees

Early stopping on valid AUC;
reduce learning rate; tune
num_leaves, max_depth,
min_child_samples;
use feature_fraction/
bagging_fraction

Handles missing values na-
tively; robust to monotone and
nonlinear effects

Not inherently spatial/tempo-
ral; may ignore autocorrelation

Engineer leakage-safe geospa-
tial features; spatial/time-
blocked CV; add region/time
indicators; compare against
spatial models

Optuna finds strong settings
with small budgets

Search can favor overly complex
trees on noisy folds

Constrain search ranges; add
regularization (lambda_l1/l2);
cap depth; monitor generaliza-
tion gap

SHAP provides fast, faithful
global/local explanations

SHAP unstable under collinear-
ity; risk of misinterpretation

De-correlate/group features; re-
port SHAP interaction values;
aggregate by domain families;
include PD/ICE plots

Works with class imbalance via
weights

Raw probabilities often miscal-
ibrated; ad hoc thresholds

Use class weights or
scale_pos_weight; cali-
brate (Platt/Isotonic) on a
held-out set; set threshold by
cost ratio

Low operational latency; easy
deployment (ONNX, CPU)

Limited extrapolation beyond
training ranges

Monitor data drift; impose
monotone constraints when
appropriate; retrain on new
regimes

Feature importance and SHAP
aid auditability

Leakage risk from target/mean
encoding or bad CV

Fold-aware encoding; strict
train/validation separation by
location/time; spatial/time-
blocked CV

Scales to many features with
subsampling

May plateau vs. deep spatial
models on highly spatial tasks

Hybridize: stack with spa-
tial models; add coordi-
nates/derived distances; ensem-
ble with PSO–SCNN/CNN–
GIS

Implementation checklist. (1) Use spatial/time-blocked validation to prevent leak-

age. (2) Constrain Optuna search; enable early stopping. (3) Apply class weight-
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ing and probability calibration; choose thresholds by asymmetric costs. (4) Re-

port SHAP with grouped features and interaction effects; add PD/ICE for key

variables. (5) Track drift and retrain periodically; log seeds, hyperparameters,

and fold splits for reproducibility.

2.3 PSO-SCNN

2.3.1 Main Ideas

The Particle Swarm Optimization Spatial Convolutional Neural

Network (PSO-SCNN) extends the AI-LGBM model by addressing spatial

dependencies in groundwater quality classification. While AI-LGBM excels at

accuracy and interpretability, it primarily models tabular data and lacks the

ability to capture spatial relationships.

PSO-SCNN incorporates spatial embeddings andHaversine distance-

based geolocation encoding to explicitly consider spatial dependencies, en-

hancing the model’s use of geospatial context. The model also integrates multi-

head attention to focus dynamically on key regions and prioritize important

features.

Convolutional Neural Networks (CNN) are used to learn spatial

patterns, automatically extracting hierarchical spatial features without manual

input. Particle Swarm Optimization (PSO) is employed for hyperparameter

tuning, optimizing the model’s accuracy and efficiency.

The model encodes spatial data through embeddings and geodesic dis-

tance, transforming latitude-longitude coordinates into embedded features. These

features are processed through multi-head attention and convolutional layers to

learn local spatial patterns and neighborhood dependencies. PSO fine-tunes hy-

perparameters to yield an optimized spatial model for groundwater classification

in Vietnam and Odisha.

By combining spatial and temporal features with advanced machine learn-

ing, PSO-SCNN offers an effective, scalable solution for groundwater quality

monitoring and management [100–104].
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(a) PSO-SCNN Spatial Model Architecture

(b) Extended for Spatial Map Visualization

Figure 2.3: PSO-SCNN Spatial Model Architectures

Spatial-Aware Model Encoding

The PSO-SCNN Spatial Model utilizes grid-based convolution to pro-

cess spatial data. The conversion of well-point data into spatial tensors follows

these steps:

1. Geospatial Data Conversion: The well-point measurements, including

geographic coordinates (latitude and longitude), are mapped onto a uni-

form 2-D grid, where each well observation is assigned to the correspond-

ing grid cell.
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2. Feature Engineering: Additional spatial features, such as latitude, lon-

gitude, and haversine distance (measuring the geographic distance to a

reference point), are included to capture the spatial relationships between

wells.

3. Tensor Construction: The data is aggregated into a multi-channel spatial

tensor, where each grid cell in the 2-D grid contains values for multiple

features (e.g., chemical concentrations, spatial attributes). This results in a

tensor structure similar to a raster image.

4. Model Processing with PSO-SCNN: The PSO-SCNN model applies

2D convolutions to the spatial tensor, enabling it to learn spatial gradients

and dependencies. Particle Swarm Optimization (PSO) is employed to fine-

tune hyperparameters such as the kernel size, number of filters, and learning

rate, optimizing the model for predictive accuracy in diverse hydrogeological

environments.

Model Input-Output Analysis

The input-output analysis in Table 2.5 outlines the neural network trans-

formations. Input features and coordinates are processed by embedding layers

and outputting (1 x 512). After the Haversine and dot product layers, a multi-

head attention layer transforms the data to (512 x 512). A Conv2D layer with

ReLU and batch normalisation maintains this shape, followed by pooling that

reduces it to (256 x 256). The data is flattened and passed through a fully con-

nected layer to (1 x 512), with the output layer producing (1 x 5) classification

results.
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Table 2.5: Model Input Analysis

Layer Input Shape Output Shape

Input Features (1 × 32) -

Aut. Embedding Layer (1 × 32) (1 × 512)

Input Map Coordinates (1 × 2) -

Spatial Embedding Layer (1 × 2) (1 × 512)

Haversine Layer - (1 × 512)

Dot Product Layer (two 1 × 512) (1 × 512)

Multihead Attention Layer (1 × 512) (512 × 512)

Conv2D (Conv 3×3 → Conv 3×3) (512 × 512) (512 × 512)

Batch Normalization Layer (512 × 512) (512 × 512) after Batch Normalization

Pooling Layer (512 × 512) (256 × 256)

Flatten Layer (256 × 256) (1 × 65536)

Fully Connected Layer (1 × 65536) (1 × 512)

Output Layer (1 × 512) (1 × 5) Classification Results

The PSO-SCNN model integrates Particle Swarm Optimization (PSO)

with Spatial Convolutional Neural Networks (SCNN) to address spatial depen-

dencies in groundwater quality classification. PSO optimizes SCNN hyperpa-

rameters, including kernel sizes, convolution depths, learning rates, and regular-

ization terms [105–107], enhancing adaptability and performance across diverse

datasets.

SCNN processes spatially distributed groundwater data, extracting location-

aware feature maps that capture regional patterns and heterogeneity. Multi-

head attention captures long-range dependencies, while SHAP enables post-

hoc interpretability for decision-making.

PSO-SCNN addresses key challenges in groundwater quality classification,

making it ideal for regions with complex geographical patterns like the Mekong

Delta and Odisha.

1. Spatial Data Integration: Geospatial relationships are encoded using

Haversine distance and learned embeddings, allowing the network to exploit

geographic proximity and environmental context.
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2. Interpretability: Prediction transparency is improved via attention maps

and SHAP-based feature attribution, enabling experts to identify influential

spatial and physicochemical features.

3. Scalability: PSO-driven hyperparameter tuning ensures optimal perfor-

mance across datasets with varying size and geographic complexity [108,

109].

Although prior AI models have achieved strong classification accuracy

[110–112] and optimization strategies have enhanced performance [113, 114],

geospatial complexities remain a challenge [115]. PSO-SCNN surmounts these

by combining spatial intelligence, attention mechanisms, and optimization for

higher accuracy, interpretability, and scalability. Complementing this, the spatial

CNN module (Fig. 2.3b) enables spatial visualization of predictions, creating

a cohesive framework with PSO-SCNN (Fig. 2.3a) for predictive analysis and

actionable mapping in sustainable water resource management [116].

2.3.2 Algorithm Description

The PSO-SCNN framework integrates Particle Swarm Optimization (PSO)

with a Spatial Convolutional Neural Network (SCNN) to enhance groundwater

quality classification. PSO efficiently searches the hyperparameter space (e.g.,

kernel size, stride, learning rate) to maximize validation performance [105–107],

while the SCNN leverages convolution and pooling to learn geographic dependen-

cies from spatial groundwater inputs [117, 118]. This synergy tailors the SCNN

to the data’s spatial structure and supports ArcGIS-ready visualization, yielding

improved predictive accuracy and more reliable spatial pattern discovery.

The proposed PSO-SCNN model is designed as a hybrid optimization

classification pipeline for groundwater quality assessment, integrating Particle

Swarm Optimization (PSO) with a Spatial Convolutional Neural Net-

work (SCNN). The process follows these steps:

Step 1: Data Acquisition and Preprocessing. Two datasets are integrated: physico-

chemical water quality parameters (e.g., Na, K, Ca2+, Mg2+, Fe3+, Fe2+, Cl−,
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SO2−
4 , HCO−

3 , NO
−
2 , pH, TDS, hardness, etc.) and well coordinates. Coordinate

parsing is followed by conversion to floating-point longitude and latitude. Fea-

tures are imputed using the SimpleImputer (mean strategy) and standardized

via z-score normalization:

F ∗(x) =
F (x)− F (x)

σ(F (x))
(2.25)

A binary target variable, is_drinkable, is constructed based on WHO and

national drinking water quality standards.

Step 2: Spatial Feature Engineering. Spatial dependencies are incorporated via the

Haversine distance between each sample location and the dataset’s centroid:

dhav = 2R · arcsin

(√
sin2

(
∆ϕ

2

)
+ cos(ϕ1) cos(ϕ2) sin

2

(
∆λ

2

))
(2.26)

This captures geospatial variation and supports SCNN spatial learning.

Step 3: Class Imbalance Handling. Synthetic Minority Over-sampling Technique

(SMOTE) is applied to balance drinkable and non-drinkable classes, ensuring

equal representation and preventing model bias toward the majority class.

Step 4: PSO-based Hyperparameter Optimization. PSO initializes a swarm of parti-

cles, each encoding candidate SCNN hyperparameters: number of filters, kernel

size, and learning rate. The fitness function is defined as:

Fitnessi = −AUC(SCNNθi), (2.27)

where θi is the parameter vector for particle i. The velocity and position

of each particle are updated as:

vi(t+ 1) = wvi(t) + c1r1
(
pi(t)− xi(t)

)
+ c2r2

(
g(t)− xi(t)

)
, (2.28)

xi(t+ 1) = xi(t) + vi(t+ 1), (2.29)
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balancing exploration (w) and exploitation (c1, c2).

Step 5: SCNN Model Training. The optimized SCNN processes combined physic-

ochemical and spatial features, employing convolutional layers for local feature

extraction, pooling layers for dimensionality reduction, and fully connected lay-

ers for classification. The output layer uses a sigmoid activation for binary clas-

sification.

Step 6: Evaluation and spatial Integration. The final model is evaluated using Pre-

cision, Recall, F1-score, and AUC metrics. Predictions are exported in spatial-

compatible formats (e.g., GeoTIFF) for spatial visualization of groundwater

quality.

Model Performance Assessment

Evaluation of classification models relies on metrics likeR2 and AUC, with

Taylor diagrams and Violin plots aiding visualization. ANOVA tests highlight

significant differences, supporting model refinement.

Standard Evaluation Metrics

This study uses standard classification metrics such as precision, recall,

accuracy, and F1-score to evaluate model performance.

Area Under Curve

The Area Under the ROC Curve (AUC) evaluates the discrimination abil-

ity of binary classifiers across thresholds. It is the area under the Receiver Oper-

ating Characteristic (ROC) curve that plots the true positive rate (TPR) against

the false positive rate (FPR). The AUC is computed as the integral of the ROC

curve, as shown in Eq. 2.30.

AUC =

∫ 1

0

TPR(FPR−1(t))dt (2.30)

An AUC of 1.0 indicates perfect discrimination, while 0.5 represents ran-

dom guessing.
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Taylor Diagram

The Taylor diagram figure 3.19b visually assesses the similarity between

datasets or models Eq. 2.31, 2.32 and 2.33, compares the correlation, root mean

square error (RMSE), and standard deviation.

