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INTRODUCTION

1. Research Context and Rationale

In the era of big data, time series forecasting has emerged as a critical decision-making tool
across various domains, ranging from financial market analysis to supply chain management and
transportation planning. The ability to accurately predict future values based on historical patterns
allows organizations to optimize resources and mitigate risks.

For decades, classical statistical models, particularly the Autoregressive Integrated Moving Av-
erage (ARIMA) and its seasonal extension (SARIMA), have been the industry standard. These models
are celebrated for their mathematical robustness and interpretability, especially when dealing with
linear relationships and distinct seasonal patterns [cite: 341-342]. However, the increasing complexity
of real-world data often exposes the limitations of these linear models, as they may fail to capture
intricate nonlinear dynamics or complex interactions.

This limitation has driven the rise of Deep Learning approaches, such as Long Short-Term
Memory (LSTM) networks, which are designed to model long-term dependencies and nonlinear struc-
tures[cite: 846]. Furthermore, the concept of "Hybrid models"—which decompose a time series into
linear and nonlinear components to leverage the strengths of both ARIMA and LSTM—has become
a prominent research direction.

2. Research Problem

While Hybrid models are theoretically promising, a critical gap remains in understanding their
practical efficiency relative to their complexity. The central research problem addressed in this thesis
is: "Does the increased complexity of Deep Learning and Hybrid models necessarily translate to better
forecasting performance compared to well-tuned statistical models, particularly for univariate datasets
with strong seasonality and limited sample size?"

To answer this, the research focuses on a comparative study using the classic AirPassengers
dataset (1949–1960)[cite: 339, 344]. This dataset serves as the primary research object due to its
non-stationarity, clear upward trend, and multiplicative seasonality, making it an ideal benchmark for
testing the capabilities of different modeling families.

3. Significance of the Study

This study holds significant practical and theoretical value:

• Methodological Evaluation: It provides a rigorous empirical comparison of four distinct
modeling approaches: ARIMA, SARIMA, LSTM, and Hybrid SARIMA-LSTM.

• Guidance on Model Selection: The findings offer evidence-based insights for practitioners,
highlighting that model selection should be context-dependent. It challenges the assumption
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that complex deep learning models are always superior, demonstrating that for specific data
types (small scale, strong linearity), traditional methods like SARIMA may still be the optimal
choice.

• Implementation Framework: The thesis provides a reproducible framework for implement-
ing these models using Python, detailing the process from data preprocessing to performance
evaluation.

4. Structure of the Thesis

To address the research objectives systematically, the thesis is organized into two main chapters:
Chapter 1: Theoretical Framework
This chapter establishes the mathematical and conceptual foundations of the study. It begins by
defining the fundamental components of time series (trend, seasonality, noise) and the concept of
stationarity. It then details the mechanisms of statistical models (ARIMA, SARIMA), explaining
how differencing and lag operators work. Subsequently, it introduces the architecture of Artificial
Neural Networks, specifically focusing on the LSTM cell structure and its gating mechanisms. Finally,
it presents the theoretical methodology for constructing a Hybrid model by combining linear and
nonlinear techniques.
Chapter 2: Experiment and Results
This chapter presents the empirical core of the research. It details the experimental setup using Python
libraries (Statsmodels, TensorFlow/Keras). The AirPassengers dataset is analyzed and preprocessed
to achieve stationarity. The chapter then walks through the training and evaluation of each model
(ARIMA, SARIMA, LSTM, and Hybrid) using metrics such as Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE). The chapter concludes
with a comparative discussion, analyzing why the SARIMA model outperformed the Hybrid model in
this specific context.
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Abstract

Time series forecasting is a fundamental problem in applied mathematics and data science,
with critical implications in domains such as finance, energy, and transportation. Classical statistical
approaches, including Autoregressive Integrated Moving Average (ARIMA) and its seasonal extension
(SARIMA), provide a rigorous framework for modeling stationary linear processes with trend and
seasonality. Their reliance on differencing, autoregressive (AR) terms, and moving average (MA)
components allows for efficient parameterization; however, they exhibit limited ability to capture
nonlinear dynamics and long-range temporal dependencies.

In contrast, Deep learning architectures such as Long Short-TermMemory (LSTM) networks are
specifically designed to mitigate vanishing gradient issues in recurrent neural networks by introducing
memory cells and gating mechanisms. This enables effective modeling of nonlinear and long-horizon
dependencies in complex time series. Nevertheless, LSTMs require large-scale data, careful hyperpa-
rameter optimization, and computational resources that may limit their applicability in small-sample
settings.

This thesis presents a comparative study of ARIMA, SARIMA, LSTM, and a hybrid SARIMA–
LSTM model for univariate time series forecasting. The hybrid model is constructed by decomposing
the series into linear and nonlinear components, where SARIMA captures the stochastic linear struc-
ture and LSTM is applied to the residual series to approximate nonlinearities. Empirical experiments
are conducted using benchmark datasets, including the AirPassengers dataset [2], with model per-
formance evaluated through Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and
Mean Absolute Percentage Error (MAPE).

The research contributes a critical assessment of the methodological trade-offs between sta-
tistical and deep learning models. The results highlight that while Hybrid models are theoretically
robust, their empirical success is highly context-dependent. Specifically, in datasets with strong linear
seasonality and limited sample size, classical models like SARIMA may outperform complex hybrid
architectures. This provides a foundational framework for selecting appropriate forecasting strategies
based on data characteristics.

Keywords: Time Series Forecasting, ARIMA, SARIMA, LSTM, Hybrid Models, Deep Learning.
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Chapter 1

Time series

In many research areas and real-world applications, data are frequently collected in chronolog-
ical order. These datasets, known as time series, are essential for analysis, forecasting, and informed
decision-making [1]. In finance, time series are particularly valuable for examining stock price move-
ments, interest rates, market indices, and a wide range of economic indicators. Gaining a solid un-
derstanding of the characteristics and components of time series is a critical first step in choosing the
right forecasting method—whether it is a traditional model like ARIMA [2] or a modern approach
based on Deep Learning [3].

1.1. Definition of Time Series and its components

1.1.1. Definition of Time series

Definition 1.1.1. A time series is a sequence of data points recorded or measured at successive points
in time, denoted as Xt where t indexes time.

{Xt}Tt=1 = (X1, X2, . . . , XT )

where Xt is the observed value at time t, and T is the total number of observations. [1, 2]

Time series data can be collected at regular intervals (e.g., daily, weekly, monthly) or irreg-
ular intervals. This thesis focuses on data that are continuous in value but discrete in time. Unlike
cross-sectional data, the properties of a time series depend on time, the present value depends on or
correlated with its past values.

Next we define the lag operator which is used to simplify the notation of all models presented
later.

Definition 1.1.2. The lag operator L, also called the back-shift operator, is an operator that shifts
a time series one period backward:

LXt = Xt−1.

Remark 1.1.3. By using the lag operator shifts a time series for k periods backward, we obtain

LkXt = Xt−k.

1.1.2. Components of Time Series

A time series is typically influenced by several underlying components that explain different
types of variation in the data. The classical decomposition framework distinguishes four main compo-
nents: trend, seasonality, cyclic fluctuations, and irregular variations [1,2]. Each of these components
contributes to the observed series in different ways.
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The trend represents the long-term direction of a time series, which may be upward, downward,
or relatively stable. It captures the persistent movement of the data over an extended period and
can take various forms such as linear, exponential, or nonlinear growth. A simple linear trend can be
expressed as

Tt = β0 + β1t+ ϵt,

where β0 is the intercept, β1 is the slope, and ϵt represents random noise. An illustrative example
of a trend is the steady increase in the average height of adolescents between ages 13 and 16, which
reflects biological growth over time.

The seasonal component refers to short-term, repetitive, and predictable fluctuations that occur
at fixed intervals such as daily, monthly, or yearly. These variations are caused by recurring external
factors such as climate conditions, holidays, or cultural events. A purely seasonal component is denoted
by St. For instance, monthly ice cream sales typically peak during summer months and fall during
winter, reflecting the influence of temperature on consumer behavior.

The cyclic component, denoted by Ct, reflects long-term oscillations that recur but not at
fixed or predetermined intervals. Unlike seasonality, which has a fixed calendar length, cycles vary
in duration and are often linked to broader macroeconomic or business dynamics [1]. For example,
economic boom-and-bust cycles typically last several years but do not have a fixed period.

Irregular Variations

The irregular component, denoted by It, encompasses unpredictable and erratic fluctuations
that cannot be attributed to trend, seasonality, or cycles. These variations are typically short-lived
and result from unforeseen events or external shocks. Examples include sudden drops in production
due to natural disasters such as floods or earthquakes, or sharp market disruptions triggered by wars
or pandemics. Since these events lack systematic patterns, they are often treated as random noise in
modeling and forecasting.

Figure 1.1: Components of a time series
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In figure 1.1, the graph a) describes a time series that collects the number of orders of electrical
devices. Graph (b) shows a significant increasing trend from 2000 to 2001 and between 2005 and
2007. The graph c) presents a regular change in the data. Lastly, the graph d) describes the irregular
component (or noise) remaining after the trend and seasonal components have been removed.

The four classical components (trend, seasonality, cyclic, irregular) are essential but often in-
adequate when the underlying process exhibits non-linear dynamics. To address this, Wavelet decom-
position provides a powerful tool for multi-resolution analysis [4, 5].

1.1.3. Time series decomposition

Additive Decomposition

In the additive framework, the observed time series is assumed to be the sum of its underlying
components: trend, seasonality, cyclic fluctuations, and irregular noise. The model is written as

Xt = Tt + St + Ct + It,

where Tt denotes the trend, St the seasonal variation, Ct the cyclic component, and It the irregular
element. Additive decomposition is most appropriate when the magnitude of seasonal fluctuations and
irregular variations remains constant over time, regardless of the level of the series. For example, in
monthly sales data of a small retail shop, the additional number of customers during holiday months is
roughly constant each year, independent of the long-term growth trend. On a daily scale, consider the
number of passengers boarding a city bus: there may be small but regular increases during weekdays
compared to weekends, and these increments remain fairly stable over the year.