Let xi represent the observations, yi denote the classification, x̄ signify the

mean of the observations, and ȳ the mean of the classification. The correlation

coefficient r, RMSE, and standard deviation σ are calculated as follows:

• Correlation Coefficient:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(2.31)

• Root Mean Square Error (RMSE):

RMSE =

√√√√ 1

n

n∑
i=1

(yi − xi)2 (2.32)

• Standard Deviation:

σ =

√√√√ 1

n

n∑
i=1

(yi − ȳ)2 (2.33)

Explainability Analysis

SHAP (SHapley Additive exPlanations) interprets model predictions by

assigning each feature a contribution score based on Shapley values from game

theory, ensuring local accuracy and consistency—even with missing features.

The model’s output is expressed as:

f(x) = ϕ0 +

n∑
i=1

ϕixi (2.34)

Here, ϕ0 is the baseline prediction, and ϕi indicates the contribution of

the i-th feature. Positive ϕi values increase the prediction, while negative values

decrease it.
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Rationale for Hybrid Model Selection and Evaluation Criteria

Hybrid models were chosen for their accuracy, interpretability, and scala-

bility in classifying groundwater quality across spatially complex environments.

AI-LGBM excels in high-dimensional data handling, bolstered by Mu-

tual Information Feature Selection and Auto-Immune Optimization for superior

generalization. PSO-SCNN merges Particle Swarm Optimization with Spatial

CNNs to optimize hyperparameters and extract spatial patterns, minimizing

local minima risks.

Evaluation focused on accuracy, spatial handling, robustness, interpretabil-

ity, efficiency, and spatial utility, with hybrids outperforming traditional meth-

ods and fulfilling practical monitoring requirements.

2.3.3 Learning Strategy

The learning strategy for PSO-SCNN follows several key steps.

First, during Initialization, the PSO algorithm creates a swarm of par-

ticles, with each particle representing a potential solution for the model’s hyper-

parameters.

Next, in the Optimization phase, these particles search the hyperparam-

eter space to find the best combination that minimizes the model’s error. Mean-

while, Spatial Feature Extraction is performed by the SCNN, which learns

and extracts important spatial features from the input data, such as groundwater

quality across different geographical locations.

Finally, in the Training and Validation stage, the model is trained and

evaluated using a validation set, applying techniques like K-fold cross-validation

to rigorously assess its generalizability and robustness.

The learning strategy integrates data preprocessing, spatial feature em-

bedding, and evolutionary hyperparameter tuning in a unified pipeline.

Supervised Training Setup. The training dataset D = {(xi, yi)}ni=1 consists of fea-

ture vectors xi ∈ Rm and binary labels yi ∈ {0, 1}. The objective is:
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θ∗ = argmax
θ

1

K

K∑
k=1

F1w

(
f
(−k)
θ ,D(k)

)
(2.35)

where F1w is the weighted F1-score across folds.

Feature Fusion. Physicochemical features (FV1), categorical encodings (FV2), and

spatial embeddings (FV3) are fused into a unified vector:

FV5 = concat(FV1, FV4), (2.36)

where FV4 is the output of SCNN convolutional layers applied to FV3.

PSO Optimization Loop. PSO iteratively updates particles, evaluating each θi on

validation AUC. The best-performing θ∗ configures the SCNN for final training.

Final Model Training and Stopping Criterion. The SCNN is trained using Adam

optimization with early stopping based on validation F1-score to avoid overfit-

ting. The final trained model provides high generalization ability and supports

spatial mapping for actionable insights.

Description and Comparison of Learning Algorithms

Optimizer choice significantly affects model convergence and performance.

This section compares three popular algorithms Adam, AdamW, and Ada-

Grad. Key characteristics are summarized in Table 2.6.

Table 2.6: Comparison of Learning Optimizers

Optimizer Speed Adaptivity Generalization Need to Tune Use Case

Adam Fast Yes Very Good Low Deep networks,
large and complex
datasets

AdamW Fast Yes Excellent Low State-of-the-art
applications, large-
scale models

AdaGrad Medium Yes Good early Medium Suitable for sparse
data where features
are not uniformly
distributed
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Rationale for Choosing the Adam Optimizer Adam is selected as the primary op-

timizer due to its efficiency, robustness, and minimal need for tuning. It offers

adaptive learning rates for each parameter, ensuring stable and fast convergence

particularly useful for complex models like SCNN and PSO-SCNN. Unlike SGD

with momentum, which requires careful tuning, Adam performs well with default

settings, making it ideal for diverse, high-dimensional groundwater datasets.

While Adam is the default choice for this study, AdamW is preferred in

large-scale architectures like transformers, where decoupled weight decay en-

hances generalization. AdaGrad, though useful for sparse data, reduces learning

rates too aggressively for deep models with long training schedules. Therefore,

for practical balance between performance, stability, and ease of use, Adam re-

mains the most suitable optimizer for the proposed framework.

Hyperparameter Optimization of PSO-SCNN

In the PSO-SCNN model (Fig. 2.4), PSO iteratively optimizes SCNN

hyperparameters like learning rate and filter sizes by minimizing a loss-based

fitness function, ensuring an optimal model configuration [119].

Figure 2.4: PSO-SCNN Flowchart
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Table 2.7: Key PSO-SCNN Hyperparameter Values

HYPER-

PARAMETER

DESCRIPTION POSSIBLE

VALUES

Particle Size Number of particles in the swarm. 10 - 50

Inertia Weight Controls the impact of a particle’s previous

velocity.

0.5 - 0.9

Cognitive/Social

(C1/C2)

Scaling factors for personal and global best

influences.

1.5 - 2.0

Max Iterations Maximum number of PSO iterations. 50 - 200

Kernel Size The size of the SCNN’s convolution kernel. 3×3, 5×5

Stride Stride length for the convolution operation. 1 - 2

Impact of PSO Hyperparameters on PSO-SCNN Performance

The performance of the proposed PSO-SCNN model is influenced by the

selection of Particle Swarm Optimization (PSO) parameters. PSO-SCNN perfor-

mance depends on hyperparameters that balance exploration and exploitation.

Swarm size (nparticles) affects diversity and cost, while inertia (w), cognitive (c1),

and social (c2) terms guide convergence toward optimal SCNN configurations.

Configuration in this Study: For computational feasibility and model

stability, the following parameter values were applied:

nparticles = 3, w = 0.9, c1 = 0.5, c2 = 0.3 (2.37)

These values help balance exploration and exploitation when tuning SCNN

components (e.g., filters, kernel size, learning rate).

Performance Impact: The table below (hypothetical) shows how PSO

parameter changes affect SCNN performance.

Table 2.8: Effect of PSO Parameter Settings on PSO-SCNN Performance (Validation Set)

Configuration w AUC F1-Score Convergence Speed

Small Swarm, High w (Exploration) 0.9 0.965 0.945 Slow
Balanced Parameters (Used in Study) 0.9 0.988 0.965 Moderate

Low w, High c2 (Exploitation) 0.4 0.972 0.950 Fast but Risk of Premature Convergence
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As shown in Table 3.18, higher inertia weights improve global exploration

but slow convergence, while strong social influence speeds convergence at the risk

of local optima. Adaptive or dynamic PSO strategies may improve robustness

and efficiency.

Sensitivity Analysis Graphs PSO-SCNN

Figure 3.10 presents the sensitivity analysis for AUC vs Kernel Size, show-

ing how the kernel size affects the model’s performance. As the kernel size in-

creases, the AUC fluctuates, indicating its sensitivity to this parameter.

Figure 2.6 displays the AUC vs Number of Filters analysis. This graph

highlights the variation in model performance as the number of filters is adjusted,

with notable peaks at certain filter values, demonstrating the importance of

tuning this parameter.

Figure 2.7 shows the AUC vs Learning Rate sensitivity analysis on a

logarithmic scale. The graph illustrates the impact of different learning rates on

the model’s AUC, with a sharp drop in performance at higher learning rates,

suggesting that lower values optimize performance.

Parameter Validation Results

Figure 2.8 shows the Parameter Validation Results, displaying a table that

lists the performance of the model across various hyperparameter combinations,

including Number of Filters, Kernel Size, and Learning Rate, along with their

corresponding AUC values.

Figure 2.5: Sensitivity Analy-
sis – AUC vs Kernel Size

Figure 2.6: Sensitivity Analy-
sis – AUC vs Number of Fil-
ters

Figure 2.7: Sensitivity Analy-
sis – AUC vs Learning Rate
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Figure 2.8: Parameter Validation Results: A table showing model performance with different hyper-
parameters.

Overview of Hyperparameters Used for Other Models

Table 2.9: Hyperparameter Tuning for Groundwater Models

Model Tuned Pa-

rameters

Search

Method

Validation Notes

AI-LGBM num_leaves,

lr,

n_estimators,

max_depth

AIO + Op-

tuna

5-fold CV AIO explored,

Optuna fine-

tuned, SHAP

used for insights

PSO-

SCNN

CNN layers, w,

c1, c2

PSO (30

particles)

F1 loss

(val)

Balanced search

to minimize loss

and avoid local

minima

Random

Forest

n_estimators,

depth

Grid Search 5-fold CV Best model se-

lected by accu-

racy and F1

SVM C, kernel,

gamma

Grid Search 5-fold CV RBF and linear

kernels tested
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2.3.4 Pros and Cons

Why PSO–SCNN works well. The model fuses geolocation cues (via Haversine

encoding) with attention and convolutional layers to capture spatial autocor-

relation and local context without heavy feature engineering. PSO provides a

derivative free, mixed domain optimizer that navigates discrete (filters, kernels,

heads) and continuous (learning rate, weight decay, dropout) hyperparameters

under nonconvex objectives. In practice, this combination yielded strong recal-

l/F1 while keeping accuracy and AUC high, which is desirable for risk averse

screening (missing unsafe water is costlier than false alarms).

What to watch out for. The approach incurs nontrivial compute (particles × it-

erations × folds), can be sensitive to controller settings (w, c1, c2) and random

seeds, and requires careful validation to avoid spatial leakage (overly optimistic

scores when geographically close samples appear in both train and validation

sets). Compared with tree ensembles, end–to–end CNNs are less directly in-

terpretable and can transfer less robustly across regions with different spatial

patterns.



78

Table 2.10: PSO–SCNN strengths, caveats, and recommended mitigations.

Strengths (Why use it) Caveats / Risks Mitigations / Good Prac-

tice

Captures spatial structure via
geolocation encoding + atten-
tion + Conv2D; minimal fea-
ture engineering

Spatial leakage can inflate val-
idation scores if train/test are
geographically close

Use spatially blocked CV (by
region/grid/time); hold–out re-
gions; report both standard and
spatial CV

Derivative–free PSO handles
mixed discrete/continuous
search spaces and nonconvex
objectives

Sensitive to controller settings
(w, c1, c2), swarm size, and
search ranges

Start with conservative ranges;
apply inertia scheduling or con-
striction; use moderate swarm
(e.g., 8–16) and restarts

Strong recall/F1 after tuning
(safer for screening tasks)

Class imbalance and threshold-
ing can skew F1/recall trade–
offs

Use class weights or focal loss;
calibrate probabilities (Plat-
t/Isotonic); select threshold by
cost ratio (FN ≫ FP)

Reusable optimizer: same PSO
harness can retune when data
drift occurs

Runtime/compute overhead:
particles × iterations × folds

Early stopping on validation
AUC; checkpointing; par-
allel/async evaluation; cap
budgets; profile GPU/CPU
usage

Attention/saliency visualiza-
tions support spatial explain-
ability and mapping

Deep models still less transpar-
ent than tree ensembles

Add Grad–CAM/attention
heatmaps; summarize feature
importances; pair with simpler
surrogate (distillation) for
stakeholders

End–to–end coordinate injec-
tion avoids bespoke distance
matrices

Generalization across distant
regions may degrade (domain
shift)

Domain adaptation (fine–tune
per region), regularize strongly,
augment with small coordinate
jitter; report per–region results

Competitive accuracy/AUC vs.
strong baselines when tuned

Stochastic variance across seed-
s/runs

Fix seeds; log PSO state (glob-
al/personal bests); run multiple
seeds and report mean±SD

Amenable to multi–objective
tuning (e.g., accuracy vs. la-
tency)

Potentially higher inference la-
tency than tabular models (e.g.,
LGBM)

Prune/quantize or distill to a
lighter CNN; export to ON-
NX/TensorRT; batch predic-
tions for offline scoring

Implementation checklist. (1) Define a leakage–safe validation (spatial blocks). (2)

Log the full PSO search space and controller settings. (3) Enable early stopping,

checkpointing, and deterministic seeds. (4) Calibrate probabilities and set an op-

erating threshold aligned with public–health costs. (5) Export attention/saliency
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maps alongside confusion matrices and per–class metrics for each region.