Multiplicative Decomposition

The multiplicative model assumes that the components interact in a proportional way, such
that the observed time series is expressed as

Xt = Tt × St × Ct × It.

In this case, the seasonal and cyclic effects scale with the overall level of the series, meaning that
higher trend values are accompanied by larger absolute seasonal swings. Multiplicative decomposition
is commonly applied in economic and financial data where relative (percentage) changes are more
meaningful than absolute differences. For instance, if summer sales of air conditioners are consistently
20% higher than the yearly average, then the seasonal effect grows in absolute magnitude as the overall
market expands. On a daily level, electricity demand often follows a multiplicative structure: during
peak trend periods such as winter heating season, daily fluctuations between daytime and nighttime
usage become proportionally larger compared to off-season months.

Wavelet Decomposition

In addition to the four classical components (trend, seasonality, cyclic, and irregular), modern
time series analysis often employs wavelet methods to capture both short-term fluctuations and long-
term structures simultaneously. The Discrete Wavelet Transform (DWT) provides a multi-resolution
decomposition of the series, enabling the separation of smooth trends from high-frequency variations
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[4, 5]. A time series Xt can be expressed as

Xt =
∑
k

aj0,k ϕj0,k(t) +

J∑
j=j0

∑
k

dj,k ψj,k(t),

where ϕj0,k(t) denotes the scaling functions at a coarse resolution, capturing the long-term approx-
imation of the series, while ψj,k(t) represents the wavelet functions at scale j, which describe local-
ized fluctuations. The coefficients aj0,k and dj,k correspond to approximation and detail components,
respectively. This decomposition allows practitioners to analyze non-stationary signals by isolating
structural shifts from noise across multiple frequency bands, making wavelets particularly effective for
financial, biomedical, and climatological time series.

Table 1.1: Comparison of Additive, Multiplicative, and Wavelet Decomposition Methods

Aspect Additive Multiplicative Wavelet

Assumption Seasonal and irregular
effects remain constant
over time.

Seasonal and irregular
effects scale with the
series level.

Series contains both
short- and long-term
frequency variations.

Typical data Stable seasonal ampli-
tude (e.g., small retail
sales).

Proportional seasonal
amplitude (e.g., finan-
cial or energy data).

Non-stationary or
noisy signals (e.g.,
biomedical or climate
data).

Advantages Simple, interpretable,
and easy to implement.

Captures proportional
or percentage-based
changes.

Effective for non-
stationary, multi-scale
patterns.

Limitations Fails with het-
eroscedastic variance.

Requires positive data;
may need log transfor-
mation.

Computationally com-
plex and harder to in-
terpret.

Table 1.1 summarizes the conceptual differences among the three major decomposition approaches.
The additive and multiplicative models belong to the classical decomposition family, assuming the
existence of global trend and seasonal structures that can be isolated by algebraic operations [10].
The additive form is suitable when seasonal fluctuations have a constant magnitude, whereas the
multiplicative model is appropriate when these fluctuations grow with the level of the series, such as
in economic and demographic data. In contrast, the wavelet-based approach extends beyond these
static frameworks by decomposing a signal into localized time–frequency components, enabling a si-
multaneous view of both transient and persistent patterns [4,5]. This flexibility makes wavelet methods
especially valuable for modern applications involving complex, non-stationary, or nonlinear time series.
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1.2. Time series classification

1.2.1. Univariate and multivariate time series

Univariate time series

An univariate time series is a sequence of data that observes only one characteristic of a phe-
nomenon and then expresses it as a variable denoted as

Xt, t = 1, 2, . . . , T

where Xt is the variable value at moment t and T is the number of time points.

Example 1.2.1. A daily example for an univariate time series is a series recording the temperature
of Hanoi in a day.

Multivariate time series

Definition 1.2.1. A multivariate time series is a set of data points indexed by time, where each data
point consists of multiple related variables recorded simultaneously.

Mathematically, a multivariate time series can be formulated as a sequence of vector as

Xt =


X1,t

X2,t

...
Xn,t

 , t = 1, 2, . . . , T

where Xi,t is the value of ith feature at the time t and n is the number of features examined.

Example 1.2.2. Daily Multivariate COVID-19 Time Series. An example of a multivariate time series
can be found in daily epidemiological records during the COVID-19 pandemic. Each observation
consists of several related variables such as the number of new confirmed cases, hospitalizations, tests
conducted, and vaccinations administered. Together, these variables form a sequence of daily vectors
that evolve over time, capturing both temporal dynamics and inter-variable relationships.

Unlike univariate time series, multivariate time series deal with both the temporal dynamics
of each individual variable and the correlations among variables. This dual perspective improves
explanatory power and improves the accuracy of forecasting models, especially when dealing with
complex phenomena such as economics, finance, or meteorology. Such as forecasting stock prices with
many economic indicators.

1.2.2. Stationary and Non-stationary

Stationary is a key characteristic of modeling time series. A time series is stationary if its
statistical properties such as: mean, variance, auto-covariance,... do not change over time [2].

Stationary time series

Definition 1.2.2. A time series {Xt} is strictly stationary if the joint distribution of (Xt1 , . . . , Xtk)

is invariant under time shift for all t1, . . . , tk. [6]
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A weaker form, weak (or second-order) stationarity [2], requires:

1. Constant mean: E [Xt] = µ ∀t

2. Constant variance: Var (Xt) = σ2 ∀t

3. Auto-covariance depends only on lag h : γ(h) = Cov (Xt, Xt+h)

Based on the definition, weak stationarity excludes stochastic trend; deterministic seasonality
must be removed (seasonal dummies or differencing). When a series is stationary, the model can
reliably learn relationships between past and future values without worrying about shifting averages,
changing variability, or evolving correlations. This stability makes the model parameters consistent
and improves the accuracy of forecast. If the data is non-stationary (e.g., has trends or seasonality),
it often needs to be transformed — through differencing, de-trending, or removing seasonality — to
become stationary before modeling.

Nonstationary time series

Definition 1.2.3. A nonstationary time series is a series whose statistical properties change over
time.

There are some typical types of nonstationary time series which are listed in the following table:

Table 1.2: Types of nonstationary time series

Type of Non-
stationarity

Symptom How to detect it Example

Mean (trend) Increasing/decreasing
mean

Plot, ACF slow decay,
ADF test

Stock price, GDP

Variance Changing volatility over
time

Plot, rolling variance,
ARCH test

Financial returns

Seasonal Repeated cycles Plot, ACF spikes at sea-
sonal lags

Sales, electricity de-
mand

Structural break Sudden changes in
level/trend

CUSUM, Chow test Exchange rate after
crisis

Example 1.2.3. A simple and intuitive example of a nonstationary time series in daily life is the
daily average temperature in a city across several years.

In such a series, the mean and variance change over time — temperatures tend to rise during
summer months and fall during winter, exhibiting a clear seasonal pattern and often a long-term warm-
ing trend due to climate change. This violates the assumption of stationarity because the statistical
properties (mean, variance, autocorrelation) are not constant throughout the year.
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Comparison of stationary and nonstationary time series

Table 1.3: Compare stationary and nonstationary time series

Properties Nonstationary Stationary

Stability Mean and variance changes over
times; the autocorrelation func-
tions tends to fluctuate.

Mean and variance do not change
over times; the autocorrelation
functions depends only on lag,
not on time.

Forecasting Handle nonstationary such as
trend and variance (by differenc-
ing, de-trending, or seasonal ad-
justment).

Apply simple models such as
ARMA and ARIMA.

Checking stationarity

In practice, to check the properties of stationary, we often use the Augmented Dickey-Fuller
test (ADF) [7]. The main idea of this test is to test the hypothesis:

H0 : Nonstationary compare with H1 : Stationary.

The mathematical formula for an ADF test is as follows:

∆Xt = α+ βt+ γXt−1 +

p∑
i=1

δi∆Xt−i + εt

where:

• ∆Xt = Xt −Xt−1 is the first difference.

• t is time variable.

• p is the degree of lag operator.

• εt is white noise.

Reject H0 (unit root) if the ADF test statistic is less than the critical value; otherwise fail
to reject. The result of the test decides whether or not we need to make the data stationary before
building and applying models.

Other tests include KPSS [8] and Phillips–Perron, which provide complementary evidence of
stationarity.

Method to achieve stationarity

Most of the time series collected in daily life is nonstationary. To apply time series traditional
models such as ARMA, the series need to be transform to stationary one. Some widely used methods
can be listed as follows:

1. Differencing is a method to eliminate seasonality or trend in the series. The dth differencing
is defined as:

∆dXt = (1− L)dXt
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where LXt = Xt−1 as in Definition 1.1.2. Differencing is typically applied at lag 1 or 2 as:

∆Xt = Xt −Xt−1

∆2Xt = ∆(∆Xt) = (Xt −Xt−1)− (Xt−1 −Xt−2).

2. De-trending is used for series that has linear or nonlinear trend to estimate the trend then
eliminate it as X∗

t = Xt − Tt where Tt is estimated by:

• Linear regression: Tt = α+ βt.

• Multiple regression.

• Smoothing such as moving average.

3. Variance Stabilization. is applied for time series that is heteroskedasticity. This method take
square root or logarithm of all values in the series to stabilize the variance as:

Yt = log(Xt) or Yt =
√
Xt.

4. Deseasonalization is used for series whose trend repeats periodically. Normally, its formula is

X∗
t = Xt − St

where St is estimated by moving average or time series decomposition methods.