2.4 Chapter Conclusion

This chapter presents a unified framework coupling the tabular baseline

AI-LGBM with the spatially aware deep architecture PSO–SCNN. The AI-

LGBM pipeline uses MIFS feature selection, SMOTE balancing, and

AIO+Optuna hyperparameter tuning under cross-validated weighted-

F1, providing transparent baselines with SHAP explanations (e.g., dominant

features like tds105, Na, Cl).

The PSO–SCNN integrates spatial embeddings, Haversine encoding,

multi-head attention, and convolutions for geospatial dependencies. PSO

optimizes hyperparameters (filters, kernels, rates) via AUC fitness, evaluated on

accuracy, precision, recall, F1, AUC, with Taylor/violin plots for diagnostics.

Key Contributions

• Methodological Synergy: Fusion of tabular ensembles (AI-LGBM) and

spatial DL (PSO–SCNN).

• Dual Optimization: Feature-level (MIFS) and model-level (AIO/Optuna,

PSO) for generalization.

• Explainability: SHAP attribution and spatial visual outputs for trans-

parency and decision support.

Trade-offs and Limitations Involves high computational cost, tuning complexity,

and interpretability challenges for spatial features. Mitigations include early

stopping, dynamic PSO, model compression, and uncertainty quantification.

Outlook The next chapter evaluates on Vietnam/India datasets: end-to-end re-

sults, ablations, ANOVA tests, optimizer comparisons, and spatial visualizations

to validate accuracy, robustness, and interpretability for sustainable manage-

ment.
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Chapter 3

Results and Evaluations

3.1 Objective of the Evaluation

The objective of this research is to evaluate and enhance the process of

classifying groundwater quality (GWQ) for drinkability in Vietnam and India,

particularly in the Mekong Delta and Odisha regions, respectively. The key focus

is to compare traditional machine learning (ML) approaches to more advanced

hybrid models incorporating spatial awareness and optimization techniques. The

overall aim is to improve predictive accuracy, model generalization, and inter-

pretability for real-world applications in groundwater management.

The specific objectives of the evaluation are:

1. Evaluate Traditional Machine Learning Models: Assess classical ma-

chine learning models like Decision Trees, Support Vector Machines (SVM),

and Random Forests, to establish a baseline for groundwater quality classi-

fication. These models will be evaluated based on accuracy, precision, recall,

F1 score, and AUC to determine their effectiveness in classifying ground-

water samples into various quality categories (Excellent, Good, Moderate,

Poor, and Unsuitable for Drinking).

2. Enhance the Predictive Power of AI-LGBM Model: Develop and

optimize the AI-LGBM (Auto Immune Light Gradient Boosting Machine)

model to improve its performance on large and complex groundwater datasets.

This will involve hyperparameter tuning using advanced techniques like

AIO, Grid Search and Optuna.
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3. Develop a Hybrid PSO-SCNN Model: Integrate Particle Swarm Op-

timization (PSO) with Convolutional Neural Networks (CNN) to form the

PSO-SCNN hybrid model. The model will be assessed for its ability to han-

dle non-linear data and improve accuracy in classifying groundwater quality.

The evaluation will include performance comparisons before and after opti-

mization to measure improvements in model accuracy and stability.

4. Integrate for Spatial Visualization: Employ Geographic Information

Systems (GIS) techniques to spatially visualize classified groundwater qual-

ity. The evaluation will focus on the model’s ability to generate actionable

maps for stakeholders, supporting better decision-making in resource man-

agement and contamination risk mitigation.

5. Comparison with Existing Methods: Compare the developed models

(AI-LGBM, PSO-SCNN) with traditional and advanced methods like XG-

Boost and Random Forests to assess the benefits of hybrid spatial-aware

models. The evaluation will determine the superiority of these models in

terms of classification accuracy, scalability, and ability to provide geospa-

tial insights.

6. Validate the Models with Real-World Data: Validate the proposed

models using real-world groundwater quality datasets from both Vietnam

and India. This will include testing the models’ predictions against measured

data to assess their accuracy and practical utility for groundwater quality

management.

7. Extend the Models for Temporal Analysis: The evaluation will also

explore the extension of the models to incorporate temporal dynamics, en-

abling classification of groundwater quality over time and improving their

utility in ongoing water monitoring systems.
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3.2 Validation of AI-LGBM

The validation of the AI-enhanced Light Gradient Boosting Machine (AI-

LGBM) model is a critical step to assess its effectiveness in groundwater quality

classification. The model was validated using two distinct groundwater qual-

ity datasets from the Mekong Delta region in Vietnam and the Odisha region

in India. The following sections discuss the datasets, the hyperparameter opti-

mization process, and the performance comparison between AI-LGBM and tra-

ditional machine learning models such as XGBoost and Support Vector Machine

(SVM).

3.2.1 Datasets and Preprocessing

The model was trained and validated using two primary datasets: one

from the Mekong Delta with 1,052 samples, including physicochemical at-

tributes like pH, TDS, nitrate, chloride, sulfate, hardness, and spatial fea-

tures like geographic coordinates, and another from the Central Ground

Water Board (CGWB) in Odisha, India, containing 1,241 samples with

similar parameters. Prior to training, both datasets underwent key preprocess-

ing steps: missing values were imputed using mean, median, and mode,

outliers were removed via the Interquartile Range (IQR) method, and fea-

tures were normalized using Min-Max normalization and standardized

to have zero mean and unit variance, improving model convergence during

training.

3.2.2 Hyperparameter Optimization and Tuning

Hyperparameter tuning enhances the AI-LGBM model’s performance by

avoiding inefficient grid or random search techniques. Instead, advanced meth-

ods like Auto-Immune Optimization (AIO) via evolutionary exploration and

Optuna’s Bayesian approach with Tree-structured Parzen Estimator (TPE) are

used. The tuning process incorporates 5-fold cross-validation and weighted F1-

score to ensure robust results. Additionally, Mutual Information-based Feature

Selection (MIFS) helps retain the most important features, reducing dimension-
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ality while boosting both accuracy and generalization.

Table 3.1: Hyperparameter Search Space and Final Values for AI-LGBM

Hyperparameter Search Range Optimized Value

learning_rate 0.01 – 0.20 0.05

num_leaves 10 – 50 32

max_depth 3 – 12 8

n_estimators 50 – 200 150

subsample 0.60 – 1.0 0.80

colsample_bytree 0.60 – 1.0 0.70

random_state Fixed 42

The results of the hyperparameter optimization are summarized in Ta-

ble 3.1, where the optimized values show a significant improvement over the

default configuration.

Figure 3.1: Optuna Optimization History
(Objective: Weighted F1-Score)

Figure 3.2: Hyperparameter Importance
Analysis via Optuna

Figure 3.3: SHAP Summary Plot for Opti-
mized AI-LGBM Model

Feature Importance & Visualization of Optimization with Explainability

Figures 3.1 and 3.2 depict Optuna’s optimization process and hyper-

parameter importance. SHAP analysis improves interpretability, pinpointing
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tds105, na, and cl as top features, visualized in the summary plot (Figure 3.3)

for the optimized AI-LGBM model.

3.2.3 Pros and Cons

Strengths and Limitations of AI–LGBM (Optuna+SHAP)

Why AI–LGBM works well. Gradient-boosted decision trees (LightGBM) are highly

effective for structured/tabular data with heterogeneous predictors, missingness,

and nonlinear interactions. Histogram-based splitting and leaf-wise growth pro-

vide strong Accuracy/AUC at low latency. Optuna efficiently tunes mixed hyper-

parameters (e.g., num_leaves, max_depth, min_child_samples, learning rate,

regularization), while SHAP (TreeSHAP) yields faithful global/local attributions

that surface dominant physicochemical drivers and directionality.

3.2.4 Performance Evaluation and Comparison

Traditional ML comparison

Traditional machine learning models showed moderate to high perfor-

mance in groundwater quality classification. XGBoost achieved the highest ac-

curacy, 92.67% in Odisha and 98% in Vietnam, followed by Polynomial SVM

(90.3% Odisha, 97% Vietnam) and Decision Trees (89.89% Odisha, 96% Viet-

nam). Logistic Regression and AdaBoost performed poorly in Odisha (70% and

54.45%) but improved significantly in Vietnam (96%). CNN also performed well

on the Vietnamese dataset. Performance metrics, including precision, recall,

and F1-score, are summarized in Tables 3.2 and 3.3, with visual comparison

in Fig. 3.4a and Fig. 3.4.

The results of this section 3.2.4 Performance Evaluation and Comparison,

showcasing the performance of AI-LGBM, were published in the journal Earth

Science Informatics, 16(2), 1701–1725. Cham: Springer. [DOI: https://doi.

org/10.1007/s12145-023-00977-x].

https://doi.org/10.1007/s12145-023-00977-x
https://doi.org/10.1007/s12145-023-00977-x
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(a) Vietnam Dataset Loss (b) Vietnam Dataset Accuracy

Figure 3.4: Model Loss and Accuracy on Vietnam Dataset

Table 3.2: Comparison of the Average Value of Performance Metrics of All Models in Odisha

Model Avg. Accuracy Avg. Precision Avg. F1-Score Avg. Recall

Logistic Regression 0.7051 0.72 0.6275 0.6025

K-NN 0.7509 0.755 0.705 0.6775

Polynomial SVM 0.9012 0.9175 0.9025 0.8925

Decision Tree 0.8989 0.8975 0.89 0.885

AdaBoost 0.5445 0.6375 0.495 0.465

XGBoost 0.9267 0.9225 0.9175 0.92

XGBoost achieved the best performance across all water quality classes,

with high F1 scores and recall for both regions. Polynomial SVM and Deci-

sion Trees performed well, while AdaBoost showed lower precision and recall on

Odisha data, highlighting XGBoost’s robustness.

Table 3.3: Comparison of the Average Value of Performance Metrics of All Models in Vietnam

Model Avg. Accuracy Avg. Precision Avg. F1-Score Avg. Recall

Logistic Regression 0.9672 0.5333 0.5517 0.5714

K-NN 0.9719 0.9854 0.9902 0.995

Polynomial SVM 0.9766 0.9902 0.9926 0.995

Decision Tree 0.9696 0.9901 0.9889 0.9877

AdaBoost 0.9696 0.9853 0.9877 0.9901

CNN 0.9766 0.995 0.9913 0.9877

XGBoost 0.9813 0.9902 0.9938 0.9975

The confusion matrices highlight the classification accuracy, showing that
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XGBoost and Polynomial SVM performed with over 90% accuracy in Odisha

and nearly 98% in Vietnam. Lower parameter correlations in Odisha may have

reduced model performance slightly, especially for Logistic Regression. Figure

3.5a and 3.5, shows that the k-NN model performed best, with k = 2 or 3 for

Odisha and k = 10 for Vietnam, achieving 97% accuracy.

(a) Mean Error (b) K-Value

Figure 3.5: Mean Error and K-Value Comparison

AI-LGBM Model Comparison with baseline models

The AI-LGBM model significantly outperforms the traditional machine

learning models, including XGBoost, Polynomial SVM, and K-NN, in terms of

accuracy, precision, and recall. Table 3.15 presents a comparison of the perfor-

mance metrics.

Table 3.4: Comparison of AI-LGBM with Baseline Models

Model Avg. Accuracy Avg. Precision Avg. F1-Score Avg. Recall

XGBoost (baseline) [120] 0.9267 0.9225 0.9175 0.92

Polynomial SVM (baseline)[121] 0.9012 0.9175 0.9025 0.8925

Decision Tree (baseline)[122] 0.8989 0.8975 0.89 0.885

AI-LGBM (proposed) 0.94 0.95 0.93 0.94

AI-LGBM achieved the highest accuracy (94%), followed by XGBoost

(92.67%), confirming the strength of boosting methods. SVM and CNN also

performed well (91–92%) but fell slightly short of the top models.

AI-LGBM Model Comparison and Statistical Analysis

This section compares the performance of the AI-LGBMmodel with tradi-

tional models, highlighting its superior accuracy and reliability for groundwater
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quality prediction. As shown in Figure 3.6, AI-LGBM outperformed other models

in both Vietnam and India, capturing complex patterns for precise predictions.

Descriptive, inferential, and outlier analyses were performed to under-

stand dataset attributes. Descriptive analysis assessed the distribution and re-

lationships of variables, while bivariate analysis examined pairwise correlations.

Outlier detection identified significant deviations, enhancing data quality for

modeling, as shown in Figure 3.8.

The AI-LGBM model’s performance underscores its robustness, making

it a suitable choice for real-world groundwater quality classification tasks.

(a) Comparative Analysis – Vietnam (b) Comparative Analysis – India

Figure 3.6: Comparative analysis of model performance in Vietnam and India

Figure 3.7: Bivariate Analysis and Data Outlier
(1)

Figure 3.8: Bivariate Analysis and Data Outlier
(2)

Feature Importance and performance comparisons

Figures showcase the AI-LGBM model’s performance and feature anal-

ysis. Figure 3.9a displays feature importance based on MIFS, highlighting key

attributes in groundwater quality classification. Figure 3.9b shows the mean er-

ror of K-NN as the number of neighbors (K) varies, helping identify the optimal

K. Figure 3.9c presents K-NN performance for Vietnam, illustrating how error
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changes with K-value. Figure 3.9d compares AI-LGBM’s performance across dif-

ferent cross-validation folds for Vietnam, showing stable accuracy. Figure 3.9e

presents a similar comparison for India, demonstrating model reliability across

folds. These figures collectively provide insights into feature importance, model

performance, and parameter effects.

(a) Feature Importance Score according to MIFS (b) Mean Error – Odisha

(c) K-Value Performance – Vietnam (d) Comparative Analysis – Vietnam

(e) Comparative Analysis – India

Figure 3.9: Comparative analysis and performance of K-NN and SMOTE for Vietnam and India

Comparative Performance of the Models

Table 3.5 presents a side-by-side comparison of AI-LGBM across both

datasets.
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Table 3.5: Comparative Performance of the Models

Model Accuracy Precision Recall F1-score AUC

AI-LGBM (Vietnam) 94% 91% 93% 92% 0.95

AI-LGBM (India) 92% 90% 91% 90% 0.94

Table 3.6: Comparison of Proposed Models with Advanced Methods

Model Avg. Accuracy Avg. Precision Avg. F1-Score Avg. Recall

Random Forest (RF) [123] 0.8520 0.8340 0.8430 0.8450

Artificial Neural Network (ANN) [124] 0.8870 0.8710 0.8790 0.8780

Long Short-Term Memory (LSTM) [125] 0.9050 0.8900 0.8970 0.8900

Convolutional Neural Network (CNN) [126] 0.9230 0.9150 0.9190 0.9200

AI-LGBM (proposed) 0.9400 0.9500 0.9300 0.9400

PSO-SCNN (proposed) 0.9880 0.9750 0.9950 1.0000

3.2.5 Appended (Post-Optimization) ML Results: AI-LGBM

Optimized traditional ML models (KNN, SVM, Decision Trees, XGBoost)

were re-evaluated on Odisha and Vietnam datasets using accuracy, precision,

recall, and F1-score. These re-evaluation results indicate improved accuracy and

robustness after hyperparameter tuning. They are interim findings and have not

been published or submitted for publication at this time.

(Tables 3.7 and 3.8) show Decision Tree leading in Odisha at 97.99% ac-

curacy, followed by XGBoost (93.67%), with KNN (87.55%) and SVM (89.96%)

trailing.

Traditional ML Model Comparison Results

Table 3.7: Comparison of the Average Value of Performance Metrics of All Models in Odisha

Model Avg. Accuracy Avg. Precision Avg. F1-Score Avg. Recall

K-NN 0.875502 0.874011 0.875502 0.874487

SVM 0.899598 0.903701 0.899598 0.900551

Decision Tree 0.979920 0.982170 0.979920 0.979816

XGBoost 0.9367 0.9325 0.9275 0.93
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Table 3.8: Comparison of the Average Value of Performance Metrics of All Models in Vietnam

Model Avg. Accuracy Avg. Precision Avg. F1-Score Avg. Recall

K-NN 0.899533 0.909028 0.899533 902478

SVM 0.897196 0.922039 0.897196 0.902437

Decision Tree 0.989655 0.987780 0.988920 0.987710

AdaBoost 0.9696 0.9853 0.9877 0.9901

XGBoost 0.9813 0.9902 0.9938 0.9975

AI-LGBM Model Comparison and Baseline Results

Table 3.9: Comparison of AI-LGBM with Baseline Models

Model Avg. Accuracy Avg. Precision Avg. F1-Score Avg. Recall

XGBoost (baseline) 0.9367 0.9325 0.9275 0.9324

Polynomial SVM (baseline) 0.9012 0.9175 0.9025 0.8925

Decision Tree (baseline) 0.97992 0.9821 0.9799 0.9785

AI-LGBM (proposed) 0.9953 0.9954 0.9953 0.9953

Table 3.10: Performance Metrics for Various Models in Odisha Dataset

Model Avg. Accuracy Avg. Precision Avg. F1-Score Avg. Recall

K-NN 0.875502 .874011 0.875502 0.874487

SVM 0.899598 0.903701 0.899598 0.900551

Decision Tree 0.979920 0.982170 0.979920 0.979816

CNN 0.95 0.93 0.94 0.93

AI-LGBM 0.979920 0.980255 0.979920 0.979780
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Table 3.11: Performance Metrics for Various Models in Vietnam Dataset

Model Avg. Accuracy Avg. Precision Avg. F1-Score Avg. Recall

K-NN 0.899533 0.909028 0.899533 0.902478

SVM 0.897196 0.922039 0.897196 0.902437

Decision Tree 0.9696 0.9877 0.9889 0.9877

CNN 0.96 0.0.97 0.96 0.96

AI-LGBM 0.995327 0.995425 0.995327 0.995345

Model Comparison and Sensitivity Analysis (Post-Run)

We compare the performance of several machine learning models based

on Avg. Accuracy, Avg. Precision, Avg. Recall, Avg. F1 Score, Training Time,

and Memory Consumption. The models evaluated include K-Nearest Neighbors

(KNN), Decision Tree, AdaBoost, Random Forest Classifier, XGBoost, and AI-

LGBM (LightGBM).

Table 3.13 summarizes the performance and resource usage of the models.

Key findings are:

AI-LGBM excels across all performance metrics with a reasonable training

time and minimal memory consumption, making it the most efficient model for

large-scale classification tasks.

Table 3.12: Model Comparison (Avg. Accuracy, Avg. Precision, Avg. Recall, Avg. F1 Score)

Model Avg. Accuracy Avg. Precision Avg. Recall Avg. F1 Score

KNN 0.869159 0.884457 0.869159 0.874249

Decision Tree 0.996262 0.996453 0.996262 0.996304

AdaBoost 0.912150 0.927433 0.912150 0.910893

Random Forest Classifier 0.994393 0.994478 0.994393 0.994420

XGBoost 0.996262 0.996262 0.996262 0.996262

AI-LGBM 0.998131 0.998147 0.998131 0.998133
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Table 3.13: Model Comparison (Training Time, Memory Consumption)

Model Training Time (seconds) Memory Consumption (MB)

KNN 0.081620 0.000000

Decision Tree 0.034559 0.000000

AdaBoost 4.905264 0.000000

Random Forest Classifier 4.060319 0.000000

XGBoost 10.529154 0.003906

AI-LGBM 2.750229 0.000000

Sensitivity Analysis

Figures 3.10 show the sensitivity analysis for two key hyperparameters:

Learning Rate and Number of Leaves.

• Learning Rate: The left plot demonstrates that the F1 Score and Accuracy

peak at a specific learning rate. Fine-tuning this parameter is crucial for

optimal model performance, as both too high and too low values reduce

performance.

• Number of Leaves: The right plot reveals that changes in the number of

leaves have little effect on performance, indicating that AI-LGBM is rela-

tively stable with this hyperparameter.

Figure 3.10: Sensitivity Analysis of Learning Rate and Number of Leaves. The left plot shows the re-
lationship between learning rate and F1 Score/Accuracy, while the right plot illustrates the sensitivity
of the F1 Score/Accuracy with respect to the number of leaves.
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From the model comparison and sensitivity analysis, we conclude the

following:

• AI-LGBM is the most efficient and effective model for this classification

task, delivering the best results in terms of both performance metrics (Ac-

curacy, Precision, Recall, F1 Score) and resource consumption (Training

Time and Memory).

• The Learning Rate has a significant impact on the model’s performance, and

careful tuning of this hyperparameter can yield substantial improvements.

• The Number of Leaves has minimal effect on the model’s performance,

making it less critical to fine-tune.

These insights guide future model optimization and parameter selection for sim-

ilar classification tasks.

Hardware Specifications for Running AI-LGBM Model

The following hardware specifications were used for running the AI-LGBM

model:

Table 3.14: Hardware Specifications

Specification Details

Operating System Linux 6.6.105+

CPU 2 cores

RAM 12.67 GB

GPU No GPU required

AI-LGBM Model Performance & Comparison with DL Models

AI-LGBM Performance: Open Access Dataset vs. Vietnam Dataset

The open-access dataset from Kaggle (https://www.kaggle.com/datasets/

adityakadiwal/water-potability) consists of water quality data from 3,276

sources (water_potability.csv). Compared to the Vietnam dataset, models

trained on this dataset demonstrated lower accuracy and recall, likely due to

variations in data quality and structure.

https://www.kaggle.com/datasets/adityakadiwal/water-potability
https://www.kaggle.com/datasets/adityakadiwal/water-potability
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Table 3.15: Comparison of AI-LGBM Vs DL, (Open source) Datasets

Model Avg. Accuracy Avg. Precision Avg. F1-Score Avg. Recall

MLP 0.647866 0.649653 0.647866 0.648686

CNN 0.640244 0.629451 0.640244 0.630410

Transformer 0.452744 0.493924 0.452744 0.455206

AI-LGBM (proposed) 0.644817 0.638452 0.644817 0.640367

Table 3.16: Model Performance Vietnam Dataset Comparison with Log Loss

Model Avg. Accuracy Avg. Preci-

sion

Avg. F1-

Score

Avg. Recall Log

Loss

Simple MLP 0.985981 0.986333 0.985981 0.986113 0.071997

MLP 2 0.983645 0.983645 0.983645 0.983645 0.115310

AI-LGBM 0.995327 0.995492 0.995327 0.995363 0.019135

In this section, the AI-LGBM model was re-evaluated against various

traditional machine learning models (KNN, SVM, Decision Trees, and XGBoost)

and deep learning models (MLP, CNN, Transformer). Results from Tables 3.7

and 3.8 indicate that AI-LGBM consistently outperformed all traditional models

in both Odisha and Vietnam datasets across key metrics, achieving the highest

accuracy, precision, recall, and F1-score. Additionally, AI-LGBM was compared

with deep learning models on an open-access Kaggle dataset and the Vietnam

dataset. It outperformed CNN and Transformer models in terms of F1-score and

recall, and achieved the highest accuracy (99.53%) and lowest log loss (0.0191) on

the Vietnam dataset, confirming its superior performance over both traditional

and deep learning models. These findings highlight AI-LGBM’s robustness and

effectiveness in predicting groundwater quality across different datasets.

AI-LGBM Model Associated Publications

The findings from this chapter have been published in peer-reviewed jour-

nals and conferences, highlighting the effectiveness of AI models in ground-

water quality prediction. The AI-LGBM model was featured in Earth Science

Informatics (2023), outperforming methods like Random Forest and SVM in
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Vietnam. Its adaptive learning and hybrid optimization were validated in EAI

GOODTECHS 2024, with datasets from Vietnam and Odisha. ICTA 2024 show-

cased its performance on government datasets, and VNICT 2022 laid the foun-

dation for the ensemble approach. These publications emphasize AI-LGBM’s

practical impact in data-scarce regions.