1.3. Transformations of Time Series

Transformations are applied to time series data in order to stabilize variance, linearize rela-
tionships, and prepare the data for modeling. In practice, many real-world time series exhibit het-
eroscedasticity, multiplicative seasonality, or nonlinear dynamics, which make raw data unsuitable for
direct application of classical forecasting methods. By applying an appropriate transformation, we can
achieve a stationary and well-behaved series, which simplifies both interpretation and modeling.

1.3.1. Purpose of Transformations

The main objectives of transformations are to stabilize the variance over time, convert multi-
plicative effects into additive effects, make the distribution of the series closer to normal, and enhance
the interpretability of model coefficients. In summary, transformations act as a bridge between the
raw series and the statistical assumptions required by forecasting models.

1.3.2. Logarithmic Transformation

Definition 1.3.1. The logarithmic transformation is defined as

Yt = log(Xt),

where Xt > 0. [2]

The logarithmic transformation compresses large values more strongly than small ones, which
reduces the effect of extreme observations and stabilizes the variance. It also converts multiplicative
seasonality into additive seasonality, making it easier to apply linear models. This is especially useful
when the magnitude of fluctuations grows proportionally with the level of the series.
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Example 1.3.1. Monthly sales that grow proportionally with the demand can be stabilized by log
transformation, making seasonal peaks appear constant in absolute terms.

1.3.3. Square Root Transformation

Definition 1.3.2. The square root transformation is defined as

Yt =
√
Xt, Xt ≥ 0.

This transformation is weaker than the logarithm but still reduces the impact of large values. It
is particularly suitable for count data such as arrivals, number of claims, or disease incidence, where
the variance is approximately proportional to the mean. By compressing the scale of high observations,
it balances the fluctuations and helps improve model fit.

1.3.4. Power Transformation

Definition 1.3.3. A power transformation raises the series to a power λ:

Yt = Xλ
t , λ ∈ R.

Power transformations form a family of transformations where λ controls the degree of compres-
sion. If λ < 1, the transformation reduces the effect of large values (for example,

√
Xt when λ = 0.5).

If λ > 1, the transformation expands large values. This flexibility allows the researcher to adjust the
scale of the data depending on the degree of heteroscedasticity.

1.3.5. Box–Cox Transformation

Definition 1.3.4. The Box–Cox transformation generalizes power and log transformations as follows:

Yt =


Xλ

t − 1

λ
, λ ̸= 0,

log(Xt), λ = 0,

where Xt > 0 and λ are the transformation parameters. [9]

The Box–Cox transformation is a flexible tool that automatically selects the best value of λ
based on maximum likelihood estimation. This unifies several transformations in a single framework,
where λ = 1 corresponds to the identity, λ = 0 corresponds to the logarithm, and intermediate values
represent different levels of variance stabilization. The Box–Cox transformation is widely used because
it adapts to the distribution of the data rather than requiring a fixed choice.

Example 1.3.2. The variance of airline passenger counts, which increases over time, can be stabilized
using a Box–Cox transformation with an estimated λ ≈ 0.3.

1.3.6. Differencing as a Transformation

Although differencing is primarily associated with the integrated part of ARIMA, it can also
be regarded as a transformation.

Definition 1.3.5. The first-order difference is given by

∆Xt = Xt −Xt−1.
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Definition 1.3.6. The second-order difference is defined as

∆2Xt = ∆(∆Xt) = (Xt −Xt−1)− (Xt−1 −Xt−2).

Differencing removes trends or seasonal components by eliminating systematic patterns in the
data. For example, first-order differencing removes linear trends, while seasonal differencing ∆sXt =

Xt −Xt−s removes recurring seasonal patterns. As a result, differencing transforms a nonstationary
series into a stationary one, which is required for ARMA-type models.

1.3.7. Standardization and Normalization

Definition 1.3.7. Standardization rescales data to have zero mean and unit variance:

Zt =
Xt − µ

σ
.

Definition 1.3.8. Normalization rescales data into a fixed range [0, 1]:

Zt =
Xt −min(X)

max(X)−min(X)
.

Standardization ensures that the data are centered and scaled, which is important for models
that rely on distance or assume normally distributed residuals. Normalization preserves the relative
scale of the series but constrains it to a fixed interval, which is particularly useful in neural networks
where activation functions (such as sigmoid or tanh) operate within bounded ranges. Both methods
enhance numerical stability and convergence during training.

Example 1.3.3. To illustrate the role of transformations, we generate a synthetic time series of length
T = 100 with exponential growth and oscillatory components. The raw series is defined as

Xt = e0.03t × (1 + 0.30 sin(0.20t) + 0.15 sin(1.30t) + 0.05 cos(0.55t)) , t = 1, 2, . . . , 100.
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Figure 1.2: Raw synthetic time series with exponential growth and multiplicative oscillations. The
variance increases as the series level grows.
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Figure 1.3: Logarithmic transformation reduces variance and converts multiplicative effects into addi-
tive effects.
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Figure 1.4: Box–Cox transformation with λ = 0.3 provides flexible variance stabilization, with λ = 0

recovering the logarithmic case.

This construction represents a process with long-term growth and multiplicative seasonal fluc-
tuations, where the variance increases as the level of the series rises. Figure 1.2 shows the original
data. Applying a logarithmic transformation (Figure 1.3) stabilizes the variance and converts multi-
plicative patterns into additive ones. Finally, the Box–Cox transformation with parameter λ = 0.3

(Figure 1.4) demonstrates flexible variance stabilization, with λ = 0 reducing to the logarithmic case.
This example highlights how transformations make the data more suitable for subsequent modeling
by ARIMA, SARIMA, or deep learning methods.

Summary. Transformations are a crucial pre-processing step in time series analysis. They not only
stabilize variance and remove multiplicative effects, but also help to achieve stationarity and normalize
the distribution of values. Choosing the right transformation depends on the characteristics of the
series and the requirements of the forecasting method. In practice, it is common to experiment with
multiple transformations (log, Box–Cox, differencing) and select the one that yields the best model
performance.

1.4. ARIMA model

1.4.1. Overview

The model Autoregressive Integrated Moving Average (ARIMA) is a crucial and widely used
tool in forecasting time series [2, 10]. The main idea of ARIMA is a combination of 3 fundamental
blocks:

• Autoregressive (AR) component represents present value in terms of past values of a variable,
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• Integrated (I) component transfer a nonstationary series to a stationary one.

• Moving average (MA) shows the relationship between present value and past white noises.

• p is the degree of AR.

• d is the degree of integrated part.

• q is the degree of MA.

1.4.2. Autoregressive (AR) Component

AR Model

The autoregressive (AR) model assumes that the current observation of a time series can be
expressed as a weighted sum of its past values plus a random shock. This captures the intuition that
the past influences the present, with the impact of older observations diminishing over time.

Definition 1.4.1. An AR(p) process is given by:

Xt = ϕ1Xt−1 + ϕ2Xt−2 + · · ·+ ϕpXt−p + εt,

where εt is white noise and ϕ1, . . . , ϕp ∈ R. [2]

For instance, an AR(1) model with ϕ1 = 0.7 expresses that 70% of the current value is explained
by the previous observation, while the remaining variation comes from random noise. This is a natural
way to model time series with short-term persistence, such as daily temperature fluctuations.

Theorem 1.4.2. For AR(1):
Xt = ϕ1Xt−1 + εt,

stationarity requires |ϕ1| < 1. Then

E[Xt] = 0, Var(Xt) =
σ2

1− ϕ21
.

[6]

This condition ensures that the influence of shocks decays over time, preventing the process
from exploding.

Theorem 1.4.3. For AR(p), the process is stationary if all zeros of

1− ϕ1z − ϕ2z
2 − · · · − ϕpz

p = 0

lie outside the unit circle. [6]

Parameter estimation can be done with the Yule–Walker equations, OLS regression, or Max-
imum Likelihood Estimation (MLE). Each method has trade-offs: Yule–Walker is computationally
efficient but less accurate in small samples, while MLE is statistically efficient but requires stronger
assumptions.
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Partial Autocorrelation Function (PACF)

The PACF measures the direct correlation between Xt and Xt−k after removing the effect of
intermediate lags. This makes PACF particularly suitable for identifying AR order, because it tells us
how many direct past lags matter for prediction.

Definition 1.4.4. The partial autocorrelation at lag k, denoted ϕkk, is defined as the correlation
between Xt and Xt−k after removing effects of Xt−1, . . . , Xt−k+1. [2]

We list here some properties of PACF:

• PACF values range in [−1, 1].

• For an AR(p) process, PACF cuts off sharply after lag p.

• In practice, PACF plots include confidence bands ±1.96/
√
n to judge significance.

Example 1.4.1. If we simulate an AR(2) with coefficients (0.6, 0.2), its PACF plot shows two clear
spikes at lags 1 and 2, while all later lags fall within the confidence bounds. This pattern immediately
suggests p = 2.

Tools to Find Best Order p

Beyond visual inspection of PACF, statistical criteria are widely used:

AIC(p) = −2 ln(L̂) + 2p, BIC(p) = −2 ln(L̂) + p ln(n).

Example 1.4.2. Suppose we fit AR(1), AR(2), and AR(3) to a monthly sales dataset. If AR(2)
yields the smallest BIC, we conclude that two lags suffice, balancing fit and parsimony. In practice,
BIC tends to favor simpler models, while AIC leans toward more complex ones.

1.4.3. Integrated (I) Component

Many real-world time series are not stationary: they contain trends or changing variance. To
apply AR or MA models, we transform them by differencing.

Definition 1.4.5. The differencing operator ∆ is defined as

∆Xt = Xt −Xt−1, ∆2Xt = Xt − 2Xt−1 +Xt−2.