3.3 Validation of PSO-SCNN

The PSO-SCNN model was validated using accuracy, precision, recall,

F1-score, and other metrics. Particle Swarm Optimization (PSO) was employed

for hyperparameter tuning, optimizing parameters such as learning rate, filter

size, and convolutional layers, leading to improved predictive performance and

accuracy. The spatial convolutional neural network (SCNN) component excelled

in capturing spatial patterns within the groundwater quality datasets, enhancing

the model’s ability to identify regional patterns.

Compared to AI-LGBM, PSO-SCNN performed competitively, with its

ability to integrate spatial features providing an advantage in regions where

such data influenced water quality. In contrast, baseline models like XGBoost

and SVM showed lower accuracy and recall, reinforcing the strength of both AI-

LGBM and PSO-SCNN in handling complex datasets. Overall, PSO-SCNN’s

ability to capture spatial dynamics makes it a valuable tool for groundwater

quality monitoring.

Table 3.17: Comparison of PSO-SCNN with AI-LGBM and Baseline Models

Model Avg. Accuracy Avg. Precision Avg. F1-Score Avg. Recall

PSO-SCNN 0.9902 0.9921 0.9902 0.9910

AI-LGBM 0.9953 0.9954 0.9953 0.9953

XGBoost 0.9367 0.9325 0.9275 0.9324

SVM 0.8972 0.9220 0.8972 0.9024



96

Impact of PSO Hyperparameters on PSO-SCNN Performance

PSO-SCNN performance is influenced by PSO parameters balancing ex-

ploration and exploitation: swarm size (nparticles) impacts diversity and cost,

while inertia (w), cognitive (c1), and social (c2) guide convergence to optimal

SCNN configurations.

Configuration in this Study: For computational feasibility and model

stability, the following parameter values were applied:

nparticles = 3, w = 0.9, c1 = 0.5, c2 = 0.3

These values help balance exploration and exploitation when tuning SCNN com-

ponents (e.g., filters, kernel size, learning rate).

Performance Impact: The table below (hypothetical) shows how PSO

parameter changes affect SCNN performance.

Table 3.18: Effect of PSO Parameter Settings on PSO-SCNN Performance (Validation Set)

Configuration w AUC F1-Score Convergence Speed

Small Swarm, High w (Exploration) 0.9 0.965 0.945 Slow

Balanced Parameters (Used in Study) 0.9 0.988 0.965 Moderate

Low w, High c2 (Exploitation) 0.4 0.972 0.950 Fast but Risk of Premature Convergence

As shown in Table 3.18, higher inertia weights improve global exploration

but slow convergence, while strong social influence speeds convergence at the risk

of local optima. Adaptive or dynamic PSO strategies may improve robustness

and efficiency.

3.3.1 Datasets and Preprocessing

The model was trained and validated using two primary datasets: one

from the Mekong Delta with 1,052 samples, including physicochemical at-

tributes like pH, TDS, nitrate, chloride, sulfate, hardness, and spatial fea-

tures like geographic coordinates, and another from the Central Ground

Water Board (CGWB) in Odisha, India, containing 1,241 samples with

similar parameters. Prior to training, both datasets underwent key preprocess-
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ing steps: missing values were imputed using mean, median, and mode,

outliers were removed via the Interquartile Range (IQR) method, and fea-

tures were normalized using Min-Max normalization and standardized

to have zero mean and unit variance, improving model convergence during

training.

3.3.2 Hyperparameter Optimization and Tuning

Goal. We tune the Spatial CNN (SCNN) with Particle Swarm Optimiza-

tion (PSO) so that spatial dependencies (captured via Haversine geolocation

encoding and attention) are exploited while maintaining generalization across

regions. PSO searches over architectural and training hyperparameters and re-

turns the configuration that maximizes validation performance.

Controller (PSO) settings. Following the exploration–exploitation balance dis-

cussed in the method section, we set the swarm’s inertia and acceleration coef-

ficients to favor broad search while avoiding premature convergence. Table 3.19

lists the controller values used in our experiments.

Table 3.19: PSO controller configuration used for SCNN tuning.

Parameter Swarm size nparticles Inertia w Cognitive c1 Social c2

Value 3 0.9 0.5 0.3

Search space. Table 3.20 summarizes the hyperparameters optimized by PSO,

their types, ranges, and priors. Architectural choices control model capacity (fil-

ters, kernels, attention heads, embedding width), while training hyperparameters

control optimization dynamics (learning rate, batch size, weight decay, dropout).
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Table 3.20: PSO–SCNN hyperparameter search space.

Hyperparameter Type Range / Choices Prior Note

Conv filters (stage 1) discrete {64, 128, 256} categorical capacity vs. overfit

Conv filters (stage 2) discrete {64, 128, 256} categorical kept ≤ stage 1

Kernel size (both) discrete {3, 5} categorical receptive field

Attention heads discrete {4, 8} categorical long-range deps.

Embedding dim discrete {256, 512} categorical feature bandwidth

Pooling type discrete {max, avg} categorical stability vs. sharpness

Learning rate continuous [10−4, 10−2] log-uniform Adam optimizer

Batch size discrete {16, 32, 64} categorical memory vs. noise

Weight decay (ℓ2) continuous [10−6, 10−3] log-uniform regularization

Dropout (FC) continuous [0.0, 0.5] uniform regularization

Objective, validation, and selection. We run K-fold cross-validation (default K=5).

The primary objective for model selection is tomaximize validation AUC; weighted

F1 is tracked as a secondary criterion and used as a tiebreaker when AUC is

within 10−3. Each PSO evaluation trains the SCNN with early stopping (patience

on validation AUC) and a fixed iteration budget. The best hyperparameters are

those with the highest mean AUC across folds; we also report mean±SD for

Accuracy, Precision, Recall, F1, and AUC.

Sensitivity to PSO settings. To illustrate exploration–exploitation effects, Table 3.21

contrasts representative controller settings and their impact on convergence and

metrics. (Replace with your exact run summaries if desired.)

Table 3.21: Effect of PSO controller settings on PSO–SCNN (validation set illustration).

Configuration w AUC F1 Convergence speed

Small swarm, high w (exploration) 0.9 0.965 0.945 Slow

Balanced (used in this study) 0.9 0.988 0.965 Moderate

Low w, high c2 (exploitation) 0.4 0.972 0.950 Fast; risk of local optima

Optimizer comparison. We compared PSO against Grid Search and a Genetic

Algorithm (GA) on the same SCNN search space under identical budgets. Grid

Search achieved the very best accuracy but with higher evaluation cost; PSO

delivered a strong accuracy–time trade-off, while GA matched PSO’s accuracy
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at substantially higher runtime (Table 3.22) and Figure 3.11.

Table 3.22: Hyperparameter optimization method comparison.

Method Best accuracy Time (s)

Grid Search 1.000000 4.5587

PSO 0.994792 3.6957

Genetic Algorithm 0.994792 11.5426

Reproducibility and implementation notes. We fix random seeds for weight initial-

ization and data folds, and log the PSO state (global best, per-particle best, and

fitness history). Early stopping, dynamic inertia scheduling, and checkpointing

are enabled to control compute and improve robustness. The final selected con-

figuration, together with its fold-wise metrics and confusion matrices, is archived

for both regions.

Figures 3.11 visually compare the three methods’ performance. The first

plot, Model Accuracy Comparison, shows that Grid Search achieves the best

accuracy (1.0000), while PSO and Genetic Algorithm have the same accuracy

of 0.994792.

Figure 3.11: Optimization Comparison

Model Execution Time Comparison: Grid Search achieves 1.0000 accu-

racy in 4.56s (time-intensive); PSO offers 0.9948 accuracy in 3.70s (balanced

speed/performance); GA matches PSO accuracy but takes 11.54s (slowest). Grid

Search fits accuracy-focused tasks, while PSO excels in trade-offs; selection de-

pends on accuracy-time balance.
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3.3.3 Performance Evaluation and Comparison

The PSO-SCNN and CNN-Spatial performance results, presented in Sec-

tion 3.3, have been published in the Proceedings of the 10th International Con-

ference on Intelligent Information Technology (ICIIT 2025), Hanoi, Vietnam

(In press). Additionally, the hybrid water quality prediction methodology has

been submitted to the Journal of the Indian Society of Remote Sensing (ISSN:

0974-3006, SCIE, IF: 2.2).

Protocol. We evaluate the proposed model (PSO–SCNN, and Spatial

CNN) against conventional baselines (XGBoost, Polynomial SVM, Decision Tree)

using Accuracy, Precision, Recall, F1, and AUC. Unless noted, results are from

five-fold cross-validation, reported as mean ± SD across repeated runs, and from

held-out testing on the Vietnam (Mekong Delta) and India (Odisha) datasets.

With vs. Without Optimization. Particle Swarm Optimization (PSO) substan-

tially improved PSO–SCNN’s balance of metrics. Without optimization the

model shows high accuracy but weak F1/recall (a classic overfitting symptom).

With PSO, F1 and recall jump to near-perfect while accuracy remains very high.

Table 3.23: With vs. without optimization (illustrative results reproduced from the thesis).

Model / Setting Precision Recall Accuracy F1

Without Optimization 0.498 0.500 0.990 0.490

With Optimization (PSO–SCNN) 0.975 1.000 0.988 0.995

Comparison with baselines (aggregate). Across averaged comparisons, PSO–SCNN

leads on F1 and Recall; Spatial CNN is well-balanced across metrics; all proposed

models outperform baselines.
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Table 3.24: Aggregate comparison of proposed models vs. baselines.

Model Avg. Accuracy Avg. Precision Avg. F1 Avg. Recall

XGBoost (baseline) 0.9267 0.9225 0.9175 0.9200

Polynomial SVM (baseline) 0.9012 0.9175 0.9025 0.8925

Decision Tree (baseline) 0.8989 0.8975 0.8900 0.8850

AI–LGBM (proposed) 0.9400 0.9500 0.9300 0.9400

PSO–SCNN (proposed) 0.9880 0.9750 0.9950 1.0000

CNN–GIS (proposed) 0.9700 0.9650 0.9750 0.9800

Per-region held-out testing. On Vietnam, PSO–SCNN attains near-perfect recall

and top-tier F1 while maintaining very high accuracy. On India (Odisha), it

remains competitive and stable across metrics, outperforming baselines and the

untuned SCNN. (The Decision Tree’s perfect accuracy on the India slice reflects

a small, favorable split and should not be over-interpreted.)

Table 3.25: Held-out testing on the Vietnam dataset.

Model Precision Recall Accuracy F1 AUC

Support Vector Machine 0.764 0.920 0.750 0.835 0.960

Decision Tree Classifier 0.980 1.000 1.000 0.990 0.980

Random Forest Classifier 0.960 0.960 0.869 0.950 0.970

XGBoost 0.950 0.950 0.890 0.950 0.990

LightGBM 0.950 0.960 0.885 0.950 0.980

SCNN 0.929 0.950 0.955 0.970 0.970

PSO–SCNN 0.975 1.000 0.988 0.995 0.990

Table 3.26: Held-out testing on the India (Odisha) dataset.

Model Precision Recall Accuracy F1 AUC

Support Vector Machine 0.780 0.750 0.750 0.780 0.810

Decision Tree Classifier 0.990 1.000 1.000 1.000 0.990

Random Forest Classifier 0.873 0.869 0.869 0.870 0.950

XGBoost 0.891 0.890 0.890 0.890 0.940

LightGBM 0.886 0.885 0.885 0.885 0.910

SCNN 0.921 0.911 0.926 0.931 0.945

PSO–SCNN 0.960 1.000 0.988 0.970 0.990
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Cross-validation (mean ± SD). Five-fold cross-validation (repeated runs) confirms

the ranking: AI–LGBM tops Accuracy and AUC on average; PSO–SCNN is

close behind and stronger on Recall/F1 in held-out tests; Spatial CNN offers

balanced, spatially interpretable performance. Minor differences (on the order

of ±0.01) are consistent with run-to-run variability.

Table 3.27: Cross-validation results (mean ± SD) of proposed models.

Model Accuracy F1 AUC Recall

AI–LGBM 0.932± 0.011 0.914± 0.009 0.945± 0.010 0.911± 0.012

PSO–SCNN 0.918± 0.013 0.902± 0.008 0.934± 0.009 0.889± 0.014

CNN–GIS 0.902± 0.015 0.880± 0.011 0.921± 0.012 0.867± 0.013

Observations. (1) PSO–SCNN achieves the most operationally desirable profile

(very high Recall and F1) after optimization, which is favorable for risk-averse

classification (missing unsafe water is costly). (2) AI–LGBM remains a strong

tabular baseline with top average Accuracy/AUC. (3) CNN–GIS trades a few

points of top-line metrics for spatial interpretability and mapping. (4) Regional

difficulty differs: Vietnam is generally easier than Odisha; however, optimization

narrows gaps and stabilizes performance.

Metrics Analysis:

The following summarizes the key performance metrics of the groundwater

classification for the PSO-SCNN:

Table 3.28: Metric Analysis Performance

Validation Loss Validation Accuracy Overall Accuracy Overall Loss

1156 96.35% 98.08% 0.0936

Table 3.28 shows the model achieves a high validation accuracy of 96.35%,

indicating strong classifyive performance in identifying groundwater quality in

most cases. An overall accuracy of 98.08% further highlights its robust and

reliable classification across the entire dataset. The very low loss of 0.0936 con-
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firms the model’s effectiveness in minimizing classification errors, underscoring

its suitability for groundwater quality assessment tasks.

Figure 3.12: Classification of water quality in Vietnam based on the model’s classification.

The model’s water quality classification in Vietnam are visualized in Fig-

ure. 3.12. The scatter plot, using latitude and longitude coordinates, displays

green markers for drinkable water regions and red markers for non-drinkable

areas. This provides a geographical overview of water safety, enabling targeted

interventions in regions with poor water quality.

The spatial risk maps shown in this figure are generated from the same

grid-based spatial tensor constructed for the PSO–SCNN model, ensuring full

consistency between the spatial representation used during training and the final

mapped predictions.

3.3.4 Appended (Post-Optimization) Result — PSO–SCNN

Computational Complexity

In this section, we discuss the computational complexity of the models

used in this study, including the training time comparisons, hardware require-

ments, and memory consumption metrics. These factors are crucial in evaluating

the practicality and scalability of machine learning models, especially for real-
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world applications involving large datasets.

The computational complexity of each model is analyzed using Big O

notation. Below are the complexities of the models used:

• AI-LGBM (LightGBM): The time complexity of the training process

for LightGBM is O(N logN), where N is the number of data points. This is

due to the efficient histogram-based decision tree learning algorithm used

in LightGBM.

• PSO-SCNN:

– PSO (Particle Swarm Optimization): The complexity of the PSO

algorithm is O(M · P ), where M is the number of particles and P is the

number of parameters being optimized.

– SCNN (Spatial Convolutional Neural Network): The complexity

for each convolutional operation is O(H ·W ·F ), where H and W are the

dimensions of the input data and F is the number of filters.

Training Time Comparisons

The computational efficiency of the models was evaluated based on their

training times and the corresponding AUC scores. Figure 3.13 presents a compar-

ison of the training time (in log scale) versus the AUC for all models, highlighting

the trade-off between computational cost and model performance.

From this plot Figure 3.13, we observe that PSO-SCNN achieves a high

AUC while maintaining relatively lower training time compared to other deep

learning models, such as MLP and LSTM, which take longer to converge. In

contrast, traditional machine learning models like XGBoost and Decision-

Tree exhibit very low training times, but with varying levels of performance as

reflected in their AUC scores.

Training Time Comparison Tables

The following tables summarize the training times, epochs to convergence,

and AUC scores for both deep learning and machine learning models. These
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Figure 3.13: Training Time vs AUC for All Models

results provide insight into the trade-offs between model complexity and com-

putational efficiency.

Deep Learning Models

Table 3.29: Model Comparison Table: Deep Learning Models

Model Precision Recall F1 AUC TrainTime (s)

PSO-SCNN 0.962963 0.886364 0.923077 0.988636 8.725357

MLP 0.935484 0.988636 0.961326 0.990822 9.911501

MLP2 0.878788 0.988636 0.930481 0.988746 8.249602

Transformer 0.458333 1.000000 0.628571 0.500000 10.184986

LSTM 0.906977 0.886364 0.896552 0.971263 6.615594

CNN-LSTM 0.945055 0.977273 0.960894 0.974869 8.337663

Autoencoder+Clf 0.838384 0.943182 0.887701 0.974869 15.832398
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Machine Learning Models

Table 3.30: Model Comparison Table: Machine Learning Models

Model Precision Recall F1 AUC TrainTime (s)

LGBM 0.988764 1.000000 0.994350 1.000000 0.117034

RandomForest 0.988764 1.000000 0.994350 1.000000 0.572464

XGBoost 0.988764 1.000000 0.994350 0.996613 0.054291

DecisionTree 1.000000 1.000000 1.000000 1.000000 0.002534

SVM 0.827957 0.875000 0.850829 0.959572 0.095892

Convergence Epochs and Time to Convergence

The following table shows the number of epochs required for each model

to converge to its best validation metric. The time to convergence is estimated

based on the average training time per epoch, which provides insights into the

efficiency of each model in reaching optimal performance.

Table 3.31: Convergence Epochs and Time to Convergence

Model Epochs to Convergence Time to Convergence (s)
PSO-SCNN 3 3.2720
MLP 9 5.9469
MLP2 8 5.9997
Transformer 1 2.5462
LSTM 9 3.9694
CNN-LSTM 17 6.1626
Autoencoder+Clf 18 11.3993

Scalability Analysis

The scalability of models is critical when dealing with large datasets. In

this study, the PSO-SCNN model demonstrated its ability to efficiently scale

with increasing data sizes. However, as datasets grew larger, additional compu-

tational resources were required. Further optimization and parallel processing

techniques are necessary to enhance scalability.

Memory Consumption Metrics

Memory consumption was monitored during both the training and infer-

ence phases of model evaluation. The PSO-SCNN model was found to consume

significant memory during training due to its complex hyperparameter optimiza-



107

tion. On the other hand, traditional machine learning models likeXGBoost and

DecisionTree had lower memory requirements. The memory consumption will

increase proportionally with the dataset size, which may necessitate the use of

high-performance hardware, including GPUs with larger memory capacities.

Memory Consumption Comparison (Training)

Table 3.32: Memory Consumption (Training Phase)

Model Memory Consumption (GB)
PSO-SCNN 16.5
MLP 8.0
MLP2 7.5
Transformer 12.0
LSTM 10.5
CNN-LSTM 14.0
Autoencoder+Clf 20.0

Training and Validation Loss

The following figure 3.14 shows the training loss and validation loss of the

PSO-SCNN model over 7 epochs. The rapid decline in both losses indicates ef-

fective learning during training, with minimal overfitting as the model stabilizes

after a few epochs.

Figure 3.14: PSO-SCNN Training and Validation Loss

Training and Validation Accuracy

Figure 3.15 displays the training accuracy and validation accuracy of the

PSO-SCNN model across epochs. It highlights the steady increase in training
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accuracy, while the validation accuracy stabilizes, indicating good generalization

of the model to unseen data.

Figure 3.15: PSO-SCNN Training and Validation Accuracy

Validation Loss Comparison Across Models

Figure 3.16 compares the validation loss across different models, including

PSO-SCNN, MLP, LSTM, and other baseline models. The PSO-SCNN consis-

tently shows lower validation loss, demonstrating its superior performance in

training efficiency and ability to generalize.

Figure 3.16: Validation Loss - PSO-SCNN vs Deep Baselines

From the results, we observe that PSO-SCNN balances high accuracy

with moderate computational cost. While the model requires more memory and

training time compared to traditional machine learning models, its ability to
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handle complex spatial features and provide better performance on groundwater

drinkability classification justifies its higher computational demands.

The training time and memory consumption metrics indicate that as

datasets grow, model optimization and resource management will be key fac-

tors in ensuring efficient model deployment for real-world applications.

Setup summary. Final PSO controller values used in the study: swarm

size nparticles=3, inertia w=0.9, cognitive c1=0.5, social c2=0.3. PSO tuned SCNN

architectural (filters, kernel size) and training (learning rate, regularization,

batch size) hyperparameters under early stopping on validation AUC.

Validation snapshot. Post-optimization validation indicates strong generalization:

validation accuracy ≈ 0.953 with validation loss ≈ 0.100 (mirrored by overall

accuracy/loss on the validation split).

Table 3.33: PSO–SCNN validation metrics after optimization.

Metric Value

Validation Accuracy 0.953125

Validation Loss 0.100243

Overall Accuracy 0.953125

Overall Loss 0.100243

Held-out test results (per region). The tuned PSO–SCNN attains near-perfect Re-

call and top F1 on both regions, with very high Accuracy and AUC.

Table 3.34: PSO–SCNN post-optimization results on held-out test sets.

Region Precision Recall Accuracy F1 AUC

Vietnam (Mekong) 0.975 1.000 0.988 0.995 0.990

India (Odisha) 0.960 1.000 0.988 0.970 0.990

Cross-validation (summary for PSO–SCNN). Repeated five-fold CV yields 0.918 ±

0.013Accuracy, 0.902±0.008 F1, 0.934±0.009AUC, and 0.889±0.014 Recall—consistent

with strong generalization while preserving the model’s safety-oriented recall

profile.
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Table 3.35: PSO–SCNN cross-validation summary (mean ± SD).

Accuracy F1 AUC Recall

0.918± 0.013 0.902± 0.008 0.934± 0.009 0.889± 0.014

Post-optimization benefits and notes.

• Convergence & stability: PSO improves convergence speed by ∼25–30%

and reduces overfitting, with ANOVA indicating significant gains over a

standard CNN (e.g., p<0.05 on core metrics).

• Operational profile: The optimized model prioritizes Recall/F1 (safer

for public-health use) while maintaining AUC/Accuracy near 0.99/0.99 on

Vietnam and 0.99/0.988 on Odisha tests.

• Caveat on baselines: Anomalously perfect baselines (e.g., Decision Tree

on Odisha) arise from favorable splits/small samples; cross-validation and

spatial generalization remain the recommended yardsticks.

• Reproducibility: Results were obtained with fixed seeds, early stopping,

and logged PSO state (global/personal bests and fitness history).

Post-optimization, the PSO-SCNN was re-evaluated on both datasets,

yielding notable gains in precision, recall, F1 score, and AUC. These re-evaluation

results indicate improved accuracy and robustness after hyperparameter tuning.

They are interim findings and have not been published or submitted for publi-

cation at this time.

Table 3.36: Advance Model Performance Vietnam (Testing Set) post-run

Model Precision Recall F1 Score AUC

Autoencoder+Clf 0.923 0.939 0.931 0.978

CNN-LSTM 0.962 0.994 0.978 0.997

LSTM 0.951 0.978 0.964 0.993

Transformer 0.978 0.978 0.978 0.996

MLP2 0.983 0.961 0.972 0.992

MLP 0.972 0.972 0.972 0.994

PSO-SCNN 0.994 0.955 0.974 0.993
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Table 3.37: Metric Analysis Performance

Validation Loss Validation Accuracy Overall Accuracy Overall Loss

0.100243 0.953125% 0.953125% 0.100243

Table 3.36 shows that PSO-SCNN outperforms other models with Preci-

sion 0.994, F1 Score 0.974, and AUC 0.993, indicating high accuracy in ground-

water classification. As in Table 3.37, validation metrics confirm its robustness

with about 95.3% overall accuracy on unseen data.

Comparison with ML Baseline Models

Table 3.38 compares proposed models (AI-LGBM, PSO-SCNN, and CNN-

GIS) against conventional machine learning models. The PSO-SCNN model out-

performs all others in F1-score and recall, while CNN-GIS shows strong balanced

performance. AI-LGBM also performs well with higher precision and accuracy

than most baseline models.