For example, a stock price series is often a random walk. Its first difference corresponds to daily
returns, which are usually stationary and better suited for ARMA modeling.

Tools to Find Best Order d

The appropriate differencing order d is determined by unit root tests:

• Augmented Dickey–Fuller (ADF): tests H0 of a unit root.

• KPSS: opposite null hypothesis (H0: stationarity).

• Phillips–Perron (PP): robust alternative to ADF.

Example 1.4.3. If ADF p-value = 0.99, we fail to reject a unit root → apply first differencing. If
KPSS test then accepts stationarity, we conclude d = 1 is sufficient.
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1.4.4. Moving Average (MA) Component

The MA model explains the series using current and past shocks.

Definition 1.4.6. An MA(q) process is

Xt = µ+ εt + θ1εt−1 + · · ·+ θqεt−q.

[2]

Example 1.4.4. If today’s electricity demand is unexpectedly high, the MA term allows yesterday’s
shock (forecast error) to influence today’s value.

In order to measure overall correlation with past values, we introduce the following concept.

Definition 1.4.7. The autocorrelation function (ACF for short) is

ρ(k) =
E[(Xt − µ)(Xt−k − µ)]

σ2
.

[2]

We list here some properties of ACF:

• For MA(q), ACF cuts off after lag q.

• PACF tails off gradually.

Example 1.4.5. An MA(1) process has ACF with only one significant spike at lag 1. This pattern
is distinctive and provides a quick identification rule.

Tools to Find Best Order q

• Visual inspection of ACF: cut-off lag → q.

• AIC, BIC, HQ for model comparison.

• Residual checks: ACF of residuals should resemble white noise.

Example 1.4.6. In modeling airline passenger series, after differencing, the ACF shows significant
spikes at lag 12 (annual seasonality). This suggests including seasonal MA terms in addition to non-
seasonal ones.

Practical Role in ARIMA Identification

The Box–Jenkins methodology combines these tools:

• PACF → AR order p.

• Unit root tests → differencing order d.

• ACF → MA order q.

In practice, these are only initial guesses. The final model is chosen using information criteria
(AIC/BIC), validated with out-of-sample forecasting, and confirmed with residual diagnostics.
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1.4.5. Characteristic and applications

• ARIMA is specifically designed for time series data, and is commonly applied to economic,
financial, meteorological, and production phenomena.

• The model assumes that the series is stationary (or can be made stationary after differencing).

• The parameters p, d, q are selected based on stationarity tests (ADF, KPSS), ACF/PACF plots,
and information criteria (AIC, BIC).

• Once the model is constructed, ARIMA can forecast future values and analyze the structure of
historical data.

1.5. SARIMA Model

1.5.1. Overview of Seasonality in Time Series

Many real-world time series exhibit regular seasonal fluctuations in addition to long-term
trends [2]. While ARIMA models can handle nonstationary trends through differencing, they cannot
directly account for repeating seasonal patterns. This motivates the use of the Seasonal ARIMA
(SARIMA) model, which extends ARIMA by incorporating seasonal autoregressive, differencing,
and moving average components.

1.5.2. Definition of SARIMA

Definition 1.5.1. A seasonal ARIMA model is denoted as

SARIMA(p, d, q)× (P,D,Q)s,

and is defined by:

Φp(L) ΦP (L
s) (1− L)d (1− Ls)Dyt = Θq(L)ΘQ(L

s) εt + µ,

where:

• (p, d, q) are the non-seasonal ARIMA orders,

• (P,D,Q) are the seasonal ARIMA orders,

• s is the seasonal period (e.g. s = 12 for monthly data with annual seasonality),

• Φp(L) and Θq(L) are non-seasonal AR and MA polynomials,

• ΦP (L
s) and ΘQ(L

s) are seasonal AR and MA polynomials,

• (1− L)d is the non-seasonal differencing operator,

• (1− Ls)D is the seasonal differencing operator,

• εt is white noise and µ is a constant.

SARIMA reduces to ARIMA when the seasonal orders (P,D,Q) are set to zero.
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1.5.3. Identification of Seasonal Orders

The process of identifying SARIMA orders extends the Box–Jenkins methodology:

1. Visual inspection: seasonal cycles can often be observed directly in time plots.

2. Seasonal differencing: apply (1− Ls)D to remove repeating seasonal patterns. For example,
with monthly data, (1− L12)yt = yt − yt−12 removes annual effects.

3. ACF and PACF:

• Seasonal spikes at lags s, 2s, . . . suggest seasonal dependence.

• Seasonal AR terms (P ) are identified via PACF at multiples of s.

• Seasonal MA terms (Q) are identified via ACF at multiples of s.

4. Model selection: fit candidate models and compare using AIC, BIC, or HQ.

1.5.4. Illustrative Example: Airline Passengers Data

The monthly AirPassengers dataset (1949–1960) provides a classic example of seasonality.

Figure 1.5: Distribution of monthly passenger counts

Figure 1.6: Time series of monthly passengers
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The graphs of data show both an upward trend and a repeating yearly pattern:

• After applying first differencing (d = 1) and seasonal differencing with s = 12 (D = 1), the
series becomes approximately stationary.

• The ACF shows a strong spike at lag 12, suggesting a seasonal MA(1) term.

• The PACF indicates additional short-term autoregressive effects.

• A well-fitting specification is:

SARIMA(0, 1, 1)× (0, 1, 1)12.

This model successfully captures both the short-term autocorrelation and the annual seasonal
cycle, producing accurate forecasts.

1.5.5. Applications and Limitations

SARIMA models are widely applied in practice:

• Economics: quarterly GDP, monthly inflation, retail sales.

• Transportation and tourism: airline passengers, hotel bookings.

• Energy: seasonal demand for electricity, gas, or water.

Limitations of SARIMA include:

• Seasonal period s must be known in advance.

• Large parameter sets (high p, q, P,Q) can lead to overfitting and instability.

• SARIMA assumes linear dependence; nonlinear dynamics may require advanced models such as
Seasonal GARCH or deep learning methods.

Despite these drawbacks, SARIMA remains one of the most widely used seasonal models due
to its interpretability, flexibility, and solid theoretical foundation. Model performance will later be
evaluated using metrics such as MAE, RMSE, and MAPE (see Section 1.5).

1.5.6. Comparison: ARIMA vs SARIMA

Table 1.4: Comparison between ARIMA and SARIMA

Aspect ARIMA SARIMA

Seasonality Cannot directly model Explicitly includes seasonal
terms

Parameters (p, d, q) (p, d, q)× (P,D,Q)s

Use Case Short-memory, non-seasonal Monthly, quarterly, or periodic
data

Complexity Fewer parameters More parameters, risk of overfit-
ting
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1.6. Forecasting Model Evaluation Metrics

In time series forecasting problems in general, the selection of appropriate evaluation metrics
is crucial [10] to accurately reflect both the predictive performance and the generalization capability
of a model. Below are some commonly used evaluation metrics.

1.6.1. Mean Absolute Error (MAE)

Definition: The Mean Absolute Error (MAE) measures the average magnitude of errors in a
set of forecasts, without considering their direction. It is formally defined as:

MAE =
1

n

n∑
i=1

|yi − ŷi| (1.1)

where yt denotes the actual value at time t, ŷt is the forecasted value, and n is the total number
of observations. [10]

Interpretation: MAE indicates, on average, how many units the predictions deviate from
the actual values. Since it uses absolute differences, MAE does not distinguish between positive and
negative errors, and it is less sensitive to outliers compared to squared-error metrics. This makes it
one of the most widely used measures for evaluating the overall accuracy of forecasting models.

1.6.2. Root Mean Squared Error (RMSE)

Definition: The Root Mean Squared Error (RMSE) is the square root of the average squared
differences between the actual values and the predicted values. It is defined as:

RMSE =

√√√√ 1

n

n∑
t=1

(yt − ŷt)
2
.1001[10]

Interpretation: RMSE provides a measure of the average magnitude of the prediction errors,
but places a higher weight on larger errors due to the squaring process. This makes RMSE more
sensitive to outliers compared to MAE. In many forecasting applications, RMSE is considered a
standard indicator of predictive accuracy.

1.6.3. Mean Absolute Percentage Error (MAPE)

Definition: The Mean Absolute Percentage Error (MAPE) expresses the prediction accuracy
as a percentage, calculated as:

MAPE =
100

n

n∑
t=1

∣∣∣∣yt − ŷt
yt

∣∣∣∣ .1001[10]
Interpretation: MAPE indicates the average percentage error between forecasts and actual

values, making it scale-independent and easy to interpret. However, it has limitations when actual
values yt are close to zero, which can result in extremely large percentage errors.
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1.6.4. Coefficient of Determination (R2)

Definition: The coefficient of determination, denoted R2, measures the proportion of variance
in the dependent variable that is explained by the model. It is defined as:

R2 = 1−
∑n

t=1(yt − ŷt)
2∑n

t=1(yt − ȳ)2
,

where ȳ is the mean of the actual values.
Interpretation: R2 ranges between 0 and 1, where higher values indicate a better fit of the

model to the data. An R2 value close to 1 implies that the model explains most of the variability in
the observed data, whereas values near 0 suggest poor explanatory power.

1.6.5. Symmetric Mean Absolute Percentage Error (SMAPE)

SMAPE overcomes the division-by-zero issue in MAPE:

SMAPE =
100

n

n∑
t=1

|yt − ŷt|
(|yt|+ |ŷt|) : 2

.

SMAPE is especially useful in financial forecasting where relative errors matter.

Example 1.6.1. If yt = 100, ŷt = 90,

SMAPE =
10

95
× 100 = 10.53%.
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Chapter 2

Deep learning and its application in time series fore-

casting

Deep Learning is a branch of Machine Learning based on Artificial Neural Networks (ANN)
with multiple hidden layers [3]. The main idea of Deep Learning is to model complex and non-linear
relationships in data by learning features at different levels of abstraction.