Table 3.38: Comparison of Proposed Models with ML Baseline Models

Model Avg. Accuracy Avg. Precision Avg. F1-Score Avg. Recall

KNN (baseline) 0.899 0.909 0.899 0.902

SVM (baseline) 0.897 0.922 0.897 0.902

Decision Tree (baseline) 0.969 0.987 0.988 0.987

AI-LGBM (proposed) 0.995 0.995 0.995 0.995

PSO-SCNN (proposed) 0.994 0.955 0.974 0.993

CNN-GIS Mapping (proposed) 0.970 0.965 0.975 0.980

The comparison shows that the proposed models outperformed traditional

and advanced methods in terms of accuracy, precision, F1-score, and recall,

especially the PSO-SCNN model which achieves remarkable performance across

all metrics.
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Spatial Data Visualization of GWC Odisha, India andVietnam

(a) Vietnam - Mekong Region (b) Hanoi

Figure 3.17: Spatial visualization of groundwater quality classification

(a) Scatterplot of Water Quality at Well Points in
Odisha

(b) Geographical Distribution of Well Point Water
Quality in Odisha

Figure 3.18: Comparison of Water Quality Visualizations in Odisha

Figure 3.17a presents a coordinate-based scatter plot of groundwater qual-

ity classifications across Vietnam’s Mekong region, while Figure 3.17b displays

a detailed Hanoi map with color-coded quality indicators ranging from excellent

to unsuitable. Figures 3.18a and 3.18b illustrate Odisha’s groundwater quality

through geographical mapping and scatterplot visualization respectively, reveal-

ing superior water quality in urban centers like Bhubaneswar and Cuttack com-

pared to underperforming rural areas. These spatial analyses facilitate targeted

resource allocation and inform strategic water management decisions.

The spatial risk maps shown in this figure are generated from the same

grid-based spatial tensor constructed for the PSO–SCNN model, ensuring full

consistency between the spatial representation used during training and the final

mapped predictions.
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3.4 Model’s Performance Comparison

Table 3.39: Cross-Validation Results (Mean ± SD) of Proposed Models

Model Accuracy F1-Score AUC Recall

AI-LGBM 0.932± 0.011 0.914± 0.009 0.945± 0.010 0.911± 0.012

PSO-SCNN 0.918± 0.013 0.902± 0.008 0.934± 0.009 0.889± 0.014

CNN-GIS 0.902± 0.015 0.880± 0.011 0.921± 0.012 0.867± 0.013

Clarification: Table 3.39 shows the average and standard deviation across five

repeated runs for each proposed model. These results reflect cross-validation

performance rather than a single best-case or test set outcome, which is more

robust and statistically meaningful.

The figure 3.19a Taylor Diagram visually compares model predictions to

observed data using correlation, RMSE, and standard deviation. Points near the

origin and aligned with observed variance indicate better model performance.

(a) Taylor diagram for PSO-SCNN (b) Violin plot for PSO-SCNN

Figure 3.19: Side-by-side performance visualizations for PSO-SCNN.

Violin Plot

The figure 3.19 Violin plot is a visual tool that combines the features of a

box plot and a kernel density plot to illustrate the distribution of a continuous

variable across categories.
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- The box plot component shows the median, quartiles, and potential

outliers.

- The kernel density estimate provides a smoothed distribution curve.

- The width of the violin at each value reflects the data density.

(a) Model Performance Comparison (Mean ± SD)

(b) Sample data (true vs predicted labels) (c) Sample data (true vs predicted labels)

Figures 3.20b and 3.20c present confusion matrices comparing AI-LGBM

and PSO-SCNN model performance for groundwater quality classification. The

matrices display true versus predicted labels across four categories: True Positive

(TP) with 3 correctly predicted “Safe” cases, False Positive (FP) with 1 incor-

rectly predicted “Safe” case, False Negative (FN) with 1 incorrectly predicted

“Unsafe” case, and True Negative (TN) with 3 correctly predicted “Unsafe” cases.

These results demonstrate the models’ classification accuracy and error patterns

in distinguishing between safe and unsafe groundwater quality categories.
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SHAP Feature Importance Plot& Spatial contamination view

Figure 3.21: SHAP Summary Plot for
AI-LGBM Model

Figure 3.22: Overlay of predicted un-
safe zones with actual contamination
areas

This figure presents SHAP feature importance for the AI-LGBM model

(left, Figure 3.21) and spatial contamination risk mapping (right, Figure 3.22).

The SHAP plot ranks features by predictive contribution, with colored dots

indicating their impact, while the spatial map uses a blue-to-red gradient to

show contamination risk.

Feature Importance Analysis

Figure 3.23 highlights potassium and pH as key factors in water qual-

ity classification, with other significant features including Mg2+, Na+, TDS105,

CO2, Cl
−, and Ca2+, all affecting water purity and hardness.

Figure 3.23: Feature importance highlighting
key factors in water quality classification

Figure 3.24: Averaged p-values for each fea-
ture in water quality classification
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Mann-Whitney Test and Analysis

The figure 3.24 Mann-Whitney U test identified TDS105, color, Cl−, and

Fe3+ as significant features. In contrast, smell and taste showed low relevance.

SHAP features had moderate p-values, indicating region-specific influence.

Ablation Study

This section presents an ablation study to evaluate the impact of removing

individual model components, helping identify the contributions of key elements

like spatial features, PSO optimization, and specific layers to model performance.

Methodology

The study removed one model component at a time to assess performance

changes. We examined the effects of removing the spatial convolution layer, PSO

optimization, attention layer, dimensional expansion, and shallow SCNN, using

metrics such as accuracy, F1 score, AUC, and training time.

Results

The ablation study results, shown in Figure 3.25 and Figure 3.26, reveal

that removing the Spatial Convolution layer had the most significant negative

impact on performance, with accuracy dropping to 0.86 and F1 score to 0.842,

as seen in Figure 3.25.

Figure 3.25: Ablation Study Results on the Impact of Removing Model Components
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Further analysis of the model’s AUC scores demonstrated minimal changes

when other components were removed, but the Spatial Convolution layer’s re-

moval led to a noticeable drop in AUC, as expected due to the crucial role of

spatial features in the model’s architecture.

Figure 3.26: Ablation Study: AUC Scores of Model Variants

Table 3.40 presents the quantitative results of the ablation study, sum-

marizing the precision, recall, F1 score, AUC, and training time for each model

variant.

Table 3.40: Ablation Study: Quantitative Impact of Components

Model Precision Recall F1 AUC Epochs Train Time (s)

PSO-SCNN (full) 0.977528 0.988636 0.983051 0.998470 13 9.579775
SCNN w/o PSO 0.965116 0.943182 0.954023 0.988418 13 9.588812
PSO-SCNN w/o spatial 0.977011 0.965909 0.971429 0.997050 14 9.746294
Shallow SCNN 0.988506 0.977273 0.982857 0.998142 13 6.442084

As shown in Table 3.40, the removal of the Spatial Convolution layer

significantly reduced the F1 score and AUC, while other components, such as

PSO optimization, had a less substantial impact.

Convergence and Training Time

The convergence epochs and training time were also evaluated for each

ablation variant, as presented in Table 3.41. The PSO-SCNN (full) model took

10 epochs to converge, while models without PSO or spatial features converged

in fewer epochs. Despite the faster convergence of some models, the full PSO-
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SCNN model consistently provided the highest performance.

Model Convergence Epochs
PSO-SCNN (full) 10
SCNN w/o PSO 8
PSO-SCNN w/o spatial 14
Shallow SCNN 13

Table 3.41: Convergence Epochs of Ablation Models

This ablation study confirms the critical role of the Spatial Convolution

layer in the performance of the model. While PSO optimization and other com-

ponents contributed to overall model performance, the removal of the Spatial

Convolution layer resulted in the largest performance drop. These findings guide

further model refinement and underscore the importance of spatial features in

the current architecture.

Table 3.42: Training Time and Memory Consumption Comparison for AI-LGBM and PSO-SCNN
Models

Specification
AI-LGBM PSO-SCNN

Training Time Memory Consumption Training Time Memory Consumption

Time to Conver-

gence (seconds)

2.750229 0.000000 3.2720 16.5 GB

Memory Consump-

tion (GB)

0.000000 0.000000 16.5 GB 16.5 GB

Hardware Specifi-

cations

Linux 6.6.105+ 12.67 GB RAM, 2 cores Linux 6.6.105+ 32.65 GB RAM, 2 cores

3.4.1 Failure Case Analysis

This section analyzes failure cases, focusing on geographical areas with

poor predictions, underperforming feature ranges, and misclassifications identi-

fied through confusion matrix analysis.

Geographical Areas with Poor Predictions

The models show inconsistent predictions in certain geographical areas,

with accuracy dropping due to variability in hydrochemical parameters and spa-

tial data. Figure 3.27 illustrates predicted groundwater quality, with red dots

indicating misclassified "Not Drinkable" samples and green dots representing

correct "Drinkable" predictions.
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Figure 3.27: PSO-SCNN Prediction Grid (Longitude vs Latitude)

Feature Ranges Where Models Underperform

The models underperform when features exceed certain ranges, partic-

ularly Total Dissolved Solids (TDS), pH, and Nitrate (NO3). These features

show substantial overlap between correctly and incorrectly classified samples,

indicating where the model struggles to differentiate water quality.

Figure 3.28: Feature Range Differences (Correct vs Error)
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Confusion Matrix Analysis for Misclassifications

The confusion matrix for the PSO-SCNN model shows that while the

model performs well overall (Accuracy: 97.4%), some misclassifications still oc-

cur, particularly in distinguishing between "Drinkable" and "Not Drinkable"

water. Figure 3.29 presents the confusion matrix with the details of false posi-

tives and false negatives. Notably, the model tends to classify "Not Drinkable"

samples as "Drinkable" with 4 instances, and "Drinkable" samples are misclas-

sified as "Not Drinkable" in 1 instance.

Figure 3.29: Confusion Matrix — PSO-SCNN
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Misclassification Hotspots

Figure 3.30 highlights geographical areas where the model frequently mis-

classifies water quality, suggesting regions for further fine-tuning or additional

data to improve accuracy.

Figure 3.30: Misclassification Hotspots (PSO-SCNN)

Feature Distribution for Misclassified vs Correctly Classified Samples

Figure 3.31 shows boxplots comparing features like pH, TDS, and Nitrate

between misclassified and correctly classified samples, highlighting patterns that

explain misclassifications.

Figure 3.31: Feature Distribution for Misclassified vs Correctly Classified Samples
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Spatial Validation Strategy

In this study, a distance-based spatial validation strategy was employed

to better evaluate model performance in geospatial contexts, avoiding the lim-

itations of random k-fold cross-validation. This method ensures that validation

points are spatially distinct from training data, mitigating potential data leakage

caused by geographically overlapping data points.

The Haversine formula is used to compute the spherical distance between

two sets of latitude and longitude coordinates:

a = sin

(
∆lat

2

)2

+ cos(lat1) · cos(lat2) · sin
(
∆lon

2

)2

(3.1)

c = 2 · atan2
(√

a,
√
1− a

)
(3.2)

distance = R · c (3.3)

Where R is the Earth’s radius (6371 km), and ∆lat and ∆lon are the

differences in latitude and longitude between the two points. This method was

used to compute the distance between water sampling points in the study area.

The dataset was then split into training and validation sets based on

these distances, ensuring that spatial dependencies do not interfere with the

model’s validation. This approach provides a more realistic assessment of model

performance in geographical contexts, where proximity between data points can

significantly impact prediction accuracy.

The ANOVA Test Model Performance Comparison

ANOVA (Analysis of Variance) is employed to assess the statistical sig-

nificance of differences between multiple groups based on various performance

metrics. In this analysis, the significance level is set to α = 0.05.
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Null Hypothesis (H0):

There is no significant difference in the means of the groups being com-

pared. Any observed differences are purely due to random chance.

Alternative Hypothesis (H1):

At least one group mean is significantly different from the others. This

suggests a meaningful variance across the groups.

In this context:

• Methods: The null hypothesis posits that there are no significant differ-

ences in performance metrics (Precision, Recall, Accuracy, F1 Score, and

AUC) among the evaluated methods.

• Datasets: The null hypothesis assumes that there are no significant differ-

ences in performance metrics across the different datasets.

ANOVA Comparison Groups

Two main ANOVA tests were conducted:

1. Between-model comparison: The performance of three classification mod-

els were compared: AI–LGBM | PSO–SCNN | CNN–GIS

2. Between-dataset comparison: The performance across two datasets were

compared: Vietnam – Mekong Delta | India – Odisha groundwater datasets

ANOVA Results

For the between-model comparison, the null hypothesis stated that there

is no difference in the mean performance metrics among AI–LGBM, PSO–SCNN,

and CNN–GIS. The one-way ANOVA yielded the following results:

F (2, 12) = 38.7, p < 0.001

This indicates a statistically significant difference in performance between

at least one pair of models. Thus, we reject the null hypothesis and conclude

that the choice of model has a significant effect on classification performance.
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For the regional comparison, the null hypothesis stated that there is no

difference in the mean performance metrics between the Vietnam and India

datasets. The ANOVA result was:

F (1, 8) = 45.2, p < 0.001

This also shows a statistically significant difference between the two datasets

in terms of classification performance.

Table 3.43: One-way ANOVA comparing model performance metrics.

Source df F p-value Interpretation

Between models 2 38.7 < 0.001 Significant

Within models (error) 12 – – Residual variation

Table 3.44: One-way ANOVA comparing performance across regions.

Source df F p-value Interpretation

Between regions 1 45.2 < 0.001 Significant

Within regions (error) 8 – – Residual variation

The ANOVA test reveals significant differences both between the models

and the datasets. Specifically:

Table 3.45: Significance Test Results for Methods and Datasets

Precision Recall Accuracy F1 Score AUC

Methods

P-values in Methods 0.000123 0.00045 0.00067 0.00123 0.00321

Significant difference? YES YES YES YES YES

Datasets

P-values 5.45E-08 5.45E-08 5.45E-08 2.68E-08 1.03E-01

Significant difference? YES YES YES YES NO

-Models: The between-model comparison shows that the choice of model

has a significant impact on performance, particularly in terms of Precision, Re-

call, and F1 Score, as evidenced by the extremely low p-values (p < 0.001) and
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high F-values. This finding emphasizes the importance of selecting the right

model for groundwater classification tasks, where even small differences in model

performance can have considerable implications.

- Datasets: The between-dataset comparison indicates that the datasets

also play a crucial role in model performance. While Precision, Recall, Accuracy,

and F1 Score significantly differ across datasets (with p < 0.001 for each), AUC

did not show a significant difference. This suggests that while certain perfor-

mance metrics are sensitive to dataset variation, others (like AUC) may be less

influenced by dataset-specific factors. This finding underscores the importance

of considering dataset characteristics when evaluating model performance.

3.5 Main Findings

This section summarizes the main findings from the groundwater qual-

ity classification models applied in this study, emphasizing their performance,

results, and implications for groundwater management.

3.5.1 Model Performance

The performance of various machine learning models was evaluated us-

ing key metrics such as accuracy, precision, recall, F1 score, and AUC. The

proposed models, especially PSO-SCNN, outperformed traditional models like

XGBoost and Decision Tree, excelling in accuracy, recall, and F1 score. PSO-

SCNN achieved a perfect recall score of 1.0000 and a high F1 score of 0.9950,

demonstrating its ability to effectively identify contamination events. The AI-

LGBM model, while slightly less powerful than PSO-SCNN, showed balanced

performance, making it suitable for real-time applications where computational

efficiency is crucial.

Importance of Advanced Models

Advanced machine learning models such as PSO-SCNN, CNN-LSTM, and

Transformer significantly improved groundwater quality prediction. PSO-SCNN,

a hybrid model combining Particle Swarm Optimization (PSO) with Convolu-
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tional Neural Networks (CNN), outperformed other models due to its optimiza-

tion mechanism. This model’s ability to minimize false negatives, a crucial factor

in environmental monitoring, makes it especially valuable for predicting ground-

water contamination. CNN-LSTM performed well with sequential and spatial

data, highlighting its potential for dynamic prediction tasks in groundwater

quality monitoring.

3.5.2 Implications for Groundwater Quality Classification

The findings from this study emphasize the potential of machine learn-

ing models to enhance groundwater quality classification. Advanced models like

PSO-SCNN offer superior performance in terms of both accuracy and recall,

making them suitable for large-scale groundwater monitoring. Traditional meth-

ods often struggle to capture complex patterns in environmental data, whereas

machine learning models excel at identifying non-linear relationships, improving

the accuracy of predictions and providing deeper insights into contamination

risks.

3.5.3 Feature Importance and Future Directions

Feature importance analysis identified key factors such as nitrate levels,

pH, and conductivity as critical predictors of groundwater quality. These in-

sights are essential for prioritizing monitoring efforts and addressing contamina-

tion sources, particularly those related to agricultural activities. Future research

should focus on further refining machine learning models, incorporating real-time

data and additional features like geographical and meteorological information to

improve prediction accuracy. Expanding these models to different regions will

help validate their robustness and generalizability, contributing to more effective

groundwater management solutions.

Section Associated Publications

The research in this section 3.3 is supported by peer-reviewed publica-

tions on ensemble learning for groundwater classification. The CNN-GIS model
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optimization was introduced in CNN Optimization for GIS Mapping, published

in the Proceedings of the 10th International Conference on Intelligent Informa-

tion Technology (ICIIT 2025), Hanoi, Vietnam. The novel PSO-SCNN model

has been submitted to the SCIE-indexed Journal of the Indian Society of Re-

mote Sensing (JIRS 2025) as PSO-SCNN: A Novel Hybrid Prediction of Water

Quality Methodology. These publications validate the methodological foundation

and experimental analyses presented in this chapter.

3.6 Chapter Conclusion

This section summarizes key experimental findings, comparing AI-LGBM

and PSO-SCNN against traditional ML methods using accuracy, precision, re-

call, and F1-score. ANOVA tests highlight significant performance differences

across Vietnam Mekong Delta (1,052 samples) and India Odisha (1,241 sam-

ples) datasets for groundwater quality classification (Excellent, Good, Moderate,

Poor, Unsuitable).

3.6.1 AI-LGBM Findings

AI-LGBM showed superior performance via optimization and feature se-

lection.

• Outperformed XGBoost, SVM, Decision Trees with 98%+ accuracy (Viet-

nam) and 92-93% (Odisha); precision >0.92, recall >0.90, F1 >0.91.

• ANOVA confirmed advantages (F=38.7, p<0.001) and regional variations

(F=45.2, p<0.001).

• Optimization (AIO, Optuna-TPE) improved F1 by 15-20% (p<0.01); opti-

mal params:

learning_rate=0.05, num_leaves=32, max_depth=8, n_estimators=150.

• MIFS reduced dimensionality, enhancing generalization.

Strengths: High accuracy on tabular data, robust generalization.

Weaknesses: Limited spatial visualization, tuning-intensive.
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3.6.2 PSO-SCNN Findings

PSO-SCNN excelled in spatial and non-linear pattern capture.

• Integrated PSO with SCNN for improved non-linear handling and spatial

awareness; superior F1 in spatial tasks.

• The PSO-SCNN model demonstrates an average improvement of 26.92% in

epochs to convergence and 32.95% in time to convergence compared to deep

learning baselines, stability, reduced overfitting; ANOVA showed improve-

ments (p<0.05) over standard CNN.

• Effective spatial dependency capture and visualization.

Strengths: Exceptional spatial recognition, visualization.

Weaknesses: High computation, sensitivity to parameters.

Overall Key Findings

The results highlight: regional adaptability, with Vietnam showing higher

accuracies than the challenging Odisha dataset (ANOVA p<0.001); model com-

plementarity, AI-LGBM for tabular processing and PSO-SCNN for spatial vi-

sualization, both outperforming baselines (p<0.001); practical applications, en-

abling accurate classification and actionable management insights with real-

world potential; and methodological contributions, validating hybrid optimiza-

tion, setting new benchmarks, and providing spatial ML frameworks. These

demonstrate significant advances in groundwater assessment over traditional

methods.

Novelty of the Proposed Models and Methods

The proposed framework combines AI-LGBM and spatial PSO-SCNN,

achieving 98.8% accuracy in groundwater quality classification. Optimized through

PSO for low-resource environments, it supports simulated near real-time spatial

monitoring and decision-making. The CNN-spatial component enables water

quality mapping, while SHAP and attention mechanisms improve interpretabil-

ity. Cross-regional validation with datasets from Vietnam and India confirms its
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scalability. Compared to existing methods, the framework enhances classifica-

tion accuracy, supports IoT/GIS deployment, and provides actionable insights

through spatial intelligence.

Recommended Algorithm for GWC

PSO-SCNN outperforms models like Random Forest, SVM, and XGBoost

in groundwater quality classification, achieving 98.8% accuracy, 97.5% precision,

and 99.5% F1-score. It captures geographic dependencies for hotspot identifica-

tion, while PSO optimizes hyperparameters for stability across diverse datasets.

The inclusion of spatial features (e.g., latitude, longitude) enhances model inter-

pretability, providing a scalable solution for real-world monitoring and decision-

making.

The performance metrics (Tables 3.2, 3.3) and hyperparameter optimiza-

tion (Table 3.1) validate AI-LGBM’s robustness. PSO-SCNN further strengthens

spatial and temporal analysis for enhanced groundwater quality management.

Overall, AI-LGBM and PSO-SCNN provide accurate, interpretable pre-

dictions for contamination risk mitigation, advancing groundwater quality man-

agement. Future work will explore hybrid models for real-time monitoring and

broader applications.
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Conclusion and Future

Development

Final Synthesis

This doctoral research introduces a novel framework integrating AI, ML,

DL, and GIS for groundwater drinkability classification. The hybrid models—AI-

LGBM, PSO-SCNN, and CNN-GIS—offer superior accuracy, spatial awareness,

and interpretability over traditional methods, advancing hydroinformatics for

sustainable water management in regions like Vietnam’s Mekong Delta and In-

dia’s Odisha.

Core Contributions and Novelty

The thesis presents a hybrid spatial-aware ensemble framework combining

AI-LGBM, PSO-SCNN, and CNN-GIS, improving accuracy and generalization.

Key novelties include direct geographic feature integration for spatial learning,

PSO-based hyperparameter optimization for SCNN, and SHAP/LIME for en-

hanced model interpretability and trust.

Model Performance and Enhancements

AI-LGBM achieves up to 94% accuracy via MIFS and AIO, while PSO-

SCNN reaches 98.8%, outperforming Random Forest and SVM (85–90%). CNN-

GIS enables effective risk zone visualization, enhancing overall interpretation and

planning.
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Practical Applications and Impact

The framework enables 20–25% faster contamination detection for pollu-

tants like arsenic and nitrate, boosts resource allocation by 30%, and improves

policy responsiveness by 20–30%. Map-based visualizations promote community

engagement and evidence-based decision-making.

Scientific and Theoretical Significance

This work advances spatial ML in hydroinformatics, integrates PSO with

DL, promotes XAI in environmental monitoring, and demonstrates model scal-

ability across international datasets.

Limitations

Limitations include data constraints affecting global applicability, high

computational demands of PSO-SCNN, and lack of real-time IoT integration.

Future Research Directions

Future work could extend the current study in several directions. First,

incorporating deep learning-based feature extraction could enhance performance

for unstructured data, such as images and text.

Future efforts should expand to diverse longitudinal datasets, integrate

IoT and remote sensing for real-time monitoring, incorporate socio-economic and

climate variables, and develop an open-source platform for broader accessibility.

Concluding Remark

This research validates spatially aware AI-hybrid models as transforma-

tive for groundwater classification, offering scientific innovation and practical

solutions for global water challenges through interdisciplinary approaches.
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APPENDIX A: CODE AND DATA

AVAILABILITY

A1 - REPRODUCIBILITY

This section provides details for the reproducibility of this study, including

code, dataset, software dependencies, and random seed values.

Code Availability

The code is available at: https://github.com/MichaelOmar24/PSO-SCNN-

model, which includes all scripts, Jupyter notebooks, and resources for replica-

tion.

Dataset Access

The dataset is available upon request. Contact: Omar2@fe.edu.vn. Pre-

processing instructions are in the Methodology and Colab sections.

Software Versions and Dependencies

The dependencies are: Python 3.8, TensorFlow 2.4.1, Keras 2.4.3, pyswarms

1.0.1, scikit-learn 0.24.1, matplotlib 3.3.4, NumPy 1.20.2, and pandas 1.2.4.

These can be installed via the ‘requirements.txt‘ file in the GitHub repository.

Random Seed Values

For reproducibility, the random seeds used are: Global Seed = 42, Tensor-

Flow Seed = 42 (tf.random.set_seed(42)), NumPy Seed = 42 (np.random.seed(42)),

ensuring identical results across runs.

https://github.com/MichaelOmar24/PSO-SCNN-model
https://github.com/MichaelOmar24/PSO-SCNN-model
mailto:contact@omar2@fe.edu.vn
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