While traditional Machine Learning often requires feature engineering designed by humans,
Deep Learning is capable of automatically learning features from raw data, thereby reducing de-
pendence on domain experts. For example, in a time series problem, instead of manually designing
statistical indicators (moving average, volatility, etc.), Deep Learning can directly learn from raw data
such as value sequences over time.

2.1. Artificial Neural Networks (ANN)

In this section, we explore the theory and background of neural networks, especially feed-forward
neural networks.

2.1.1. Neurons

Definition 2.1.1. An artificial neuron (or neuron for short) is a function f : Rd → R of the form

f(x) = ϕ(w · x+ b)

where w ∈ Rd is the weighted vector and b ∈ R is the bias of f , and σ : R → R is an activation
function. [3]

Here is a schematic representation of an artificial neuron where Σ = w ·x+ b. This means that
the bias b is a attribute of the perceptron.

Several activation functions can be considered.

• The identity function
σ(x) = x.

• The sigmoid function (or logistic)

σ(x) =
1

1 + e−x
.

• The hyperbolic tangent function (or tanh)

σ(x) =
ex − e−x

ex + e−x
.

• The Rectified Linear Unit (ReLU) activation function

σ(x) = max{0, x}.
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Figure 2.1: Artificial neuron.

2.1.2. Neural Networks

Definition 2.1.2 (Neural Network). A neural network is a structure composed by several layers of
neurons where the output of a neuron of a layer becomes the input of a neuron of the next layer.
Moreover, the output of a neuron can also be the input of a neuron of the same layer or of neuron
of previous layers. The first layer is called the input layer and if the input x ∈ Rd then the layer has
d neurons. The final layer is called the output layer and if y ∈ RK then the layer has K neurons. In
between the two aforementioned layers are some number of the hidden layers each with some number
of neurons. We define the architecture of the neural network by the number of nodes in each layer. [3]

Definition 2.1.3 (Feed-Forward Neural Network). If a neuron network, every output of a layer is
only the input for the next layer, then it is called the a feed-forward neural network. [3]

The Figure 2.2 represents a feed-forward neural network with three input variables, one output
variable, and two hidden layers.

The parameters of the architecture are the number of hidden layers and of neurons in each
layer. The activation functions are also to choose by the user.

For the output layer the activation function is generally different from the one used on the
hidden layers. In the case of regression, we apply no activation function on the output layer.

For binary classification, the output gives a prediction of P (y = 1 | x) since this value is in
[0, 1], the sigmoid activation function is generally considered.

For multi-class classification, the output layer contains one neuron per class i, giving a prediction
of P (y = i | x). The sum of all these values has to be equal to 1. The multi-dimensional function
softmax is generally used:

softmax(z)i =
exp(zi)∑K
j=1 exp(zj)

,

where K is the number of classes.
In the remaining of the chapter, we only consider feed-forward neural networks. Assume that

the network has L+ 1 layers that index from 0 to L, so that the 0-th layer is the input layer and the
L-th layer is the output layer. Let wl

ij denote the weight for the connection from the j-th neuron in
the (l − 1)-th layer to the i-th neuron in the l-th layer.
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Figure 2.2: Basic neural network.

At the l-layer, we use bli for the bias of the i-th neuron, and ali is the activation of the i-th
neuron, i.e. its output. Let σl be the activation function of the l-layer. Then, we have

ali = σl

∑
j

wl
ija

l−1
j + bli

 (2.1)

where the sum is over all neurons i in the (l − 1)-th layer.
To rewrite this expression in a matrix form we define a weight matrix W l for each layer, l. The

entries of the weight matrix W l are just the weights connecting to the l-th layer of neurons, that is,
the entry in the i-th row and j-th column is wl

ij . Similarly, for each layer l we define a bias vector, bl,
where the components of the bias vector are just the values bli, one component for each neuron in the
l-th layer. And finally, we define an activation vector al whose components are the activations ali.

Denote θ = (W 1,b1, . . . ,WL,bL), which we call the parameters of the network.

Let us summarize the mathematical formulation of a feed-forward neural network with L + 1

layers.

• We set a0(x) = x.

• For k = 1, . . . , L,

zk(x) = bk +W kak−1(x), (2.2)

ak(x) = σk(z
k(x)). (2.3)

2.2. Training artificial neural networks

In order to minimize the loss functions for neural networks, a stochastic gradient descent al-
gorithm is used. To update the values of the parameters in neural networks the algorithm called
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backpropagation is typically used. Backpropagation is an efficient algorithm for computing gradients
on neural networks using the chain rule.

2.2.1. Loss function

In order to estimate the parameters θ, we use a training set

DTS = {(xi,yi) | i = 1, . . . , n},

and we minimize the empirical loss

Ln(θ) =
1

n

n∑
i=1

ℓ(f(xi, θ),yi),

and it is associated to a loss function ℓ.
Eventually we add a regularization term, so this leads to minimize the penalized empirical risk

L(θ) =
1

n

n∑
i=1

ℓ(f(xi, θ),yi) + λΩ(θ).

We comsider ℓp-regularization. Using the same notation as follows:

Ω(θ) =
∑
k

∑
i

∑
j

|wk
ij |p =

∑
k

∥W k∥pp.

Note that only the weights are penalized, the biases are not penalized.
We now consider three common types of loss functions:

1. Binary classification: In a classification task with two classes, it is standard to use a neural
network architecture with a single logistic output unit and the cross-entropy loss function:

L(θ) = − 1

n

n∑
i=1

yi log(f(xi, θ) + (1− yi)(log(1− f(xi, θ)).

2. Multiclass classification: When a classification task has more than two classes, it is standard
to use a softmax output layer. The softmax function provides a way of predicting a discrete
probability distribution over the classes. We again use the cross-entropy error function, but it
takes a slightly different form. The cross entropy error function for multi-class output is

L(θ) = − 1

n

n∑
i=1

K∑
j=1

yij log(f(xi, θ)j).

3. Regression: We perform regression with the mean squared error loss function

L(θ) =
1

n

n∑
i=1

∥yi − f(xi, θ)∥2 =
1

n

n∑
i=1

k∑
j=1

(yij − f(xi, θ)j)
2.

2.2.2. Backpropagation algorithm

For each data point (xs, ys), for simplicity we denote Rs = Rs(θ) = ℓ(ys, f(xs, θ)), and hence

Ln(θ) =
1

n

n∑
s=1

Rs.



25

Now we compute ∂Rs/∂w
k
ij and ∂Rs/∂b

k
j . The main idea is first we compute for the output

layer, and then by using the chain rule we compute for the previous layer, an so on.
For each k, j, let

ak = ak(xs), z
k = zk(xs), and δkj =

∂Rs

∂zkj
.

Observe that for each k = 1, . . . , L, the function Rs is determined by zk. It follows that for
k = 1, . . . , L− 1 we have Rs = Rs(z

k+1) and

δkj =
∂Rs

∂zkj
=
∂Rs(z

k+1)

∂zkj
=
∑
i

∂Rs

∂zk+1
i

∂zk+1
i

∂zkj
=
∑
i

∂Rs

∂zk+1
i

· ∂

∂zkj

(∑
t

wk+1
it σk(z

k
t )

)

=
∑
i

∂Rs

∂zk+1
i

wk+1
ij σ′

k(z
k
t ) =

∑
i

δk+1
i wk+1

ij σ′
k(z

k
j ) =

(∑
i

δk+1
i wk+1

ij

)
σ′
k(z

k
j ).

The vector form is
δk = ((W k+1)T δk+1)⊙ σ′

k(z
k). (2.4)

By using the vector δk, we can compute ∂Rs/∂w
k
ij and ∂Rs/∂b

k
j . Note that

∂Rs

∂wk
ij

=
∑
t

∂Rs

∂zkt

∂zkt
∂wk

ij

=
∂Rs

∂zki

∂zki
∂wk

ij

because because ∂zkt /∂w
k
ij = 0 if t ̸= i by Formula (2.2). Together with Formula (2.3), it yields

∂Rs

∂wk
ij

=
∂Rs

∂zki

∂

∂wk
ij

(∑
t

wk
ita

k−1
t + bki

)
= δki a

k−1
j . (2.5)

By the same way,
∂Rs

∂bki
=
∂Rs

∂zki

∂

∂bki

(∑
t

wk
ita

k−1
t + bki

)
= δki . (2.6)

By Formulas (2.4)-(2.6), in order to compute the
∂Rs

∂wk
ij

’s and
∂Rs

∂bki
’s, it suffices to compute δLj

for the output layer.

Here are three common types of output layers:

1. Binary classification: in a classification task with two classes, we have

Rs = Rs(θ) = −ys log(aL1 )− (1− ys) log(1− aL1 ),

where aL1 = σ(zL1 ) with the sigmoid function σ (see Figure 2.3). Since σ′(u) = σ(u)(1− σ(u) for
u ∈ R, we have

∂Rs

∂aL1

∂aL1
∂zL1

=

(
− ys
aL1

−− ys
aL1

)
aL1 (1− aL1 ) = aL1 − ys,

so that
δL1 = a1L − ys. (2.7)
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Figure 2.3: Sigmoid function and its derivative .

2. Multi-class classification: In this learning task,

Rs = Rs(θ) = −
K∑
i=1

ysi log(a
L
i ) = −

K∑
i=1

ysi log(softmax(zL)i).

Note that
∑

i ysi = 1, so

Rs(θ) = −
K∑
i=1

ysi log(softmax(zL)i) = −
∑
i

ysi log

(
ez

L
i∑

t e
zL
t

)

= −
∑
i

ysiz
L
j +

(∑
i

ysi

)
log

(∑
t

ez
L
t

)

= −
∑
i

ysiz
L
j + log

(∑
t

ez
L
t

)

It follows that

δLj =
∂Rs

∂zLj
= −ysj +

ez
L
j∑

t e
zL
t

= −ysj + softmax(zL)j = −ysj + aLj .

Thus,
δL = aL − ys. (2.8)

3. Regression: In this case we have

Rs = ∥ys − aL∥2 =

K∑
i=1

(ysi − aLi )
2.

It follows that

δLj = −2(ysj − aLj )
∂aLj
∂zLj

= −2(ysj − aLj )
∂aLj
∂zLj

= −2(ysj − aLj )σ
′
L(z

L
j ).
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Thus,
δL = 2(aL − ys)⊙ σ′

L(z
L). (2.9)

We can now summarize the backpropagation algorithm.

• Forward pass: we fix the value of the current weights

θ = (W 1,b1, . . . ,WL,bL),

and we compute all the intermediate values

{zk(xs),a
k(xs) = σL(z

k(xs)}1⩽k⩽L.

Note that the predicted value f(xs, θ) is aL(xs).

• Backpropagation algorithm:

– At the output layer L,

(a) Compute δL that depends on the learning task.

(b) Compute ∂Rs/∂w
L
ij by using Formula (2.5).

(c) Compute ∂Rs/∂b
L
j by using Formula (2.6).

– For k = L− 1, . . . , 1,

(a) Compute δk by using Formula (2.4) and the computed vector δk+1.

(b) Compute ∂Rs/∂w
k
ij by using Formula (2.5).

(c) Compute ∂Rs/∂b
k
j by using Formula (2.6).

2.2.3. Optimization Algorithms (Optimizers)

The goal of optimization algorithms is to find the set of weights and parameters that mini-
mize the loss function during the training process of the network. These algorithms determine the
convergence speed and the quality of the model.

• Gradient Descent (GD): This is the most basic algorithm, based on calculating the first
derivative of the loss function with respect to the parameters and updating them in the direction
of descent. Weight update rule:

θt+1 = θt − η · ∇θL(θt)

where η is the learning rate. [13]

– Advantages: Simple, easy to understand.

– Disadvantages: Computationally expensive on large datasets, prone to local minima.

• Stochastic Gradient Descent (SGD): Instead of using the whole dataset, SGD updates the
weights after each sample (or mini-batch).

θt+1 = θt − η · ∇θLi(θt)

where Li is the loss function of a single sample or a mini-batch.

– Advantages: Much faster than GD, suitable for large datasets.
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Figure 2.4: Optimization algorithms in Deep Learning

– Disadvantages: Convergence process oscillates, less stable.

• Momentum: Developed to overcome the limitations of SGD. The idea is to add "inertia" to
the update process:

vt = γvt−1 + η∇θL(θt)

θt+1 = θt − vt

where γ is the momentum coefficient (0 < γ < 1).

– Advantages: Reduces oscillations, helps escape local minima faster.

• RMSProp (Root Mean Square Propagation): RMSProp adjusts the learning rate for each
parameter by dividing the gradient by the square root of the exponentially decaying average of
squared gradients:

E[g2]t = βE[g2]t−1 + (1− β)g2t

θt+1 = θt −
η√

E[g2]t + ϵ
gt

– Advantages: Suitable for non-stationary data, particularly effective in Deep Learning.

• Adam (Adaptive Moment Estimation): Adam combines the advantages of Momentum and
RMSProp. The algorithm estimates the first moment (the moving average of gradients) and the
second moment (the moving average of squared gradients):

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2
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θt+1 = θt −
η√
v̂t + ϵ

m̂t

[14]

– Advantages: Fast convergence, effective on large-scale and complex nonlinear data.

– Disadvantages: May converge to suboptimal solutions in some cases.

2.3. Convolutional Neural Networks (CNN) for Time Series

2.3.1. From Spatial to Temporal Feature Learning

While Convolutional Neural Networks (CNNs) achieved groundbreaking success in computer
vision by learning spatial hierarchies in images [11], their core principles are equally powerful for
sequential data. A CNN applied to time series performs temporal convolution, sliding filters across
the time dimension to automatically extract relevant features such as trends, seasonal patterns, shapes,
and anomalous spikes. This capability to learn salient patterns directly from raw data eliminates the
need for extensive manual feature engineering, which is often required by traditional statistical models.

2.3.2. Mathematical Foundation: 1D Convolution

The fundamental operation in a temporal CNN is the one-dimensional convolution.

Definition 2.3.1 (One-Dimensional Discrete Convolution). Given a discrete time series

X = (x1, x2, . . . , xT )

and a filter (or kernel)W = (w1, w2, . . . , wk) of length k, the convolution operation at time t is defined
as:

s(t) = (X ∗W )(t) =

k∑
τ=1

wτ · xt−τ+b

where b is an index shift parameter that depends on the type of padding used. This operation produces
a new sequence S = (s1, s2, . . .), known as a feature map. [11]

In practice, multiple filters are used in parallel, each learning to detect a different type of
temporal motif. For instance, one filter might activate for sharp increases, while another might respond
to periodic dips.

Key Hyperparameters of the Convolutional Layer

The behavior of the convolution is controlled by several critical hyperparameters:

• Kernel Size (k): The length of the filter. A small kernel (e.g., k = 3) captures short-term,
high-frequency patterns, while a large kernel (e.g., k = 12 for monthly data) can learn seasonal
cycles.

• Number of Filters (F): The number of unique kernels in the layer. Each filter produces
one feature map. A higher F allows the network to learn a richer set of features but increases
computational cost.
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• Stride (s): The step size with which the kernel slides across the input. A stride of 1 is standard;
a larger stride downsamples the output.

• Padding (p): Adding zeros to the beginning and end of the input sequence. ’Same’ padding
preserves the input length, while ’Valid’ padding does not add any zeros, resulting in a shorter
output.

The length of the output feature map T ′ can be calculated as:

T ′ =

⌊
T + 2p− k

s

⌋
+ 1

2.3.3. Core Architectural Components

A standard CNN architecture for time series forecasting consists of a stack of the following
layers:

Convolutional Layers

These are the feature extraction engines. A convolutional layer applies a set of learnable filters
to the input sequence. Each neuron in a convolutional layer is connected only to a local region (a time
window) of the previous layer’s output, a concept known as local connectivity. This dramatically
reduces the number of parameters compared to a fully connected layer and enforces a translation-
invariant learning of patterns.

Activation Functions

After convolution, a non-linear activation function is applied element-wise to the feature map.
The Rectified Linear Unit (ReLU), defined as f(x) = max(0, x), is most common. It introduces
non-linearity, allowing the network to learn complex relationships, and is computationally efficient.

Pooling Layers

Pooling layers perform a downsampling operation along the temporal dimension. Max Pooling
is the most prevalent technique, which takes the maximum value within a sliding window (e.g., of size
2).

Definition 2.3.2 (Max Pooling). For a feature map S and a pooling size p, the max pooling operation
is:

Pt = max(st, st+1, . . . , st+p−1)

[11]

The purposes of pooling are twofold:

1. It reduces the computational load for subsequent layers by decreasing the sequence length.

2. It provides a form of translation invariance, making the model more robust to small temporal
shifts in the input patterns.
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Fully Connected (Dense) Layers

After alternating convolutional and pooling layers, the final feature maps are flattened into a
single vector. This vector is then fed into one or more fully connected layers. The role of these layers is
to perform the high-level reasoning based on all the extracted features and produce the final forecast
(e.g., a single value for one-step-ahead prediction).

2.3.4. Advantages for Time Series Forecasting

CNNs offer several distinct advantages over other models for time series analysis:

• Automatic Feature Learning: CNNs automatically discover the relevant features from raw
time series data, bypassing the need for manual creation of statistical features (e.g., moving
averages, volatility).

• Computational Efficiency: Due to parameter sharing (the same filter is used across all time
steps), CNNs are typically faster to train than RNNs/LSTMs, especially on long sequences.

• Resistance to Overfitting: The combination of local connectivity and parameter sharing acts
as a strong regularizer, reducing the risk of overfitting compared to fully connected networks.

• Parallelization: Unlike RNNs, which process data sequentially, convolutions can be parallelized
over the time dimension, leading to faster training on modern hardware (GPUs).

2.3.5. Limitations and the Case for Hybrid Models

The primary limitation of a standard CNN is its inherent local perspective. A filter with a
receptive field of size k can only look back k time steps. This makes it challenging for CNNs to capture
long-term dependencies that span hundreds or thousands of time steps, a task at which RNNs/LSTMs
excel.

This limitation motivates the development of hybrid models (e.g., CNN-LSTM), where the
CNN acts as a feature extractor for the raw series, and the LSTM models the long-term dynamics of
the resulting feature maps.

2.3.6. Illustrative Example: Detecting Weekly Patterns in Electricity De-

mand

Consider the task of forecasting hourly electricity demand. The data exhibits strong daily and
weekly seasonality.

• A CNN can be designed with a first layer containing filters of size k = 24 (to capture daily
cycles). These filters will learn patterns associated with daytime high demand and nighttime
low demand.

• A subsequent layer could use filters of size k = 7 (on the downsampled output of the first layer)
to learn weekly patterns, such as the difference between weekday and weekend consumption
profiles.
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• The final dense layers then combine these hierarchically extracted features—the daily shape and
the weekly context—to make an accurate forecast for the next hour or day.

This example illustrates how CNNs can build a multi-scale representation of time series data,
from short-term patterns to longer-term structures, making them a powerful and flexible tool for
modern forecasting.

2.4. Recurrent Neural Network (RNN)

2.4.1. Concept

A Recurrent Neural Network (RNN) is an artificial neural network architecture specifically
designed to process sequential data or time series. Unlike a Feedforward Neural Network, RNN has
a recurrent loop mechanism that allows information from previous steps to be stored and used in
subsequent steps. This enables RNN to capture temporal dependencies in data, such as text, speech,
or stock price sequences.

2.4.2. Basic Structure

At each time step t, the RNN receives an input Xt and combines it with the hidden state from
the previous step ht−1 to compute the current hidden state ht and the output yt. The formulas are:

ht = f(WxhXt +Whhht−1 + bh)

yt = g(Whyht + by)

Figure 2.5: Basic structure of RNN

Where:
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• Xt: input at time t.

• ht: hidden state at time t.

• Wxh,Whh,Why: weight matrices.

• f : nonlinear activation function, typically tanh or ReLU.

• g: output function, which can be softmax or sigmoid depending on the task.

2.4.3. Advantages of RNN

• Context memory: RNN can retain information from previous steps, making it suitable for se-
quential data.

• Flexibility: Effectively applied in many fields such as natural language processing, speech recog-
nition, machine translation, and time series forecasting.

2.4.4. Limitations of RNN

• Vanishing Gradient: When training with long sequences, the gradient becomes very small,
making it difficult for the model to learn long-term dependencies.

• Exploding Gradient: Conversely, gradients can become too large, causing instability during
training.

• Limited memory capacity: Typically effective only for short-term dependencies, while time series
data such as stock prices require consideration of long-term factors.

2.4.5. Significance in Time Series Forecasting

RNN is a foundational model for processing sequential and time series data. However, due to its
limitations in long-term memory, improved variants such as LSTM (Long Short-Term Memory)
and GRU (Gated Recurrent Unit) have been developed. Among them, LSTM is considered a
major breakthrough, effectively addressing the vanishing gradient problem and enabling the model to
learn long-term dependencies.

2.5. Long Short-Term Memory Network Model (LSTM)

2.5.1. Overview

LSTM is a special variant of recurrent neural networks (RNN), introduced by Hochreiter and
Schmidhuber (1997) [12]. Unlike RNN, which only has one mechanism to pass information from one
time step to the next, LSTM adds an additional mechanism for information management based on
the cell state and gates. Thanks to this, LSTM can store, maintain, and discard information over a
long period of time, allowing the model to learn long-term dependencies in sequential data.

Practical significance: LSTM networks are particularly useful in time series forecasting tasks
(e.g., stock price prediction, energy demand, network traffic), as well as in natural language processing
applications (machine translation, semantic analysis).
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2.5.2. Operating Principle

An LSTM cell consists of four main components: the cell state, forget gate, input gate, and
output gate.

σ σ tanh σ

× +

× ×

tanh

Ct−1

ht−1

xt

ft it

C̃t

ot

Ct

ht

yt

• Cell State: This is the “long-term memory” of the LSTM, carrying information across many
time steps. It allows the network to retain or discard unnecessary information during train-
ing. In essence, the cell state helps LSTM maintain the global context of the sequence (e.g.,
upward/downward trends in a time series).

• Forget Gate: Computed by a sigmoid layer, it decides which parts of the previous state should
be discarded.

ft = σ(Wf · [ht−1, Xt] + bf )

If ft is close to 0, the information will be forgotten; if close to 1, the information will be retained.
Meaning: The forget gate allows the model to flexibly remove noise or irrelevant information for
prediction.

• Input Gate: Determines which new information will be added to the cell state. It consists of
two steps:

it = σ(Wi · [ht−1, Xt] + bi)

C̃t = tanh(WC · [ht−1, Xt] + bC)

Here, it is the level of information added, while C̃t is the candidate new state. Meaning: The
input gate allows the network to update with new knowledge from data, combined with previous
knowledge.

• Cell State Update: The new state of the cell is calculated as follows:

Ct = ft ∗ Ct−1 + it ∗ C̃t

This step decides which past information to keep and which new information to add.

• Output Gate: Determines which part of the cell state will be output as the LSTM’s output.

ot = σ(Wo · [ht−1, Xt] + bo)

ht = ot ∗ tanh(Ct)
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Where ht is the output at time step t. Meaning: The output gate controls which information is
important to produce predictions at the current step.

2.5.3. Key Features of LSTM

• Ability to Learn Long-Term Dependencies: Thanks to its gating mechanism, LSTM can
remember distant information in sequences without suffering from gradient loss.

• Addressing the Vanishing Gradient Problem: The cell state enables gradients to propagate
through many time steps without vanishing.

• Flexibility: The model can be tuned with hyperparameters such as number of LSTM layers,
number of neurons, and learning rate to fit specific applications.

• Wide Applications: From time series forecasting, natural language processing, sentiment anal-
ysis, to speech recognition.

2.6. Hybrid Models in Time Series Forecasting

2.6.1. Introduction

Time series forecasting involves predicting future values based on historical data, a critical
task in domains like finance, energy, transportation, and meteorology. Traditional statistical models,
such as ARIMA, excel at capturing linear patterns and are computationally efficient, but they strug-
gle with complex nonlinear relationships and long-term dependencies. Deep learning models, such as
Long Short-Term Memory (LSTM) networks and Convolutional Neural Networks (CNNs), are adept
at modeling nonlinear patterns and long-term dependencies but require large datasets and significant
computational resources. Hybrid models combine the strengths of both approaches to achieve supe-
rior forecasting accuracy and robustness, particularly for complex time series with mixed linear and
nonlinear components.

This section provides a comprehensive theoretical and practical overview of hybrid models in
time series forecasting, focusing on the ARIMA–LSTM and CNN–LSTM hybrids, and exploring other
combinations of traditional and deep learning methods. Each model is explained with its compo-
nents, mathematical foundations, practical considerations, and applications, supported by illustrative
diagrams.

2.6.2. ARIMA–LSTM Hybrid Model

The ARIMA–LSTM hybrid model integrates the Autoregressive Integrated Moving Average
(ARIMA) model with LSTM networks to capture both linear and nonlinear components of a time
series, making it highly effective for complex datasets like air passenger numbers or stock prices.

ARIMA Component

The ARIMA model, introduced by Box and Jenkins (1970), is a cornerstone of statistical time
series forecasting. It comprises three components:
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• Autoregressive (AR): Models the current observation as a linear combination of past obser-
vations:

Xt = c+ ϕ1Xt−1 + ϕ2Xt−2 + · · ·+ ϕpXt−p + εt (2.10)

where ϕi are AR coefficients, p is the AR order, and εt is white noise.

• Integrated (I): Applies differencing to make the time series stationary, removing trends or
seasonality. For first-order differencing:

X ′
t = Xt −Xt−1 (2.11)

where d is the order of differencing.

• Moving Average (MA): Models the current observation as a linear combination of past fore-
cast errors:

Xt = µ+ εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q (2.12)

where θi are MA coefficients and q is the MA order.

ARIMA is denoted as ARIMA(p, d, q), where p, d, q are hyperparameters determined through
techniques like ACF/PACF analysis or grid search.

LSTM Component

LSTM networks, introduced by Hochreiter and Schmidhuber (1997), are a type of recurrent neu-
ral network (RNN) designed to address the vanishing gradient problem in traditional RNNs. LSTMs
use a cell state and three gates to manage information flow:

• Forget gate:
ft = σ(Wf · [ht−1, Xt] + bf ) (2.13)

• Input gate:
it = σ(Wi · [ht−1, Xt] + bi), C̃t = tanh(WC · [ht−1, Xt] + bC) (2.14)

• Cell state update:
Ct = ft · Ct−1 + it · C̃t (2.15)

• Output gate:
ot = σ(Wo · [ht−1, Xt] + bo), ht = ot · tanh(Ct) (2.16)

Hybrid Approach

The ARIMA–LSTM hybrid model leverages ARIMA’s ability to model linear trends and LSTM’s
strength in capturing nonlinear residuals. The workflow:

1. Fit ARIMA and generate predictions Ŷt,ARIMA or residuals et = Yt − Ŷt,ARIMA.

2. Train LSTM on residuals to produce nonlinear corrections Ŷt,LSTM .

3. Final prediction:
Ŷt = Ŷt,ARIMA + Ŷt,LSTM (2.17)
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Evaluate

No Yes
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Figure 2.6: ARIMA–LSTM hybrid model workflow

Practical Considerations

• Stationarity: ARIMA requires preprocessing (differencing, detrending, log transforms).

• Hyperparameter tuning: ACF/PACF or auto-ARIMA for (p, d, q); grid/Bayesian search for
LSTM.

• Data requirements: Hundreds of observations typically needed for LSTM.

• Computational complexity: More demanding than standalone models.

• Applications: Stock prices, energy demand, air passengers.

Example Application: Air Passenger Forecasting

For the classic Air Passengers dataset (1949–1960):

• ARIMA(1,1,1) captures linear trend/seasonality.

• LSTM (50 units, 2 layers) models residuals.

• Combined forecasts reduce MAE and RMSE.

2.6.3. CNN–LSTM Hybrid Model

The CNN–LSTM hybrid combines CNN feature extraction with LSTM sequence modeling.
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CNN Component

A 1D CNN applies filters across time windows:

Zt = σ(W ·Xt:t+k−1 + b) (2.18)

LSTM Integration

Features extracted by CNN are fed into LSTM, producing the final forecast:

Ŷt = LSTM(CNN(Xt)) (2.19)

Practical Considerations

• Filter size: small (k = 3) for fine patterns; large (k = 7) for broader trends.

• Requires normalization (e.g., Min-Max scaling).

Example: Air Passenger Forecasting

• CNN: 32 filters of size 3 extract local patterns.

• LSTM: 2 layers with 50 units each.

• Outperforms standalone LSTM.

2.6.4. Other Hybrid Models

• SARIMA–LSTM: Seasonal ARIMA + LSTM on residuals.

• GARCH–LSTM: GARCH models volatility, LSTM captures nonlinear patterns.

• Prophet–LSTM: Prophet decomposition + LSTM residual modeling.

• Wavelet–LSTM: Wavelet transform + LSTM for multi-scale signals.

• ETS–LSTM: Exponential smoothing + LSTM for nonlinear residuals.

2.6.5. Practical Implementation

1. Data preprocessing (normalization, train/test split).

2. ARIMA/SARIMA/GARCH modeling with Statsmodels.

3. LSTM/CNN in Keras/TensorFlow.

4. Evaluation: MAE, RMSE, MAPE.

5. Visualization with Matplotlib/Seaborn.

2.6.6. Advantages and Challenges

Advantages

• Combines interpretability of statistics with deep learning flexibility.

• Improved accuracy for mixed linear/nonlinear series.
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Challenges

• High computational demands.

• Sensitive to preprocessing and hyperparameters.

2.6.7. Conclusion

Hybrid models (ARIMA–LSTM, CNN–LSTM, SARIMA–LSTM, GARCH–LSTM, Prophet–LSTM,
Wavelet–LSTM, ETS–LSTM) offer powerful solutions for complex time series. By leveraging both sta-
tistical and deep learning methods, they provide superior accuracy and robustness across domains such
as finance, energy, and transportation.

2.7. Application in Number of Air Passengers Forecasting

2.7.1. Programming Language and Libraries Used

This study uses Python with several open-source libraries, including Statsmodels [18], Scikit-
learn [19], TensorFlow [20], and Keras [21]. Python is one of the most popular programming languages
in the fields of data science and artificial intelligence thanks to its simple, readable syntax, along with
a rich ecosystem of libraries. Python provides strong support for data processing, visualization, and
the development of machine learning as well as deep learning models.

Some important libraries used in this research include:

• NumPy: Provides scientific computing tools, especially operations on arrays and matrices,
enabling fast and efficient data processing.

• Pandas: A powerful library for tabular data manipulation and analysis (DataFrame), particu-
larly useful for time series data such as financial or transportation data.

• Matplotlib and Seaborn: Two popular libraries for data visualization. Matplotlib provides
basic plotting capabilities, while Seaborn offers more visually appealing and easy-to-analyze
statistical charts.

• Statsmodels: A specialized library for statistical analysis and time series modeling, supporting
tools such as ARIMA, ADF tests, and autocorrelation analysis.

• Scikit-learn: The standard library for machine learning. In this research, it is used for data
preprocessing (normalization, train/test split) and evaluation metrics such as MAE and MAPE.

• TensorFlow/Keras: A deep learning framework used to build and train deep neural network
models. Keras provides a user-friendly interface, making it easy to design architectures such as
LSTM networks for time series forecasting.

The combination of Python with the above libraries enables fast, efficient, and scalable research.
This is one of the key factors ensuring the accuracy and practical applicability of forecasting models.
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2.7.2. Application in Air Passenger Forecasting

Overview of Example

This example applies multiple forecasting methods on the well-known AirPassengers dataset,
which records monthly airline passenger totals from 1949 to 1960. The dataset is an excellent bench-
mark because of its strong upward trend and pronounced seasonality. We compare the performance
of ARIMA, SARIMA, Long Short-Term Memory (LSTM), and a Hybrid SARIMA–LSTM model, all
trained on the historical series and tested on a holdout set.

Data Description

The dataset consists of 144 monthly observations from January 1949 to December 1960 [2].
It contains two variables:

• Month: Observation date (monthly frequency).

• #Passengers: Total number of international airline passengers.

Descriptive statistics show that the number of passengers ranges from about 112,000 (early
1949) to nearly 622,000 (mid-1960). The series demonstrates both a clear long-term growth trend
and strong seasonal cycles with peaks in summer months.

Figure 2.7: Distribution of monthly passenger counts
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Figure 2.8: Time series of monthly passengers

Stationarity Test

The Augmented Dickey-Fuller (ADF) test was performed to assess stationarity:

• Before differencing: ADF Statistic = 0.8154, p-value = 0.9919 ⇒ Fail to reject H0, series is
non-stationary.

• After first differencing: ADF Statistic = -2.8293, p-value = 0.0542 ⇒ Still borderline non-
stationary at the 5% level.

After calculating and plotting graph of Autocorrelation function, seasonal differencing with lag 12 was
also applied, leading to a stationary transformed series suitable for ARIMA and SARIMA modeling.

Figure 2.9: ACF plot
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ARIMA Model Application

A non-seasonal ARIMA model was fitted with automatic parameter search. The selected model
is:

ARIMA(1, 1, 2)

with the best AIC = 871.46.
Forecast accuracy on the 12-month test set:

• MAE = 99.67

• RMSE = 122.10

• MAPE = 21.40%

Figure 2.10: 12-month forecast with ARIMA model

SARIMA Model Application

To better capture both the trend and the seasonality of the AirPassengers dataset, a Seasonal
ARIMA (SARIMA) model was also applied.

The selected model was:
SARIMA(0, 1, 2)× (1, 0, 1)12

with the lowest AIC value of 605.38, indicating a strong balance between model complexity and
goodness of fit.

Forecast accuracy:

• Validation set: MAE = 18.53, RMSE = 24.66, MAPE = 5.05%.

• Test set: MAE = 20.72, RMSE = 24.76, MAPE = 4.74%.
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Figure 2.11: 12-month forecast with SARIMA model

Residual diagnostics confirm that the SARIMA model adequately captures the time series
dynamics: the Ljung–Box test (p = 0.96) shows no significant autocorrelation in the residuals, and
the Jarque–Bera test (p = 0.83) indicates approximate normality.

LSTM Model Application

To capture nonlinear and long-term dependencies, an LSTM model was built with the following
architecture:

• LSTM layer: 64 units

• Dense output layer: 1 unit

This network has approximately 16,961 parameters.
Evaluation on the test set:

• MAE = 37.99

• RMSE = 47.16

• MAPE = 8.36%
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Figure 2.12: 12-month forecast with LSTM model

Hybrid SARIMA–LSTM Model Application

To leverage the strengths of both statistical and deep learning models, a hybrid SARIMA–
LSTM model was implemented based on the methodology of Zhang (2003) [17]. The procedure follows
a two-stage approach:

1. The SARIMA model (0, 1, 2) × (1, 0, 1)12 was first fitted to the original passenger time series.
This component captures the linear trend and seasonal structure.

2. The residuals from the SARIMA model, representing nonlinear components not explained by
the seasonal linear structure, were then used to train an LSTM network. The LSTM was trained
on residual sequences with input shape (86, 12, 1) and output shape (86, 1).

Dataset split:

• Training set: 100 months

• Validation set: 14 months

• Test set: 30 months

Forecast accuracy on the test set:

• MAE = 72.38

• RMSE = 85.81

• MAPE = 16.15%



45

Figure 2.13: Forecasting with Hybrid SARIMA–LSTM model

The hybrid SARIMA-LSTM model underperformed compared to the individual SARIMA and
LSTM models. This is likely due to the model’s increased complexity leading to overfitting on the
relatively small dataset of 144 observations. Since SARIMA already captures the strong seasonal-linear
pattern effectively, the residual noise contains limited nonlinear structure for the LSTM to learn.

Overall Comparison of Models

The performance of the four forecasting approaches — ARIMA, SARIMA, LSTM, and Hybrid
SARIMA–LSTM — on the AirPassengers dataset is summarized in Table 2.1.

Table 2.1: Comparison of ARIMA, SARIMA, LSTM, and Hybrid SARIMA–LSTM models

Model MAE RMSE MAPE (%)

ARIMA 99.67 122.10 21.40

SARIMA 20.72 24.76 4.74

LSTM 37.99 47.16 8.36

Hybrid (SARIMA–LSTM) 72.38 85.81 16.15

Analytical Discussion of Results

From the empirical experiments, a clear hierarchy of forecasting performance emerges among
the four models for this specific dataset.

The simple ARIMA(1,1,2) model, although capable of capturing basic linear autocorrelation,
fails to represent the strong seasonal fluctuations in the AirPassengers dataset. Its relatively high
MAPE of 21.40% confirms that ignoring seasonality severely deteriorates forecast accuracy.

By contrast, the SARIMA(0, 1, 2)× (1, 0, 1)12 model substantially improves accuracy, reducing
the MAPE to below 5%. This improvement highlights the advantage of explicitly modeling seasonal
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autoregressive and moving average components for data with clear calendar cycles. Residual diag-
nostics further reinforce this conclusion: the Ljung–Box test (p = 0.96) suggests the residuals are
uncorrelated.

The LSTM model, trained using a 12-step sliding window, offers an alternative perspective.
It successfully captures both short-term temporal patterns and nonlinear growth without explicit
seasonal differencing. Its test performance (MAPE = 8.36%) is better than ARIMA but inferior to
SARIMA. This suggests that while LSTM excels in representing nonlinearities, it benefits less from
small datasets such as AirPassengers (144 points), where the sample size limits the generalization
capability of Deep Learning models.

The hybrid SARIMA–LSTM model integrates these two paradigms. However, in this case, the
hybrid model does not outperform its components (MAPE = 16.15%). The most plausible explanation
is that the SARIMA model already explains most of the variance (over 95%), leaving residuals that
are essentially random noise. Consequently, the LSTM component tends to overfit this noise rather
than uncovering meaningful hidden nonlinear dynamics.

This result underlines an important methodological conclusion: Hybrid models are not univer-
sally superior. Their effectiveness is most pronounced when the time series exhibits complex nonlin-
ear patterns that standard statistical models fail to capture. For small, strongly seasonal, and linear
datasets like AirPassengers, a well-tuned SARIMA model remains the most robust and efficient choice.
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